More stories

  • in

    A comparative study of fifteen cover crop species for orchard soil management: water uptake, root density traits and soil aggregate stability

    Evapotranspiration measurements and above-ground biomassFigure 1 shows daily evapotranspiration (ET, mm day−1) of each CC tested before mowing (DOY, day of the year, 184) and at 2, 8, 17 and 25 days after mowing (DOY 190, 196, 205 and 213); bare soil was also included as a reference. Before mowing, ET rates showed significant differences between and within the three groups. CR plants had a mean ET of 8.1 mm day−1, which was lower, compared to the other two groups (10.6 and 18.6 mm day−1 for GR and LE, respectively) and the bare soil control (8.5 mm day−1). On DOY 184, values as high as 9.4 (Glechoma hederacea L., GH) and 9.8 mm day−1 (Trifolium subterraneum L. cv. Denmark, TS) were found (Fig. 1), while ranging around 7 mm day-1, Dichondra repens J.R.Forst. & G.Forst. (DR), Hieracium pilosella L. (HP), and Sagina subulata (Swartz) C. Presl (SS) ET were lower than soil evaporation itself.Figure 1Vertical bars represent the daily water use as referred to unit of soil (ET, mm day−1) for the bare soil (yellow) and all the cover crop species as divided into creeping plants (shades of blue), legumes (shades of green) and grasses (shades of orange). Evapotranspiration was measured though a gravimetric method before (i.e. − 4) and at 2, 8, 17 and 25 days after mowing. ET data are mean values ± SE (n = 4).Full size imageOn the same day, a large ET variation was recorded within the GR group as Festuca arundinacea Schreb. cv. Thor (FA) scored the highest daily ET values (13.4 mm day−1), whereas in Festuca ovina L. cv. Ridu (FO), water loss was reduced by 45% (7.5 mm day−1). Within the 15 CCs, LE registered the highest pre-mowing ET with Trifolium michelianum Savi cv. Bolta (TM) peaking at 22.6 mm day−1. However, within LE, Medicago polymorpha L. cv. Scimitar (MP) showed ET values as low as 12.1 mm day−1 (Fig. 1).Two days after mowing, all tested CCs recorded ET values lower than 9 mm day−1 (Fig. 1). Moreover, water use reduction among LE ranged between 56% (M. polymorpha, MP) and 73% (T. michelianum, TM), such that T. michelianum (TM, 6.1 mm day−1), Medicago truncatula Gaertn. cv. Paraggio (MT, 5.6 mm day−1) and M. polymorpha (MP, 5.2 mm day−1) registered ET values lower than the bare soil (7.0 mm day−1). Even though registering a consistent ET reduction after mowing, GR retained ET rates slightly higher than bare soil, except for F. ovina (FO), which recorded the lowest at 6.3 mm day−1. Subsequent samplings showed that most of the CCs had a progressive recovery in water use (Fig. 1) and data taken 17 days after mowing confirmed that Lotus corniculatus L. cv. Leo (LC) and all GR fetched pre-mowing ET rates. Medicago lupulina L. cv. Virgo (ML) registered a partial recovery with similar rates (about 13 mm day−1) at 17 and 25 days after the mowing event. F. ovina and all remaining LE stayed below 10 mm day−1 with ET values close to the control until the end of the trial. At 17 days from grass cutting, under a quite high exceeding-the-pot biomass, both G. hederacea (GH) and T. subterraneum (TS) reached ET values as high as 12.0 and 11.4 mm day−1, respectively. On the other hand, D. repens (DR), H. pilosella (HP), and S. subulata (SS) even though with slightly higher ET values than those registered at the beginning of the trial (DOY 184), remained close to the soil evaporation rates until DOY 213.Aboveground dry clipped biomass at the first mowing date (ADW_MW1, DOY 188) showed large differences among groups, as represented in Table 1. ADW_MW1 within LE was quite variable, as values ranged between 274.3 g m−2 (M. polymorpha, MP) and 750.0 g m−2 (T. michelianum, TM). With a mean value of 565.9 g m−2, LE aboveground biomass was 80% higher than the mean GR ADW_MW1 (110.2 g m-2). F. ovina (FO) scored the lowest value at 48.4 g m−2 among grasses, while within the creeping group, G. hederacea (GH) and T. subterraneum (TS) had biomass development outside the pot edges totalling 89.6 g m−2 and 23.2 g m−2, respectively.Table 1 Aboveground dry biomass clipped at the first mowing event (ADW _MW1), the corresponding leaf area surface index (LAI) and water use per leaf area unit (ETLEAF) of all cover crops tested.Full size tableLeaf area index (LAI, m2 m−2) at mowing showed the highest values in LE with LAI peaking at 12.4 (Table 1). Among GR, LAI did not show significant differences, being around 1.2. Concerning CR, LAI was assessed at 0.2 and 0.8 for T. subterraneum (TS) and G. hederacea (GH) respectively, while LAI estimated through photo analysis ranged between 1.3 (D. repens, DR) and 3.6 (T. subterraneum TS).Evapotranspiration per leaf area unit (ETLEAF) was notably higher in GR, ranging between 7.75 (F. ovina, FO) and 9.22 (Lolium perenne L. cv. Playfast, LP) mm m−2 day−1 (Table 1). In descending order, ETLEAF was the highest in D. repens (DR, 5.46 mm m−2 day−1). Similar ETLEAF was found when comparing some LE and CR species such as M. truncatula (MT, 3.40 mm m−2 day−1), M. lupulina (ML, 4.05 mm m−2 day−1), G. hederacea (GH, 3.68 mm m−2 day−1), H. pilosella (HP, 3.86 mm m-2 day-1) and T. subterraneum (TS, 2.74 mm m−2 day−1). T. michelianum (TM), with 1.81 mm m-2 day-1 scored the lowest ETLEAF of all species (Table 1).Plotting LAI versus the before-mowing ET yielded a significant quadratic relationship (R2  > 0.76) (Fig. 2a) which helped to distinguish two different data clouds. Till LAI values of about 6, the model was linear, having at its lower end all GR and CR species with the inclusion of M. polymorpha (MP) as a legume, while, at the other end, M. truncatula (MT), L. corniculatus (LC) and M. lupulina (ML) were grouped together. T. michelianum (TM) was isolated from all CCs at 22.56 mm day−1.Figure 2Panel (a): quadratic regression of leaf area index (LAI, m2 m−2) vs cover crop evapotranspiration per unit of soil (ET, mm day−1). Each data point is mean value ± SE (n = 4). The quadratic model equation is y = − 0.128×2 + 2.9968x + 5.4716, R2 = 0.76. Panel (b): the quadratic regression between LAI corresponding to the clipped biomass (m2 m−2) and cover crop ET reduction (%). Each data point is mean value ± SE (n = 4). Quadratic model equation is y = − 0.8985×2 + 16.503x + 5.1491, R2 = 0.94.Full size imageWhen regressing the fraction of ET reduction, compared to pre-mowing values vs LAI (Fig. 2b), the same quadratic model achieved a very close fit (R2 = 0.94, p  1 mm) root diameters as affected by soil cover.Full size tableThe highest values of diameter class length (DCL, mm cm−3) for very fine roots (DCL_VF,  1.0 mm) roots although, most notably, L. corniculatus roots showed the highest abundance for both DCL_M (23.08 cm cm−3) and DCL_C (0.54 cm cm−3).At the 10–20 cm soil depth, GR confirmed the highest values for both very fine and fine roots, with F. arundinacea reaching maximum DCL of 2.269 and 5.215 cm cm-3, respectively (Table 2). L. corniculatus largely outscored any other species for both medium and coarse root diameter (6.173 and 0.037 cm cm−3, respectively), with F. arundinacea ranking second (3.157 and 0.016 cm cm−3, respectively).The highest root dry weight (RDW, mg cm-3) within the topsoil layer was reached by L. corniculatus (8.7 mg cm−3) and F. arundinacea (7.6 mg cm-3). Notably, such values were significantly higher than those recorded on the remaining species, except for the F. arundinacea vs F. rubra commutata comparison (Table 2). At 10–20 depth, scant variation was recorded in RDW measured in grasses, whereas L. corniculatus held its supremacy within legumes (4.5 mg cm−3). Within the creeping type, D. repens (DR) and G. hederacea (GH) scored RDW values as high as those determined for grass species (namely F. arundinacea , P. pratensis and F. rubra commutata), whereas S. subulata (SS) essentially had no root development.Soil aggregates and mean weight diameter (MWD)Table 3 reports the proportional aggregate weight (g kg−1) for both 0–10 and 10–20 cm soil depths. Compared to bare soil, the largest increase in large macroaggregates (LM,  > 2000 µm) in the top 10 cm of soil was achieved by L. corniculatus with 461 g kg−1. L. corniculatus differed from the rest of the LE group, whose grand mean (90 g kg−1) was the lowest of the three tested groups. As a legume, T. subterraneum (TS, 122 g kg−1) recorded the lowest values compared to fellow CR species, ranging between 211 (D. repens, DR) and 316 g kg−1 (G. hederacea, GH). GR recorded LM values slightly lower than those of CR, with a mean value of 217 vs 224 g kg-1.Table 3 Proportional aggregate weight (g kg−1) of sand-free aggregate-size fractions acquired from wet sieving as affected by soil cover and mean weight diameter (MWD). Aggregate-size fraction divided as macroaggregates with large size ( > 2 mm, LM) and small size (2 mm—250 μm, sM), microaggregates (250 μm—53 μm, m), and silt and clay ( More

  • in

    Global patterns of tree density are contingent upon local determinants in the world’s natural forests

    Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).Article 
    CAS 

    Google Scholar 
    Asner, G. P. et al. A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168, 1147–1160 (2012).Article 

    Google Scholar 
    Walker, A. P. et al. Predicting long‐term carbon sequestration in response to CO2 enrichment: How and why do current ecosystem models differ? Glob. Biogeochem. Cy. 29, 476–495 (2015).Article 
    CAS 

    Google Scholar 
    Madrigal-González, J. et al. Climate reverses directionality in the richness–abundance relationship across the World’s main forest biomes. Nat. Commun. 11, 1–7 (2020).Article 

    Google Scholar 
    Stephenson, N. L. Climatic control of vegetation distribution: the role of the water balance. Am. Nat. 135, 649–670 (1990).Article 

    Google Scholar 
    Weiskittel, A. R., Maguire, D. A., Monserud, R. A. Development of a hybrid model for intensively managed Douglas-fir in the Pacific Northwest. In Forest Growth and Timber Quality, 49 (USDA, Portland, 2009).Paoli, G. D., Curran, L. M. & Slik, J. W. F. Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia 155, 287–299 (2008).Article 

    Google Scholar 
    Yoda, K., Kira, T., Ogawa, H. & Hozami, K. Self-thinning in overcrowded pure stands under cultivated and natural conditions. J. Biol. Osaka City Univ. 14, 107–129 (1963).
    Google Scholar 
    Westoby, M. The self-thinning rule. Adv. Ecol. Res. 14, 167–225 (1984).Article 

    Google Scholar 
    Weiner, J. & Freckleton, R. P. Constant final yield. Annu. Rev. Ecol. Evol. S. 41, 173–192 (2010).Article 

    Google Scholar 
    Pillet, M. et al. Disentangling competitive vs. climatic drivers of tropical forest mortality. J. Ecol. 106, 1165–1179 (2018).Article 

    Google Scholar 
    Schluter, D. Experimental evidence that competition promotes divergence in adaptive radiation. Science 266, 798–801 (1994).Article 
    CAS 

    Google Scholar 
    Pacala, S.W. & Levin, S.A. Biologically generated spatial pattern and the coexistence of competing species. Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions. (Princeton University Press, Princeton, NJ, p. 204-232, 1997).Asefa, M., Cao, M., Zhang, G., Ci, X. & Li, J. Yang Environmental filtering structures tree functional traits combination and lineages across space in tropical tree assemblages. Sci. Rep. 7, 1–10 (2017).Article 
    CAS 

