Winter movement patterns of a globally endangered avian scavenger in south-western Europe
1.
Hansson, L. A. & Akesson, S. Animal Movement Across Scales (Oxford University Press, Oxford, 2014).
Google Scholar
2.
Dingle, H. & Drake, V. A. What is migration?. Bioscience 57, 113–121 (2007).
Article Google Scholar
3.
Chapman, B. B., Brönmark, C., Nilsson, J. Å. & Hansson, L. A. The ecology and evolution of partial migration. Oikos 120, 1764–1775 (2011).
Article Google Scholar
4.
Newton, I. The Migration Ecology of Birds (Elservier, New York, 2010).
Google Scholar
5.
Cadahía, L. et al. Advancement of spring arrival in a long-term study of a passerine bird: Sex, age and environmental effects. Oecologia 184, 917–929 (2017).
ADS PubMed Article PubMed Central Google Scholar
6.
Ogonowski, M. S. & Conway, C. J. Migratory decisions in birds: Extent of genetic versus environmental control. Oecologia 161, 199–207 (2009).
ADS PubMed Article PubMed Central Google Scholar
7.
Berthold, P., Helbig, A. J., Mohr, G. & Querner, U. Rapid microevolution of migratory behaviour in a wild bird species. Nature 360, 668–670 (1992).
ADS Article Google Scholar
8.
Studds, C. E., Kyser, T. K. & Marra, P. P. Natal dispersal driven by environmental conditions interacting across the annual cycle of a migratory songbird. Proc. Natl. Acad. Sci. 105, 2929–2933 (2008).
ADS CAS PubMed Article PubMed Central Google Scholar
9.
Dale, C. A. & Leonard, M. L. Reproductive consequences of migration decisions by Ipswich Sparrows (Passerculus sandwichensis princeps). Can. J. Zool. 89, 100–108 (2011).
Article Google Scholar
10.
Gilroy, J. J., Gill, J. A., Butchart, S. H. M., Jones, V. R. & Franco, A. M. A. Migratory diversity predicts population declines in birds. Ecol. Lett. 19, 308–317 (2016).
PubMed Article Google Scholar
11.
Teitelbaum, C. S. et al. Experience drives innovation of new migration patterns of whooping cranes in response to global change. Nat. Commun. 7, 12793. https://doi.org/10.1038/ncomms12793 (2016).
ADS CAS Article PubMed PubMed Central Google Scholar
12.
Rubolini, D., Møller, A. P., Rainio, K. & Lehikoinen, E. Intraspecific consistency and geographic variability in temporal trends of spring migration phenology among european bird species. Clim. Res. 35, 135–146 (2007).
Article Google Scholar
13.
Greig, E. I., Wood, E. M. & Bonter, D. N. Winter range expansion of a hummingbird is associated with urbanization and supplementary feeding. Proc. R. Soc. B Biol. Sci. 248, 20170256. https://doi.org/10.1098/rspb.2017.0256 (2017).
Article Google Scholar
14.
Gill, J. A. et al. Why is timing of bird migration advancing when individuals are not?. Proc. R. Soc. B Biol. Sci. 281, 20132161. https://doi.org/10.1098/rspb.2013.2161 (2013).
Article Google Scholar
15.
Oro, D., Genovart, M., Tavecchia, G., Fowler, M. S. & Martínez-Abraín, A. Ecological and evolutionary implications of food subsidies from humans. Ecol. Lett. 16, 1501–1514 (2013).
PubMed Article Google Scholar
16.
Gilbert, N. I. et al. Are white storks addicted to junk food? Impacts of landfill use on the movement and behaviour of resident white storks (Ciconia ciconia) from a partially migratory population. Mov. Ecol. 4, 7. https://doi.org/10.1186/s40462-016-0070-0 (2016).
Article PubMed PubMed Central Google Scholar
17.
Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 6179. https://doi.org/10.1126/science.1242552 (2014).
CAS Article Google Scholar
18.
Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).
ADS CAS PubMed Article Google Scholar
19.
Wilmers, C. C. et al. The golden age of bio-logging: How animal-borne sensors are advancing the frontiers of ecology. Ecology 96, 1741–1753 (2015).
PubMed Article Google Scholar
20.
