More stories

  • in

    Organic amendment treatments for antimicrobial resistance and mobile element genes risk reduction in soil-crop systems

    D’Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461. https://doi.org/10.1038/nature10388 (2011).Article 
    ADS 

    Google Scholar 
    Cytryn, E. The soil resistome: The anthropogenic, the native, and the unknown. Soil Biol. Biochem. 63, 18–23. https://doi.org/10.1016/j.soilbio.2013.03.017 (2013).Article 

    Google Scholar 
    Holmes, A. H. et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387, 176–187. https://doi.org/10.1016/S0140-6736(15)00473-0 (2016).Article 

    Google Scholar 
    Regulation (EC) No 1831/2003 of the European parliament and of the council of 22 September 2003 on additives for use in animal nutrition.European Commission. Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions: A farm to fork strategy for a fair, healthy and environmentally-friendly food system COM/2020/381 Final, (2020).Kumar, K. C., Gupta, S. C., Chander, Y. & Singh, A. K. Antibiotic use in agriculture and its impact on the terrestrial environment. Adv. Agron. 87, 1–54. https://doi.org/10.1016/S0065-2113(05)87001-4 (2005).Article 

    Google Scholar 
    Chee-Sanford, J. C. et al. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J. Environ. Qual. 38, 1086–1108. https://doi.org/10.2134/jeq2008.0128 (2009).Article 

    Google Scholar 
    Heuer, H., Schmitt, H. & Smalla, K. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr. Opin. Microbiol. 14, 236–243. https://doi.org/10.1016/j.mib.2011.04.009 (2011).Article 

    Google Scholar 
    Epelde, L. et al. Characterization of composted organic amendments for agricultural use. Front. Sustain. Food Syst. 2, 44. https://doi.org/10.3389/fsufs.2018.00044 (2018).Article 

    Google Scholar 
    Youngquist, C. P., Mitchell, S. M. & Cogger, C. G. Fate of antibiotics and antibiotic resistance during digestion and composting: A review. J. Environ. Qual. 45, 537–545. https://doi.org/10.2134/jeq2015.05.0256 (2016).Article 

    Google Scholar 
    Ma, X., Xue, X., González-Mejía, A., Garland, J. & Cashdollar, J. Sustainable water systems for the city of tomorrow: A conceptual framework. Sustainability 7, 12071–12105. https://doi.org/10.3390/su70912071 (2015).Article 

    Google Scholar 
    Wang, Y. et al. Degradation of antibiotic resistance genes and mobile gene elements in dairy manure anerobic digestion. PLoS ONE 16, e0254836. https://doi.org/10.1371/journal.pone.0254836 (2021).Article 

    Google Scholar 
    Thanomsub, B. et al. Effects of ozone treatment on cell growth and ultrastructural changes in bacteria. J. Gen. Appl. Microbiol. 48, 193–199. https://doi.org/10.2323/jgam.48.193 (2002).Article 

    Google Scholar 
    Sousa, J. M. et al. Ozonation and UV254nm radiation for the removal of microorganisms and antibiotic resistance genes from urban wastewater. J. Hazard. Mater. 323, 434–441. https://doi.org/10.1016/j.jhazmat.2016.03.096 (2017).Article 

    Google Scholar 
    Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W. & Chuasavathi, T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348, 439–451. https://doi.org/10.1007/s11104-011-0948-y (2011).Article 

    Google Scholar 
    Jeffery, S. et al. The way forward in biochar research: targeting trade-offs between the potential wins. GCB Bioenergy 7, 1–13. https://doi.org/10.1111/gcbb.12132 (2015).Article 

    Google Scholar 
    Krasucka, P. et al. Engineered biochar: A sustainable solution for the removal of antibiotics from water. Chem. Eng. J. 405, 126926. https://doi.org/10.1016/j.cej.2020.126926 (2021).Article 

    Google Scholar 
    Ken, D. S. & Sinha, A. Recent developments in surface modification of Nano zero-valent iron (nZVI): remediation, toxicity and environmental impacts. Environ. Nanotechnol. Monit. Manag. 14, 100344. https://doi.org/10.1016/j.enmm.2020.100344 (2020).Article 

    Google Scholar 
    Zhao, X. et al. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res. 100, 245–266. https://doi.org/10.1016/j.watres.2016.05.019 (2016).Article 

    Google Scholar 
    Diao, M. & Yao, M. Use of zero-valent iron nanoparticles in inactivating microbes. Water Res. 43, 5243–5251. https://doi.org/10.1016/j.watres.2009.08.051 (2009).Article 

    Google Scholar 
    Shi, C. J., Wei, J., Jin, Y., Kniel, K. E. & Chiu, P. C. Removal of viruses and bacteriophages from drinking water using zero-valent iron. Sep. Purif. Technol. 84, 72–78. https://doi.org/10.1016/j.seppur.2011.06.036 (2012).Article 

    Google Scholar 
    Anza, M., Salazar, O., Epelde, L., Alkorta, I. & Garbisu, C. The application of nanoscale zero-valent iron promotes soil remediation while negatively affecting soil microbial biomass and activity. Front. Environ. Sci. 7, 19. https://doi.org/10.3389/fenvs.2019.00019 (2019).Article 

    Google Scholar 
    FAOSTAT. Mushrooms and truffles, production quantity (tons). https://www.tilasto.com/en/topic/geography-and-agriculture/crop/mushrooms-and-truffles/mushrooms-and-truffles-production-quantity/spain, (2020).Polat, E., Uzun, H., Topçuo, B., Önal, K. & Onus, A. N. Effects of spent mushroom compost on quality and productivity of cucumber (Cucumis sativus L.) grown in greenhouses. Afr. J. Biotechnol. 8, 176–180 (2009).
    Google Scholar 
    Fazaeli, H. & Masoodi, A. R. T. Spent wheat straw compost of Agaricus bisporus mushroom as ruminant feed. Asian-Australas. J. Anim. Sci. 19, 845–851. https://doi.org/10.5713/ajas.2006.845 (2006).Article 

    Google Scholar 
    Phan, C. W. & Sabaratnam, V. Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes. Appl. Microbiol. Biotechnol. 96, 863–873. https://doi.org/10.1007/s00253-012-4446-9 (2012).Article 

    Google Scholar 
    Lau, K. L., Tsang, Y. Y. & Chiu, S. W. Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere 52, 1539–1546. https://doi.org/10.1016/S0045-6535(03)00493-4 (2003).Article 
    ADS 

    Google Scholar 
    Mayans, B. et al. An assessment of Pleurotus ostreatus to remove sulfonamides, and its role as a biofilter based on its own spent mushroom substrate. Environ. Sci. Pollut. Res. Int. 28, 7032–7042. https://doi.org/10.1007/s11356-020-11078-3 (2021).Article 

    Google Scholar 
    Congilosi, J. L. & Aga, D. S. Review on the fate of antimicrobials, antimicrobial resistance genes, and other micropollutants in manure during enhanced anaerobic digestion and composting. J. Hazard. Mater. 405, 123634. https://doi.org/10.1016/j.jhazmat.2020.123634 (2021).Article 

    Google Scholar 
    Oliver, J. P. et al. Invited review: fate of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in US dairy manure management systems. J. Dairy Sci. 103, 1051–1071. https://doi.org/10.3168/jds.2019-16778 (2020).Article 

