More stories

  • in

    An agent-based algorithm resembles behaviour of tree-dwelling bats under fission–fusion dynamics

    1.
    Rood, J. P. Group size, survival, reproduction, and routes to breeding in dwarf mongooses. Anim. Behav. 39(3), 566–572 (1990).
    Article  Google Scholar 
    2.
    Kokko, H., Johnstone, R. A. & Clutton-Brock, T. H. The evolution of cooperative breeding through group augmentation. Proc. R. Soc. B 268(1463), 187–196 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Kerth, G. Causes and consequences of sociality in bats. Bioscience 58(8), 737–746 (2008).
    Article  Google Scholar 

    4.
    Kunz, T. H. Roosting ecology of bats in Ecology of bats (ed. Kunz, T. H.) 1–55 (University of Chicago Press, Chicago, 1982).

    5.
    Kunz, T. H. & Lumsden, L. F. Ecology of cavity and foliage roosting bats in Bat ecology (eds. Kunz, T. H. & Fenton M. B.) 3–89 (University of Chicago Press, Chicago. 2003).

    6.
    Lacki, M. J. & Baker, M. D. A prospective power analysis and review of habitat characteristics used in studies of tree-roosting bats. Acta Chiropterol. 5(2), 199–208 (2003).
    Article  Google Scholar 

    7.
    Naďo, L. & Kaňuch, P. Roost site selection by tree-dwelling bats across biogeographical regions: an updated meta-analysis with meta-regression. Mammal Rev. 45(4), 215–226 (2015).
    Article  Google Scholar 

    8.
    Barclay, R. M. R., Faure, P. A. & Farr, D. R. Roosting behaviour and roost selection by migrating silver-haired bats (Lasyonycteris noctivagans). J. Mammal. 69(4), 821–825 (1988).
    Article  Google Scholar 

    9.
    Lewis, S. E. Roost fidelity of bats: a review. J. Mammal. 76(2), 481–496 (1995).
    MathSciNet  Article  Google Scholar 

    10.
    Ruczyński, I. & Bogdanowicz, W. Roost cavity selection by Nyctalus noctula and N. leisleri (Vespertilionidae, Chiroptera) in Białowieża Primeval Forest, eastern Poland. J. Mammal. 86(5), 921–930 (2005).
    Article  Google Scholar 

    11.
    Ruczyński, I. & Bogdanowicz, W. Summer roost selection by tree-dwelling bats Nyctalus noctula and N. leisleri: a multiscale analysis. J. Mammal. 89(4), 942–951 (2008).
    Article  Google Scholar 

    12.
    Lučan, R. K., Hanák, V. & Horáček, V. Long-term re-use of tree roosts by European forest bats. For. Ecol. Manag. 258(7), 1301–1306 (2009).
    Article  Google Scholar 

    13.
    Kuhnert, E., Schonbachler, C., Arlettaz, R. & Christe, P. Roost selection and switching in two forest-dwelling bats: implications for forest management. Eur. J. Wildl. Res. 62(4), 497–500 (2016).
    Article  Google Scholar 

    14.
    Dietz, M., Brombacher, M., Erasmy, M., Fenchuk, V. & Simon, O. Bat community and roost site selection of tree-dwelling bats in a well-preserved European lowland forest. Acta Chiropterol. 20(1), 117–127 (2018).
    Article  Google Scholar 

    15.
    Jensen, M. E., Moss, C. F. & Surlykke, A. Echolocating bats can use acoustic landmarks for spatial orientation. J. Exp. Biol. 208(23), 4399–4410 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Kerth, G. & Reckardt, K. Information transfer about roosts in female Bechstein’s bats: an experimental field study. Proc. R. Soc. B 270(1514), 511–515 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Kerth, G., Ebert, C. & Schmidtke, C. Group decision making in fission-fusion societies: evidence from two-field experiments in Bechstein’s bats. Proc. R. Soc. B 273(1602), 2785–2790 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Reckardt, K. & Kerth, G. Roost selection and roost switching of female Bechstein’s bats (Myotis bechsteinii) as a strategy of parasite avoidance. Oecologia 154(3), 581–588 (2007).
    PubMed  Article  ADS  PubMed Central  Google Scholar 

    19.
    Metheny, J. D., Kalcounis-Rueppell, M. C., Willis, C. K. R., Kolar, K. A. & Brigham, R. M. Genetic relationship between roost-mates in a fission-fusion society of tree-roosting big brown bats (Eptesicus fuscus). Behav. Ecol. Sociobiol. 62(7), 1043–1051 (2008).
    Article  Google Scholar 

    20.
    Popa-Lisseanu, A. G., Bontadina, F., Mora, O. & Ibáñez, C. Highly structured fission-fusion societies in an aerial-hawking, carnivorous bat. Anim. Behav. 75(2), 471–482 (2008).
    Article  Google Scholar 

    21.
    Rueegger, N., Law, B. & Goldingay, R. Interspecific differences and commonalities in maternity roosting by tree cavity-roosting bats over a maternity season in a timber production landscape. PLoS ONE 13(3), e0194429 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Kerth, G., Perony, N. & Schweitzer, F. Bats are able to maintain long-term social relationships despite the high fission-fusion dynamics of their groups. Proc. R. Soc. B 278(1719), 2761–2767 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    23.
    Patriquin, K. J. et al. Weather as a proximate explanation for fission-fusion dynamics in female northern long-eared bats. Anim. Behav. 122, 47–57 (2016).
    Article  Google Scholar 

    24.
    Kerth, G., Weissmann, K. & König, B. Day roost selection in female Bechstein’s bats (Myotis bechsteinii): a field experiment to determine the influence of roost temperature. Oecologia 126(1), 1–9 (2001).
    PubMed  Article  ADS  PubMed Central  Google Scholar 

    25.
    Sedgeley, J. A. Quality of cavity microclimate as a factor influencing selection of maternity roosts by a tree-dwelling bat, Chalinolobus tuberculatus, New Zealand. J. Appl. Ecol. 38(2), 425–438 (2001).
    Article  Google Scholar 

    26.
    Patriquin, K. J. & Ratcliffe, J. M. Should I stay or should I go? Fission-fusion dynamics in bats in Sociality in bats (ed. Ortega, J.). 65–103 (Springer, New York, 2016).

    27.
    Fenton, M. B. et al. Raptors and bats: threats and opportunities. Anim. Behav. 48(1), 9–18 (1994).
    Article  Google Scholar 

    28.
    Lučan, R. K. Relationships between the parasitic mite Spinturnix andegavinus (Acari: Spinturnicidae) and its bat host, Myotis daubentonii (Chiroptera: Vespertilionidae): seasonal, sex- and age-related variation in infestation and possible impact of the parasite on the host condition and roosting behaviour. Folia Parasitol. 53(2), 147–152 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    29.
    Barataud, M. Acoustic Ecology of European Bats. Species Identification and Studies of Their Habitats and Foraging Behavior (Biotope Editions & National Museum of Natural History, Paris, 2015).
    Google Scholar 

    30.
    Russo, D., Cistrone, L. & Jones, G. Spatial and temporal patterns of roost use by tree-dwelling barbastelle bats Barbastella barbastellus. Ecography 28(6), 769–776 (2005).
    Article  Google Scholar 

    31.
    Chaverri, G., Gillam, E. H. & Vonhof, M. J. Social calls used by leaf-roosting bat to signal location. Biol. Lett. 6(4), 441–444 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Schöner, C., Schöner, M. & Kerth, G. Similar is not the same: Social calls of conspecifics are more effective in attracting wild bats to day roosts than those of other bat species. Behav. Ecol. Sociobiol. 64(12), 2053–2063 (2010).
    Article  Google Scholar 

    33.
    Furmankiewicz, J., Ruczyński, I., Urban, R. & Jones, G. Social calls provide tree-dwelling bats with information about the location of conspecifics at roosts. Ethology 117(6), 480–489 (2011).
    Article  Google Scholar 

    34.
    Gillam, E. H. & Chaverri, G. Strong individual signatures and weaker group signatures in contact calls of Spix’s disc-winged bat, Throptera tricolor. Anim. Behav. 83(1), 269–276 (2012).
    Article  Google Scholar 

    35.
    Naďo, L. & Kaňuch, P. Dawn swarming in tree-dwelling bats: an unexplored behaviour. Acta Chiropterol. 15(2), 387–392 (2013).
    Article  Google Scholar 

    36.
    Naďo, L. & Kaňuch, P. Swarming behaviour associated with group cohesion in tree-dwelling bats. Behav. Proces. 120, 80–86 (2015).
    Article  Google Scholar 

    37.
    Gillam, E. H., Chaverri, G., Montero, K. & Sagot, M. Social calls produced within and near the roost in two species of tent-making bats, Dermanura watsoni and Ectophylla alba. PLoS ONE 8(4), e61731 (2013).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    38.
    Ruczyński, I. & Bartoń, K. A. Modelling sensory limitation: the role of tree selection, memory and information transfer in bats’ roost searching strategies. PLoS ONE 7(9), e44897 (2012).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    39.
    Couzin, I. D., Krause, J., Franks, N. R. & Levin, S. A. Effective leadership and decision-making in animal groups on the move. Nature 433(7025), 513–516 (2005).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    40.
    Strandburg-Peshkin, A., Farine, D. R., Couzin, I. D. & Crofoot, M. C. Shared decision-making drives collective movement in wild baboons. Science 348(6241), 1358–1361 (2015).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    41.
    Egnor, S. E. R. & Branson, K. Computational analysis of behavior. Annu. Rev. Neurosci. 39, 217–236 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Ilany, A. & Akcay, E. Social inheritance can explain the structure of animal social networks. Nat. Commun. 7(1), 1–10 (2016).
    Article  CAS  Google Scholar 

    43.
    Paolucci, M., Conte, R. & Tosto, G. D. A model of social organization and the evolution of food sharing in vampire bats. Adapt. Behav. 14(3), 223–238 (2006).
    Article  Google Scholar 

    44.
    Witkowski, M. Energy sharing for swarms modeled on the common vampire bat. Adapt. Behav. 15(3), 307–328 (2007).
    Article  Google Scholar 

    45.
    Mavrodiev, P., Fleischmann, D., Kerth, G. & Schweitzer, F. Data-driven modeling of leading-following behavior in Bechstein’s bats. bioRxiv 1, 843938 (2019).
    Google Scholar 

    46.
    Ripperger, S. P. et al. Vampire bats that cooperate in the lab maintain their social networks in the wild. Curr. Biol. 29(23), 4139–4144 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Perony, N., Kerth, G. & Schweitzer, F. Data-driven modeling of group formation in the fission-fusion dynamics of Bechstein’s bats. bioRxiv 1, 862219 (2019).
    Google Scholar 

    48.
    Zelenka, J., Kasanický, T., Budinská, I., Naďo, L. & Kaňuch, P. SkyBat: a swarm robotic model inspired by fission-fusion behaviour of bats in advances in service and industrial robotics. RAAD 2018. Mechanisms and machine science 67 (eds. Aspragathos, N., Koustoumpardis, P. & Moulianitis, V.) 521–528 (Springer, New York, 2019).

    49.
    Zelenka, J., Kasanický, T. & Budinská, I. A swarm algorithm inspired by tree-dwelling bats. Experiments and evaluations in advances in service and industrial robotics. RAAD 2019. Advances in intelligent systems and computing 980 (eds. Berns, K. & Görges, D.) 527–534 (Springer, New York, 2020).

    50.
    Dietz, C. & Kiefer, A. Bats of Britain and Europe (Bloomsbury Publishing, London, 2016).
    Google Scholar 

    51.
    Kaňuch, P., Krištín, A. & Krištofík, J. Phenology, diet, and ectoparasites of Leisler’s bat (Nyctalus leisleri) in the Western Carpathians (Slovakia). Acta Chiropterol. 7(2), 249–258 (2005).
    Article  Google Scholar 

    52.
    Kaňuch, P. & Ceľuch, M. Bat assemblage of an old pastured oak woodland (Gavurky Protected Area, central Slovakia). Vespertilio 11, 57–64 (2007).
    Google Scholar 

    53.
    Naďo, L. & Kaňuch, P. Why sampling ratio matters: Logistic regression and studies of habitat use. PLoS ONE 13(7), e0200742 (2018).
    Article  CAS  Google Scholar 

    54.
    Naďo, L., Chromá, R. & Kaňuch, P. Structural, temporal and genetic properties of social groups in the short-lived migratory bat Nyctalus leisleri. Behaviour 154(7–8), 785–807 (2017).
    Article  Google Scholar 

    55.
    Schutt, W. A. Jr. et al. The dynamics of flight-initiating jumps in the common vampire bat Desmodus rotundus. J. Exp. Biol. 200(23), 3003–3012 (1997).
    PubMed  PubMed Central  Google Scholar 

    56.
    Shiel, C. B., Shiel, R. E. & Fairley, J. S. Seasonal changes in the foraging behaviour of Leisler’s bats (Nyctalus leisleri) in Ireland as revealed by radio-telemetry. J. Zool. 249(3), 347–358 (1999).
    Article  Google Scholar 

    57.
    Dechmann, D. K. N., Wikelski, M., van Noordwijk, H. J., Voigt, C. C. & Voigt-Heucke, S. L. Metabolic costs of bat echolocation in a non-foraging context support a role in communication. Front. Physiol. 4, 66 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Andresen, M. A. An area-based nonparametric spatial point pattern test: The test, its applications, and the future. Methodol. Innovat. 9, 1–11 (2016).
    Google Scholar 

    59.
    Steenbeek, W., Vandeviver, C. Andresen, M. A., Malleson, N. & Wheeler, A. sppt: spatial point pattern test. R package version 0.2.1. https://github.com/wsteenbeek/sppt (2018).

    60.
    R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).

    61.
    Mangiafico, S. rcompanion: functions to support extension education program evaluation. R package version 2.3.25. https://cran.r-project.org/package=rcompanion(2020).

    62.
    Torchiano, M. effsize: efficient effect size computation. R package version 0.8.0. https://cran.r-project.org/package=effsize (2020).

    63.
    Cohen, J. A power primer. Psychol. Bull. 112(1), 155–159 (1992).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Hedenström, A. & Johansson, L. C. Bat flight: aerodynamics, kinematics and flight morphology. J. Exp. Biol. 218, 653–663 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Durlauf, S. & Young, P. Social Dynamics (MIT Press, Cambridge, 2001).
    Google Scholar 

    66.
    Yang X.-S. A new metaheuristic bat-inspired algorithm in Nature inspired cooperative strategies for optimization (NICSO 2010). Studies in computational intelligence 284 (eds. Gonzales, J. R., Pelta, D. A., Cruz, C., Terrazas, G. & Krasnogor, N.) 65–74 (Springer, New York, 2010).

