More stories

  • in

    Smaller climatic niche shifts in invasive than non-invasive alien ant species

    1.
    Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7, 1–9 (2016).
    2.
    Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl Acad. Sci. USA 115, E2264–E2273 (2018).
    CAS  PubMed  Article  Google Scholar 

    3.
    Seebens, H. et al. Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Chang. Biol. 21, 4128–4140 (2015).
    ADS  PubMed  Article  Google Scholar 

    4.
    Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).
    PubMed  Article  Google Scholar 

    5.
    Vilà, M. et al. How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front. Ecol. Environ. 8, 135–144 (2010).
    Article  Google Scholar 

    6.
    Van Kleunen, M., Dawson, W., Schlaepfer, D., Jeschke, J. M. & Fischer, M. Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecol. Lett. 13, 947–958 (2010).
    PubMed  Google Scholar 

    7.
    Enserink, M. Biological invaders sweep in. Science 285, 1834–1836 (1999).
    CAS  Article  Google Scholar 

    8.
    Hulme, P. E. Phenotypic plasticity and plant invasions: is it all Jack? Funct. Ecol. 22, 3–7 (2008).
    Article  Google Scholar 

    9.
    Murray, B. R., Thrall, P. H., Gill, A. M. & Nicotra, A. B. How plant life-history and ecological traits relate to species rarity and commonness at varying spatial scales. Austral Ecol. 27, 291–310 (2002).
    Article  Google Scholar 

    10.
    Davidson, A. M., Jennions, M. & Nicotra, A. B. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol. Lett. 14, 419–431 (2011).
    PubMed  Article  Google Scholar 

    11.
    Bazin, É., Mathé-Hubert, H., Facon, B., Carlier, J. & Ravigné, V. The effect of mating system on invasiveness: Some genetic load may be advantageous when invading new environments. Biol. Invasion. 16, 875–886 (2014).
    Article  Google Scholar 

    12.
    Zheng, Y. et al. Are invasive plants more competitive than native conspecifics? Patterns vary with competitors. Sci. Rep. 5, 1–8 (2015).
    Google Scholar 

    13.
    Callaway, R. M. & Aschehoug, E. T. Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290, 521–523 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    14.
    Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. Unifying niche shift studies: insights from biological invasions. Trends Ecol. Evol. 29, 260–269 (2014).
    PubMed  Article  Google Scholar 

    15.
    Gallagher, R. V., Beaumont, L. J., Hughes, L. & Leishman, M. R. Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. J. Ecol. 98, 790–799 (2010).
    Article  Google Scholar 

    16.
    Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    17.
    Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. & Case, T. J. The causes and consequences of ant invasions. Annu. Rev. Ecol. Syst. 33, 181–233 (2002).
    Article  Google Scholar 

    18.
    Hölldobler, Bert, E. O. W. The Ants. (Havard University Press, 1990).

    19.
    Meurisse, N., Rassati, D., Hurley, B. P., Brockerhoff, E. G. & Haack, R. A. Common pathways by which non-native forest insects move internationally and domestically. J. Pest Sci. 92, 13–27 (2018).
    Article  Google Scholar 

    20.
    Bertelsmeier, C., Luque, G. M., Hoffmann, B. D. & Courchamp, F. Worldwide ant invasions under climate change. Biodivers. Conserv. 24, 117–128 (2015).
    Article  Google Scholar 

    21.
    Fitzpatrick, M. C., Weltzin, J. F., Sanders, N. J. & Dunn, R. R. The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range? Glob. Ecol. Biogeogr. 16, 24–33 (2007).
    Article  Google Scholar 

    22.
    Bradshaw, C. J. A. et al. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7, 1–8 (2016).

    23.
    Bertelsmeier, C., Ollier, S., Liebhold, A. & Keller, L. Recent human history governs global ant invasion dynamics. Nat. Ecol. Evol. 1, 0184 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).
    PubMed  Article  Google Scholar 

    25.
    Essl, F. et al. Socioeconomic legacy yields an invasion debt. Proc. Natl Acad. Sci. USA 108, 203–207 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    26.
    Rouget, M. et al. Invasion debt-quantifying future biological invasions. Divers. Distrib. 22, 445–456 (2016).
    Article  Google Scholar 

    27.
    Soberon, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species’ distributional Areas. Biodivers. Inform. 2, 0–10 (2005).
    Article  Google Scholar 

    28.
    Keane, R. M. & Crawley, M. J. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17, 164–170 (2002).
    Article  Google Scholar 

    29.
    Shea, K. & Chesson, P. Community ecology theory as a framework for biological invasions. Trends Ecol. Evol. 163, 170–176 (2002).
    Article  Google Scholar 

    30.
    Bocsi, T. et al. Plants’ native distributions do not reflect climatic tolerance. Divers. Distrib. 22, 615–624 (2016).
    Article  Google Scholar 

    31.
    Bolnick, D. I. et al. Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proc. R. Soc. B Biol. Sci. 277, 1789–1797 (2010).
    Article  Google Scholar 

    32.
    Torres, U. et al. Using niche conservatism information to prioritize hotspots of invasion by non-native freshwater invertebrates in New Zealand. Divers. Distrib. 24, 1802–1815 (2018).
    Article  Google Scholar 

    33.
    Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609 (2014).
    Article  Google Scholar 

    34.
    Godefroid, M., Rasplus, J. Y. & Rossi, J. P. Is phylogeography helpful for invasive species risk assessment? The case study of the bark beetle genus Dendroctonus. Ecography 39, 1197–1209 (2016).
    Article  Google Scholar 

    35.
    Bujan, J., Roeder, K. A., Yanoviak, S. P. & Kaspari, M. Seasonal plasticity of thermal tolerance in ants. Ecology 101, 1–6 (2020).
    Article  Google Scholar 

    36.
    Bujan, J. & Kaspari, M. Nutrition modifies critical thermal maximum of a dominant canopy ant. J. Insect Physiol. 102, 1–6 (2017).
    CAS  PubMed  Article  Google Scholar 

    37.
    Alexander, J. M. & Edwards, P. J. Limits to the niche and range margins of alien species. Oikos 119, 1377–1386 (2010).
    Article  Google Scholar 

    38.
    Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158 (2008).
    PubMed  Article  Google Scholar 

    39.
    Tingley, R., Vallinoto, M., Sequeira, F. & Kearney, M. R. Realized niche shift during a global biological invasion. Proc. Natl Acad. Sci. USA 111, 10233–10238 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    40.
    Medley, K. A. Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Glob. Ecol. Biogeogr. 19, 122–133 (2010).
    Article  Google Scholar 

    41.
    Kolbe, J. J. et al. Genetic variation increases during biological invasion by a Cuban lizard. Nature 431, 177–181 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    42.
    Angetter, L. S., Lotters, S. & Rodder, D. Climate niche shift in invasive species: the case of the brown anole. Biol. J. Linn. Soc. 104, 943–954 (2011).
    Article  Google Scholar 

    43.
    Colautti, R. I. & Lau, J. A. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol. Ecol. 24, 1999–2017 (2015).
    PubMed  Article  Google Scholar 

    44.
    Bertelsmeier, C. & Keller, L. Bridgehead effects and role of adaptive evolution in invasive populations. Trends Ecol. Evol. 33, 527–534 (2018).
    PubMed  Article  Google Scholar 

    45.
    Srivastava, V., Lafond, V. & Griess, V. C. Species distribution models (SDM): applications, benefits and challenges in invasive species management. CAB Rev. 14, 1–13 (2019).

    46.
    Pili, A. N., Tingley, R., Sy, E. Y., Diesmos, M. L. L. & Diesmos, A. C. Niche shifts and environmental non-equilibrium undermine the usefulness of ecological niche models for invasion risk assessments. Sci. Rep. 10, 1–18 (2020).
    Article  CAS  Google Scholar 

    47.
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Kirchhof, S. et al. Thermoregulatory behavior and high thermal preference buffer impact of climate change in a Namib Desert lizard. Ecosphere 8, e02033 (2017).

    49.
    Woods, H. A., Dillon, M. E. & Pincebourde, S. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J. Therm. Biol. 54, 86–97 (2015).
    PubMed  Article  Google Scholar 

    50.
    Chapman, D. S., Scalone, R., Štefanić, E. & Bullock, J. M. Mechanistic species distribution modeling reveals a niche shift during invasion. Ecology 98, 1671–1680 (2017).
    PubMed  Article  Google Scholar 

    51.
    Janicki, J., Narula, N., Ziegler, M., Guénard, B. & Economo, E. P. Visualizing and interacting with large-volume biodiversity data using client-server web-mapping applications: The design and implementation of antmaps.org. Ecol. Inform. 32, 185–193 (2016).
    Article  Google Scholar 

    52.
    Guénard, B., Weiser, M. D., Gómez, K., Narula, N. & Economo, E. P. The Global Ant Biodiversity Informatics (GABI) database: Synthesizing data on the geographic distribution of ant species (Hymenoptera: Formicidae). Myrmecological N. 24, 83–89 (2017).
    Google Scholar 

    53.
    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).
    Article  Google Scholar 

    54.
    Pagad, S., Genovesi, P., Carnevali, L., Scalera, R. & Clout, M. IUCN SSC invasive species specialist group: Invasive alien species information management supporting practitioners, policy makers and decision takers. Manag. Biol. Invasion. 6, 127–135 (2015).
    Article  Google Scholar 

    55.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Article  Google Scholar 

    56.
    Dray, S. & Dufour, A.-B. The ade4 Package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).

    57.
    Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).
    Article  Google Scholar 

    58.
    Di Cola, V. et al. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).
    Article  Google Scholar 

    59.
    Schoener, T. W. The Anolis Lizards of Bimini: resource partitioning in a complex fauna were invaded by anoline lizards. Ecol. Soc. Am. 49, 704–726 (1968).
    Google Scholar 

    60.
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).
    PubMed  Article  Google Scholar 

    61.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Royal Stat. Soc. 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    62.
    Bates, O. K., Ollier, S. & Bertelsmeier, C. Smaller climatic niche shifts in invasive than non-invasive alien ant species. GitHub. https://doi.org/10.5281/zenodo.4041296 (2020).

    63.
    Team, R. C. R.: A Language and Environment for Statistical Computing. (2019). More

  • in

    Successful ecosystem-based management of Antarctic krill should address uncertainties in krill recruitment, behaviour and ecological adaptation

    1.
    Trathan, P. N. & Hill, S. L. in Biology and Ecology of Antarctic krill (ed. Siegel, V.) 321–350 (Springer, 2016).
    2.
    Atkinson, A. et al. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep Sea Res. Pt. 1. 56, 727–740 (2009).
    Article  Google Scholar 

    3.
    Bar-On, Y. N., Philips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).
    CAS  Article  Google Scholar 

    4.
    Atkinson, A. et al. Sardine cycles, krill declines, and locust plagues: revisiting ‘wasp-waist’ food webs. Trends Ecol. Evol. 29, 309–316 (2014).
    Article  Google Scholar 

    5.
    Cavan, E. L. et al. The importance of Antarctic krill in biogeochemical cycles. Nat. Commun. 10, 4742 (2019).
    CAS  Article  Google Scholar 

    6.
    Nicol, S. et al. Southern Ocean iron fertilization by baleen whales and Antarctic krill. Fish. Fish 11, 203–209 (2010).
    Article  Google Scholar 

    7.
    Schmidt, K. et al. Zooplankton gut passage mobilizes lithogenic iron for ocean productivity. Curr. Biol. 26, 2667–2673 (2016).
    CAS  Article  Google Scholar 

    8.
    Nicol, S. & Foster, J. in Biology and Ecology of Antarctic krill 387–421 (Springer, 2016).

    9.
    Kawaguchi, S & Nicol, S. in Fisheries and Aquaculture Vol. 9. (eds Lovrich, G. & Thiel, M.) 137–158, https://doi.org/10.1093/oso/9780190865627.003.0006. (Oxford University Press, 2020).

    10.
    Turner, J. & Overland, J. Contrasting climate change in the two polar regions. Polar Res. 26, 146–164 (2009).
    Article  Google Scholar 

    11.
    Rogers, A. D. et al. Antarctic futures: an assessment of climate-driven changes in ecosystem structure, function, and service provisioning in the southern ocean. Annul Rev. Mar. Sci 12, 87–120 (2019).
    Article  Google Scholar 

    12.
    Kawaguchi, S., Nicol, S. & Press, A. J. Direct effects of climate change on the Antarctic krill fishery. Fisheries Manag. Ecol. 16, 424–427 (2009).
    Article  Google Scholar 

    13.
    Trathan, P. N. et al. Krill biomass in the Atlantic. Nature 367, 201–202 (1995).
    Article  Google Scholar 

    14.
    Constable, A. J. & de la Mare, W. K. A generalised yield model for evaluating the yield and the long-term status of fish stocks under conditions of uncertainty. CCAMLR Sci. 3, 31–54 (1996).
    Google Scholar 

    15.
    Hill, S. L. et al. Is current management of the Antarctic krill fishery in the Atlantic sector of the Southern Ocean precautionary? CCAMLR Sci. 23, 31–51 (2016).
    Google Scholar 

    16.
    Hewitt, R. P. et al. Options for allocating the precautionary catch limit of krill among small-scale management units in the Scotia Sea. CCAMLR Sci 11, 81–97 (2004).
    Google Scholar 

    17.
    Watters, G. M., Hill, S. L., Hinke, J. T., Matthews, J. & Reid, K. Decision-making for ecosystem-based management: evaluating options for a krill fishery with an ecosystem dynamics model. Ecol. Appl. 23, 710–725 (2013).
    CAS  Article  Google Scholar 

    18.
    Trathan, P. N. et al. Managing fishery development in sensitive ecosystems: identifying penguin habitat use to direct management in Antarctica. Ecosphere 9, e02392 (2018).
    Article  Google Scholar 

    19.
    Watters, G. M., Hinke, J. T. & Reiss, C. Long-term observations from Antarctica demonstrate that mismatched scales of fisheries management and predator-prey interaction lead to erroneous conclusions about precaution. Sci. Rep. 10, 2314 (2020).
    CAS  Article  Google Scholar 

    20.
    Reiss, C. S., Cossio, A. M., Loeb, V. & Demer, D. A. Variations in the biomass of Antarctic krill (Euphausia superba) around the South Shetland Islands, 1996–2006. ICES J. Mar. Sci. 65, 497–508 (2008).
    Article  Google Scholar 

    21.
    Fielding, S. et al. Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997–2013. ICES J. Mar. Sci. 71, 2578–2588 (2014).
    Article  Google Scholar 

    22.
    Brierley, A. S. & Reid, K. Krill and the diversity of science and society: An introduction to the Third International Symposium on Krill. J. Crust. Biol. 38, 651–655 (2018).
    Google Scholar 

    23.
    Report of the Thirty-Sixth Meeting of the Scientific Committee of the Commission for the Conservation of Antarctic Marine Living Resources. (CCAMLR, Hobart, Australia, 2017).

    24.
    SC-CCAMLR Report of the thirty-eight Meeting of the Scientific Committee, of the Commission for the Conservation of Antarctic Marine Living Resources. (CCAMLR Hobart, Australia, 2019).