    Google Scholar 
    Beneragama, N. et al. Survival of multidrug-resistant bacteria in thermophilic and mesophilic anaerobic co-digestion of dairy manure and waste milk. Anim. Sci. J. 84, 426–433. https://doi.org/10.1111/asj.12017 (2013).Article 

    Google Scholar 
    Sun, W., Qian, X., Gu, J., Wang, X. J. & Duan, M. L. Mechanism and effect of temperature on variations in antibiotic resistance genes during anaerobic digestion of dairy manure. Sci. Rep. 6, 30237. https://doi.org/10.1038/srep30237 (2016).Article 
    ADS 

    Google Scholar 
    Sun, W., Gu, J., Wang, X., Qian, X. & Peng, H. Solid-state anaerobic digestion facilitates the removal of antibiotic resistance genes and mobile genetic elements from cattle manure. Bioresour. Technol. 274, 287–295. https://doi.org/10.1016/j.biortech.2018.09.013 (2019).Article 

    Google Scholar 
    Zou, Y., Xiao, Y., Wang, H., Fang, T. & Dong, P. New insight into fates of sulfonamide and tetracycline resistance genes and resistant bacteria during anaerobic digestion of manure at thermophilic and mesophilic temperatures. J. Hazard. Mater. 384, 121433. https://doi.org/10.1016/j.jhazmat.2019.121433 (2020).Article 

    Google Scholar 
    Agga, G. E., Kasumba, J., Loughrin, J. H. & Conte, E. D. Anaerobic digestion of tetracycline spiked livestock manure and poultry litter increased the abundances of antibiotic and heavy metal resistance genes. Front Microbiol. 11, 614424. https://doi.org/10.3389/fmicb.2020.614424 (2020).Article 

    Google Scholar 
    Jauregi, L., Epelde, L., González, A., Lavín, J. L. & Garbisu, C. Reduction of the resistome risk from cow slurry and manure microbiomes to soil and vegetable microbiomes. Environ. Microbiol. 23, 7643–7660. https://doi.org/10.1111/1462-2920.15842 (2021).Article 

    Google Scholar 
    Zhang, Z. et al. Assessment of global health risk of antibiotic resistance genes. Nat Commun 13, 1553. https://doi.org/10.1038/s41467-022-29283-8 (2022).Article 
    ADS 

    Google Scholar 
    He, Y. et al. Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. npj Clean Water 3, 4. https://doi.org/10.1038/s41545-020-0051-0 (2020).Article 

    Google Scholar 
    Cui, E., Wu, Y., Zuo, Y. & Chen, H. Effect of different biochars on antibiotic resistance genes and bacterial community during chicken manure composting. Bioresour. Technol. 203, 11–17. https://doi.org/10.1016/j.biortech.2015.12.030 (2016).Article 

    Google Scholar 
    Fu, Y., Zhang, A., Guo, T., Zhu, Y. & Shao, Y. Biochar and hyperthermophiles as additives accelerate the removal of antibiotic resistance genes and mobile genetic elements during composting. Materials (Basel) 14, 5428. https://doi.org/10.3390/ma14185428 (2021).Article 
    ADS 

    Google Scholar 
    Forsberg, K. J. et al. Bacterial phylogeny structures soil resistomes across habitats. Nature 509, 612–616. https://doi.org/10.1038/nature13377 (2014).Article 
    ADS 

    Google Scholar 
    Li, H. et al. Effects of bamboo charcoal on antibiotic resistance genes during chicken manure composting. Ecotoxicol. Environ. Saf. 140, 1–6. https://doi.org/10.1016/j.ecoenv.2017.01.007 (2017).Article 
    ADS 

    Google Scholar 
    Bondarenko, O., Ivask, A., Käkinen, A. & Kahru, A. Sub-toxic effects of CuO nanoparticles on bacteria: Kinetics, role of Cu ions and possible mechanisms of action. Environ. Pollut. 169, 81–89. https://doi.org/10.1016/j.envpol.2012.05.009 (2012).Article 

    Google Scholar 
    Wang, X. et al. Bacterial exposure to ZnO nanoparticles facilitates horizontal transfer of antibiotic resistance genes. NanoImpact 10, 61–67. https://doi.org/10.1016/j.impact.2017.11.006 (2018).Article 
    ADS 

    Google Scholar 
    Qiu, X., Zhou, G. & Wang, H. Nanoscale zero-valent iron inhibits the horizontal gene transfer of antibiotic resistance genes in chicken manure compost. J. Hazard. Mater. 422, 126883. https://doi.org/10.1016/j.jhazmat.2021.126883 (2022).Article 

    Google Scholar 
    Zeng, T., Wilson, C. J. & Mitch, W. A. Effect of chemical oxidation on the sorption tendency of dissolved organic matter to a model hydrophobic surface. Environ. Sci. Technol. 48, 5118–5126. https://doi.org/10.1021/es405257b (2014).Article 
    ADS 

    Google Scholar 
    Pak, G. et al. Comparison of antibiotic resistance removal efficiencies using ozone disinfection under different pH and suspended solids and humic substance concentrations. Environ. Sci. Technol. 50, 7590–7600. https://doi.org/10.1021/acs.est.6b01340 (2016).Article 
    ADS 

    Google Scholar 
    Zhuang, Y. et al. Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection. Environ. Sci. Pollut. Res. Int. 22, 7037–7044. https://doi.org/10.1007/s11356-014-3919-z (2015).Article 

    Google Scholar 
    Park, S., Rana, A., Sung, W. & Munir, M. Competitiveness of quantitative polymerase chain reaction (qPCR) and droplet digital polymerase chain reaction (ddPCR) technologies, with a particular focus on detection of antibiotic resistance genes (ARGs). Appl. Microbiol. 1, 426–444. https://doi.org/10.3390/applmicrobiol1030028 (2021).Article 

    Google Scholar 
    European Medicines Agency. European surveillance of veterinary antimicrobial consumption, (2020). Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2018 (EMA/24309/2020).Heuer, H. et al. The complete sequences of plasmids pB2 and pB3 provide evidence for a recent ancestor of the IncP-1β group without any accessory genes. Microbiology (Reading) 150, 3591–3599. https://doi.org/10.1099/mic.0.27304-0 (2004).Article 

    Google Scholar 
    World Health Organization. Critically Important Antimicrobials for Human Medicine, 6th Revision (WHO, Geneva, Switzerland, 2019).Zhu, Y. G. et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl Acad. Sci. U. S. A. 110, 3435–3440. https://doi.org/10.1073/pnas.1222743110 (2013).Article 
    ADS 

    Google Scholar 
    Guo, T. et al. Increased occurrence of heavy metals, antibiotics and resistance genes in surface soil after long-term application of manure. Sci. Total Environ. 635, 995–1003. https://doi.org/10.1016/j.scitotenv.2018.04.194 (2018).Article 
    ADS 

    Google Scholar 
    Nõlvak, H. et al. Inorganic and organic fertilizers impact the abundance and proportion of antibiotic resistance and integron-integrase genes in agricultural grassland soil. Sci. Total Environ. 562, 678–689. https://doi.org/10.1016/j.scitotenv.2016.04.035 (2016).Article 
    ADS 

    Google Scholar 
    Chen, Q. L. et al. Effect of biochar amendment on the alleviation of antibiotic resistance in soil and phyllosphere of Brassica chinensis L.. Soil Biol. Biochem. 119, 74–82. https://doi.org/10.1016/j.soilbio.2018.01.015 (2018).Article 

