Vibrational modes of water predict spectral niches for photosynthesis in lakes and oceans
1.
Engelmann, T. W. Über Sauerstoffausscheidung von Pflanzenzellen im Mikrospektrum. Bot. Zeit. 40, 419–426 (1882).
Google Scholar
2.
Engelmann, T. W. Farbe und assimilation. Bot. Zeit. 41, 1–29 (1883).
Google Scholar
3.
Stomp, M. et al. Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432, 104–107 (2004).
CAS Google Scholar
4.
Stomp, M., Huisman, J., Stal, L. J. & Matthijs, H. C. P. Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME J. 1, 271–282 (2007).
CAS Google Scholar
5.
Pick, F. R. The abundance and composition of freshwater picocyanobacteria in relation to light penetration. Limnol. Oceanogr. 36, 1457–1462 (1991).
CAS Google Scholar
6.
Vörös, L., Callieri, C., Balogh, K. V. & Bertoni, R. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia 369–370, 117–125 (1998).
Google Scholar
7.
Stomp, M. et al. Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol. Lett. 10, 290–298 (2007).
Google Scholar
8.
Ting, C. S., Rocap, G., King, J. & Chisholm, S. W. Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol. 10, 134–142 (2002).
CAS Google Scholar
9.
Grébert, T. et al. Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. Proc. Natl Acad. Sci. USA 115, E2010–E2019 (2018).
Google Scholar
10.
Luimstra, V. M., Verspagen, J. M. H., Xu, T., Schuurmans, J. M. & Huisman, J. Changes in water color shift competition between phytoplankton species with contrasting light-harvesting strategies. Ecology 101, e02951 (2020).
PubMed PubMed Central Google Scholar
11.
Mobley, C. D. Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).
12.
Kirk, J. T. O. Light and Photosynthesis in Aquatic Ecosystems 3rd edn (Cambridge Univ. Press, 2011).
13.
Dall’Olmo, G., Westberry, T. K., Behrenfeld, M. J., Boss, E. & Slade, W. H. Significant contribution of large particles to optical backscattering in the open ocean. Biogeosciences 6, 947–967 (2009).
Google Scholar
14.
Morel, A. et al. Optical properties of the “clearest” natural waters. Limnol. Oceanogr. 52, 217–229 (2007).
CAS Google Scholar
15.
Pegau, W. S., Gray, D. & Zaneveld, J. R. Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity. Appl. Opt. 36, 6035–6046 (1997).
CAS Google Scholar
16.
Sogandares, F. M. & Fry, E. S. Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements. Appl. Opt. 36, 8699–8709 (1997).
CAS Google Scholar
17.
Pope, R. M. & Fry, E. S. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt. 36, 8710–8723 (1997).
CAS Google Scholar
18.
Mason, J. D., Cone, M. T. & Fry, E. S. Ultraviolet (250–550 nm) absorption spectrum of pure water. Appl. Opt. 55, 7163–7172 (2016).
CAS Google Scholar
19.
Mobley, C. D. & Sundman, L. K. HydroLight 5.3—EcoLight 5.3 (Sequoia Scientific Inc., 2016).
20.
Sathyendranath, S., Brewin, R. J., Jackson, T., Mélin, F. & Platt, T. Ocean-colour products for climate-change studies: what are their ideal characteristics? Remote Sens. Environ. 203, 125–138 (2017).
Google Scholar
21.
Neeley, A. R. & Mannino, A. (eds) IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation, Volume 1.0. Inherent Optical Property Measurements and Protocols: Absorption Coefficient (IOCCG, 2018).
22.
Farrant, G. K. et al. Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proc. Natl Acad. Sci. USA 113, E3365–E3374 (2016).
CAS Google Scholar
23.
Chisholm, S. W. et al. Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch. Microbiol. 157, 297–300 (1992).
CAS Google Scholar
24.
Partensky, F., Hess, W. R. & Vaulot, D. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev. 63, 106–127 (1999).
CAS PubMed PubMed Central Google Scholar
25.
Moore, L. R., Goericke, R. & Chisholm, S. W. Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar. Ecol. Prog. Ser. 116, 259–275 (1995).
Google Scholar
26.
