An agent-based algorithm resembles behaviour of tree-dwelling bats under fission–fusion dynamics
1.
Rood, J. P. Group size, survival, reproduction, and routes to breeding in dwarf mongooses. Anim. Behav. 39(3), 566–572 (1990).
Article Google Scholar
2.
Kokko, H., Johnstone, R. A. & Clutton-Brock, T. H. The evolution of cooperative breeding through group augmentation. Proc. R. Soc. B 268(1463), 187–196 (2001).
CAS PubMed Article PubMed Central Google Scholar
3.
Kerth, G. Causes and consequences of sociality in bats. Bioscience 58(8), 737–746 (2008).
Article Google Scholar
4.
Kunz, T. H. Roosting ecology of bats in Ecology of bats (ed. Kunz, T. H.) 1–55 (University of Chicago Press, Chicago, 1982).
5.
Kunz, T. H. & Lumsden, L. F. Ecology of cavity and foliage roosting bats in Bat ecology (eds. Kunz, T. H. & Fenton M. B.) 3–89 (University of Chicago Press, Chicago. 2003).
6.
Lacki, M. J. & Baker, M. D. A prospective power analysis and review of habitat characteristics used in studies of tree-roosting bats. Acta Chiropterol. 5(2), 199–208 (2003).
Article Google Scholar
7.
Naďo, L. & Kaňuch, P. Roost site selection by tree-dwelling bats across biogeographical regions: an updated meta-analysis with meta-regression. Mammal Rev. 45(4), 215–226 (2015).
Article Google Scholar
8.
Barclay, R. M. R., Faure, P. A. & Farr, D. R. Roosting behaviour and roost selection by migrating silver-haired bats (Lasyonycteris noctivagans). J. Mammal. 69(4), 821–825 (1988).
Article Google Scholar
9.
Lewis, S. E. Roost fidelity of bats: a review. J. Mammal. 76(2), 481–496 (1995).
MathSciNet Article Google Scholar
10.
Ruczyński, I. & Bogdanowicz, W. Roost cavity selection by Nyctalus noctula and N. leisleri (Vespertilionidae, Chiroptera) in Białowieża Primeval Forest, eastern Poland. J. Mammal. 86(5), 921–930 (2005).
Article Google Scholar
11.
Ruczyński, I. & Bogdanowicz, W. Summer roost selection by tree-dwelling bats Nyctalus noctula and N. leisleri: a multiscale analysis. J. Mammal. 89(4), 942–951 (2008).
Article Google Scholar
12.
Lučan, R. K., Hanák, V. & Horáček, V. Long-term re-use of tree roosts by European forest bats. For. Ecol. Manag. 258(7), 1301–1306 (2009).
Article Google Scholar
13.
Kuhnert, E., Schonbachler, C., Arlettaz, R. & Christe, P. Roost selection and switching in two forest-dwelling bats: implications for forest management. Eur. J. Wildl. Res. 62(4), 497–500 (2016).
Article Google Scholar
14.
Dietz, M., Brombacher, M., Erasmy, M., Fenchuk, V. & Simon, O. Bat community and roost site selection of tree-dwelling bats in a well-preserved European lowland forest. Acta Chiropterol. 20(1), 117–127 (2018).
Article Google Scholar
15.
Jensen, M. E., Moss, C. F. & Surlykke, A. Echolocating bats can use acoustic landmarks for spatial orientation. J. Exp. Biol. 208(23), 4399–4410 (2005).
PubMed Article PubMed Central Google Scholar
16.
Kerth, G. & Reckardt, K. Information transfer about roosts in female Bechstein’s bats: an experimental field study. Proc. R. Soc. B 270(1514), 511–515 (2003).
PubMed Article PubMed Central Google Scholar
17.
Kerth, G., Ebert, C. & Schmidtke, C. Group decision making in fission-fusion societies: evidence from two-field experiments in Bechstein’s bats. Proc. R. Soc. B 273(1602), 2785–2790 (2006).
PubMed Article PubMed Central Google Scholar
18.
Reckardt, K. & Kerth, G. Roost selection and roost switching of female Bechstein’s bats (Myotis bechsteinii) as a strategy of parasite avoidance. Oecologia 154(3), 581–588 (2007).
PubMed Article ADS PubMed Central Google Scholar
19.