    25.
    Spiridonov, V. Spatial and temporal variability in reproductive timing of Antarctic krill (Euphausia superba Dana). Polar Biol. 15, 161–174 (1995).
    Article  Google Scholar 

    26.
    Siegel, V. Distribution and population dynamics of Euphausia superba: summary of recent findings. Polar Biol. 29, 1–22 (2005).
    Article  Google Scholar 

    27.
    Schmidt, K., Atkinson, A., Venables, H. & Pond, D. W. Early spawning of Antarctic krill in the Scotia Sea is fueled by ‘superfluous’ feeding on non-ice associated phytoplankton blooms. Deep Sea Res. II 59, 159–172 (2012).
    Article  Google Scholar 

    28.
    Ross, R. B. & Quetin, L. B. Energetic cost to develop to the first feeding stage of Euphausia superba Dana and the effect of delays in food availability. J. Exp. Mar. Biol. Ecol. 133, 103–127 (1989).
    Article  Google Scholar 

    29.
    Meyer, B. et al. The winter pack-ice zone provides a sheltered but food-poor habitat for larval Antarctic krill. Nat. Ecol. Evol 1, 1853–1861 (2017).
    Article  Google Scholar 

    30.
    Brierley, A. S., Demer, D. A., Hewitt, R. P. & Watkins, J. L. Concordance of inter-annual fluctuations in densities of krill around South Georgia and Elephant Islands: biological evidence of same year teleconnections across the Scotia Sea. Mar. Biol. 134, 675–681 (1999).
    Article  Google Scholar 

    31.
    Reiss, C. S. in Biology and Ecology of Antarctic krill 101–144 (Springer, 2016).

    32.
    Quetin, L. B., Ross, R. M., Fritsen, C. H. & Vernet, M. Ecological responses of Antarctic krill to environmental variability: can we predict the future? Ant. Sci. 19, 253–266 (2007).
    Article  Google Scholar 

    33.
    Saba, G. K. et al. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nat. Commun. 5, 4318 (2014).
    CAS  Article  Google Scholar 

    34.
    Murphy, E. J. et al. Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centered food web. Phil. Trans. R. Soc. B 362, 113–148 (2007).
    CAS  Article  Google Scholar 

    35.
    Kinzey, D. et al. Selectivity and two biomass measures in an age-based assessment of Antarctic krill (Euphausia superba). Fish. Res. 168, 72–84 (2015).
    Article  Google Scholar 

    36.
    Siegel, V. & Loeb, V. et al. Recruitment of Antarctic krill (Euphausia superba) and possible causes for its variability. Mar. Ecol. Prog. Ser. 123, 45–56 (1995).
    Article  Google Scholar 

    37.
    Loeb, V. J. & Santora, J. A. Climate variability and spatiotemporal dynamics of five Southern Ocean krill species. Prog. Oceanogr. 134, 93–122 (2015).
    Article  Google Scholar 

    38.
    Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147 (2019).
    Article  Google Scholar 

    39.
    Thorpe, S. E., Tarling, G. A. & Murphy, E. J. Circumpolar patterns in Antarctic krill larval recruitment: an environmentally driven model. Mar. Ecol. Prog. Ser. 613, 77–96 (2019).
    Article  Google Scholar 

    40.
    Ryabov, A. B. et al. Competition-induced starvation drives large-scale population cycles in Antarctic krill. Nat. Ecol. Evol 1, 1–8 (2017).
    Article  Google Scholar 

    41.
    Makarov, R. R. & Menshenina, L. L. On the distribution of euphausiid larvae in the Antarctic waters. Okeanologija Akademija Nauk SSSR. Okeanograficeskaja Komissija, Moskva 29, 825–831 (1989).
    Google Scholar 

    42.
    Perry, F. A. et al. Habitat partitioning in Antarctic krill: spawning hotspots and nursery areas. PLoS ONE 14, e0219325 (2019).
    CAS  Article  Google Scholar 

    43.
    Siegel, V & Watkins, J. N. in Biology and Ecology of Antarctic krill 21–100 (Springer, 2016).

    44.
    Hofmann, E. E. & Hüsrevoğlu, Y. S. A circumpolar modelling study of habitat control of Antarctic krill (Euphausia superba) reproductive success. Deep-Sea Res II 50, 3121–3142 (2003).
    Article  Google Scholar 

    45.
    King, M. Fisheries Biology, Assessment and Management 341 (Fishing News Books, Blackwell Science, Oxford, 1995).

    46.
    Rombolá, E. R. et al. Variability of euphausiid larvae densities during the 2011, 2012, and 2014 summer seasons in the Atlantic sector of the Antarctic. Polar Sci. 19, 86–93 (2019).
    Article  Google Scholar 

    47.
    Conroy, J. A., Reiss, C. S., Gleiber, M. R. & Steinberg, D. K. Linking Antarctic krill larval supply and recruitment along the Antarctic Peninsula. Integr. Comp. Biol. https://doi.org/10.1093/icb/icaa111 (2020).
    Article  Google Scholar 

    48.
    Siegel, V. et al. Distribution and abundance of Antarctic krill (Euphausia superba) along the Antarctic Peninsula. Deep Sea Res. I 77, 63–74 (2013).
    Article  Google Scholar 

    49.
    Lumpkin, R. & Centurioni, L. Global Drifter Program quality-controlled 6-hour interpolated data from ocean surface drifting buoys. NOAA National Centers for Environmental Information. Dataset. https://doi.org/10.25921/7ntx-z961 (2019)

    50.
    Siegel, V. in Antarctic Ocean and Resources Variability 219–230 (Springer, 1988).

    51.
    Trathan, P. N. et al. Spatial variability of Antarctic krill in relation to mesoscale hydrography. Mar. Ecol. Prog. Ser. 98, 61–71 (1993).
    Article  Google Scholar 

    52.
    Jazdzewski, K. et al. Biological and populational studies on krill near South Shetland Islands, Scotia Sea and South Georgia in the summer 1976. Polskie Archiwum Hydrobiologii 25, 607–631 (1978).
    Google Scholar 

    53.
    Reiss, C. S. et al. Overwinter habitat selection by Antarctic krill under varying sea-ice conditions: implications for top predators and fishery management. Mar. Ecol. Prog. Ser. 568, 1–16 (2017).
    CAS  Article  Google Scholar 

    54.
    Piñones, A. et al. Modeling the remote and local connectivity of Antarctic krill populations along the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 481, 69–92 (2013).
    Article  Google Scholar 

    55.
    Taki, K., Hayashi, T. & Naganobu, M. Characteristics of seasonal variation in diurnal vertical migration and aggregation of Antarctic krill (Euphausia superba) in the Scotia Sea, using Japanese fishery data. CCAMLR Sci. 12, 163–172 (2005).
    Google Scholar 

    56.
    Barlow, K. E. et al. Are penguins and seals in competition for Antarctic krill at South Georgia? Mar. Biol. 140, 205–213 (2002).
    Article  Google Scholar 

    57.
    Reid, K., Trathan, P. N., Croxall, J. P. & Hill, H. J. Krill caught by predators and nets: differences between species and techniques. Mar. Ecol. Prog. Ser. 140, 13–20 (1996).
    Article  Google Scholar 

    58.
    Jackson, J. A. et al. Global diversity and oceanic divergence of humpback whales (Megaptera novaeangliae). Proc. Roy. Soc. B-Biol. Sci 281, 20133222 (2014).
    Article  Google Scholar 

    59.
    Herr, H. et al. Horizontal niche partitioning of humpback and fin whales around the West Antarctic Peninsula: evidence from a concurrent whale and krill survey. Polar Biol. 39, 799–818 (2016).
    Article  Google Scholar 

    60.
    Viquerat, S. & Herr, H. Mid-summer abundance estimates of fin whales Balaenoptera physalus around the South Orkney Islands and Elephant Island. ESR 32, 515–524 (2017).
    Article  Google Scholar 

    61.
    Zerbini, A. N. et al. Assessing the recovery of an Antarctic predator form historical exploitation. Roy. Soc. Open Sci 6, 190368 (2019).
    Article  Google Scholar 

    62.
    Reid, K. et al. Widening the net: spatio-temporal variability in the krill population structure across the Scotia Sea. Deep-Sea Res. II 51, 1275–1287 (2004).
    Article  Google Scholar 

    63.
    Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill. Mar. Ecol. Prog. Ser. 362, 1–23 (2008).
    CAS  Article  Google Scholar 

    64.
    Hill, S. L., Trathan, P. H. & Agnew, D. J. The risk to fishery performance associated with spatially resolved management of Antarctic krill (Euphausia superba) harvesting. ICES J. Mar. Sci 66, 2148–2154 (2009).
    Article  Google Scholar 

    65.
    Tarling, G. A., Ward, P. & Thorpe, S. E. Spatial distributions of Southern Ocean mesozooplankton communities have been resilient to long-term surface warming. Global Change Biol. https://doi.org/10.1111/gcb.13834 (2017).

    66.
    Stammerjohn, S. S., Massom, R. A., Rind, D. & Martinson, D. G. Regions of rapid sea ice change: an inter-hemispheric seasonal comparison. Geophys. Res. Lett. 39, L06501 (2012).
    Article  Google Scholar 

    67.
    Henley, S. F. et al. Variability and change in the west Antarctic Peninsula marine system: research priorities and opportunities. Prog. Oceanogr. https://doi.org/10.1016/j.pocean.2019.03.003 (2019).

    68.
    Turner, J. et al. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature. 535, 411–415 (2016).
    CAS  Article  Google Scholar 

    69.
    Swart, N. C. & Fyfe, J. C. Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys. Res. Letters 39, L16711 (2012).
    Article  Google Scholar 

    70.
    Datwyler, C. et al. Teleconnection stationality, variability and trends of the Southern Annular Mode (SAM) during the last millennium. Clim. Dyn. 51, 2321–2339 (2017).
    Article  Google Scholar 

    71.
    Stammerjohn, S. E. et al. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability. J. Geophys. Res. 113, C03S90 (2008).
    Article  Google Scholar 

    72.
    SC-CCAMLR Report of the twenty-ninth Meeting of the Scientific Committee, of the Commission for the Conservation of Antarctic Marine Living Resources. (CCAMLR Hobart, Australia, 2010).

    73.
    Cox, M. J. et al. No evidence for a decline in the density of Antarctic krill Euphausia superba Dana, 1850, in the Southwest Atlantic sector between 1976 and 2016. J. Crust. Biol. 38, 656–661 (2018).
    Google Scholar 

    74.
    Loeb, V. et al. Effects of sea ice extent and krill or salp dominance on the Antarctic food web. Nature 387, 897–900 (1997).
    CAS  Article  Google Scholar 

    75.
    Trivelpiece, W. Z. et al. Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proc. Natl Acad. Sci. USA 108, 7625–7628 (2011).
    CAS  Article  Google Scholar 

    76.
    Huang, T. et al. Relative changes in krill abundanceiInferred from Antarctic Fur Seal. PLoS ONE 6, e27331 (2011).
    CAS  Article  Google Scholar 

    77.
    Atkinson, A., Siegel, V., Pakhomov, E. A. & Rothery, P. Long term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).
    CAS  Article  Google Scholar 

    78.
    Forcada, J. & Hoffman, J. I. Climate change selects for heterozygosity in a declining fur seal population. Nature 511, 462–465 (2014).
    CAS  Article  Google Scholar 

    79.
    McMahon, K. W. et al. Divergent trophic responses of sympatric penguin species to historic anthropogenic exploitation and recent climate change. Proc. Natl Acad Sci. USA 116, 25721–25727 (2019).
    CAS  Article  Google Scholar 

    80.
    Hill, S. L., Atkinson, A., Pakhomov, E. A. & Siegel, V. Evidence for a decline in the population density of Antarctic krill Euphausia superba Dana 1850, still stands: A comment on Cox et al. J. Crust. Biol 39, 316–322 (2019).
    Article  Google Scholar 

    81.
    Cox, M. J. et al. Clarifying trends in the density of Antarctic krill Euphausia superba Dana, 1850 in the South Atlantic. A response to Hill et al. J. Crust. Biol. 39, 323–327 (2019).
    Article  Google Scholar 

    82.
    Hill, S. L. et al. Reference points for predators will progress ecosystem‐based management of fisheries. Fish. Fish. 21, 368–378 (2020).
    Article  Google Scholar 

    83.
    Fuentes, V. et al. Glacial melting: an overlooked threat to Antarctic krill. Sci. Reps 6, 27234 (2016).
    CAS  Article  Google Scholar 

    84.
    Flores et al. The response of Antarctic krill to climate change: Implications for management and research priorities. Mar. Ecol. Prog. Ser. 458, 1–19 (2012).
    Article  Google Scholar 

    85.
    Ross, R. M. et al. Palmer LTER: Patterns of distribution of five dominant zooplankton species in the epipelagic zone west of the Antarctic Peninsula, 1993–2004. Deep Sea Res. II 55, 2086–2105 (2008).
    Article  Google Scholar 

    86.
    Loeb, V. J. et al. ENSO and variability of the Antarctic Peninsula pelagic marine ecosystem. Ant. Sci. 21, 135–148 (2009).
    Article  Google Scholar 

    87.
    Beaugrand, G. & Kirby, R. R. How do marine pelagic species respond to climate change? Theories and observations. Annu. Rev. Mar. Sci. 10, 169–197 (2018).
    Article  Google Scholar 

    88.
    Tarling, G. A. & Thorpe, S. E. Oceanic swarms of Antarctic krill perform satiation sinking. Proc. R. Soc. B 284, 20172015 (2017).
    Article  CAS  Google Scholar 

    89.
    Hill, S. L., Phillips, T. & Atkinson, A. Potential climate change effects on the habitat of Antarctic krill in the Weddell Quadrant of the Southern Ocean. PLoS ONE 8, e72246 (2013).
    CAS  Article  Google Scholar 

    90.
    Piñones, A. & Fedorov, A. V. Projected changes of Antarctic krill habitat by the end of the 21st century. Geophys. Res. Lett. 43, 8580–8589 (2016).
    Article  Google Scholar 

    91.
    Murphy, E. J. et al. Restricted regions of enhanced growth of Antarctic krill in the circumpolar Southern Ocean. Sci. Reps 7, 6963 (2017).
    Article  CAS  Google Scholar 

    92.
    Atkinson, A. et al. Natural growth rates in Antarctic krill (Euphausia superba): II. Predictive models based on food, temperature, body length, sex, and maturity stage. Limnol. Oceanogr. 51, 973–987 (2006).
    Article  Google Scholar 

    93.
    Kawaguchi, S. et al. Risk maps for Antarctic krill under projected Southern Ocean acidification. Nat. Clim. Change 3, 343–347 (2013).
    Article  CAS  Google Scholar 

    94.
    Kawaguchi, S. & Nicol, S. Learning about Antarctic krill from the fishery. Ant. Sci. 19, 219–230 (2007).
    Article  Google Scholar 

    95.
    Warner, A. J., Hays, G. C. & Hays, G. Sampling by the Continuous Plankton Recorder survey. Prog. Oceanogr. 34, 237–256 (1994).
    Article  Google Scholar 

    96.
    Petersen, W. FerryBox systems: State-of-the-art in Europe and future development. J. Mar. Syst. 140 A, 4–12 (2014).
    Article  Google Scholar 

    97.
    Brierley, A. S. et al. Use of moored acoustic instruments to measure short-term variability in abundance of Antarctic krill. Limnol. Oceanogr.: Methods 4, 18–29 (2006).
    Article  Google Scholar 

    98.
    Guihen, D. et al. An assessment of the use of ocean gliders to undertake acoustic measurements of zooplankton: the distribution and density of Antarctic krill (Euphausia superba) in the Weddell Sea. Limnol. Oceanogr.: Methods 12, 373–389 (2014).
    Article  Google Scholar 

    99.
    Meinig, C. et al. Public private partnerships to advance regional ocean observing capabilities: A Saildrone and NOAA-PMEL case study and future considerations to expand to global scale observing. Front. Mar. Sci. 6, 448 (2019).
    Article  Google Scholar 

    100.
    Park, Y. H. & Durand, I. Altimetry-derived Antarctic circumpolar current fronts. SEANOE. https://doi.org/10.17882/59800 (2019).

    101.
    Park, Y.-H. et al. Observations of the Antarctic Circumpolar Current over the Udintsev Fracture Zone, the narrowest choke point in the Southern Ocean. J. Geophys. Res.: Oceans. 124 https://doi.org/10.1029/2019JC015024 (2019)

    102.
    Ikeda, T. Development of the larvae of the Antarctic krill (Euphausia superba Dana) observed in the laboratory. J. Exp. Mar. Biol. Ecol. 75, 107–117 (1984).
    Article  Google Scholar 

    103.
    Tarling, G. A. et al. Growth and shrinkage in Antarctic krill Euphausia superba is sex-dependent. Mar. Ecol. Prog. Ser. 547, 61–78 (2016).
    Article  Google Scholar 

    104.
    Guinet, C. et al. Calibration procedures and first dataset of Southern Ocean chlorophyll a profiles collected by elephant seals equipped with a newly developed CTD-fluorescence tags. Earth Syst. Sci. Data 5, 15–29 (2013).
    Article  Google Scholar 

    105.
    Thiebot, J-B et al. Jellyfish and other gelata as food for four penguin species—insights from predator-borne videos. Front. Ecol. Environ. https://doi.org/10.1002/fee.1529 (2017).

