More stories

  • in

    Inversions maintain differences between migratory phenotypes of a songbird

    The research in this study was performed in agreement with permission M45-14 issued by Malmö/Lund Ethical Committee for Animal Research, Sweden, which granted capture and blood sampling of wild birdsSamplesNine willow warblers, determined to be males (based on a wing length > 69 mm), were caught opportunistically with mist nets during the time of autumn migration in September 2016 at Krankesjön, 15 km East of Lund, Southern Sweden. While most of the individuals were phenotypically similar to willow warblers breeding in Southern Scandinavia, some were slightly larger and had a greyer plumage, which is more commonly seen in Northern Scandinavia12. The set of samples thus potentially contained willow warblers of each of the two major migratory phenotypes. Blood from each bird was collected through a puncture of the brachial vein and was stored in two vails containing SET buffer and 70% ethanol, respectively. An aliquot of the blood was used for DNA extraction with a phenol-chloroform protocol. From the extracted DNA, we genotyped the samples for two loci located on chromosomes 1 and 5, respectively (NBEA and FADS2)45,46, and for a bi-allelic marker within the divergent region on chromosome 3 (AFLP-ww1)47. Based on the genotyping results we selected two samples that were homozygous northern or homozygous southern for all three loci, respectively. We also included a sample from a chiffchaff Phylloscopus collybita (female) for de novo genome sequencing of a closely related outgroup species, as well as an additional willow warbler (DD81063, male) to confirm breakpoint differences with linked read sequencing. Both of these birds were opportunistically caught at the same site as above during autumn migration in 2019, and collection of blood followed the same approach as for the other birds.Optical mapsDNA from the northern and southern willow warbler was extracted from blood stored in ethanol using a Plug Lysis protocol (v.30026D; Bionano Genomics, CA, USA). The blood was first separated from the ethanol through gentle centrifugation and embedded in molten 2% agarose plugs (DNA plug kit; Bio-Rad, CA, USA). The solidified plugs were submerged in Lysis Buffer solution (Bionano Genomics) and 66.8 µl per ml Buffer Puregene Proteinase K (Qiagen,MD, USA) for 2 h at 50 °C. The plugs were subsequently washed in 1× Wash buffer (Bio-Rad DNA plug kit) followed by TE buffer. In the following step, the plugs were treated with RNase (Qiagen, 20 µl in 1 ml TE buffer) for 1 h at 37 °C, followed by another washing step using the same buffers as in the previous step. Next, the plugs were melted for 2 min at 70 °C and treated with GELase (Epicenter, WI, USA) for 45 min at 43 °C. The DNA was then purified from digested agarose using drop dialysis against TE buffer on a 0.1 µm dialysis membrane (MF-Millipore, Merck KGaA, Germany) for 2.5 h.Optical maps for each of the two samples were produced using Bionano Genomic’s commercial Irys system48. BspQ1 was determined to be the most suitable nicking enzyme after using the software LabelDensityCalculator v.1.3.0 and Knickers v.1.5.5 to analyze a previous short-read assembly13. Bionano Genomic’s IrysPrep Labeling-NLRS protocol (v.30024) was used for the NLRS reaction. For this step, DNA was treated with Nt.BspQ1 (NEB, MA, USA) to create single-stranded nicks in a molecule-specific pattern. These were then labeled with Bionano Genomic’s (CA, USA) labeling mix (NLRS kit), aided by Taq Polymerase (NEB), and repaired using Bionano Genomics’s repair mix (NLRS kit), in the presence of Thermopol Rxn buffer, NAD+, and Taq DNA Ligase (NEB). Finally, the DNA backbone was stained using DNA stain from Bionano Genomics’s NLRS kit. Each sample was then loaded on two IrysChips (Bionano Genomics) each, and the DNA with stained BspQ1 nicks was visualized using an Irys instrument, following Bionano Genomics’s Irys user guide (v.30047). This resulted in 200 and 182 Gb of data for the northern and southern sample, respectively.Genome maps were assembled de novo using Bionano Genomic’s in house software IrysView v.2.5.1, with noise parameter set to “autonoise” and using a human arguments xml file. The genome map was then further refined by re-assembling all data, but using the first assembly version as a reference. The final assemblies were both 1.3 Gb in total size, with an average coverage of 92.3 and 96.4×, and N50 of 0.93 and 0.95 Mb, for the northern and southern sample, respectively.Linked read sequencingFor the southern sample and sample DD81063, DNA for chromium sequencing (10× Genomics, CA, USA) was extracted from blood stored in SET buffer using a MagAttract HMW DNAkit (Qiagen) at Scilifelab, Stockholm, Sweden. For the northern sample the extraction for bionano optical maps was used. The libraries of the northern and southern sample were each sequenced on a separate lane of a HiSeqX (Illumina, CA, USA) and the DD81063 sample was sequenced on a NovaSeq6000 (Illumina). For all samples sequencing was performed using a 2 × 150 bp setup.Northern willow warbler de novo assemblyLibrary preparation for long read sequencing was done on DNA previously extracted for the optical map and followed Pacific Bioscience’s (CA, USA) standard protocol for 10–20 kb libraries. No shearing was performed prior to the library construction, but the library was size selected using the BluePippin pulse field size selection system (Sage Science, MA, USA), with a size cut-off >25 kb. The library was sequenced on eight SMRT cells on a Sequel platform (Pacific Biosciences). The sequencing yielded 63.66 Gbp of data comprised of 4,690,365 subreads with a mean length of 13,573 bp (range: 50–170,531 bp).The Pacbio reads were assembled de novo in HGAP449 in the SMRT Link package with default settings except for specifying an expected genome size of 1.2 Gbp and setting the polishing algorithm to “Arrow”. We ran Falcon unzip50 on the assembly to obtain partially phased primary contigs and fully phased haplotigs. Within the software, Arrow was used to polish the assembly using reads assigned to each haplotype. We evaluated two unzipped assemblies based on 30× or 40× coverage of seed reads in the preassembly step in HGAP4. A lower coverage threshold will lead to longer reads in the initial assembly step, which may increase the contiguity of the assembly, but will on the other hand, limit the number of reads that can be used in the phasing and polishing step. Although the unzipped assemblies were very similar, the 40× version was chosen for downstream analyses as it was slightly more contiguous and contained a higher number of single-copy bird orthologues as determined by BUSCO version 3.0.251.The assembly was further polished with Pilon 1.2252 with Illumina chromium reads from the same sample. The Illumina reads were mapped to the assembly using bwa version 0.7.17-r118853 and duplicated reads were marked using picardtools 2.10.3 (http://broadinstitute.github.io/picard). Pilon was run by only correcting indels and in total the software made 1,043,827 insertions and 275,457 deletions, respectively, of which the vast majority (94%) were single basepair changes. The Illumina polishing had a pronounced effect on the number of single-copy bird orthologues that could be detected in the primary contigs (Supplementary Table 1).For further assembly steps, we extracted the Illumina-polished primary Pacbio contigs (N = 2737, N50 of 2.1 Mb and a length of 1.29 Gb). These contigs showed an unexpectedly high level of duplicated single-copy orthologues (7.4%), which suggested partial or complete overlap between some contigs. As a first step to reduce the redundancy and increase the contiguity of the assembly, we hybridized the primary contigs to the optical map of the same sample using bionano solve version 3.2.2 (BioNano Genomics) with default settings except for specifying aggressive scaffolding parameters. The hybrid scaffolding resulted in 19 cuts to the bionano maps and 259 cuts to the Pacbio contigs and created 363 super-scaffolds. Most of the gaps between the contigs in the super-scaffolds were estimated to be negative (i.e., some overlap between sequences). However, in the hybrid assembly, sequences on either side of these gaps were not collapsed and thus formed false segmental duplications. To remedy this problem we extracted 304 sets of overlapping contigs (“supercontigs”) and used GAP5 in the staden package 2.0.0.b1154 to find potential joins between the contig ends. Using this approach, we merged contigs at 558 (87%) of the putative overlaps. The mean alignment length in the overlaps was 111 kb (range: 0.259–661 kb) with a mean sequence divergence of 3.28% (range: 0.31–15.55%). The highest divergence was caused by the presence of large indels. By trimming off one or both ends of the contigs at the gaps (mean 23 kb, range: 0.6–60 kb), we were able to close 23 further gaps. For the remainder of gaps, GAP5 failed to find potential joins between contigs or the ends supposed to be joined were considered to have too high divergence. The new assembly, including supercontigs consisted of 2401 contigs with an N50 of 6.5 Mb and had a considerably lower amount of duplicated single-copy genes (4.6% vs 7.4%).To further reduce the redundancy, we used the purge haplotig pipeline55 (downloaded 2019-02-15) to remove contigs that could be mapped over most of their length to larger contigs and that showed limited diploid coverage. We first estimated coverage by mapping the Pacbio subreads used for the de novo assembly with minimap2 version2.13-r86056 using default settings for Pacbio reads (-x map-pb). To minimize the loss of repetitive sequences that could be separated and scaffolded by the bionano optical map, we used the first bionano hybrid assembly (363 superscaffolds and 1500 cut and unscaffolded contigs) as a reference for mapping. From the mapped data we detected a clear haploid and diploid peak and set a threshold of diploid coverage above 34× and below 85×. Any scaffold where less than 80% of its positions had diploid coverage was considered a putative haplotig and was mapped to other scaffolds using minimap2 within the software. We removed 1209 scaffolds (mean size: 107,655 bp, range: 598–495,788 bp) with a coverage to the best hit of at least 70% (mean: 97.4%). Using this approach, we specifically excluded contigs that could not be incorporated in superscaffolds. However, we also removed three contigs that each entirely made up short superscaffolds that could be uniquely assigned to larger superscaffolds and that had a high degree of haploid coverage. At this stage, we also removed five additional contigs shorter than 1000 bp that were the result of cutting the assembly with the bionano optical map. This led to an assembly with 1187 contigs, a length of 1.1 Gbp and a N50 of 7.9 Mb. The filtered assembly showed a large reduction in single-copy orthologue bird genes (1.3 vs 4.6%).To provide an intermediate level of scaffolding to the optical map, we mapped the 10× chromium reads of the same sample to the assembly using bwa and used arcs version 1.0.557 and LINKS version 1.8.658 for scaffolding. Arcs was run with default settings except for enabling gap size estimation (–dist_est) and LINKS was run by setting the number of supporting links to at least 5 (-l = 5) and the maximum link ratio between the two best contig pairs to 0.3 (-a = 0.3). The scaffolding resulted in 739 scaffolds with a N50 of 16.4 Mb and a length 1.12 Gb.As a final scaffolding step, we hybridized the 10× chromium-Pacbio scaffolds to the bionano optical map using the same settings as before. The hybrid scaffolding made 23 cuts to the optical map, 122 cuts to the scaffolds and resulted in 497 scaffolds with an N50 of 16.8 Mb. Two contigs representing the divergent region on chromosome 1 had been scaffolded together by arcs but were separated and not re-scaffolded with other sequences in the bionano hybrid assembly. Since the mismatched end of the optical map was short, located at a large gap, and the gene order is the same as seen in other bird genomes, we decided to keep the scaffold generated by arcs.For this round of hybrid scaffolding, there were 52 gaps that were estimated to be negative. Using the same approach as when creating supercontigs, we were able to close 10 of these gaps. We additionally closed gaps using PBJelly59 from PBSuite 15.8.24 with default settings except for specifying –spanOnly –capturedOnly”. The software filled 97 gaps, extended one end of 12 gaps, extended both ends of 18 gaps and overfilled 28 gaps (extended both ends but detected no overlap despite the extension is larger than the predicted gap).We further checked for potential misjoins between scaffolds that originate from different chromosomes. To this end, we used SatsumaSynteny 2.060 to produce whole-genome alignments between the assembly and the genomes of chicken (version GRCg6a) and zebra finch (version taeGut3.2.4), both downloaded from Ensembl (www.ensembl.org). Using this approach, we detected a scaffold that showed good alignments to both chromosomes 10 and 23 in both of the other species. We considered this join unlikely and decided to split the scaffold.Next, we performed a second round of polishing with the 10× chromium Illumina data from the same sample. For this round, since we had fewer than 500 scaffolds, we used the longranger 2.1.14 align pipeline61 to map reads in a barcode-aware way. Pilon was then run with the same settings as before and resulted in the correction of 417,032 indels, of which 78.7% were single-basepair changes. The second round of polishing considerably increased the number of single-copy bird orthologues that could be identified in the assembly (Supplementary Table 1).The mitochondrial genome was not found in the original Pacbio genome assembly. We obtained this genome by adding the complete mitochondrial sequence from a previous short-read assembly13. We then used bwa to map the 10× chromium reads from the northern sample to the assembly and extracted alignments on the mitochondrial sequence. Next, freebayes was used with a haploid setting to detect differences present in the aligned reads. The raw variant file was filtered with vcftools for sites with a quality less than 30 and for two intervals with excessive read coverage (possibly reads from unassembled NUMTs). The filtered variant file contained 11 substitutions and three indels, and was used with bcftools version 1.1462 to create a new mitochondrial reference.For the extraction and removal of sequences in the different assembly steps we used kentUtils 370 (https://github.com/ucscGenomeBrowser/kent). Summary statistics for each assembly (e.g., N50) were calculated using the assemblathon_stats.pl script63.Southern willow warbler and chiffchaff de novo assembliesThe southern willow warbler and the chiffchaff were each sequenced on two lanes on a Sequel II (Pacific Biosciences) using a high-fidelity (HiFi) setup. Sequencing libraries for the southern willow warbler was prepared from a previous extraction used for optical maps (see above), whereas for the chiffchaff, DNA was extracted from blood using a Nanobind extraction kit (Circulomics, MD, USA). The southern willow sample yielded 2,576,876 HiFi reads with a mean length 19,303 bp and representing 49.7 Gbp. The chiffchaff sample yielded 2,612,165 HiFi reads with a mean length of 19,829 bp and representing 51.8 Gbp.The HiFi reads were assembled de novo using hifiasm version 0.15.5-r35064 with default settings and primary contigs were selected for downstream analyses. For the chiffchaff hifiasm assembly, we removed the first 6 Mb part of a contig overlapping with another contig and removed a short interval at the end of a contig containing adaptor sequences. For the southern willow warbler, the primary contigs (N = 540, Supplementary Table 1) were hybridized to the optical map of the same sample using the same pipeline as for the northern sample. Although we had access to chromium data from the same sample, we did not include it to perform an intermediate scaffolding step (as we did for the northern willow warbler assembly) because the long-read assembly was already highly contiguous. The hybridization step made 39 cuts to the contigs and 20 cuts to the optical maps, resulting in an assembly with 111 superscaffolds and 439 non-scaffolded contigs. We decided to ignore an optical map-supported fusion of contigs that mapped to separate chromosomes in other bird species, as this fusion was made in a large repetitive region. We further excluded a 45 bp sequence resulting from the hybrid assembly cutting and masked four short intervals containing adaptor sequences. The assembly of the mitochondrion in the southern assembly followed the same pipeline as used for the northern assembly (see above). In this case, 10 substitutions and two indels were added to the mitochondrial sequence from the previous short-read assembly based on alignments of linked reads from the southern sample.Repeat annotationWe used Repeatmodeler version 1.0.865 for de novo identification of repeats in the southern assembly. The repeats detected by repeatmodeler were combined with 1,023 bird-specific repeats into a custom library. Next, we used repeatmasker version 4.0.766 with the custom library and by using a more sensitive search (-s flag) to annotate repeats in the genome. Bedtools v2.29.267, together with the annotated repeats, was used to create a softmasked version of the southern assembly, which was used in the gene annotation step. The same repeat library was also used to annotate repeats in the de novo assembly of the northern sample. For the chiffchaff assembly we used the same annotation approach as for the southern willow warbler, but included a species-specific library generated with repeatmodeler, and also included a tandem-repeat associated sequence associated with the divergent regions on chromosomes 1 and 3 from the willow warbler library. Intervals with tandem repeats in divergent regions were also analyzed with tandem repeats finder version 4.0.968 using default settings except for specifying a maximum period size of 2000 bp.Duplicated intervals within divergent scaffolds were identified with Minimap2 and subsequently aligned with EMBOSS Stretcher 6.6.0 (https://www.ebi.ac.uk/Tools/psa/emboss_stretcher/).RNA sequencingWe used total RNA extracted from whole brain from six samples used in an earlier study quantifying differential expression in migratory and breeding willow warblers69 (Supplementary Table 3). The quality of the RNA was checked with a Bioanalyzer version 2100 (Agilent, CA, USA). All of the extractions had a RNA Integrity Number (RIN) of at least > 7.10. RNA libraries for sequencing were prepared using a TruSeq Stranded mRNA Sample prep kit with 96 dual indexes (Illumina) according to the instructions of the manufacturer with the exception of automating the protocols using an NGS workstation (Agilent) and using purification steps as described in Lundin et al70. and Borgström et al71. The raw RNA data was trimmed using cutadapt version 1.872 within Trim Galore version 0.4.0 (https://github.com/FelixKrueger/TrimGalore) with default settings.We used Stringtie version 1.3.373 to create transcripts from the RNAseq data. These transcripts were not used directly in the generation of gene models, but used in the manual curation step as potential alternative transcripts. For the software, we first mapped the reads with Hisat2 version 2.1.074 using default settings for stranded sequence libraries and downstream transcript analyses.Gene annotationWe used Augustus version 3.2.375 to create gene models using hints provided from RNAseq data and protein data from other bird species. For the RNAseq