Weimerskirch, H., Delord, K., Guitteaud, A., Phillips, R. A. & Pinet, P. Extreme variation in migration strategies between and within wandering albatross populations during their sabbatical year, and their fitness consequences. Sci. Rep. 5, 1–7. https://doi.org/10.1038/srep08853 (2015).
CAS Article Google Scholar
21.
Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, 6240. https://doi.org/10.1126/science.aaa2478 (2015).
CAS Article Google Scholar
22.
Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).
PubMed PubMed Central Article Google Scholar
23.
Edelhoff, H., Signer, J. & Balkenhol, N. Path segmentation for beginners: An overview of current methods for detecting changes in animal movement patterns. Mov. Ecol. 4, 21. https://doi.org/10.1186/s40462-016-0086-5 (2016).
Article PubMed PubMed Central Google Scholar
24.
Marzluff, J. M., Millspaugh, J. J., Hurvitz, P. & Handcock, M. S. Relating resources to a probabilistic measure of space use: Forest fragments and Steller’s Jays. Ecology 85, 1411–1427 (2004).
Article Google Scholar
25.
Börger, L., Dalziel, B. D. & Fryxell, J. M. Are there general mechanisms of animal home range behaviour? A review and prospects for future research. Ecol. Lett. 11, 637–650 (2008).
PubMed Article Google Scholar
26.
López-López, P., García-Ripollés, C. & Urios, V. Food predictability determines space use of endangered vultures: Implications for management of supplementary feeding. Ecol. Appl. 24, 938–949 (2014).
PubMed Article Google Scholar
27.
van Beest, F. M., Mysterud, A., Loe, L. E. & Milner, J. M. Forage quantity, quality and depletion as scaledependent mechanisms driving habitat selection of a large browsing herbivore. J. Anim. Ecol. 79, 910–922 (2010).
PubMed Google Scholar
28.
Edwards, M. A., Nagy, J. A. & Derocher, A. E. Low site fidelity and home range drift in a wide-ranging, large Arctic omnivore. Anim. Behav. 77, 23–28 (2009).
Article Google Scholar
29.
Cagnacci, F. et al. Partial migration in roe deer: Migratory and resident tactics are end points of a behavioural gradient determined by ecological factors. Oikos 120, 1790–1802 (2011).
Article Google Scholar
30.
Monsarrat, S. et al. How predictability of feeding patches affects home range and foraging habitat selection in AVIAN social scavengers?. PLoS One 8, e53077. https://doi.org/10.1371/journal.pone.0053077 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
31.
van Overveld, T. et al. Food predictability and social status drive individual resource specializations in a territorial vulture. Sci. Rep. 8, 1–13. https://doi.org/10.1038/s41598-018-33564-y (2018).
CAS Article Google Scholar
32.
López-López, P., Benavent-Corai, J., García-Ripollés, C. & Urios, V. Scavengers on the move: Behavioural changes in foraging search patterns during the annual cycle. PLoS One 8, e54352. https://doi.org/10.1371/journal.pone.0054352 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
33.
Devault, T. L., Reinhart, B. D., Brisbin, I. L. & Rhodes, O. E. Flight behavior of Black and Turkey vultures: Implications for reducing bird–aircraft collisions. J. Wildl. Man. 69, 610–608 (2005).
Article Google Scholar
34.
Alarcón, P. A. E. & Lambertucci, S. A. A three-decade review of telemetry studies on vultures and condors. Mov. Ecol. 6, 13. https://doi.org/10.1186/s40462-018-0133-5 (2018).
Article PubMed PubMed Central Google Scholar
35.
BirdLife International. IUCN Red List for birds. https://www.birdlife.org (2016).
36.
Del Moral, J. C. El alimoche común en España. Población reproductora en 2008 y método de censo.(2009).
37.
BirdLife International. European Red List of Birds. Office for Official Publications of the European Countries (2015).
38.
Phipps, W. L. et al. Spatial and temporal variability in migration of a soaring raptor across three continents. Front. Ecol. Evol. 7, 323. https://doi.org/10.3389/fevo.2019.00323 (2019).
Article Google Scholar
39.
Oppel, S. et al. High juvenile mortality during migration in a declining population of a long-distance migratory raptor. Ibis 157, 545–557 (2015).