Metheny, J. D., Kalcounis-Rueppell, M. C., Willis, C. K. R., Kolar, K. A. & Brigham, R. M. Genetic relationship between roost-mates in a fission-fusion society of tree-roosting big brown bats (Eptesicus fuscus). Behav. Ecol. Sociobiol. 62(7), 1043–1051 (2008).
Article Google Scholar
20.
Popa-Lisseanu, A. G., Bontadina, F., Mora, O. & Ibáñez, C. Highly structured fission-fusion societies in an aerial-hawking, carnivorous bat. Anim. Behav. 75(2), 471–482 (2008).
Article Google Scholar
21.
Rueegger, N., Law, B. & Goldingay, R. Interspecific differences and commonalities in maternity roosting by tree cavity-roosting bats over a maternity season in a timber production landscape. PLoS ONE 13(3), e0194429 (2018).
PubMed PubMed Central Article CAS Google Scholar
22.
Kerth, G., Perony, N. & Schweitzer, F. Bats are able to maintain long-term social relationships despite the high fission-fusion dynamics of their groups. Proc. R. Soc. B 278(1719), 2761–2767 (2011).
PubMed Article PubMed Central Google Scholar
23.
Patriquin, K. J. et al. Weather as a proximate explanation for fission-fusion dynamics in female northern long-eared bats. Anim. Behav. 122, 47–57 (2016).
Article Google Scholar
24.
Kerth, G., Weissmann, K. & König, B. Day roost selection in female Bechstein’s bats (Myotis bechsteinii): a field experiment to determine the influence of roost temperature. Oecologia 126(1), 1–9 (2001).
PubMed Article ADS PubMed Central Google Scholar
25.
Sedgeley, J. A. Quality of cavity microclimate as a factor influencing selection of maternity roosts by a tree-dwelling bat, Chalinolobus tuberculatus, New Zealand. J. Appl. Ecol. 38(2), 425–438 (2001).
Article Google Scholar
26.
Patriquin, K. J. & Ratcliffe, J. M. Should I stay or should I go? Fission-fusion dynamics in bats in Sociality in bats (ed. Ortega, J.). 65–103 (Springer, New York, 2016).
27.
Fenton, M. B. et al. Raptors and bats: threats and opportunities. Anim. Behav. 48(1), 9–18 (1994).
Article Google Scholar
28.
Lučan, R. K. Relationships between the parasitic mite Spinturnix andegavinus (Acari: Spinturnicidae) and its bat host, Myotis daubentonii (Chiroptera: Vespertilionidae): seasonal, sex- and age-related variation in infestation and possible impact of the parasite on the host condition and roosting behaviour. Folia Parasitol. 53(2), 147–152 (2006).
PubMed Article PubMed Central Google Scholar
29.
Barataud, M. Acoustic Ecology of European Bats. Species Identification and Studies of Their Habitats and Foraging Behavior (Biotope Editions & National Museum of Natural History, Paris, 2015).
Google Scholar
30.
Russo, D., Cistrone, L. & Jones, G. Spatial and temporal patterns of roost use by tree-dwelling barbastelle bats Barbastella barbastellus. Ecography 28(6), 769–776 (2005).
Article Google Scholar
31.
Chaverri, G., Gillam, E. H. & Vonhof, M. J. Social calls used by leaf-roosting bat to signal location. Biol. Lett. 6(4), 441–444 (2010).
PubMed PubMed Central Article Google Scholar
32.
Schöner, C., Schöner, M. & Kerth, G. Similar is not the same: Social calls of conspecifics are more effective in attracting wild bats to day roosts than those of other bat species. Behav. Ecol. Sociobiol. 64(12), 2053–2063 (2010).
Article Google Scholar
33.
Furmankiewicz, J., Ruczyński, I., Urban, R. & Jones, G. Social calls provide tree-dwelling bats with information about the location of conspecifics at roosts. Ethology 117(6), 480–489 (2011).
Article Google Scholar
34.
Gillam, E. H. & Chaverri, G. Strong individual signatures and weaker group signatures in contact calls of Spix’s disc-winged bat, Throptera tricolor. Anim. Behav. 83(1), 269–276 (2012).
Article Google Scholar
35.