    Google Scholar 
    Zhu, B., Chen, Q., Chen, S. & Zhu, Y. G. Does organically produced lettuce harbor higher abundance of antibiotic resistance genes than conventionally produced?. Environ. Int. 98, 152–159. https://doi.org/10.1016/j.envint.2016.11.001 (2017) .Article 

    Google Scholar 
    Métodos, M. A. P. A. Oficiales de análisis de suelos y Aguas Para riego. Minist. Agric. Pesca Aliment. Métodos Oficiales Anal. III (1994).Muziasari, W. I. et al. Aquaculture changes the profile of antibiotic resistance and mobile genetic element associated genes in Baltic Sea sediments. FEMS Microbiol. Ecol. 92, fiw052. https://doi.org/10.1093/femsec/fiw052 (2016).Article 

    Google Scholar 
    Muurinen, J. et al. Influence of manure application on the environmental resistome under Finnish agricultural practice with restricted antibiotic use. Environ. Sci. Technol. 51, 5989–5999. https://doi.org/10.1021/acs.est.7b00551 (2017).Article 
    ADS 

    Google Scholar 
    Muziasari, W. I. et al. The resistome of farmed fish feces contributes to the enrichment of antibiotic resistance genes in sediments below Baltic Sea fish farms. Front. Microbiol. 7, 2137. https://doi.org/10.3389/fmicb.2016.02137 (2017).Article 

    Google Scholar 
    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408. https://doi.org/10.1006/meth.2001.1262 (2001).Article 

    Google Scholar 
    Ovreås, L., Forney, L., Daae, F. L. & Torsvik, V. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 63, 3367–3373. https://doi.org/10.1128/aem.63.9.3367-3373.1997 (1997) .Article 
    ADS 

    Google Scholar 
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624. https://doi.org/10.1038/ismej.2012.8 (2012).Article 

    Google Scholar 
    Lanzén, A. et al. Multi-targeted metagenetic analysis of the influence of climate and environmental parameters on soil microbial communities along an elevational gradient. Sci. Rep. 6, 28257. https://doi.org/10.1038/srep28257 (2016).Article 
    ADS 

    Google Scholar 
    Pinna, N. K., Dutta, A., Monzoorul, H. M. & Mande, S. S. Can targeting non-contiguous V-regions with paired-end sequencing improve 16S rRNA-based taxonomic resolution of microbiomes?: An in silico evaluation. Front. Genet. 10, 653. https://doi.org/10.3389/fgene.2019.00653 (2019).Article 

    Google Scholar 
    Andrews, S. FastQC: A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12. https://doi.org/10.14806/ej.17.1.200 (2011).Article 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).Article 

    Google Scholar 
    Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191-e216. https://doi.org/10.1128/mSystems.00191-16 (2017).Article 

    Google Scholar 
    Yang, Y., Li, B., Zou, S., Fang, H. H. P. & Zhang, T. Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. Water Res. 62, 97–106. https://doi.org/10.1016/j.watres.2014.05.019 (2014).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Book 
    MATH 

    Google Scholar 
    de Mendiburu, F. Agricolae: Statistical procedures for agricultural research. R package version 1.3-3. https://CRAN.R-project.org/package=agricolae (2020).Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528. https://doi.org/10.1093/bioinformatics/bty633 (2019).Article 

    Google Scholar 
    Oksanen, J. et al. Vegan: Community ecology package. R Package Version 2.3-1. (2015). More

  • in

    Modeling marine cargo traffic to identify countries in Africa with greatest risk of invasion by Anopheles stephensi