Tandeau de Marsac, N. Phycobiliproteins and phycobilisomes: the early observations. Photosynth. Res. 76, 193–205 (2003).
Google Scholar
27.
Six, C. et al. Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol. 8, R259 (2007).
PubMed PubMed Central Google Scholar
28.
Watanabe, M. & Ikeuchi, M. Phycobilisome: architecture of a light-harvesting supercomplex. Photosynth. Res. 116, 265–276 (2013).
CAS Google Scholar
29.
Sanfilippo, J. E., Garczarek, L., Partensky, F. & Kehoe, D. M. Chromatic acclimation in cyanobacteria: a diverse and widespread process for optimizing photosynthesis. Annu. Rev. Microbiol. 73, 407–433 (2019).
CAS Google Scholar
30.
Palenik, B. Chromatic adaptation in marine Synechococcus strains. Appl. Environ. Microbiol. 67, 991–994 (2001).
CAS PubMed PubMed Central Google Scholar
31.
Stomp, M. et al. The timescale of phenotypic plasticity and its impact on competition in fluctuating environments. Am. Nat. 172, E169–E185 (2008).
Google Scholar
32.
Hirose, Y. et al. Diverse chromatic acclimation processes regulating phycoerythrocyanin and rod-shaped phycobilisome in cyanobacteria. Mol. Plant 12, 715–725 (2019).
CAS Google Scholar
33.
Luimstra, V. M. et al. Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II. Photosynth. Res. 138, 177–189 (2018).
CAS PubMed PubMed Central Google Scholar
34.
Humily, F. et al. A gene island with two possible configurations is involved in chromatic acclimation in marine Synechococcus. PLoS ONE 8, e84459 (2013).
PubMed PubMed Central Google Scholar
35.
Haverkamp, T. et al. Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein operons. Environ. Microbiol. 10, 174–188 (2008).
CAS Google Scholar
36.
Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).
CAS Google Scholar
37.
Chen, F. et al. Phylogenetic diversity of Synechococcus in the Chesapeake Bay revealed by ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) large subunit gene (rbcL) sequences. Aquat. Microb. Ecol. 36, 153–164 (2004).
Google Scholar
38.
Somogyi, B., Felföldi, T., Tóth, L. G., Bernát, G. & Vörös, L. Photoautotrophic picoplankton: a review on their occurrence, role and diversity in Lake Balaton. Biol. Futur. https://doi.org/10.1007/s42977-020-00030-8 (2020).
39.
Kardinaal, W. E. A. et al. Competition for light between toxic and nontoxic strains of the harmful cyanobacterium Microcystis. Appl. Environ. Microbiol. 73, 2939–2946 (2007).
PubMed PubMed Central Google Scholar
40.
Bricaud, A., Claustre, H., Ras, J. & Oubelkheir, K. Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations. J. Geophys. Res. 109, C11010 (2004).
Google Scholar
41.
Monteith, D. T. et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450, 537–541 (2007).
CAS Google Scholar
42.
Weyhenmeyer, G. A., Müller, R. A., Norman, M. & Tranvik, L. J. Sensitivity of freshwaters to browning in response to future climate change. Clim. Change 134, 225–239 (2016).
Google Scholar
43.
Kritzberg, E. S. Centennial‐long trends of lake browning show major effect of afforestation. Limnol. Oceanogr. Lett. 2, 105–112 (2017).
Google Scholar
44.
Leech, D. M., Pollard, A. I., Labou, S. G. & Hampton, S. E. Fewer blue lakes and more murky lakes across the continental U.S.: implications for planktonic food webs. Limnol. Oceanogr. 63, 2661–2680 (2018).
CAS PubMed PubMed Central Google Scholar
45.
Ekvall, M. K. et al. Synergistic and species‐specific effects of climate change and water colour on cyanobacterial toxicity and bloom formation. Freshw. Biol. 58, 2414–2422 (2013).
CAS Google Scholar
46.
Urrutia‐Cordero, P. et al. Phytoplankton diversity loss along a gradient of future warming and brownification in freshwater mesocosms. Freshw. Biol. 62, 1869–1878 (2017).
Google Scholar
47.
Wilken, S. et al. Primary producers or consumers? Increasing phytoplankton bacterivory along a gradient of lake warming and browning. Limnol. Oceanogr. 63, S142–S155 (2018).