data, we mapped the trimmed reads to the assembly using STAR version 2.7.9a76. Accessory scripts in the Augustus package were used to filter the alignments for paired and uniquely mapped reads and for extracting intron hints. We additionally generated coverage wig files for each strand from the filtered alignment file using the software stranded-coverage (https://github.com/pmenzel/stranded-coverage) and used these as input for the august wig2hints.pl to generate exonpart hints.For homology evidence, we downloaded a set of bird proteins from NCBI (https://www.ncbi.nlm.nih.gov/). This data set included 49,673 proteins from chicken, 41,214 proteins from zebra finch and 38,619 proteins from great tit. We also downloaded an additional dataset from Uniprot (www.uniprot.org) that consisted of 3175 manually reviewed bird proteins and 204 and 12,263 bird proteins that were not manually reviewed but supported by protein or transcript data, respectively. The protein data was mapped to the genome using exonerate version 2.4.077. We used the script align2hints.pl from braker 2.1.678 to generate CDSpart, intron, start and stop hints from the data.Augustus was run with species-specific parameters (see training Augustus below) and with default settings except for specifying “softmasking=true”, “–alternatives-from-evidence=true”, “–UTR = on”, “–gff3=on” and “–allow_hinted_splicesites=atac”. In the extrinsic configuration file, we changed the malus for introns from 0.34 to 0.001, which increases the penalty for predicted introns that are not supported by the extrinsic data (RNAseq and protein hints). The prediction resulted in 28,491 genes and 35,389 transcripts.The Augustus-derived gene models were assigned names based on overlap with synteny-transferred zebra finch genes. For this purpose, we used SatsumaSynteny with default settings to obtain whole-genome alignments between our assembly and the zebra finch genome version bTaeGut1.4.pri79. Based on the alignment, we used kraken80 (downloaded 2020-04-14) to transfer the zebra finch genome annotations (NCBI Release 106) to the willow warbler assembly. We then extracted the CDS from the Augustus gene models and the kraken genes and used bedtools intersect to quantify the overlap. The gene models were also searched against the longest translation of each of the chicken, zebra finch and great tit Parus major genes used as evidence for the gene prediction step and against 86,131 swissprot vertebrate proteins using blastp 2.5.0+81 with an E value threshold of 1e−5. Gene models that were not annotated through synteny were assigned a gene name based on the blast results. Protein domains in the gene models were annotated with interproscan v 5.30–69.082. To reduce the number of false positive predictions we removed 5697 genes that were not supported by synteny to zebra finch genes, showed no significant similarity to vertebrate proteins or did not contain any annotated protein domains.We used Webapollo 2.6.583 to manually curate gene models in the previously identified divergent chromosome regions and in other regions where differences were present. In the curation step, we specifically validated the support for the coding sequence and the UTR and also removed genes that were likely to be pseudogenes based on a truncated coding sequence compared to homologous genes in other vertebrates, had no support from synteny in other bird species and/or that were located in repeat-rich regions.Training AugustusWe used a previous repeat-masked short-read assembly13 and the trimmed RNAseq data used in this study to obtain species-specific parameters for Augustus. The RNAseq data was assembled into transcripts using Trinity version 2.0.284 to create a de novo and a genome-guided assembly that together were comprised of 1,929,396 transcripts. The genome-guided transcript assembly was based on RNAseq mapped to the genome using GSNAP version 2016-07-1185 with default settings. We used PASA version 2.0.286 to create high-quality transcripts, which were imported into Webapollo. To assess the completeness of the transcripts, we compared them to synteny-transferred models from the chicken genome using Kraken. We selected 1249 transcripts that appeared complete, were not overlapping with other genes and showed less than 80% amino acid similarity to another gene in the training set. From this set, we excluded 21 genes that were giving initial training errors, which gave us a training set of 1228 genes. This gene set was randomly split into 1028 training genes and 200 genes used for testing. For training, we used the optimize_augustus.pl script with default settings except for the flag –UTR = on.Whole-genome resequencing and variant callingWe used the whole-genome resequencing data from nine samples of each migratory phenotype provided in Lundberg et al13. and sequenced an additional two high-coverage samples from each migratory phenotype (Supplementary Table 4). Sequencing libraries for the new samples were prepared with a TruSeq DNA PCR-Free kit (Illumina) with a targeted insert size of 670 bp or with a Truseq DNA nano (Illumina) with a targeted insert size of 350 bp. All of the new samples were sequenced on a HiSeqX (Illumina). The raw reads were trimmed with trimmomatic 0.3687 with the parameters “ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:30”.Quality-trimmed reads were mapped to the southern assembly using bwa mem with default settings except for specifying -M flag to ensure compatibility with the downstream duplicate removal steps and converted into binary alignment map (bam) files using samtools. For samples sequenced across multiple lanes, reads from each lane were mapped independently and the resulting bam files were merged with samtools. Read duplicates were removed with the markduplicates tool provided in picardtools.From the aligned whole-genome resequencing data set, we called variants with freebayes v1.1.0 using default settings and parallelizing the analyses of separate scaffolds using GNU parallel88. Vcflib version 2017-04-0489 was used to filter the raw set of variants for sites with quality score >30 and for alternate alleles that were supported by at least one read on each strand (SAF  > 0 & SAR  > 0) and had at least one read balanced to the right and the left (RPL  > 0 & RPR  > 0). Next, we used vcftools 0.1.1690 to filter genotypes with a coverage of at least 5x and removed sites a maximum of four genotypes missing in each of the populations. The variants were also filtered for collapsed repeats by removing sites with a mean coverage of more than twice the median mean coverage (30×). We next used vcflib to decompose haplotype calls and complex alleles into indels and SNPs and removed any variants that were overlapping with annotated repeats. This gave us a final of 51 million variants of which 45 million were bi-allelic SNPs. We used vcftools to calculate FST91 for each variant and for bi-allelic SNPs in non-overlapping windows of 10 kb. As many rare variants segregate in the willow warbler populations, which may downwardly bias differentiation estimates92, we focused on variants with a minor allele frequency of at least 0.1.Coverage for each resequenced sample was calculated in non-overlapping 1 kb windows using bedtools and only included properly paired reads with a mapping quality of at least 1. The raw coverage values for each sample were normalized by its median coverage across all windows.Structural variant callingWe used a combination of delly 0.9.193 and GraphTyper 2.7.494 to call structural variants in the resequenced samples. To identify a set of high confidence variants, we first mapped the long reads from the northern willow warbler to the southern assembly using minimap 2.22-r110156 with default settings for Pacbio reads and from the alignments called variants using delly. Next, GraphTyper was used to genotype the resequenced samples for the delly variants in the scaffolds containing the divergent chromosome regions. The raw set of variants were filtered to contain only sites with a “PASS” flag and, for each variant, the aggregated genotype, which is the genotype model out of breakpoint alignments and coverage that has the highest genotyping quality, was chosen for downstream analyses. Genetic differentiation (FST) was calculated in vcftools and variants with FST ≥ 0.7 between homozygotes in each divergent chromosome region were extracted and checked for overlap with genes and gene features using bedtools. To get more reliable differentiation estimates, we only included sites where at least 80% of the southern and northern homozygotes had genotypes.Inversion genotypes for resequenced samplesThe resequenced samples were assigned a genotype of southern and northern haplotypes for each of the divergent regions based on a multidimensional scaling (MDS)-based clustering in invclust95 of SNP array genotypes in Lundberg et al.13. To obtain genotypes of the SNPs included on the array in the resequenced samples, we mapped the SNP array probe sequences to the northern assembly using gmap and from the alignments extracted the positions of the focal SNPs. Next, we used freebayes to genotype the resequenced samples for these positions and plink version 1.996 to combine the genotypes with the genotypes from the SNP array. In the genotyping step, we also included mapped 10× chromium libraries for the northern and southern reference samples and the additional willow warbler sample. From the combined dataset, we extracted genotypes for SNPs located in each of the divergent regions and used invclust to assign each sample a genotype of inverted and non-inverted haplotypes. The inverted and non-inverted haplotypes were recoded as southern or northern haplotypes based on their frequency in each subspecies.Breakpoint analysesWe used MUMmer 4.0.0rc197 to align the genomes of the southern and northern willow warblers, and the southern willow warbler genome to the genomes of the chiffchaff, zebra finch (3.2.4) and collared flycatcher FicAlb (1.5)98.To provide further evidence of breakpoints, we mapped the 10× chromium reads of each sample to both the northern and the southern assembly and called structural variants using the longranger wgs pipeline. For the southern genome, we selected the 499 largest scaffolds and concatenated the rest into a single scaffold to make it compatible with the software. We also checked for differences in linked read molecule coverage between the samples. For this purpose, the raw reads of each sample were first processed with longranger basic for quality trimming and barcode processing. The trimmed reads were mapped to the assemblies using bwa mem using a -C flag to extract the barcode information of each read and alignments converted into bam files using samtools. To estimate coverage of barcodes, we first used the tigmint-molecule script from tigmint 1.1.299 to obtain positional information of barcodes (molecules) in each divergent region. The software was run with default settings except for only using reads with a mapping quality of at least 1 and only to report molecules that were estimated to be at least 10 kb. We next used bedtools to count the number of overlapping molecules in 1 kb windows.We explored differences between optical maps by using the runSV.py script in bionano solve with the southern optical map as a query and the northern assembly as target and the reciprocal analysis with the northern optical map as a query and the southern assembly as a target. We also used the bionano solve hybrid assembly pipeline to visualize differences between the optical maps and the genome assemblies at breakpoint regions.Functional annotation of differencesWe used bedtools to quantify the distance between breakpoint intervals and annotated genes. To provide a functional annotation of the SNPs and short indels, we selected variants that showed a FST ≥ 0.7 between southern and northern homozygotes for each of the region and used these as input to Snpeff 5.0.0e100 together with the annotation and reference genome. We used Snpsift 5.0.0e101 to select variants that were predicted to have a moderate to high effect on genes. Gene ontology terms for the genes were extracted from orthologous genes in other bird genomes in ensembl (www.ensembl.org) or through domain searches of the proteins with interproscan.Age estimation and demographic analyses of divergent regionsIn order to estimate the timing of the inversion events, we used high-coverage resequencing data from two southern samples, two northern samples and, as an outgroup, one dusky warbler Phylloscopus fuscatus (Supplementary Table 4). The willow warbler samples were chosen so that they were either homozygous southern or northern for all of three divergent regions. The dusky warbler library was prepared using a TruSeq Nano DNA library prep kit for Neoprep (Illumina) according to the instructions of the manufacturer and sequenced on a HiSeq X (Illumina). Quality-trimming of the raw reads and mapping of the trimmed reads to the northern reference genome followed the same approach as used for the willow warbler resequencing samples (see above).Variants were called using freebayes and the raw set of variants were filtered using gIMble’s preprocess module (v0.6.0). Sample-specific callable sites were identified using gIMble preprocess and were defined as those with a minimum coverage of 8× and a maximum of 0.75 standard deviations above the mean coverage. Genic and repetitive regions of the genome were removed from the callable sites in order to limit downstream analyses to intergenic regions.Summary statistics of genetic variation (π and dxy) within the divergent regions were calculated using gIMble. Following this, net divergence (da) between northern and southern samples was calculated as dnorth–south − (πnorth + πsouth)/2. To convert the net divergence into years we used the germline mutation rate (4.6 × 10−9) estimated in the collared flycatcher21. Relative node depth (RND) using the dusky warbler (DW) as an outgroup was calculated as dnorth–south/(dDW-north + dDW-south)/2. For each divergent region, a blockwise site frequency spectrum (bSFS) was generated with gIMble using blocks of 64 bp in length. This length refers to the number of callable sites within a block, while the physical length of blocks was allowed to vary due to missing data but was limited to 128 bp. Downstream analyses that relied on a bSFS used a kmax of 2, meaning that only marginal probabilities were calculated for mutation counts >2. The composite likelihood (CL) of a model, given the bSFS of one of the divergent regions, was optimized using the Nelder-Mead algorithm with the maximum number of iterations set to 1000. Within the software we evaluated three different population models. The first model was a strict isolation model (SI), with parameters ancestral effective population size, effective population sizes for southern and northern willow warblers and divergence time. The second model was an isolation with migration model (IM1) that also included a migration rate from northern to southern samples, and the third model (IM2) instead had a migration rate from southern to northern willow warblers.Simulations were carried out by msprime 0.7.4102 through gIMble. The recombination rates used for these simulations were chromosome-specific estimates from a high-density recombination map of the collared flycatcher98 and were 2.04, 1.95, and 2.63 cM/Mb for chromosomes 1, 3, and 5, respectively. A total of 100 replicates were simulated for the optimized SI parameters of each region. These simulated bSFSs were then optimized under both an SI model as well as the best fitting IM model for that region. The improvement in CL between these models was used as a null distribution for testing whether improvements in CL observed for the real data were greater than expected given a history of no migration. For each parameter, we calculated 95% CI as Maximum Composite Likelihood (MCL) estimate ± 1.96 * standard deviation of simulations (Supplementary Table 7). As a result, our estimates of uncertainty are affected by the recombination rates that we assumed for simulations. We also used the results of simulations to quantify the potential bias in MCL estimates due to intra-block recombination (Supplementary Table 7). However, we did not attempt to correct for this bias as it is relatively small (e.g., the MCL divergence times are estimated to be biased upwards by 7, 24, and 10%) and our estimation of the bias itself is largely dependent on the recombination rates we assumed.MSMC224 was used to explore genome-wide changes in Ne through time. As input to the software, we used the callable intergenic bed file and filtered vcf file mentioned above, with the addition of further filtering the bed file to only include autosomal scaffolds ≥500 kb and excluding the divergent regions. The input files for MSMC2, i.e., an unphased set of heterozygous sites for each sample, were generated using the generate_multihetsep.py script from msmc-tools. MSMC2 was run with a starting ρ/μ of 1 for 30 expectation-maximum iterations. For both the demographic modeling and MSMC2, we used the collared flycatcher germline mutation rate21 and a generation time of 1.7 years11 to convert divergence times into years.To infer the effects of demographic events and selection, we also calculated several genetic summary statistics. To this end, we first imputed missing genotypes and inferred haplotypes for the filtered set of variants using beagle version 5.4103. From the full set of samples, we selected 10 and seven samples that were homozygous southern or northern for the three divergent regions, respectively, as determined from the MDS analysis (see above), and extracted bi-allelic SNPs. To identify ancestral and derived alleles, we extracted genotypes for the focal SNP positions from the aligned chiffchaff and dusky warblers reads using bcftools 1.1462 with the mpileup command. As a conservative approach, we considered any site with the presence of both the reference and alternate allele as heterozygous (regardless of their frequencies) and only included sites where the coverage was at least one-third of the mean coverage among all sites for each outgroup species. We next used a customized script to extract the sites from the original vcf files, and, if necessary, switch the reference and alternate allele and swap the genotypes accordingly. With the polarized genotype data, we used PopGenome 2.7.5104 to calculate Fay and Wu’s H and vcftools to get counts for the derived allele. We further used selscan 1.3.0105 to calculate XP-nsl106 between the southern and northern samples, Sweepfinder2107 to calculate a composite likelihood ratio (CLR) between a model where a selective sweep has had an effect on the allele frequency and a model based on the genome-wide allele frequency spectrum and used vcftools to calculate nucleotide diversity, Tajima’s D and linkage disequilibrium (D’).The use of the southern assembly as a reference could potentially lead to a mapping bias for reads from southern samples, particularly in regions of higher divergence between the subspecies. This, in turn, could have an effect on genetic summary statistics and demographic modeling estimates. To explore the effect of reference bias, we therefore also mapped the resequencing data to the northern assembly, performed variant calling and calculated nucleotide diversity and Tajima’s D in 10 kb windows. For the northern assembly, we also used the same demographic modeling as used for the southern assembly. Contrasting average genetic summary statistics and demographic parameter estimates, we found negligible differences between the two genome assemblies (Supplementary Table 10).Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article. More