    106.
    Watanabe, Y. Y. & Takahashi, A. Linking animal-borne video to accelerometers reveals prey capture variability. Proc Natl Acad. Sci. USA 10, 2199–2204 (2013).
    Article  Google Scholar  More

  • in

    Heterogeneous leaves of predominant trees species enhance decomposition and nutrient release in the riparian zone of the Three Gorges Reservoir

    1.
    Fu, B. et al. Three Gorges Project: efforts and challenges for the environment. Prog. Phys. Geog. 34, 741–754 (2010).
    Article  Google Scholar 
    2.
    Yuan, X. et al. The littoral zone in the Three Gorges Reservoir, China: challenges and opportunities. Environ. Sci. Pollut. R. 20, 7092–7102 (2013).
    Article  Google Scholar 

    3.
    Xu, X., Tan, Y. & Yang, G. Environmental impact assessments of the Three Gorges Project in China: issues and interventions. Earth Sci. Rev. 124, 115–125 (2013).
    ADS  Article  Google Scholar 

    4.
    Zhang, Q. & Lou, Z. The environmental changes and mitigation actions in the Three Gorges Reservoir region China. Environ. Sci. Policy 14, 1132–1138 (2011).
    Article  Google Scholar 

    5.
    Huang, Y. et al. Nutrient estimation by HJ-1 satellite imagery of Xiangxi Bay, Three Gorges Reservoir China. Environ. Earth Sci. 75, 633 (2016).
    Article  CAS  Google Scholar 

    6.
    Willison, J. H. M., Li, R. & Yuan, X. Conservation and ecofriendly utilization of wetlands associated with the Three Gorges Reservoir. Environ. Sci. Pollut. R. 20, 6907–6916 (2013).
    Article  Google Scholar 

    7.
    Liu, L., Liu, D., Johnson, D. M., Yi, Z. & Huang, Y. Effects of vertical mixing on phytoplankton blooms in Xiangxi Bay of Three Gorges Reservoir: implications for management. Water Res. 46, 2121–2130 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Ren, C., Wang, L., Zheng, B., Qian, J. & Ton, H. Ten-year change of total phosphorous pollution in the Min River, an upstream tributary of the Three Gorges Reservoir. Environ. Earth Sci. 75, 1015 (2016).
    Article  CAS  Google Scholar 

    9.
    Li, C., Zhong, Z., Geng, Y. & Schneider, R. Comparative studies on physiological and biochemical adaptation of Taxodium distichum and Taxodium ascendens seedlings to different soil water regimes. Plant Soil. 329, 481–494 (2010).
    CAS  Article  Google Scholar 

    10.
    Schoonover, J. E., Williard, K. W., Zaczek, J. J., Mangun, J. C. & Carver, A. D. Agricultural sedmient reduction by giant cane and forests riparian buffers. Water Air Soil Poll. 169, 303–315 (2006).
    ADS  CAS  Article  Google Scholar 

    11.
    Wang, C., Li, C., Wei, H., Xie, Y. & Han, W. Effects of long-term periodic submergence on photosynthesis and growth of Taxodium distichum and Taxodium ascendens saplings in the hydro-fluctuation zone of the Three Gorges Reservoir of China. PLoS ONE 11, e162867 (2016).
    Google Scholar 

    12.
    Yang, F., Wang, Y. & Chan, Z. Perspectives on screening winter-flood-tolerant woody species in the riparian protection forests of the three gorges reservoir. PLoS ONE 9, e108725 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Ye, C., Cheng, X., Zhang, Y., Wang, Z. & Zhang, Q. Soil nitrogen dynamics following short-term revegetation in the water level fluctuation zone of the Three Gorges Reservoir China. Ecol. Eng. 38, 37–44 (2012).
    Article  Google Scholar 

    14.
    Capon, S. J. et al. Riparian ecosystems in the 21st century: hotspots for climate change adaptation?. Ecosystems 16, 359–381 (2013).
    Article  Google Scholar 

    15.
    Gregory, S. V., Swanson, F. J., McKee, W. A. & Cummins, K. W. An ecosystem perspective of riparian zones. Bioscience 41, 540–551 (1991).
    Article  Google Scholar 

    16.
    Zhang, M. et al. Leaf litter traits predominantly control litter decomposition in streams worldwide. Glob. Ecol. Biogeogr. 28, 1469–1486 (2019).
    Article  Google Scholar 

    17.
    Ferreira, V., Encalada, A. C. & Graça, M. A. S. Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshw. Sci. 31, 945–962 (2012).
    Article  Google Scholar 

    18.
    Jabiol, J. & Chauvet, E. Fungi are involved in the effects of litter mixtures on consumption by shredders. Freshw. Biol. 57, 1667–1677 (2012).
    Article  Google Scholar 

    19.
    Yang, Z., Liu, D., Ji, D. & Xiao, S. Influence of the impounding process of the Three Gorges Reservoir up to water level 172.5 m on water eutrophication in the Xiangxi Bay. Sci. China Technol. Sci. 53, 1114–1125 (2010).
    ADS  CAS  Article  Google Scholar 

    20.
    Berglund, S. L. & Ågren, G. I. When will litter mixtures decompose faster or slower than individual litters? A model for two litters. Oikos 121, 1112–1120 (2012).
    Article  Google Scholar 

    21.
    De Marco, A., Meola, A., Maisto, G., Giordano, M. & Virzo De Santo, A. Non-additive effects of litter mixtures on decomposition of leaf litters in a Mediterranean maquis. Plant Soil 344, 305–317 (2011).
    CAS  Article  Google Scholar 

    22.
    Gartner, T. B. & Cardon, Z. G. Decomposition dynamics in mixed-species leaf litter. Oikos 104, 230–246 (2004).
    Article  Google Scholar 

    23.
    Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380 (2010).
    PubMed  Article  Google Scholar 

    24.
    Schimel, J. P. & Hättenschwiler, S. Nitrogen transfer between decomposing leaves of different N status. Soil Biol. Biochem. 39, 1428–1436 (2007).
    CAS  Article  Google Scholar 

    25.
    Lecerf, A. et al. Incubation time, functional litter diversity, and habitat characteristics predict litter-mixing effects on decomposition. Ecology 92, 160–169 (2011).
    Article  Google Scholar 

    26.
    Wu, D., Li, T. & Wan, S. Time and litter species composition affect litter-mixing effects on decomposition rates. Plant Soil. 371, 355–366 (2013).
    CAS  Article  Google Scholar 

    27.
    Swan, C. M., Healey, B. & Richardson, D. C. The role of native riparian tree species in decomposition of invasive tree of heaven (Ailanthus altissima) leaf litter in an urban stream. Ecoscience 15, 27–35 (2008).
    Article  Google Scholar 

    28.
    Leroy, C. J. & Marks, J. C. Litter quality, stream characteristics and litter diversity influence decomposition rates and macroinvertebrates. Freshw. Biol. 51, 605–617 (2006).
    Article  Google Scholar 

    29.
    Xie, Y., Xie, Y., Hu, C., Chen, X. & Li, F. Interaction between litter quality and simulated water depth on decomposition of two emergent macrophytes. J. Limnol. 75, 36–43 (2015).
    Google Scholar 

    30.
    Sun, Z., Mou, X. & Liu, J. S. Effects of flooding regimes on the decomposition and nutrient dynamics of Calamagrostis angustifolia litter in the Sanjiang Plain of China. Environ. Earth Sci. 66, 2235–2246 (2012).
    Article  Google Scholar 

    31.
    Wang, C., Xie, Y., Ren, Q. & Li, C. Leaf decomposition and nutrient release of three tree species in the hydro-fluctuation zone of the Three Gorges Dam Reservoir China. Environ. Sci. Pollut. R. 25, 23261–23275 (2018).
    CAS  Article  Google Scholar 

    32.
    Xiao, L., Zhu, B., Nsenga Kumvimba, M. & Jiang, S. Plant soaking decomposition as well as nitrogen and phosphorous release in the water-level fluctuation zone of the Three Gorges Reservoir. Sci. Total Environ. 592, 527–534 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Djukic, I. et al. Early stage litter decomposition across biomes. Sci. Total Environ. 628–629, 1369–1394 (2018).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    34.
    Bray, S. R., Kitajima, K. & Mack, M. C. Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate. Soil Biol. Biochem. 49, 30–37 (2012).
    CAS  Article  Google Scholar 

    35.
    Graça, M. A. S. et al. A conceptual model of litter breakdown in low order streams. Int. Rev. Hydrobiol. 100, 1–12 (2015).
    Article  CAS  Google Scholar 

    36.
    Lecerf, A., Risnoveanu, G., Popescu, C., Gessner, M. O. & Chauvet, E. Decomposition of diverse litter mixtures in streams. Ecology 88, 219–227 (2007).
    Article  Google Scholar 

    37.
    Martínez, A., Larrañaga, A., Pérez, J., Descals, E. & Pozo, J. Temperature affects leaf litter decomposition in low-order forest streams: field and microcosm approaches. FEMS Microbiol. Ecol. 87, 257–267 (2014).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    38.
    Kelley, R. H. & Jack, J. D. Leaf litter decomposition in an ephemeral karst lake (Chaney Lake, Kentucky, U.S.A). Hydrobiologia 482, 41–47 (2002).
    Article  Google Scholar 

    39.
    Austin, A. T. & Vitousek, P. M. Precipitation, decomposition and litter decomposability of Metrosideros polymorpha in native forests on Hawai’i. J. Ecol. 88, 138–139 (2000).
    Article  Google Scholar 

    40.
    Taylor, A. R., Schröter, D., Pflug, A. & Wolters, V. Response of different decomposer communities to the manipulation of moisture availability: potential effects of changing precipitation patterns. Glob. Change Biol. 10, 1313–1324 (2004).
    ADS  Article  Google Scholar 

    41.
    Xie, Y., Xie, Y., Xiao, H., Chen, X. & Li, F. Controls on litter decomposition of emergent macrophyte in dongting lake wetlands. Ecosystems 20, 1383–1389 (2017).
    CAS  Article  Google Scholar 

    42.
    Fernandes, I., Seena, S., Pascoal, C. & Cássio, F. Elevated temperature may intensify the positive effects of nutrients on microbial decomposition in streams. Freshw. Biol. 59, 2390–2399 (2014).
    CAS  Article  Google Scholar 

    43.
    Ferreira, V. & Chauvet, E. Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Glob. Change Biol. 17, 551–564 (2011).
    ADS  Article  Google Scholar 

    44.
    Liu, C. et al. Mixing litter from deciduous and evergreen trees enhances decomposition in a subtropical karst forest in southwestern China. Soil Biol. Biochem. 101, 44–54 (2016).
    Article  CAS  Google Scholar 

    45.
    Wu, F. et al. Admixture of alder (Alnus formosana) litter can improve the decomposition of eucalyptus (Eucalyptus grandis) litter. Soil Biol. Biochem. 73, 115–121 (2014).
    CAS  Article  Google Scholar 

    46.
    Kominoski, J. S. et al. Nonadditive effects of leaf litter species diversity on breakdown dynamics in a Detritus-based stream. Ecology 88, 1167–1176 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Sanpera-Calbet, I. S. I. S., Lecerf, A. & Chauvet, E. Leaf diversity influences in-stream litter decomposition through effects on shredders. Freshw. Biol. 54, 1671–1682 (2009).
    Article  Google Scholar 

    48.
    Ostrofsky, M. L. A comment on the use of exponential decay models to test nonadditive processing hypotheses in multispecies mixtures of litter. J. N. Am. Benthol. Soc. 26, 23–27 (2007).
    Article  Google Scholar 

    49.
    Zanne, A. E. et al. A deteriorating state of affairs: how endogenous and exogenous factors determine plant decay rates. J. Ecol. 103, 1421–1431 (2015).
    CAS  Article  Google Scholar 

    50.
    Hieber, M. & Gessner, M. O. Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83, 1026–1038 (2002).
    Article  Google Scholar 

    51.
    Schindler, M. H. & Gessner, M. O. Functional leaf traits and biodiversity effects on litter decomposition in a stream. Ecology 90, 1641–1649 (2009).
    PubMed  Article  Google Scholar 

    52.
    Gessner, M. O. & Chauvet, E. Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75, 1807–1817 (1994).
    Article  Google Scholar 

    53.
    Sommaruga, R., Crosa, D. & Mazzeo, N. Study on the Decomposition of Pistia stratiotes L. (Araceae) in Cisne Reservoir, Uruguay. Hydrobiologia 78, 263–272 (1993).
    CAS  Google Scholar 

    54.
    Fraser, L. H., Carty, S. M. & Steer, D. A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms. Bioresour. Technol. 94, 185–192 (2004).
    CAS  PubMed  Article  Google Scholar 

    55.
    Ball, B. A., Bradford, M. A. & Hunter, M. D. Nitrogen and phosphorus release from mixed litter layers is lower than predicted from single species decay. Ecosystems 12, 87–100 (2009).
    CAS  Article  Google Scholar 

    56.
    Olson, J. S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44(2), 322–331 (1963).
    Article  Google Scholar  More

  • in

    Why Borneo’s trees are the loftiest on Earth

    A researcher scales the 100.8-metre tree named Menara in northern Borneo. The rarity of strong winds in the region has helped its rainforest to reach great heights. Credit: A. Shenkin et al./Front. For. Glob. Change (CC BY 4.0)

    Ecology
    15 October 2020

    Scientists find that strong winds constrain tropical forest height, but island’s gentle breezes allow trees to stretch tall.

    Relatively gentle winds on Borneo could explain why the island hosts the world’s tallest tropical forest — including the tallest known tree in the tropics, the 100-metre giant named Menara.
    Last year, an international team described Menara, a yellow meranti (Shorea faguetiana) growing in a research plot in Malaysian Borneo. Now, a team composed of many of the same scientists and led by Tobias Jackson at the University of Oxford, UK, has used laser scanning to create a 3D model of several dozen trees in the plot and to measure their heights.
    The researchers also placed strain gauges on the trees’ trunks to assess how much they bend in the wind, and modelled how much stress they could sustain. The results suggest that in tropical forests, the strongest winds put a limit on tree growth.
    Large conifers in temperate forests, such as California’s coastal redwoods (Sequoia sempervirens), can grow even taller than Menara, but they are probably limited by factors other than wind speeds, because they have much thicker trunks, Jackson says. More

  • in

    First use of artificial canopy bridge by the world’s most critically endangered primate the Hainan gibbon Nomascus hainanus

    1.
    Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: a review. Conserv. Biol. 5, 18–32. https://doi.org/10.1002/ajp.23076 (1991).
    Article  Google Scholar 
    2.
    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419 (2003).
    Article  Google Scholar 

    3.
    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, 1–10. https://doi.org/10.1126/sciadv.1500052 (2015).
    Article  Google Scholar 

    4.
    Alamgir, M. et al. High-risk infrastructure projects pose imminent threats to forests in Indonesian Borneo. Sci. Rep. 9(140), 1–10. https://doi.org/10.1038/s41598-018-36594-8 (2019).
    CAS  Article  Google Scholar 

    5.
    Hansen, M. C. et al. The fate of tropical forest fragments. Sci. Adv. 6, 1–10. https://doi.org/10.1126/sciadv.aax8574 (2020).
    Article  Google Scholar 

    6.
    Onderdonk, D. A. & Chapman, C. A. Coping with forest fragmentation: the primates of Kibale National Park, Uganda. Int. J. Primatol. 21, 587–611. https://doi.org/10.1023/A:1005509119693 (2000).
    Article  Google Scholar 

    7.
    Das, J., Biswas, J., Bhattacherjee, P. C. & Rao, S. S. Canopy bridges: an effective conservation tactic for supporting gibbon populations in forest fragments. Gibbons 1, 467–475. https://doi.org/10.1007/978-0-387-88604-6 (2009).
    Article  Google Scholar 

    8.
    Taylor, A. C., Walker, F. M., Goldingay, R. L., Ball, T. & van der Ree, R. Degree of landscape fragmentation influences genetic isolation among populations of a gliding mammal. PLoS ONE 6, 1–9. https://doi.org/10.1371/journal.pone.0026651 (2011).
    CAS  Article  Google Scholar 

    9.
    Sarma, K., Kumar, A., MuraliKrishna, C., Tripathi, O. P. & Gajurel, P. R. Ground feeding observations on corn (Zea mays) by eastern hoolock gibbon (Hoolock leuconedys). Curr. Sci. 104, 587–589 (2013).
    Google Scholar 

    10.
    Chapman, C. A. et al. Do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments?. Am. J. Phys. Anthropol. 131, 525–534. https://doi.org/10.1002/ajpa.20477 (2006).
    Article  PubMed  Google Scholar 