    Google Scholar 
    Pretzsch, H. & Biber, P. Tree species mixing can increase maximum stand density. Can. J. For. Res. 46, 1179–1193 (2016).Article 

    Google Scholar 
    Escudero, A. et al. Every bit helps: The functional role of individuals in assembling any plant community, from the richest to monospecific ones. J. Veg. Sci. 32, e13059 (2021).Article 

    Google Scholar 
    Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob. Chang. Biol. 23, 3742–3757 (2017).Article 

    Google Scholar 
    M. Takyu, Y. Kubota, S.I. Aiba, T. Seino, T. Nishimura. Pattern of changes in species diversity, structure and dynamics of forest ecosystems along latitudinal gradients in East Asia. In Forest Ecosystems and Environments (Springer, Tokyo, 2005), pp. 49–58.Rivoire, M. & Le, G. A. Moguedec, generalized self-thinning relationship for multi-species and mixed-size forests. Ann. Sci. 69, 207–219 (2012).Article 

    Google Scholar 
    Salas‐Eljatib, C. & Weiskittel, A. R. Evaluation of modelling strategies for assessing self‐thinning behaviour and carrying capacity. Ecol. Evol. 8, 10768–10779 (2018).Article 

    Google Scholar 
    Schietti, J. et al. Forest structure along a 600 km transect of natural disturbances and seasonality gradients in central‐southern Amazonia. J. Ecol. 104, 1335–1346 (2016).Article 

    Google Scholar 
    Vanclay, J. K. & Sands, P. J. Calibrating the self-thinning frontier. For. Ecol. Manag. 259, 81–85 (2009).Article 

    Google Scholar 
    Sapijanskas, J., Paquette, A., Potvin, C., Kunert, N. & Loreau, M. Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences. Ecology 95, 2479–2492 (2014).Article 

    Google Scholar 
    Lieth, H. Modeling the primary productivity of the world. In H. Lieth & R. H. Whittaker, eds. Primary Productivity of the Biosphere (Springer-Verlag, New York, New York, USA, 1975), pp. 237–264.Grieser, J., Gommes, R., Cofield, S., Bernardi, M. World Maps of Climatological net Primary Production of Biomass, NPP. Food and Agriculture Organization of the United Nations. (GEONETWORK. FAO, Rome, Italy, 2006).Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017).Article 

    Google Scholar 
    Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).Article 

    Google Scholar 
    J.B. Grace. Structural Equation Modeling and Natural Systems. (Cambridge University Press, Cambridge, 2006).Aho, K., Derryberry, D. & Peterson, T. Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95, 631–636 (2014).Article 

    Google Scholar 
    R Core Team (2021). R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/).Wood, S., Scheipl, F. & Wood, M. S. Package ‘gamm4’. Am. Stat. 45, 339 (2017).
    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. R. Core Team nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-148 (2020).Latham J, Cumani R, Rosati I, Bloise M. FAO Global Land Cover (GLC-SHARE) Database Beta-Release 1.0, Land and Water Division. 2014. http://www.fao.org/uploads/media/glc-share-doc.pdf. More

  • in

    Potential for mercury methylation by Asgard archaea in mangrove sediments

    Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review. Environ Sci Technol. 2013;47:2441–56.Article 
    CAS 

    Google Scholar 
    Podar M, Gilmour CC, Brandt CC, Soren A, Brown SD, Crable BR, et al. Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Sci Adv. 2015;1:e1500675.Article 

    Google Scholar 
    Liu YR, Johs A, Bi L, Lu X, Hu HW, Sun D, et al. Unraveling microbial communities associated with methylmercury production in paddy soils. Environ Sci Technol. 2018;52:13110–8.Article 
    CAS 

    Google Scholar 
    Lee C-S, Fisher NS. Bioaccumulation of methylmercury in a marine copepod. Environ Toxicol Chem. 2017;36:1287–93.Article 
    CAS 

    Google Scholar 
    Parks JM, Johs A, Podar M, Bridou R, Hurt RAJ, Smith SD, et al. The genetic basis for bacterial mercury methylation. Science 2013;339:1332–5.Article 
    CAS 

    Google Scholar 
    McDaniel EA, Peterson BD, Stevens SLR, Tran PQ, Anantharaman K, McMahon KD. Expanded phylogenetic diversity and metabolic flexibility of mercury-methylating microorganisms. mSystems 2020;5:e00299–20.Article 
    CAS 

    Google Scholar 
    Cooper CJ, Zheng K, Rush KW, Johs A, Sanders BC, Pavlopoulos GA, et al. Structure determination of the HgcAB complex using metagenome sequence data: Insights into microbial mercury methylation. Commun Biol. 2020;3:320.Article 
    CAS 

    Google Scholar 
    Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP. Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol. 2006;72:7919–21.Article 
    CAS 

    Google Scholar 
    Gilmour CC, Podar M, Bullock AL, Graham AM, Brown SD, Somenahally AC, et al. Mercury methylation by novel microorganisms from new environments. Environ Sci Technol. 2013;47:11810–20.Article 
    CAS 

    Google Scholar 
    Capo E, Bravo AG, Soerensen AL, Bertilsson S, Pinhassi J, Feng C, et al. Deltaproteobacteria and Spirochaetes-like bacteria are abundant putative mercury methylators in oxygen-deficient water and marine particles in the Baltic Sea. Front Microbiol. 2020;11:574080.Article 

    Google Scholar 
    Gionfriddo CM, Tate MT, Wick RR, Schultz MB, Zemla A, Thelen MP, et al. Microbial mercury methylation in Antarctic sea ice. Nat Microbiol. 2016;1:16127.Article 
    CAS 

    Google Scholar 
    Jones DS, Walker GM, Johnson NW, Mitchell CPJ, Coleman Wasik JK, Bailey JV. Molecular evidence for novel mercury methylating microorganisms in sulfate-impacted lakes. ISME J. 2019;13:1659–75.Article 
    CAS 

    Google Scholar 
    Christensen GA, Gionfriddo CM, King AJ, Moberly JG, Miller CL, Somenahally AC, et al. Determining the reliability of measuring mercury cycling gene abundance with correlations with mercury and methylmercury concentrations. Environ Sci Technol. 2019;53:8649–63.Article 
    CAS 

    Google Scholar 
    Villar E, Cabrol L, Heimburger-Boavida LE. Widespread microbial mercury methylation genes in the global ocean. Environ Microbiol Rep. 2020;12:277–87.Article 
    CAS 

    Google Scholar 
    Lin H, Ascher DB, Myung Y, Lamborg CH, Hallam SJ, Gionfriddo CM, et al. Mercury methylation by metabolically versatile and cosmopolitan marine bacteria. ISME J. 2021;15:1810–25.Article 
    CAS 

    Google Scholar 
    King JK, Kostka JE, Frischer ME, Saunders FM, Jahnke RA. A quantitative relationship that demonstrates mercury methylation rates in marine sediments are based on the community composition and activity of sulfate-reducing bacteria. Environ Sci Technol. 2001;35:2491–6.Article 
    CAS 

    Google Scholar 
    Regnell O, Watras CJ. Microbial mercury methylation in aquatic environments: A critical review of published field and laboratory studies. Environ Sci Technol. 2019;53:4–19.Article 
    CAS 

    Google Scholar 
    Xie R, Wang Y, Huang D, Hou J, Li L, Hu H, et al. Expanding Asgard members in the domain of Archaea sheds new light on the origin of eukaryotes. Sci China Life Sci. 2022;65:818–29.Article 
    CAS 

    Google Scholar 
    Seitz KW, Dombrowski N, Eme L, Spang A, Lombard J, Sieber JR, et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat Commun. 2019;10:1822.Article 

    Google Scholar 
    Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Backstrom D, Juzokaite L, Vancaester E, et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 2017;541:353–8.Article 
    CAS 

    Google Scholar 
    Liu Y, Makarova KS, Huang W-C, Wolf YI, Nikolskaya AN, Zhang X, et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 2021;593:553–7.Article 
    CAS 

    Google Scholar 
    Zhang JW, Dong HP, Hou LJ, Liu Y, Ou YF, Zheng YL, et al. Newly discovered Asgard archaea Hermodarchaeota potentially degrade alkanes and aromatics via alkyl/benzyl-succinate synthase and benzoyl-CoA pathway. ISME J. 2021;15:1826–43.Article 
    CAS 

    Google Scholar 
    Cai M, Liu Y, Yin X, Zhou Z, Friedrich MW, Richter-Heitmann T, et al. Diverse Asgard archaea including the novel phylum Gerdarchaeota participate in organic matter degradation. Sci China Life Sci. 2020;63:886–97.Article 
    CAS 

    Google Scholar 
    Baker BJ, De Anda V, Seitz KW, Dombrowski N, Santoro AE, Lloyd KG. Diversity, ecology and evolution of Archaea. Nat Microbiol. 2020;5:887–900.Article 
    CAS 

    Google Scholar 
    Farag Ibrahim F, Zhao R, Biddle Jennifer F, Atomi H. “Sifarchaeota,” a novel Asgard phylum from Costa Rican sediment capable of polysaccharide degradation and anaerobic methylotrophy. Appl Environ Micro. 2021;87:e02584–20.
    Google Scholar 
    Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J. 2017;11:2407–25.Article 

    Google Scholar 
    Cai M, Richter-Heitmann T, Yin X, Huang W-C, Yang Y, Zhang C, et al. Ecological features and global distribution of Asgard archaea. Sci Total Environ. 2021;758:143581.Article 
    CAS 

    Google Scholar 
    Zhang C-J, Chen Y-L, Sun Y-H, Pan J, Cai M-W, Li M. Diversity, metabolism and cultivation of archaea in mangrove ecosystems. Mar Life Sci Tech. 2020;3:252–62.Article 

    Google Scholar 
    Dai SS, Yang Z, Tong Y, Chen L, Liu SY, Pan R, et al. Global distribution and environmental drivers of methylmercury production in sediments. J Hazard Mater. 2021;407:124700.Article 
    CAS 

    Google Scholar 
    Tang WL, Liu YR, Guan WY, Zhong H, Qu XM, Zhang T. Understanding mercury methylation in the changing environment: Recent advances in assessing microbial methylators and mercury bioavailability. Sci Total Environ. 2020;714:136827.Article 
    CAS 

    Google Scholar 
    Tsui MTK, Finlay JC, Balogh SJ, Nollet YH. In situ production of methylmercury within a stream channel in northern California. Environ Sci Technol. 2010;44:6998–7004.Article 
    CAS 

    Google Scholar 
    Liu Y, Zhou Z, Pan J, Baker BJ, Gu JD, Li M. Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota. ISME J. 2018;12:1021–31.Article 
    CAS 

    Google Scholar 
    Lei P, Zhong H, Duan D, Pan K. A review on mercury biogeochemistry in mangrove sediments: Hotspots of methylmercury production? Sci Total Environ. 2019;680:140–50.Article 
    CAS 

    Google Scholar 
    Beckers F, Rinklebe J. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Crit Rev Env Sci Tec. 2017;47:693–794.Article 
    CAS 

    Google Scholar 
    de Oliveira DC, Correia RR, Marinho CC, Guimaraes JR. Mercury methylation in sediments of a Brazilian mangrove under different vegetation covers and salinities. Chemosphere 2015;127:214–21.Article 

    Google Scholar 
    Li R, Xu H, Chai M, Qiu GY. Distribution and accumulation of mercury and copper in mangrove sediments in Shenzhen, the world’s most rapid urbanized city. Environ Moni Assess. 2016;188:87.Article 

    Google Scholar 
    O’Connor D, Hou D, Ok YS, Mulder J, Duan L, Wu Q, et al. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environ Int. 2019;126:747–61.Article 

    Google Scholar 
    Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 2018;47:116–40.Article 