  • in

    Mapping amorphous SiO2 in Devonian shales and the possible link to marine productivity during incipient forest diversification

    Elrick, M. et al. Major Early-Middle Devonian oceanic oxygenation linked to early land plant evolution detected using high-resolution U isotopes of marine limestones. Earth Planet. Sci. Lett. 581, 117410 (2022).CAS 

    Google Scholar 
    Algeo, T. J. & Scheckler, S. E. Terrestrial-marine teleconnections in the Devonian: Links between the evolution of land plants, weathering processes, and marine anoxic events. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 353(1365), 113–130 (1998).
    Google Scholar 
    Capel, E. et al. The Silurian-Devonian terrestrial revolution: Diversity patterns and sampling bias of the vascular plant macrofossil record. Earth Sci. Rev. 231, 104085 (2022).
    Google Scholar 
    Racki, G., Joachimski, M. M. & Morrow, J. R. A major perturbation of the global carbon budget in the Early-Middle Frasnian transition (Late Devonian). Palaeogeogr. Palaeoclimatol. Palaeoecol. 269(3–4), 127–129 (2008).
    Google Scholar 
    Stein, W. E., Berry, C. M., Hernick, L. V. & Mannolini, F. Surprisingly complex community discovered in the mid-Devonian fossil forest at Gilboa. Nature 483(7387), 78–81 (2012).ADS 
    CAS 

    Google Scholar 
    Retallack, G. J. & Huang, C. Ecology and evolution of Devonian trees in New York, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 299(1–2), 110–128 (2011).
    Google Scholar 
    Qie, W., Algeo, T. J., Luo, G. & Herrmann, A. Global events of the late Paleozoic (early Devonian to Middle Permian): A review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 531, 109259 (2019).
    Google Scholar 
    Smart, M. S., Filippelli, G., Gilhooly III, W. P., Marshall, J. E. & Whiteside, J. H. Enhanced terrestrial nutrient release during the Devonian emergence and expansion of forests: Evidence from lacustrine phosphorus and geochemical records. GSA Bulletin. Nov. 9 (2022).Śliwiński, M. G., Whalen, M. T. & Day, J. Trace element variations in the Middle Frasnian punctata zone (Late Devonian) in the western Canada sedimentary basin— changes in oceanic bioproductivity and paleoredox spurred by a pulse of terrestrial afforestation?. Geol. Belg. 4, 459–482 (2010).
    Google Scholar 
    Filippelli, G. M. & Souch, C. Effects of climate and landscape development on the terrestrial phosphorus cycle. Geology 27(2), 171–174 (1999).ADS 
    CAS 

    Google Scholar 
    Filippelli, G. M., Souch, C., Horn, S. P. & Newkirk, D. The pre-Colombian footprint on terrestrial nutrient cycling in Costa Rica: Insights from phosphorus in a lake sediment record. J. Paleolimnol. 43(4), 843–856 (2010).ADS 

    Google Scholar 
    Pisarzowska, A. & Racki, G. Comparative carbon isotope chemostratigraphy of major Late Devonian biotic crises. In Stratigraphy & Timescales. 387–466, vol. 5. (Academic Press, 2020).Mortlock, R. A. & Froelich, P. N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep Sea Res. Part A Oceanogr. Res. Pap. 36(9), 1415–1426 (1989).ADS 
    CAS 

    Google Scholar 
    Schieber, J., Krinsley, D. & Riciputi, L. Diagenetic origin of quartz silt in mudstones and implications for silica cycling. Nature 406(6799), 981–985 (2000).ADS 
    CAS 

    Google Scholar 
    Buckman, J., Mahoney, C., März, C., Wagner, T. & Blanco, V. Identifying biogenic silica: Mudrock micro-fabric explored through charge contrast imaging. Am. Miner. 102(4), 833–844 (2017).ADS 

    Google Scholar 
    Gao, P., He, Z., Lash, G. G., Zhou, Q. & Xiao, X. Controls on silica enrichment of Lower Cambrian organic-rich shale deposits. Mar. Pet. Geol. 130, 105126 (2021).CAS 

    Google Scholar 
    Schieber, J. Early diagenetic silica deposition in algal cysts and spores; a source of sand in black shales?. J. Sediment. Res. 66(1), 175–183 (1996).
    Google Scholar 
    Śliwiński, M. G., Whalen, M. T., Newberry, R. J., Payne, J. H. & Day, J. E. Stable isotope (δ13Ccarb and org, δ15Norg) and trace element anomalies during the Late Devonian ‘punctata Event’in the Western Canada Sedimentary Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 307(1–4), 245–271 (2011).
    Google Scholar 
    Papazis, P. K. & Milliken, K. Cathodoluminescent textures and the origin of quartz in the Mississippian Barnett Shale, Fort Worth Basin, Texas. In AAPG Annual Meeting, Volume Abstracts: Calgary, Alberta, American Association of Petroleum Geologists A, 105 (2005).Ross, D. J. & Bustin, R. M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian-Mississippian shales, Western Canadian Sedimentary Basin. Chem. Geol. 260(1–2), 1–19 (2009).ADS 
    CAS 

    Google Scholar 
    Götze, J., Plötze, M. & Habermann, D. Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz–a review. Mineral. Petrol. 71(3), 225–250 (2001).ADS 

    Google Scholar 
    Milliken, K. L., Ergene, S. M. & Ozkan, A. Quartz types, authigenic and detrital, in the Upper Cretaceous Eagle Ford Formation, south Texas, USA. Sed. Geol. 339, 273–288 (2016).CAS 

    Google Scholar 
    Blatt, H. Perspectives; Oxygen isotopes and the origin of quartz. J. Sediment. Res. 57(2), 373–377 (1987).ADS 
    CAS 

    Google Scholar 
    Rowe, H. D., Loucks, R. G., Ruppel, S. C. & Rimmer, S. M. Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk geochemical inferences and Mo–TOC constraints on the severity of hydrographic restriction. Chem. Geol. 257(1–2), 16–25 (2008).ADS 
    CAS 

    Google Scholar 
    Wright, A. M., Ratcliffe, K. T., Zaitlin, B. A. & Wray, D. S. The application of chemostratigraphic techniques to distinguish compound incised valleys in low-accommodation incised-valley systems in a foreland-basin setting: An example from the Lower Cretaceous Mannville Group and Basal Colorado Sandstone (Colorado Group), Western Canadian Sedimentary Basin, in K.T. Ratcliffe, and B.A. Zaitlin (eds.), Application of Modern Stratigraphic Techniques: Theory and Case Histories: SEPM SP PUB no. 94 (2010).Murata, K. J. & Norman, M. B. An index of crystallinity for quartz. Am. J. Sci. 276(9), 1120–1130 (1976).ADS 
    CAS 

    Google Scholar 
    Tréguer, P. J. et al. Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean. Biogeosciences 18(4), 1269–1289 (2021).ADS 

    Google Scholar 
    Rivard, B., Harris, N. B., Feng, J. & Dong, T. Inferring total organic carbon and major element geochemical and mineralogical characteristics of shale core from hyperspectral imagery. AAPG Bull. 102(10), 2101–2121 (2018).
    Google Scholar 
    Lippincott, E. R., Van Valkenburg, A., Weir, C. E. & Bunting, E. N. Infrared studies on polymorphs of silicon dioxide and germanium dioxide. J. Res. Natl. Bur. Stand 61(1), 61–70 (1958).CAS 

    Google Scholar 
    Salisbury, J. W., D’Aria, D. M. & Jarosewich, E. Midinfrared (2.5–13.5 μm) reflectance spectra of powdered stony meteorites. Icarus 92(2), 280–297 (1991).ADS 
    CAS 

    Google Scholar 
    Wong, P. K., Weissenberger, J. A. W., Gilhooly, M. G., Playton, T. E. & Kerans, C. Revised regional Frasnian sequence stratigraphic framework, Alberta outcrop and subsurface. New Adv. Devonian Carbonates: Outcrop Analogs, Reservoirs, and Chronostratigr. 49(1), 37–85 (2016).
    Google Scholar 
    Wendte, J. C. Cooking Lake platform evolution and its control on Late Devonian Leduc reef inception and localization, Redwater, Alberta. Bull. Can. Pet. Geol. 42(4), 499–528 (1994).
    Google Scholar 
    Wendte, J., Stoakes, F. A. & Campbell, C. V. Cyclicity of Devonian strata in the Western Canada Sedimentary Basin. In: Devonian-Early Mississippian Carbonates of the Western Canada Sedimentary Basin: A sequence stratigraphic framework. J. Wendte (ed.). Society of Economic Paleontologists and Mineralogists, Short Course no. 28, p. 25–40 (1995).Stoakes, F. A. Nature and control of shale basin fill and its effect on reef growth and termination: Upper Devonian Duvernay and Ireton Formations of Alberta, Canada. Bull. Can. Pet. Geol. 28(3), 345–410 (1980).
    Google Scholar 
    Alberta Energy Regulator Duvernay Reserves and Resources Report: A Comprehensive Analysis of Alberta’s Foremost Liquids-Rich Shale Resource, December 2016.Knapp, L. J., McMillan, J. M. & Harris, N. B. A depositional model for organic-rich Duvernay Formation mudstones. Sed. Geol. 347, 160–182 (2017).CAS 

    Google Scholar 
    Andrichuk, J. M. Stratigraphic evidence for tectonic and current control of Upper Devonian reef sedimentation, Duhamel area, Alberta, Canada. AAPG Bull. 45(5), 612–632 (1961).
    Google Scholar 
    Harris, N. B., McMillan, J. M., Knapp, L. J. & Mastalerz, M. Organic matter accumulation in the Upper Devonian Duvernay Formation, Western Canada Sedimentary Basin, from sequence stratigraphic analysis and geochemical proxies. Sed. Geol. 376, 185–203 (2018).CAS 

    Google Scholar 
    Hildred, G. V., Ratcliffe, K. T., Wright, A. M., Zaitlin, B. A. & Wray, D. S. Chemostratigraphic applications to low-accommodation fluvial incised-valley settings: An example from the Lower Mannville Formation of Alberta, Canada. J. Sedim. Res. 80(11), 1032–1045 (2010).
    Google Scholar 
    Wedepohl, K. H. Environmental influences on the chemical composition of shales and clays. Phys. Chem. Earth 8, 307–333 (1971).ADS 

    Google Scholar 
    Pearce, T. J., Martin, J. H., Cooper, D. & Wray, D. S. Chemostratigraphy of upper carboniferous (Pennsylvanian) sequences from the Southern North Sea (United Kingdom). Application of Modern Stratigraphic Techniques: Theory and Case Histories. SEPM Spec. Publ. 94, 109–127 (2010).
    Google Scholar 
    Adachi, M., Yamamoto, K. & Sugisaki, R. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication of ocean ridge activity. Sed. Geol. 47(1–2), 125–148 (1986).CAS 

    Google Scholar 
    Abercrombie, H. J., Hutcheon, I. E., Bloch, J. D. & Caritat, P. D. Silica activity and the smectite-illite reaction. Geology 22(6), 539–542 (1994).ADS 
    CAS 

    Google Scholar 
    McLennan, S. M. Weathering and global denudation. J. Geol. 101(2), 295–303 (1993).ADS 

    Google Scholar 
    Nesbitt, H. W. & Young, G. M. Formation and diagenesis of weathering profiles. J. Geol. 97(2), 129–147 (1989).ADS 
    CAS 

    Google Scholar 
    Fedo, C. M., Wayne Nesbitt, H. & Young, G. M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23(10), 921–924 (1995).ADS 
    CAS 

    Google Scholar 
    Nesbitt, H. W. & Young, G. M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–717 (1982).ADS 
    CAS 

    Google Scholar 
    von Eynatten, H., Barceló-Vidal, C. & Pawlowsky-Glahn, V. Modelling compositional change: The example of chemical weathering of granitoid rocks. Math. Geol. 35(3), 231–251 (2003).
    Google Scholar 
    Clark, R. N. & Rencz, A. N. Spectroscopy of rocks and minerals, and principles of spectroscopy. Manual Remote Sens. 3(11), 3–58 (1999).
    Google Scholar 
    Kump, L. R. & Arthur, M. A. Interpreting carbon-isotope excursions: Carbonates and organic matter. Chem. Geol. 161(1–3), 181–198 (1999).ADS 
    CAS 