    67.
    Gandomi, A. H. & Yang, X.-S. Chaotic bat algorithm. J. Comput. Sci. 5(2), 224–232 (2014).
    MathSciNet  Article  Google Scholar 

    68.
    Taha, A. M., Chen, S.-D. & Mustapha, A. Multi-swarm bat algorithm. Res. J. Appl. Sci. Eng. Tech. 10(12), 1389–1395 (2015).
    Article  Google Scholar 

    69.
    Jordehi, A. R. Chaotic bat swarm optimisation (CBSO). Appl. Softw. Comput. 26, 523–530 (2015).
    Article  Google Scholar 

    70.
    Wang, G.-G., Chang, B. & Zhang, Z. A multi-swarm bat algorithm for global optimization. Conference: IEEE Congress on Evolutionary Computation (CEC 2015). Sendai, Japan (2015).

    71.
    Dechmann, D. K. N., Kranstauber, B., Gibbs, D. & Wikelski, M. Group hunting: a reason for sociality in molossid bats?. PLoS ONE 5(2), e9012 (2010).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    72.
    Roeleke, M. et al. Landscape structure influences the use of social information in an insectivorous bat. Oikos 129(6), 912–923 (2020).
    Article  Google Scholar 

    73.
    Binitha, S. & Sathya, S. S. A survey of bio-inspired optimization algorithms. Int. J. Softw. Comput. Eng. 2(2), 137–151 (2012).
    Google Scholar  More

  • in

    Effects of seasonality and previous logging on faecal helminth-microbiota associations in wild lemurs

    1.
    Pfeiffer, J. K. & Virgin, H. W. Transkingdom control of viral infection and immunity in the mammalian intestine. Science 351, 5872 (2016).
    Article  CAS  Google Scholar 
    2.
    Ramanan, D. et al. Helminth infection promotes colonization resistance via type 2 immunity. Science 352, 608–612 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Leclaire, S. & Faulkner, C. T. Gastrointestinal parasites in relation to host traits and group factors in wild meerkats Suricata suricatta. Parasitology 141, 925–933 (2014).
    PubMed  Article  Google Scholar 

    4.
    Kabat, A. M., Srinivasan, N. & Maloy, K. J. Modulation of immune development and function by intestinal microbiota. Trends Immunol. 35, 507–517 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    5.
    McHardy, I. L. X. T. M. et al. HIV Infection is associated with compositional and functional shifts in the rectal mucosal microbiota. Microbiome 1, 1 (2013).
    Article  Google Scholar 

    6.
    Sekirov, I., Russell, S. & Antunes, L. Gut microbiota in health and disease. Physiol. Rev. 90, 859–904 (2010).
    CAS  PubMed  Article  Google Scholar 

    7.
    de Vos, W. M. & de Vos, E. A. Role of the intestinal microbiome in health and disease: from correlation to causation. Nutr. Rev. 70, 45–56 (2012).
    Article  Google Scholar 

    8.
    Patterson, E. et al. Gut microbiota, the pharmabiotics they produce and host health. Proc. Nutr. Soc. 73, 477–489 (2014).
    CAS  PubMed  Article  Google Scholar 

    9.
    Bennett, G. et al. Host age, social group, and habitat type influence the gut microbiota of wild ring-tailed lemurs (Lemur catta). Am. J. Primatol. 1, 1–10 (2016).
    Google Scholar 

    10.
    Belongia, E. A. Epidemiology and impact of coinfections acquired from Ixodes ticks. Vector-Borne Zoonotic Dis. 2, 265–273 (2002).
    PubMed  Article  Google Scholar 

    11.
    Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2015).
    ADS  Article  Google Scholar 

    12.
    Tompkins, D. M., Dunn, A. M., Smith, M. J. & Telfer, S. Wildlife diseases: from individuals to ecosystems. J. Anim. Ecol. 80, 19–38 (2011).
    PubMed  Article  Google Scholar 

    13.
    Hansen, J., Gulati, A. & Sartor, R. B. The role of mucosal immunity and host genetics in defining intestinal commensal bacteria. Curr. Opin. Gastroenterol. 26, 564–571 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Barelli, C. et al. Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation. Sci. Rep. 5, 14862 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    McKenney, E. A., Rodrigo, A. & Yoder, A. D. Patterns of gut bacterial colonization in three primate species. PLoS ONE 10, 1–18 (2015).
    Article  CAS  Google Scholar 

    16.
    Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. 107, 14691–14696 (2010).
    ADS  PubMed  Article  Google Scholar 

    18.
    Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Proc. Natl. Acad. Sci. 332, 970–974 (2012).
    Google Scholar 

    19.
    Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Boutin, S., Bernatchez, L., Audet, C. & Derom̂e, N. Network analysis highlights complex interactions between pathogen, host and commensal microbiota. PLoS ONE 8, 1–16 (2013).
    Google Scholar 

    21.
    Maurice, C. F. et al. Marked seasonal variation in the wild mouse gut microbiota. ISME J. 9, 2423–2434 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Amato, K. R. et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 716, 1344–1353 (2013).
    Article  CAS  Google Scholar 

    23.
    Dishaw, L. J. et al. The gut of geographically disparate Ciona intestinalis harbors a core microbiota. PLoS ONE 9, e93386 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69, 434–443 (2015).
    CAS  PubMed  Article  Google Scholar 

    25.
    Moore, S. L. & Wilson, K. Parasites as a viability cost of sexual selection in natural populations of mammals. Science 297, 2015–2018 (2002).
    ADS  CAS  PubMed  Article  Google Scholar 

    26.
    Nunn, C. L., Thrall, P. H., Leendertz, F. H. & Boesch, C. The spread of fecally transmitted parasites in socially-structured populations. PLoS ONE 6, e21677 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Huffman, M. A., Gotoh, S. & Turner, L. A. Seasonal trends in intestinal nematode infection and medicinal plant use among chimpanzees in the mahale mountains. Tanzania. 38, 111–125 (1997).
    Google Scholar 

    28.
    Benavides, J. A. et al. From parasite encounter to infection: multiple-scale drivers of parasite richness in a wild social primate population. Am. J. Phys. Anthropol. 147, 52–63 (2012).
    PubMed  Article  Google Scholar 

    29.
    Barrett, M. A., Brown, J. L., Junge, R. E. & Yoder, A. D. Climate change, predictive modeling and lemur health: assessing impacts of changing climate on health and conservation in Madagascar. Biol. Conserv. 157, 409–422 (2013).
    Article  Google Scholar 

    30.
    Aivelo, T., Laakkonen, J. & Jernvall, J. Population and individual level dynamics of intestinal microbiota of a small primate. Appl. Environ. Microbiol. 82, 00559–16 (2016).
    Article  CAS  Google Scholar 

    31.
    Nunn, C. C. & Altizer, S. S. Infectious Diseases in Primates: Behavior, Ecology and Evolution (Oxford University, Press, 2006).
    Google Scholar 

    32.
    Raharivololona, B. & Ganzhorn, J. Seasonal variations in gastrointestinal parasites excreted by the gray mouse lemur Microcebus murinus in Madagascar. Endanger. Species Res. 11, 113–122 (2010).
    Article  Google Scholar 

    33.
    Huffman, M. & Chapman, C. Primate Parasite Ecology: the Dynamics and Study of Host–Parasite Relationships (Cambridge University, Press, 2009).
    Google Scholar 

    34.
    Setchell, J. M. et al. Parasite prevalence, abundance, and diversity in a semi-free-ranging colony of Mandrillus sphinx. Int. J. Primatol. 28, 1345–1362 (2007).
    Article  Google Scholar 

    35.
    Maldonado-López, S., Maldonado-López, Y., Gómez-Tagle, C. A., Cuevas-Reyes, P. & Stoner, K. E. Patterns of infection by intestinal parasites in sympatric howler monkey (Alouatta palliata) and spider monkey (Ateles geoffroyi) populations in a tropical dry forest in Costa Rica. Primates 55, 383–392 (2014).
    PubMed  Article  Google Scholar 

    36.
    Caldwell, J. P. Pinworms (enterobius vermicularis). Can. Fam. Physician 28, 306–309 (1986).
    Google Scholar 

    37.
    Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C. & Martiny, J. B. H. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10, 1–10 (2012).
    Article  CAS  Google Scholar 

    38.
    Keele, B. et al. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science 313, 523–526 (2006).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Gillespie, T. R., Chapman, C. A. & Greiner, E. C. Effects of logging on gastrointestinal parasite infections and infection risk in African primates. J. Appl. Ecol. 42, 699–707 (2005).
    Article  Google Scholar 

    40.
    Chapman, C. A., Gillespie, T. R. & Goldberg, T. L. Primates and the ecology of their infectious diseases: how will anthropogenic change affect host-parasite interactions?. Evol. Anthropol. 14, 134–144 (2005).
    Article  Google Scholar 

    41.
    McCord, A. I. et al. Fecal microbiomes of non-human primates in Western Uganda reveal species-specific communities largely resistant to habitat perturbation. Am. J. Primatol. 76, 347–354 (2014).
    PubMed  Article  Google Scholar 

    42.
    Chapman, C., Speirs, M. & Gillespie, T. Life on the edge: gastrointestinal parasites from the forest edge and interior primate groups. Am. J. Primatol. 409, 397–409 (2006).
    Article  Google Scholar 

    43.
    Kowalewski, M. M. et al. Black and gold howler monkeys (Alouatta caraya) as sentinels of ecosystem health: patterns of zoonotic protozoa infection relative to degree of human-primate contact. Am. J. Primatol. 73, 75–83 (2011).
    PubMed  Article  Google Scholar 

    44.
    Chapman, C. A. et al. do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments?. Am. J. Phys. Anthropol. 131, 525–534 (2006).
    PubMed  Article  Google Scholar 

    45.
    Hughes, S. & Kelly, P. Interactions of malnutrition and immune impairment, with specific reference to immunity against parasites. Parasite Immunol. 28, 577–588 (2006).
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Angelstam, P. et al. Habitat modelling as a tool for landscape-scale conservation : a review of parameters for focal forest birds source. Ecol. Bull. 51, 427–453 (2004).
    Google Scholar 

    47.
    Kreisinger, J., Bastien, G., Hauffe, H. C., Marchesi, J. & Perkins, S. E. (2015) Interactions between multiple helminths and the gut microbiota in wild rodents. Philos. Trans. R. Soc. B Biol. Sci.370, 20140295.

    48.
    Mutapi, F. The gut microbiome in the helminth infected host. Trends Parasitol. 31, 405–406 (2015).
    PubMed  Article  Google Scholar 

    49.
    Kay, G. L. et al. Differences in the faecal microbiome in schistosoma haematobium infected children vs. uninfected children. PLoS Negl. Trop. Dis. 9, e0003861 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Lee, S. C. et al. Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Negl. Trop. Dis. 8, 1–10 (2014).
    ADS  Google Scholar 

    51.
    Morton, E. R. et al. Variation in rural African gut microbiomes is strongly shaped by parasitism and diet. bioRxiv (2015).

    52.
    Cooper, P. et al. Patent human infections with the whipworm, Trichuris trichiura, are not associated with alterations in the faecal microbiota. PLoS ONE 8, 1–10 (2013).
    Google Scholar 

    53.
    Cantacessi, C. et al. Impact of experimental hookworm infection on the human gut microbiota. J. Infect. Dis. 210, 1–4 (2014).
    Article  CAS  Google Scholar 

    54.
    Houlden, A. et al. Chronic Trichuris muris infection in C57BL/6 mice causes significant changes in host microbiota and metabolome: effects reversed by pathogen clearance. PLoS ONE 10, e0125945 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    McKenney, E. A., Greene, L. K., Drea, C. M. & Yoder, A. D. Down for the count: cryptosporidium infection depletes the gut microbiome in Coquerel’s sifakas. Microb. Ecol. Health Dis. 28, 1335165 (2017).
    PubMed  PubMed Central  Google Scholar 

    56.
    Fogel, A. T. The gut microbiome of wild lemurs: a comparison of sympatric lemur catta and propithecus verreauxi. Folia Primatol. 86, 85–95 (2015).
    PubMed  Article  Google Scholar 

    57.
    Springer, A. et al. Patterns of seasonality and group membership characterize the gut microbiota in a longitudinal study of wild Verreaux’s sifakas (Propithecus verreauxi). Ecol. Evol. 7, 5732–5745 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Walk, S. T., Blum, A. M., Ewing, S. A. S., Weinstock, J. V. & Young, V. B. Alteration of the murine gut microbiota during infection with the parasitic helminth Heligmosomoides polygyrus. Inflamm. Bowel Dis. 16, 1841–1849 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Li, R. W. et al. Alterations in the porcine colon microbiota induced by the gastrointestinal nematode Trichuris suis. Infect. Immun. 80, 2150–2157 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Rausch, S. et al. Small intestinal nematode infection of mice is associated with increased enterobacterial loads alongside the intestinal tract. PLoS ONE 8, 1–13 (2013).
    Article  CAS  Google Scholar 

    61.
    Irwin, M. T., Johnson, S. E. & Wright, P. C. The state of lemur conservation in south-eastern Madagascar: population and habitat assessments for diurnal and cathemeral lemurs using surveys, satellite imagery and GIS. Oryx 39, 204–218 (2005).
    Article  Google Scholar 

    62.
    Markolf, M. et al. True lemurs…true species: species delimitation using multiple data sources in the brown lemur complex. BMC Evol. Biol. 13, 233 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    63.
    Wright, P. et al. Long-term lemur research at Centre Valbio, Ranomafana National Park, Madagascar. in Long-term field studies of primates (eds. Kappeler, P. M. & Watts, D. P.) 67–100 (Springer, Berlin Heidelberg, 2012). https://doi.org/10.1007/978-3-642-22514-7

    64.
    de Winter, I. et al. Occupancy strongly influences faecal microbial composition of wild lemurs. Microbiol. Ecol. 94, 1–13 (2018).
    Google Scholar 

    65.
    IUCN. The IUCN Red List of Threatened Species. Version 2016–1. (2016).

    66.
    Chabaud, A. G. & Petter, A. J. Les nématodes parasites de Lémuriens malgaches, II Un nouvel oxyure: Lemuricola contagiosus. Mém. Inst. Sci. MadagascarA, 127–158 (1959).

    67.
    Chabaud, A. G., Brygoo, E.-R. & Petter, A.-J. Les Nématodes parasites de Lémuriens malgaches VI. Description de six espèces nouvelles et conclusions générales. Ann. Parasitol. Hum. Comparée 181–214 (1965).