    Google Scholar 
    Capo E, Peterson BD, Kim M, Jones DS, Acinas SG, Amyot M, et al. A consensus protocol for the recovery of mercury methylation genes from metagenomes. Mol Ecol Resour. 2022; https://doi.org/10.1111/1755-0998.13687.Gionfriddo CM, Wymore AM, Jones DS, Wilpiszeski RL, Lynes MM, Christensen GA, et al. An improved hgcAB primer set and direct high-throughput sequencing expand Hg-methylator diversity in nature. Front Microbiol. 2020;11:541554.Article 

    Google Scholar 
    Yu R-Q, Barkay T. Chapter two – microbial mercury transformations: Molecules, functions and organisms. Adv Appl Microbiol. 2022;118:31–90.Article 

    Google Scholar 
    Chételat J, Richardson MC, MacMillan GA, Amyot M, Poulain AJ. Ratio of methylmercury to dissolved organic carbon in water explains methylmercury bioaccumulation across a latitudinal gradient from north-temperate to arctic lakes. Environ Sci Technol. 2018;52:79–88.Article 

    Google Scholar 
    Liu Y-R, Dong J-X, Han L-L, Zheng Y-M, He J-Z. Influence of rice straw amendment on mercury methylation and nitrification in paddy soils. Environ Pollut. 2016;209:53–9.Article 
    CAS 

    Google Scholar 
    Moreau JW, Gionfriddo CM, Krabbenhoft DP, Ogorek JM, DeWild JF, Aiken GR, et al. The effect of natural organic matter on mercury methylation by Desulfobulbus propionicus 1pr3. Front Microbiol. 2015;6:1389.Article 

    Google Scholar 
    Chen C-F, Ju Y-R, Chen C-W, Dong C-D. The distribution of methylmercury in estuary and harbor sediments. Sci Total Environ. 2019;691:55–63.Article 
    CAS 

    Google Scholar 
    Bravo AG, Bouchet S, Guédron S, Amouroux D, Dominik J, Zopfi J. High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges. Water Res. 2015;80:245–55.Article 
    CAS 

    Google Scholar 
    Wang H, Su J, Zheng T, Yang X. Insights into the role of plant on ammonia-oxidizing bacteria and archaea in the mangrove ecosystem. J Soil Sediment. 2015;15:1212–23.Article 
    CAS 

    Google Scholar 
    Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 2020;577:519–25.Article 
    CAS 

    Google Scholar 
    Zhou J, Riccardi D, Beste A, Smith JC, Parks JM. Mercury methylation by HgcA: Theory supports carbanion transfer to Hg(II). Inorg Chem. 2014;53:772–7.Article 
    CAS 

    Google Scholar 
    Smith Steven D, Bridou R, Johs A, Parks Jerry M, Elias Dwayne A, Hurt Richard A, et al. Site-directed mutagenesis of HgcA and HgcB reveals amino acid residues important for mercury methylation. Appl Environ Micro. 2015;81:3205–17.Article 
    CAS 

    Google Scholar 
    Sousa FL, Neukirchen S, Allen JF, Lane N, Martin WF. Lokiarchaeon is hydrogen dependent. Nat Microbiol. 2016;1:16034.Article 
    CAS 

    Google Scholar 
    Schaefer JK, Rocks SS, Zheng W, Liang L, Gu B, Morel FMM. Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proc Natl Acad Sci USA 2011;108:8714.Article 
    CAS 

    Google Scholar 
    Sakai S, Imachi H, Hanada S, Ohashi A, Harada H, Kamagata Y. Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov. Int J Syst Evol Microbiol. 2008;58:929–36.Article 

    Google Scholar 
    Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol. 2012;62:1902–7.Article 
    CAS 

    Google Scholar 
    Dietz R, Sonne C, Basu N, Braune B, O’Hara T, Letcher RJ, et al. What are the toxicological effects of mercury in arctic biota? Sci Total Environ. 2013;443:775–90.Article 
    CAS 

    Google Scholar 
    Gilmour Cynthia C, Bullock Allyson L, McBurney A, Podar M, Elias Dwayne A, Lovley Derek R. Robust mercury methylation across diverse methanogenic archaea. mBio 2018;9:e02403–17.
    Google Scholar 
    Pan J, Chen Y, Wang Y, Zhou Z, Li M. Vertical distribution of Bathyarchaeotal communities in mangrove wetlands suggests distinct niche preference of Bathyarchaeota subgroup 6. Micro Ecol. 2019;77:417–28.Article 

    Google Scholar 
    Zhang C-J, Pan J, Duan C-H, Wang Y-M, Liu Y, Sun J, et al. Prokaryotic diversity in mangrove sediments across southeastern China fundamentally differs from that in other biomes. mSystems 2019;4:e00442–19.Article 
    CAS 

    Google Scholar 
    Peng Y, Leung HC, Yiu SM, Chin FY. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012;28:1420–8.Article 
    CAS 

    Google Scholar 
    Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015;31:1674–6.Article 
    CAS 

    Google Scholar 
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 

    Google Scholar 
    Zhang C-J, Pan J, Liu Y, Duan C-H, Li M. Genomic and transcriptomic insights into methanogenesis potential of novel methanogens from mangrove sediments. Microbiome. 2020;8:94.Article 
    CAS 

    Google Scholar 
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 2015;3:e1165.Article 

    Google Scholar 
    Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.Article 
    CAS 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.Article 
    CAS 

    Google Scholar 
    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: A tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.Article 
    CAS 

    Google Scholar 
    Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019;36:1925–7.
    Google Scholar 
    Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.Article 
    CAS 

    Google Scholar 
    Huerta-Cepas J, Forslund K, Szklarczyk D, Jensen LJ, von Mering C, Bork P. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.Article 
    CAS 

    Google Scholar 
    Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–W37.Article 
    CAS 

    Google Scholar 
    Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.Article 
    CAS 

    Google Scholar 
    Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.Article 
    CAS 

    Google Scholar 
    Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009;25:1972–3.Article 

    Google Scholar 
    Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.Article 
    CAS 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. Plos ONE. 2010;5:e9490.Article 

    Google Scholar 
    Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.Article 
    CAS 

    Google Scholar 
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596:583–9.Article 
    CAS 

    Google Scholar 
    Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61.CAS 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.Article 
    CAS 

    Google Scholar 
    Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinforma (Oxf, Engl). 2010;26:841–2.Article 
    CAS 

    Google Scholar 
    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754–60.Article 
    CAS 

    Google Scholar  More

  • in

    Spatial genetic structure of European wild boar, with inferences on late-Pleistocene and Holocene demographic history

    Ai H, Fang X, Yang B, Huang Z, Chen H, Mao L et al. (2015) Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nat Genet 47:217–225Article 
    CAS 

    Google Scholar 
    Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664Article 
    CAS 

    Google Scholar 
    Alexandri P, Megens HJ, Crooijmans RPMA, Groenen MAM, Goedbloed DJ, Herrero-Medrano JM et al. (2017) Distinguishing migration events of different timing for wild boar in the Balkans. J Biogeogr 44:259–270Article 

    Google Scholar 
    Alexandri P, Triantafyllidis A, Papakostas S, Chatzinikos E, Platis P, Papageorgiou N et al. (2012) The Balkans and the colonization of Europe: the post-glacial range expansion of the wild boar, Sus scrofa. J Biogeogr 39:713–723Article 

    Google Scholar 
    Alves PC, Pinheiro I, Godinho R, Vicente JJ, Gortázar C, Scandura M et al. (2010) Genetic diversity of wild boar populations and domestic pig breeds (Sus scrofa) in South-western Europe. Biol J Linn Soc 101:797–822Article 

    Google Scholar 
    Apollonio M, Andersen R, Putman R (2010) European ungulates and their management in the 21st century (M Apollonio, R Andersen, and R Putman, Eds.) Cambridge University Press: Cambridge, UKAzzaroli A, De Giuli C, Ficcarelli G, Torre D (1988) Late pliocene to early mid-pleistocene mammals in Eurasia: Faunal succession and dispersal events. Palaeogeogr Palaeoclimatol Palaeoecol 66:77–100Article 

    Google Scholar 
    Bérénos C, Ellis PA, Pilkington JG, Pemberton JM (2016) Genomic analysis reveals depression due to both individual and maternal inbreeding in a free‐living mammal population. Mol Ecol 25:3152–3168Article 

    Google Scholar 
    Braga RT, Rodrigues JFM, Diniz-Filho JAF, Rangel TF (2019) Genetic population structure and allele surfing during range expansion in dynamic habitats. An da Academia Brasileira de Ciências 91:e20180179Article 

    Google Scholar 
    Bragina EV, Ives AR, Pidgeon AM, Kuemmerle T, Baskin LM, Gubar YP, Piquer-Rodríguez M, Keuler NS, Petrosyan VG, Radeloff VC (2015) Rapid Declines of Large Mammal Populations after the Collapse of the Soviet Union. Cons Biol 29:844–853Article 

    Google Scholar 
    Brewer S, Cheddadi R, de Beaulieu JL, Reille M, Allen J, Almqvist-Jacobson H et al. (2002) The spread of deciduous Quercus throughout Europe since the last glacial period. For Ecol Manag 156:27–48Article 

    Google Scholar 
    Cahill S, Llimona F, Cabañeros L, Calomardo F (2012) Characteristics of wild boar (Sus scrofa) habituation to urban areas in the Collserola Natural Park (Barcelona) and comparison with other locations. Anim Biodivers Conserv 35:221–233Article 

    Google Scholar 
    Canu A, Costa S, Iacolina L, Piatti P, Apollonio M, Scandura M (2014) Are captive wild boar more introgressed than free-ranging wild boar? Two case studies in Italy. Eur J Wildl Res 60:459–467Article 

    Google Scholar 
    Canu A, Vilaça STT, Iacolina L, Apollonio M, Bertorelle G, Scandura M (2016) Lack of polymorphism at the MC1R wild-type allele and evidence of domestic allele introgression across European wild boar populations. Mamm Biol 81:477–479Article 

    Google Scholar 
    Carranza J, Salinas M, de Andrés D, Pérez-González J (2016) Iberian red deer: paraphyletic nature at mtDNA but nuclear markers support its genetic identity. Ecol Evol 6:905–922Article 

    Google Scholar 
    Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 4:1–16Article 

    Google Scholar 
    Cheddadi R, Bar-Hen A (2009) Spatial gradient of temperature and potential vegetation feedback across Europe during the late Quaternary. Clim Dyn 32:371–379Article 

    Google Scholar 
    Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B et al. (2009) The Last Glacial Maximum. Science 325:710–714Article 
    CAS 

    Google Scholar 
    DeGiorgio M, Rosenberg NA (2013) Geographic sampling scheme as a determinant of the major axis of genetic variation in principal components analysis. Mol Biol Evol 30:480–488Article 
    CAS 

    Google Scholar 
    Deinet S, Ieronymidou C, McRae L, Burfield IJ, Foppen RP, Collen B, et al. (2013) Wildlife comeback in Europe. The recovery of selected mammal and bird species. London, UKEckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol 17:1170–1188Article 
    CAS 

    Google Scholar 
    Fang M, Berg F, Ducos A, Andersson L (2006) Mitochondrial haplotypes of European wild boars with 2n = 36 are closely related to those of European domestic pigs with 2n = 38. Anim Genet 37:459–464Article 
    CAS 

    Google Scholar 
    Ferenčaković M, Sölkner J, Curik I (2013) Estimating autozygosity from high-throughput information: Effects of SNP density and genotyping errors. Genet Sel Evol 45:42Article 

    Google Scholar 
    Ferreira E, Souto L, Soares AMVM, Fonseca C (2009) Genetic structure of the wild boar population in Portugal: Evidence of a recent bottleneck. Mamm Biol 74:274–285Article 

    Google Scholar 
    Franois O, Currat M, Ray N, Han E, Excoffier L, Novembre J (2010) Principal component analysis under population genetic models of range expansion and admixture. Mol Biol Evol 27:1257–1268Article 

    Google Scholar 
    Frantz AC, Bertouille S, Eloy MC, Licoppe A, Chaumont F, Flamand MC (2012) Comparative landscape genetic analyses show a Belgian motorway to be a gene flow barrier for red deer (Cervus elaphus), but not wild boars (Sus scrofa). Mol Ecol 21:3445–3457Article 
    CAS 