    Google Scholar 
    Holmden, C. et al. Carbon isotope chemostratigraphy of Frasnian sequences in Western Canada. Saskatchewan Geol. Surv. Summary Investig. 1, 1–6 (2006).
    Google Scholar 
    Pisarzowska, A. & Racki, G. Isotopic chemostratigraphy across the Early-Middle Frasnian transition (Late Devonian) on the South Polish carbonate shelf: A reference for the global punctata Event. Chem. Geol. 334, 199–220 (2012).ADS 
    CAS 

    Google Scholar 
    Racki, G. & Bultynck, P. Conodont biostratigraphy of the Middle to Upper Devonian boundary Beds in the Kielce area of the Holy Cross Mts. Acta Geol. Pol. 44, 1–25 (1993).
    Google Scholar 
    Ziegler and Sandberg. The Late Devonian standard conodont zonation CFS, Cour. Forschungsinst. Senckenberg, 121 (1990).Klapper, G., The Montagne Noire Frasnian (Upper Devonian) conodont succession. In McMillan, N.J., et al., eds., Devonian of the world, Volume III: Canadian Society of Petroleum Geologists Memoir 14, p. 449–468 (1988).Jiao, X. et al. Mixed biogenic and hydrothermal quartz in Permian lacustrine shale of Santanghu Basin, NW China: Implications for penecontemporaneous transformation of silica minerals. Int. J. Earth Sci. 107(6), 1989–2009 (2018).CAS 

    Google Scholar 
    Peltonen, C., Marcussen, Ø., Bjørlykke, K. & Jahren, J. Clay mineral diagenesis and quartz cementation in mudstones: The effects of smectite to illite reaction on rock properties. Mar. Pet. Geol. 26(6), 887–898 (2009).CAS 

    Google Scholar 
    Pearce, T. J., Besly, B. M., Wray, D. S. & Wright, D. K. Chemostratigraphy: A method to improve interwell correlation in barren sequences—a case study using onshore Duckmantian/Stephanian sequences (West Midlands, UK). Sed. Geol. 124(1–4), 197–220 (1999).CAS 

    Google Scholar 
    Calvert, S. E. & Pedersen, T. F. Chapter fourteen elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: Interpretation and application. Dev. Mar. Geol. 1, 567–644 (2007).
    Google Scholar 
    Perri, F., Cirrincione, R., Critelli, S., Mazzoleni, P. & Pappalardo, A. Clay mineral assemblages and sandstone compositions of the Mesozoic Longobucco Group, northeastern Calabria: Implications for burial history and diagenetic evolution. Int. Geol. Rev. 50(12), 1116–1131 (2008).
    Google Scholar 
    Johnson, J. G., Klapper, G. & Sandberg, C. A. Devonian eustatic fluctuations in Euramerica. Geol. Soc. Am. Bull. 96(5), 567–587 (1985).ADS 

    Google Scholar 
    Warme, J. E. & Sandberg, C. A. Alamo megabreccia: Record of a Late Devonian impact in southern Nevada. GSA Today 6(1), 1–7 (1996).
    Google Scholar 
    Ernst, R. E., Rodygin, S. A. & Grinev, O. M. Age correlation of Large Igneous Provinces with Devonian biotic crises. Glob. Planet. Change 185, 103097 (2020).
    Google Scholar 
    Schiffbauer, J. D. et al. Decoupling biogeochemical records, extinction, and environmental change during the Cambrian SPICE event. Sci. Adv. 3(3), e1602158 (2017).ADS 

    Google Scholar 
    Duller, R. A., Armitage, J. J., Manners, H. R., Grimes, S. & Jones, T. D. Delayed sedimentary response to abrupt climate change at the Paleocene-Eocene boundary, northern Spain. Geology 47(2), 159–162 (2019).ADS 
    CAS 

    Google Scholar  More

  • in

    Beneficial metabolic transformations and prebiotic potential of hemp bran and its alcalase hydrolysate, after colonic fermentation in a gut model

    Quality controls for the validation of MICODE protocolTo validate the MICODE experimental approach in the version of fecal batch of the human proximal colon, we chose to monitor and check some parameters as quality controls (QC) related to metabolites and microbes at the end of fermentations, and in comparison, to the baseline. QCs adopted were; (i) the Firmicutes/Bacteroidetes ratio (F/B), which is related to health and disease11, was maintained at a low level, confirming the capacity to simulate a healthy in vivo condition for 24 h. (ii) The presence of Archea (e.g., Methanobrevibacter smithii and Methanosphaera stadtmanae), which are pretty sensible to oxygen content12, was retained from the baseline to the end point in each vessel and repetition, indicating that the environmental conditions were strictly maintained. (iii) Good’s rarity index of alpha biodiversity remained similar during time of fermentation (p  > 0.05), indicating enough support to the growth of rare species. (iv) Observed OTUs richness index scored approximately 400 OTUs at the end point. (v) The paradigm of prebiotics was confirmed when the positive control (FOS) was applied on MICODE; high probiotic and SCFAs increases and limitation of enteropathogens. (vi) Each GC/MS analysis had quantified some stool-related compounds (urea, 1-propanol, and butylated hydroxy toluene), that ranged across the complete chromatogram and were adsorbed at the same retention times.Changes in bacterial alpha and beta diversitiesThe microbiota diversity indices were analyzed to study the impact of HPBA on microbial population, to assess population’s stability during fermentation, and to compare its microbiota to that of other bioreactors (Figure S1). The baseline of value was compared to the endpoints of fermentation of different treatments. It is undisputable that a part of the effect of reduction in richness (Observed OTUs) was derived by the passage from in vivo to in vitro condition, but the focus must be set on the different trend that other alpha diversity indices had. For example, abundance (Chao 1) for HBPA was significantly higher at the end of fermentation (p  0.05) and HPBA (p  0.05), while oppositely, FOS decreased in evenness (p  > 0.05) and raised in dominance (p  0.05). Among these, 31 variables were significant and their Log2 fold changes in respect to the baseline were compared by post-hoc test (Table 1). The 41 OTUs selected were those that recorded shifts after fermentation and that from literature are susceptible to the effect of prebiotic or fiber substrates. We have included even three OTUs of Archea relative to QC of the experiments (previously discussed).Table 1 Abundances (% ± S.D.) and changes in phylum taxa (Log2 F/C) after 24 h in vitro fecal batch culture fermentations from healthy donors and administrated with HBPA, HB, and FOS as the substrates, and also including a blank control.Full size tableThe first group of OTUs included beneficial or commensal bacteria that usually respond to prebiotics. In this group, three Bifidobacterium were picked showing increases on the substrates and reduction on the blank control. HB and HBPA fostered Bif. bifidum, but just the latter did it significantly, making this taxon grew up to the 3.30% of relative abundance (p  More

  • in

    Climate change threatens olive oil production in the Levant

    Liphschitz, N., Gophna, R., Hartman, M. & Biger, G. The beginning of olive (Olea europaea) cultivation in the Old World: a reassessment. J. Archaeol. Sci. 18, 441–453 (1991).Article 

    Google Scholar 
    Blondel, J. & Aronson, J. Biology and Wildlife of the Mediterranean Region (Oxford Univ. Press, 1999).Fall, P. L., Falconer, S. E. & Lines, L. Agricultural intensification and the secondary products revolution along the Jordan Rift. Hum. Ecol. 30, 445–482 (2002).Article 

    Google Scholar 
    Terral, J.-F. et al. Historical biogeography of olive domestication (Olea europaea L.) as revealed by geometrical morphometry applied to biological and archaeological material. J. Biogeogr. 31, 63–77 (2004).Article 

    Google Scholar 
    Chartzoulakis, K. Salinity and olive: growth, salt tolerance, photosynthesis and yield. Agric. Water Manag. 78, 108–121 (2005).Article 

    Google Scholar 
    Vossen, P. Olive oil: history, production, and characteristics of the world’s classic oils. HortScience 42, 1093–1100 (2007).Article 

    Google Scholar 
    Kaniewski, D. et al. Primary domestication and early uses of the emblematic olive tree: palaeobotanical, historical and molecular evidence from the Middle East. Biol. Rev. 87, 885–899 (2012).Article 

    Google Scholar 
    Langgut, D. et al. The origin and spread of olive cultivation in the Mediterranean Basin: the fossil pollen evidence. Holocene 29, 902–922 (2019).Article 

    Google Scholar 
    IPCC. AR5 Synthesis Report: Climate Change 2014 https://www.ipcc.ch/report/ar5/syr/ (IPCC, 2014).IPCC. IPCC WGII Sixth Assessment Report. Cross-Chapter Paper 4: Mediterranean Region https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/ (IPCC, 2022).Fischer, E. M. & Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 3, 398–403 (2010).Article 
    CAS 

    Google Scholar 
    Cramer, W. et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Change 8, 972–980 (2018).Article 

    Google Scholar 
    Santos, J. A., Costa, R. & Fraga, H. Climate change impacts on thermal growing conditions of main fruit species in Portugal. Clim. Change 140, 273–286 (2017).Article 

    Google Scholar 
    Orlandi, F. et al. Impact of climate change on olive crop production in Italy. Atmosphere 11, 595 (2020).Article 

    Google Scholar 
    Rodríguez Sousa, A. A., Barandica, J. M., Aguilera, P. A. & Rescia, A. J. Examining potential environmental consequences of climate change and other driving forces on the sustainability of Spanish olive groves under a socio-ecological approach. Agriculture 10, 509 (2020).Article 

    Google Scholar 
    Besnard, G. et al. The complex history of the olive tree: from Late Quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant. Proc. R. Soc. B 280, 20122833 (2013).Article 
    CAS 

    Google Scholar 
    Besnard, G., Terral, J. F. & Cornille, A. On the origins and domestication of the olive: a review and perspectives. Ann. Bot. 121, 385–403 (2018).Article 

    Google Scholar 
    Bartolini, G., Prevost, G., Messeri, C., Carignani, C. & Menini, U. G. Olive Germplasm: Cultivars and World-wide Collections (FAO, 1998).Zohary, D. & Spiegel-Roy, P. Beginnings of fruit growing in the Old World. Science 187, 319–327 (1975).Article 
    CAS 

    Google Scholar 
    Terral, J.-F. Wild and cultivated olive (Olea europaea L.): a new approach to an old problem using inorganic analyses of modern wood and archaeological charcoal. Rev. Palaeobot. Palynol. 91, 383–397 (1996).Article 

    Google Scholar 
    Carrión, Y., Ntinou, M. & Badal, E. Olea europaea L. in the North Mediterranean basin during the Pleniglacial and the Early–Middle Holocene. Quat. Sci. Rev. 29, 952–968 (2010).Article 

    Google Scholar 
    Zohary, M. Plants of the Bible (Cambridge Univ. Press, 1982).Galili, E., Weinstein-Evron, M. & Zohary, D. Appearance of olives in submerged Neolithic sites along the Carmel Coast. J. Isr. Plant Sci. 22, 95–97 (1989).
    Google Scholar 
    Galili, E., Stanley, D. J., Sharvit, J. & Weinstein-Evron, M. Evidence for earliest olive-oil production in submerged settlements off the Carmel Coast, Israel. J. Archaeol. Sci. 24, 1141–1150 (1997).Article 

    Google Scholar 
    Galili, E. et al. Early production of table olives at a mid-7th millennium BP submerged site off the Carmel Coast (Israel). Sci. Rep. 11, 2218 (2021).Article 
    CAS 

    Google Scholar 
    Fraga, H., Pinto, J. G., Viola, F. & Santos, J. A. Climate change projections for olive yields in the Mediterranean Basin. Int. J. Climatol. 40, 769–781 (2020).Article 

    Google Scholar 
    Ben Zaied, Y. & Zouabi, O. Impacts of climate change on Tunisian olive oil output. Clim. Change 139, 535–549 (2016).Article 

    Google Scholar 
    Brito, C., Dinis, L. T., Moutinho-Pereire, J. & Correia, C. M. Drought stress effects and olive tree acclimation under a changing climate. Plants 8, 232 (2019).Article 
    CAS 

    Google Scholar 
    Fraga, H., Moriondo, M., Leolini, L. & Santos, J. A. Mediterranean olive orchards under climate change: a review of future impacts and adaptation strategies. Agronomy 11, 56 (2021).Article 

    Google Scholar 
    Trærup, S. & Stephan, J. Technologies for adaptation to climate change. Examples from the agricultural and water sectors in Lebanon. Clim. Change 131, 435–449 (2015).Article 

    Google Scholar 
    Chalak, L. et al. Extent of the genetic diversity in Lebanese olive (Olea europaea L.) trees: a mixture of an ancient germplasm with recently introduced varieties. Genet. Resour. Crop. Evol. 62, 621–633 (2015).Article 

    Google Scholar 
    Bou-Zeid, E. & El-Fadel, M. Climate change and water resources in Lebanon and the Middle East. J. Water Resour. Plan. Manag. 128, 343–355 (2002).Article 

    Google Scholar 
    Ramadan, H. H., Beighley, R. E. & Ramamurthy, A. S. Sensitivity analysis of climate change impact on the hydrology of the Litani Basin in Lebanon. Int. J. Environ. Pollut. 52, 65–81 (2013).Article 
    CAS 

    Google Scholar 
    Saade, J., Atieh, M., Ghanimeh, S. & Golmohammadi, G. Modeling impact of climate change on surface water availability using SWAT model in a semi-arid basin: case of El Kalb River, Lebanon. Hydrology 8, 134 (2021).Article 

    Google Scholar 
    Halwani, J. & Halwani, B. in Climate Change in the Mediterranean and Middle Eastern Region (eds Filho, W. L. & Manolas, E.) 395–412 (Springer, 2022).Aubet, M.E. in Nomads of the Mediterranean: Trade and Contact in the Bronze and Iron Ages (eds Gilboa, A. & Yasur-Landau, A.) 14–30 (Brill, 2020).Bikai, P. M. The Pottery of Tyre (Aris & Phillips, 1979).Hajar, L., Khater, C. & Cheddadi, R. Vegetation changes during the late Pleistocene and Holocene in Lebanon: a pollen record from the Bekaa Valley. Holocene 18, 1089–1099 (2008).Article 

    Google Scholar 
    Hajar, L., Haïdar-Boustani, M., Khater, C. & Cheddadi, R. Environmental changes in Lebanon during the Holocene: man vs. climate impacts. J. Arid. Environ. 74, 746–755 (2010).Article 

    Google Scholar 
    Cheddadi, R. & Khater, C. Climate change since the last glacial period in Lebanon and the persistence of Mediterranean species. Quat. Sci. Rev. 150, 146–157 (2016).Article 

    Google Scholar 
    Ozturk, M. et al. An overview of olive cultivation in Turkey: botanical features, eco-physiology and phytochemical aspects. Agronomy 11, 295 (2021).Article 
    CAS 

    Google Scholar 
    Lionello, P., Congedi, L., Reale, M., Scarascia, L. & Tanzarella, A. Sensitivity of typical Mediterranean crops to past and future evolution of seasonal temperature and precipitation in Apulia. Reg. Environ. Change 14, 2025–2038 (2014).Article 

    Google Scholar 
    Arenas-Castro, S., Gonçalves, J. F., Moreno, M. & Villar, R. Projected climate changes are expected to decrease the suitability and production of olive varieties in southern Spain. Sci. Total Environ. 709, 136161 (2020).Article 
    CAS 