    With human movement and globalization, invasive container breeding vectors responsible for dengue, Zika, chikungunya and now malaria, with An. stephensi, are being introduced and establishing populations in new locations. They are bringing with them the threat of increasing or novel cases of vector-borne diseases to new locations where health systems may not be prepared.Anopheles stephensi was first detected on the African continent in Djibouti in 2012 and has since been confirmed in Ethiopia, Somalia, and Sudan. Unlike most malaria vectors, An. stephensi is often found in artificial containers and in urban settings. This unique ecology combined with its initial detection in seaports in Djibouti, Somalia, and Sudan has led scientists to believe that the movement of this vector is likely facilitated through maritime trade.By modeling inter- and intra-continental maritime connectivity in Africa we identified countries with higher likelihood of An. stephensi introduction if facilitated through maritime movement and ranked them based on this data. Anopheles stephensi was not detected in Africa (Djibouti) until 2012. To determine whether historical maritime data would have identified the first sites of introduction, 2011 maritime data were analyzed to determine whether the sites with confirmed An. stephensi would rank highly in connectivity to An. stephensi endemic countries. Using 2011 data on maritime connectivity alone, Djibouti and Sudan were identified as the top two countries at risk of An. stephensi introduction if it is facilitated by marine cargo shipments. In 2021, these are two of the three African coastal nations where An. stephensi is confirmed to be established.When 2011 maritime data were combined with the HSI for An. stephensi establishment, the top five countries remain the same as with maritime data alone: Sudan, Djibouti, Egypt, Kenya and Tanzania, in that order. The maritime data show likelihood of introduction and HSI shows likelihood of establishment. When combined, the analyses show a likelihood of being able to establish and survive once introduced. Interestingly, the results of the combined analyses align with the detection data being reported in the Horn of Africa. The 2011 maritime data reinforces the validity of the model as it points to Sudan and Djibouti, where An. stephensi established in the following years. Similarly, the HSI data for Ethiopia has aligned closely with detections of the species to date15. Interestingly, around this time of initial detection in Djibouti, Djibouti City port underwent development and organizational change. The government of Djibouti took back administrative control of the port as early as 201230.Following this method, maritime trade data from 2020 could point to countries at risk of An. stephensi introduction from endemic countries as well as from the coastal African countries with newly introduced populations. Here we provide a prioritization list and heat map of countries for the early detection, rapid response, and targeted surveillance of An. stephensi in Africa based on this data and the HSI (Fig. 4). Further invasion of An. stephensi on the African continent has the potential to reverse progress made on malaria control in the last century. Anopheles stephensi thrives in urban settings and in containers, in contrast to the rural settings and natural habitats where most Anopheles spp. are found20. The situation in Djibouti may be a harbinger for what is to come if immediate surveillance and control strategies are not initiated18.Figure 4Prioritization Heat Map of African Countries. These 2020 heat maps rank African countries using (A) the Likelihood of An. stephensi through Maritime Trade Index (LASIMTI) data alone and (B) LASIMTI and HSI combined, based on maritime connectivity to countries where An. stephensi is endemic. Higher ranking countries which are at greater risk of An. stephensi introduction are darker in red color than those that are lower ranking (lighter red). Countries which are shaded grey are inland countries that do not have a coast and therefore no data on maritime movement into ports. Countries which are grey and checkered have established or endemic An. stephensi populations and are considered source locations for potential An. stephensi introduction in this analysis. Map was generated using MapChart (mapchart.net).Full size imageMaritime data from 2020, with Djibouti and Sudan considered as potential source populations for intracontinental introduction of An. stephensi, indicate the top five countries at risk for maritime introduction are Egypt, Kenya, Mauritius, Tanzania, and Morocco, suggesting that targeted larval surveillance in these countries near seaports may provide a better understanding of whether there are maritime introductions. When the data from 2020 data is combined with HSI for An. stephensi, the top five countries are instead Egypt, Kenya, Tanzania, Morocco, and Libya. Interestingly, historical reports of An. stephensi in Egypt exist; however, following further identification these specimens were determined to be An. ainshamsi31. With several suitable habitats both along the coast and inland of Egypt, revisiting surveillance efforts there would provide insight into how countries that are highly connected to An. stephensi locations through maritime traffic may experience introductions.Further field validation of this prioritization list is necessary, because it is possible that An. stephensi is being introduced through other transportation routes, such as dry ports or airports32, or may even be dispersed through wind facilitation33. However, countries highlighted here with high levels of connectivity to known An. stephensi locations should be considered seriously at risk and surveillance urgently established to determine whether An. stephensi introduction has already occurred or to enable early detection. Primary vector surveillance for both Ae. aegypti and An. stephensi are through larval surveys, and the two mosquitoes are commonly detected in the same breeding habitats. It could therefore be beneficial to coordinate with existing Aedes surveillance efforts to be able to simultaneously gather data on medically relevant Aedes vectors while seeking to determine whether An. stephensi is present. Similarly, in locations with known An. stephensi and not well established Aedes programs, coordinating surveillance efforts provides an opportunity to conduct malaria and arboviral surveillance by container breeding mosquitoes simultaneously.Efforts to map pinch points or key points of introduction based on the movement of goods and populations could provide high specificity for targeted surveillance and control efforts. For example, participatory mapping or population mobility data collection methods, such as those used to determine routes of human movement for malaria elimination, may simultaneously provide information on where targeted An. stephensi surveillance efforts should focus. Several methods have been proposed in the literature for modeling human movement and one in particular, PopCAB, which is often used for communicable diseases, combined quantitative and qualitative data with geospatial information to identify points of control34.Data on invasive mosquito species has shown that introduction events are rarely a one-time occurrence. Population genetics data on Aedes species indicate that reintroductions are very common and can facilitate the movement of genes between geographically distinct populations, raising the potential for introduction of insecticide resistance, thermotolerance, and other phenotypic and even behavioral traits which may be facilitated by gene flow and introgression35. Djibouti, Sudan, Somalia, and Ethiopia, countries with established invasive populations of An. stephensi, should continue to monitor invasive populations and points of introduction to control and limit further expansion and adaptation of An. stephensi. Work by Carter et al. has shown that An. stephensi populations in Ethiopia in the north and central regions can be differentiated genetically, potentially indicating that these populations are a result of more than one introduction into Ethiopia from South Asia, further emphasizing the potential role of anthropogenic movement on the introduction of the species17.One major limitation of this work is that Somalia is the third coastal nation where An. stephensi has been confirmed; however, marine traffic data were not available for Somalia so it could not be included in this analysis. The potential impact of Somalia on maritime trade is unknown and it should not be excluded as a potential source population. Additionally, this model does not account for the possibility of other countries with An. stephensi populations that have not been detected yet. As new data on An. stephensi expansion becomes available, more countries will be at higher risk. Other countries with An. stephensi populations, such as Iran, Myanmar, and Iraq, constitute lower relative percentages of trade with these countries so were not included in the analysis. However, genetic similarities were noted from An. stephensi in Pakistan, so this nation was included10.Due to the nature of maritime traffic, inland countries were also not included in this prioritization ranking. Countries which are inland but share borders with high-risk countries according to the LASTIMI index should also be considered with high priority. For example, the ranking from 2011 highlights Sudan and Djibouti, both which border Ethiopia, and efforts to examine key land transportation routes between bordering nations where humans and goods travel may provide additional insight into the expansion routes of this invasive species.In Ethiopia, An. stephensi was detected in 2016. It has largely been detected along major transportation routes although further data is needed to understand the association between movement and An. stephensi introductions and expansion since most sampling sites have also been located along transport routes. Importantly, Ethiopia relies heavily on the ports of Djibouti and Somalia for maritime imports and exports. Surveillance efforts have revealed that the species is also frequently associated with livestock shelters and An. stephensi are frequently found with livestock bloodmeals15. Interestingly, the original detection of An. stephensi was found in a livestock quarantine station in the port of Djibouti. Additionally, livestock constitutes one of the largest exports of maritime trade from this region. For countries with high maritime connectivity to An. stephensi locations, surveillance efforts near seaports, in particular those with livestock trade, may be targeted locations for countries without confirmed An. stephensi to begin larval surveillance.As Ae. aegypti and Culex coronator were detected in tires or Ae. albopictus through tire and bamboo (Dracaena sanderiana) trade, An. stephensi could be carried through maritime trade of a specific good36,37,38. Future examination of the movement of specific goods would be beneficial in interpreting potential An. stephensi invasion pathways. Additionally, the various types of vessels used to transport certain cargo such as container, bulk, and livestock ships could affect An. stephensi survivability during transit. Sugar and grain are often shipped in bulk or break bulk vessels which store cargo in large unpackaged containers. Container ships transport products stored in containers sized for land transportation via trucks and carry goods such as tires. Livestock vessels are often multilevel, open-air ships which require more hands working on deck and water management39.Using LSBCI index data from 2020, we developed a network to highlight how coastal African nations are connected through maritime trade (Fig. 4). The role of this network analysis is two-fold, (1) it demonstrates an understanding of intracontinental maritime connectivity; and (2) it highlights the top three countries connected via maritime trade through an interactive html model (Supplemental File). For example, if An. stephensi is detected and established in a specific coastal African nation such as Djibouti, selecting the Djibouti node reveals the top three locations at risk of introduction from that source country (Djibouti links to Sudan, Egypt and Kenya). This can be used as an actionable prioritization list for surveillance if An. stephensi is detected in any given country and highlights major maritime hubs in Africa which could be targeted for surveillance and control. For example, since the development of this model, An. stephensi has been detected in Nigeria. Through the use of this interactive model, Ghana, Cote d’Ivoire, and Benin have been identified as countries most connected to Nigeria through maritime trade and therefore surveillance prioritization activities could consider these locations.The network analysis reveals the significance of South African trade to the rest of the continent. Due to the distance, South Africa did not appear to be high in risk of An. stephensi introduction. However, this analysis does reveal that if An. stephensi were to enter nearby countries, it could very easily be introduced because of its high centrality. Western African countries such as Ghana, Togo, and Morocco are also heavily connected to other parts of Africa. Interestingly, Mauritius appears to be highly significant to this network of African maritime trade. Based on 2020 maritime data, Mauritius is ranked as the country with the third greatest likelihood of introduction of An. stephensi and has the second highest centrality rank value of 0.159. Considering these factors, Mauritius could serve as an important port of call connecting larger ports throughout Africa or other continents. With long standing regular larval surveillance efforts across the island for Aedes spp., this island nation is well suited to look for Anopheles larvae as part of Aedes surveillance efforts for early detection and rapid response to prevent the establishment of An. stephensi. If An. stephensi were to become established in countries with high centrality ranks, further expansion on the continent could be accelerated drastically. These ports could serve as important watchpoints and indicators of An. stephensi’s incursion into Africa. Anopheles stephensi is often found in shared habitats with Aedes spp. and a great opportunity exists to leverage Aedes arboviral surveillance efforts to initiate the search for An. stephensi, especially in countries that have high potential of introduction through maritime trade. More

  • in

    Smart forest management boosts both carbon storage and bioenergy

    Timothy Searchinger and his colleagues raise concerns that the European Union’s plan to produce energy from biomass could compromise forest carbon stocks and biodiversity (Nature 612, 27–30; 2022). However, it is possible for improved forest management to reconcile increased bioenergy production by maintaining and restoring forest ecosystems.
    Competing Interests
    The authors declare no competing interests. More