    Google Scholar 
    Fulgione D, Rippa D, Buglione M, Trapanese M, Petrelli S, Maselli V (2016) Unexpected but welcome. Artificially selected traits may increase fitness in wild boar. Evol Appl 9:769–776Article 
    CAS 

    Google Scholar 
    Goedbloed DJ, Megens HJ, van Hooft P, Herrero-Medrano JM, Lutz W, Alexandri P et al. (2013a) Genome-wide single nucleotide polymorphism analysis reveals recent genetic introgression from domestic pigs into Northwest European wild boar populations. Mol Ecol 22:856–866Article 
    CAS 

    Google Scholar 
    Goedbloed DJ, van Hooft P, Megens HJ, Langenbeck K, Lutz W, Crooijmans RPMA et al. (2013b) Reintroductions and genetic introgression from domestic pigs have shaped the genetic population structure of Northwest European wild boar. BMC Genet 14:2–10Article 

    Google Scholar 
    Groenen MAM, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF et al. (2012) Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491:393–398Article 
    CAS 

    Google Scholar 
    Herrero-Medrano JM, Megens H-J, Groenen MAM, Ramis G, Bosse M, Pérez-Enciso M et al. (2013) Conservation genomic analysis of domestic and wild pig populations from the Iberian Peninsula. BMC Genet 14:1–13Article 

    Google Scholar 
    Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112Article 

    Google Scholar 
    Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond Ser B Biol Sci 359:183–195Article 
    CAS 

    Google Scholar 
    Hiemstra PH, Pebesma EJ, Twenhöfel CJW, Heuvelink GBM (2009) Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Comput Geosci 35:1711–1721Article 
    CAS 

    Google Scholar 
    Howrigan DP, Simonson MA, Keller MC (2011) Detecting autozygosity through runs of homozygosity: a comparison of three autozygosity detection algorithms. BMC Genomics 12:460Article 
    CAS 

    Google Scholar 
    Huisman J, Kruuk LEB, Ellis PA, Clutton-Brock T, Pemberton JM (2016) Inbreeding depression across the lifespan in a wild mammal population. Proc Natl Acad Sci 113:3585–3590Article 
    CAS 

    Google Scholar 
    Iacolina L, Corlatti L, Buzan E, Safner T, Šprem N (2019) Hybridisation in European ungulates: an overview of the current status, causes, and consequences. Mamm Rev 49:45–59Article 

    Google Scholar 
    Iacolina L, Pertoldi C, Amills M, Kusza S, Megens H-J, Bâlteanu VA et al. (2018) Hotspots of recent hybridization between pigs and wild boars in Europe. Sci Rep. 8:17372Article 
    CAS 

    Google Scholar 
    Iacolina L, Scandura M, Goedbloed DJ, Alexandri P, Crooijmans RPMA, Larson G et al. (2016) Genomic diversity and differentiation of a managed island wild boar population. Heredity 116:60–67Article 
    CAS 

    Google Scholar 
    Jombart T, Ahmed I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:1–2Article 

    Google Scholar 
    de Jong JF, Hooft van P, Megens HJ, Crooijmans RPMA, Groot de GA, Pemberton JM, Huisman J et al. (2020) Fragmentation and translocation distort the genetic landscape of ungulates: red deer in the Netherlands. Front Ecol Evol 8:535715Article 

    Google Scholar 
    Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281Article 

    Google Scholar 
    Kardos M, Åkesson M, Fountain T, Flagstad Ø, Liberg O, Olason P et al. (2018) Genomic consequences of intensive inbreeding in an isolated wolf population. Nat Ecol Evol 2:124–131Article 

    Google Scholar 
    Kaplan JO, Krumhardt KM, Zimmermann N (2009) The prehistoric and preindustrial deforestation of Europe. Quat Sci Rev 28:3016–3034. https://doi.org/10.1016/j.quascirev.2009.09.028Koemle D, Zinngrebe Y, Yu X (2018) Highway construction and wildlife populations: Evidence from Austria. Land use policy 73:447–457Article 

    Google Scholar 
    Krže B (1982) Divji prašič: biologija, gojitev, ekologija. Lovska zveza Slovenije, Ljubljana
    Google Scholar 
    Kusza S, Podgórski T, Scandura M, Borowik T, Jávor A, Sidorovich VE et al. (2014) Contemporary genetic structure, phylogeography and past demographic processes of wild boar Sus scrofa population in central and eastern Europe. PLoS One 9:e91401Article 

    Google Scholar 
    Lorenzini R, Lovari S, Masseti M (2002) The rediscovery of the Italian roe deer: Genetic differentiation and management implications. Ital J Zool 69(4):367–379Article 

    Google Scholar 
    Lorenzini R, San José C, Braza F, Aragón S (2003) Genetic differentiation and phylogeography of roe deer in Spain, as suggested by mitochondrial DNA and microsatellite analysis. Ital J Zool 70(1):89–99Article 
    CAS 

    Google Scholar 
    Magri D (2013) Early to Middle Pleistocene dynamics of plant and mammal communities in South West Europe. Quat Int 288:63–72Article 

    Google Scholar 
    Manunza A, Zidi A, Yeghoyan S, Balteanu VA, Carsai TC, Scherbakov O et al. (2013) A high throughput genotyping approach reveals distinctive autosomal genetic signatures for European and Near Eastern wild boar. PLoS One 8:e55891Article 
    CAS 

    Google Scholar 
    Maselli V, Rippa D, De Luca A, Larson G, Wilkens B, Linderholm A et al. (2016) Southern Italian wild boar population, hotspot of genetic diversity. Hystrix 27:137–144
    Google Scholar 
    McVean G (2009) A genealogical interpretation of principal components analysis. PLoS Genet 5:e1000686Article 

    Google Scholar 
    Megens H-J, Crooijmans RP, Cristobal M, Hui X, Li N, Groenen MA (2008) Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples: differences in microsatellite variation between two areas of domestication. Genet Sel Evol 40:103
    Google Scholar 
    Melis C, Szafrańska PA, Jȩdrzejewska B, Bartoń K (2006) Biogeographical variation in the population density of wild boar (Sus scrofa) in western Eurasia. J Biogeogr 33:803–811Article 

    Google Scholar 
    Mihalik B, Stéger V, Frank K, Szendrei L, Kusza S (2018) Barrier effect of the M3 highway in Hungary on the genetic diversity of wild boar (Sus scrofa) population. Res J Biotechnol 13:32–38
    Google Scholar 
    NCBI (2018) Genome Organism Overview: Sus scrofa (pig). https://www.ncbi.nlm.nih.gov/genome?term=sus%20scrofa%20%5BOrganism%5D&cmd=DetailsSearch&report=OverviewNikolov IS, Gum B, Markov G, Kuehn R (2009) Population genetic structure of wild boar Sus scrofa in Bulgaria as revealed by microsatellite analysis. Acta Theriol (Warsz) 54:193–205Article 

    Google Scholar 
    Nykänen M, Rogan E, Foote AD, Kaschner K, Dabin W, Louis M et al. (2019) Postglacial colonization of northern coastal habitat by bottlenose dolphins: a marine leading-edge expansion? J Hered 110:662–674Article 

    Google Scholar 
    Palombo M, Romana AV-G (2003) Remarks on the biochronology of mammalian faunal complexes from the Pliocene to the Middle Pleistocene in France. Geol Rom: 145–163Paradis E, Claude J, Strimmer K (2004) APE: analysis of phylogenetics and evolution in R language. Bioinformatics 20:289–290Article 
    CAS 

    Google Scholar 
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D et al (2007) PLINK: A tool Set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. www.cog-genomics.org/plink/1.9/Putman R, Apollonio M, Andersen R (2011) Ungulate management in Europe: problems and practices. Cambridge University Press, Cambridge, UKBook 

    Google Scholar 
    R Core Team (2018) R: A language and environment for statistical computing. Vienna, AustriaRejduch B, Sota E, Ró M, Ko M (2003) Chromosome number polymorphism in a litter of European wild boar (Sus scrofa scrofa L.). Anim Sci Pap Rep. 21:57–62
    Google Scholar 
    Scandura M, Iacolina L, Apollonio M (2011a) Genetic diversity in the European wild boar Sus scrofa: phylogeography, population structure and wild x domestic hybridization: Genetic variation in European wild boar. Mamm Rev 41:125–137Article 

    Google Scholar 
    Scandura M, Iacolina L, Cossu A, Apollonio M (2011b) Effects of human perturbation on the genetic make-up of an island population: The case of the Sardinian wild boar. Heredity 106:1012–1020Article 
    CAS 

    Google Scholar 
    Scandura M, Iacolina L, Crestanello B, Pecchioli E, Di Benedetto MF, Russo V et al. (2008) Ancient vs. recent processes as factors shaping the genetic variation of the European wild boar: Are the effects of the last glaciation still detectable? Mol Ecol 17:1745–1762Article 
    CAS 

    Google Scholar 
    Scandura M, Fabbri G, Caniglia R, Iacolina L, Mattucci F, Mengoni C, Pante G, Apollonio M, Mucci N (2022) Resilience to Historical Human Manipulations in the Genomic Variation of Italian Wild Boar Populations. Front Ecol Evol 10:833081Article 

    Google Scholar 
    Schmitt T, Varga Z (2012) Extra-Mediterranean refugia: the rule and not the exception. Front Zool 9:22Article 

    Google Scholar 
    Sommer RS, Fahlke JM, Schmölcke U, Benecke N, Zachos FE (2009) Quaternary history of the European roe deer Capreolus capreolus. Mamm Rev 39:1–16Article 

    Google Scholar 
    Sommer RS, Nadachowski A (2006) Glacial refugia of mammals in Europe: evidence from fossil records. Mamm Rev 36:251–265Article 

    Google Scholar 
    Sommer RS, Zachos FE (2009) Fossil evidence and phylogeography of temperate species: ‘glacial refugia’ and post-glacial recolonization. J Biogeogr 36:2013–2020Article 

    Google Scholar 
    Sommer RS, Zachos FE, Street M, Jöris O, Skog A, Benecke N (2008) Late Quaternary distribution dynamics and phylogeography of the red deer (Cervus elaphus) in Europe. Quat Sci Rev 27:714–733Article 

    Google Scholar 
    Stillfried M, Fickel J, Börner K, Wittstatt U, Heddergott M, Ortmann S et al. (2017) Do cities represent sources, sinks or isolated islands for urban wild boar population structure? J Appl Ecol 54:272–281Article 

    Google Scholar 
    Taberlet P, Fumagalli L, Wust-Saucy AG, Cossons JF (1998) Comparative phylogeography and post-glacial colonization routes in Europe. Mol Ecol 7:453–461.Article 
    CAS 

    Google Scholar 
    Veličković N, Djan M, Ferreira E, Stergar M, Obreht D, Maletić V et al. (2015) From north to south and back: the role of the Balkans and other southern peninsulas in the recolonization of Europe by wild boar. J Biogeogr 42:716–728Article 

    Google Scholar 
    Veličković N, Ferreira E, Djan M, Ernst M, Obreht Vidaković D, Monaco A et al. (2016) Demographic history, current expansion and future management challenges of wild boar populations in the Balkans and Europe. Heredity 117:348–357Article 

    Google Scholar 
    Vernesi C, Crestanello B, Pecchioli E, Tartari D, Caramelli D, Hauffe H et al. (2003) The genetic impact of demographic decline and reintroduction in the wild boar (Sus scrofa): A microsatellite analysis. Mol Ecol 12:585–595Article 
    CAS 

    Google Scholar 
    Vilaça ST, Biosa D, Zachos F, Iacolina L, Kirschning J, Alves PC et al. (2014) Mitochondrial phylogeography of the European wild boar: The effect of climate on genetic diversity and spatial lineage sorting across Europe. J Biogeogr 41:987–998Article 