    68.
    Irwin, M. T. & Raharison, J. A review of the endoparasites of the lemurs of Madagascar. 66–93 (2009).

    69.
    Schwitzer, N. et al. Parasite prevalence in blue-eyed black lemurs Eulemur flavifrons in differently degraded forest fragments. Endanger. Species Res. 12, 215–225 (2010).
    Article  Google Scholar 

    70.
    Junge, R. E. & Louis, E. E. Biomedical evaluation of black lemurs (Eulemur macaco macaco) in Lokobe Reserve, Madagascar. J. Zoo Wildl. Med. 38, 67–76 (2007).
    PubMed  Article  Google Scholar 

    71.
    Nègre, A., Tarnaud, L., Roblot, J. F., Gantier, J. C. & Guillot, J. Plants consumed by Eulemur fulvus in Comoros Islands (Mayotte) and potential effects on intestinal parasites. Int. J. Primatol. 27, 1495–1517 (2006).
    Article  Google Scholar 

    72.
    Junge, R. E. et al. Comparison of biomedical evaluation for white-fronted brown lemurs (Eulemur fulvus albifrons) from four sites in Madagascar. J. Zoo Wildl. Med. 39, 567–575 (2008).
    PubMed  Article  Google Scholar 

    73.
    Rajilić-Stojanović, M., Heilig, H. G. H. J., Tims, S., Zoetendal, E. G. & De Vos, W. M. Long-term monitoring of the human intestinal microbiota composition. Environ. Microbiol. 15, 1146–1159 (2013).
    Article  CAS  Google Scholar 

    74.
    Crowley, B. E., McGoogan, K. C. & Lehman, S. M. Edge effects on foliar stable isotope values in a Madagascan tropical dry forest. PLoS ONE 7, e44538 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Sato, H., Ichino, S. & Hanya, G. Dietary modification by common brown lemurs (Eulemur fulvus) during seasonal drought conditions in western Madagascar. Primates 55, 219–230 (2014).
    PubMed  Article  Google Scholar 

    76.
    Styger, E., Rakotoarimanana, J. E. M., Rabevohitra, R. & Fernandes, E. C. M. Indigenous fruit trees of Madagascar: potential components of agroforestry systems to improve human nutrition and restore biological diversity. Agrofor. Syst. 46, 289–310 (1999).
    Article  Google Scholar 

    77.
    Sato, H. Habitat shifting by the common brown lemur (Eulemur fulvus fulvus): a response to food scarcity. Primates 54, 229–235 (2013).
    PubMed  Article  Google Scholar 

    78.
    Guernier, V., Hochberg, M. E. & Guégan, J. F. Ecology drives the worldwide distribution of human diseases. PLoS Biol. 2, e141 (2004).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    79.
    Froeschke, G., Harf, R., Sommer, S. & Matthee, S. Effects of precipitation on parasite burden along a natural climatic gradient in southern Africa: implications for possible shifts in infestation patterns due to global changes. Oikos 119, 1029–1039 (2010).
    Article  Google Scholar 

    80.
    Brooker, S., Clements, A. C. A. & Bundy, D. A. P. Global epidemiology, ecology and control of soil-transmitted helminth infections. Adv. Parasitol. 62, 221–261 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    81.
    Luong, L. T., Grear, D. A. & Hudson, P. J. Manipulation of host-resource dynamics impacts transmission of trophic parasites. Int. J. Parasitol. 44, 737–742 (2014).
    PubMed  Article  Google Scholar 

    82.
    Wright, P. C., Vololontiana, R. & Pochron, S. T. The key to Madagascar frugivores. in Tropical fruits and frugivores 121–138 (Springer, Dordrecht, 2005).

    83.
    Tecot, S. R. Seasonality and predictability: The hormonal and behavioral responses of the redbellied lemur (Eulemur rubriventer) in Ranomafana National Park, southeastern Madagascar (University of Texas, Austin, 2008).
    Google Scholar 

    84.
    Clough, D. Gastro-intestinal parasites of red-fronted lemurs in Kirindy Forest, western Madagascar. J. Parasitol. 96, 245–251 (2010).
    PubMed  Article  Google Scholar 

    85.
    Overdorff, D. J. & Johnson, S. E. Eulemur, true lemurs. in The Natural History of Madagascar (eds. Goodman, S. M. & Benstead, J.) 1320–1324 (University of Chicago Press, Chiago, 2003).

    86.
    Ostner, J., Kappeler, P. M. & Heistermann, M. Androgen and glucocorticoid levels reflect seasonally occurring social challenges in male redfronted lemurs (Eulemur fulvus rufus). Behav. Ecol. Sociobiol. 62, 627–638 (2008).
    PubMed  Article  Google Scholar 

    87.
    Johns, A. D. & Skorupa, J. P. Responses of rain-forest primates to habitat disturbance: a review. Int. J. Primatol. 8, 157–191 (1987).
    Article  Google Scholar 

    88.
    Wright, P. & Andriamihaja, B. Making a rain forest national park work in Madagascar: Ranomafana National Park and its long-term research commitment. in Making parks work: Strategies for preserving tropical nature 112–136 (2002).

    89.
    de Winter, I. I. et al. Past disturbance effects on forest structure and lemur abundances (Biol, Conserv, 2018).
    Google Scholar 

    90.
    Di Rienzi, S. C. et al. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to cyanobacteria. Elife 2, 1 (2013).
    Article  CAS  Google Scholar 

    91.
    Vitazkova, S. & Wade, S. Effects of ecology on the gastrointestinal parasites of Alouatta pigra. Int. J. Primatol. 28(28), 1327–1343 (2007).
    Article  Google Scholar 

    92.
    Martinez-Mota, R. The effects of habitat disturbance, host traits, and host physiology on patterns of gastrointestinal parasite infection in black howler monkeys (Alouatta pigra). PhD dissertation, Department ofAnthropology, University of Illinois (2015).

    93.
    Arneberg, P. Host population density and body mass as determinants of species richness in parasite communities: comparative analyses of directly transmitted nematodes of mammals. Ecography 25, 88–94 (2002).
    Article  Google Scholar 

    94.
    Reynolds, L. A. et al. Commensal-pathogen interactions in the intestinal tract: lactobacilli promote infection with, and are promoted by, helminth parasites. Gut Microbes 5, 522–532 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    95.
    Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    96.
    Hayes, K. S. et al. Exploitation of the intestinal microflora by the parasitic nematode Trichuris muris. Science 328, 1391–1394 (2010).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    97.
    Reynolds, L. A., Finlay, B. B. & Maizels, R. M. Cohabitation in the intestine: interactions among helminth parasites, bacterial microbiota, and host immunity. J. Immunol. 195, 4059–4066 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    98.
    Pedersen, A. B., Altizer, S., Poss, M., Cunningham, A. & Nunn, C. L. Patterns of host specificity and transmission among parasites of wild primates. Int. J. Parasitol. 35, 647–657 (2005).
    PubMed  Article  Google Scholar 

    99.
    Goodman, S. M. et al. The distribution and conservation of bats in the dry regions of Madagascar. Anim. Conserv. 8, 153–165 (2005).
    Article  Google Scholar 

    100.
    Irwin, M. T. et al. Patterns of species change in anthropogenically disturbed forests of Madagascar. Biol. Conserv. 143, 2351–2362 (2010).
    Article  Google Scholar 

    101.
    Balko, E. A. & Underwood, H. B. Effects of forest structure and composition on food availability for Varecia variegata at Ranomafana National Park, Madagascar. Am. J. Primatol. 66, 45–70 (2005).
    PubMed  Article  Google Scholar 

    102.
    Köhler, J., Glaw, F. & Vences, M. First record of Mabuya comorensis (Reptilia: Scincidae) for Madagascar, with notes on the herpetofauna of Nosy Tanikely. Boll. Mus. Reg. Sci. Nat. Torino 15, 75–82 (1998).
    Google Scholar 

    103.
    Erhart, E. M. & Overdorff, D. J. Population demography and social structure changes in Eulemur fulvus rufus from 1988 to 2003. Am. J. Phys. Anthropol. 136, 183–193 (2008).
    PubMed  Article  Google Scholar 

    104.
    Johnson, S. E., Gordon, A. D., Stumpf, R. M., Overdorff, D. J. & Wright, P. C. Morphological variation in populations of Eulemur albocollaris and E. fulvus rufus. Int. J. Primatol. 26, 1399–1416 (2005).
    Article  Google Scholar 

    105.
    Pyritz, L. W., Kappeler, P. M. & Fichtel, C. Coordination of group movements in wild red-fronted lemurs (Eulemur rufifrons): processes and influence of ecological and reproductive seasonality. Int. J. Primatol. 32, 1325–1347 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    106.
    Tecot, S. R. It’s all in the timing: birth seasonality and infant survival in Eulemur rubriventer. Int. J. Primatol. 31, 715–735 (2010).
    Article  Google Scholar 

    107.
    Mittermeier, R. A. et al. Lemur diversity in Madagascar. Int. J. Primatol. 29, 1607–1656 (2008).
    Article  Google Scholar 

    108.
    Overdorff, D. Similarities, differences, and seasonal patterns in the diets of Eulemur rubriventer and Eulemur rufifrons in the Ranomafana National Park, Madagascar. Int. J. Primatol. 14, 721–753 (1993).
    Article  Google Scholar 

    109.
    Berg, W., Jolly, A., Rambeloarivony, H., Andrianome, V. & Rasamimanana, H. A scoring system for coat and tail condition in ringtailed lemurs, Lemur catta. Am. J. Primatol. 71, 183–190 (2009).
    PubMed  Article  Google Scholar 

    110.
    Van Gool, T., Weijts, R., Lommerse, E. & Mank, T. G. Triple faeces test: an effective tool for detection of intestinal parasites in routine clinical practice. Eur. J. Clin. Microbiol. Infect. Dis. 22, 284–290 (2003).
    PubMed  Article  Google Scholar 

    111.
    Yu, Z. & Morrison, M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 36, 808–812 (2004).
    CAS  PubMed  Article  Google Scholar 

    112.
    Salonen, A. et al. Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. J. Microbiol. Methods 81, 127–134 (2010).
    CAS  PubMed  Article  Google Scholar 

    113.
    Tian, L. et al. Effects of pectin supplementation on the fermentation patterns of different structural carbohydrates in rats. Mol. Nutr. Food Res. 1–11 (2016).

    114.
    van den Bogert, B., de Vos, W. M., Zoetendal, E. G. & Kleerebezem, M. Microarray analysis and barcoded pyrosequencing provide consistent microbial profiles depending on the source of human intestinal samples. Appl. Environ. Microbiol. 77, 2071–2080 (2011).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    115.
    Daims, H., Brühl, A., Amann, R., Schleifer, K. H. & Wagner, M. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 434–444 (1999).
    CAS  PubMed  Article  Google Scholar 

    116.
    Ramiro-Garcia, J. et al. NG-Tax, a highly accurate and validated pipeline for analysis of 16S rRNA amplicons from complex biomes. NF1000 Res. 5, 5 (2016).
    Google Scholar 

    117.
    Dryden, M. W., Payne, P. A., Ridley, R. & Smith, V. Comparison of common fecal flotation techniques for the recovery of parasite eggs and oocysts. Vet. Ther. 6, 15–28 (2005).
    CAS  PubMed  Google Scholar 

    118.
    Gillespie, T. R. Noninvasive assessment of gastrointestinal parasite infections in free-ranging primates. Int. J. Primatol. 27, 1129–1143 (2006).
    Article  Google Scholar 

    119.
    Gillespie, T. R. & Chapman, C. A. Prediction of parasite infection dynamics in primate metapopulations based on attributes of forest fragmentation. Conserv. Biol. 20, 441–448 (2006).
    PubMed  Article  Google Scholar 

    120.
    Zeger, S. L., Liang, K.-Y. & Albert, P. S. Models for longitudinal data: a generalized estimating equation approach. Biometrics 44, 1049–1060 (1988).
    MathSciNet  CAS  PubMed  MATH  Article  Google Scholar 

    121.
    Scrucca, L. Dispmod: Dispersion Models. R package version 1.1. (2012). https://cran.r-project.org/package=dispmod.

    122.
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Article  Google Scholar 

    123.
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2018). https://www.r-project.org/.

    124.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    125.
    Lenth, R. V. Least-squares means: the R package lsmeans. J. Stat. Softw.69, (2016).

    126.
    Fox, J., Friendly, M. & Weisberg, S. Hypothesis tests for multivariate linear models using the car package. R J. 5, 39–52 (2013).
    Article  Google Scholar 

    127.
    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (multi-level/mixed) Regression Models. R package version 0.1. 5. (2017).

    128.
    Barton, K. MuMIn: Multi-model Inference, R package version 0.12. 0. (2009). More

  • in

    Data mining and model-predicting a global disease reservoir for low-pathogenic Avian Influenza (A) in the wider pacific rim using big data sets

    Study area
    The study area consists of the wider northern Pacific Rim area which is known to be an exchange frontier between diseases and cultures (Fig. 12,9). We followed methods outlined in5,11,12 and specifically13 drawing inference from predictions.
    The conducted international landscape investigation in this study area is described in a research workflow (Fig. 2), and it mainly consists of different steps: field work, open access data compilation, data cleaning and lab work, GIS mapping, data mining and prediction, reflection and inference, as further described below (for more clarifications or questions please contact authors).
    Figure 2

    Workflow of this study to obtain best-available AI data and to data mine and predict them with machine learning in a geographic information system (GIS) for best-possible predictions and inference for the Pacific Rim study area (IRD = Influenza Research Database; USDA = U.S. Department of Agriculture); for more details, model specifications etc. see manuscript text.