    Google Scholar 
    Mechri, B., Tekaya, M., Hammami, M. & Chehab, H. Effects of drought stress on phenolic accumulation in greenhouse-grown olive trees (Olea europaea). Biochem. Syst. Ecol. 92, 104112 (2020).Article 
    CAS 

    Google Scholar 
    Pedan, V., Popp, M., Rohn, S., Nyfeler, M. & Bongartz, A. Characterization of phenolic compounds and their contribution to sensory properties of olive oil. Molecules 24, 2041 (2019).Article 
    CAS 

    Google Scholar 
    Dias, M. C., Pinto, D. C. G. A., Figueiredo, C., Santos, C. & Silva, A. M. S. Phenolic and lipophilic metabolite adjustments in Olea europaea (olive) trees during drought stress and recovery. Phytochemistry 185, 112695 (2021).Article 
    CAS 

    Google Scholar 
    Peres, F. et al. Phenolic compounds of ‘Galega Vulgar’ and ‘Cobrançosa’ olive oils along early ripening stages. Food Chem. 211, 51–58 (2016).Article 
    CAS 

    Google Scholar 
    Tsimidou, M. Z. in Handbook of Olive Oil: Analysis and Properties (eds Aparicio, R. & Harwood, J.) 311–333 (Springer, 2013).Valente, S. et al. Modulation of phenolic and lipophilic compounds of olive fruits in response to combined drought and heat. Food Chem. 329, 127191 (2020).Article 
    CAS 

    Google Scholar 
    WCRP. World Research Climate Program https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 (WCRP, 2022).Rallo, L. et al. in Advances in Plant Breeding Strategies: Fruits (eds Al-Khayri, J. et al.) (Springer, 2018).Abou-Saaid, O. et al. Statistical approach to assess chill and heat requirements of olive tree based on flowering date and temperatures data: towards selection of adapted cultivars to global warming. Agronomy 12, 2975 (2022).Article 

    Google Scholar 
    Faegri, K. & Iversen, I. Textbook of Pollen Analysis 4th edn. (Wiley, 1989).Ferrara, G., Camposeo, S., Palasciano, M. & Godini, A. Production of total and stainable pollen grains in Olea europaea L. Grana 46, 85–90 (2007).Article 

    Google Scholar 
    Kaniewski, D. et al. Wild or cultivated Olea europaea L. in the eastern Mediterranean during the Middle–Late Holocene? A pollen-numerical approach. Holocene 19, 1039–1047 (2009).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing https://www.R-project.org/ (R Foundation for Statistical Computing, 2020).Hammer, O. & Harper, D. Paleontological Data Analysis (Blackwell, 2006).Cheddadi, R. et al. Microrefugia, climate change, and conservation of Cedrus atlantica in the Rif Mountains, Morocco. Front. Ecol. Evol. 5, 114 (2017).Article 

    Google Scholar 
    Kaniewski, D. et al. Cold and dry outbreaks in the eastern Mediterranean 3200 years ago. Geology 47, 933–937 (2019).Article 

    Google Scholar 
    Kaniewski, D. et al. Recent anthropogenic climate change exceeds the rate and magnitude of natural Holocene variability on the Balearic Islands. Anthropocene 32, 100268 (2020).Article 

    Google Scholar 
    Kaniewski, D. et al. Coastal submersions in the north-eastern Adriatic during the last 5200 years. Glob. Planet. Change 204, 103570 (2021).Article 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high-resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Akima, H. & Gebhardt, A. Akima: Interpolation of Irregularly and Regularly Spaced Data. R v.0.6-2 (R Foundation for Statistical Computing, 2016).Ooms, J. D., Debroy, S., Wickham, H. & Horner, J. RMySQL: Database Interface and ‘MySQL’ Driver for R. R v.0.10.18 (R Foundation for Statistical Computing, 2019).Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar  More

  • in

    A predictive timeline of wildlife population collapse

    Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).Article 

    Google Scholar 
    Dereniowska, M. & Meinard, Y. The unknownness of biodiversity: its value and ethical significance for conservation action. Biol. Conserv. 260, 109199 (2021).Article 

    Google Scholar 
    Maron, M. et al. Towards a threat assessment framework for ecosystem services. Trends Ecol. Evol. 32, 240–248 (2017).Article 

    Google Scholar 
    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).Article 
    CAS 

    Google Scholar 
    Taborsky, B. et al. Towards an evolutionary theory of stress responses. Trends Ecol. Evol. 36, 39–48 (2021).Article 

    Google Scholar 
    van de Leemput, I. A., Dakos, V., Scheffer, M. & van Nes, E. H. Slow recovery from local disturbances as an indicator for loss of ecosystem resilience. Ecosystems 21, 141–152 (2018).Article 

    Google Scholar 
    Fagan, W. F. & Holmes, E. E. Quantifying the extinction vortex. Ecol. Lett. 9, 51–60 (2005).
    Google Scholar 
    Williams, N. F., McRae, L., Freeman, R., Capdevila, P. & Clements, C. F. Scaling the extinction vortex: body size as a predictor of population dynamics close to extinction events. Ecol. Evol. 11, 7069–7079 (2021).Article 

    Google Scholar 
    Clements, C. F. & Ozgul, A. Indicators of transitions in biological systems. Ecol. Lett. 21, 905–919 (2018).Article 

    Google Scholar 
    Shaffer, M. L. in Challenges in the Conservation of Biological Resources (eds. Decker, D. J., Krasny, M. E., Goff, G. R., Smith, C. R. & Gross, D. W.) 107–118 (Routledge, 2019).Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).Article 
    CAS 

    Google Scholar 
    Gardner, T. A. et al. The cost-effectiveness of biodiversity surveys in tropical forests. Ecol. Lett. 11, 139–150 (2008).Article 

    Google Scholar 
    Coulson, T., Mace, G. M., Hudson, E. & Possingham, H. The use and abuse of population viability analysis. Trends Ecol. Evol. 16, 219–221 (2001).Article 
    CAS 

    Google Scholar 
    Clements, C. F., Drake, J. M., Griffiths, J. I. & Ozgul, A. Factors influencing the detectability of early warning signals of population collapse. Am. Nat. 186, 50–58 (2015).Article 

    Google Scholar 
    Patterson, A. C., Strang, A. G. & Abbott, K. C. When and where we can expect to see early warning signals in multispecies systems approaching tipping points: insights from theory. Am. Nat. 198, E12–E26 (2021).Article 

    Google Scholar 
    Vinton, A. C., Gascoigne, S. J. L., Sepil, I. & Salguero-Gómez, R. Plasticity’s role in adaptive evolution depends on environmental change components. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2022.08.008 (2022).Levin, S. A. The problem of pattern and scale in ecology: the Robert H. MacArthur Award lecture. Ecology 73, 1943–1967 (1992).Article 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).Article 
    CAS 

    Google Scholar 
    Haberle, I., Marn, N., Geček, S. & Klanjšček, T. Dynamic energy budget of endemic and critically endangered bivalve Pinna nobilis: a mechanistic model for informed conservation. Ecol. Model. 434, 109207 (2020).Article 

    Google Scholar 
    Gislason, H., Daan, N., Rice, J. C. & Pope, J. G. Size, growth, temperature and the natural mortality of marine fish. Fish Fish. 11, 149–158 (2010).Article 

    Google Scholar 
    Jennings, S. & Blanchard, J. L. Fish abundance with no fishing: predictions based on macroecological theory. J. Anim. Ecol. 73, 632–642 (2004).Article 

    Google Scholar 
    Valderrama, D. & Fields, K. H. Flawed evidence supporting the metabolic theory of ecology may undermine goals of ecosystem-based fishery management: the case of invasive Indo-Pacific lionfish in the western Atlantic. ICES J. Mar. Sci. 74, 1256–1267 (2017).Article 

    Google Scholar 
    Marshall, D. J. & McQuaid, C. D. Warming reduces metabolic rate in marine snails: adaptation to fluctuating high temperatures challenges the metabolic theory of ecology. Proc. R. Soc. B 278, 281–288 (2011).Article 

    Google Scholar 
    Rombouts, I., Beaugrand, G., Ibaňez, F., Chiba, S. & Legendre, L. Marine copepod diversity patterns and the metabolic theory of ecology. Oecologia 166, 349–355 (2011).Article 

    Google Scholar 
    Allen, A. P. & Gillooly, J. F. The mechanistic basis of the metabolic theory of ecology. Oikos 116, 1073–1077 (2022).Article 

    Google Scholar 
    Lawton, J. H. From physiology to population dynamics and communities. Funct. Ecol. 5, 155–161 (1991).Article 

    Google Scholar 
    Ames, E. M. et al. Striving for population-level conservation: integrating physiology across the biological hierarchy. Conserv. Physiol. 8, coaa019 (2020).Article 

    Google Scholar 
    Berger-Tal, O. et al. Integrating animal behavior and conservation biology: a conceptual framework. Behav. Ecol. 22, 236–239 (2011).Article 

    Google Scholar 
    Baruah, G., Clements, C. F., Guillaume, F. & Ozgul, A. When do shifts in trait dynamics precede population declines? Am. Nat. 193, 633–644 (2019).Article 

    Google Scholar 
    Dakos, V. et al. Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PLoS ONE 7, e41010 (2012).Article 
    CAS 

    Google Scholar 
    Ward, R. J., Griffiths, R. A., Wilkinson, J. W. & Cornish, N. Optimising monitoring efforts for secretive snakes: a comparison of occupancy and N-mixture models for assessment of population status. Sci. Rep. 7, 18074 (2017).Article 

    Google Scholar 
    Thompson, W. Sampling Rare or Elusive Species: Concepts, Designs, and Techniques for Estimating Population Parameters (Island Press, 2013).Clements, C. F., Blanchard, J. L., Nash, K. L., Hindell, M. A. & Ozgul, A. Body size shifts and early warning signals precede the historic collapse of whale stocks. Nat. Ecol. Evol. 1, 0188 (2017).Article 

    Google Scholar 
    Burant, J. B., Park, C., Betini, G. S. & Norris, D. R. Early warning indicators of population collapse in a seasonal environment. J. Anim. Ecol. 90, 1538–1549 (2021).Article 

    Google Scholar 
    Tuomainen, U. & Candolin, U. Behavioural responses to human-induced environmental change. Biol. Rev. 86, 640–657 (2011).Article 

    Google Scholar 
    Mazza, V., Dammhahn, M., Lösche, E. & Eccard, J. A. Small mammals in the big city: behavioural adjustments of non-commensal rodents to urban environments. Glob. Change Biol. 26, 6326–6337 (2020).Article 

    Google Scholar 
    Hendry, A. P., Farrugia, T. J. & Kinnison, M. T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 17, 20–29 (2008).Article 

    Google Scholar 
    Speakman, J. R., Król, E. & Johnson, M. S. The functional significance of individual variation in basal metabolic rate. Physiol. Biochem. Zool. 77, 900–915 (2004).Article 

    Google Scholar 
    Péron, G. et al. Evidence of reduced individual heterogeneity in adult survival of long-lived species. Evolution 70, 2909–2914 (2016).Article 

    Google Scholar 
    Fleming, A. H., Clark, C. T., Calambokidis, J. & Barlow, J. Humpback whale diets respond to variance in ocean climate and ecosystem conditions in the California Current. Glob. Change Biol. 22, 1214–1224 (2016).Article 

    Google Scholar 
    Kirkwood, T. B. L., Rose, M. R., Harvey, P. H., Partridge, L. & Southwood, S. R. Evolution of senescence: late survival sacrificed for reproduction. Phil. Trans. R. Soc. Lond. B 332, 15–24 (1991).Article 
    CAS 

    Google Scholar 
    Mallela, A. & Hastings, A. The role of stochasticity in noise-induced tipping point cascades: a master equation approach. Bull. Math. Biol. 83, 53 (2021).Article 

    Google Scholar 
    Burthe, S. J. et al. Do early warning indicators consistently predict nonlinear change in long-term ecological data? J. Appl. Ecol. 53, 666–676 (2016).Article 

    Google Scholar 
    Vucetich, J. A. & Waite, T. A. Erosion of heterozygosity in fluctuating populations. Conserv. Biol. 13, 860–868 (1999).Article 

    Google Scholar 
    Kramer, A. M. & Drake, J. M. Experimental demonstration of population extinction due to a predator-driven Allee effect. J. Anim. Ecol. 79, 633–639 (2010).Article 

    Google Scholar 
    Oram, E. & Spitze, K. Depth selection by Daphnia pulex in response to Chaoborus kairomone. Freshw. Biol. 58, 409–415 (2013).Article 

    Google Scholar 
    Trites, A. W. & Donnelly, C. P. The decline of Steller sea lions Eumetopias jubatus in Alaska: a review of the nutritional stress hypothesis. Mammal. Rev. 33, 3–28 (2003).Article 

    Google Scholar 
    Sibly, R. M., Barker, D., Hone, J. & Pagel, M. On the stability of populations of mammals, birds, fish and insects. Ecol. Lett. 10, 970–976 (2007).Article 

    Google Scholar 
    Dakos, V. et al. Ecosystem tipping points in an evolving world. Nat. Ecol. Evol. 3, 355–362 (2019).Article 

    Google Scholar 
    Dingemanse, N. J., Kazem, A. J. N., Réale, D. & Wright, J. Behavioural reaction norms: animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81–89 (2010).Article 

    Google Scholar 
    Tanner, R. L. & Dowd, W. W. Inter-individual physiological variation in responses to environmental variation and environmental change: integrating across traits and time. Comp. Biochem. Physiol. A 238, 110577 (2019).Article 
    CAS 

    Google Scholar 
    Patrick, S. C., Martin, J. G. A., Ummenhofer, C. C., Corbeau, A. & Weimerskirch, H. Albatrosses respond adaptively to climate variability by changing variance in a foraging trait. Glob. Change Biol. 27, 4564–4574 (2021).Article 
    CAS 

    Google Scholar 
    Fayet, A. L., Clucas, G. V., Anker‐Nilssen, T., Syposz, M. & Hansen, E. S. Local prey shortages drive foraging costs and breeding success in a declining seabird, the Atlantic puffin. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13442 (2021).Pierce, C. L. Predator avoidance, microhabitat shift, and risk-sensitive foraging in larval dragonflies. Oecologia 77, 81–90 (1988).Article 
    CAS 

    Google Scholar 
    Leibold, M. & Tessier, A. J. Contrasting patterns of body size for Daphnia species that segregate by habitat. Oecologia 86, 342–348 (1991).Article 

    Google Scholar 
    Charmantier, A. & Gienapp, P. Climate change and timing of avian breeding and migration: evolutionary versus plastic changes. Evol. Appl. 7, 15–28 (2014).Article 

    Google Scholar 
    Kopp, M. & Matuszewski, S. Rapid evolution of quantitative traits: theoretical perspectives. Evol. Appl. 7, 169–191 (2014).Article 

    Google Scholar 
    Williams, J. W., Ordonez, A. & Svenning, J.-C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).Article 

    Google Scholar 
    Jaureguiberry, P. et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 8, eabm9982 (2022).Article 

    Google Scholar 
    Chevin, L.-M., Collins, S. & Lefèvre, F. Phenotypic plasticity and evolutionary demographic responses to climate change: taking theory out to the field. Funct. Ecol. 27, 967–979 (2013).Article 

    Google Scholar 
    Ferriere, R. & Legendre, S. Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory. Phil. Trans. R. Soc. B 368, 20120081 (2013).Article 