    Google Scholar 
    Zachos FE, Frantz AC, Kuehn R, Bertouille S, Colyn M, Niedziałkowska M et al. (2016) Genetic structure and effective population sizes in European red deer (Cervus elaphus) at a continental scale: insights from microsatellite DNA. J Hered 107:318–326 More

  • in

    Conservation setbacks? The secrets to lifting morale

    Conservationist Jim Groombridge in Hawaii (standing) performing a ‘heli-hook-up’, in which a net full of equipment is hooked up to the hovering helicopter, to save it needing to land.Credit: Jim Groombridge/Maui Forest Bird Recovery Project

    Since his undergraduate degree, Jim Groombridge has been part of several teams that work with critically endangered animals, including the Mauritius kestrel (Falco punctatus), which was brought back from the brink of extinction. But he has also experienced the devastation of some species being lost forever, despite all possible interventions. After receiving his PhD from Queen Mary University of London in 2000, he worked as a project coordinator at the Maui Forest Bird Recovery Project in Makawao, Hawaii. Conservation science spans many topics including climate change, working with local communities, epidemiology, genomics and designing protected areas. Projects can range from single-species conservation to ecosystem-level or landscape conservation, such as restoring whole islands. Now a professor in biodiversity conservation at the University of Kent’s Durrell Institute of Conservation and Ecology in Canterbury, UK, Groombridge teaches bachelor’s and master’s students about leadership of conservation teams and how to motivate them in the face of setbacks.What is special about leading conservation teams?Conservation field teams are slightly quirky, and those quirks can define what makes a team work well or not. One is that team leaders are rarely trained in management tasks, such as overseeing a budget, interacting with project partners and local governments, dealing with team members who feel passionate about what they do and facing the high stakes involved. Team members are enthusiastic, passionate and seldom motivated by money.Another quirk is that, in a small conservation team of four to six people, there is often a mix of skill sets and experience. You can have highly experienced specialists in a particular area, such as screening parrots for diseases, or reintroduction biology, and you might also have volunteers with only passion and enthusiasm to offer.How do you lead a team with such variable experience?Even with those different levels of expertise, you still need to meet high standards for specimen and data collection. At the moment, for example, I’m sequencing the genome of the pink pigeon (Nesoenas mayeri), using samples collected in the 1990s. There’s a sense of responsibility, especially if you’re working with species that are rare, because if you mess it up, they could go extinct. It’s not unusual to have volunteers with only two or three weeks’ worth of experience handling extremely rare samples or working with valuable data sets. Their learning curve is pretty steep. As a leader, you need to make sure that you understand the details — ranging from tasks such as collecting data and monitoring and recording invasive species to, for example, knowing how to trap a mongoose — so that you can make sure that everyone is collecting the data in the same way.

    Jim Groombridge (far left), who studies biodiversity conservation at the University of Kent, UK, with one of the field crews involved in an operation to translocate a bird called the po‘ouli in Hawaii.Credit: Jim Groombridge/Maui Forest Bird Recovery Project

    What do team members tend to have in common?They often share a passion for nature. They want to save the environment, they want to save a species from going extinct, they want to make a difference. That level of emotion is important. It creates an energy, which needs to be channelled proactively and positively into the project to make it a success.In 2002, for example, I was leading a team working to save a bird called the po‘ouli (Melamprosops phaeosoma) on the island of Maui, part of the Hawaiian archipelago. We were trying to translocate one of the last known birds into the range of another one to give them the opportunity to breed. There was huge excitement, but after four weeks of failing to catch the bird, there was also a lot of frustration.How do you manage a team with such strong emotions?Morale is really important. So is being able to deal with difficulties when they arise. That’s what gets small teams through tough times. With the po‘ouli, I had to make sure that the team had fun, and that people genuinely enjoyed themselves. That meant taking time out with the team in the evenings and ensuring that everyone had a bit of a laugh, so it wasn’t deadly serious all the time. Also, I made sure that team members got to perform the aspects of the job that they were good at, to increase their confidence and well-being. We eventually trapped the po‘ouli and moved it, but even though the birds were in the same territory, they didn’t breed.How do you manage expectations amid failure?I had to remind the team about the broader picture of what we had achieved. This was the first time anyone had followed the po‘ouli in the forest for ten days. I think we learnt more about the ecology of that species in that time than anyone had learnt in 30 years. We held the translocated bird for about two hours before we released it, and it took food items from us, which showed that the birds could be kept in captivity if necessary. We learnt a huge amount that could be applied to another project.
    Treading carefully: saving frankincense trees in Yemen
    You have to manage people’s expectations and have goals that are achievable. If you are starting a project on a species with fewer than ten individuals left in the wild, and your goal is to have thousands, that’s a difficult leap of imagination. Instead, perhaps start with finding a food that a species would eat in captivity. People need to remain connected with what’s achievable. There’s a delicate balance between being aspirational and being pragmatic.As a team member, what do you wish more conservation leaders knew?Often, there is too much emphasis placed on the command structure. Innovation in a conservation team is undersold, and easily quashed by a type of line-manager approach. The hierarchy in a team is important because people know what to do and who to report to, but you also have to encourage team members to use their initiative and ask questions. I remember when my team and I were in the cloud forests, tropical mountain regions covered by clouds for most of the year in Hawaii, we were struggling with baiting rats, which prey on eggs and fledglings of native birds. It’s one of the wettest places on Earth, and the rat poison basically turns to cottage cheese. However, one of my colleagues designed a bait box, which kept the bait dry for many weeks. When you’re working with critically endangered species and in field conditions, ingenuity is crucial.
    This interview has been edited for length and clarity. More

  • in

    Investigating metropolitan change through mathematical morphology and a dynamic factor analysis of structural and functional land-use indicators

    Alphan, H. Land use change and urbanisation of Adana, Turkey. Land Degrad. Dev. 14, 575–586 (2003).Article 

    Google Scholar 
    Catalàn, B., Sauri, D. & Serra, P. Urban sprawl in the Mediterranean? Patterns of growth and change in the Barcelona Metropolitan Region 1993–2000. Landsc. Urban Plan. 85(3–4), 174–184 (2008).
    Google Scholar 
    Chen, K., Long, H., Liao, L., Tu, S. & Li, T. Land use transitions and urban-rural integrated development: Theoretical framework and China’s evidence. Land Use Policy 92, 104465 (2020).Article 

    Google Scholar 
    Bianchini, L. et al. Forest transition and metropolitan transformations in developed countries: Interpreting apparent and latent dynamics with local regression models. Land 11(1), 12 (2021).Article 

    Google Scholar 
    Angel, S., Parent, J., Civco, D. L., Blei, A. & Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plan. 75(2), 53–107 (2011).Article 

    Google Scholar 
    Fischer, A. P. Forest landscapes as social-ecological systems and implications for management. Landsc. Urban Plan. 177, 138–147 (2018).Article 

    Google Scholar 
    Darvishi, A., Yousefi, M. & Marull, J. Modelling landscape ecological assessments of land use and cover change scenarios. Application to the Bojnourd Metropolitan Area (NE Iran). Land Use Policy 99, 105098 (2020).Article 

    Google Scholar 
    Cheng, L. L., Tian, C. & Yin, T. T. Identifying driving factors of urban land expansion using Google earth engine and machine-learning approaches in Mentougou District, China. Sci. Rep. 12(1), 1–13 (2022).Article 
    CAS 

    Google Scholar 
    Kasanko, M. et al. Are European Cities becoming dispersed? A comparative analysis of fifteen European urban areas. Landsc. Urban Plan. 77(1–2), 111–130 (2006).Article 

    Google Scholar 
    Terzi, F. & Bolen, F. Urban sprawl measurement of Istanbul. Eur. Plan. Stud. 17(10), 1559–1570 (2009).Article 

    Google Scholar 
    Angel, S., Parent, J. & Civco, D. L. Ten compactness properties of circles: measuring shape in geography. Can. Geogr. 54, 441–461 (2010).Article 

    Google Scholar 
    Salvati, L., Gemmiti, R. & Perini, L. Land degradation in Mediterranean urban areas: An unexplored link with planning?. Area 44(3), 317–325 (2012).Article 

    Google Scholar 
    Attorre, F., Bruno, M., Francesconi, F., Valenti, R. & Bruno, F. Landscape changes of Rome through tree-lined roads. Landsc. Urban Plan. 49, 115–128 (2000).Article 

    Google Scholar 
    Turok, I. & Mykhnenko, V. The trajectories of European cities, 1960–2005. Cities 24(3), 165–182 (2007).Article 

    Google Scholar 
    Ioannidis, C., Psaltis, C. & Potsiou, C. Towards a strategy for control of suburban informal buildings through automatic change detection. Comput. Environ. Urban Syst. 33, 64–74 (2009).Article 

    Google Scholar 
    Grekousis, G., Manetos, P. & Photis, Y. N. Modeling urban evolution using neural networks, fuzzy logic and GIS: The case of the athens metropolitan area. Cities 30, 193–203 (2013).Article 

    Google Scholar 
    Salvati, L. Towards a polycentric region? The socioeconomic trajectory of Rome, an ‘Eternally Mediterranean’ city. Tijdschr. Econ. Soc. Geogr. 105(3), 268–284 (2014).Article 

    Google Scholar 
    Chorianopoulos, I., Pagonis, T., Koukoulas, S. & Drymoniti, S. Planning, competitiveness and sprawl in the Mediterranean city: The case of Athens. Cities 27, 249–259 (2010).Article 

    Google Scholar 
    Munafò, M., Salvati, L. & Zitti, M. Estimating soil sealing rate at national level—Italy as a case study. Ecol. Ind. 26, 137–140 (2013).Article 

    Google Scholar 
    Morelli, V. G., Rontos, K. & Salvati, L. Between suburbanisation and re-urbanisation: Revisiting the urban life cycle in a Mediterranean compact city. Urban Res. Pract. 7(1), 74–88 (2014).Article 

    Google Scholar 
    Basem Ajjur, S. & Al-Ghamdi, S. G. Exploring urban growth–climate change–flood risk nexus in fast growing cities. Sci. Rep. 12, 12265 (2022).Article 
    ADS 

    Google Scholar 
    Li, H. & Wu, J. Use and misuse of landscape indices. Landsc. Ecol. 19, 389–399 (2004).Article 

    Google Scholar 
    Salvati, L. Agro-forest landscape and the ‘fringe’city: A multivariate assessment of land-use changes in a sprawling region and implications for planning. Sci. Total Environ. 490, 715–723 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Sang, X. et al. Intensity and stationarity analysis of land use change based on CART algorithm. Sci. Rep. 9(1), 1–12 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Ettehadi Osgouei, P., Sertel, E. & Kabadayı, M. E. Integrated usage of historical geospatial data and modern satellite images reveal long-term land use/cover changes in Bursa/Turkey, 1858–2020. Sci. Rep. 12(1), 1–17 (2022).Article 

    Google Scholar 
    He, S., Yu, S., Li, G. & Zhang, J. Exploring the influence of urban form on land-use efficiency from a spatiotemporal heterogeneity perspective: Evidence from 336 Chinese cities. Land Use Policy 95, 104576 (2020).Article 

    Google Scholar 
    Bockarjova, M., Wouter Botzen, W. J., Bulkeley, H. A. & Toxopeus, H. Estimating the social value of nature-based solutions in European cities. Sci. Rep. 12, 19833 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Liu, J. & Niyogi, D. Meta-analysis of urbanisation impact on rainfall modification. Sci. Rep. 9(1), 1–14 (2019).ADS 

    Google Scholar 
    Holland, J. H. Studying complex adaptive systems. J. Syst. Sci. Complex. 19(1), 1–8 (2006).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Salvati, L. & Serra, P. Estimating rapidity of change in complex urban systems: A multidimensional, local-scale approach. Geogr. Anal. 48(2), 132–156 (2016).Article 

    Google Scholar 
    Bura, S., Guerin-Pace, F., Mathian, H., Pumain, D. & Sanders, L. Multi-agents systems and the dynamics of a settlement system. Geogr. Anal. 28(2), 161–178 (1996).Article 