  • in

    Eco-evolutionary modelling of microbial syntrophy indicates the robustness of cross-feeding over cross-facilitation

    Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589–600 (2016).Article 
    CAS 

    Google Scholar 
    Palmer, J. D. & Foster, K. R. Bacterial species rarely work together. Science 376, 581–582 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Pande, S. & Kost, C. Bacterial unculturability and the formation of intercellular metabolic networks. Trends Microbiol. 25, 349–361 (2017).Article 
    CAS 

    Google Scholar 
    Nadell, C. D., Xavier, J. B. & Foster, K. R. The sociobiology of biofilms. FEMS Microbiol. Rev. 33, 206–224 (2009).Article 
    CAS 

    Google Scholar 
    Fritts, R. K., McCully, A. L. & McKinlay, J. B. Extracellular metabolism sets the table for microbial cross-feeding. Microbiol. Mol. Biol. Rev. 85, 135 (2021).Article 

    Google Scholar 
    D’Souza, G. et al. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat. Prod. Rep. 35, 455–488 (2018).Article 

    Google Scholar 
    Libby, E., Hébert-Dufresne, L., Hosseini, S.-R. & Wagner, A. Syntrophy emerges spontaneously in complex metabolic systems. PLoS Comput. Biol. 15, e1007169 (2019).Article 

    Google Scholar 
    Staley, J. T. & Konopka, A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39, 321–346 (1985).Article 
    CAS 

    Google Scholar 
    Zachar, I. Closing the energetics gap. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01839-3 (2022).Article 

    Google Scholar 
    Zachar, I. & Boza, G. Endosymbiosis before eukaryotes: mitochondrial establishment in protoeukaryotes. Cell. Mol. Life Sci. 77, 3503–3523. https://doi.org/10.1007/s00018-020-03462-6 (2020).Article 
    CAS 

    Google Scholar 
    Zachar, I. & Szathmáry, E. Breath-giving cooperation: critical review of origin of mitochondria hypotheses. Biol. Direct 12, 19. https://doi.org/10.1186/s13062-017-0190-5 (2017).Article 
    CAS 

    Google Scholar 
    Booth, A. & Doolittle, W. F. Eukaryogenesis, how special really?. Proc. Natl. Acad. Sci. 112, 10278–10285 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Morris, B. E. L., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: Interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).Article 
    CAS 

    Google Scholar 
    Szathmáry, E. On the propagation of a conceptual error concerning hypercycles and cooperation. J. Syst. Chem. 4, 2208 (2013).Article 

    Google Scholar 
    Seth, E. C. & Taga, M. E. Nutrient cross-feeding in the microbial world. Front. Microbiol. 5, 350 (2014).Article 

    Google Scholar 
    Piccardi, P., Vessman, B. & Mitri, S. Toxicity drives facilitation between 4 bacterial species. Proc. Natl. Acad. Sci. 116, 15979–15984 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Yurtsev, E. A., Conwill, A. & Gore, J. Oscillatory dynamics in a bacterial cross-protection mutualism. Proc. Natl. Acad. Sci. 113, 6236–6241 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Kehe, J. et al. Positive interactions are common among culturable bacteria. Sci. Adv. 7, 45 (2021).Article 

    Google Scholar 
    Momeni, B., Xie, L. & Shou, W. Lotka-Volterra pairwise modeling fails to capture diverse pairwise microbial interactions. Elife 6, 25051 (2017).Article 

    Google Scholar 
    Zengler, K. & Zaramela, L. S. The social network of microorganisms: How auxotrophies shape complex communities. Nat. Rev. Microbiol. 16, 383–390 (2018).Article 
    CAS 

    Google Scholar 
    Koschwanez, J. H., Foster, K. R. & Murray, A. W. Sucrose utilization in budding yeast as a model for the origin of undifferentiated multicellularity. PLoS Biol. 9, e1001122 (2011).Article 
    CAS 

    Google Scholar 
    Ciofu, O., Beveridge, T. J., Kadurugamuwa, J., Walther-Rasmussen, J. & Høiby, N. Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J. Antimicrob. Chemother. 45, 9–13 (2000).Article 
    CAS 

    Google Scholar 
    Xenophontos, C., Harpole, W. S., Küsel, K. & Clark, A. T. Cheating promotes coexistence in a two-species one-substrate culture model. Front. Ecol. Evol. 9, 78006 (2022).Article 

    Google Scholar 
    West, S. A., Diggle, S. P., Buckling, A., Gardner, A. & Griffin, A. S. The social lives of microbes. Annu. Rev. Ecol. Evol. Syst. 38, 53–77 (2007).Article 

    Google Scholar 
    Flemming, H.-C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).Article 
    CAS 

    Google Scholar 
    Kümmerli, R. & Brown, S. P. Molecular and regulatory properties of a public good shape the evolution of cooperation. Proc. Natl. Acad. Sci. 107, 18921–18926 (2010).Article 
    ADS 

    Google Scholar 
    Griffin, A. S., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430, 1024–1027 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Kramer, J., Özkaya, Ö. & Kümmerli, R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 18, 152–163 (2019).Article 

    Google Scholar 
    van der Meij, A., Worsley, S. F., Hutchings, M. I. & van Wezel, G. P. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol. Rev. 41, 392–416 (2017).Article 

    Google Scholar 
    Kümmerli, R., Schiessl, K. T., Waldvogel, T., McNeill, K. & Ackermann, M. Habitat structure and the evolution of diffusible siderophores in bacteria. Ecol. Lett. 17, 1536–1544 (2014).Article 

    Google Scholar 
    Jautzus, T., van Gestel, J. & Kovács, Á. T. Complex extracellular biology drives surface competition in lessigreaterBacillus subtilisless/igreater. Ecol. Lett. 16, 2320–2328. https://doi.org/10.1101/2022.02.28.482363 (2022).Article 
    CAS 

    Google Scholar 
    Sachs, J. L., Mueller, U. G., Wilcox, T. P. & Bull, J. J. The evolution of cooperation. Q. Rev. Biol. 79, 135–160 (2004).Article 

    Google Scholar 
    Hillesland, K. L. & Stahl, D. A. Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc. Natl. Acad. Sci. 107, 2124–2129 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).Article 

    Google Scholar 
    Gore, J., Youk, H. & van Oudenaarden, A. Snowdrift game dynamics and facultative cheating in yeast. Nature 459, 253–256 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Sorg, R. A. et al. Collective resistance in microbial communities by intracellular antibiotic deactivation. PLoS Biol. 14, e2000631 (2016).Article 

    Google Scholar 
    Karray, F. et al. Extracellular hydrolytic enzymes produced by halophilic bacteria and archaea isolated from hypersaline lake. Mol. Biol. Rep. 45, 1297–1309 (2018).Article 
    CAS 

    Google Scholar 
    Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7, 11965 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Tarnita, C. E. The ecology and evolution of social behavior in microbes. J. Exp. Biol. 220, 18–24 (2017).Article 

    Google Scholar 
    Özkaya, Ö., Xavier, K. B., Dionisio, F. & Balbontn, R. Maintenance of microbial cooperation mediated by public goods in single- and multiple-trait scenarios. J. Bacteriol. 199, 22 (2017).Article 