    11.
    Donaldson, A. & Cunneyworth, P. Case study: canopy bridges for primate conservation. Handb. Road Ecol. 1, 341–343. https://doi.org/10.1002/9781118568170.ch41 (2015).
    Article  Google Scholar 

    12.
    Hernández-pérez, E. Rope bridges: a strategy for enhancing habitat connectivity of the Black Howler Monkey (Alouatta pigra). Neotrop. Primates 22, 94–96 (2015).
    Google Scholar 

    13.
    Gregory, T., Carrasco-Rueda, F., Alonso, A., Kolowski, J. & Deichmann, J. L. Natural canopy bridges effectively mitigate tropical forest fragmentation for arboreal mammals. Sci. Rep. 7, 1–11. https://doi.org/10.1038/s41598-017-04112-x (2017).
    CAS  Article  Google Scholar 

    14.
    Ni, Q. et al. Microhabitat use of the western black-crested gibbon inhabiting an isolated forest fragment in southern Yunnan, China: implications for conservation of an endangered species. Primates 59, 45–54. https://doi.org/10.1007/s10329-017-0634-7 (2018).
    Article  PubMed  Google Scholar 

    15.
    Al-Razi, H., Maria, M. & Muzaffar, S. Mortality of primates due to roads and power lines in two forest patches in Bangladesh. Zoologia 36, 1–6. https://doi.org/10.3897/zoologia.36.e33540 (2019).
    Article  Google Scholar 

    16.
    Birot, H., Campera, M., Imron, M. A. & Nekaris, K. A. I. Artificial canopy bridges improve connectivity in fragmented landscapes: the case of Javan slow lorises in an agroforest environment. Am. J. Primatol. 82, 1–10. https://doi.org/10.1002/ajp.23076 (2020).
    Article  Google Scholar 

    17.
    Forman, R. T. T. & Alexander, L. E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 29, 207–231. https://doi.org/10.1146/annurev.ecolsys.29.1.207 (1998).
    Article  Google Scholar 

    18.
    Sarma, K. & Kumar, A. The day range and home range of the Eastern Hoolock Gibbon Hoolock leuconedys (Mammalia: Primates: Hylobatidae) in lower dibang valley district in Arunachal Pradesh India. J. Threat. Taxa 8, 8641–8651. https://doi.org/10.11609/jott.2739.8.4.8641-8651 (2016).
    Article  Google Scholar 

    19.
    Estrada, A. et al. Impending extinction crisis of the world’s primates: why primates matter. Sci. Adv. https://doi.org/10.1126/sciadv.1600946 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    20.
    Balbuena, D., Alonso, A., Panta, M., Garcia, A. & Gregory, T. Mitigating tropical forest fragmentation with natural and semi-artificial canopy bridges. Diversity https://doi.org/10.3390/d11040066 (2019).
    Article  Google Scholar 

    21.
    Valladares-Padua, C. B., Junior, L. C. & Padua, S. A pole bridge to avoid primates road kils. Neotrop. Primates 3, 13 (1995).
    Google Scholar 

    22.
    Weston, N., Goosem, M., Marsh, H., Cohen, M. & Wilson, R. Using canopy bridges to link habitat for arboreal mammals: successful trials in the Wet Tropics of Queensland. Aust. Mammal. 33, 93–105. https://doi.org/10.1071/AM11003 (2011).
    Article  Google Scholar 

    23.
    Gregory, T. et al. Methods to establish canopy bridges to increase natural connectivity in linear infrastructure development. Soc. Pet. Eng. J. https://doi.org/10.2118/165598-MS (2013).
    Article  Google Scholar 

    24.
    Teixeira, F. Z., Printes, R. C., Fagundes, J. C. G., Alonso, A. C. & Kindel, A. Canopy bridges as road overpasses for wildlife in urban fragmented landscapes. Biota Neotrop. 13, 117–123. https://doi.org/10.1590/S1676-06032013000100013 (2013).
    Article  Google Scholar 

    25.
    Yokochi, K. & Bencini, R. A remarkably quick habituation and high use of a rope bridge by an endangered marsupial, the western ringtail possum. Nat. Conserv. 11, 79–94. https://doi.org/10.3897/natureconservation.11.4385 (2015).
    Article  Google Scholar 

    26.
    Mittermeier, R. A., Rylands, A. B. & Wilson, D. E. Handbook of the Mammals of the World Vol. 3 (Lynx Edicions, Barcelona, 2013).
    Google Scholar 

    27.
    Wilson, D. E. & Lacher, T. E. Handbook of the Mammals of the World Vol. 6 (Lynx Edicions, Barcelona, 2016).
    Google Scholar 

    28.
    Ancrenaz, M. Orang-utan Bridges in Lower Kinabatangan: Field surveys between Abai and Batu Puteh. https://www.arcusfoundation.org/wp%E2%80%90content/uploads/2010/01/Kinabatangan%E2%80%90Orangutan%E2%80%90Rope%E2%80%90Bridges%E2%80%90Ancrenaz%E2%80%902010.pdf (2010).

    29.
    Goossens, B. & Ambu, L. N. Sabah wildlife department and 10 years of research: Towards a better conservation of Sabah’s wildlife. J. Oil Palm Environ. 3, 38–51. https://doi.org/10.5366/jope.2012.05 (2012).
    Article  Google Scholar 

    30.
    Kumar, A., Devi, A., Gupta, A. K. & Sarma, K. Population, behavioural ecology and conservation of Hoolock Gibbon in Northeast India. Rare Anim. India 1, 242–266 (2013).
    Google Scholar 

    31.
    Yap, J. L., Ruppert, N. & Rosely, N. F. N. Activities, habitat use and diet of wild Dusky Langurs, Trachypithecus obscurus in different habitat types in Penang, Malaysia. J. Sustain. Sci. Manag. 14, 71–85 (2019).
    Google Scholar 

    32.
    Arjun Oli. Banke National Park builds canopy bridge to reduce wild animal road accidents. myRepublica https://myrepublica.nagariknetwork.com/news/banke-national-park-builds-canopy-bridge-to-reduce-wild-animal-road-accidents (2019).

    33.
    Lekshmi Priya S. Kerala Sanctuary builds ‘canopy bridges’, saves animals from road hits!. The Better India https://www.thebetterindia.com/185838/kerala-forest-department-chinnar-wildlife-sanctuary-canopy-bridges-india (2019).

    34.
    Chivers, D. J. Malayan Forest Primates: Ten Years’ Study in Tropical Rain Forest (Plenum Press, New York, 1982).
    Google Scholar 

    35.
    Cheyne, S. M., Thompson, C. J. H. & Chivers, D. J. Travel adaptations of Bornean Agile Gibbons Hylobates albibarbis (Primates: Hylobatidae) in a degraded secondary forest, Indonesia. J. Threat. Taxa 5, 3963–3968. https://doi.org/10.11609/JoTT.o3361.3963-8 (2013).
    Article  Google Scholar 

    36.
    Campbell, C. O., Cheyne, S. M. & Rawson, B. M. Best practice guidelines for the rehabilitation and translocation of gibbons. IUCN SSC Primate Spec. Group https://doi.org/10.2305/IUCN.CH.2015.SSC-OP.51.en (2015).
    Article  Google Scholar 

    37.
    Saralamba, C. & Menpreeda, W. Increasing connectivity through artificial canopy bridge for the gibbons: a case study on the activity budget. Abstract for The 87th Annual Meeting of the American Association of Physical Anthropologists, Austin (Texas) (2018).

    38.
    Chan, B. P. L., Fellowes, J. R., Geissmann, T., & Jianfeng, Z. Hainan Gibbon Status Survey and Conservation Action Plan: VERSION I (Last Updated November 2005). Kadoorie Farm & Botanic Garden Technical Report No.3 (2005).

    39.
    Chan, B. P. L. Hainan gibbon Nomascus hainanus (Thomas, 1892). In Primates in Peril: The World’s 25 Most Endangered Primates 2014–2016. (eds Schwitzer, C., et al.). IUCN SSC Primate Spec. Gr. (PSG), Int. Primatol. Soc. (IPS), Conserv. Int. (CI), Bristol Zool. Soc. Arlington, VA. 67–69 (2015).

    40.
    Chan, B. P. L., Lo, Y. F. P. & Mo, Y. New hope for the Hainan gibbon: formation of a new group outside its known range. Oryx 54, 296. https://doi.org/10.1017/S0030605320000083 (2020).
    Article  Google Scholar 

    41.
    Zeng, X. et al. Hainan Gibbon Conservation Action Plan 2016–2020. https://www.gibbons.asia/wp-content/uploads/2017/03/Hainan-Gibbon-Action-Plan-2016-2020.pdf (2016).

    42.
    Zheng, Y., Cai, Q., Cheng, S. & Li, X. Characteristics on intensity and precipitation of super typhoon Rammasun (1409) and reason why it rapidly intensified offshore. Torrential Rain Disast. 33, 333–341 (2014).
    Google Scholar 

    43.
    Chivers, D. J. The Siamang in Malaya. A Field Study of a Primate in Tropical Rainforest. Karger (1974).

    44.
    Cristóbal-Azkarate, J. & Arroyo-Rodríguez, V. Diet and Activity Pattern of Howler Monkeys (Alouatta palliata) in Los Tuxtlas, Mexico: effects of Habitat Fragmentation and Implications for Conservation. Am. J. Primatol. 69, 1013–1029. https://doi.org/10.1002/ajp.20420 (2007).
    Article  PubMed  Google Scholar 

    45.
    Arroyo-Rodríguez, V. & Mandujano, S. Conceptualization and measurement of habitat fragmentation from the primates’ perspective. Int. J. Primatol. 30, 497–514 (2009).
    Article  Google Scholar 

    46.
    Fan, P., Scott, M. B., Fei, H. & Ma, C. Locomotion behavior of cao vit gibbon (Nomascus nasutus) living in karst forest in Bangliang Nature Reserve, Guangxi, China. Integr. Zool. 8, 356–364. https://doi.org/10.1111/j.1749-4877.2012.00300.x (2013).
    Article  PubMed  Google Scholar 

    47.
    Mass, V. et al. Lemur bridges provide crossing structures over roads within a forested mining concession near moramanga, toamasina province, Madagascar. Conserv. Evid. 8, 11–18 (2011).
    Google Scholar 

    48.
    Naresh Mitra. Guwahati: Natural bridge reunites hoolock gibbons after 100 years. Times of India https://timesofindia.indiatimes.com/city/guwahati/natural-bridge-reunites-hoolock-gibbons-after-100-years/articleshow/69998213.cms (2019).

    49.
    Fleagle, J. G. Locomotion and posture. In Malayan Forest Primates: Ten Years’ Study in Tropical Rain Forest (ed. Chivers, D. J.) 191–207 (Plenum Press, New York, 1980).
    Google Scholar  More

  • in

    A new comprehensive trait database of European and Maghreb butterflies, Papilionoidea

    1.
    Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).
    ADS  Article  Google Scholar 
    2.
    Thomas, J. A. Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos. T. Roy. Soc B 360, 339–357 (2005).
    CAS  Article  Google Scholar 

    3.
    Wiemers, M. et al. An updated checklist of the European Butterflies (Lepidoptera, Papilionoidea). ZooKeys 811, 9–45 (2018).
    Article  Google Scholar 

    4.
    Dapporto, L. et al. Integrating three comprehensive data sets shows that mitochondrial DNA variation is linked to species traits and paleogeographic events in European butterflies. Mol. Ecol. Resour. 19, 1623–1636 (2019).
    CAS  PubMed  Article  Google Scholar 

    5.
    Wiemers, M., Chazot, N., Wheat, C., Schweiger, O. & Wahlberg, N. A complete time-calibrated multi-gene phylogeny of the European butterflies. ZooKeys 938, 897–124 (2020).
    Article  Google Scholar 

    6.
    Kudrna, O. et al. Distribution Atlas of Butterflies In Europe (Gesellschaft für Schmetterlingsschutz e.V., 2011).

    7.
    Settele J. et al. Climatic Risk Atlas Of European Butterflies. BioRisk 1 (Pensoft Publishers, 2008).

    8.
    Moretti, M. et al. Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct. Ecol. 31, 558–567 (2017).
    Article  Google Scholar 

    9.
    Balletto, E. & Kudrna, O. Some aspects of the conservation of butterflies in Italy, with recommendations for a future strategy (Lepidoptera, Hesperiidae and Papilionoidea). Boll. Soc. Entomol. Ital. 117, 39–59 (1985).
    Google Scholar 

    10.
    Schweiger, O., Harpke, A., Wiemers, M. & Settele, J. CLIMBER: Climatic niche characteristics of the butterflies in Europe. ZooKeys 367, 65–84 (2014).
    Article  Google Scholar 

    11.
    Kotiaho, J. S., Kaitala, V., Komonen, A. & Päivinen, J. Predicting the risk of extinction from shared ecological characteristics. P. Natl. Acad. Sci. USA 102, 1963–1967 (2005).
    ADS  CAS  Article  Google Scholar 

    12.
    Bubova, T., Kulma, M., Vrabec, V. & Nowicki, P. Adult longevity and its relationship with conservation status in European butterflies. J. Insect Conserv. 20, 1021–1032 (2016).
    Article  Google Scholar 

    13.
    Essens, T., van Langevelde, F., Vos, R. A., Van Swaay, C. A. & WallisDeVries, M. F. Ecological determinants of butterfly vulnerability across the European continent. J. Insect Conserv. 21, 439–450 (2017).
    Article  Google Scholar 

    14.
    Pöyry, J., Luoto, M., Heikkinen, R. K., Kuussaari, M. & Saarinen, K. Species traits explain recent range shifts of Finnish butterflies. Glob. Change Biol. 15, 732–743 (2009).
    ADS  Article  Google Scholar 

    15.
    Woodcock, B. A. et al. Identifying time lags in the restoration of grassland butterfly communities: A multi-site assessment. Biol. Conserv. 155, 50–58 (2012).
    Article  Google Scholar 

    16.
    Diamond, S. E., Frame, A. M., Martin, R. A. & Buckley, L. B. Species’ traits predict phenological responses to climate change in butterflies. Ecology 92, 1005–1012 (2011).
    PubMed  Article  Google Scholar 

    17.
    Schweiger, O. et al. Increasing range mismatching of interacting species under global change is related to their ecological characteristics. Glob. Ecol. Biogeogr. 21, 88–99 (2012).
    Article  Google Scholar 

    18.
    Fric, Z. F., Rindoš, M. & Konvička, M. Phenology responses of temperate butterflies to latitude depend on ecological traits. Ecol. Lets. 23, 172–180 (2020).
    Article  Google Scholar 

    19.
    Shreeve, T. G., Dennis, R. L. H., Roy, D. B. & Moss, D. An ecological classification of British butterflies: ecological attributes and biotope occupancy. J. Insect Conserv 5, 145–161 (2001).
    Article  Google Scholar 

    20.
    Pavlikova, A. & Konvička, M. An ecological classification of Central European macromoths: habitat associations and conservation status returned from life history attributes. J. Insect Conserv. 16, 187–206 (2012).
    Article  Google Scholar 

    21.
    Eskildsen, A. et al. Ecological specialization matters: long-term trends in butterfly species richness and assemblage composition depend on multiple functional traits. Divers. Distrib. 21, 792–802 (2015).
    Article  Google Scholar 

    22.
    Bonelli, S., Cerrato, C., Loglisci, N. & Balletto, E. Population extinctions in the Italian diurnal Lepidoptera: an analysis of possible causes. J. Insect Conserv. 15, 879–890 (2011).
    Article  Google Scholar 

    23.
    Middleton-Welling, J., Wade, R. A., Dennis, R. L. H., Dapporto, L. & Shreeve, T. G. Optimising trait and source selection for explaining occurrence and abundance changes: A case study using British butterflies. Funct. Ecol. 32, 1609–1619 (2018).
    Article  Google Scholar 

    24.
    Middleton-Welling, J. et al. Trait data of European and Maghreb butterflies. Dryad Digital Repository https://doi.org/10.5061/dryad.6m905qfx6 (2020).

    25.
    Dennis, R. L. H., Shreeve, T. G. & Van Dyck, H. Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodivers. Conserv. 15, 1943–1966 (2006).
    Article  Google Scholar 

    26.
    Dennis, R. L. H. A Resource-Based Habitat View For Conservation: Butterflies In The British Landscape (John Wiley & Sons, 2010).