    Google Scholar 
    Hasse, J. E. & Lathrop, R. G. Land resource impact indicators of urban sprawl. Appl. Geogr. 23, 159–175 (2003).Article 

    Google Scholar 
    Grafius, D. R., Corstanje, R. & Harris, J. A. Linking ecosystem services, urban form and green space configuration using multivariate landscape metric analysis. Landsc. Ecol. 33(4), 557–573 (2018).Article 

    Google Scholar 
    Pumain, D. Hierarchy in Natural and Social Sciences (Kluwer-Springer, 2005).
    Google Scholar 
    Cabral, P., Augusto, G., Tewolde, M. & Araya, Y. Entropy in urban systems. Entropy 15(12), 5223–5236 (2013).Article 
    ADS 

    Google Scholar 
    Salvati, L. & Carlucci, M. In-between stability and subtle changes: Urban growth, population structure, and the city life cycle in Rome. Popul. Space Place 22(3), 216–227 (2016).Article 

    Google Scholar 
    Batty, M. & Longley, P. Fractal Cities (Academic Press, 1994).MATH 

    Google Scholar 
    Berry, B. J. L. Cities as systems within systems of cities. Pap. Reg. Sci. 13, 147–163 (2005).Article 

    Google Scholar 
    Petrosillo, I. et al. The resilient recurrent behavior of mediterranean semi-arid complex adaptive landscapes. Land 10(3), 296 (2021).Article 

    Google Scholar 
    Portugali, J. Complexity, Cognition and the City, Understanding Complex Systems (Springer, 2011).Book 

    Google Scholar 
    Wu, J., Jenerette, G. D., Buyantuyev, A. & Redman, C. L. Quantifying spatiotemporal patterns of urbanisation: The case of the two fastest growing metropolitan regions in the United States. Ecol. Complex. 8(1), 1–8 (2011).Article 

    Google Scholar 
    Sun, Y., Gao, C., Li, J., Li, W. & Ma, R. Examining urban thermal environment dynamics and relations to biophysical composition and configuration and socioeconomic factors: A case study of the Shanghai metropolitan region. Sustain. Cities Soc. 40, 284–295 (2018).Article 

    Google Scholar 
    Phillips, M. A. & Ritala, P. A complex adaptive systems agenda for ecosystem research methodology. Technol. Forecast. Soc. Change 148, 119739 (2019).Article 

    Google Scholar 
    Walker, B., Holling, C. S., Carpenter, S. R. & Kinzig, A. Resilience, adaptability and transformability in social-ecological systems. Ecol. Soc. 9(2), 5 (2004).Article 

    Google Scholar 
    Kelly, C. et al. Community resilience and land degradation in forest and shrublandsocio-ecological systems: A case study in Gorgoglione, Basilicata regionn, Italy. Land Use Policy 46, 11–20 (2015).Article 

    Google Scholar 
    Preiser, R., Biggs, R., De Vos, A. & Folke, C. Social-ecological systems as complex adaptive systems. Ecol. Soc. 23(4), 46 (2018).Article 

    Google Scholar 
    Ferrara, A. et al. Shaping the role of ‘fast’ and ‘slow’ drivers of change in forest-shrubland socio-ecological systems. J. Environ. Manag. 169, 155–166 (2016).Article 

    Google Scholar 
    Lamy, T., Liss, K. N., Gonzalez, A. & Bennett, E. M. Landscape structure affects the provision of multiple ecosystem services. Environ. Res. Lett. 11(12), 124017 (2016).Article 
    ADS 

    Google Scholar 
    Riitters, K. H., Vogt, P., Soille, P., Kozak, J. & Estreguil, C. Neutral model analysis of landscape patterns from mathematical morphology. Landsc. Ecol. 22(7), 1033–1043 (2007).Article 

    Google Scholar 
    Riitters, K., Vogt, P., Soille, P. & Estreguil, C. Landscape patterns from mathematical morphology on maps with contagion. Landsc. Ecol. 24(5), 699–709 (2009).Article 

    Google Scholar 
    Anas, A., Arnott, R. & Small, K. Urban spatial structure. J. Econ. Lit. 36(3), 1426–1464 (1998).
    Google Scholar 
    Arroyo-Mora, J. P., Sánchez-Azofeifa, G. A., Rivard, B., Calvo, J. C. & Janzen, D. H. Dynamics in landscape structure and composition for the Chorotega region, Costa Rica from 1960 to 2000. Agr. Ecosyst. Environ. 106(1), 27–39 (2005).Article 

    Google Scholar 
    Siles, G., Charland, A., Voirin, Y. & Bénié, G. B. Integration of landscape and structure indicators into a web-based geoinformation system for assessing wetlands status. Eco. Inform. 52, 166–176 (2019).Article 

    Google Scholar 
    Soille, P. Morphological Image Analysis: Principles and Applications (Springer, 2003).MATH 

    Google Scholar 
    Soille, P. & Vogt, P. Morphological segmentation of binary patterns. Pattern Recogn. Lett. 30, 456–459 (2009).Article 
    ADS 

    Google Scholar 
    Vogt, P. et al. Mapping spatial patterns with morphological image processing. Landsc. Ecol. 22(2), 171–177 (2007).Article 

    Google Scholar 
    Bajocco, S., Ceccarelli, T., Smiraglia, D., Salvati, L. & Ricotta, C. Modeling the ecological niche of long-term land use changes: The role of biophysical factors. Ecol. Ind. 60, 231–236 (2016).Article 

    Google Scholar 
    Yin, Y., Zhou, K. & Chen, Y. Deconstructing the driving factors of land development intensity from multi-scale in differentiated functional zones. Sci. Rep. 12(1), 1–13 (2022).Article 

    Google Scholar 
    Duvernoy, I., Zambon, I., Sateriano, A. & Salvati, L. Pictures from the other side of the fringe: Urban growth and peri-urban agriculture in a post-industrial city (Toulouse, France). J. Rural. Stud. 57, 25–35 (2018).Article 

    Google Scholar 
    Smiraglia, D., Ceccarelli, T., Bajocco, S., Salvati, L. & Perini, L. Linking trajectories of land change, land degradation processes and ecosystem services. Environ. Res. 147, 590–600 (2016).Article 
    CAS 

    Google Scholar 
    Shaker, R. R. Examining sustainable landscape function across the Republic of Moldova. Habitat Int. 72, 77–91 (2018).Article 
    ADS 

    Google Scholar 
    Zheng, H. & Li, H. Spatial–temporal evolution characteristics of land use and habitat quality in Shandong Province, China. Sci. Rep. 12(1), 1–12 (2022).Article 

    Google Scholar 
    Tombolini, I., Munafò, M. & Salvati, L. Soil sealing footprint as an indicator of dispersed urban growth: A multivariate statistics approach. Urban Res. Pract. 9(1), 1–15 (2016).Article 

    Google Scholar 
    Salvati, L., Sateriano, A., Grigoriadis, E. & Carlucci, M. New wine in old bottles: The (changing) socioeconomic attributes of sprawl during building boom and stagnation. Ecol. Econ. 131, 361–372 (2017).Article 

    Google Scholar 
    Zambon, I., Benedetti, A., Ferrara, C. & Salvati, L. Soil matters? A multivariate analysis of socioeconomic constraints to urban expansion in Mediterranean Europe. Ecol. Econ. 146, 173–183 (2018).Article 

    Google Scholar 
    Paul, V. & Tonts, M. Containing urban sprawl: Trends in land use and spatial planning in the Metropolitan Region of Barcelona. J. Environ. Plann. Manag. 48(1), 7–35 (2005).Article 

    Google Scholar 
    Serra, P., Vera, A., Tulla, A. F. & Salvati, L. Beyond urban–rural dichotomy: Exploring socioeconomic and land-use processes of change in Spain (1991–2011). Appl. Geogr. 55, 71–81 (2014).Article 

    Google Scholar 
    Seifollahi-Aghmiuni, S., Kalantari, Z., Egidi, G., Gaburova, L. & Salvati, L. Urbanisation-driven land degradation and socioeconomic challenges in peri-urban areas: Insights from Southern Europe. Ambio 51(6), 1446–1458 (2022).Article 

    Google Scholar 
    Pili, S., Grigoriadis, E., Carlucci, M., Clemente, M. & Salvati, L. Towards sustainable growth? A multi-criteria assessment of (changing) urban forms. Ecol. Ind. 76, 71–80 (2017).Article 

    Google Scholar 
    Salvati, L., Sateriano, A. & Grigoriadis, E. Crisis and the city: Profiling urban growth under economic expansion and stagnation. Lett. Spat. Resour. Sci. 9(3), 329–342 (2016).Article 

    Google Scholar 
    Champion, T. & Hugo, G. New Forms of Urbanisation: Beyond the Urban-Rural Dichotomy (Ashgate, 2004).
    Google Scholar 
    Frondoni, R., Mollo, B. & Capotorti, G. A landscape analysis of land cover change in the municipality of Rome (Italy): Spatio-temporal characteristics and ecological implications of land cover transitions from 1954 to 2001. Landsc. Urban Plan. 100(1–2), 117–128 (2011).Article 

    Google Scholar 
    Perrin, C., Nougarèdes, B., Sini, L., Branduini, P. & Salvati, L. Governance changes in peri-urban farmland protection following decentralisation: A comparison between Montpellier (France) and Rome (Italy). Land Use Policy 70, 535–546 (2018).Article 

    Google Scholar 
    Salvati, L. Monitoring high-quality soil consumption driven by urban pressure in a growing city (Rome, Italy). Cities 31, 349–356 (2013).Article 

    Google Scholar 
    Salvati, L., Ciommi, M. T., Serra, P. & Chelli, F. M. Exploring the spatial structure of housing prices under economic expansion and stagnation: The role of socio-demographic factors in metropolitan Rome, Italy. Land Use Policy 81, 143–152 (2019).Article 

    Google Scholar 
    Ferrara, C., Salvati, L. & Tombolini, I. An integrated evaluation of soil resource depletion from diachronic settlement maps and soil cartography in peri-urban Rome, Italy. Geoderma 232, 394–405 (2014).Article 
    ADS 

    Google Scholar 
    Egidi, G. & Salvati, L. Beyond the suburban-urban divide: Convergence in age structures in metropolitan Rome, Italy. J. Popul. Soc. Stud. 28(2), 130–142 (2020).Article 

    Google Scholar 
    Pili, S., Serra, P. & Salvati, L. Landscape and the city: Agro-forest systems, land fragmentation and the ecological network in Rome, Italy. Urban For. Urban Green. 41, 230–237 (2019).Article 

    Google Scholar 
    European Environment Agency. Urban Sprawl in Europe – The Ignored Challenge. Copenhagen: EEA Report no. 10 (2006).Park, S., Hepcan, Ç. C., Hepcan, Ş & Cook, E. A. Influence of urban form on landscape pattern and connectivity in metropolitan regions: a comparative case study of Phoenix, AZ, USA, and Izmir, Turkey. Environ. Monit. Assess. 186(10), 6301–6318 (2014).Article 

    Google Scholar 
    Luo, F., Liu, Y., Peng, J. & Wu, J. Assessing urban landscape ecological risk through an adaptive cycle framework. Landsc. Urban Plan. 180, 125–134 (2018).Article 

    Google Scholar 
    Ortega, M., Pascual, S., Elena-Rosselló, R. & Rescia, A. J. Land-use and spatial resilience changes in the Spanish olive socio-ecological landscape. Appl. Geogr. 117, 102171 (2020).Article 

    Google Scholar 
    Parcerisas, L. et al. Land use changes, landscape ecology and their socioeconomic driving forces in the Spanish Mediterranean coast (El Maresme County, 1850–2005). Environ. Sci. Policy 23, 120–132 (2012).Article 

    Google Scholar 
    Masini, E. et al. Urban growth, land-use efficiency and local socioeconomic context: A comparative analysis of 417 metropolitan regions in Europe. Environ. Manag. 63(3), 322–337 (2019).Article 
    ADS 