    Google Scholar 
    Rebecchi, L., Boschetti, C. & Nelson, D. R. Extreme-tolerance mechanisms in meiofaunal organisms: a case study with tardigrades, rotifers and nematodes. Hydrobiologia 847, 2779–2799 (2020).Article 

    Google Scholar 
    Hansson, B. & Westerberg, L. On the correlation between heterozygosity and fitness in natural populations. Mol. Ecol. 11, 2467–2474 (2002).Article 

    Google Scholar 
    Mammola, S., Carmona, C. P., Guillerme, T. & Cardoso, P. Concepts and applications in functional diversity. Funct. Ecol. 35, 1869–1885 (2021).Article 
    CAS 

    Google Scholar 
    McClanahan, T. R. et al. Highly variable taxa-specific coral bleaching responses to thermal stresses. Mar. Ecol. Prog. Ser. 648, 135–151 (2020).Article 

    Google Scholar 
    Reside, A. E. et al. Beyond the model: expert knowledge improves predictions of species’ fates under climate change. Ecol. Appl. 29, e01824 (2019).Article 

    Google Scholar 
    Desjonquères, C., Gifford, T. & Linke, S. Passive acoustic monitoring as a potential tool to survey animal and ecosystem processes in freshwater environments. Freshw. Biol. 65, 7–19 (2020).Article 

    Google Scholar 
    Sequeira, A. M. M. et al. A standardisation framework for bio-logging data to advance ecological research and conservation. Methods Ecol. Evol. 12, 996–1007 (2021).Article 

    Google Scholar 
    Shimada, T. et al. Optimising sample sizes for animal distribution analysis using tracking data. Methods Ecol. Evol. 12, 288–297 (2021).Article 

    Google Scholar 
    Wauchope, H. S. et al. Evaluating impact using time-series data. Trends Ecol. Evol. 36, 196–205 (2021).Article 

    Google Scholar 
    Krause, D. J., Hinke, J. T., Perryman, W. L., Goebel, M. E. & LeRoi, D. J. An accurate and adaptable photogrammetric approach for estimating the mass and body condition of pinnipeds using an unmanned aerial system. PLoS ONE 12, e0187465 (2017).Article 

    Google Scholar 
    Besson, M. et al. Towards the fully automated monitoring of ecological communities. Ecol. Lett. https://doi.org/10.1111/ele.14123 (2022).Article 

    Google Scholar 
    Cavender-Bares, J. et al. Integrating remote sensing with ecology and evolution to advance biodiversity conservation. Nat. Ecol. Evol. 6, 506–519 (2022).Article 

    Google Scholar 
    Ingram, D. J., Ferreira, G. B., Jones, K. E. & Mace, G. M. Targeting conservation actions at species threat response thresholds. Trends Ecol. Evol. 36, 216–226 (2021).Article 

    Google Scholar 
    Keith, S. A. et al. Synchronous behavioural shifts in reef fishes linked to mass coral bleaching. Nat. Clim. Change 8, 986–991 (2018).Article 

    Google Scholar 
    Drake, J. M. & Griffen, B. D. Early warning signals of extinction in deteriorating environments. Nature 467, 456–459 (2010).Article 
    CAS 

    Google Scholar 
    Enquist, B. J. et al. in Advances in Ecological Research Vol. 52 (eds Pawar, S. et al.) 249–318 (Academic Press, 2015).Wei, W. W. S. Multivariate Time Series Analysis and Applications (John Wiley & Sons, 2018).Holmes, E. E., Ward, E. J. & Wills, K. MARSS: multivariate autoregressive state-space models for analyzing time-series data. R J. 4, 11–19 (2012).Article 

    Google Scholar 
    Zhu, M., Yamakawa, T. & Sakai, T. Combined use of trawl fishery and research vessel survey data in a multivariate autoregressive state-space (MARSS) model to improve the accuracy of abundance index estimates. Fish. Sci. 84, 437–451 (2018).Article 
    CAS 

    Google Scholar 
    Lai, G., Chang, W.-C., Yang, Y. & Liu, H. Modeling long- and short-term temporal patterns with deep neural networks. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval 95–104, https://doi.org/10.1145/3209978.3210006 (ACM, 2018).Bury, T. M. et al. Deep learning for early warning signals of tipping points. Proc. Natl Acad. Sci. USA 118, e2106140118 (2021).Article 
    CAS 

    Google Scholar 
    Lara-Benítez, P., Carranza-García, M. & Riquelme, J. C. An experimental review on deep learning architectures for time series forecasting. Int. J. Neural Syst. 31, 2130001 (2021).Article 

    Google Scholar 
    Guo, Q. et al. Application of deep learning in ecological resource research: theories, methods, and challenges. Sci. China Earth Sci. 63, 1457–1474 (2020).Article 

    Google Scholar 
    Rogers, T. L., Johnson, B. J. & Munch, S. B. Chaos is not rare in natural ecosystems. Nat. Ecol. Evol. 6, 1105–1111 (2022).Article 

    Google Scholar 
    Samplonius, J. M. et al. Phenological sensitivity to climate change is higher in resident than in migrant bird populations among European cavity breeders. Glob. Change Biol. 24, 3780–3790 (2018).Article 

    Google Scholar 
    Menzel, A. et al. Climate change fingerprints in recent European plant phenology. Glob. Change Biol. 26, 2599–2612 (2020).Article 

    Google Scholar 
    Koleček, J., Adamík, P. & Reif, J. Shifts in migration phenology under climate change: temperature vs. abundance effects in birds. Clim. Change 159, 177–194 (2020).Article 

    Google Scholar 
    Altermatt, F. et al. Big answers from small worlds: a user’s guide for protist microcosms as a model system in ecology and evolution. Methods Ecol. Evol. 6, 218–231 (2015).Article 

    Google Scholar 
    Beermann, A. J. et al. Multiple-stressor effects on stream macroinvertebrate communities: a mesocosm experiment manipulating salinity, fine sediment and flow velocity. Sci. Total Environ. 610–611, 961–971 (2018).Article 

    Google Scholar 
    Clements, C. F. & Ozgul, A. Including trait-based early warning signals helps predict population collapse. Nat. Commun. 7, 10984 (2016).Article 
    CAS 

    Google Scholar 
    Jacquet, C. & Altermatt, F. The ghost of disturbance past: long-term effects of pulse disturbances on community biomass and composition. Proc. R. Soc. B 287, 20200678 (2020).Article 

    Google Scholar 
    Greggor, A. L. et al. Research priorities from animal behaviour for maximising conservation progress. Trends Ecol. Evol. 31, 953–964 (2016).Article 

    Google Scholar 
    Couvillon, M. J., Schürch, R. & Ratnieks, F. L. W. Waggle dance distances as integrative indicators of seasonal foraging challenges. PLoS ONE 9, e93495 (2014).Article 

    Google Scholar 
    Hamilton, C. D., Lydersen, C., Ims, R. A. & Kovacs, K. M. Predictions replaced by facts: a keystone species’ behavioural responses to declining Arctic sea-ice. Biol. Lett. 11, 20150803 (2015).Article 

    Google Scholar 
    Holt, R. E. & Jørgensen, C. Climate change in fish: effects of respiratory constraints on optimal life history and behaviour. Biol. Lett. 11, 20141032 (2015).Article 

    Google Scholar 
    Gauzens, B. et al. Adaptive foraging behaviour increases vulnerability to climate change. Preprint at https://doi.org/10.1101/2021.05.05.442768 (2021).Lenda, M., Witek, M., Skórka, P., Moroń, D. & Woyciechowski, M. Invasive alien plants affect grassland ant communities, colony size and foraging behaviour. Biol. Invasions 15, 2403–2414 (2013).Article 

    Google Scholar 
    Hertel, A. G. et al. Don’t poke the bear: using tracking data to quantify behavioural syndromes in elusive wildlife. Anim. Behav. 147, 91–104 (2019).Article 

    Google Scholar 
    Tini, M. et al. Use of space and dispersal ability of a flagship saproxylic insect: a telemetric study of the stag beetle (Lucanus cervus) in a relict lowland forest. Insect Conserv. Divers. 11, 116–129 (2018).Article 

    Google Scholar 
    Kunc, H. P. & Schmidt, R. Species sensitivities to a global pollutant: a meta-analysis on acoustic signals in response to anthropogenic noise. Glob. Change Biol. 27, 675–688 (2021).Article 

    Google Scholar 
    Anestis, A., Lazou, A., Pörtner, H. O. & Michaelidis, B. Behavioral, metabolic, and molecular stress responses of marine bivalve Mytilus galloprovincialis during long-term acclimation at increasing ambient temperature. Am. J. Physiol. 293, R911–R921 (2007).CAS 

    Google Scholar 
    Pacherres, C. O., Schmidt, G. M. & Richter, C. Autotrophic and heterotrophic responses of the coral Porites lutea to large amplitude internal waves. J. Exp. Biol. 216, 4365–4374 (2013).
    Google Scholar 
    Ban, S. S., Graham, N. A. J. & Connolly, S. R. Evidence for multiple stressor interactions and effects on coral reefs. Glob. Change Biol. 20, 681–697 (2014).Article 

    Google Scholar 
    Singh, R., Prathibha, P. & Jain, M. Effect of temperature on life-history traits and mating calls of a field cricket, Acanthogryllus asiaticus. J. Therm. Biol. 93, 102740 (2020).Article 

    Google Scholar 
    Pellegrini, A. Y., Romeu, B., Ingram, S. N. & Daura-Jorge, F. G. Boat disturbance affects the acoustic behaviour of dolphins engaged in a rare foraging cooperation with fishers. Anim. Conserv. 24, 613–625 (2021).Article 

    Google Scholar 
    McMahan, M. D. & Grabowski, J. H. Nonconsumptive effects of a range-expanding predator on juvenile lobster (Homarus americanus) population dynamics. Ecosphere 10, e02867 (2019).Article 

    Google Scholar 
    Vilhunen, S., Hirvonen, H. & Laakkonen, M. V.-M. Less is more: social learning of predator recognition requires a low demonstrator to observer ratio in Arctic charr (Salvelinus alpinus). Behav. Ecol. Sociobiol. 57, 275–282 (2005).Article 

    Google Scholar 
    Ortega, Z., Mencía, A. & Pérez-Mellado, V. Rapid acquisition of antipredatory responses to new predators by an insular lizard. Behav. Ecol. Sociobiol. 71, 1 (2017).Article 

    Google Scholar 
    Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Phil. Trans. R. Soc. B 374, 20180174 (2019).Article 

    Google Scholar 
    Pigeon, G., Ezard, T. H. G., Festa-Bianchet, M., Coltman, D. W. & Pelletier, F. Fluctuating effects of genetic and plastic changes in body mass on population dynamics in a large herbivore. Ecology 98, 2456–2467 (2017).Article 

    Google Scholar 
    Lomolino, M. V. & Perault, D. R. Body size variation of mammals in a fragmented, temperate rainforest. Conserv. Biol. 21, 1059–1069 (2007).Article 

    Google Scholar 
    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).Article 

    Google Scholar 
    Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).Article 

    Google Scholar 
    Thoral, E. et al. Changes in foraging mode caused by a decline in prey size have major bioenergetic consequences for a small pelagic fish. J. Anim. Ecol. 90, 2289–2301 (2021).Article 

    Google Scholar 
    Stirling, I. & Derocher, A. E. Effects of climate warming on polar bears: a review of the evidence. Glob. Change Biol. 18, 2694–2706 (2012).Article 

    Google Scholar 
    Spanbauer, T. L. et al. Body size distributions signal a regime shift in a lake ecosystem. Proc. R. Soc. B 283, 20160249 (2016).Article 

    Google Scholar 
    Bjorndal, K. A. et al. Ecological regime shift drives declining growth rates of sea turtles throughout the West Atlantic. Glob. Change Biol. 23, 4556–4568 (2017).Article 

    Google Scholar 
    Eshun-Wilson, F., Wolf, R., Andersen, T., Hessen, D. O. & Sperfeld, E. UV radiation affects antipredatory defense traits in Daphnia pulex. Ecol. Evol. 10, 14082–14097 (2020).Article 

    Google Scholar 
    Zhang, H., Hollander, J. & Hansson, L.-A. Bi-directional plasticity: rotifer prey adjust spine length to different predator regimes. Sci. Rep. 7, 10254 (2017).Article 

    Google Scholar 
    Simbula, G., Vignoli, L., Carretero, M. A. & Kaliontzopoulou, A. Fluctuating asymmetry as biomarker of pesticides exposure in the Italian wall lizards (Podarcis siculus). Zoology 147, 125928 (2021).Article 

    Google Scholar 
    Leary, R. F. & Allendorf, F. W. Fluctuating asymmetry as an indicator of stress: implications for conservation biology. Trends Ecol. Evol. 4, 214–217 (1989).Article 
    CAS 

    Google Scholar 
    Gavrilchuk, K. et al. Trophic niche partitioning among sympatric baleen whale species following the collapse of groundfish stocks in the Northwest Atlantic. Mar. Ecol. Prog. Ser. 497, 285–301 (2014).Article 

    Google Scholar 
    Kershaw, J. L. et al. Declining reproductive success in the Gulf of St. Lawrence’s humpback whales (Megaptera novaeangliae) reflects ecosystem shifts on their feeding grounds. Glob. Change Biol. 27, 1027–1041 (2021).Article 
    CAS 

    Google Scholar 
    Rode, K. D., Amstrup, S. C. & Regehr, E. V. Reduced body size and cub recruitment in polar bears associated with sea ice decline. Ecol. Appl. 20, 768–782 (2010).Article 

    Google Scholar 
    Obbard, M. E. et al. Re-assessing abundance of Southern Hudson Bay polar bears by aerial survey: effects of climate change at the southern edge of the range. Arct. Sci. 4, 634–655 (2018).Article 

    Google Scholar 
    Hutchings, J. A. The cod that got away. Nature 428, 899–900 (2004).Article 
    CAS 

    Google Scholar 
    Zhang, F. Early warning signals of population productivity regime shifts in global fisheries. Ecol. Indic. 115, 106371 (2020).Article 

    Google Scholar 
    Fulton, G. R. The Bramble Cay melomys: the first mammalian extinction due to human-induced climate change. Pac. Conserv. Biol. 23, 1–3 (2017).Article 

    Google Scholar  More

  • in

    Ecologically unequal exchanges driven by EU consumption

    Rockström, J. et al. A safe operation space for humanity. Nature 461, 472–475 (2009).Article 

    Google Scholar 
    Chancel, L., Piketty, T., Saez, E. & Zucman, G. World Inequality Report 2022 (Belknap Press, 2022).Ivanova, D. et al. Environmental impact assessment of household consumption. J. Ind. Ecol. 20, 526–536 (2016).Article 
    CAS 

    Google Scholar 
    Steen-Olsen, K., Weinzettel, J., Cranston, G., Ercin, A. E. & Hertwich, E. G. Carbon, land, and water footprint accounts for the European Union: consumption, production, and displacements through international trade. Environ. Sci. Technol. 46, 10883–10891 (2012).Article 
    CAS 

    Google Scholar 
    Tukker, A. et al. Environmental and resource footprints in a global context: Europe’s structural deficit in resource endowments. Glob. Environ. Change 40, 171–181 (2016).Article 