    27.
    Balletto, E., Barbero, F., Bonelli, S., Casacci, L. P., & Dapporto, L. Butterflies (Lepidoptera: Papilionoidea) Vol. I (Calderini, Verona, In Press).

    28.
    Beneš, J. et al. Butterflies Of The Czech Republic: Distribution and Conservation I & II (SOM, 2002).

    29.
    Bink, F. A. Ecologische Atlas Van De Dagvlinders An Noordwest-Europa (Schuyt & Co., 1992).

    30.
    Dapporto, L. & Casnati, O. Le Farfalle dell’Arcipelago Toscano (Parco Nazionale Arcipelago Toscano, 2008).

    31.
    Dennis, R. L. H. A Resource-based Habitat View For Conservation: Butterflies In The British Landscape (John Wiley & Sons, 2010).

    32.
    Fernández-Rubio, F. Guía De Mariposas Diurnas De La Península Ibérica, Baleares, Canarias, Azores y Madeira (Pirámide, 1991).

    33.
    García-Barros, E., Munguira, M. L., Stefanescu, C. & Vives, A. Fauna Iberica, Lepidoptera: Papilionoidea. Vol. 37 (Museo Nacional de Ciencias Naturales, CSIC, 2013).

    34.
    Henriksen, H. J. & Kreutzer, I. B. The Butterflies Of Scandinavia In Nature (Skandinavisk Bogforlag, 1982).

    35.
    Hesselbarth, G., Van Oorschot, H. & Wagener, S. Die Tagfalter Der Türkei: Unter Berücksichtigung Der Angrenzenden Länder. Bd. 2. Spezieller Teil: Nymphalidae. Fundortverzeichnis, Sammlerverzeichnis, Literaturverzeichnis, Indices (Wagener, 1995).

    36.
    Higgins, L. G. & Riley, N. D. A Field Guide To The Butterflies Of Britain And Europe 3rd Edn (Collins, 1980)

    37.
    Kudrna, O. A Revision Of The Genus Hipparchia (Classey, 1977).

    38.
    Lafranchis T. Butterflies Of Europe: New Field Guide And Key (Diatheo, 2004).

    39.
    Lafranchis, T. & Geniez, P. Les Papillons De Jour De France, Belgique Et Luxembourg Et Leurs Chenilles (Biotope Editions, 2000)

    40.
    Layberry, R. A., Hall, P. W. & Lafontaine, J. D. The Butterflies Of Canada (University of Toronto Press, 1998).

    41.
    LSPN. Les Papillons De Jour Et Leurs Biotopes (Pro Natura, 1987).

    42.
    Luquet, G. C. & Demerges, D. Papilions De L’annexe IV De La Directive 92/43/CEE. Papilio hospiton (Ministère de L’écologie Du Développement Et De L’Aménagement Durables, 2007).

    43.
    Maravalhas, E. As Borboletas De Portugal / The Butterflies of Portugal. (Apollo Books, 2003).

    44.
    Munguira, M. L., Barea-Azcón, J. M., Castro, S., Olivares, J. & Miteva, S. Species Recovery Plan For The Zullichi’s Blue (Agriades zullichi) (Butterfly Conservation Europe, 2015).

    45.
    Munguira, M. L., Castro, S, Barea-Azcón, J. M., Olivares, J. & Miteva, S. Species Recovery Plan For The Sierra Nevada Blue Polyommatus (Plebicula) golgus (Butterfly Conservation Europe, 2015).

    46.
    Munguira, M. L., Barea-Azcón, J. M, Castro,S., Olivares, J. & Miteva, S. Species Recovery Plan For the Andalusian Anomalous Blue (Polyommatus violetae) (Butterfly Conservation Europe, 2015).

    47.
    Munguira, M. L., Olivares, J,, Castro, S., Barea-Azcón, J. M., Romo, H. & Miteva, S. Species Recovery Plan For The Spanish Greenish Black-tip (Euchloe bazae) (Butterfly Conservation Europe, 2015).

    48.
    Muñoz Sariot, M. G., Biología Y Ecología De Los Licénidos eEspañoles. (Muñoz Sariot, 2011).

    49.
    Newland, D., Still, R., Swash, A. & Tomlinson, D. Britain’s Butterflies: A Field Guide To The Butterflies Of Britain And Ireland – Fuly Revised And Updated 3rd Edn (Princeton University Press, 2015).

    50.
    Pamperis, L. N. The Butterflies Of Greece (Bastas-Plessas Graphic Arts, 1997).

    51.
    Paolucci, P. Butterflies And Burnets Of The Alps And Their Larvae, Pupae and Cocoons (WBA-Books, 2013).

    52.
    Settele, J. et al. Climatic Risk Atlas Of European Butterflies (Pensoft, 2008).

    53.
    Settele, J., Steiner, R., Reinhardt, R., Feldmann, R. & Hermann, G. Schmetterlinge: Die Tagfalter Deutschlands (Ulmer, 2015)

    54.
    Thompson, R. & Nelson, B. The Butterflies And Moths Of Northern Ireland (Blackstaff Press, 2006).

    55.
    Tolman, T. & Lewington, R. Collins Butterfly Guide: The Most Complete Guide To The Butterflies Of Britain and Europe (Collins, 2008).

    56.
    Tshikolovets, V. V. Butterflies of Europe & The Mediterranean Area. (Tshikolovets Publications, 2011).

    57.
    Tutin, T. et al. Flora Europaea; Vol. 1–5 (Cambridge University Press, 1964-1980).

    58.
    Gilbert, F. & Zalat, S. Butterflies Of Egypt: Atlas, Red Data Listing And Conservation (BioMAP, 2007).

    59.
    Korshunov, Y. & Gorbunov, P. Dnevnye Bbabochki Aziatskoi Chasti Rossii. Spravochnik. [Butterflies of the Asian part of Russia. A handbook in Russian] (Ural University Press, 1995).

    60.
    F. Die Tagfalter Mitteleuropas – Östlicher Teil, Bestimmung – Biotope Und Bionomie – Verbreitung – Gefährdung (Self-published, 2004).

    61.
    Nekrutenko, Y. P. The Butterflies Of The Caucasus. Keys To Their Identification. Papilionidae, Pieridae, Satyridae, Danaidae (Dumka, 1990).

    62.
    Baytas A. A Field Guide To The Butterflies Of Turkey. (NTV, 2007).

    63.
    Aguiar, A. M. F., Wakeham-Dawson, A. & Jesus, J. G. F. The life cycle of the little known and endangered endemic Madeiran Brimstone Butterfly Gonepteryx maderensis Felder, 1862 (Pieridae). Nota Lep. 32, 145–157 (2009).
    Google Scholar 

    64.
    Aussem, B. & Hesselbarth, G. Die Praeimaginalstadien von Pseudochazara cingovskii (Gross, 1973) (Satyridae). Nota Lep. 3, 17–23 (1980).
    Google Scholar 

    65.
    Back, W. Die Praimaginalstadien von Euchloe charlonia (Donzel, 1842) im Vergleich tu Euchioe penia (FREYER, 1852) und Euchloe transcaspica ssp. amseli (Gross & Ebert, 1975). Atalanta 22, 357–363 (1991).
    Google Scholar 

    66.
    Bartonova, A., Benes, J. & Konvička, M. Generalist-specialist continuum and life history traits of Central European butterflies (Lepidoptera) – are we missing a part of the picture? Eur. J. Entomol. 111, 543–553 (2014).
    Article  Google Scholar 

    67.
    Bitzer, R. J. & Shaw, K. C. Territorial behavior of Nymphalis antiopa and Polygonia comma (Nymphalidae). J. Lepid. Soc. 37, 1–13 (1983).
    Google Scholar 

    68.
    Bonelli, S., Barbero, F., Casacci, L. P. & Balletto, E. Habitat preferences of Papilio alexanor Esper [1800]: implications for habitat management in the Italian Maritime Alps. Zoosystema 37, 169–177 (2015).
    Article  Google Scholar 

    69.
    Camerini, G., Groppali, R. & Minerbi, T. Observations on the ecology of the endangered butterfly Zerynthia cassandra in a protected area of Northern Italy. J. Insect Conser. 22, 41–49 (2018).
    Article  Google Scholar 

    70.
    Celik, T. Adult demography, spatial distribution and movements of Zerynthia polyxena (Lepidoptera: Papilionidae) in a dense network of permanent habitats. Eur. J. Entomol. 109, 217–227 (2013).
    Article  Google Scholar 

    71.
    Cho, Y., Choi, D. S., Han, Y. G. & Nam, S. H. Conservation of Hipparchia autonoe (Esper) (Lepidoptera: Nymphalidae), Natural Monument in South Korea. Entomol. Res. 41, 269–274 (2011).
    Article  Google Scholar 

    72.
    Corbera, G., Escrivà, À. & Corbera, J. Hilltopping de les Papallones diürnes al turó d’Onofre Arnau (Mataró, Maresme). L’Atzavarza 20, 59–68 (2011).
    Google Scholar 

    73.
    Courtney, S. Notes on the biology of Zegris eupheme (Pieridae). J. Lepid. Soc. 36, 132–135 (1982).
    Google Scholar 

    74.
    Dennis, R. L. H. & Shreeve, T. G. Does the Marbled White butterfly Melanargia galathea (L.) (Papilionoidea: Satyrinae) behave like a white’? Antenna 28, 139–194 (2004).
    Google Scholar 

    75.
    Dincă, V., Cuvelier, S., Zakharov, E. V., Hebert, P. D. & Vila, R. Biogeography, ecology and conservation of Erebia oeme (Hübner) in the Carpathians (Lepidoptera: Nymphalidae: Satyrinae). Ann. Soc. Entomol. Fr. 46, 486–498 (2010).
    Article  Google Scholar 

    76.
    Dincă, V., Kolev, Z. & Verovnik, R. The distribution, ecology and conservation status of the Spinose Skipper Muschampia cribrellum (Eversmann, 1841) at the western limit of its range in Europe (Hesperiidae). Nota Lep. 33, 39–57 (2010).
    Google Scholar 

    77.
    Diringer, Y. Chronique d’élevage 3: L’élevage des coridon espagnols: Polyommatus (Lysandra) albicans (HERRICH-SCHÄFFER, 1852) et Polyommatus (Lysandra) caelestissima (VERITY, 1921) (Lepidoptera: Lycanidae). Lépidoptères 19, 50–59 (2010).
    Google Scholar 

    78.
    Eichel, S. & Fartmann, T. Management of calcareous grasslands for Nickerl’s fritillary (Melitaea aurelia) has to consider habitat requirements of the immature stages, isolation, and patch area. J. Insect Conserv. 12, 677–688 (2008).
    Article  Google Scholar 

    79.
    Fiedler, K. European and North West African Lycaenidae (Lepidoptera) and their associations with ants. J. Res. Lepid. 28, 239–257 (1991).
    Google Scholar 

    80.
    Fric, Z. Adult population structure and behaviour of two seasonal generations of the European Map Butterfly, Araschnia levana, species with seasonal polyphenism (Nymphalidae). Nota Lep. 23, 2–25 (2000).
    Google Scholar 

    81.
    Friedrich, E. Zur Biologie von Limenitis populi L. (Lep., Nymphalidae). Entomol. Z. 81, 266–269 (1971).
    Google Scholar 

    82.
    García-Barros, E. Comparative data on the adult biology, ecology and behaviour of species belonging to the genera Hipparchia, Chazara and Kanetisa in central Spain (Nymphalidae: Satyrinae). Nota Lep. 23, 119–140 (2000).
    Google Scholar 

    83.
    García-Villanueva, V., Moreno Tamaurejo, J. A., Vazquez Prado, F. M., Nieto Manzano, M. A. & Novoa Pérez, J. M. Melitaea aetherie (Hübner [6]) en la provincia de Badajoz: nuevos datos sobre su biología y distribución (Lepidoptera: Nymphalidae). Bol. Soc. Entomol. Aragonesa 42, 279–288 (2008).
    Google Scholar 

    84.
    Gascoigne-Pees, M., Trew, D., Pateman, J. & Verovnik, R. The distribution, life cycle, ecology and present status of Leptidea morsei (Fenton 1882) in Slovenia with additional observations from Romania (Lepidoptera: Pieridae). Nachr. Entomol. Ver. Apollo N. F. 29, 113–121 (2008).
    Google Scholar 

    85.
    Gascoigne-Pees, M., Verovnik, R., Wiskin, C. & Luckens, C. & Đurić, M. Notes on the lifecycle of Melitaea arduinna (Esper, 1783) (“Freyer’s Fritillary”) (Lepidoptera: Nymphalidae) with further records from SE Serbia. Nachr. Entomol. Ver. Apollo, N. F. 33, 9–14 (2012).
    Google Scholar 

    86.
    Gascoigne-Pees, M., Verovnik, R., Franeta, F. & Popović, M. The lifecycle and ecology of Pseudochazara amymone (Brown, 1976), (Lepidoptera: Nymphalidae, Satyrinae). Nachr. Entomol. Ver. Apollo, N. F. 35, 129–138 (2014).
    Google Scholar 

    87.
    Gascoigne-Pees, M., Wiskin, C., Đurić, M. & Trew, D. The lifecycle of Nymphalis vaualbum ([Denis & Schiffermüller], 1775) in Serbia including new records and a review of its present status in Europe (Lepidoptera: Nymphalidae. Nachr. Entomol. Ver. Apollo, N. F. 35, 77–96 (2014).
    Google Scholar 

    88.
    Grill, A., Schtickzelle, N., Cleary, D. F., Neve, G. & Menken, S. B. Ecological differentiation between the Sardinian endemic Maniola nurag and the pan-European M. jurtina. Biol. J. Linn. Soc. 89, 561–574 (2006).
    Article  Google Scholar 

    89.
    Hernández-Roldán, J. L., Vicente, J. C., Vila, R. & Munguira, M. L. Natural history and immature stage morphology of Spialia Swinhoe, 1912 in the Iberian Peninsula (Lepidoptera, Hesperiidae). Nota Lep. 41, 1–22 (2018).
    Google Scholar 

    90.
    Hernández-Roldán, J. L., Munguira, M. L. & Martin, J. Ecology of a relict population of the vulnerable butterfly Pyrgus sidae on the Iberian Peninsula (Lepidoptera: Hesperiidae). Eur. J. Entomol. 106, 611–618 (2009).
    Article  Google Scholar 

    91.
    John, E. & Parker, R. Dispersal of Hipparchia cypriensis (Holik, 1949) (Lep.: Satyridae) in Cyprus, with notes on its ecology and life-history. Ent. Gaz. 53, 3–18 (2002).
    Google Scholar 

    92.
    John, E., Gascoigne-Pees, M. & Larsen, T. B. Ypthima asterope (Klug, 1832) (Lepidoptera: Nymphalidae, Satyrinae): its biogeography, lifecycle, ecology and present status in Cyprus, with additional notes from Rhodes and the eastern Mediterranean. Ent. Gaz. 61, 1–22 (2010).
    Google Scholar 

    93.
    Jutzeler, D. Okologie und erste Stände des italienischen Schachbrettes Melanargia arge (Sulzer, 1776) (Lepidoptera: Satyridae). Nota Lep. 16, 213–232 (1994).
    Google Scholar 

    94.
    Jutzeler, D. & Grillo, N. Une visite a l’ile de Vulcano (dans les iles Eoliennes, Sicile) pour Hipparchia leighebi (Kudrna, 1976) (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 15, 119–126 (1995).
    Google Scholar 

    95.
    Jutzeler, D. & De Bros, E. Observations dans la nature et élevage de Pseudochazara hippolyte williamsi (Romei, 1927) et Erebia hiapania (Butler, 1868) de la Sierra Nevada (Andalousie, Espagne méridionale) (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 15, 173–181 (1995).
    Google Scholar 

    96.
    Jutzeler, D., Biermann, H. & De Bros, E. Élevage de Coenonympha corinna elbana (Staudinger, 1901) du Monte Argentario (Toscane, Italie) avec explication géologique de l’aire de répartition du complexe corinna (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 15, 332–347 (1996).
    Google Scholar 

    97.
    Jutzeler, D. & de Bros, E. D. Écologie, élevage et statut taxinomique de Coenonympha corinna trettaui (GROSS, 1970) de l’Isola di Capraia (Toscane, Italie) (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 16, 70–78 (1997).
    Google Scholar 