    Google Scholar 
    Luck, M. & Wu, J. A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA. Landsc. Ecol. 17(4), 327–339 (2002).Article 

    Google Scholar 
    Pesaresi, M. & Bianchin, A. Recognising settlement structure using mathematical morphology and image texture. Remote Sensing Urban Anal. GISDATA 9, 46–60 (2003).
    Google Scholar 
    Schneider, A. & Woodcock, C. E. Compact, dispersed, fragmented, extensive? A comparison of urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census information. Urban Stud. 45(3), 659–692 (2008).Article 

    Google Scholar 
    Mubareka, S., Koomen, E., Estreguil, C. & Lavalle, C. Development of a composite index of urban compactness for land use modelling applications. Landsc. Urban Plan. 103(3–4), 303–317 (2011).Article 

    Google Scholar 
    Vogt, P. et al. Mapping landscape corridors. Ecol. Ind. 7(2), 481–488 (2007).Article 

    Google Scholar 
    Daya Sagar, B. S. & Murthy, K. S. R. Generation of a fractal landscape using nonlinear mathematical morphological transformations. Fractals 8(03), 267–272 (2000).Article 

    Google Scholar 
    Scott, A. J., Carter, C., Reed, M. R., Stonyer, B. & Coles, R. Disintegrated development at the rural-urban fringe: Re-connecting spatial planning theory and practice. Prog. Plan. 83, 1–52 (2013).Article 

    Google Scholar 
    Zhao, Q., Wen, Z., Chen, S., Ding, S. & Zhang, M. Quantifying land use/land cover and landscape pattern changes and impacts on ecosystem services. Int. J. Environ. Res. Public Health 17(1), 126 (2020).Article 

    Google Scholar 
    Parr, J. The regional economy, spatial structure and regional urban systems. Reg. Stud. 48(12), 1926–1938 (2014).Article 

    Google Scholar 
    Salvati, L., Zambon, I., Chelli, F. M. & Serra, P. Do spatial patterns of urbanisation and land consumption reflect different socioeconomic contexts in Europe?. Sci. Total Environ. 625, 722–730 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Coppi, R. & Bolasco, S. Multiway Data Analysis (Elsevier, 1988).MATH 

    Google Scholar 
    Kroonenberg, P. M. Applied Multiway Data Analysis (Wiley, 2008).Book 
    MATH 

    Google Scholar 
    Escofier, B. & Pages, J. Multiple factor analysis (AFMULT Package). Comput. Stat. Data Anal. 18, 121–140 (1994).Article 
    MATH 

    Google Scholar 
    De Rosa, S. & Salvati, L. Beyond a ‘side street story’? Naples from spontaneous centrality to entropic polycentricism, towards a ‘crisis city’. Cities 51, 74–83 (2016).Article 

    Google Scholar 
    Favaro, J.-M. & Pumain, D. Gibrat revisited: An urban growth model incorporating spatial interaction and innovation cycles. Geogr. Anal. 43(3), 261–286 (2011).Article 

    Google Scholar 
    Walker, B. H., Carpenter, S. R., Rockstrom, J., Crepin, A.-S. & Peterson, G. D. “Drivers, “slow” variables, “fast” variables, shocks, and resilience. Ecol. Soc. 17(3), 30 (2012).Article 

    Google Scholar 
    Zhang, Z., Su, S., Xiao, R., Jiang, D. & Wu, J. Identifying determinants of urban growth from a multi-scale perspective: A case study of the urban agglomeration around Hangzhou Bay, China. Appl. Geogr. 45, 193–202 (2013).Article 

    Google Scholar 
    Fratarcangeli, C., Fanelli, G., Franceschini, S., De Sanctis, M. & Travaglini, A. Beyond the urban-rural gradient: Self-organising map detects the nine landscape types of the city of Rome. Urban For. Urban Green. 38, 354–370 (2019).Article 

    Google Scholar 
    Crisci, M., Benassi, F., Rabiei-Dastjerdi, H., McArdle, G. Spatio-temporal variations and contextual factors of the supply of Airbnb in Rome. An initial investigation. Lett. Spat. Resour. Sci. 1–17 (2022).Lelo, K., Monni, S. & Tomassi, F. Socio-spatial inequalities and urban transformation. The case of Rome districts. Socio-Econ. Plann. Sci. 68, 100696 (2019).Article 

    Google Scholar 
    Crisci, M. The impact of the real estate crisis on a south european metropolis: From urban diffusion to Reurbanisation. Appl. Spat. Anal. Policy 15(3), 797–820 (2022).Article 

    Google Scholar 
    Wang, Y. & Zhang, X. A dynamic modeling approach to simulating socioeconomic effects on landscape changes. Ecol. Model. 140(1–2), 141–162 (2001).Article 

    Google Scholar 
    Voghera, A. The River agreement in Italy. Resilient planning for the co-evolution of communities and landscapes. Land Use Policy 91, 104377 (2020).Article 

    Google Scholar 
    Chen, A. & Partridge, M. D. When are cities engines of growth in China? Spread and backwash effects across the urban hierarchy. Reg. Stud. 47(8), 1313–1331 (2013).Article 

    Google Scholar 
    Ciommi, M., Chelli, F. M., Carlucci, M. & Salvati, L. Urban growth and demographic dynamics in southern Europe: Toward a new statistical approach to regional science. Sustainability 10(8), 2765 (2018).Article 

    Google Scholar 
    Jacobs-Crisioni, C., Rietveld, P. & Koomen, E. The impact of spatial aggregation on urban development analyses. Appl. Geogr. 47, 46–56 (2014).Article 

    Google Scholar 
    Kourtit, K., Nijkamp, P. & Reid, N. The new urban world: Challenges and policy. Appl. Geogr. 49, 1–3 (2014).Article 

    Google Scholar 
    Bruegmann, R. Sprawl: A Compact History (University of Chicago Press, 2005).Book 

    Google Scholar 
    Neuman, M. & Hull, A. The Futures of the City Region. Reg. Stud. 43(6), 777–787 (2009).Article 

    Google Scholar 
    Couch, C., Petschel-held, G. & Leontidou, L. Urban Sprawl In Europe: Landscapes, Land-use Change and Policy (Blackwell, 2007).Book 

    Google Scholar 
    Longhi, C. & Musolesi, A. European cities in the process of economic integration: towards structural convergence. Ann. Reg. Sci. 41, 333–351 (2007).Article 

    Google Scholar 
    Tian, G., Ouyang, Y., Quan, Q. & Wu, J. Simulating spatiotemporal dynamics of urbanisation with multi-agent systems—A case study of the Phoenix metropolitan region, USA. Ecol. Model. 222(5), 1129–1138 (2011).Article 

    Google Scholar 
    Tian, L., Chen, J. & Yu, S. X. Coupled dynamics of urban landscape pattern and socioeconomic drivers in Shenzhen, China. Landsc. Ecol. 29(4), 715–727 (2014).Article 

    Google Scholar 
    Fielding, A. J. Counterurbanization in Western Europe. Prog. Plan. 17, 1–52 (1982).Article 

    Google Scholar 
    Oueslati, W., Alvanides, S. & Garrod, G. Determinants of urban sprawl in European cities. Urban Stud. 52(9), 1594–1614 (2015).Article 

    Google Scholar 
    Tress, B., Tress, G., Décamps, H. & d’Hauteserre, A. M. Bridging human and natural sciences in landscape research. Landsc. Urban Plan. 57(3–4), 137–141 (2001).Article 

    Google Scholar 
    Xu, Z., Lv, Z., Li, J., Sun, H. & Sheng, Z. A Novel perspective on travel demand prediction considering natural environmental and socioeconomic factors. IEEE Intell. Transp. Syst. Mag. https://doi.org/10.1109/MITS.2022.3162901 (2022).Article 

    Google Scholar 
    Xu, Z., Lv, Z., Li, J. & Shi, A. A novel approach for predicting water demand with complex patterns based on ensemble learning. Water Resour. Manag. 36(11), 4293–4312 (2022).Article 

    Google Scholar 
    Lv, Z., Li, J., Dong, C., Li, H. & Xu, Z. Deep learning in the COVID-19 epidemic: A deep model for urban traffic revitalisation index. Data Knowl. Eng. 135, 101912 (2021).Article 

    Google Scholar  More

  • in

    Similar adaptative mechanism but divergent demographic history of four sympatric desert rodents in Eurasian inland

    Species distribution modeling, spatial climate segregation and niche widthTo explore the selective regimes of the four species on external environmental factors, we first constructed species distribution modeling (SDM). We obtained a dataset including 22 environmental factors represented by climate, relief, and vegetation variables from 620 localities for DS, 1028 localities for OS, 581 localities for MM and 332 localities for PR, covering most of the species’ distribution ranges (Supplementary Fig. 1). The distribution areas of the four species overlapped widely. The contributions of environmental factors to SDMs showed similarities among the four species. The summer NDVI made important contributions for DS (41.0), OS (44.8), MM (32.5) and PR (8.1), and sand cover contributed significantly to PR (72.7) and DS (16.0) (Fig. 1c). Then, we assessed which set of environmental variables was most closely associated with species distribution via principal component analysis. The bioclimatic space occupied by the four species revealed a large overlap (Fig. 1d), which was consistent with SDM (Supplementary Fig. 1). The distribution of OS was more closely associated with higher-precipitation areas, whereas MM seemed to prefer areas with higher temperatures. Finally, we evaluated the macrohabitat niche breadth of each species. The breadths of environmental space occupation were similar for DS (0.527), MM (0.571), and PR (0.548) and slightly higher for OS (0.622), which suggests that niche selection among the four species is partially overlapping. In total, the four species are mostly similar in the selection of external environmental factors.High-quality genomic landscapes of the four desert rodentsTo investigate the genetic mechanism for desert adaptation of the four sympatric desert rodents, we generated four high-quality de novo genomes (Supplementary Fig. 2). The DS was sequenced using a combined strategy and generated 377.67 Gb of data from Illumina reads, 261.01 Gb from PacBio long reads, 299.51 Gb from 10X Genomics reads, and 389.13 Gb from Hi-C reads (Supplementary Table 1). The final genome size was 2.81 Gb with contig N50 of 31.41 Mb and ~472X mean coverage (Table 1, Supplementary Fig. 3, and Supplementary Tables 2, 3). The contigs for DS were further assembled into pseudochromosomes with lengths on the order of full chromosomes and a scaffold N50 size of 147.24 Mb (Fig. 2a, b, Table 1, and Supplementary Fig. 4). The OS, MM and PR were sequenced using the same hybrid strategy and generated 162.58 Gb, 172.22 Gb, and 214.34 Gb Illumina reads and 183.09 Gb, 161.34 Gb, and 186.45 Gb Oxford Nanopore Technologies long reads, respectively (Supplementary Table 1). The final assembly of OS, MM and PR was 2.83 Gb, 2.43 Gb, and 2.16 Gb with contig N50 of 25.87 Mb, 24.08 Mb, and 42.68 Mb, respectively (Table 1, Supplementary Fig. 4, and Supplementary Tables 2, 3).Table 1 Genome assembly statistics of the four desert rodents.Full size tableFig. 2: High-quality assembly of Dipus sagitta genome and genomic elements of the four sequenced desert rodents.a Hi-C heat map of Dipus sagitta genome assembly. b CIRCOS plot showing the distribution of GC content, transposable elements (TE), and coding sequences (CDS) in the D. sagitta genome. c Orthologous coding sequences composition inferred for thirteen rodents’ genomes. Mcar Mus caroli, Mmus Mus musculus, Mpah Mus Pahari, Mmer Meriones meridianus, Mung Meriones unguiculatus, Cgri Cricetulus griseus, Prob Phodopus roborovskii, Sgal Spalax galili, Osib Orientallactaga sibirica, Dsag Dipus sagitta, Jjac Jaculus jaculus, Hgla Heterocephalus glaber, Cpor Cavia porcellus. d Proportion of transposable elements (TEs). The barplots show the proportions of different types of TEs in corresponding species on the phylogenetic tree.Full size imageAnalyses of the four draft genomes showed that 92.9–95.9% of mammalian BUSCOs were complete, and the GC content was 41.38–42.16% (Table 1 and Supplementary Table 3). Whole-genome annotation was performed via three complementary methods: ab initio prediction, homology-based prediction and RNA-seq based prediction. A total of 23,482, 22,859, 22,533, and 22,314 protein-coding genes were annotated for DS, OS, MM, and PR, respectively (Fig. 2c, Supplementary Fig. 5, Supplementary Table 4). Approximately 98.8–99.1% of genes were functionally annotated for the four species (Supplementary Table 4). Transposable elements (TEs) accounted for 31.38–53.02% of genome assemblies, which predominantly consisted of long-terminal repeats (LTRs), long interspersed nuclear elements (LINEs) and other unknown TEs (Fig. 2d). DS and OS displayed significant LTR expansion of 47.39% and 50.88% in four sequenced genomes, while MM showed an unexpectedly high LINE expansion of 28.99% and sharp LTR contraction to 9.38% (Supplementary Table 5).Phylogenetic relationship and evolutionary historyUsing 5,102 single-copy orthologous groups, we constructed a high-confidence phylogenetic tree using the maximum-likelihood algorithm, including time calibrations based on fossil records and previous studies (Figs. 1b, 2c)22. The phylogenetic tree strongly supported nodes uniting the subfamilies Murinae and Gerbillinae, which together represented the family Muridae (Supplementary Fig. 6). This group was sister to a clade containing cricetids. Spalacidae was recovered as the earliest divergent lineage from Muridae and Cricetidae in the superfamily Muroidea. The split of the most recent common ancestor of Dipodoidea and Muroidea dated to ~56.5 Mya (Fig. 1b, Supplementary Fig. 7). In the Miocene epoch (23 Mya–5.3 Mya), accelerated global geotectonic movement aggravated global climate drying and cooling23. Geological disruptions that modified landscapes and offered new habitats favored the early adaptive radiation of extant desert rodents. The ancestors of four sequenced species emerged separately during this period (Supplementary Note 1). Our phylogenetic tree is consistent with previous evolutionary research on rodents22 and supports the independent evolution of desert adaptations in Jerboas, Gerbils and Hamsters.Expanded and contracted gene familiesComparative genomic analysis revealed 23/32, 4/22, 39/73, and 22/83 gene families exhibiting significant expansion/contraction in the genomes of DS, OS, MM, and PR, respectively (Fig. 1b and Supplementary Fig. 8). Genes belonging to the expanded/contracted families were functionally enriched (Fisher Exact  More