    Google Scholar 
    Bruckner, B., Hubacek, K., Shan, Y., Zhong, H. & Feng, K. Impacts of poverty alleviation on national and global carbon emissions. Nat. Sustain. 5, 311–320 (2022).Article 

    Google Scholar 
    Hubacek, K. et al. Global carbon inequality. Energy, Ecol. Environ. 2, 361–369 (2017).Article 

    Google Scholar 
    Yu, Y., Feng, K. & Hubacek, K. Tele-connecting local consumption to global land use. Glob. Environ. Change 23, 1178–1186 (2013).Article 

    Google Scholar 
    Wilting, H. C., Schipper, A. M., Bakkenes, M., Meijer, J. R. & Huijbregts, M. A. J. Quantifying biodiversity losses due to human consumption: a global-scale footprint analysis. Environ. Sci. Technol. 51, 3298–3306 (2017).Article 
    CAS 

    Google Scholar 
    Lucas, P. L., Wilting, H. C., Hof, A. F. & Van Vuuren, D. P. Allocating planetary boundaries to large economies: distributional consequences of alternative perspectives on distributive fairness. Glob. Environ. Change 60, 102017 (2020).Article 

    Google Scholar 
    Beylot, A. et al. Assessing the environmental impacts of EU consumption at macro-scale. J. Clean. Prod. 216, 382–393 (2019).Article 

    Google Scholar 
    Koslowski, M., Moran, D. D., Tisserant, A., Verones, F. & Wood, R. Quantifying Europe’s biodiversity footprints and the role of urbanization and income. Glob. Sustain. 3, e1 (2020).Lutter, S., Pfister, S., Giljum, S., Wieland, H. & Mutel, C. Spatially explicit assessment of water embodied in European trade: a product-level multi-regional input-output analysis. Glob. Environ. Change 38, 171–182 (2016).Article 

    Google Scholar 
    Stadler, K. et al. EXIOBASE 3 (3.8.1) [Data set]. Zenodo https://doi.org/10.5281/ZENODO.4588235 (2021).Roadmap to a Resource Efficient Europe (European Commission, 2011).Steinmann, Z. J. N. et al. Headline environmental indicators revisited with the global multi-regional input–output database EXIOBASE. J. Ind. Ecol. 22, 565–573 (2018).Article 

    Google Scholar 
    Ivanova, D. et al. Mapping the carbon footprint of EU regions. Environ. Res. Lett. 12, 054013 (2017).Wiedmann, T. O. et al. The material footprint of nations. Proc. Natl Acad. Sci. USA 112, 6271–6276 (2015).Article 
    CAS 

    Google Scholar 
    Lenzen, M. et al. Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. Nat. Sustain. 5, 157–166 (2022).Dorninger, C. et al. The effect of industrialization and globalization on domestic land-use: a global resource footprint perspective. Glob. Environ. Change 69, 102311 (2021).Article 

    Google Scholar 
    Mekonnen, M. M. & Gerbens-Leenes, W. The water footprint of food. Water 12, 12 (2020).Article 

    Google Scholar 
    Prell, C. & Feng, K. Unequal carbon exchanges: the environmental and economic impacts of iconic U.S. consumption items. J. Ind. Ecol. 20, 537–546 (2016).Article 

    Google Scholar 
    Prell, C., Feng, K., Sun, L., Geores, M. & Hubacek, K. The economic gains and environmental losses of US consumption: a world-systems and input-output approach. Soc. Forces 93, 405–428 (2014).Article 

    Google Scholar 
    Prell, C. Wealth and pollution inequalities of global trade: a network and input-output approach. Soc. Sci. J. 53, 111–121 (2016).Article 

    Google Scholar 
    World Economic Outlook (October 2022) (International Monetary Fund, 2022); https://www.imf.org/external/datamapper/datasets/WEOWilting, H. C., Schipper, A. M., Ivanova, O., Ivanova, D. & Huijbregts, M. A. J. Subnational greenhouse gas and land-based biodiversity footprints in the European Union. J. Ind. Ecol. 25, 79–94 (2021). https://doi.org/10.1111/jiec.13042Cabernard, L. & Pfister, S. A highly resolved MRIO database for analyzing environmental footprints and Green Economy Progress. Sci. Total Environ. 755, 142587 (2021).Jakob, M., Ward, H. & Steckel, J. C. Sharing responsibility for trade-related emissions based on economic benefits. Glob. Environ. Chang. 66, 102207 (2021).Article 

    Google Scholar 
    Wood, R. et al. The structure, drivers and policy implications of the European carbon footprint. Clim. Policy 20, S39–S57 (2020).Article 

    Google Scholar 
    Wood, R. et al. Growth in environmental footprints and environmental impacts embodied in trade: resource efficiency indicators from EXIOBASE3. J. Ind. Ecol. 22, 553–564 (2018).Article 

    Google Scholar 
    Hubacek, K., Chen, X., Feng, K., Wiedmann, T. & Shan, Y. Evidence of decoupling consumption-based CO2 emissions from economic growth. Adv. Appl. Energy 4, 100074 (2021).Article 

    Google Scholar 
    Wiedmann, T. & Lenzen, M. Environmental and social footprints of international trade. Nat. Geosci. 11, 314–321 (2018).Article 
    CAS 

    Google Scholar 
    Dorninger, C. et al. Global patterns of ecologically unequal exchange: Implications for sustainability in the 21st century. Ecol. Econ. 179, 106824 (2021).Article 

    Google Scholar 
    Hickel, J., Dorninger, C., Wieland, H. & Suwandi, I. Imperialist appropriation in the world economy: drain from the global South through unequal exchange, 1990–2015. Glob. Environ. Change 73, 102467 (2022).Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).Article 
    CAS 

    Google Scholar 
    Ivanova, D. et al. Quantifying the potential for climate change mitigation of consumption options. Environ. Res. Lett. 15, 093001 (2020).Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).Article 
    CAS 

    Google Scholar 
    Ivanova, D. & Wood, R. The unequal distribution of household carbon footprints in Europe and its link to sustainability. Glob. Sustain. 3, e18 (2020).Hickel, J., O’Neill, D. W., Fanning, A. L. & Zoomkawala, H. National responsibility for ecological breakdown: a fair-shares assessment of resource use, 1970–2017. Lancet Planet. Heal. 6, e342–e349 (2022).Article 

    Google Scholar 
    Otto, I. M., Kim, K. M., Dubrovsky, N. & Lucht, W. Shift the focus from the super-poor to the super-rich. Nat. Clim. Change 9, 82–84 (2019).Article 

    Google Scholar 
    Wiedmann, T., Lenzen, M., Keyßer, L. T. & Steinberger, J. K. Scientists’ warning on affluence. Nat. Commun. 11, 3107 (2020).Nielsen, K. S., Nicholas, K. A., Creutzig, F., Dietz, T. & Stern, P. C. The role of high-socioeconomic-status people in locking in or rapidly reducing energy-driven greenhouse gas emissions. Nat. Energy 6, 1011–1016 (2021).Article 

    Google Scholar 
    Jakob, M. Why carbon leakage matters and what can be done against it. One Earth 4, 609–614 (2021).Article 

    Google Scholar 
    Lave, L. B. Using input–output analysis to estimate economy-wide discharges. Environ. Sci. Technol. 29, 420A–426A (1995).Article 
    CAS 

    Google Scholar 
    Wiedmann, T. A review of recent multi-region input–output models used for consumption-based emission and resource accounting. Ecol. Econ. 69, 211–222 (2009).Article 

    Google Scholar 
    Ewing, B. R. et al. Integrating ecological and water footprint accounting in a multi-regional input–output framework. Ecol. Indic. 23, 1–8 (2012).Article 

    Google Scholar 
    Brizga, J., Feng, K. & Hubacek, K. Household carbon footprints in the Baltic States: a global multi-regional input–output analysis from 1995 to 2011. Appl. Energy 189, 780–788 (2017).Hertwich, E. G. & Peters, G. P. Carbon footprint of nations: a global, trade-linked analysis. Environ. Sci. Technol. 43, 6414–6420 (2009).Article 
    CAS 

    Google Scholar 
    Zhong, H., Feng, K., Sun, L., Cheng, L. & Hubacek, K. Household carbon and energy inequality in Latin American and Caribbean countries. J. Environ. Manag. 273, 110979 (2020).Article 

    Google Scholar 
    Stadler, K. et al. EXIOBASE 3: developing a time series of detailed environmentally extended multi-regional input–output tables. J. Ind. Ecol. 22, 502–515 (2018).Article 

    Google Scholar 
    Hardadi, G., Buchholz, A. & Pauliuk, S. Implications of the distribution of German household environmental footprints across income groups for integrating environmental and social policy design. J. Ind. Ecol. 25, 95–113 (2021).Zhang, Q. et al. Transboundary health impacts of transported global air pollution and international trade. Nature 543, 705–709 (2017).Article 
    CAS 

    Google Scholar 
    Hoekstra, A. Y., Mekonnen, M. M., Chapagain, A. K., Mathews, R. E. & Richter, B. D. Global monthly water scarcity: blue water footprints versus blue water availability. PLoS ONE 7, e32688 (2012).Article 
    CAS 

    Google Scholar 
    IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).Schmidt, S. et al. Understanding GHG emissions from Swedish consumption—current challenges in reaching the generational goal. J. Clean. Prod. 212, 428–437 (2019).Article 

    Google Scholar 
    Huijbregts, M. A. J. Priority Assessment of Toxic Substances in the Frame of LCA. Development and Application of the Multi-Media Fate, Exposure and Effect Model USES-LCA (Interfaculty Department of Envrionmental Science, 1999).Huijbregts, M. A. J. Priority Assessment of Toxic Substances in the Frame of LCA. Time Horizon Dependency in Toxicity Potentials Calculated with the Multi-Media Fate, Exposure and Effects Model USES-LCA (Institute for Biodiversity and Ecosystem Dynamics, 2000).International Reference Life Cycle Data System (ILCD) Handbook (Publications Office EU, 2011).Verones, F., Moran, D., Stadler, K., Kanemoto, K. & Wood, R. Resource footprints an d their ecosystem consequences. Sci. Rep. 7, 40743 (2017).Chaudhary, A., Pfister, S. & Hellweg, S. Spatially explicit analysis of biodiversity loss due to global agriculture, pasture and forest land use from a producer and consumer perspective. Environ. Sci. Technol. 50, 3928–3936 (2016).Article 
    CAS 

    Google Scholar 
    Chaudhary, A., Verones, F., De Baan, L. & Hellweg, S. Quantifying land use impacts on biodiversity: combining species-area models and vulnerability indicators. Environ. Sci. Technol. 49, 9987–9995 (2015).Article 
    CAS 

    Google Scholar 
    Marquardt, S. G. et al. Consumption-based biodiversity footprints—do different indicators yield different results? Ecol. Indic. 103, 461–470 (2019).Article 

    Google Scholar 
    World Development Indicators DataBank (World Bank, 2022); https://databank.worldbank.org/source/world-development-indicatorsWorld Population Prospects 2022 (United Nations, 2022); https://population.un.org/wpp/Natural Earth Vector (Natural Earth, 2022); https://www.naturalearthdata.com/Lahti, L., Huovari, J., Kainu, M. & Biecek, P. Retrieval and analysis of eurostat open data with the Eurostat package. R J. 9, 385–392 (2017).Castellani, V., Beylot, A. & Sala, S. Environmental impacts of household consumption in Europe: comparing process-based LCA and environmentally extended input-output analysis. J. Clean. Prod. 240, 117966 (2019).Article 

    Google Scholar  More

  • in

    Rapid upwards spread of non-native plants in mountains across continents

    Essl, F. et al. A conceptual framework for range-expanding species that track human-induced environmental change. BioScience 69, 908–919 (2019).Article 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 

    Google Scholar 
    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).Article 

    Google Scholar 
    Freeman, B. G., Lee-Yaw, J. A., Sunday, J. M. & Hargreaves, A. L. Expanding, shifting and shrinking: the impact of global warming on species’ elevational distributions. Glob. Ecol. Biogeogr. 27, 1268–1276 (2018).Article 

    Google Scholar 
    van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015).Article 

    Google Scholar 
    Alexander, J. M. et al. Lags in the response of mountain plant communities to climate change. Glob. Change Biol. 24, 563–579 (2018).Article 

    Google Scholar 
    Graae, B. J. et al. Stay or go—how topographic complexity influences alpine plant population and community responses to climate change. Perspect. Plant Ecol. Evol. Syst. 30, 41–50 (2018).Article 

    Google Scholar 
    Rumpf, S. B., Hülber, K., Zimmermann, N. E. & Dullinger, S. Elevational rear edges shifted at least as much as leading edges over the last century. Glob. Ecol. Biogeogr. 28, 533–543 (2019).Article 

    Google Scholar 
    Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).Article 
    CAS 

    Google Scholar 
    Mamantov, M. A., Gibson-Reinemer, D. K., Linck, E. B. & Sheldon, K. S. Climate-driven range shifts of montane species vary with elevation. Glob. Ecol. Biogeogr. 30, 784–794 (2021).Article 

    Google Scholar 
    Alexander, J. M. et al. Plant invasions into mountains and alpine ecosystems: current status and future challenges. Alp. Bot. 126, 89–103 (2016).Article 

    Google Scholar 
    Pauchard, A. et al. Ain’t no mountain high enough: plant invasions reaching new elevations. Front. Ecol. Environ. 7, 479–486 (2009).Article 

    Google Scholar 
    Alexander, J. M., MIREN Consortium et al. Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proc. Natl Acad. Sci. USA 108, 656–661 (2011).Article 
    CAS 

    Google Scholar 
    Seipel, T. et al. Processes at multiple spatial scales determine non-native plant species richness and similarity in mountain regions around the world. Glob. Ecol. Biogeogr. 21, 236–246 (2012).Article 

    Google Scholar 
    Dainese, M. et al. Human disturbance and upward expansion of plants in a warming climate. Nat. Clim. Change 7, 577–580 (2017).Article 

    Google Scholar 
    McDougall, K. L. et al. Running off the road: roadside non-native plants invading mountain vegetation. Biol. Invasions 20, 3461–3473 (2018).Article 

    Google Scholar 
    Petitpierre, B. et al. Will climate change increase the risk of plant invasions into mountains? Ecol. Appl. 26, 530–544 (2016).Article 

    Google Scholar 
    Lembrechts, J. J. et al. Microclimate variability in alpine ecosystems as stepping stones for non‐native plant establishment above their current elevational limit. Ecography 41, 900–909 (2017).Article 

    Google Scholar 
    Haider, S. et al. Mountain roads and non-native species modify elevational patterns of plant diversity. Glob. Ecol. Biogeogr. 27, 667–678 (2018).Article 

    Google Scholar 
    Wolf, A., Zimmerman, N. B., Anderegg, W. R. L., Busby, P. E. & Christensen, J. Altitudinal shifts of the native and introduced flora of California in the context of 20th-century warming. Glob. Ecol. Biogeogr. 25, 418–429 (2016).Article 

    Google Scholar 
    Seipel, T., Alexander, J. M., Edwards, P. J. & Kueffer, C. Range limits and population dynamics of non-native plants spreading along elevation gradients. Perspect. Plant Ecol. Evol. Syst. 20, 46–55 (2016).Article 