    98.
    Jutzeler, D. et al. Study on the biology, morphology and etiology of Hipparchia sbordonii Kudrna, 1984 from Isola di Ponza (Latium, Italy) and Hipparchia neapolitana (Stauder, 1921) from the Monte Faito (Campanie, Italy) and data on the biology of Hipparchia leighebi (Kudrna, 1976) (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 16, 105–132 (1997).
    Google Scholar 

    99.
    Jutzeler, D., Biermann, H., Grillo, N. & Volpe, G. On the taxonomical status of Hipparchia blachieri (Fruhstorfer, 1908) from Sicilia (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 17, 69–83 (1999).
    Google Scholar 

    100.
    Jutzeler, D., Embacher, G., Hesselbarth, G., Malicky, M., Stangelmaier, G. & Cameron-Curry, V. Breeding experiments with Erebia claudina (Borkhausen, 1779) from the Radstaedter Tauern (Salzburg, Austria) (Lepidoptera: Nymphalidae, Satyrinae. Linn. Belg. 17, 11–21 (1999).
    Google Scholar 

    101.
    Jutzeler, D., Russel, P. & Volpe, G. Nouveaux points de vue sur la position taxonomique des cinq populations insulaires du complexe d’ Hipparchia wyssii Christ (1889) se basant sur la connaissance de leurs états pré-imaginaux (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 20, 9–44 (2007).
    Google Scholar 

    102.
    Kleckova, I., Konvička, M. & Klecka, J. Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: importance of fine-scale habitat heterogeneity. J. Therm. Biol. 41, 50–58 (2014).
    PubMed  Article  Google Scholar 

    103.
    Koestler, W. The preimaginal stages of Hipparchia mersina Staudinger, 1871 – biology, ecology, phenology and breeding Lepidoptera Nymphalidae. Entomol. Z. 1152, 85–90 (2005).
    Google Scholar 

    104.
    Kolev, Z. New data on the taxonomic status and distribution of Polyommatus andronicus Coutsis & Ghavalas, 1995 (Lycaenidae). Nota Lep. 28, 35–48 (2005).
    Google Scholar 

    105.
    Konvička, M., Nedved, O. & Fric, Z. Early-spring floods decrease the survival of hibernating larvae of a wetland-inhabiting population of Neptis rivularis (Lepidoptera: Nymphalidae). Acta Zool. Acad. Sci. Hungar. 48, 79–88 (2002).
    Google Scholar 

    106.
    Kuras, T., Beneš, J. & Konvička, M. Behaviour and within-habitat distribution of adult Erebia sudetica sudetica, endemic of the Hrubý Jeseník Mts., Czech Republic (Nymphalidae, Satyrinae). Nota Lep. 24, 69–83 (2001).
    Google Scholar 

    107.
    Lafranchis, T. Biologie, écologie et répartition de Carcharodus orientalis (Reverdin, 1913) en Grèce. Comparaison avec Carcharodus flocciferus (Zeller, 1847) (Lepidoptera, Hesperiidae). Linn. Belg. 19, 140-146 (2003).

    108.
    Leigheb, G., Jutzeler, D. & Cameron Curry, V. The breeding of Pseudophilotes barbagiae De Prins & Van Der Poorten, 1970, an endemic species of the Gennargentu massif, Sardinia, Italy (Lepidoptera: Lycaenidae). Linn. Belg. 17, 239–246 (2000).
    Google Scholar 

    109.
    Lopez-Villalta, J. S. Ecological trends in endemic Mediterranean butterflies. Bull. Insectol. 63, 161–170 (2010).
    Google Scholar 

    110.
    Leigheb, G. & Cameron-Curry, V. Observations on the biology and distribution of Pseudophilotes barbagiae (Lycaenidae, Polyommatini). Nota Lep. 21, 66–73 (1998).
    Google Scholar 

    111.
    Leigheb, G., Jutzeler, D. & Cameron Curry, V. The breeding of Pseudophilotes barbagiae De Prins & Van Der Poorten, 1970, an endemic species of the Gennargentu massif, Sardinia, Italy (Lepidoptera: Lycaenidae). Linn. Belg. 17, 239–246 (2000).
    Google Scholar 

    112.
    Manino, Z., Leigheb, G., Cameron-Curry, P. & Cameron-Curry, V. Descrizione degli stadi preimarginali di Agrodiaetus humedasae Toso & Balletto, 1976 (Lepidoptera, Lycaenidae). Boll. Mus. Reg. Sci. Nat. Torino 5, 97–101 (1987).
    Google Scholar 

    113.
    Möllenbeck, V., Hermann, G. & Fartmann, T. Does prescribed burning mean a threat to the rare satyrine butterfly Hipparchia fagi? Larval-habitat preferences give the answer. J. Insect Conser. 13, 77–87 (2009).
    Article  Google Scholar 

    114.
    Nardelli, U., Olivares, J. & Jutzeler, D. Etudes sur l’ecologie et le developpement de Melanargia ines (Hoffmannsegg, 1804) en Andalousie et comparaison avec les especes les plus proches (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 16, 183–191 (1998).
    Google Scholar 

    115.
    Ômura, H. & Honda, K. Feeding responses of adult butterflies, Nymphalis xanthomelas, Kaniska canace and Vanessa indica, to components in tree sap and rotting fruits: synergistic effects of ethanol and acetic acid on sugar responsiveness. J. Insect Physiol. 49, 1031–1038 (2003).
    PubMed  Article  CAS  Google Scholar 

    116.
    Özden, Ö. & Hodgson, D. J. Butterflies (Lepidoptera) highlight the ecological value of shrubland and grassland mosaics in Cypriot garrigue ecosystems. Eur. J. Entomol. 108, 43–437 (2011).
    Article  Google Scholar 

    117.
    Page, R. J. C. Perching and patrolling continuum at favoured hilltop sites on a ridge: A mate location strategy by the Purple Emperor butterfly Apatura iris. Entomol. Rec. J. Var. 22, 61–70 (2010).
    Google Scholar 

    118.
    Pennekamp, F., Monteiro, E. & Schmitt, T. The larval ecology of the butterfly Euphydryas desfontainii (Lepidoptera: Nymphalidae) in SW-Portugal: food plant quantity and quality as main predictors of habitat quality. J. Insect Conserv. 17, 195–206 (2013).
    Article  Google Scholar 

    119.
    Pinzari, M. A comparative analysis of mating recognition signals in graylings: Hipparchia statilinus vs. H. semele (Lepidoptera: Nymphalidae, Satyrinae). J. Insect Behav. 22, 227–244 (2009).
    Article  Google Scholar 

    120.
    Pinzari, M. & Sbordoni, V. Species and mate recognition in two sympatric Grayling butterflies: Hipparchia fagi and H. hermione genava (Lepidoptera). Ethol. Ecol. Evol. 25, 28–51 (2013).
    Article  Google Scholar 

    121.
    Pittaway, A. R. et al. Papilio saharae Oberthür, 1879, specifically distinct from Papilio machaon Linnaeus, 1758 (Lepidoptera: Papilionidae). Ent. Gaz. 45, 223–249 (1994).
    Google Scholar 

    122.
    Polcyn, D. M. & Chappell, M. A. Analysis of heat transfer in Vanessa butterflies: effects of wing position and orientation to wind and light. Physiol. Zool. 59, 706–716 (1986).
    Article  Google Scholar 

    123.
    Radchuk, V., Turlure, C. & Schtickzelle, N. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies. J Anim. Ecol. 82, 275–285 (2013).
    PubMed  Article  Google Scholar 

    124.
    Rutowski, R. L. Variation of eye size in butterflies: inter-and intraspecific patterns. J. Zool. 252, 187–195 (2000).
    Article  Google Scholar 

    125.
    Sariot, M. M. Ciclo biológico, morfología de los estadios preimaginales y nuevos datos sobre la distribución de Borbo borbonica zelleri (Lederer, 1855) (Lepidoptera: Hesperiidae) en la provincia de Cádiz, Españ. Rev. Gaditana Entomol. 4, 137–158 (2013).
    Google Scholar 

    126.
    Scott, J. A. Population biology and adult behavior of the circumpolar butterfly, Parnassius phoebus F. (Papilionidae). Insect Syst. Evol. 4, iii–168 (1974).

    127.
    Schurian, K. Beobachtungen zur Biologie und Ökologie von Azanus ubaldus (Cramer, 1782) auf den Kanarischen Inseln (Lepidoptera: Lycaenidae). Nachr. Entomol. Ver. Apollo, N.F. 37, 41–46 (2016).
    Google Scholar 

    128.
    Slamova, I., Klecka, J. & Konvička, M. Diurnal behavior and habitat preferences of Erebia aethiops, an aberrant lowland species of a mountain butterfly clade. J. Insect Behav. 24, 230–246 (2011).
    Article  Google Scholar 

    129.
    Slancarova, J., Garcia-Pereira, P., Fric, Z. F., Romo, H. & Garcia-Barros, E. Butterflies in Portuguese ‘montados’: relationships between climate, land use and life-history traits. J. Insect Conserv. 19, 823–836 (2015).
    Article  Google Scholar 

    130.
    Slancarova, J. et al. Co-occurrence of three Aristolochia-feeding Papilionids (Archon apollinus, Zerynthia polyxena and Zerynthia cerisyi) in Greek Thrace. J. Nat. Hist. 49, 1825–1848 (2015).
    Article  Google Scholar 

    131.
    Stefanescu, C., Pintureau, B., Tschorsnig, H. P. & Pujade-Villar, J. The parasitoid complex of the butterfly Iphiclides podalirius feisthamelii (Lepidoptera: Papilionidae) in north-east Spain. J. Nat. Hist. 7, 379–396 (2003).
    Article  Google Scholar 

    132.
    Stuhldreher, G. & Fartmann, T. Oviposition-site preferences of a declining butterfly Erebia medusa (Lepidoptera: Satyrinae) in nutrient-poor grasslands. Eur. J. Entomol. 112, 493–499 (2015).
    Article  Google Scholar 

    133.
    Szentirmai, I. et al. Habitat use and population biology of the Danube Clouded Yellow butterfly Colias myrmidone (Lepidoptera: Pieridae) in Romania. J. Insect Conserv. 18, 417–425 (2014).
    Article  Google Scholar 

    134.
    Templado, J. Datos biológicos sobre Melitaea deione (Geyer) (Lep., Nymphalidae). Bol. Estac. Cent.l Ecol. 5, 97–102 (1976).
    Google Scholar 

    135.
    Toso, G. G. & Balletto, E. Una nuova specie del genere Agrodiaetus Hübn. (Lepidoptera, Lycaenidae). Annali Mus. Civico Storia Nat. G. Doria 81, 124–130 (1977).
    Google Scholar 

    136.
    Tóth, J. P. & Varga, Z. Morphometric study on the genitalia of sibling species Melitaea phoebe and M. telona (Lepidoptera: Nymphalidae). Acta Zool. Hung. 56, 273–282 (2010).
    Google Scholar 

    137.
    Tvrtkovic, N., Mihoci, I. & Sasic, M. Colias caucasica balcanica Rebel, 1901 (Pieridae) in Croatia-the most western distribution point. Natura Croatica 20, 375–385 (2011).
    Google Scholar 

    138.
    Väisänen, R., Kuussaari, M., Nieminen, M. & Somerma, P. Biology and conservation of Pseudophilotes baton in Finland (Lepidoptera, Lycaenidae). Ann. Zool. Fenn. 31, 145–156 (1994).
    Google Scholar 

    139.
    Verovnik, R. et al. Conserving Europe’s Most Endangered Butterfly: the Macedonian Grayling (Pseudochazara cingovskii). J. Insect Conserv. 17, 941–947 (2013).
    Article  Google Scholar 

    140.
    Verovnik, R., Franeta, F., Popović, M. & Gascoigne-Pees, M. The discovery of Polyommatus aroaniensis (Brown, 1976) in Bosnia and Herzegovina (Lepidoptera: Lycaenidae). Nachr. Entomol. Ver. Apollo, N.F. 36, 177–180 (2015).
    Google Scholar 

    141.
    Vieira, V. Lepidopteran fauna from the Sal Island, Cape Verde (Insecta: Lepidoptera). SHILAP-Rev. Lepidopt. 6, 243–252 (2008).
    Google Scholar 

    142.
    Vila, R. Comparative analysis and taxonomic use of the morphology of imma-ture stages and natural history traits in European species of Pyrgus Hübner (Lepidoptera: Hesperiidae, Pyrginae). Zootaxa 347, 1–71 (2012).
    Google Scholar 

    143.
    Vovlas, A., Balletto, E., Altini, E., Clemente, D. & Bonelli, S. Mobility and oviposition site-selection in Zerynthia cassandra (Lepidoptera, Papilionidae): implications for its conservation. J. Insect Conserv. 18, 87–597 (2014).
    Article  Google Scholar 

    144.
    Wahlberg, N. The life history and ecology of Melitaea diamina (Nymphalidae) in Finland. Nota Lep. 20, 70–81 (1997).
    Google Scholar 

    145.
    Wahlberg, N. Comparative descriptions of the immature stages and ecology of five Finnish Melitaeine butterfly species (Lepidoptera: Nymphalidae). Entomol. Fennica 11, 167–174 (2000).
    Article  Google Scholar 

    146.
    Wahlberg, N. On the status of the scarce fritillary Euphydryas maturna (Lepidoptera: Nymphalidae) in Finland. Entomol. Fennica 12, 244–250 (2001).
    Google Scholar 

    147.
    Wiemers, M. The butterflies of the Canary Islands. A survey on their distribution, biology and ecology (Lepidoptera: Papilionoidea and Hesperioidea). Linn. Belg. 15, 63–84 (1995).
    Google Scholar 

    148.
    Franeta, F., Kogovšek, N. & Verovnik, R. On the presence of Pontia chloridice (Lepidoptera: Pieridae) in the Republic of Macedonia. Phegea 40, 17–20 (2012).
    Google Scholar 

    149.
    Franeta, F. & Đurić, M. On the distribution of Colias caucasica balcanica Rebel, 1901, with two new records for Serbia (Lepidoptera: Pieridae. Nachr. Entomol. Ver. Apollo, N.F. 32, 31–37 (2011).
    Google Scholar 

    150.
    Coutsis, J. Revision of the Turanana endymion species-group (Lycaenidae). Nota Lep. 27, 251–272 (2005).
    Google Scholar 

    151.
    Acosta Fernández, B. Una nueva subespecie de Euchloe belemia (Esper, [1800]) de la isla de Gran Canaria, Islas Canarias, España (Lepidoptera: Pieridae). SHILAP-Rev. Lepidopt. 36, 173–182 (2008).
    Google Scholar 

    152.
    Brown, J. & Coutsis, J. G. Two newly discovered Lycaenid butterflies (Lepidoptera: Lycaenidae) from Greece, with notes on allied species. Entomol. Gaz. 29, 201–213 (1978).
    Google Scholar 

    153.
    Brown, J. On the status of a little known Satyrid butterfly from Greece. Entomol. Rec. J. Var. 92, 280–281 (1980).
    Google Scholar 

    154.
    De Prins, W. & Van der Poorten, D. Een nieuwe Pseudochazara-soort voor de wetenschap uit Noordoost-Griekenland (Lepidoptera, Satyridae). Phegea 10, 7–21 (1981).
    Google Scholar 

    155.
    De Prins, W. & Van der Poorten, D. Overzicht van het genus Pseudophilotes in Europa en Noord-Afrika, met beschrijving van een soort uit Sardinie, nieuw voor de wetenschap (Lepidoptera, Lycaenidae). Phegea 10, 61–76 (1982).
    Google Scholar 

    156.
    Higgins, L. G. Hipparchia (Pseudotergumia) wyssii Christoph, with descriptions of two new subspecies. Entomol. 100, 169–171 (1967).
    Google Scholar 

    157.
    Kolev, Z. Polyommatus dantchenkoi (Lukhtanov & Wiemers, 2003) tentatively identified as new to Europe, with a description of a new taxon from the Balkan Peninsula (Lycaenidae). Nota Lep. 28, 25–34 (2005).
    Google Scholar 

    158.
    Manil, L. Découverte de Hipparchia (Pseudotergumia) wyssii Christ dans l’île de La Palma (Canaries) et description d’une nouvelle sous-espèce: Hipparchia wyssii tilosi nova spp. (Lepidoptera Satyridae). Linn. Belg. 9, 359–366 (1984).
    Google Scholar 

    159.
    Olivier, A. & Coutsis, J. G. A revision of the superspecies Hipparchia azorina and of the Hipparchia aristaeus group (Nymphalidae: Satyrinae). Nota Lep. 20, 150–292 (1997).
    Google Scholar 

    160.
    Olivier, A. Taxonomy and geographical variation of Satyrium ledereri (Boisduval, 1848) with the description of a new subspecies from the Greek island of Sámos. Phegea 17, 1–25 (1989).
    Google Scholar 

    161.
    Smith, D. A. S. & Owen, D. F. Inter-island variation in the butterfly Hipparchia (Pseudotergumia) wyssii (Christ, 1889) (Lepidoptera, Satyrinae) in the Canary Islands. Nota Lep. 17, 175–200 (1995).
    Google Scholar 

    162.
    Thomson, G. Maniola chia – a new Satyrid from the Greek island of Chios (Lepidoptera: Nymphalidae: Satyrinae). Phegea 15, 13–22 (1987).
    Google Scholar 

    163.
    Thomson, G. Maniola halicarnassus – a new Satyrid from south-western Turkey (Lepidoptera: Nymphalidae: Satyrinae). Phegea 18, 149–155 (1990).
    Google Scholar 

    164.
    Scalercio, S. et al. How long is 3km for a butterfly? Ecological constraints and functional traits explain high mitochondrial genetic diversity between Sicily and the Italian Peninsula. J. Anim. Ecol., https://doi.org/10.1111/1365-2656.13196 (2020).