Google Scholar
48.
Feuchtmayr, H. et al. Effects of brownification and warming on algal blooms, metabolism and higher trophic levels in productive shallow lake mesocosms. Sci. Tot. Environ. 678, 227–238 (2019).
CAS Google Scholar
49.
Deininger, A., Faithfull, C. L. & Bergström, A. K. Phytoplankton response to whole lake inorganic N fertilization along a gradient in dissolved organic carbon. Ecology 98, 982–994 (2017).
CAS Google Scholar
50.
Tan, X., Zhang, D., Duan, Z., Parajuli, K. & Hu, J. Effects of light color on interspecific competition between Microcystis aeruginosa and Chlorella pyrenoidosa in batch experiment. Environ. Sci. Pollut. Res. 27, 344–352 (2020).
CAS Google Scholar
51.
Burson, A., Stomp, M., Greenwell, E., Grosse, J. & Huisman, J. Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community. Ecology 99, 1108–1118 (2018).
Google Scholar
52.
Dutkiewicz, S. et al. Dimensions of marine phytoplankton diversity. Biogeosciences 17, 609–634 (2020).
Google Scholar
53.
Johnson, Z. I. et al. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740 (2006).
CAS Google Scholar
54.
Malmstrom, R. R. et al. Temporal dynamics of Prochlorococcus ecotypes in the Atlantic and Pacific Oceans. ISME J. 4, 1252–1264 (2010).
Google Scholar
55.
Lange, P. K. et al. Scratching beneath the surface: a model to predict the vertical distribution of Prochlorococcus using remote sensing. Remote Sens. 10, 847 (2018).
Google Scholar
56.
Wernand, M. R., van der Woerd, H. J. & Gieskes, W. W. C. Trends in ocean colour and chlorophyll concentration from 1889 to 2000, worldwide. PLoS ONE 8, e63766 (2013).
CAS PubMed PubMed Central Google Scholar
57.
Dutkiewicz, S. et al. Ocean colour signature of climate change. Nat. Commun. 10, 578 (2019).
CAS PubMed PubMed Central Google Scholar
58.
Bricaud, A., Morel, A. & Prieur, L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol. Oceanogr. 26, 43–53 (1981).
CAS Google Scholar
59.
Twardowski, M. S., Boss, E., Sullivan, J. M. & Donaghay, P. L. Modeling the spectral shape of absorption by chromophoric dissolved organic matter. Mar. Chem. 89, 69–88 (2004).
CAS Google Scholar
60.
Babin, M. et al. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J. Geophys. Res. 108, 1–20 (2003).
Google Scholar
61.
Babin, M., Morel, A., Fournier-Sicre, V., Fell, F. & Stramski, D. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnol. Oceanogr. 48, 843–859 (2003).
Google Scholar
62.
Doxaran, D. et al. Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared. Limnol. Oceanogr. 54, 1257–1271 (2009).
CAS Google Scholar
63.
Nechad, B., Ruddick, K. G. & Park, Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens. Environ. 114, 854–866 (2010).
Google Scholar
64.
Petzold, T. J. Volume Scattering Functions for Selected Ocean Waters (No. SIO-REF-72-78) (Scripps Institution of Oceanography, 1972).
65.
Morel, A. & Gentili, B. Diffuse reflectance of oceanic waters: its dependence on sun angle as influenced by the molecular scattering contribution. Appl. Opt. 30, 4427–4438 (1991).
CAS Google Scholar
66.
Sathyendranath, S. et al. An ocean-colour time series for use in climate studies: the experience of the Ocean-Colour Climate Change Initiative (OC-CCI). Sensors 19, 4285 (2019).
CAS Google Scholar
67.
Holtrop, T. et al. Data: vibrational modes of water predict spectral niches for photosynthesis in lakes and oceans. https://doi.org/10.6084/m9.figshare.c.5140601.v1 (2020).
68.
Sanfilippo, J. E. et al. Interplay between differentially expressed enzymes contributes to light color acclimation in marine Synechococcus. Proc. Natl Acad. Sci. USA 116, 6457–6462 (2019).
CAS Google Scholar More