Naďo, L. & Kaňuch, P. Dawn swarming in tree-dwelling bats: an unexplored behaviour. Acta Chiropterol. 15(2), 387–392 (2013).
Article Google Scholar
36.
Naďo, L. & Kaňuch, P. Swarming behaviour associated with group cohesion in tree-dwelling bats. Behav. Proces. 120, 80–86 (2015).
Article Google Scholar
37.
Gillam, E. H., Chaverri, G., Montero, K. & Sagot, M. Social calls produced within and near the roost in two species of tent-making bats, Dermanura watsoni and Ectophylla alba. PLoS ONE 8(4), e61731 (2013).
CAS PubMed PubMed Central Article ADS Google Scholar
38.
Ruczyński, I. & Bartoń, K. A. Modelling sensory limitation: the role of tree selection, memory and information transfer in bats’ roost searching strategies. PLoS ONE 7(9), e44897 (2012).
PubMed PubMed Central Article ADS CAS Google Scholar
39.
Couzin, I. D., Krause, J., Franks, N. R. & Levin, S. A. Effective leadership and decision-making in animal groups on the move. Nature 433(7025), 513–516 (2005).
CAS PubMed Article ADS PubMed Central Google Scholar
40.
Strandburg-Peshkin, A., Farine, D. R., Couzin, I. D. & Crofoot, M. C. Shared decision-making drives collective movement in wild baboons. Science 348(6241), 1358–1361 (2015).
CAS PubMed PubMed Central Article ADS Google Scholar
41.
Egnor, S. E. R. & Branson, K. Computational analysis of behavior. Annu. Rev. Neurosci. 39, 217–236 (2016).
CAS PubMed Article PubMed Central Google Scholar
42.
Ilany, A. & Akcay, E. Social inheritance can explain the structure of animal social networks. Nat. Commun. 7(1), 1–10 (2016).
Article CAS Google Scholar
43.
Paolucci, M., Conte, R. & Tosto, G. D. A model of social organization and the evolution of food sharing in vampire bats. Adapt. Behav. 14(3), 223–238 (2006).
Article Google Scholar
44.
Witkowski, M. Energy sharing for swarms modeled on the common vampire bat. Adapt. Behav. 15(3), 307–328 (2007).
Article Google Scholar
45.
Mavrodiev, P., Fleischmann, D., Kerth, G. & Schweitzer, F. Data-driven modeling of leading-following behavior in Bechstein’s bats. bioRxiv 1, 843938 (2019).
Google Scholar
46.
Ripperger, S. P. et al. Vampire bats that cooperate in the lab maintain their social networks in the wild. Curr. Biol. 29(23), 4139–4144 (2019).
CAS PubMed Article PubMed Central Google Scholar
47.
Perony, N., Kerth, G. & Schweitzer, F. Data-driven modeling of group formation in the fission-fusion dynamics of Bechstein’s bats. bioRxiv 1, 862219 (2019).
Google Scholar
48.
Zelenka, J., Kasanický, T., Budinská, I., Naďo, L. & Kaňuch, P. SkyBat: a swarm robotic model inspired by fission-fusion behaviour of bats in advances in service and industrial robotics. RAAD 2018. Mechanisms and machine science 67 (eds. Aspragathos, N., Koustoumpardis, P. & Moulianitis, V.) 521–528 (Springer, New York, 2019).
49.
Zelenka, J., Kasanický, T. & Budinská, I. A swarm algorithm inspired by tree-dwelling bats. Experiments and evaluations in advances in service and industrial robotics. RAAD 2019. Advances in intelligent systems and computing 980 (eds. Berns, K. & Görges, D.) 527–534 (Springer, New York, 2020).
50.
Dietz, C. & Kiefer, A. Bats of Britain and Europe (Bloomsbury Publishing, London, 2016).
Google Scholar
51.
Kaňuch, P., Krištín, A. & Krištofík, J. Phenology, diet, and ectoparasites of Leisler’s bat (Nyctalus leisleri) in the Western Carpathians (Slovakia). Acta Chiropterol. 7(2), 249–258 (2005).
Article Google Scholar
52.
Kaňuch, P. & Ceľuch, M. Bat assemblage of an old pastured oak woodland (Gavurky Protected Area, central Slovakia). Vespertilio 11, 57–64 (2007).
Google Scholar
53.