    Full size image

    Field work
    As part of the eASIA program the field sampling of AI was conducted in Russia and Japan primarily during the fall (August) 2016, 2017 and 2018. Fall is a season when birds finished breeding and started to migrate southwards to their wintering sites. Birds are known during that time to disperse relatively slowly along flyways10,12,14,15. Traditionally, this time period has the highest known prevalence of virus, thus far9 In Vietnam, the surveillance targeting domestic birds was conducted in summers and falls. Together with all eASIA participants, we extracted data from an agreeable compatible workflow and protocol that allowed for geo-referenced and time-referenced AI samples in the field. Hunters were not directly involved in the study (see permits for bird specimen details). In Russia, following their lab method protocol and according to standard procedures16,17 it resulted in 52 samples (10 LPAI presences) from years 2016 and 2017 with 13 unique locations. In Japan, their respective lab method protocol was followed (details in18) resulting in 203 samples from years 2016 and 2017 based on 5 unique locations. In Vietnam, the lab method protocol of Japan was followed (details in19) resulting in 1,182 samples (951 LPAI presences) from years 2016 and 2017 based on 102 unique locations. Finally, we were also able to obtain 407 samples (395 LPAI presences) for Mongolia for 27 unique locations, also following the protocol from Japan. Alaska was not part of field campaign but had data available through the IRD ‘flu’ database (see details below).
    All field data were compiled into one eASIA database for further analysis (Appendix 1), namely to carry out data mining, model-training and subsequent predictions with machine learning and geographic information system (GIS; details in9,10).
    Compilations of open access AI data
    To reach across the Pacific Rim for a wider and more robust inference, and to make a connection with North America and other available data, further AI data from Alaska were obtained from the IRD database online (https://www.fludb.org/brc/home.spg? Decorator = influenza). This resulted in 38,517 samples (448 low-path AI presences) from 1,175 unique locations. We then queried all these data for low-path AI strains which resulted in 110 strains and 40,837 samples from 157 host species entries that we used for this study (see Appendix 2 for details). To our knowledge, that is the biggest and most diverse AI database ever compiled and analysed for the Pacific Rim (see Herrick et al. 2013 for a first initial model and using all of AI).
    Data mining of low-path AI
    We queried the obtained data for the number of low-path AI strains, host species distribution, proportion of host species carrying a specific low-path AI strain, and prevalence.
    Compilations of open access GIS data layers for the study area
    GIS layers are used as predictors for model-predictions in the study area. Here we used 19 global GIS layers available from earlier research (Sriram and Huettmann unpublished https://www.earth-syst-sci-data-discuss.net/essd-2016-65/; Table 1). For polygon outlines we used data with our ArcGIS UAF campus license (FH). All GIS data layers were displayed for the study area as a Mercator projection using WGS84, decimal degrees coordinates (latitude and longitude) with a precision of 6 decimals (GPS and GIS, a real world precision of 5 decimals).
    Table 1 List of GIS Predictors used in this study to data mine and predict low path (LP) Avian Influenza (AI) *
    Full size table

    GIS mapping and data processing
    We used commercial and open source GIS softwares (ArcGIS, QGIS) to operate, map and overlay all data. We imported the AI Data from ASCII table (MS Excel) into a shapefile layer of AI, and overlaid them with 19 environmental GIS layers we had available from compiled global data sets. This resulted into a data cube that is analyzed with data mining and for modeling and predictions.
    Modeling and predictions
    The resulting data cube was imported into SPM 8.2 (https://www.minitab.com/en-us/products/spm/) and then modeled and predicted. We ran a stochastic grading boosting (TreeNet) algorithm for best-possible predictions and inference (20see also9,10,12,21; for an R implementation see22). As outlined in9,12,21 we started with default settings for this powerful software as they are known to achieve best inference, as taken from the predictive performance13. Models then used 6 Maximum nodes per tree, 10 Cases as a Terminal Node Minimum, 200 trees to converge, a balanced class weight and a ten-fold cross-validation (a repeated 90% training vs 10% testing setting) optimizing on the ROC. To avoid overfitting we used an auto learn rate and a 50% subsampling. The resulting tree model was stored as a grove and applied to an equally-spaced lattice of the predictors (excluding species information). The maps were presented in GIS with a resolution of a 5 km pixel size (Appendix 3).
    Model assessment data
    We were able to obtain two alternative data set on AI for an assessment of our predictions. The Influenza Research Database (IRD) has an Asian subset (n = 28,205 and 19,405) comparable to our work, and which was used to confront our predictions for the study area.
    Although the U.S. Department of Agriculture (USDA) has a U.S-wide AI survey data set (3,589 for Alaska), it actually lacks geo-referencing with coordinates (just done by counties etc.) and just includes H5, H7 Avian Flu columns; presumably done trying to protect the industry. We still used this best-available alternative data set for further assessment of the model predictions.
    Ethics statement
    For this eASIA project oropharyngeal and cloacal samples in Russia were collected according to the “Federal Law on Hunting and Sharing of Hunting Resources of Russian Federation # 209-ФЗ” and with the permissions of local governments in hunting regions during each hunting seasons. Hunted birds were provided for sampling by licensed hunters to our group during expeditions.
    Fecal samples in Japan were collected with the permission of the municipality managing the sampling areas and Hokkaido University. Fecal samples in Mongolia were collected with the permission of the State Central Veterinary Laboratory, Mongolia. These samples were transferred to Japan under the permissions of the Animal Quarantine Service, Japan (27douken560-2, 28douken563-6, 29douken 683–2). Swab samples in Vietnam were collected with the permission of the Department of Animal Health, Vietnam. These samples were transferred to Japan under the permissions of the Animal Quarantine Service, Japan (27douken560-3, 28douken563-1, 28douken563-4, 28douken563-5, 29douken683-3, 29douken683-4).
    Data reported in the Influenza Research Database (IRD) were from samples obtained and submitted under NIH-funded avian influenza surveillance collection efforts (CEIRS) and are publicly available at: www.fludb.org . This work was supported in part by a National Institute of Allergy and Infectious Disease Centers of Excellence in Influenza Research and Surveillance (CEIRS) award, Contract HHSN272201400008C (to Eric Bortz).
    For Alaska USDA data, wild bird samples primarily came from hunter-killed waterfowl, with voluntary participation from hunters. These sampling activities were covered under US Fish and Wildlife Service Federal Permit MB124992-0. More

  • in

    Cooperative rescue of a juvenile capuchin (Cebus imitator) from a Boa constrictor

    1.
    Alexander, R. D. The evolution of social behavior. Annu. Rev. Ecol. Syst. 5, 325–383 (1974).
    Article  Google Scholar 
    2.
    Wrangham, R. W. An ecological model of female-bonded primate groups. Behaviour 75, 262–300 (1980).
    Article  Google Scholar 

    3.
    van Schaik, C. P., van Noordwijk, M. A., de Boer, R. J. & den Tonkelaar, I. The effect of group size on time budgets and social behaviour in wild long-tailed macaques (Macaca fascicularis). Behav. Ecol. Sociobiol. 13, 173–181 (1983).
    Article  Google Scholar 

    4.
    Sterck, E. H. M., Watts, D. P. & van Schaik, C. P. The evolution of female social relationships in non-human primates. Behav. Ecol. Sociobiol. 41, 291–309 (1997).
    Article  Google Scholar 

    5.
    Isbell, L. A. The Fruit, the Tree, and the Serpet: Why We See So Well (Harvard University Press, Cambridge, 2009).
    Google Scholar 

    6.
    Seyfarth, R. M., Cheney, D. L. & Marler, P. Vervet monkey alarm calls: semantic communication in a free-ranging primate. Anim. Behav. 28, 1070–1094 (1980).
    Article  Google Scholar 

    7.
    Crofoot, M. C. Why Mob? Reassessing the costs and benefits of primate predator harassment. Folia Primatol. 83, 252–273 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    8.
    Carlson, N. V., Healy, S. D. & Templeton, C. N. Mobbing. Curr. Biol. 28, R1081–R1082 (2018).
    CAS  PubMed  Article  Google Scholar 

    9.
    Tórrez, L., Robles, N., González, A. & Crofoot, M. C. Risky business? Lethal attack by a jaguar sheds light on the costs of predator mobbing for capuchins (Cebus capucinus). Int. J. Primatol. 33, 440–446 (2012).
    Article  Google Scholar 

    10.
    Corrêa, H. K. M. & Coutinho, P. E. G. Fatal attack of a pit viper, Bothrops jararaca, on an infant buffy-tufted ear marmoset (Callithrix aurita). Primates 38, 215–217 (1997).
    Article  Google Scholar 

    11
    Foerster, S. Two incidents of venomous snakebite on juvenile blue and Sykes monkeys (Cercopithecus mitis stuhlmanni and C. m. albogularis). Primates 49, 300–303 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Ferrari, S. F. & Beltrão-Mendes, R. Do snakes represent the principal predatory threat to callitrichids? Fatal attack of a viper (Bothrops leucurus) on a common marmoset (Callithrix jacchus) in the Atlantic Forest of the Brazilian Northeast. Primates 52, 207–209 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Rose, L. M. et al. Interspecific interactions between Cebus capucinus and other species: data from three Costa Rican sites. Int. J. Primatol. 24, 759–796 (2003).
    Article  Google Scholar 

    14.
    Perry, S., Manson, J. H., Dower, G. & Wikberg, E. White-faced capuchins cooperate to rescue a groupmate from a Boa constrictor. Folia Primatol. 74, 109–111 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    van Schaik, C. P. & van Noordwijk, M. A. The special role of male Cebus monkeys in predation avoidance and its effect on group composition. Behav. Ecol. Sociobiol. 24, 265–276 (1989).
    Article  Google Scholar 

    16.
    Fragaszy, D. M., Visalberghi, E. & Fedigan, L. M. The Complete Capuchin: The Biology of the Genus Cebus (Cambridge University Press, Cambridge, 2004).
    Google Scholar 

    17.
    Meno, W., Coss, R. G. & Perry, S. Development of snake-directed antipredator behavior by wild white-faced capuchin monkeys: I. Snake-species discrimination. Am. J. Primatol. 75, 281–291 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Fedigan, L. M. & Jack, K. M. Tracking neotropical monkeys in Santa Rosa: lessons from a regenerating Costa Rican dry forest. In Long-Term Field Studies of Primates (eds Kappeler, P. M. & Watts, D.) 165–184 (Springer, Berlin, 2012).
    Google Scholar 

    19.
    Campos, F. A. A synthesis of long-term environmental change in Santa Rosa, Costa Rica. In Primate Life Histories, Sex Roles, and Adaptability (eds Kalbitzer, U. & Jack, K. M.) 331–358 (Springer, Berlin, 2018).
    Google Scholar 

    20.
    Rose, L. M. Sex differences in diet and foraging behavior in white-faced capuchins (Cebus capucinus). Int. J. Primatol. 15, 95–114 (1994).
    Article  Google Scholar 

    21.
    Shields, W. M. Factors affecting nest and site fidelity in adirondack barn swallows (Hirundo rustica). Auk 101, 780–789 (1984).
    Article  Google Scholar 

    22.
    Teunissen, N., Kingma, S. A. & Peters, A. Predator defense is shaped by risk, brood value and social group benefits in a cooperative breeder. Behav. Ecol. 31, 761–771 (2020).
    Article  Google Scholar 

    23.
    Kennedy, R. A. W., Evans, C. S. & McDonald, P. G. Individual distinctiveness in the mobbing call of a cooperative bird, the noisy miner Manorina melanocephala. J. Avian Biol. 40, 481–490 (2009).
    Article  Google Scholar 

    24.
    Briones-Fourzán, P., Pérez-Ortiz, M. & Lozano-Álvarez, E. Defense mechanisms and antipredator behavior in two sympatric species of spiny lobsters, Panulirus argus and P. guttatus. Mar. Biol. 149, 227–239 (2006).
    Article  Google Scholar 

    25.
    Leuchtenberger, C., Almeida, S. B., Andriolo, A. & Crawshaw, P. G. Jaguar mobbing by giant otter groups. Acta Ethol. 19, 143–146 (2016).
    Article  Google Scholar 

    26.
    Graw, B. & Manser, M. B. The function of mobbing in cooperative meerkats. Anim. Behav. 74, 507–517 (2007).
    Article  Google Scholar 

    27.
    Boesch, C. The effects of leopard predation on grouping patterns in forest chimpanzees. Behaviour 117, 220–242 (1991).
    Article  Google Scholar 

    28.
    Pitman, R. L. et al. Humpback whales interfering when mammal-eating killer whales attack other species: Mobbing behavior and interspecific altruism?. Mar. Mammal Sci. 33, 7–58 (2017).
    Article  Google Scholar 

    29.
    Gusset, M. Banded together: a review of the factors favouring group living in a social carnivore, the banded mongoose Mungos mungo (Carnivora: Herpestidae). Mammalia 71, 80–82 (2007).
    Article  Google Scholar 

    30.
    Johnson, C. & Norris, K. S. Delphinid social organisation and social behavior. In Dolphin Cognition and Behavior: a Comparative Approach (eds Schusterman, R. J. et al.) 335–346 (Lawrence Erlbaum Associates, Mahwah, 1986).
    Google Scholar 

    31.
    Hollis, K. L. & Nowbahari, E. Toward a behavioral ecology of rescue behavior. Evol. Psychol. 11, 647–664 (2013).
    PubMed  Article  Google Scholar 

    32.
    Nowbahari, E. & Hollis, K. L. Distinguishing between rescue, cooperation and other forms of altruistic behavior. Commun. Integr. Biol. 3, 77–79 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    33.
    Gursky, S. Predation on a wild spectral tarsier (Tarsius spectrum) by a snake. Folia Primatol. 73, 60–62 (2002).
    PubMed  Article  Google Scholar 

    34.
    Quintino, E. P. & Bicca-Marques, J. C. Predation of Alouatta puruensis by Boa constrictor. Primates 54, 325–330 (2013).
    PubMed  Article  Google Scholar 

    35.
    Teixeira, D. S. et al. Fatal attack on black-tufted-ear marmosets (Callithrix penicillata) by a Boa constrictor: a simultaneous assault on two juvenile monkeys. Primates 57, 123–127 (2016).
    PubMed  Article  Google Scholar 

    36.
    Cisneros-Heredia, D. F., León-Reyes, A. & Seger, S. Boa constrictor predation on a Titi monkey, Callicebus discolor. Neotrop. Primates 13, 11–12 (2005).
    Article  Google Scholar 

    37.
    Chapman, C. A. Boa constrictor predation and group response in white-faced Cebus monkeys. Biotropica 18, 171–172 (1986).
    Article  Google Scholar 

    38.
    Ferrari, S. F., Pereira, W. L. A., Santos, R. R. & Veiga, L. M. Fatal attack of a Boa constrictor on a bearded saki (Chiropotes satanas utahicki). Folia Primatol. 75, 111–113 (2004).
    PubMed  Article  Google Scholar 

    39.
    Heymann, E. W. A field observation of predation on a moustached tamarin (Saguinus mystax) by an anaconda. Int. J. Primatol. 8, 193–195 (1987).
    Article  Google Scholar 

    40.
    Burney, D. A. Sifaka predation by a large boa. Folia Primatol. 73, 144–145 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    41.
    Pennisi, E. How did cooperative behavior evolve. Science 309, 93 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Foster, K. R., Wenseleers, T. & Ratnieks, F. L. W. Kin selection is the key to altruism. Trends Ecol. Evol. 21, 57–60 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    43.
    Fedigan, L. M. & Jack, K. M. Neotropical primates in a regenerating Costa Rican dry forest: a comparison of howler and capuchin population patterns. Int. J. Primatol. 22, 689–713 (2001).
    Article  Google Scholar 

    44.
    Gould, L., Fedigan, L. M. & Rose, L. M. Why be vigilant? The case of the alpha animal. Int. J. Primatol. 18, 401–414 (1997).
    Article  Google Scholar 