    Google Scholar 
    Yang, D.-D. et al. Fitness and productivity increase with ecotypic diversity among Escherichia coli strains that coevolved in a simple, constant environment. Appl. Environ. Microbiol. 86, 8 (2020).Article 

    Google Scholar 
    Pande, S. et al. Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. ISME J. 8, 953–962 (2013).Article 

    Google Scholar 
    Zhou, K., Qiao, K., Edgar, S. & Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33, 377–383 (2015).Article 
    CAS 

    Google Scholar 
    Harcombe, W. R., Chacón, J. M., Adamowicz, E. M., Chubiz, L. M. & Marx, C. J. Evolution of bidirectional costly mutualism from byproduct consumption. Proc. Natl. Acad. Sci. 115, 12000–12004 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Summers, Z. M. et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330, 1413–1415 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Maddamsetti, R., Lenski, R. E. & Barrick, J. E. Adaptation, clonal interference, and frequency-dependent interactions in a long-term evolution experiment with Escherichia coli. Genetics 200, 619–631 (2015).Article 
    CAS 

    Google Scholar 
    Gerrish, P. J. & Lenski, R. E. The fate of competing beneficial mutations in an asexual population. Genetica 102, 127–144 (1998).Article 

    Google Scholar 
    Popat, R. et al. Quorum-sensing and cheating in bacterial biofilms. Proc. R. Soc. B 279, 4765–4771 (2012).Article 
    CAS 

    Google Scholar 
    Rainey, P. B. & Rainey, K. Evolution of cooperation and conflict in experimental bacterial populations. Nature 425, 72–74 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Hardin, G. Tragedy of the commons. Science 162, 1243 (1968).Article 
    ADS 
    CAS 

    Google Scholar 
    West, S. A., Cooper, G. A., Ghoul, M. B. & Ten Griffin, A. S. recent insights for our understanding of cooperation. Nat. Ecol. Evol. 5, 419–430 (2021).Article 

    Google Scholar 
    MacArthur, R. Species packing and competitive equilibrium for many species. Theor. Popul. Biol. 1, 1–11 (1970).Article 
    CAS 

    Google Scholar 
    Oliveira, N. M., Niehus, R. & Foster, K. R. Evolutionary limits to cooperation in microbial communities. Proc. Natl. Acad. Sci. 111, 17941–17946 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Tilman, D. Resource Competition and Community Structure. Monographs in Population Biology, Vol. 17 (Princeton University Press, 1982).
    Google Scholar 
    Ferenci, T. Trade-off mechanisms shaping the diversity of bacteria. Trends Microbiol. 24, 209–223 (2016).Article 
    CAS 

    Google Scholar 
    Rozen, D. E., Philippe, N., de Visser, J. A., Lenski, R. E. & Schneider, D. Death and cannibalism in a seasonal environment facilitate bacterial coexistence. Ecol. Lett. 12, 34–44 (2009).Article 

    Google Scholar 
    Brännström, Å., Johansson, J. & von Festenberg, N. The Hitchhiker’s Guide to Adaptive Dynamics. Games 4, 304–328 (2013).Article 
    MATH 

    Google Scholar 
    Ramin, K. I. & Allison, S. D. Bacterial tradeoffs in growth rate and extracellular enzymes. Front. Microbiol. 10, 2956 (2019).Article 

    Google Scholar 
    Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Wintermute, E. H. & Silver, P. A. Emergent cooperation in microbial metabolism. Mol. Syst. Biol. 6, 407 (2010).Article 

    Google Scholar 
    Libby, E., Kempes, C. & Okie, J. Metabolic compatibility and the rarity of prokaryote endosymbioses. BioRxiv https://doi.org/10.1101/2022.04.14.488272 (2022).Article 

    Google Scholar 
    Pauli, B., Oña, L., Hermann, M. & Kost, C. Obligate mutualistic cooperation limits evolvability. Nat. Commun. 13, 27630 (2022).Article 

    Google Scholar 
    Oña, L. & Kost, C. Cooperation increases robustness to ecological disturbance in microbial cross-feeding networks. Ecol. Lett. 25, 1410–1420 (2022).Article 

    Google Scholar 
    Machado, D. et al. Polarization of microbial communities between competitive and cooperative metabolism. Nat. Ecol. Evol. 5, 195–203 (2021).Article 

    Google Scholar 
    Mee, M. T., Collins, J. J., Church, G. M. & Wang, H. H. Syntrophic exchange in synthetic microbial communities. Proc. Natl. Acad. Sci. 111, E2149–E2156 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    McCutcheon, J. P. The genomics and cell biology of host-beneficial intracellular infections. Annu. Rev. Cell Dev. Biol. 37, 115–142 (2021).Article 
    CAS 

    Google Scholar 
    Sousa, F. L., Neukirchen, S., Allen, J. F., Lane, N. & Martin, W. F. Lokiarchaeon is hydrogen dependent. Nat. Microbiol. 1, 5 (2016).Article 

    Google Scholar 
    Spang, A. et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4, 1138–1148 (2019).Article 
    CAS 

    Google Scholar 
    Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).Article 
    ADS 
    CAS 

    Google Scholar 
    López-García, P. & Moreira, D. The Syntrophy hypothesis for the origin of eukaryotes revisited. Nat. Microbiol. 5, 655–667 (2020).Article 

    Google Scholar 
    Mills, D. B. et al. Eukaryogenesis and oxygen in Earth history. Nat. Ecol. Evol. 6, 520–532 (2022).Article 

    Google Scholar 
    Liu, Y. et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593, 553–557 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Zachar, I., Szilágyi, A., Számadó, S. & Szathmáry, E. Farming the mitochondrial ancestor as a model of endosymbiotic establishment by natural selection. Proc. Natl. Acad. Sci. USA. 115, E1504–E1510. https://doi.org/10.1073/pnas.1718707115 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Cavalier-Smith, T. & Chao, E.E.-Y. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). Protoplasma https://doi.org/10.1007/s00709-019-01442-7 (2020).Article 

    Google Scholar 
    Searcy, D. G. Nutritional syntrophies and consortia as models for the origin of mitochondria. Symb. Mech. Model Syst. 1, 163–183. https://doi.org/10.1007/0-306-48173-1_10 (2002).Article 

    Google Scholar 
    Müller, N., Timmers, P., Plugge, C. M., Stams, A. J. M. & Schink, B. Syntrophy in methanogenic degradation. Endosymb. Methanog. Archaea 1, 153–192. https://doi.org/10.1007/978-3-319-98836-8_9 (2018).Article 

    Google Scholar 
    Searcy, D. G. Metabolic integration during the evolutionary origin of mitochondria. Cell Res. 13, 229–238 (2003).Article 
    CAS 

    Google Scholar 
    Flemming, H.-C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).Article 
    CAS 

    Google Scholar 
    Spang, A. et al. Asgard archaea are the closest prokaryotic relatives of eukaryotes. PLoS Genet. 14, e1007080 (2018).Article 

    Google Scholar 
    Burns, J. A., Pittis, A. A. & Kim, E. Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic. Nat. Ecol. Evol. 2, 697–704 (2018).Article 

    Google Scholar 
    Seitz, K. W. et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat. Commun. 10, 1 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Jimenez, P. & Scheuring, I. Density-dependent private benefit leads to bacterial mutualism. Evolution 75, 1619–1635. https://doi.org/10.1111/evo.14241 (2021).Article 