    165.
    Cini, A. et al. Host plant selection and differential survival on two Aristolochia L. species in an insular population of Zerynthia cassandra. J Insect Conserv 23, 239–246 (2019).
    Article  Google Scholar 

    166.
    Hernández‐Roldán, J. L. et al. Integrative analyses unveil speciation linked to host plant shift in Spialia butterflies. Mol Ecol. 25, 4267–4284 (2016).
    PubMed  Article  Google Scholar 

    167.
    Dennis, R. L. H., Hardy, P. B. & Dapporto, L. Nestedness in island faunas: novel insights into island biogeography through butterfly community profiles of colonization ability and migration capacity. J Biogeogr 39, 1412–1426 (2012).
    Article  Google Scholar 

    168.
    Sekar, S. A meta analysis of the traits affecting dispersal ability in butterflies: can wingspan be used as a proxy? J. Anim. Ecol. 81, 174–184 (2012).
    PubMed  Article  Google Scholar 

    169.
    Kuussaari, M., Saarinen, M., Korpela, E. L., Pöyry, J. & Hyvönen, T. Higher mobility of butterflies than moths connected to habitat suitability and body size in a release experiment. Ecol. Evol. 4, 3800–381 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    170.
    García-Barros, E. Body size, egg size, and their interspecific relationships with ecological and life history traits in butterflies (Lepidoptera: Papilionoidea, Hesperioidea). Biol. J. Linn. Soc. 70, 251–284 (2000).
    Article  Google Scholar 

    171.
    Wiklund, C. & Kaitala, A. Sexual selection for large male size in a polyandrous butterfly: the effect of body size on male versus female reproductive success in Pieris napi. Behav. Ecol. 6, 6–13 (1995).
    Article  Google Scholar 

    172.
    Peters, R. H. The Ecological Implications Of Body Size. (Cambridge University Press, 1983).

    173.
    Chown, S. L. et al. Scaling of insect metabolic rate is inconsistent with the nutrient supply network model. Funct. Ecol. 21, 282–290 (2007).
    Article  Google Scholar 

    174.
    Betzholtz, P. E., Pettersson, L. B., Ryrholm, N. & Franzén, M. With that diet, you will go far: trait-based analysis reveals a link between rapid range expansion and a nitrogen-favoured diet. Proc. Roy. Soc. B 280, 20122305 (2013).
    Article  Google Scholar 

    175.
    Cayton, H. L., Haddad, N. M., Gross, K., Diamond, S. E. & Ries, L. Do growing degree days predict phenology across butterfly species? Ecology 96, 1473–147 (2015).
    Article  Google Scholar 

    176.
    Chevenne, F., Doleadec, S. & Chessel, D. A fuzzy coding approach for the analysis of long‐term ecological data. Freshwater Biol. 31, 295–309 (1994).
    Article  Google Scholar 

    177.
    Penone, C. et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 5, 961–970 (2014).
    Article  Google Scholar 

    178.
    Stekhoven, D. J. & Bühlmann, P. Missforest – non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2012).
    CAS  PubMed  Article  Google Scholar  More

  • in

    Prebiotic effects of yeast mannan, which selectively promotes Bacteroides thetaiotaomicron and Bacteroides ovatus in a human colonic microbiota model

    1.
    Liu, H. Z., Liu, L., Hui, H. & Wang, Q. Structural characterization and antineoplastic activity of Saccharomyces cerevisiae mannoprotein. Int. J. Food Prop. 18, 359–371 (2015).
    CAS  Google Scholar 
    2.
    Kocourek, J. & Ballou, C. E. Method for fingerprinting yeast cell wall mannans. J. Bacteriol. 100, 1175–1181 (1969).
    CAS  PubMed  PubMed Central  Google Scholar 

    3.
    Scheller, H. V. & Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 61, 263–289 (2010).
    CAS  PubMed  Google Scholar 

    4.
    Jin, X., Zhang, M., Cao, G. F. & Yang, Y. F. Saccharomyces cerevisiae mannan induces sheep beta-defensin-1 expression via Dectin-2-Syk-p38 pathways in ovine ruminal epithelial cells. Vet. Res. (Faisalabad) 50, 8 (2019).
    Google Scholar 

    5.
    Michael, C. F. et al. Airway epithelial repair by a prebiotic mannan derived from Saccharomyces cerevisiae. J. Immunol. Res. 2017, 8903982 (2017).
    PubMed  PubMed Central  Google Scholar 

    6.
    Lew, D. B. et al. Beneficial effects of prebiotic Saccharomyces cerevisiae mannan on allergic asthma mouse models. J. Immunol. Res. 2017, 3432701 (2017).
    PubMed  PubMed Central  Google Scholar 

    7.
    Cuskin, F. et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517, 165–169 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577–589 (2012).
    CAS  PubMed  Google Scholar 

    9.
    Cani, P. D. et al. Microbial regulation of organismal energy homeostasis. Nat. Metab. 1, 34–46 (2019).
    CAS  PubMed  Google Scholar 

    10.
    Hooper, L. V. & Macpherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 10, 159–169 (2010).
    CAS  PubMed  Google Scholar 

    11.
    Pickard, J. M., Zeng, M. Y., Caruso, R. & Núñez, G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279, 70–89 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Arora, T. & Bäckhed, F. The gut microbiota and metabolic disease: Current understanding and future perspectives. J. Intern. Med. 280, 339–349 (2016).
    CAS  PubMed  Google Scholar 

    13.
    Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Wong, S. H. & Yu, J. Gut microbiota in colorectal cancer: Mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 16, 690–704 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Vogt, N. M. et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7, 13537 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    16.
    The Human Microbiome Project Consortium. Structure, function, and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).
    ADS  PubMed Central  Google Scholar 

    17.
    Bolam, D. N. & Koropatkin, N. M. Glycan recognition by the Bacteroidetes Sus-like systems. Curr. Opin. Struct. Biol. 22, 563–569 (2012).
    CAS  PubMed  Google Scholar 

    18.
    Foley, M. H., Cockburn, D. W. & Koropatkin, N. M. The Sus operon: A model system for starch uptake by the human gut Bacteroidetes. Cell. Mol. Life. Sci. 73, 2603–2617 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    19.
    Bågenholm, V. et al. Galactomannan catabolism conferred by a polysaccharide utilization locus of Bacteroides ovatus. J. Biol. Chem. 292, 229–243 (2017).
    PubMed  Google Scholar 

    20.
    Martens, E. C., Koropatkin, N. M., Smith, T. J. & Gordon, J. I. Complex glycan catabolism by the human gut microbiota: The Bacteroidetes Sus-like paradigm. J. Biol. Chem. 284, 24673–24677 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Larsbrink, J. et al. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 506, 498–502 (2014).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    22.
    Martens, E. C. et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 9, e1001221 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Rakoff-Nahoum, S., Foster, K. R. & Comstock, L. E. The evolution of cooperation within the gut microbiota. Nature 533, 255–259 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Flint, H. J., Bayer, E. A., Rincon, M. T., Lamed, R. & White, B. A. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6, 121–131 (2008).
    CAS  PubMed  Google Scholar 

    25.
    Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10, 323–335 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    26.
    Varyukhina, S. et al. Glycan-modifying bacteria-derived soluble factors from Bacteroides thetaiotaomicron and Lactobacillus casei inhibit rotavirus infection in human intestinal cells. Microbes Infect. 14, 273–278 (2012).
    CAS  PubMed  Google Scholar 

    27.
    López-Boado, Y. S. et al. Bacterial exposure induces and activates matrilysin in mucosal epithelial cells. J. Cell Biol. 148, 1305–1315 (2000).
    PubMed  PubMed Central  Google Scholar 

    28.
    Delday, M., Mulder, I., Logan, E. T. & Grant, G. Bacteroides thetaiotaomicron ameliorates colon inflammation in preclinical models of Crohn’s disease. Inflamm. Bowel Dis. 25, 85–96 (2019).
    PubMed  Google Scholar 

    29.
    Hansen, R. et al. A phase I randomized, double-blind, placebo-controlled study to assess the safety and tolerability of (Thetanix) Bacteroides thetaiotaomicron in adolescents with stable Crohn’s disease. https://www.4dpharmaplc.com/application/files/1815/5824/8886/Thetanix_DDW_poster_2019.pdf. Accessed 15 July 2020 (2019).

    30.
    Salyers, A. A., Vercellotti, J. R., West, S. E. & Wilkins, T. D. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl. Environ. Microbiol. 33, 319–322 (1977).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Rawi, M. H., Zaman, S. A., Pa’ee, K. F., Leong, S. S. & Sarbini, S. R. Prebiotics metabolism by gut-isolated probiotics. J. Food Sci. Technol. 57, 1–14 (2020).
    Google Scholar 

    32.
    Oba, S. et al. Yeast mannan increases Bacteroides thetaiotaomicron abundance and suppresses putrefactive compound production in in vitro fecal microbiota fermentation. Biosci. Biotechnol. Biochem. 84, 2174–2178 (2020).
    CAS  PubMed  Google Scholar 

    33.
    Sasaki, D. et al. Low amounts of dietary fibre increase in vitro production of short-chain fatty acids without changing human colonic microbiota structure. Sci. Rep. 8, 435 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    34.
    Takagi, R. et al. A single-batch fermentation system to simulate human colonic microbiota for high-throughput evaluation of prebiotics. PLoS ONE 11, e0160533 (2016).
    PubMed  PubMed Central  Google Scholar 

    35.
    Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).
    PubMed  PubMed Central  Google Scholar 

    36.
    Wexler, H. M. Bacteroides: The good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 20, 593–621 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    37.
    Tong, J., Liu, C., Summanen, P., Xu, H. & Finegold, S. M. Application of quantitative real-time PCR for rapid identification of Bacteroides fragilis group and related organisms in human wound samples. Anaerobe 17, 64–68 (2011).
    CAS  PubMed  Google Scholar 

    38.
    Slavin, J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients 5, 1417–1435 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).
    CAS  PubMed  Google Scholar 

    40.
    den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340 (2013).
    Google Scholar 

    41.
    Gibson, G. R. et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).
    PubMed  Google Scholar 

    42.
    Holscher, H. D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8, 172–184 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    43.
    Chang, C. J. et al. Next generation probiotics in disease amelioration. J. Food Drug Anal. 27, 615–622 (2019).
    CAS  PubMed  Google Scholar 

    44.
    Tan, H. et al. Pilot safety evaluation of a novel strain of Bacteroides ovatus. Front. Genet. 9, 539 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Tzianabos, A. O., Onderdonk, A. B., Rosner, B., Cisneros, R. L. & Kasper, D. L. Structural features of polysaccharides that induce intra-abdominal abscesses. Science 262, 416–419 (1993).
    ADS  CAS  PubMed  Google Scholar 

    46.
    Bamba, T., Matsuda, H., Endo, M. & Fujiyama, Y. The pathogenic role of Bacteroides vulgatus in patients with ulcerative colitis. J Gastroenterol. 30(Suppl 8), 45–47 (1995).
    PubMed  Google Scholar 

    47.
    Ulsemer, P. et al. Specific humoral immune response to the Thomsen-Friedenreich tumor antigen (CD176) in mice after vaccination with the commensal bacterium Bacteroides ovatus D-6. Cancer Immunol. Immunother. 62, 875–887 (2013).
    CAS  PubMed  Google Scholar 

    48.
    Tan, H., Zhao, J., Zhang, H., Zhai, Q. & Chen, W. Novel strains of Bacteroides fragilis and Bacteroides ovatus alleviate the LPS-induced inflammation in mice. Appl. Microbiol. Biotechnol. 103, 2353–2365 (2019).
    CAS  PubMed  Google Scholar 

    49.
    Luis, A. S. et al. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat. Microbiol. 3, 210–219 (2018).
    CAS  PubMed  Google Scholar 

    50.
    Rakoff-Nahoum, S., Coyne, M. J. & Comstock, L. E. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr. Biol. 24, 40–49 (2014).
    CAS  PubMed  Google Scholar 

    51.
    Rogowski, A. et al. Glycan complexity dictates microbial resource allocation in the large intestine. Nat. Commun. 6, 7481 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Le Poul, E. et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481–25489 (2003).
    PubMed  Google Scholar 

    53.
    Okubo, T. et al. Effects of partially hydrolyzed guar gum intake on human intestinal microflora and its metabolism. Biosci. Biotechnol. Biochem. 58, 1364–1369 (1994).
    CAS  Google Scholar 

    54.
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).
    CAS  PubMed  Google Scholar 

    55.
    Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
    PubMed  PubMed Central  Google Scholar 

    56.
    Li, W., Fu, L., Niu, B., Wu, S. & Wooley, J. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief. Bioinform. 13, 656–668 (2012).
    PubMed  PubMed Central  Google Scholar 

    57.
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
    CAS  Google Scholar 

    58.
    Maidak, B. L. et al. The RDP-II (ribosomal database project). Nucleic Acids Res. 29, 173–174 (2001).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    59.
    Lozupone, C. & Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).
    CAS  PubMed  PubMed Central  Google Scholar 

    60.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    61.
    Furet, J. P. et al. Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR. FEMS Microbiol. Ecol. 68, 351–362 (2009).
    CAS  PubMed  Google Scholar 

    62.
    Goubet, F., Jackson, P., Deery, M. J. & Dupree, P. Polysaccharide analysis using carbohydrate gel electrophoresis: A method to study plant cell wall polysaccharides and polysaccharide hydrolases. Anal. Biochem. 300, 53–68 (2002).
    CAS  PubMed  Google Scholar 

    63.
    Terrapon, N. et al. PULDB: The expanded database of polysaccharide utilization loci. Nucleic Acids Res. 46, D677–D683 (2018).
    CAS  PubMed  Google Scholar  More

  • in

    Experimentally-validated correlation analysis reveals new anaerobic methane oxidation partnerships with consortium-level heterogeneity in diazotrophy

    1.
    Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol. 2009;63:311–34.
    CAS  PubMed  Article  Google Scholar 
    2.
    Reeburgh WS. Oceanic Methane Biogeochemistry. Chem Rev. 2007;107:486–513.
    CAS  PubMed  Article  Google Scholar 

    3.
    Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science. 2001;293:484–7.
    CAS  PubMed  Article  Google Scholar 

    4.
    Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature. 2000;407:623.
    CAS  PubMed  Article  Google Scholar 

    5.
    McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature. 2015;526:531–5.
    CAS  PubMed  Article  Google Scholar 

    6.
    Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science. 2016;351:703–7.
    CAS  PubMed  Article  Google Scholar 

    7.
    Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature. 2015;526:587–90.
    CAS  PubMed  Article  Google Scholar 

    8.
    Dekas AE, Connon SA, Chadwick GL, Trembath-Reichert E, Orphan VJ. Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses. ISME J. 2016;10:678–92.
    CAS  PubMed  Article  Google Scholar 