Article Google Scholar
40.
García-Ripollés, C., López-López, P. & Urios, V. First description of migration and wintering of adult egyptian vultures neophron percnopterus tracked by GPS satellite telemetry. Bird Study 57, 261–265 (2010).
Article Google Scholar
41.
SEO/BirdLife. Atlas de las aves en invierno en España 2007–2010. Atlas de las aves en invierno en España 2007–2010 (2012).
42.
Di Vittorio, M. et al. Wintering of Egyptian vultures (Neophron percnopterus) in Sicily: New data. Arx. Misc. Zool. 1, 114–116 (2016).
Article Google Scholar
43.
Buechley, E. R. & Şekercioğlu, Ç. H. The avian scavenger crisis: Looming extinctions, trophic cascades, and loss of critical ecosystem functions. Biol. Conserv. 198, 220–228 (2016).
Article Google Scholar
44.
Sanz-Aguilar, A., De Pablo, F. & Donázar, J. A. Age-dependent survival of island vs. mainland populations of two avian scavengers: Delving into migration costs. Oecologia 179, 405–414 (2015).
ADS PubMed Article Google Scholar
45.
Mateo-Tomás, P. & Olea, P. P. Diagnosing the causes of territory abandonment by the Endangered Egyptian vulture Neophron percnopterus: The importance of traditional pastoralism and regional conservation. Oryx. 44, 424–433 (2010).
Article Google Scholar
46.
Donázar, J. A. Los Buitres Ibéricos: Biología y Conservación. (Reyero, 1993).
47.
Felicísimo Pérez, Á. M. Elaboración del atlas climático de Extremadura mediante un Sistema de Información Geográfica. GeoFocus 1, 17–23 (2001).
Google Scholar
48.
López-López, P., Maiorano, L., Falcucci, A., Barba, E. & Boitani, L. Hotspots of species richness, threat and endemism for terrestrial vertebrates in SW Europe. Acta Oecol. 37, 399–412 (2011).
Article Google Scholar
49.
Traba, J., García De La Morena, E. L., Morales, M. B. & Suárez, F. Determining high value areas for steppe birds in Spain: Hot spots, complementarity and the efficiency of protected areas. Biodivers. Conserv. 16, 3255–3275 (2007).
Article Google Scholar
50.
Arrondo, E. et al. Invisible barriers: Differential sanitary regulations constrain vulture movements across country borders. Biol. Conserv. 219, 46–52 (2018).
Article Google Scholar
51.
Sergio, F. et al. No effect of satellite tagging on survival, recruitment, longevity, productivity and social dominance of a raptor, and the provisioning and condition of its offspring. J. App. Ecol. 52, 1665–1675 (2015).
Article Google Scholar
52.
Finlayson, C. Birds of the Strait of Gibraltar (T. & A. D Poyser, London, 1992).
Google Scholar
53.
Panuccio, M., Martín, B., Morganti, M., Onrubia, A. & Ferrer, M. Long-term changes in autumn migration dates at the Strait of Gibraltar reflect population trends of soaring birds. Ibis 159, 55–65 (2017).
Article Google Scholar
54.
Onrubia, A. Spatial and Temporal Patterns of Soaring Birds Migration Through the Strait of Gibraltar (University of León, Spain, 2015).
Google Scholar
55.
Zuberogoitia, I., Zabala, J., Martínez, J. A., Martínez, J. E. & Azkona, A. Effect of human activities on Egyptian vulture breeding success. Anim. Conserv. 11, 313–320 (2008).
Article Google Scholar
56.
Signer, J. & Balkenhol, N. Reproducible home ranges (rhr): A new, user-friendly R package for analyses of wildlife telemetry data. Wildl. Soc. B. 39, 358–363 (2015).
Article Google Scholar
57.
QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. https://qgis.osgeo.org. Qgisorg (2014).
58.
Hooten, M. B., Hanks, E. M., Johnson, D. S. & Alldredge, M. W. Reconciling resource utilization and resource selection functions. J. Anim. Ecol. 86, 1146–1154 (2013).
Article Google Scholar
59.
Boyce, M. S. Scale for resource selection functions. Divers. Distrib. 12, 269–276 (2006).