    Google Scholar 
    Preussger, D., Giri, S., Muhsal, L. K., Oña, L. & Kost, C. Reciprocal fitness feedbacks promote the evolution of mutualistic cooperation. Curr. Biol. 30, 3580-3590.e7 (2020).Article 
    CAS 

    Google Scholar 
    Monaco, H. et al. Spatial-temporal dynamics of a microbial cooperative behavior resistant to cheating. Nat. Commun. 13, 3580 (2022).Article 
    ADS 

    Google Scholar 
    Yanni, D., Márquez-Zacarias, P., Yunker, P. J. & Ratcliff, W. C. Drivers of spatial structure in social microbial communities. Curr. Biol. 29, 545–550 (2019).Article 

    Google Scholar  More

  • in

    Half a century of rising extinction risk of coral reef sharks and rays

    Plaisance, L., Caley, M. J., Brainard, R. E. & Knowlton, N. The diversity of coral reefs: what are we missing? PLoS One. 6, e25026 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).Article 

    Google Scholar 
    Mora, C. et al. Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes. PLoS Biol. 9, e1000606 (2011).Article 
    CAS 

    Google Scholar 
    Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at Risk Revisited. 130 pp. (World Resources Institute, Washington, D.C., 2011).Hicks, C. C., Graham, N. A. J., Maire, E. & Robinson, J. P. W. Secure local aquatic food systems in the face of declining coral reefs. One Earth. 4, 1214–1216 (2021).Article 
    ADS 

    Google Scholar 
    Cinner, J. E. et al. Gravity of human impacts mediates coral reef conservation gains. PNAS 115, E6116–E6125 (2018).Article 
    CAS 

    Google Scholar 
    Eddy, T. D. et al. Global decline in capacity of coral reefs to provide ecosystem services. One Earth. 4, 1278–1285 (2021).Article 
    ADS 

    Google Scholar 
    Graham, N. A. J. et al. Human disruption of coral reef trophic structure. Curr. Biol. 27, 231–236 (2017).Article 
    CAS 

    Google Scholar 
    Sherman, C. S., Heupel, M. R., Moore, S. K., Chin, A. & Simpfendorfer, C. A. When sharks are away rays will play: effects of top predator removal in coral reef ecosystems. Mar. Ecol. Prog. Ser. 641, 145–157 (2020).Article 
    ADS 

    Google Scholar 
    Ruppert, J. L. W., Travers, M. J., Smith, L. L., Fortin, M.-J. & Meekan, M. G. Caught in the middle: combined Impacts of shark removal and coral loss on the fish communities of coral reefs. PLoS One. 8, e74648 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Last, P. R. et al. Rays of the World. (CSIRO Publishing, 2016).Ebert, D. A., Dando, M. & Fowler, S. Sharks of the World. 2nd edn, 608 (Princeton University Press, 2021).Heupel, M. R., Lédée, E. J. I. & Simpfendorer, C. A. Telemetry reveals spatial separation of co-occurring reef sharks. Mar. Ecol. Prog. Ser. 589, 179–192 (2018).Article 
    ADS 

    Google Scholar 
    Heupel, M. R., Papastamatiou, Y. P., Espinoza, M., Green, M. E. & Simpfendorfer, C. A. Reef shark science – key questions and future directions. Front. Mar. Sci. 6, 12 (2019).Article 

    Google Scholar 
    Roff, G., Brown, C. J., Priest, M. A. & Mumby, P. J. Decline of coastal apex shark populations over the past half century. Commun. Biol. 1, 223 (2018).Article 

    Google Scholar 
    Williams, J. J., Papastamatiou, Y. P., Caselle, J. E., Bradley, D. & Jacoby, D. M. P. Mobile marine predators: an understudied source of nutrients to coral reefs in an unfished atoll. Proc. R. Soc. B. 285, 20172456 (2018).Article 

    Google Scholar 
    Heithaus, M. R., Wirsing, A. J. & Dill, L. M. The ecological importance of intact top-predator populations: a synthesis of 15 years of research in a seagrass ecosystem. Mar. Freshw. Res. 63, 1039–1050 (2012).Article 

    Google Scholar 
    Peel, L. R. et al. Stable isotope analyses reveal unique trophic role of reef manta rays (Mobula alfredi) at a remote coral reef. R. Soc. Open Sci. 6, 190599 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    O’Shea, O. R., Thums, M., van Keulen, M. & Meekan, M. Bioturbation by stingrays at Ningaloo Reef, Western Australia. Mar. Freshw. Res. 63, 189–197 (2012).Article 

    Google Scholar 
    Takeuchi, S. & Tamaki, A. Assessment of benthic disturbance associated with stingray foraging for ghost shrimp by aerial survey over an intertidal sandflat. Continental Shelf Res. 84, 139–157 (2014).Article 
    ADS 

    Google Scholar 
    Burkholder, D. A., Heithaus, M. R., Fourqurean, J. W., Wirsing, A. & Dill, L. M. Patterns of top-down control in a seagrass ecosystem: could a roving apex predator induce a behaviour-mediated trophic cascade? J. Anim. Ecol. 82, 1192–1202 (2013).Article 

    Google Scholar 
    Creel, S. & Christianson, D. Relationships between direct predation and risk effects. TRENDS Ecol. Evolution. 23, 194–201 (2008).Article 

    Google Scholar 
    Ward-Paige, C. A. et al. Large-scale absence of sharks on reefs in the greater-Caribbean: a footprint of human presence. PLoS One. 5, e11968 (2010).Article 
    ADS 

    Google Scholar 
    Espinoza, M., Cappo, M., Heupel, M. R., Tobin, A. J. & Simpfendorfer, C. A. Quantifying shark distribution patterns and species-habitat associations: implications of marine park zoning. PLoS One. 9, e106885 (2014).Article 
    ADS 

    Google Scholar 
    Graham, N. A., Spalding, M. D. & Sheppard, C. R. Reef shark declines in remote atolls highlight the need for multi-faceted conservation action. Aquat. Conserv.: Mar. Freshw. Ecosyst. 20, 543–548 (2010).Article 

    Google Scholar 
    Nadon, M. O. et al. Re-creating missing population baselines for Pacific reef sharks. Conserv. Biol. 26, 493–503 (2012).Article 

    Google Scholar 
    MacNeil, M. A. et al. Global status and conservation potential of reef sharks. Nature 583, 801–806 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Dulvy, N. K. et al. Overfishing drives over one-third of all sharks and rays toward a global extinction crisis. Curr. Biol. 31, 1–15 (2021).Article 

    Google Scholar 
    Walls, R. H. L. & Dulvy, N. K. Eliminating the dark matter of data deficiency by predicting the conservation status of Northeast Atlantic and Mediterranean Sea sharks and rays. Biol. Conserv. 246, 108459 (2020).Article 

    Google Scholar 
    Yan, H. F. et al. Overfishing and habitat loss drives range contraction of iconic marine fishes to near extinction. Science Adv. 7, eabb6026, (2021).Butchart, S. H. M. et al. Using Red List Indices to measure progress towards the 2010 target and beyond. Philos. Trans. R. Soc. B 360, 255–268 (2005).Article 
    CAS 

    Google Scholar 
    Sherman, C. S. et al. Taeniura lymma. The IUCN Red List of Threatened Species, eT116850766A116851089 (2021). 10.2305/IUCN.UK.2021-1.RLTS.T116850766A116851089.enPacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–571 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Cardeñosa, D. et al. Small fins, large trade: a snapshot of the species composition of low-value shark fins in the Hong Kong markets. Anim. Conserv. 23, 203–211 (2019).Article 