    45.
    Schoof, V. A. M. & Jack, K. M. Rank-based differences in fecal androgen and cortisol levels in male white-faced capuchins, Cebus capucinus, in the Santa Rosa Sector, Area de Conservacíon Guanacaste, Costa Rica. Am. J. Primatol. 71, 76 (2009).
    Google Scholar 

    46.
    Schaebs, F. S., Perry, S. E., Cohen, D., Mundry, R. & Deschner, T. Social and demographic correlates of male androgen levels in wild white-faced capuchin monkeys (Cebus capucinus). Am. J. Primatol. 79, 79 (2017).
    Article  CAS  Google Scholar 

    47.
    Jack, K. M. et al. Hormonal correlates of male life history stages in wild white-faced capuchin monkeys (Cebus capucinus). Gen. Comp. Endocrinol. 195, 58–67 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Godoy, I., Vigilant, L. & Perry, S. E. Inbreeding risk, avoidance and costs in a group-living primate, Cebus capucinus. Behav. Ecol. Sociobiol. 70, 1601–1611 (2016).
    Article  Google Scholar 

    49.
    Wikberg, E. C. et al. Inbreeding avoidance and female mate choice shape reproductive skew in capuchin monkeys (Cebus capucinus imitator). Mol. Ecol. 26, 653–667 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    50.
    Van Schaik, C. P. Why are diurnal primates living in groups?. Behaviour 87, 120–144 (1983).
    Article  Google Scholar 

    51.
    Tello, N. S., Huck, M. & Heymann, E. W. Boa constrictor attack and successful group defence in moustached tamarins, Saguinus mystax. Folia Primatol. 73, 146–148 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    52.
    Gardner, C. J., Radolalaina, P., Rajerison, M. & Greene, H. W. Cooperative rescue and predator fatality involving a group-living strepsirrhine, Coquerel’s sifaka (Propithecus coquereli), and a Madagascar ground boa (Acrantophis madagascariensis). Primates 56, 127–129 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    Eberle, M. & Kappeler, P. M. Mutualism, reciprocity, or kin selection? Cooperative rescue of a conspecific from a boa in a nocturnal solitary forager the gray mouse lemur. Am. J. Primatol. 70, 410–414 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Ribeiro-Júnior, M. A., Ferrari, S. F., Lima, J. R. F., da Silva, C. R. & Lima, J. D. Predation of a squirrel monkey (Saimiri sciureus) by an Amazon tree boa (Corallus hortulanus): even small Boids may be a potential threat to small-bodied platyrrhines. Primates 57, 317–322 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    55.
    Wiens, F. & Zitzmann, A. Predation on a wild slow loris (Nycticebus coucang) by a reticulated python (Python reticulatus). Folia Primatol. 70, 362–364 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Raktondravony, D., Goodman, S. M. & Soarimalala, V. Predation on Hapalemur griseus griseus by Boa manditra (Boidae) in the littoral forest of eastern Madagascar. Folia Primatol. 69, 405–408 (1998).
    Article  Google Scholar  More

  • in

    Implication of single year seasonal sampling to genetic diversity fluctuation that coordinates with oceanographic dynamics in torpedo scads near Taiwan

    1.
    Dunn, D. C., Boustany, A. M. & Halpin, P. N. Spatio-temporal management of fisheries to reduce by-catch and increase fishing selectivity. Fish Fish. 12, 110–119 (2011).
    Article  Google Scholar 
    2.
    Allen, A. M. & Singh, N. J. Linking movement ecology with wildlife management and conservation. Front. Ecol. Evol. 3, 155 (2016).
    Article  Google Scholar 

    3.
    Wedding, L. M. et al. Geospatial approaches to support pelagic conservation planning and adaptive management. Endang. Species Res. 30, 1–9 (2016).
    Article  Google Scholar 

    4.
    André, C. et al. Population structure in Atlantic cod in the eastern North Sea-Skagerrak-Kattegat: early life stage dispersal and adult migration. BMC Res. Notes 9, 1 (2016).
    Article  Google Scholar 

    5.
    Canales-Aguirre, C. B., Ferrada-Fuentes, S., Galleguillos, R. & Hernández, C. E. Genetic structure in a small pelagic fish coincides with a marine protected area: seascape genetics in Patagonian Fjords. PLoS ONE 11, e0160670. https://doi.org/10.1371/journal.pone.0160670 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    6.
    Eggers, F. et al. Seasonal dynamics of Atlantic herring (Clupea harengus L.) populations spawning in the vicinity of marginal habitats. PLoS ONE 9, e111985 (2014).
    ADS  Article  Google Scholar 

    7.
    Saraux, C. et al. Small pelagic fish dynamics: a review of mechanisms in the Gulf of Lions. Deep Sea Res. Part II Top. Stud. Oceanogr. 159, 52–61 (2019).
    ADS  Article  Google Scholar 

    8.
    Silva, A. et al. Adult-mediated connectivity and spatial population structure of sardine in the Bay of Biscay and Iberian coast. Deep Sea Res. Part II Top. Stud. Oceanogr. 159, 62–74 (2019).
    ADS  Article  Google Scholar 

    9.
    Sreenivasan, P. Observations on the fishery and biology of Megalaspis cordyla (Linnaeus) at Vizhinjam. Indian J. Fish. 25, 122–140 (1978).
    Google Scholar 

    10.
    Nakabō, T. Fishes of Japan: With Pictorial Keys to the Species Vol. 1 (Tokai University Press, Tokyo, 2002).
    Google Scholar 

    11.
    Shao, K. T. Taiwan Fish Database. WWW Web electronic publication. https://fishdb.sinica.edu.tw. Accessed October 20, 2019.

    12.
    Sreenivasan, P. Observations on the food and feeding habits of the Ttorpedo trevally Megalaspis cordyla (Linnaeus) from Vizhinjam bay. Indian J. Fish. 21, 76–84 (1974).
    Google Scholar 

    13.
    Hu, J., Kawamura, H., Hong, H. & Qi, Y. A review on the currents in the South China Sea: seasonal circulation, South China Sea warm current and Kuroshio intrusion. J. Oceanogr. 56, 607–624 (2000).
    Article  Google Scholar 

    14.
    Gallagher, S. J. et al. Neogene history of the West Pacific warm pool, Kuroshio and Leeuwin currents. Paleoceanography https://doi.org/10.1029/2008PA001660 (2009).
    Article  Google Scholar 

    15.
    Gallagher, S. J. et al. The Pliocene to recent history of the Kuroshio and Tsushima Currents: a multi-proxy approach. Prog. Earth Planet. Sci. 2, 17 (2015).
    ADS  Article  Google Scholar 

    16.
    Jan, S., Wang, J., Chern, C.-S. & Chao, S.-Y. Seasonal variation of the circulation in the Taiwan Strait. J. Mar. Syst. 35, 249–268 (2002).
    Article  Google Scholar 

    17.
    Winans, G. A. Geographic variation in the milkfish Chanos chanos I. Biochemical evidence. Evolution 34, 558–574 (1980).
    CAS  PubMed  Google Scholar 

    18.
    Bell, L., Moyer, J. & Numachi, K. Morphological and genetic variation in Japanese populations of the anemonefish Amphiprion clarkii. Mar. Biol. 72, 99–108 (1982).
    Article  Google Scholar 

    19.
    Richardson, B. Distribution of protein variation in skipjack tuna (Katsumonuspelamis) from the central and south-west Pacific. Aust. J. Mar. Freshw. Res. 34, 231–251 (1983).
    CAS  Article  Google Scholar 

    20.
    Rosenblatt, R. H. & Waples, R. S. A genetic comparison of allopatric populations of shore fish species from the eastern and central Pacific Ocean: dispersal or vicariance?. Copeia 1986, 275–284 (1986).
    Article  Google Scholar 

    21.
    McMillan, W. O. & Palumbi, S. R. Concordant evolutionary patterns among Indo-West Pacific butterflyfishes. Proc. R. Soc. B 260, 229–236 (1995).
    ADS  CAS  Article  Google Scholar 

    22.
    Grant, W. & Bowen, B. W. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J. Hered. 89, 415–426 (1998).
    Article  Google Scholar 

    23.
    Palumbi, S. R. & Wilson, A. C. Mitochondrial DNA diversity in the sea urchins Strongylocentrotus purpuratus and S. droebachiensis. Evolution 44, 403–415 (1990).
    Article  Google Scholar 

    24.
    Ayala, F. J., Hedgecock, D., Zumwalt, G. S. & Valentine, J. W. Genetic variation in Tridacna maxima, an ecological analog of some unsuccessful evolutionary lineages. Evolution 27, 177–191 (1973).
    PubMed  Google Scholar 

    25.
    Benzie, J. A. & Williams, S. T. Genetic structure of giant clam (Tridacna maxima) populations from reefs in the Western Coral Sea. Coral Reefs 11, 135–141 (1992).
    ADS  Article  Google Scholar 

    26.
    Williams, S. T. & Benzie, J. A. H. Genetic uniformity of widely separated populations of the coral reef starfish Linckia laevigata from the East Indian and West Pacific Oceans, revealed by allozyme electrophoresis. Mar. Biol. 126, 99–107 (1996).
    Article  Google Scholar 

    27.
    Arnaud, S., Bonhomme, F. & Borsa, P. Mitochondrial DNA analysis of the genetic relationships among populations of scad mackerel (Decapterus macarellus, D. macrosoma, and D. russelli) in South-East Asia. Mar. Biol. 135, 699–707. https://doi.org/10.1007/s002270050671 (1999).
    CAS  Article  Google Scholar 

    28.
    Huang, C., Weng, C. & Lee, S. Distinguishing two types of gray mullet, Mugil cephalus L. (Mugiliformes: Mugilidae), by using glucose-6-phosphate isomerase (GPI) allozymes with special reference to enzyme activities. J. Comp. Physiol. B 171, 387–394 (2001).
    CAS  Article  Google Scholar 

    29.
    McCafferty, S. et al. Historical biogeography and molecular systematics of the Indo-Pacific genus Dascyllus (Teleostei: Pomacentridae). Mol. Ecol. 11, 1377–1392 (2002).
    CAS  Article  Google Scholar 

    30.
    Benzie, J. A. & Williams, S. T. Genetic structure of giant clam (Tridacna maxima) populations in the West Pacific is not consistent with dispersal by present-day ocean currents. Evolution 51, 768–783 (1997).
    PubMed  Google Scholar 

    31.
    Fauvelot, C. & Planes, S. Understanding origins of present-day genetic structure in marine fish: biologically or historically driven patterns? Mar. Biol. 141, 773–788 (2002).
    Article  Google Scholar 

    32.
    Rajanna, K., Benakappa, S., Anjanayappa, H. & Honnananda, B. Maturation and spawning of the horse mackerel, Megalaspis cordyla (Linnaeus) from Mangalore waters. Environ. Ecol. 30, 41–44 (2012).
    Google Scholar 

    33.
    Song, N., Jia, N., Yanagimoto, T., Lin, L. & Gao, T. Genetic differentiation of Trachurus japonicus from the Northwestern Pacific based on the mitochondrial DNA control region. Mitochondrial DNA 24, 705–712 (2013).
    CAS  Article  Google Scholar 

    34.
    Niu, S.-F. et al. Demographic history and population genetic analysis of Decapterus maruadsi from the northern South China Sea based on mitochondrial control region sequence. PeerJ 7, e7953 (2019).
    Article  Google Scholar 

    35.
    Clark, P. U. et al. The last glacial maximum. Science 325, 710–714 (2009).
    ADS  CAS  Article  Google Scholar 

    36.
    Lavery, S., Moritz, C. & Fielder, D. Indo-Pacific population structure and evolutionary history of the coconut crab Birgus latro. Mol. Ecol. 5, 557–570 (1996).
    Article  Google Scholar 

    37.
    Planes, S. Geographic structure and gene flow in the manini (convict surgeonfish, Acanthurustriostegus) in the South Central Pacific. Genetics and Evolution of Aquatic Organisms, 113–122 (1994).

    38.
    Ocean Data Bank of the Ministry of Science and Technology, Republic of China. https://www.odb.ntu.edu.tw/.

    39.
    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
    CAS  Article  Google Scholar 

    40.
    Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).
    CAS  Google Scholar 

    41.
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 110. Virus Evol. 4, vey016 (2018).
    Article  Google Scholar 

    42.
    Damerau, M., Freese, M. & Hanel, R. Multi-gene phylogeny of jacks and pompanos (Carangidae), including placement of monotypic vadigo Campogramma glaycos. J. Fish Biol. 92, 190–202 (2018).
    CAS  Article  Google Scholar 

    43.
    Clement, M., Posada, D. & Crandall, K. A. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659 (2000).
    CAS  Article  Google Scholar 

    44.
    Múrias dos Santos, A., Cabezas, M. P., Tavares, A. I., Xavier, R. & Branco, M. tcsBU: a tool to extend TCS network layout and visualization. Bioinformatics 32, 627–628. https://doi.org/10.1093/bioinformatics/btv636 (2015).
    CAS  Article  PubMed  Google Scholar 

    45.
    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).
    CAS  Article  Google Scholar 

    46.
    Global Administrative Areas (2012). GADM database of Global Administrative Areas. https://www.gadm.org.

    47.
    QGIS.org (2020). QGIS Geographic Information System. Open Source Geospatial Foundation Project. https://qgis.org.