Article Google Scholar
60.
R Development Core Team. R: A Language and Environment for Statistical Computing. (2018).
61.
Whittingham, M. J., Stephens, P. A., Bradbury, R. B. & Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour?. J. Anim. Ecol. 75, 1182–1189 (2006).
PubMed Article Google Scholar
62.
Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2015).
Article Google Scholar
63.
Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 73–79 (2016).
Article Google Scholar
64.
Fox, J. et al. car: Companion to Applied Regression. In: R Package Version 2.0-21 (2018).
65.
Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.15-15.https://doi.org/10.1080/00031305.1980.10483031 (2019).
66.
Donovan, T. M. et al. Quantifying home range habitat requirements for bobcats (Lynx rufus) in Vermont, USA. Biol. Conserv. 144, 2799–2809 (2011).
Article Google Scholar
67.
Eggeman, S. L., Hebblewhite, M., Bohm, H., Whittington, J. & Merrill, E. H. Behavioural flexibility in migratory behaviour in a long-lived large herbivore. J. Anim. Ecol. 85, 785–797 (2016).
PubMed Article Google Scholar
68.
Blanco, G. & Tella, J. L. Temporal, spatial and social segregation of red-billed choughs between two types of communal roost: A role for mating and territory acquisition. Anim. Behav. 59, 1219–1227 (1999).
Article Google Scholar
69.
Lambertucci, S. A. & Ruggiero, A. Cliffs used as communal roosts by andean condors protect the birds from weather and predators. PLoS One 8, e67304. https://doi.org/10.1371/journal.pone.0067304 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
70.
Bijleveld, A. I., Egas, M., van Gils, J. A. & Piersma, T. Beyond the information centre hypothesis: Communal roosting for information on food, predators, travel companions and mates?. Oikos 119, 277–285 (2010).
Article Google Scholar
71.
Powell, R. A. & Mitchell, M. S. What is a home range?. J. Mammal. 93, 248–258 (2012).
Google Scholar
72.
Sanz-Aguilar, A., Jovani, R., Melián, C. J., Pradel, R. & Tella, J. L. Multi-event capture–recapture analysis reveals individual foraging specialization in a generalist species. Ecology 96, 1650–1660 (2015).
Article Google Scholar
73.
Margalida, A., Donázar, J. A., Carrete, M. & Sánchez-Zapata, J. A. Sanitary versus environmental policies: Fitting together two pieces of the puzzle of European vulture conservation. J. Appl. Ecol. 47, 931–935 (2010).
Article Google Scholar
74.
Negro, J. J. et al. An unusual source of essential carotenoids. Nature 416, 807–808 (2002).
ADS CAS PubMed Article PubMed Central Google Scholar
75.
Rey Benayas, J. M. & De La Montaña, E. Identifying areas of high-value vertebrate diversity for strengthening conservation. Biol. Conserv. 114, 357–370 (2003).
Article Google Scholar
76.
Botha, A. J. et al.Multi-species action plan to conserve African-Eurasian vultures (vulture MsAP). Raptors MOU Technical Publication (2017).
77.
Santangeli, A., Girardello, M., Buechley, E. R., Eklund, J. & Phipps, W. L. Navigating spaces for implementing raptor research and conservation under varying levels of violence and governance in the Global South. Biol. Conserv. 239, 108212. https://doi.org/10.1016/j.biocon.2019.108212 (2019).
Article Google Scholar
78.
Sanz-Aguilar, A. et al. Action on multiple fronts, illegal poisoning and wind farm planning, is required to reverse the decline of the Egyptian vulture in southern Spain. Biol. Conserv. 187, 10–18 (2015).
Article Google Scholar
79.
Blanco, G., Cortés-Avizanda, A., Frías, Ó., Arrondo, E. & Donázar, J. A. Livestock farming practices modulate vulture diet-disease interactions. Global Ecol. Conserv. 17, e00518. https://doi.org/10.1016/j.gecco.2018.e00518 (2019).
Article Google Scholar
80.
Duriez, O. et al. Vultures attacking livestock: A problem of vulture behavioural change or farmers’ perception?. Bird Conserv. Int. 29, 437–453 (2019).
Article Google Scholar More