  • in

    Accuracy of tropical peat and non-peat fire forecasts enhanced by simulating hydrology

    Edwards, R. B., Naylor, R. L., Higgins, M. M. & Falcon, W. P. Causes of Indonesia’s forest fires. World Dev. 127, 104717 (2020).Article 

    Google Scholar 
    Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Chang. Biol. 17, 798–818 (2011).Article 
    ADS 

    Google Scholar 
    Page, S., et al. Tropical Fire Ecology Ch. 9 (Springer, 2009).Page, S. E. & Hooijer, A. In the line of fire: the peatlands of Southeast Asia. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 371, 20150176 (2016).Huijnen, V. et al. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Sci. Rep. 6, 1–8 (2016).Article 

    Google Scholar 
    Kusumaningtyas, S. D. A. & Aldrian, E. Impact of the June 2013 Riau province Sumatera smoke haze event on regional air pollution. Environ. Res. Lett. 11, 075007 (2016).Article 
    ADS 

    Google Scholar 
    Gaveau, D. L. et al. Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: Evidence from the 2013 Sumatran fires. Sci. Rep. 4, 1–7 (2014).Article 

    Google Scholar 
    Tacconi, L. Preventing fires and haze in Southeast Asia. Nat. Clim. Chang. 6, 640–643 (2016).Article 
    ADS 

    Google Scholar 
    Posa, M. R. C., Wijedasa, L. S. & Corlett, R. T. Biodiversity and conservation of tropical peat swamp forests. Bioscience 61, 49–57 (2011).Article 

    Google Scholar 
    Harrison, M. E. & Rieley, J. O. Tropical peatland biodiversity and conservation in Southeast Asia. Mires Peat 22, 1–7 (2018).
    Google Scholar 
    Purnomo, H. et al. Fire economy and actor network of forest and land fires in Indonesia. For. Policy Econ. 78, 21–31 (2017).Article 

    Google Scholar 
    Wösten, J. H. M., Clymans, E., Page, S. E., Rieley, J. O. & Limin, S. H. Peat–water interrelationships in a tropical peatland ecosystem in Southeast Asia. CATENA 73, 212–224 (2008).Article 

    Google Scholar 
    Taufik, M., Setiawan, B. I. & Van Lanen, H. A. Increased fire hazard in human-modified wetlands in Southeast Asia. Ambio 48, 363–373 (2019).Article 

    Google Scholar 
    Taufik, M. et al. Amplification of wildfire area burnt by hydrological drought in the humid tropics. Nat. Clim. Chang. 7, 428–431 (2017).Article 
    ADS 

    Google Scholar 
    Fanin, T. & Werf, G. R. Precipitation–fire linkages in Indonesia (1997–2015). Biogeosciences 14, 3995–4008 (2017).Article 
    ADS 

    Google Scholar 
    Field, R. D. et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proc. Natl. Acad. Sci. U.S.A. 113, 9204–9209 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Hirano, T. et al. Effects of disturbances on the carbon balance of tropical peat swamp forests. Glob. Chang. Biol. 18, 3410–3422 (2012).Article 
    ADS 

    Google Scholar 
    Ohkubo, S., Hirano, T. & Kusin, K. Influence of fire and drainage on evapotranspiration in a degraded peat swamp forest in Central Kalimantan Indonesia. J. Hydrol. 603, 126906 (2021).Article 

    Google Scholar 
    Nikonovas, T., Spessa, A., Doerr, S. H., Clay, G. D. & Mezbahuddin, S. Near-complete loss of fire-resistant primary tropical forest cover in Sumatra and Kalimantan. Commun. Earth Environ. 1, 1–8 (2020).Article 

    Google Scholar 
    Lin, Y., Wijedasa, L. S. & Chisholm, R. A. Singapore’s willingness to pay for mitigation of transboundary forest-fire haze from Indonesia. Environ. Res. Lett. 12, 024017 (2017).Article 
    ADS 

    Google Scholar 
    Nikonovas, T., Spessa, A., Doerr, S. H., Clay, G. & Mezbahuddin, S. ProbFire: A probabilistic fire early warning system for Indonesia. Nat. Hazards Earth Syst. Sci. 22, 303–322 (2022).Article 
    ADS 

    Google Scholar 
    Taufik, M., Veldhuizen, A. A., Wösten, J. H. M. & van Lanen, H. A. J. Exploration of the importance of physical properties of Indonesian peatlands to assess critical groundwater table depths, associated drought and fire hazard. Geoderma 347, 160–169 (2019).Article 
    ADS 

    Google Scholar 
    Sloan, S., Tacconi, L. & Cattau, M. E. Fire prevention in managed landscapes: Recent success and challenges in Indonesia. Mitig. Adapt. Strateg. Glob. Chang. 26, 1–30 (2021).Article 

    Google Scholar 
    Lestari, I., Murdiyarso, D. & Taufik, M. Rewetting tropical peatlands reduced net greenhouse gas emissions in Riau Province Indonesia. Forests 13, 505 (2022).Article 

    Google Scholar 
    Spessa, A. C. et al. Seasonal forecasting of fire over Kalimantan Indonesia. Nat. Hazards Earth Syst. Sci. 15, 429–442 (2015).Article 
    ADS 

    Google Scholar 
    Mezbahuddin, M., Grant, R. F. & Hirano, T. How hydrology determines seasonal and interannual variations in water table depth, surface energy exchange, and water stress in a tropical peatland: Modeling versus measurements. J. Geophys. Res. Biogeosci. 120, 2132–2157 (2015).Article 

    Google Scholar 
    Mezbahuddin, M., Grant, R. F. & Hirano, T. Modelling effects of seasonal variation in water table depth on net ecosystem CO2 exchange of a tropical peatland. Biogeosciences 11, 577–599 (2014).Article 
    ADS 

    Google Scholar 
    Cobb, A. R. & Harvey, C. F. Scalar simulation and parameterization of water table dynamics in tropical peatlands. Water Resour. Res. 55, 9351–9377 (2019).Article 
    ADS 

    Google Scholar 
    Dadap, N. C., Cobb, A. R., Hoyt, A. M., Harvey, C. F. & Konings, A. G. Satellite soil moisture observations predict burned area in Southeast Asian peatlands. Environ. Res. Lett. 14, 094014 (2019).Article 
    ADS 

    Google Scholar 
    Evans, C. D. et al. Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra Indonesia. Geoderma 338, 410–421 (2019).Article 
    ADS 

    Google Scholar 
    Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9, 1053–1071 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Couwenberg, J. & Hooijer, A. Towards robust subsidence-based soil carbon emission factors for peat soils in south-east Asia, with special reference to oil palm plantations. Mires Peat 12, 1–13 (2013).
    Google Scholar 
    Khasanah, N. M. & van Noordwijk, M. Subsidence and carbon dioxide emissions in a smallholder peatland mosaic in Sumatra Indonesia. Mitig. Adapt. Strateg. Glob. Chang. 24, 147 (2019).Article 

    Google Scholar 
    Marwanto, S., Watanabe, T., Iskandar, W., Sabiham, S. & Funakawa, S. Effects of seasonal rainfall and water table movement on the soil solution composition of tropical peatland. Soil Sci. Plant Nutr. 64, 386–395 (2018).Article 
    CAS 

    Google Scholar 
    Lubis, M. E. S. et al. Changes in water table depth in an oil palm plantation and its surrounding regions in Sumatra Indonesia. J. Agron. 13, 140–146 (2014).Article 

    Google Scholar 
    Page, S. E., Rieley, J. O. & Wüst, R. Developments in Earth Surface Processes (Volume 9) Ch. 3 (Elsevier, 2006).Haffiez, N. et al. Exploration of machine learning algorithms for predicting the changes in abundance of antibiotic resistance genes in anaerobic digestion. Sci. Total Environ. 839, 156211 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Grant, R. F., Desai, A. R. & Sulman, B. N. Modelling contrasting responses of wetland productivity to changes in water table depth. Biogeosciences 9, 4215–4231 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Mezbahuddin, M., Grant, R. F. & Flanagan, L. B. Modeling hydrological controls on variations in peat water content, water table depth, and surface energy exchange of a boreal western Canadian fen peatland. J. Geophys. Res. Biogeosci. 121, 2216–2242 (2016).Article 

    Google Scholar 
    Dimitrov, D. D., Grant, R. F., Lafleur, P. M. & Humphreys, E. R. Modeling the effects of hydrology on gross primary productivity and net ecosystem productivity at Mer Bleue bog. J. Geophys. Res. Biogeosci. 116, G04010 (2011).Article 
    ADS 

    Google Scholar 
    Dimitrov, D. D., Bhatti, J. S. & Grant, R. F. The transition zones (ecotone) between boreal forests and peatlands: Modelling water table along a transition zone between upland black spruce forest and poor forested fen in central Saskatchewan. Ecol. Modell. 274, 57–70 (2014).Article 

    Google Scholar 
    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).Article 

    Google Scholar 
    Hodnett, M. G. & Tomasella, J. Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: A new water-retention pedo-transfer functions developed for tropical soils. Geoderma 108, 155–180 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Funk, C. et al. The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Sci. Data 2, 1–21 (2015).Article 

    Google Scholar 
    Osaki, M., Hirose, K., Segah, H. & Helmy, F. Tropical Peatland Ecosystems Ch. 9 (Springer, 2016).Razavi, S. Deep learning, explained: Fundamentals, explainability, and bridgeability to process-based modelling. Environ. Modell. Softw. 144, 105159 (2021).Article 

    Google Scholar  More