    48.
    Adobe Inc. (2019). Adobe Illustrator. https://adobe.com/products/illustrator. More

  • in

    High fidelity defines the temporal consistency of host-parasite interactions in a tropical coastal ecosystem

    1.
    Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. & Jetz, W. Homage to Linnaeus: how many parasites? How many hosts?. Proc. Natl. Acad. Sci. USA 105, 11482–11489 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Minchella, D. J. & Scott, M. E. Parasitism: a cryptic determinant of animal community structure. Trends Ecol. Evol. 8, 250–254 (1991).
    Article  Google Scholar 

    3.
    Hudson, P. J., Rizzoli, A. P., Grenfell, B. T., Heesterbeek, J. A. P. & Dobson, A. P. Ecology of wildlife diseases. In The Ecology of Wildlife Diseases (eds Hudson, P. J. et al.) 1–5 (Oxford University Press, Oxford, 2002).
    Google Scholar 

    4.
    Hamilton, W. D. & Zuk, M. Heritable true fitness and bright birds: a role for parasites?. Science 80, 384–387 (1982).
    ADS  Article  Google Scholar 

    5.
    Spencer, K. A., Buchanan, K. L., Leitner, S., Goldsmith, A. R. & Catchpole, C. K. Parasites affect song complexity and neural development in a songbird. Proc. R. Soc. Lond. B. 1576, 2037–2043 (2005).
    Google Scholar 

    6.
    Asghar, M. et al. Hidden costs of infection: chronic malaria accelerates telomere degradation and senescence in wild birds. Science 6220, 436–438 (2015).
    ADS  Article  CAS  Google Scholar 

    7.
    van Riper, C., van Riper, S. G., Goff, M. L. & Laird, M. The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol. Monogr. 4, 327–344 (1986).
    Article  Google Scholar 

    8.
    Atkinson, C., Woods, K., Dusek, R., Sileo, L. & Iko, W. Wildlife disease and conservation in Hawaii: Pathogenicity of avian malaria (Plasmodium relictum) in experimentally infected Iiwi (Vestiaria coccinea). Parasitology 111, S59–S69 (1995).
    PubMed  Article  PubMed Central  Google Scholar 

    9.
    Ings, T. C. et al. Ecological networks: beyond food webs. J. Anim. Ecol. 78, 253–269 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    10.
    Bellay, S. et al. Host-parasite networks: an integrative overview with tropical examples. In Ecological Networks in the Tropics: An Integrative Overview of Species Interactions from Some of the Most Species-Rich Habitats on Earth (eds Dáttilo, W. & Rico-Gray, V.) 127–140 (Springer, Berlin, 2018).
    Google Scholar 

    11
    Valkiūnas, G. Avian Malaria Parasites and Other Haemosporidia (CRC Press, Boca Raton, 2005).
    Google Scholar 

    12.
    Ricklefs, R. E. et al. Species formation in avian malaria parasites. Proc. Natl Acad. Sci. USA 111, 14816–14821 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Hellgren, O., Pérez-Triz, J. & Bensch, S. A jack-of-all-trades and still a master of some: prevalence and host range in avian malaria and related blood parasites. Ecol. 90, 2840–2849 (2009).
    Article  Google Scholar 

    14.
    Clark, N., Clegg, S. M. & Lima, M. R. A review of global diversity in avian haemosporidians (Plasmodium and Haemoproteus: Haemosporida): new insights from molecular data. Int. J. Parasitol. 44, 329–338 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Moens, M. A. J. & Pérez-Tris, J. Discovering potential sources of emerging pathogens: South America is a reservoir of generalist avian blood parasites. Int. J. Parasitol. 46, 41–49 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Lacorte, G. A. et al. Exploring the diversity and distribution of Neotropical avian malaria parasites: a molecular survey from Southeast Brazil. PLoS ONE 8, e57770 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Janzen, D. H. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501–528 (1970).
    Article  Google Scholar 

    18.
    Connell, J. H. On the role of natural enemies in preventing competitive exclusion in some marine animals and in forest trees. In Dynamics of Populations (eds den Boer, P. J. & Gradwell, G. R.) 298–312 (Centre for Agricultural Publishing and Documentation, Wageningen, 1971).
    Google Scholar 

    19.
    MacArthur, R. Fluctuations of animal populations and a measure of community stability. Ecol. 36, 533–536 (1955).
    Article  Google Scholar 

    20.
    Rohde, K. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514–527 (1992).
    Article  Google Scholar 

    21.
    Willig, M. R., Kaufman, D. M. & Stevens, R. D. Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 34, 273–309 (2003).
    Article  Google Scholar 

    22.
    Svensson-Coelho, M., Ellis, V. A., Loiselle, B. A., Blake, J. G. & Ricklefs, R. E. Reciprocal specialization in multihost malaria parasite communities of birds: a temperate-tropical comparison. Am. Nat. 184, 624–635 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    23.
    Morris, R. J., Gripenberg, S., Lewis, O. T. & Roslin, T. Antagonistic interaction networks are structured independently of latitude and host guild. Ecol. Lett. 17, 340–349 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 1–12 (2006).
    Article  Google Scholar 

    25.
    Carstensen, D. W., Sabatino, M., Trøjelsgaard, K. & Morellato, L. P. C. Beta diversity of plant-pollinator networks and the spatial turnover of pairwise interactions. PLoS ONE 9, e112903 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Poulin, R. Network analysis shining light on parasite ecology and diversity. Trends Parasitol. 26, 492–498 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    27.
    Simanonok, M. P. & Burkle, L. A. Partitioning interaction turnover among alpine pollination networks: spatial, temporal, and environmental patterns. Ecosphere 5, art149 (2014).
    Article  Google Scholar 

    28.
    Poulin, R., Krasnov, B. R., Pilosof, S. & Thieltges, D. W. Phylogeny determines the role of helminth parasites in intertidal food webs. J. Anim. Ecol. 82, 1265–1275 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    29.
    Robinson, M. L. & Strauss, S. Generalists are more specialized in low-resource habitats, increasing stability of ecological network structure. Proc. Natl Acad. Sci. USA 117, 2043–2048 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30
    Dallas, T. & Cornelius, E. Co-extinction in a host-parasite network : identifying key hosts for network stability. Sci. Rep. 5, 1–10 (2015).
    Article  CAS  Google Scholar 

    31.
    Mccurdy, D. G., Shutler, D., Mullie, A. & Forbes, M. R. Sex-biased parasitism of avian hosts: relations to blood parasite taxon and mating system. Oikos 82, 303–312 (1998).
    CAS  Article  Google Scholar 

    32.
    Fecchio, A., Lima, M. R., Silveira, P., Braga, ÉM. & Marini, M. Â. High prevalence of blood parasites in social birds from a neotropical savanna in Brazil. Emu. 111, 132–138 (2011).
    Article  Google Scholar 

    33.
    Laurance, S. G. W. et al. Habitat fragmentation and ecological traits influence the prevalence of avian blood parasites in a tropical rainforest landscape. PLoS ONE 8, e76227 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Lutz, H. L. et al. Parasite prevalence corresponds to host life history in a diverse assemblage of afrotropical birds and haemosporidian parasites. PLoS ONE 10, e0121254 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    35.
    González, A. D. et al. Mixed species flock, nest height, and elevation partially explain avian haemoparasite prevalence in Colombia. PLoS ONE 9, e100695 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Matthews, A. E. et al. Avian haemosporidian prevalence and its relationship to host life histories in eastern Tennessee. J. Ornithol. 157, 533–548 (2016).
    Article  Google Scholar 

    37.
    Pinheiro, R. B. P. et al. Trade-offs and resource breadth processes as drivers of performance and specificity in a host–parasite system: a new integrative hypothesis. Int. J. Parasitol. 2, 115–121 (2016).
    MathSciNet  Article  Google Scholar 

    38.
    Mello, A. A. R. et al. The modularity of seed dispersal: differences in structure and robustness between bat– and bird–fruit networks. Oecologia 167, 131–140 (2015).
    ADS  Article  Google Scholar 

    39.
    Thompson, J. N. The evolution of species interactions. Science 284, 2116–2118 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Fortuna, M. A. et al. Nestedness vs modularity in ecological networks: two side of the same coin?. J. Anim. Ecol. 79, 811–817 (2010).
    PubMed  PubMed Central  Google Scholar 

    41.
    Bellay, S., Lima, D. P., Takemoto, R. M. & Luque, J. L. A host-endoparasite network of Neotropical marine fish: are there organizational patterns?. Parasitology 138, 1945–1952 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    42.
    Krasnov, B. R. et al. Phylogenetic signal in module composition and species connectivity in compartmentalized host-parasite networks. Am. Nat. 179, 501–511 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    43.
    Bellay, S. et al. Developmental stage of parasites influences the structure of fish-parasite networks. PLoS ONE 8, e75710 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    44
    Thompson, J. N. The Geographic Mosaic of Coevolution (University of Chicago Press, Chicago, 2005).
    Google Scholar 

    45.
    Michelan, T. S., Thomaz, S. M., Mormul, R. P. & Carvalho, P. Effects of an exotic invasive macrophyte (tropical signalgrass) on native plant community composition, species richness and functional diversity. Freshw. Biol. 55, 1315–1326 (2010).
    Article  Google Scholar 

    46.
    Krasnov, B. R. et al. Assembly rules of ectoparasite communities across scales: combining patterns of abiotic factors, host composition, geographic space, phylogeny and traits. Ecography 38, 184–197 (2015).
    Article  Google Scholar 

    47.
    LaPointe, D. A., Atkinson, C. T. & Samuel, M. D. Ecology and conservation biology of avian malaria. Ann. N. Y. Acad. Sci. 1249, 211–226 (2012).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    CaraDonna, P. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Let. 20, 385–394 (2017).
    Article  Google Scholar 

    49.
    Fallon, S. M., Rickfles, R. E., Latta, S. C. & Bermingham, E. Temporal stability of insular avian malarial parasite communities. Proc. R. Soc. Lond. B. 271, 493–500 (2004).
    CAS  Article  Google Scholar 

    50.
    Ferreira Junior, F. C. et al. Habitat modification and seasonality influence avian haemosporidian parasite distributions in southeastern Brazil. PLoS ONE 12, e0178791 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    Knowles, S. C. L., Palinauskas, V. & Sheldon, B. C. Chronic malaria infections increase family inequalities and reduce parental fitness: experimental evidence from a wild bird population. J. Evol. Biol. 23, 557–569 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Poisot, T., Stouffer, D. B. & Gravel, D. Beyond species: why ecological interaction networks vary through space and time. Oikos 124, 243–251 (2015).
    Article  Google Scholar 

    53.
    Castilheiro, W., Santos-filho, M. & Oliveira, R. F. Beta diversity of birds (Passeriformes, Linnaeus, 1758) in Southern Amazon. Ciências Anim. Bras. 18, 1–18 (2017).
    Google Scholar 

    54.
    Yen, J. D. L., Fleishman, E., Fogarty, F. & Dobkin, D. S. Relating beta diversity of birds and butterflies in the Great Basin to spatial resolution, environmental variables and trait-based groups. Global Ecol. Biogeogr. 28, 328–340 (2019).
    Article  Google Scholar 

    55.
    Woodward, G. et al. Body size in ecological networks. Trends Ecol. Evol. 7, 402–409 (2005).
    Article  Google Scholar 

    56.
    Campião, K. M., Ribas, A. C. A., Morais, D. H., Silva, R. J. & Tavares, L. E. R. How many parasites species a frog might have? Determinants of parasite diversity in South American anurans. PLoS ONE 10, e0140577 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    57.
    Lima, D. P., Giacomini, H. C., Takemoto, R. M., Agostinho, A. A. & Bini, L. M. Patterns of interactions of a large fish-parasite network in a tropical floodplain. J. Anim. Ecol. 81, 905–913 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    58.
    Brito, S. V. et al. Phylogeny and micro-habitats utilized by lizards determine the composition of their endoparasites in the semiarid Caatinga of Northeast Brazil. Parasitol. Res. 11, 3963–3972 (2014).
    Article  Google Scholar 

    59.
    Graham, S. P., Hassan, H. K., Burket-Cadena, N. D., Guyer, C. & Unnasch, T. R. Nestedness of ectoparasite-vertebrate host networks. PLoS ONE 18, e7873 (2009).
    ADS  Article  CAS  Google Scholar 

    60.
    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    61.
    Poisot, T., Canard, E., Mouquet, N. & Hochberg, M. E. A comparative study of ecological specialization estimators. Methods Ecol. Evol. 3, 537–544 (2012).
    Article  Google Scholar 

    62.
    Wilkinson, L. C., Handel, C. M., Van Hemert, C., Loiseau, C. & Sehgal, R. N. M. Avian malaria in a boreal resident species: long-term temporal variability, and increased prevalence in birds with avian keratin disorder. Int. J. Parasitol. 46, 281–290 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Møller, A. P., Merino, S., Brown, C. R. & Robertson, R. J. Immune defense and host sociality: a comparative study of swallows and martins. Am. Nat. 158, 136–145 (2001).
    PubMed  Article  PubMed Central  Google Scholar 

    64
    Medeiros, M. C., Hamer, G. L. & Ricklefs, R. E. Host compatibility rather than vector-host-encounter rate determines the host range of avian Plasmodium parasites. Proc. R. Soc. Lond. B. 280, 20122947 (2013).
    Google Scholar 

    65.
    Clark, N. & Clegg, S. M. Integrating phylogenetic and ecological distances reveals new insights into parasite host specificity. Mol. Ecol. 26, 3074–3086 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    66.
    Costa, F. V. et al. Few ant species play a central role linking different plant resources in a network in rupestrian grasslands. PLoS ONE 12, e0167161 (2016).
    Article  CAS  Google Scholar 

    67.
    Fagundes, R. et al. Differences among ant species in plant protection are related to production of extrafloral nectar and degree of leaf herbivory. Biol. J. Linn. Soc. 122, 71–83 (2016).
    Article  Google Scholar 

    68.
    Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M. & Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 226, 711–728 (2013).
    Article  Google Scholar 

    69.
    Rodrigues, R. A. et al. Using a multistate occupancy approach to determine molecular diagnostic accuracy and factors afecting avian haemosporidian infections. Sci. Rep. 10, 8480 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Sambrook, J. & Russell, D. W. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 2001).
    Google Scholar 

    71.
    Fallon, A. S. M., Ricklefs, R. E., Swanson, B. L. & Bermingham, E. Detecting avian malaria: an improved polymerase chain reaction diagnostic. J. Parasitol. 89, 1044–1047 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    72.
    Sanguinetti, C. J., Neto, E. D. & Simpson, A. J. G. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17, 915–919 (1994).
    Google Scholar 

    73.
    Hellgren, O., Waldenström, J. & Bensch, S. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J. Parasitol. 90, 797–802 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Ewing, B., Hillier, L., Wendl, M. C. & Green, P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 3, 175–185 (1998).
    Article  Google Scholar 

    75.
    Bensch, S., Hellgren, O. & Pérez-Tris, J. MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol. Ecol. Resour. 9, 1353–1358 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    76.
    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).
    Article  Google Scholar 

    77.
    Whittaker, R. H. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30, 279–338 (1960).
    Article  Google Scholar 

    78.
    Baselga, A. & Orme, C. D. L. betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).
    Article  Google Scholar 

    79.
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (2017).

    80.
    Fründ, J., McCann, K. S. & Williams, N. M. Sampling bias is a challenge for quantifying specialization and network structure: lessons from a quantitative niche model. Oikos 125, 502–513 (2016).
    Article  Google Scholar 

    81.
    Dormann, C. F. & Strauss, R. A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 5, 90–98 (2014).
    Article  Google Scholar 

    82.
    Oksanen, J. F. et al. Vegan: Community. Ecology Package. https://cran.r-project.org/package=vegan (2016).

    83.
    Batagelj, V. & Mrvar, A. Pajek–a program for large network analysis. Connections 21, 47–57 (1998).
    Google Scholar  More

  • in

    Comparing fish prey diversity for a critically endangered aquatic mammal in a reserve and the wild using eDNA metabarcoding

    1.
    Gangloff, M. M., Edgar, G. J. & Wilson, B. Imperilled species in aquatic ecosystems: emerging threats, management and future prognosis. Aquatic Conserv. Mar. Freshw. Ecosyst. 26, 858–871 (2016).
    Article  Google Scholar 
    2.
    WWF. Living Planet Report—2018: Aiming Higher (eds Grooten, M. & Almond, R.E.A.). WWF, Gland, Switzerland (2018).