Naďo, L. & Kaňuch, P. Why sampling ratio matters: Logistic regression and studies of habitat use. PLoS ONE 13(7), e0200742 (2018).
Article CAS Google Scholar
54.
Naďo, L., Chromá, R. & Kaňuch, P. Structural, temporal and genetic properties of social groups in the short-lived migratory bat Nyctalus leisleri. Behaviour 154(7–8), 785–807 (2017).
Article Google Scholar
55.
Schutt, W. A. Jr. et al. The dynamics of flight-initiating jumps in the common vampire bat Desmodus rotundus. J. Exp. Biol. 200(23), 3003–3012 (1997).
PubMed PubMed Central Google Scholar
56.
Shiel, C. B., Shiel, R. E. & Fairley, J. S. Seasonal changes in the foraging behaviour of Leisler’s bats (Nyctalus leisleri) in Ireland as revealed by radio-telemetry. J. Zool. 249(3), 347–358 (1999).
Article Google Scholar
57.
Dechmann, D. K. N., Wikelski, M., van Noordwijk, H. J., Voigt, C. C. & Voigt-Heucke, S. L. Metabolic costs of bat echolocation in a non-foraging context support a role in communication. Front. Physiol. 4, 66 (2013).
PubMed PubMed Central Article Google Scholar
58.
Andresen, M. A. An area-based nonparametric spatial point pattern test: The test, its applications, and the future. Methodol. Innovat. 9, 1–11 (2016).
Google Scholar
59.
Steenbeek, W., Vandeviver, C. Andresen, M. A., Malleson, N. & Wheeler, A. sppt: spatial point pattern test. R package version 0.2.1. https://github.com/wsteenbeek/sppt (2018).
60.
R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).
61.
Mangiafico, S. rcompanion: functions to support extension education program evaluation. R package version 2.3.25. https://cran.r-project.org/package=rcompanion(2020).
62.
Torchiano, M. effsize: efficient effect size computation. R package version 0.8.0. https://cran.r-project.org/package=effsize (2020).
63.
Cohen, J. A power primer. Psychol. Bull. 112(1), 155–159 (1992).
CAS PubMed Article PubMed Central Google Scholar
64.
Hedenström, A. & Johansson, L. C. Bat flight: aerodynamics, kinematics and flight morphology. J. Exp. Biol. 218, 653–663 (2015).
PubMed Article PubMed Central Google Scholar
65.
Durlauf, S. & Young, P. Social Dynamics (MIT Press, Cambridge, 2001).
Google Scholar
66.
Yang X.-S. A new metaheuristic bat-inspired algorithm in Nature inspired cooperative strategies for optimization (NICSO 2010). Studies in computational intelligence 284 (eds. Gonzales, J. R., Pelta, D. A., Cruz, C., Terrazas, G. & Krasnogor, N.) 65–74 (Springer, New York, 2010).
67.
Gandomi, A. H. & Yang, X.-S. Chaotic bat algorithm. J. Comput. Sci. 5(2), 224–232 (2014).
MathSciNet Article Google Scholar
68.
Taha, A. M., Chen, S.-D. & Mustapha, A. Multi-swarm bat algorithm. Res. J. Appl. Sci. Eng. Tech. 10(12), 1389–1395 (2015).
Article Google Scholar
69.
Jordehi, A. R. Chaotic bat swarm optimisation (CBSO). Appl. Softw. Comput. 26, 523–530 (2015).
Article Google Scholar
70.
Wang, G.-G., Chang, B. & Zhang, Z. A multi-swarm bat algorithm for global optimization. Conference: IEEE Congress on Evolutionary Computation (CEC 2015). Sendai, Japan (2015).
71.
Dechmann, D. K. N., Kranstauber, B., Gibbs, D. & Wikelski, M. Group hunting: a reason for sociality in molossid bats?. PLoS ONE 5(2), e9012 (2010).
PubMed PubMed Central Article ADS CAS Google Scholar
72.
Roeleke, M. et al. Landscape structure influences the use of social information in an insectivorous bat. Oikos 129(6), 912–923 (2020).
Article Google Scholar
73.
Binitha, S. & Sathya, S. S. A survey of bio-inspired optimization algorithms. Int. J. Softw. Comput. Eng. 2(2), 137–151 (2012).
Google Scholar More