    Google Scholar 
    Koide, D., Yoshida, K., Daehler, C. C. & Mueller-Dombois, D. An upward elevation shift of native and non-native vascular plants over 40 years on the island of Hawai’i. J. Vegetation Sci. 28, 939–950 (2017).Article 

    Google Scholar 
    Becker, T., Dietz, H., Billeter, R., Buschmann, H. & Edwards, P. J. Altitudinal distribution of alien plant species in the Swiss Alps. Perspect. Plant Ecol. Evol. Syst. 7, 173–183 (2005).Article 

    Google Scholar 
    Haider, S. et al. The role of bioclimatic origin, residence time and habitat context in shaping non-native plant distributions along an altitudinal gradient. Biol. Invasions 12, 4003–4018 (2010).Article 

    Google Scholar 
    Pyšek, P., Jarošík, V., Pergl, J. & Wild, J. Colonization of high altitudes by alien plants over the last two centuries. Proc. Natl Acad. Sci. USA 108, 439–440 (2011).Article 

    Google Scholar 
    Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Change 2, 111–115 (2012).Article 

    Google Scholar 
    Lenoir, J. et al. Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography 33, 295–303 (2010).
    Google Scholar 
    Crimmins, S. M., Dobrowski, S. Z., Greenberg, J. A., Abatzoglou, J. T. & Mynsberge, A. R. Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331, 324–327 (2011).Article 
    CAS 

    Google Scholar 
    Rumpf, S. B. et al. Range dynamics of mountain plants decrease with elevation. Proc. Natl Acad. Sci. USA 115, 1848–1853 (2018).Article 
    CAS 

    Google Scholar 
    Scherrer, D. & Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406–416 (2011).Article 

    Google Scholar 
    Kelly, C. & Price, T. D. Correcting for regression to the mean in behavior and ecology. Am. Nat. 166, 700–707 (2005).Article 

    Google Scholar 
    Mazalla, L. & Diekmann, M. Regression to the mean in vegetation science. J. Vegetation Sci. 33, e13117 (2022).Article 

    Google Scholar 
    Colwell, R. K. & Lees, D. C. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76 (2000).Article 
    CAS 

    Google Scholar 
    Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).Article 
    CAS 

    Google Scholar 
    Taheri, S., Naimi, B., Rahbek, C. & Araújo, M. B. Improvements in reports of species redistribution under climate change are required. Sci. Adv. 7, eabe1110 (2021).Article 

    Google Scholar 
    Haider, S. et al. Think globally, measure locally: the MIREN standardized protocol for monitoring plant species distributions along elevation gradients. Ecol. Evol. 12, e8590 (2022).Article 

    Google Scholar 
    Jacobsen, D. The dilemma of altitudinal shifts: caught between high temperature and low oxygen. Front. Ecol. Environ. 18, 211–218 (2020).Article 

    Google Scholar 
    Kueffer, C. et al. in Plant Invasions in Protected Areas Vol. 7 (eds Foxcroft, L. C. et al.) 89–113 (Springer, 2013).Halbritter, A. H., Alexander, J. M., Edwards, P. J. & Billeter, R. How comparable are species distributions along elevational and latitudinal climate gradients? Glob. Ecol. Biogeogr. 22, 1228–1237 (2013).Article 

    Google Scholar 
    Vitasse, Y. et al. Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps. Biol. Rev. 96, 1816–1835 (2021).Article 

    Google Scholar 
    Angert, A. L. et al. Do species’ traits predict recent shifts at expanding range edges? Ecol. Lett. 14, 677–689 (2011).Article 

    Google Scholar 
    Matteodo, M., Wipf, S., Stöckli, V., Rixen, C. & Vittoz, P. Elevation gradient of successful plant traits for colonizing alpine summits under climate change. Environ. Res. Lett. 8, 024043 (2013).Article 

    Google Scholar 
    Lembrechts, J. et al. Disturbance is the key to plant invasions in cold environments. Proc. Natl Acad. Sci. USA 113, 14061–14066 (2016).Article 
    CAS 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Pebesma, E. Simple features for R: standardized support for spatial vector data. R J. 10, 439–446 (2018).Article 

    Google Scholar 
    Kahle, D. & Wickham, H. ggmap: spatial visualization with ggplot2. R J. 5, 144–161 (2013). http://journal.r-project.org/archive/2013-1/kahle-wickham.pdfSeipel, T., Haider, S. & MIREN consortium. MIREN survey of plant species in mountains (v2.0). Zenodo https://doi.org/10.5281/zenodo.5529072 (2022). More

  • in

    Using size-weight relationships to estimate biomass of heavily targeted aquarium corals by Australia’s coral harvest fisheries

    Establishing size-weight relationships for heavily targeted coral species is an important first step towards informing sustainable harvest limits19. Placing coral harvests into an ecological context is a core requirement for implementing a defensible stock assessment strategy, and this need is particularly critical given escalating disturbances and widespread reports of coral loss7,17,25. Using these relationships, managers can now easily sample and calculate biomass per unit area. It is important to point out that all sites sampled in our study represent fished locations, and there is no information available to test whether standing biomass has declined due to sustained coral harvesting at these locations. While these data may now provide a critical baseline for assessing the future effects of ongoing fishing, it is also important to sample at comparable locations where fishing is not permitted or has not occurred (where possible), to test for potential effects of recent and historical harvesting.Biomass per unit area data presented herein highlights the highly patchy abundance and biomass of targeted coral species14, which is evident based on the often vastly different mean and median values (Table 2). Examining biomass per unit area estimates for C. jardinei for example, which returned some of the highest biomass estimates, the 33.75 kg·m−2 maximum estimate from a transect stands as an extreme outlier, with 12 of the 16 other transects being below 0.2 kg·m−2. This indicates the challenges of managing species that occur in patchily distributed concentrations, particularly in a management area the size of the QCF. It is also important to note, these estimates are generated only on transects where the target species occurred, and therefore, should technically not be considered as an overall estimate of standing biomass. While the estimation of size-weight relationships is a step towards a standing biomass estimate, many challenges remain in terms of sampling or reliably predicting the occurrence of these patchily distributed species. Bruckner et al.14 attempted to overcome this management challenge in a major coral fishery region of Indonesia by categorising and sampling corals (in terms of coral numbers) in defined habitat types, and then extrapolating to estimated habitat area based on visual surveys and available data. This approach, utilising size-weight relationship derived biomass per unit area estimates (instead of coral numbers), may be a viable method for the QCF, however much more information is needed to understand the habitat associations (e.g., nearshore to offshore), and environmental gradients that influence the size and abundance of individual corals. Fundamentally, it is also clear that much more data is required to effectively assess the standing biomass of aquarium corals in the very large area of operation available to Australian coral fisheries.These corals are found in a range of environments, and it is important to consider available information on life history if attempting to use coral size-weight relationships to inform management strategies via standing biomass estimation. All corals in this study can be found as free living corals (at least post-settlement) in soft-sediment, inter-reefal habitats, from which they are typically harvested by commercial collectors19. However, only four of the 6 species are colonial (C. jardinei, D. axifuga, E. glabrescens, M. lordhowensis) while the remaining two species (H. cf. australis and T. geoffroyi) are more typically monostomatous or solitary. As indicated in previous work24, if larger colonial corals were to be fragmented during harvesting instead of removed entirely, fishery impacts would likely be lessened24. Given the power relationship between coral maximum diameter and weight, larger corals contribute disproportionately to the total available biomass of each species in a given area. The potential environmental benefit of leaving larger colonies (at least partially) intact is not limited to impacts on standing biomass, as this practice would likely be demographically beneficial given the greater reproductive potential (i.e., fecundity) of larger colonies, which also do not need to overcome barriers to replenishment of populations associated with new recruits (i.e., high mortality during and post-settlement26). This conclusion was drawn largely from data on branching taxa (e.g., Acropora), which are relatively resilient to fragmentation and commonly undergo fragmentation as a result of natural processes27,28,29. D. axifuga can be considered to exhibit a relatively similar branching growth form, however, the growth form of E. glabrescens and C. jardinei changes with size, moving from small discrete polyps to large phaceloid and flabello-meandroid colonies, respectively19. While larger colonies of E. glabrescens and C. jardinei may be relatively resilient to harvesting via fragmentation, the same may not be true for smaller colonies, or species with massive growth forms such as M. lordhowensis. Typically, for each species, the average reported weight was quite low, coinciding with the lower end of the sampled maximum diameter range. For colonial species, the harvested smaller maximum diameters (if fragments) are ideal from an ecological perspective as this will have the least impact possible on standing biomass, and may also leave a potentially mature breeding colony intact. Ultimately, in light of these considerations, the development of uniform and standardised industry-wide harvest guidelines to balance economic and ecological outcomes may be necessary. The development of these guidelines would require consultation with commercial harvesters, as well as considerable additional work in measuring ecological impacts and better understanding the cost of these impacts from an economic perspective. Conversely, if whole colonies are collected, which is necessarily the case for solitary species such as H. cf. australis and T. geoffroyi (and potentially smaller colonies of other species such as E. glabrescens and C. jardinei); smaller colonies may be collected before they reach sexual maturity, hindering their ability to contribute to population replenishment. Therefore, collection of small fragments should be encouraged for colonial species; while for monostomatous species where this is not possible, introduction of a minimum harvest size based on sexual maturity should be considered.Additionally, the need for further consideration of the selectivity of ornamental coral harvest fisheries3,4,30 when assessing standing biomass is evident. Due to various desirable traits, the majority of available biomass may not be targeted by collectors. As emphasised in this study, the focus on smaller corals is indicative of the trend towards collection of most of these species at the lower portion of their size range, at least compared to some of the maximum sizes recorded on transects (e.g., see Tables 1 and 2, section b). However, it is also important to consider that transects were conducted in areas subject to commercial collection and are likely to skew results and prevent clear conclusions relating to size selectivity. Sampling of unfished populations (i.e., any residing outside of permitted fishing zones) and/or spatial and temporal matching of catch data and transect data across a larger sample of operators will be required to properly address industry size selectivity trends. For instance, only 17.5% of C. jardinei corals measured on transects fell within the diameter range represented by data obtained from collectors, with 81.9% of corals measured on transects exceeding this range. If it is viable to collect fragments from larger colonies (which does appear to be the case for some corals such as C. jardinei), then a larger proportion of standing biomass outside of this size range could be targeted by fishers. As an additional consideration, only desirable colour morphs of these corals will be harvested, and due to lack of appropriate data, the prevalence of these morphs remains unclear. H. cf. australis and M. lordhowensis for example often occur in brown colour morphs, which are far less popular in markets where certain aesthetic qualities (e.g., specific, eye-catching colours or combinations of colours) are desired, such as the ornamental aquarium industry. Even without delving into further considerations such as heritability of phenotypic traits, management conclusions drawn from standing biomass estimates may be ineffective in the absence of efforts to account for selectivity in this fishery.The relationship between size and weight was found to differ between all corals, with the exception of C. jardinei and E. glabrescens. There can be some moderate similarity in skeletal structure between these two species, particularly between small colonies, reflecting the similar maximum diameter range of sampling in the current study. Subsequently, inherent physiological constraints may be imposed on corals that prevent the maintenance of growth rates between corals of smaller and larger sizes, for example, as the surface area to volume ratio declines with growth31. In the current study, all corals, with the exception of C. jardinei, showed evidence of allometric growth, as exhibited by an estimated exponent value different to 3. Sample size for C. jardinei was greatly limited, as this species typically forms extensive beds, and are rarely brought to facilities as whole colonies. Therefore, the lack of evidence for allometric growth may reflect higher error for the species coefficient parameter due to the comparatively small sample size for this species. This suggests that mass would not increase consistently with changes in colony size in 3 dimensions31, which seems likely considering the change in exhibited form described for E. glabrescens and C. jardinei previously. In the current context, this indicates that the estimated ‘a’ and ‘b’ constants are likely to vary as the sample range increases, reflecting the changes in the size-weight relationship between smaller and larger samples of these species. Therefore, ideally, these models should incorporate data that reflect the maximum diameter range of the species in the region of application to allow increased accuracy of biomass estimation. To achieve this will require additional fishery-independent sampling, as large colonies are rarely collected whole, though may be collected as fragments depending on the species. Sampling may be challenging for some species given the difficulty of physically collecting and replacing large whole colonies, particularly for inter-reefal species such as M. lordhowensis, which can occur in deep, soft sediment habitat, subject to strong currents. Importantly, obtaining ex situ or in situ growth rate data should be considered a priority for the management of heavily targeted species. This data is likely to be another necessary component (in conjunction with size-weight relationships) of any stock assessment model developed for LPS corals, and may also eliminate the need to collect large sample colonies to improve estimated size-weight relationships.The disproportionate focus on smaller corals (i.e., corals in the current study averaged between 4.28 and 11.48 cm in maximum diameter) is likely to lead to an underestimation of weight in corals at greater diameters when used as inputs for size-weight models. This may explain the apparent minor underestimation observed in some species (e.g., M. micromussa, T. geoffroyi). In the current context, this represents an added level of conservatism with estimates obtained from these equations. While the relationship between size and weight was particularly strong for some species, (mainly D. axifuga and T. geoffroyi), for other species, such as M. lordhowensis, growth curves tended towards underestimation at larger diameter values. As the mass of a coral is reflective of the amount of carbonate skeleton that has been deposited32, the coral skeleton may increase disproportionately to coral diameter if or when corals start growing vertically. For example, in massive corals such as M. lordhowensis, vertical growth (i.e., skeletal thickening) is often very negligible among smaller colonies, with thickening of the coral skeleton only becoming apparent once the coral has reached a threshold size in terms of horizontal planar area. Additional fisheries-independent sampling outside of the relatively narrow size range of harvested colonies will be required to address this source of error in future applications. Ecological context in the form of fishery independent data on stock size and structure is essential for effective management, especially in ensuring that exploitation levels are sustainable and appropriate limits are in place. Coral harvest fisheries offer managers an ecologically and biologically unique challenge, as the implementation of standard fisheries management techniques and frameworks is hampered by their coloniality and unique biology, as well as a general lack of relevant data for assessing standing biomass and population turnover, not to mention the evolving taxonomy of scleractinian corals33. Similarly, fishery-related management challenges such as the extreme selectivity in terms of targeted size-ranges and colour-morphs, plus the potentially vast difference in the impact of various collection strategies (i.e., whole colony collection vs fragmentation during collection) also complicates the application of typical fisheries stock assessment frameworks. The relationships and equations established in the current work offer an important first step for coral fisheries globally by laying the groundwork for a defensible, ecologically sound management strategy through estimation of standing biomass, thus bridging the gap between weight-based quotas and potential environmental impacts of ongoing harvesting. It is important to note that the species selected for the current work do not represent the extent of heavily targeted LPS corals. For example, Fimbriaphyllia ancora (Veron & Pichon, 1980), Fimbriaphyllia paraancora (Veron, 1990), Cycloseris cyclolites (Lamark, 1815), and Acanthophyllia deshayesiana (Michelin, 1850) are examples of other heavily targeted corals of potential environmental concern19, and management would also benefit from the estimation of size-weight relationships for these species. Moving forward, the next challenge for the coral harvest fisheries will be to comprehensively document and track the standing biomass of heavily targeted and highly vulnerable coral stocks, explicitly accounting for fisheries effects and also non-fisheries threats, especially global climate change. More