    3.
    Zhou, X. et al. Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater. Nat. Commun. 9, 1276 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    4.
    Mei, Z. et al. Accelerating population decline of Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis). Biol. Conserv. 153, 192–200 (2012).
    Article  Google Scholar 

    5.
    Wang, D., Turvey, S.T., Zhao, X. & Mei, Z. Neophocaena asiaeorientalisssp.asiaeorientalis. The IUCN Red List of Threatened Species 2013 e.T43205774A45893487, http://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T43205774A45893487.en(2013).

    6.
    Yang, J. et al. A preliminary study on diet of the Yangtze finless porpoise using next-generation sequencing techniques. Mar. Mammal Sci. 35, 1579–1586 (2019).
    CAS  Article  Google Scholar 

    7.
    Wang, D. Population status, threats and conservation of the Yangtze finless porpoise. Chin. Sci. Bull. 54, 3473–3484 (2009).
    CAS  Google Scholar 

    8.
    Wu, J. et al. Progress in studies on water ecology in Tian’e Zhou Oxbow. Acta Hydrobiol. Sin. 41, 935–946 (2017) (In Chinese).
    Google Scholar 

    9.
    Nabi, G., Hao, Y., Robeck, T. R., Zheng, J. & Wang, D. Physiological consequences of biologic state and habitat dynamics on the critically endangered Yangtze finless porpoises (Neophocaena asiaeorientalis ssp. asiaeorientalis) dwelling in the wild and semi-natural environment. Conserv. Physiol. 6, coy072 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Stewart, K., Ma, H., Zheng, J. & Zhao, J. Using environmental DNA to assess population-wide spatiotemporal reserve use. Conserv. Biol. 31, 1173–1182 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Chen, M. et al. Parentage-based group composition and dispersal pattern studies of the Yangtze Finless Porpoise population in Poyang Lake. Int. J. Mol. Sci. 17, 1268 (2016).
    PubMed Central  Article  Google Scholar 

    12.
    Civade, R. et al. Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system. PLoS ONE 11, e0157366 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Evans, N. T. et al. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Mol. Ecol. Resour. 16, 29–41 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Hänfling, B. et al. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Mol. Ecol. 25, 3101–3119 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    15.
    Fujii, K. et al. Environmental DNA metabarcoding for fish community analysis in backwater lakes: a comparison of capture methods. PLoS ONE 14, e0210357 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Andruszkiewicz, E. A. et al. Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLoS ONE 12, e0176343 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    17.
    Harper, L. R. et al. Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of the great crested newt (Triturus cristatus). Ecol. Evol. 8, 6330–6341 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Günther, B., Knebelsberger, T., Neumann, H., Laakmann, S. & Arbizu, P. M. Metabarcoding of marine environmental DNA based on mitochondrial and nuclear genes. Sci. Rep. 8, 14822 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    19.
    Djurhuus, A. et al. Evaluation of marine zooplankton community structure through environmental DNA metabarcoding. Limnol. Oceanogr. Methods 16, 209–221 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol. 21, 1789–1793 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Thomsen, P. F. et al. Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol. 21, 2565–2573 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Stewart, K. A. Understanding the biotic and abiotic factors on sources of aquatic environmental DNA. Biodivers. Conserv. 28, 983–1001 (2019).
    Article  Google Scholar 

    24.
    Lopes, C. M. et al. eDNA metabarcoding: a promising method for anuran surveys in highly diverse tropical forests. Mol. Ecol. Resour. 17, 904–914 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Hobbs, J., Helbing, C. C. & Veldhoen, N. Environmental DNA protocol for freshwater aquatic ecosystems version 2.2. Report for the BC Ministry of Environment, Victoria BC Canada (2017).

    26.
    Laramie, M.B., Pilliod, D.S., Goldberg, C.S. & Strickler, K.M. Environmental DNA sampling protocol—Filtering water to capture DNA from aquatic organisms.U.S. Geological Survey Techniques and Methods, book 2, chap. A13, 15 p. (2015).

    27.
    Ma, H. et al. Characterization, optimization, and validation of environmental DNA (eDNA) markers to detect an endangered aquatic mammal. Conserv. Genet. Resour. 8, 561–568 (2016).
    Article  Google Scholar 

    28.
    Thomsen, P. F. et al. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS ONE 7, e41732 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Dougherty, M. M. et al. Environmental DNA (eDNA) detects the invasive rusty crayfish Orconectes rusticus at low abundances. J. Appl. Ecol. 53, 722–732 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Evans, N. T. et al. Fish community assessment with eDNA metabarcoding: effects of sampling design and bioinformatic filtering. Can. J. Fish. Aquat. Sci. 74, 1362–1374 (2017).
    CAS  Article  Google Scholar 

    31.
    Renshaw, M. A., Olds, B. P., Jerde, C. L., Mcveigh, M. M. & Lodge, D. M. The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol-chloroform-isoamyl alcohol DNA extraction. Mol. Ecol. Resour. 15, 168–176 (2015).
    CAS  PubMed  Article  Google Scholar 

    32.
    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Sym. Ser. 41, 95–98 (1999).
    CAS  Google Scholar 

    34.
    Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Olds, B. P. et al. Estimating species richness using environmental DNA. Ecol. Evol. 6, 4214–4226 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Deiner, K. et al. Long-range PCR allows sequencing of mitochondrial genomes from environmental DNA. Methods Ecol. Evol. 8, 1888–1898 (2017).
    Article  Google Scholar 

    38.
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Port, J. A. et al. Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. Mol. Ecol. 25, 527–541 (2016).
    CAS  PubMed  Article  Google Scholar 

    40.
    Pochon, X., Zaiko, A., Fletcher, L. M., Laroche, O. & Wood, S. A. Wanted dead or alive? Using metabarcoding of environmental DNA and RNA to distinguish living assemblages for biosecurity applications. PLoS ONE 12, e0187636 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    41.
    Sato, H., Sogo, Y., Doi, H. & Yamanaka, H. Usefulness and limitations of sample pooling for environmental DNA metabarcoding of freshwater fish communities. Sci. Rep. 7, 14860 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Yamamoto, S. et al. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Sci. Rep. 7, 40368 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).
    Article  CAS  Google Scholar 

    44.
    Huson, D. H. et al. MEGAN Community Edition—interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12, e1004957 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    45.
    DiBattista, J. D. et al. Assessing the utility of eDNA as a tool to survey reef-fish communities in the Red Sea. Coral Reefs 36, 1245–1252 (2017).
    ADS  Article  Google Scholar 

    46.
    Siegenthaler, A. et al. Metabarcoding of shrimp stomach content: Harnessing a natural sampler for fish biodiversity monitoring. Mol. Ecol. Resour. 19, 206–220 (2019).
    CAS  PubMed  Article  Google Scholar 

    47.
    Racine, J. S. RStudio: a platform-independent IDE for R and Sweave. J. Appl. Econ. 27, 167–172 (2012).
    Article  Google Scholar 

    48.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org (2018).

    49.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (eds Gentleman, R., Hornik, K. & Parmigiani, G.) 1–212 (Springer, 2009).

    50.
    Guevara, M. R., Hartmann, D. & Mendoza, M. diverse: an R package to analyze diversity in complex systems. R J. 8, 60–78 (2016).
    Article  Google Scholar 

    51.
    Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929–942 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Stoeckle, M. Y., Soboleva, L. & Charlop-Powers, Z. Aquatic environmental DNA detects seasonal fish abundance and habitat preference in an urban estuary. PLoS ONE 12, e0175186 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    53.
    Thomsen, P. F. et al. Environmental DNA from seawater samples correlate with trawl catches of subarctic, deepwater fishes. PLoS ONE 11, e0165252 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    54.
    Huang, L., Wu, Z. & Li, J. Fish fauna, biogeography and conservation of freshwater fish in Poyang Lake Basin China. Environ. Biol. Fish. 96, 1229–1243 (2013).
    Article  Google Scholar 

    55.
    Gong, J. et al. Interannual variation of the fish community structure in the Tian-e-Zhou Oxbow of Yangtze River. J. Hydroecol. 39, 46–53 (2018) (In Chinese).
    Google Scholar 

    56.
    Gong, C., Chen, Z. & Cheng, F. The status and management suggestions of the Yangtze finless porpoise prey fish in the Tian-e-Zhou Oxbow of Yangtze River. China Fish. 6, 43–45 (2019) (In Chinese).
    Google Scholar 

    57.
    Wang, T., Wang, H., Sun, G., Huang, D. & Shen, J. Length–weight and length–length relationships for some Yangtze River fishes in Tian-e-zhou Oxbow China. J. Appl. Ichthyol. 28, 660–662 (2012).
    Article  Google Scholar 

    58.
    Yang, S., Li, M., Zhu, Q., Wang, M. & Liu, H. Spatial and temporal variations of fish assemblages in Poyanghu Lake. Resour. Environ. Yangtze Basin 24, 54–64 (2015) (In Chinese).
    CAS  Google Scholar 

    59.
    Jin, B. et al. Fish assemblage structure in relation to seasonal environmental variation in sub-lakes of the Poyang Lake floodplain, China. Fish. Manag. Ecol. 26, 131–140 (2019).
    Article  Google Scholar 

    60.
    Fang, C. et al. Fish resources in Poyang Lake and their utilization. Jiangsu Agric. Sci. 44, 233–243 (2016) (In Chinese).
    Google Scholar 

    61.
    Zhong, B. et al. Classification of Pelteobagrus fish in Poyang Lake based on mitochondrial COI gene sequence. Mitochondrial DNA A 27, 4635–4637 (2016).
    CAS  Article  Google Scholar 

    62.
    Xiong, G., Zhang, T., Lin, Y., Wang, W. & You, X. Analysis of some characters of fish in the inner Lake of Poyang Lake Wetland. Jiangxi Fish. Sci. Technol. 3, 10–12 (2018) (In Chinese).
    Google Scholar 

    63.
    Liu, X. et al. Biodiversity pattern of fish assemblages in Poyang Lake Basin: threat and conservation. Ecol. Evol. 9, 11672–11683 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    64.
    Liu, M. et al. Species diversity of drifting fish eggs in the Yangtze River using molecular identification. PeerJ 6, e5807 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Hinlo, R., Furlan, E., Suitor, L. & Gleeson, D. Environmental DNA monitoring and management of invasive fish: comparison of eDNA and fyke netting. Manag. Biol. Invasion 8, 89–100 (2017).
    Article  Google Scholar 

    66.
    Pilliod, D. S., Goldberg, C. S., Arkle, R. S. & Waits, L. P. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Can. J. Fish. Aquat. Sci. 70, 1123–1130 (2013).
    CAS  Article  Google Scholar 

    67.
    Lacoursière-Roussel, A., Côté, G., Leclerc, V. & Bernatchez, L. Quantifying relative fish abundance with eDNA: a promising tool for fisheries management. J. Appl. Ecol. 53, 1148–1157 (2016).
    Article  CAS  Google Scholar 

    68.
    Lacoursière-Roussel, A., Rosabal, M. & Bernatchez, L. Estimating fish abundance and biomass from eDNA concentrations: variability among capture methods and environmental conditions. Mol. Ecol. Resour. 16, 1401–1414 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    69.
    Ushio, M. et al. Quantitative monitoring of multispecies fish environmental DNA using high-throughput sequencing. Metabarcod. Metagenom. 2, 1–15 (2018).
    Google Scholar 

    70.
    Simmons, M., Tucker, A., Chadderton, W. L., Jerde, C. L. & Mahon, A. R. Active and passive environmental DNA surveillance of aquatic invasive species. Can. J. Fish. Aquat. Sci. 73, 76–83 (2016).
    CAS  Article  Google Scholar 

    71.
    Smart, A. S., Tingley, R., Weeks, A. R., vanRooyen, A. R. & McCarthy, M. A. Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader. Ecol. Appl. 25, 1944–1952 (2015).
    PubMed  Article  Google Scholar 

    72.
    Eiler, A., Löfgren, A., Hjerne, O., Nordén, S. & Saetre, P. Environmental DNA (eDNA) detects the pool frog (Pelophylax lessonae) at times when traditional monitoring methods are insensitive. Sci. Rep. 8, 5452 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    73.
    Lin, Y., Gao, Z. & Zhao, A. Introduction and use of non-native species for aquaculture in China: status, risks and management solutions. Rev. Aquacult. 7, 28–38 (2015).
    Article  Google Scholar 

    74.
    Xiong, et al. Non-native freshwater fish species in China. Rev. Fish. Biol. Fish. 25, 651–687 (2015).
    Article  Google Scholar 

    75.
    Pilliod, D. S., Goldberg, C. S., Arkle, R. S. & Waits, L. P. Factors influencing detection of eDNA from a stream-dwelling amphibian. Mol. Ecol. Resour. 14, 109–116 (2014).
    CAS  PubMed  Article  Google Scholar 

    76.
    Eichmiller, J. J., Best, S. E. & Sorensen, P. W. Effects of temperature and trophic state on degradation of environmental DNA in lake water. Environ. Sci. Technol. 50, 1859–1867 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    77.
    Zou, K. et al. eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River Estuary compared to bottom trawling. Sci. Total Environ. 702, 134704 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    78.
    Fernández, S., Rodríguez-Martínez, S., Martínez, J. L., Garcia-Vazquez, E. & Ardura, A. How can eDNA contribute in riverine macroinvertebrate assessment? A metabarcoding approach in the Nalón River (Asturias, Northern Spain). Environ. DNA 1, 385–401 (2019).
    Article  Google Scholar 

    79.
    Lacoursière-Roussel, A. et al. eDNA metabarcoding as a new surveillance approach for coastal Arctic biodiversity. Ecol. Evol. 8, 7763–7777 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    80.
    Liu, Y. et al. Application of environmental DNA metabarcoding to spatiotemporal finfish community assessment in a temperate embayment. Front. Mar. Sci. 6, 674 (2019).
    ADS  Article  Google Scholar 

    81.
    Xie, X. et al. Are river protected areas sufficient for fish conservation? Implications from large-scale hydroacoustic surveys in the middle reach of the Yangtze River. BMC Ecol. 19, 42 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    82.
    Xinhua. China starts 10-year fishing ban on Yangtze River.China Daily;https://www.chinadaily.com.cn/a/202001/02/WS5e0d4851a310cf3e35581f65.html(2020).