    9.
    Dekas AE, Poretsky RS, Orphan VJ. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science. 2009;326:422–6.
    CAS  PubMed  Article  Google Scholar 

    10.
    Dekas AE, Chadwick GL, Bowles MW, Joye SB, Orphan VJ. Spatial distribution of nitrogen fixation in methane seep sediment and the role of the ANME archaea. Environ Microbiol. 2014;16:3012–29.
    CAS  PubMed  Article  Google Scholar 

    11.
    Orphan VJ, Turk KA, Green AM, House CH. Patterns of 15N assimilation and growth of methanotrophic ANME-2 archaea and sulfate-reducing bacteria within structured syntrophic consortia revealed by FISH-SIMS. Environ Microbiol. 2009;11:1777–91.
    CAS  PubMed  Article  Google Scholar 

    12.
    Evans PN, Boyd JA, Leu AO, Woodcroft BJ, Parks DH, Hugenholtz P, et al. An evolving view of methane metabolism in the Archaea. Nat Rev Microbiol. 2019;17:219–32.
    CAS  PubMed  Article  Google Scholar 

    13.
    Krukenberg V, Riedel D, Gruber‐Vodicka HR, Buttigieg PL, Tegetmeyer HE, Boetius A, et al. Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia. Environ Microbiol. 2018;20:1651–66.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Skennerton CT, Chourey K, Iyer R, Hettich RL, Tyson GW, Orphan VJ. Methane-fueled syntrophy through extracellular electron transfer: uncovering the genomic traits conserved within diverse bacterial partners of anaerobic methanotrophic archaea. mBio. 2017;8:e00530–17.
    PubMed  PubMed Central  Google Scholar 

    15.
    Schreiber L, Holler T, Knittel K, Meyerdierks A, Amann R. Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Environ Microbiol. 2010;12:2327–40.
    CAS  PubMed  Google Scholar 

    16.
    Green-Saxena A, Dekas AE, Dalleska NF, Orphan VJ. Nitrate-based niche differentiation by distinct sulfate-reducing bacteria involved in the anaerobic oxidation of methane. ISME J. 2014;8:150–63.
    CAS  PubMed  Article  Google Scholar 

    17.
    Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF. Methane-consuming archaebacteria in marine sediments. Nature. 1999;398:802.
    CAS  PubMed  Article  Google Scholar 

    18.
    Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF. Identification of methyl coenzyme M Reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl Environ Microbiol. 2003;69:5483–91.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M, et al. Microbial reefs in the black sea fueled by anaerobic oxidation of methane. Science. 2002;297:1013–5.
    CAS  PubMed  Article  Google Scholar 

    20.
    Knittel K, Lösekann T, Boetius A, Kort R, Amann R. Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol. 2005;71:467–79.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Orphan VJ, Hinrichs K-U, Ussler W, Paull CK, Taylor LT, Sylva SP, et al. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol. 2001;67:1922–34.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci. 2002;99:7663–8.
    CAS  PubMed  Article  Google Scholar 

    23.
    Raghoebarsing AA, Pol A, Pas-Schoonen KT, van de, Smolders AJP, Ettwig KF, Rijpstra WIC, et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature. 2006;440:918.
    CAS  PubMed  Article  Google Scholar 

    24.
    Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature. 2013;500:567–70.
    CAS  PubMed  Article  Google Scholar 

    25.
    Niemann H, Lösekann T, Beer D, de, Elvert M, Nadalig T, Knittel K, et al. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature. 2006;443:854.
    CAS  PubMed  Article  Google Scholar 

    26.
    Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, et al. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ Microbiol. 2007;73:3348–62.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Manz W, Eisenbrecher M, Neu TR, Szewzyk U. Abundance and spatial organization of gram-negative sulfate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol Ecol. 1998;25:43–61.
    CAS  Article  Google Scholar 

    28.
    Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ Microbiol. 2007;9:187–96.
    CAS  PubMed  Article  Google Scholar 

    29.
    Pernthaler A, Dekas AE, Brown CT, Goffredi SK, Embaye T, Orphan VJ. Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci USA. 2008;105:7052–7.
    CAS  PubMed  Article  Google Scholar 

    30.
    Vigneron A, Cruaud P, Pignet P, Caprais J-C, Cambon-Bonavita M-A, Godfroy A, et al. Archaeal and anaerobic methane oxidizer communities in the Sonora Margin cold seeps, Guaymas Basin (Gulf of California). ISME J. 2013;7:1595–608.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    McGlynn SE, Chadwick GL, O’Neill A, Mackey M, Thor A, Deerinck TJ, et al. Subgroup characteristics of marine methane-oxidizing ANME-2 archaea and their syntrophic partners as revealed by integrated multimodal analytical microscopy. Appl Environ Microbiol. 2018;84:e00399–18.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Treude T, Krüger M, Boetius A, Jørgensen BB. Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernförde Bay (German Baltic). Limnol Oceanogr. 2005;50:1771–86.
    CAS  Article  Google Scholar 

    33.
    Girguis PR, Orphan VJ, Hallam SJ, DeLong EF. Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor. Appl Environ Microbiol. 2003;69:5472–82.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Kleindienst S, Ramette A, Amann R, Knittel K. Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments. Environ Microbiol. 2012;14:2689–710.
    CAS  PubMed  Article  Google Scholar 

    35.
    Holler T, Widdel F, Knittel K, Amann R, Kellermann MY, Hinrichs K-U, et al. Thermophilic anaerobic oxidation of methane by marine microbial consortia. ISME J. 2011;5:1946–56.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, et al. Oligonucleotide Microarray for 16S rRNA Gene-Based Detection of All Recognized Lineages of Sulfate-Reducing Prokaryotes in the Environment. Appl Environ Microbiol. 2002;68:5064–81.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Trembath-Reichert E, Case DH, Orphan VJ. Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments. PeerJ. 2016;4:e1913.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Trembath-Reichert E, Green-Saxena A, Orphan VJ. Chapter Two—whole cell immunomagnetic enrichment of environmental microbial consortia using rRNA-targeted magneto-FISH. In: DeLong EF (eds). Methods in Enzymology. (Academic Press, San Diego, 2013) pp 21–44.

    39.
    Hatzenpichler R, Connon SA, Goudeau D, Malmstrom RR, Woyke T, Orphan VJ. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal−bacterial consortia. Proc Natl Acad Sci. 2016;113:E4069–78.
    CAS  PubMed  Article  Google Scholar 

    40.
    Degnan PH, Ochman H. Illumina-based analysis of microbial community diversity. ISME J. 2012;6:183–94.
    CAS  PubMed  Article  Google Scholar 

    41.
    Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLOS Comput Biol. 2012;8:e1002687.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLOS Comput Biol. 2015;11:e1004226.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Schwager E, Mallick H, Ventz S, Huttenhower C. A Bayesian method for detecting pairwise associations in compositional data. PLOS Comput Biol. 2017;13:e1005852.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Determinants of community structure in the global plankton interactome. Science. 2015;348:1–9.
    Article  CAS  Google Scholar 

    45.
    Bohrmann G, Heeschen K, Jung C, Weinrebe W, Baranov B, Cailleau B, et al. Widespread fluid expulsion along the seafloor of the Costa Rica convergent margin. Terra Nova. 2002;14:69–79.
    Article  Google Scholar 

    46.
    Mau S, Sahling H, Rehder G, Suess E, Linke P, Soeding E. Estimates of methane output from mud extrusions at the erosive convergent margin off Costa Rica. Mar Geol. 2006;225:129–44.
    CAS  Article  Google Scholar 

    47.
    Sahling H, Masson DG, Ranero CR, Hühnerbach V, Weinrebe W, Klaucke I, et al. Fluid seepage at the continental margin offshore Costa Rica and southern Nicaragua. Geochem Geophys Geosyst. 2008;9:1–22.
    Article  Google Scholar 

    48.
    Glass JB, Yu H, Steele JA, Dawson KS, Sun S, Chourey K, et al. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments. Environ Microbiol. 2014;16:1592–611.
    CAS  PubMed  Article  Google Scholar 

    49.
    Case DH, Pasulka AL, Marlow JJ, Grupe BM, Levin LA, Orphan VJ. Methane seep carbonates host distinct, diverse, and dynamic microbial assemblages. mBio. 2015;6:1–12.
    CAS  Article  Google Scholar 

    50.
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.
    CAS  PubMed  Article  Google Scholar 

    51.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Mason OU, Case DH, Naehr TH, Lee RW, Thomas RB, Bailey JV, et al. Comparison of archaeal and bacterial diversity in methane seep carbonate nodules and host sediments, Eel River Basin and Hydrate Ridge, USA. Micro Ecol. 2015;70:766–84.
    CAS  Article  Google Scholar 

    53.
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
    CAS  Article  Google Scholar 

    54.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
    CAS  PubMed  Article  Google Scholar 

    55.
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A, et al. XSEDE: accelerating scientific discovery. Comput Sci Eng. 2014;16:62–74.
    Article  CAS  Google Scholar 

    57.
    Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the 2010 Gateway Computing Environments Workshop (GCE). (San Diego Supercomputing Center, San Diego, 2010) pp 1–8.

    58.
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.
    PubMed  PubMed Central  Article  Google Scholar 

    60.
    Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. Activity of abundant and rare bacteria in a coastal ocean. Proc Natl Acad Sci. 2011;108:12776–81.
    CAS  PubMed  Article  Google Scholar 

    61.
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Daims H, Stoecker K, Wagner M, Stoecker K, Wagner M. Fluorescence in situ hybridization for the detection of prokaryotes. Mol Microbial Ecol. https://www.taylorfrancis.com/. Accessed 15 Jul 2019.

    64.
    Glöckner FO, Fuchs BM, Amann R. Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol. 1999;65:3721–6.
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Dirks RM, Pierce NA. Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci. 2004;101:15275–8.
    CAS  PubMed  Article  Google Scholar 

    66.
    Choi HMT, Beck VA, Pierce NA. Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability. ACS Nano. 2014;8:4284–94.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Yamaguchi T, Kawakami S, Hatamoto M, Imachi H, Takahashi M, Araki N, et al. In situ DNA-hybridization chain reaction (HCR): a facilitated in situ HCR system for the detection of environmental microorganisms. Environ Microbiol. 2015;17:2532–41.
    CAS  PubMed  Article  Google Scholar 

    68.
    Choi HMT, Schwarzkopf M, Fornace ME, Acharya A, Artavanis G, Stegmaier J, et al. Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development. 2018;145:1–10.
    Article  CAS  Google Scholar 

    69.
    Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006;224:213–32.
    CAS  PubMed  Article  Google Scholar 

    70.
    Dabundo R, Lehmann MF, Treibergs L, Tobias CR, Altabet MA, Moisander PA, Granger J. The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements. PLoS ONE. 2014;9:e110335.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    71.
    Cline JD. Spectrophotometric determination of hydrogen sulfide in natural waters1. Limnol Oceanogr. 1969;14:454–8.
    CAS  Article  Google Scholar 

    72.
    Dekas AE, Orphan VJ. Chapter Twelve—identification of diazotrophic microorganisms in marine sediment via fluorescence in situ hybridization coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS). In: Klotz MG, editor. Methods in enzymology. Academic Press; 2011. p 281–305.

    73.
    Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MMM. Look@NanoSIMS-a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012;14:1009–23.
    CAS  PubMed  Article  Google Scholar 

    74.
    Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014;5:1–14.
    Article  Google Scholar 

    75.
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.
    CAS  Article  Google Scholar 

    76.
    Leone V, Gibbons SM, Martinez K, Hutchison AL, Huang EY, Cham CM, et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe. 2015;17:681–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    Ruff SE, Biddle JF, Teske AP, Knittel K, Boetius A, Ramette A. Global dispersion and local diversification of the methane seep microbiome. Proc Natl Acad Sci. 2015;112:4015–20.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    78.
    Fruchterman TMJ, Reingold EM. Graph drawing by force-directed placement. Softw Pr Exp. 1991;21:1129–64.
    Article  Google Scholar 

    79.
    Moody J, White DR. Structural cohesion and embeddedness: a hierarchical concept of social groups. Am Socio Rev. 2003;68:103–27.
    Article  Google Scholar 

    80.
    Gu Z, Gu L, Eils R, Schlesner M, Brors B. Circlize implements and enhances circular visualization in R. Bioinformatics. 2014;30:2811–2.
    CAS  PubMed  Article  Google Scholar 

    81.
    Nikolakakis K, Lehnert E, McFall-Ngai MJ, Ruby EG. Use of hybridization chain reaction-fluorescent in situ hybridization to track gene expression by both partners during initiation of symbiosis. Appl Environ Microbiol. 2015;81:4728–35.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    DePas WH, Starwalt-Lee R, Sambeek LV, Kumar SR, Gradinaru V, Newman DK. Exposing the three-dimensional biogeography and metabolic states of pathogens in cystic fibrosis sputum via hydrogel embedding, clearing, and rRNA Labeling. mBio. 2016;7:1–11.
    Article  Google Scholar 

    83.
    Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature. 2020;577:519–25.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    84.
    Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. Front Microbiol. 2017;8:1–6.
    Article  Google Scholar 

    85.
    Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci. 2008;105:10444–9.
    CAS  PubMed  Article  Google Scholar 

    86.
    Parkinson JE, Baumgarten S, Michell CT, Baums IB, LaJeunesse TC, Voolstra CR. Gene expression variation resolves species and individual strains among coral-associated dinoflagellates within the genus symbiodinium. Genome Biol Evol. 2016;8:665–80.
    PubMed  PubMed Central  Article  Google Scholar 

    87.
    Barshis DJ, Ladner JT, Oliver TA, Palumbi SR. Lineage-specific transcriptional profiles of Symbiodinium spp. unaltered by heat stress in a coral host. Mol Biol Evol. 2014;31:1343–52.
    CAS  PubMed  Article  Google Scholar 

    88.
    Kapili BJ, Barnett SE, Buckley DH, Dekas AE. Evidence for phylogenetically and catabolically diverse active diazotrophs in deep-sea sediment. ISME J. 2020;14:971–83.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    89.
    Klawonn I, Eichner MJ, Wilson ST, Moradi N, Thamdrup B, Kümmel S, et al. Distinct nitrogen cycling and steep chemical gradients in Trichodesmium colonies. ISME J. 2020;14:399–412.
    CAS  PubMed  Article  Google Scholar 

    90.
    Petroff AP, Wu T-D, Liang B, Mui J, Guerquin-Kern J-L, Vali H, et al. Reaction–diffusion model of nutrient uptake in a biofilm: Theory and experiment. J Theor Biol. 2011;289:90–5.
    CAS  PubMed  Article  Google Scholar 

    91.
    Dekas AE, Fike DA, Chadwick GL, Green‐Saxena A, Fortney J, Connon SA, et al. Widespread nitrogen fixation in sediments from diverse deep-sea sites of elevated carbon loading. Environ Microbiol. 2018;20:4281–96.
    CAS  PubMed  Article  Google Scholar 

    92.
    Knapp AN. The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Front Microbiol. 2012;3:1–14.
    Google Scholar 

    93.
    Bertics VJ, Löscher CR, Salonen I, Dale AW, Gier J, Schmitz RA, et al. Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernförde Bay, Baltic Sea. Biogeosciences. 2013;10:1243–58.
    CAS  Article  Google Scholar 

    94.
    Gier J, Sommer S, Löscher CR, Dale AW, Schmitz RA, Treude T. Nitrogen fixation in sediments along a depth transect through the Peruvian oxygen minimum zone. Biogeosciences. 2016;13:4065–80.
    CAS  Article  Google Scholar 

    95.
    Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015;13:497–508.
    CAS  PubMed  Article  Google Scholar 

    96.
    Schreiber F, Littmann S, Lavik G, Escrig S, Meibom A, Kuypers MMM, et al. Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nat Microbiol. 2016;1:1–7.
    Article  CAS  Google Scholar 

    97.
    Masuda T, Inomura K, Takahata N, Shiozaki T, Yuji S. Heterogeneous nitrogen fixation rates confer energetic advantage and expanded ecological niche of unicellular diazotroph populations. Commun Biol. 2020;3:1–12.
    Article  CAS  Google Scholar 

    98.
    Raymond J, Siefert JL, Staples CR, Blankenship RE. The natural history of nitrogen fixation. Mol Biol Evol. 2004;21:541–54.
    CAS  PubMed  Article  Google Scholar  More