    83.
    Yang, S., Xu, K., Milliman, J. D. & Wu, C. Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes. Sci. Rep. 5, 12581 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    The global biological microplastic particle sink

    For this study we use the University of Victoria Earth System Climate Model (UVic ESCM) version 2.940,41,42. The UVic ESCM is an intermediate-complexity earth system model with a resolution of 1.8(^circ ) latitude by 3.6(^circ ) longitude and 19 ocean depth levels. The surface ocean level is 50 m deep. The model contains a two dimensional energy moisture-balance model of the atmosphere, as well as representations of sea ice, ocean circulation and sediments, and terrestrial carbon. The particular biogeochemical version used here includes three phytoplankton functional types, namely diazotrophs (DZ), mixed phytoplankton (PH), and small phytoplankton and calcifiers (CO)43. The model pre-industrial climate has been previously described43, as has its response to business-as-usual atmospheric (hbox{CO}_2) forcing44. The following sections describe the MP model. A model schematic is presented in Fig. 6.
    Figure 6

    Microplastic model schematic. Marine snow is produced as a fixed fraction of the free detritus (DET) pool. MP aggregates with this marine snow, entering the (hbox{MP}_A) (marine snow entrained MP) pool. (hbox{MP}_A) held in aggregates sinks at the aggregate rate, with a fraction reaching the seafloor considered to be lost from the ocean. Detrital remineralisation releases the (hbox{MP}_A) from marine snow aggregates at the rate of detrital remineralisation. MP is also grazed by zooplankton and excreted into a pellet-bound (hbox{MP}_Z) pool. Pellet-bound (hbox{MP}_Z) sinks and is released back to the free MP pool at the rate of detrital remineralisation, but some is also lost at the seafloor. Details on the biogeochemical aspects of the model are previously described43.

    Full size image

    Model description
    The base model43 was modified in order to quantify the roles of two of the three theorised biological export pathways on MP (aggregation in marine snow and zooplankton ingestion; for now, we neglect an explicit representation of biofouling29). We distinguish between detritus that becomes faecal pellets, and the physical aggregation of marine snow, by introducing a new faecal pellet tracer to divert 50% of zooplankton particulate losses into a separate detrital pool27. For simplicity, this new pellet detrital pool has the same sinking parameterisation as the original detritus. Using the same sinking rates for both detrital classes produces ocean biogeochemistry that is identical to the previously published versions of the model. In the model, plastic particles only interact passively with marine snow (they do not, for example, modify aggregate sinking rates), but they interact actively with zooplankton grazing (described below). Plastic particles have been observed to both increase and decrease the sinking rates of marine snow21,22 and decrease the sinking rates of faecal pellets20,38, but for simplicity and as a first approximation we neglect these effects in our model.
    Three MP compartments are introduced; “free” (unattached) microplastic (MP), microplastic aggregated in marine snow ((hbox{MP}_A)), and microplastic in zooplankton faecal pellets ((hbox{MP}_Z)). All MP are considered to represent particles within a biologically active size range, but this size (and the particles’ composition) is never made explicit. These assumptions could bias modelled MP towards polymer types favoured by generic zooplankton34 and particle sizes in the lower end33,34 of the defined range of microplastic size. However, our parameter sensitivity testing in the Supplemental Information tests various fractional uptake rates that implicitly consider size and particle composition in how biologically “active” the MP pool is. As with all model ocean tracers, microplastic concentrations (MP) vary according to:

    $$begin{aligned} frac{dmathrm {MP}}{dt} = T + S(mathrm {MP}) end{aligned}$$
    (1)

    With T including all transport terms and S representing all source minus sink terms. The source and sink terms for free microplastic are:

    $$begin{aligned} S(mathrm {MP}) = Emis – S(mathrm {MP}_A) – S(mathrm {MP}_Z) + w_p frac{delta mathrm {MP} times F_R}{delta z} end{aligned}$$
    (2)

    Microplastic is emitted to the ocean (Emis) along coastlines and major shipping routes using a scaling against regional (hbox{CO}_2) emissions (a dataset provided with the standard UVic ESCM version 2.9 package download), in order to approximate degree of industrialisation and population density in this first version of this model. The rate of emission is a proportion of the total annual plastic waste generation ((F_T))45. For now, abiotic degradation of macroplastics as a source of microplastics to the ocean is neglected to keep the model simple and focus on biological transport. The MP then exchanges with the marine snow ((hbox{MP}_A)) and zooplankton faecal pellet ((hbox{MP}_Z)) pools. A fast particle rising rate ((w_p)) of 1.9 cm per second46 is prescribed to a fraction ((F_R)) of the free MP in each grid cell below the surface level as an approximation of positive buoyancy. An alternative approach would be to assign a uniform rise rate to all MP particles, and to subject the value of the rise rate to sensitivity testing. However, a weakness of this alternative approach is that the many types of plastic in the ocean have different characteristic buoyancies, which could produce unique particle pathways18. In this alternative approach it would be more appropriate to explicitly simulate multiple MP types in the model (which we sought to avoid in this first modelling effort for the sake of simplicity). Nevertheless, we conducted a sensitivity test using several different rise rates, and the effect of reducing the mean rise rate was similar to reducing the fraction assigned a rise rate.
    In the current model version there are no abiotic breakdown rates (i.e., photo-degradation39) or respiration losses47 removing MP from circulation.
    MP is modelled to aggregate in marine snow as:

    $$begin{aligned} S(mathrm {MP}_A) = A_{upt} – A_{rel} – w_Dfrac{delta mathrm {MP}_A}{delta z} end{aligned}$$
    (3)

    MP particles are taken up ((A_{upt})) via a Monod function applied to the rate of marine snow formation (sources of detritus; (D_A) in nitrogen units, multiplied by an aggregation fraction, (F_A)) in order to approximate an increased likelihood of MP/marine snow encounter with increasing MP concentrations that approaches a level of saturation at high MP concentrations:

    $$begin{aligned} A_{upt} = frac{mathrm {MP}}{k_P + mathrm {MP}} times source(D_A) times F_A end{aligned}$$
    (4)

    The uptake constant ((k_P)) is subjected to sensitivity testing, as is the fraction of marine snow aggregation ((F_A)). In this parameterisation, the aggregation of MP in marine snow represents the net uptake of MP into aggregates by both aggregation and biofouling processes. Biofouling occurs mostly in the upper 50 m35, which is the entire surface layer grid cell in our model. The entrainment-release cycle of biofouling is implicit in our parameterisation via the microbial loop, which is temperature-dependent. Sensitivity testing of the (k_P) and (F_A) parameters therefore represent testing of the net aggregation due to non-zooplankton biological aggregation effects. MP is released ((A_{rel})) from marine snow at the rate of detrital remineralisation ((mu _D)). This rate is temperature-dependent and results in higher rates of release in the low latitudes.

    $$begin{aligned} A_{rel} = mu _D mathrm {MP}_A end{aligned}$$
    (5)

    A particle sinking term ((w_D)) applies to marine snow-associated MP, and has the same value as sinking detritus. The base unit of all MP tracers is number of plastic particles. As a first approximation we assume that all marine snow aggregates forming from free detritus have the characteristic of diatom aggregates (8.8 (upmu )g C per aggregate48). Model detritus in mmol N is converted to mmol C using Redfield stoichiometry, which is then converted to (upmu )g C to calculate the maximum number of aggregates. The maximum number of aggregates is then multiplied by the aggregation fraction (F_A), to calculate (hbox{MP}_A) source and sink rates. MP is conserved for all MP tracers when surface flux balances sedimentary loss rate. What fraction of MP particles reaching the seafloor via aggregate and faecal pellet ballasting are returned to the water column ((F_B)) is tested. For simplicity and as a first approximation, detritus ballasted by calcite, and calcite43, are assumed to not aggregate with microplastic.
    Similarly, for MP associated with zooplankton, sources and sinks are:

    $$begin{aligned} S(mathrm {MP}_Z) = P_{upt} – P_{rel} – w_Dfrac{delta mathrm {MP}_Z}{delta z} end{aligned}$$
    (6)

    The calculation of MP particle ingestion rate ((P_{upt})) is the same as for other food sources37. A grazing preference ((psi _{MP})) for MP is subjected to sensitivity testing. This sensitivity testing implicitly examines effects such as biofouling altering the grazing preference of zooplankton for MP. It is assumed that 100% of ingested MP will be egested as faecal pellets and released ((P_{rel})) to the “free” MP pool at the rate of faecal pellet remineralisation, with no plastic remaining in the gut and no plastic being metabolised by the zooplankton. Ingesting MP also results in a reduced zooplankton carbon uptake rate19, with implications for primary and export production (although, Redfield ratios are conserved). Pellet-bound (hbox{MP}_Z) is considered to sink at the rate of faecal pellets ((w_D)).
    Plastic is eaten by zooplankton in this model. The Holling II grazing formulation37 is extended to include MP. Grazing of MP ((G_{MP})) is calculated as:

    $$begin{aligned} begin{aligned} G_{MP}&= mu _Z^{max} times Z times mathrm {MP}times R_{M:P}times R_{F:MP}times R_{N:F}times psi _{MP}\&quad times ,(psi _{CO}CO+psi _{PH}PH+psi _{DZ}DZ+psi _{Detr_{tot}}Detr_{tot}\&quad +,psi_{Z}Z+psi _{MP}mathrm {MP}times R_{M:P}times R_{F:MP}times R_{N:F} + k_Z)^{-1} end{aligned} end{aligned}$$
    (7)

    The maximum potential grazing rate ((mu _Z^{max})) is scaled by zooplankton population (Z) and MP availability (MP), and weighted by a food preference ((psi _{MP})), total prey (CO, PH, DZ, (hbox{Detr}_{{tot}})), and Z representing the food sources described in44 and a half saturation constant for zooplankton ingestion ((k_z)). Grazing preferences must always sum to 1 in the model, so sensitivity testing of (psi _{MP}) requires that all grazing preferences must also be adjusted. This is done by varying (psi _{MP}) but requiring (psi _{DZ}) always be set to 0.1 (on the basis that diazotrophs are a poor food source, and to minimize disruption to the nitrogen cycle). The remaining allowance is equally split by the other (psi ) terms. The calculation occurs in N units, so MP is first converted to grams of MP using the MP particle-to-mass conversion of 236E3 tonnes MP = 51.2E12 particles MP ((R_{M:P}))4. It is assumed that 1 g MP will roughly replace 1 g of food (at Redfield ratios; (R_{N:F}) is the conversion from mol Food to mol N) in the zooplankton’s diet, and MP is thus converted to mmol N for the grazing calculation. However, we subject this ratio ((R_{F:MP})) to sensitivity testing. Zooplankton uptake of plastic is therefore:

    $$begin{aligned} P_{upt} = frac{G_{MP}}{R_{M:P}times R_{F:MP}times R_{N:F}} end{aligned}$$
    (8)

    MP particles are released from faecal pellets via remineralisation, which occurs at the same rate as the remineralisation of aggregates:

    $$begin{aligned} P_{rel} = mu _D mathrm {MP}_Z end{aligned}$$
    (9)

    Model forcing
    The model was integrated at year 1765 boundary conditions (including agricultural greenhouse forcing and land ice) for more than 10,000 years until equilibration was achieved. From year 1765 to 1950, historical (hbox{CO}_2) concentration forcing, and geostrophically adjusted wind anomalies are applied. From 1950 to 2100 the model is forced with a combination of historical (hbox{CO}_2) concentration forcing (to 2000) and a business-as-usual high atmospheric (hbox{CO}_2) concentration projection RCP8.549,50. MP emissions start from 2 million metric tonnes in year 1950 (a total plastic waste generation estimate45), increasing at a rate of 8.4% per year. (hbox{CO}_2) and MP forcing is summarized in Fig. 7. It has been estimated that about 4% of total plastic waste generated enters the ocean30, but that the microplastic mass found at the sea surface represents only about 1% of the annual plastic input to the ocean4. We test a range of input fractions (see Table 2), after applying a mass conversion from tonnes to number of MP particles4. Using a considerable over-estimation of MP pollution rate also implicitly accounts for abiotic degradation of larger plastics.
    Figure 7

    Model forcing from years 1950–2100. Atmospheric (hbox{CO}_2) follows RCP8.5 (panel a). Plastic flux into the ocean is assumed to be some fraction of the total historical and projected plastic waste generation estimate (panel b), with a continuing rate of increase of 8.4% per year45, converted to MP particles using a mass conversion4. Previous estimates of actual total plastic mass flux into the ocean is only about 4% of the total plastic waste generation30, with the MP fraction being a small proportion of that.

    Full size image

    Table 2 Microplastic model parameters and range tested.
    Full size table

    Experimental setup
    A 700-member Latin Hypercube51 was used to test the microplastic parameter space of the model using the forcing described in the previous section. While biological model parameters might also influence microplastic uptake and transport, we limited our initial tests to the new parameters introduced above. A range of values was prescribed to the parameters listed in Table 2, in which the parameter space was randomly sampled with a normal distribution. The objective was to see what can be learned about plastic accumulation in the ocean, when very little is known about plastic/particle interactions and basic processes are still poorly understood. An analysis of the full Latin Hypercube parameter search is provided as Supplemental Information.
    We adopted an incremental approach to increasing model complexity. We started with a control Hypercube where biology was not allowed to take up plastic, in order to first test the physical parameters ((F_T) and (F_R), the fraction of total annual plastic produced entering the ocean as MP, and the fraction assigned a rise rate, respectively). One hundred simulations were performed in this configuration, with the results analysed in the Supplemental Information. We next included passive plastic aggregation in marine snow (MP plus the (hbox{MP}_A) tracer) in a 300 simulation Hypercube, spread across the (k_P) (marine snow uptake coefficient) parameter space (0–1, 1–100, 100–1000 particles (hbox{m}^{-3}), each with 100 Hypercube simulations) in a normal distribution. These 300 simulations explored the 5 relevant MP model parameters: (F_T), (F_R), (F_A) (marine snow aggregation fraction), (k_P), and (F_B) (fractional return to ocean at the seafloor). These results are also provided in the Supplemental Information. Finally, we added active zooplankton-associated plastic (MP, plus (hbox{MP}_A) and (hbox{MP}_Z) tracers) as a third 300-individual Hypercube set. This third Hypercube is similarly split across the (k_P) parameter space in a normal distribution, but with the addition of grazing parameters (psi _{MP}) (MP grazing preference) and (R_{F:MP}) (the food to MP substitution ratio; 7 parameters in total). More