    Google Scholar 
    Haque, A. B. & Spaet, J. L. Y. Trade in threatened elasmobranchs in the Bay of Bengal, Bangladesh. Fish. Res. 243, 106059 (2021).Article 

    Google Scholar 
    Alcala, A. C. & Russ, G. R. A direct test of the effects of protective management on abundance and yield of tropical marine resources. ICES J. Mar. Sci. 47, 40–47 (1990).Article 

    Google Scholar 
    Serrano, A. et al. Effects of anti-trawling artificial reefs on ecological indicators of inner shelf fish and invertebrate communities in the Cantabrian Sea (southern Bay of Biscay). J. Mar. Biol. Assoc. U. Kingd. 91, 623–633 (2011).Article 

    Google Scholar 
    Cortés, E. Perspectives on the intrinsic rate of population growth. Methods Ecol. Evolution. 7, 1136–1145 (2016).Article 

    Google Scholar 
    McClenachan, L., Cooper, A. B. & Dulvy, N. K. Rethinking trade-driven extinction risk in marine and terrestrial megafauna. Curr. Biol. 26, 1–7 (2016).Article 

    Google Scholar 
    Tamburello, N., Cote, I. M. & Dulvy, N. K. Energy and the scaling of animal space use. Am. Naturalist 186, 196–211 (2015).Article 

    Google Scholar 
    Dulvy, N. K. et al. Challenges and priorities in shark and ray conservation. Curr. Biol. 27, R565–R572 (2017).Article 
    CAS 

    Google Scholar 
    Davidson, L. N. K. & Dulvy, N. K. Global marine protected areas to prevent extinctions. Ecol. Evolution. 1, 1–6 (2017).
    Google Scholar 
    Pauly, D., Zeller, D. & Palomares, M. L. D. Sea Around Us Concepts, Design and Data, (2021).Simpfendorfer, C. A. & Dulvy, N. K. Bright spots of sustainable shark fishing. Curr. Biol. 27, R83–R102 (2017).Article 

    Google Scholar 
    Booth, H., Squires, D. & Milner-Gulland, E. J. The mitigation hierarchy for sharks: a risk-based framework for reconciling trade-offs between shark conservation and fisheries objectives. Fish. Fish. 21, 269–289 (2019).Article 

    Google Scholar 
    Grorud-Colvert, K. et al. The MPA Guide: A framework to achieve global goals for the ocean. Science 373, eabf0861 (2021).Article 
    CAS 

    Google Scholar 
    Enright, S. R., Meneses-Orellana, R. & Keith, I. The Eastern Tropical Pacific Marine Corridor (CMAR): The emergence of a voluntary regional cooperation mechanism for the conservation and sustainable use of marine biodiversity within a fragmented regional ocean governance landscape. Front. Mar. Sci. 8, 674825 (2021).Article 

    Google Scholar 
    Chin, A., Kyne, P. M., Walker, T. I. & McAuley, R. B. An integrated risk assessment for climate change: analysing the vulnerability of sharks and rays on Australia’s Great Barrier Reef. Glob. Change Biol. 16, 1936–1953 (2010).Article 
    ADS 

    Google Scholar 
    Dwyer, R. G. et al. Individual and population benefits of marine reserves for reef sharks. Curr. Biol. 30, 480–489 (2020).Article 
    CAS 

    Google Scholar 
    Speed, C. W., Cappo, M. & Meekan, M. G. Evidence for rapid recovery of shark populations within a coral reef marine protected area. Biol. Conserv. 220, 308–319 (2018).Article 

    Google Scholar 
    Mizrahi, M. I., Diedrich, A., Weeks, R. & Pressey, R. L. A systematic review of the socioeconomic factors that influence how marine protected areas impact on ecosystems and livelihoods. Soc. Nat. Resour. 32, 4–20 (2019).Article 

    Google Scholar 
    IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. 1148 (Bonn, Germany, 2019).Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Hanh, T. T. H. & Boonstra, W. J. What prevents small-scale fishing and aquaculture households from engaging in alternative livelihoods? A case study in the Tam Giang lagoon, Viet Nam. Ocean Coast. Manag. 182, 104943 (2019).Article 

    Google Scholar 
    Ahmed, N., Troell, M., Allison, E. H. & Muir, J. F. Prawn postlarvae fishing in coastal Bangladesh: challenges for sustainable livelihoods. Mar. Policy. 34, 218–227 (2010).Article 

    Google Scholar 
    Prasetyo, A. P. et al. Shark and ray trade in and out of Indonesia: addressing knowledge gaps on the path to sustainability. Mar. Policy. 133, 104714 (2021).Article 

    Google Scholar 
    McClanahan, T., Polunin, N. & Done, T. Ecological states and the resilience of coral reefs. Conserv. Ecol. 6, 18 (2002).
    Google Scholar 
    Bellwood, D. R., Hughes, T. P. & Hoey, A. S. Sleeping functional group drives coral-reef recovery. Curr. Biol. 16, 2434–2439 (2006).Article 
    CAS 

    Google Scholar 
    Cinner, J. E. et al. Vulnerability of coastal communities to key impacts of climate change on coral reef fisheries. Glob. Environ. Change. 22, 12–20 (2012).Article 
    ADS 

    Google Scholar 
    Víe, J.-C., Hilton-Taylor, C. & Stuart, S. N. Wildlife in a Changing World – An analysis of the 2008 IUCN Red List of Threatened Species. 180 (Gland, Switzerland, 2009).Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).Article 

    Google Scholar 
    Sherley, R. B. et al. Estimating IUCN Red List population reduction: JARA – A decision-support tool applied to pelagic sharks. Conserv. Lett. 13, e12688 (2019).
    Google Scholar 
    IUCN Red List. Threats Classification Scheme (Version 3.2), (2021).Salafsky, N. et al. A standard lexicon for biodiversity conservation: unified classifications of threats and actions. Conserv. Biol. 22, 897–911 (2008).Article 

    Google Scholar 
    Moore, A. Chiloscyllium arabicum. The IUCN Red List of Threatened Species 2017, e.T161426A109902537 (2017). 10.2305/IUCN.UK.2017-2.RLTS.T161426A109902537.enSadovy de Mitcheson, Y. J. et al. Valuable but vulnerable: Over-fishing and under-management continue to threaten groupers so what now? Mar. Policy. 116, 103909 (2020).Article 

    Google Scholar 
    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2021).Regression Models for Ordinal Data v. 2019.12.10 (CRAN, 2019).Econometric Tools for Performance and Risk Analysis v. 2.0.4 (2020).Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).Article 

    Google Scholar 
    Akinwande, M. O., Dikko, H. G. & Samson, A. Variance inflation factor: As a condition for the inclusion of suppressor variable(s) in regression analysis. Open J. Stat. 5, 754–767 (2015).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods Res. 33, 261–304 (2004).Article 
    MathSciNet 

    Google Scholar 
    Plots Coefficients from Fitted Models v. 1.2.8 (2022).Fisheries and Aquaculture Software. FishStatJ – Software for Fishery and Aquaculture Statistical Time Series., (2020).Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002).Article 
    ADS 

    Google Scholar 
    NASA Ocean Biology (OB.DAAC). Mean annual sea surface chlorophyll-a concentration for the period 2009-2013 (composite dataset created by UNEP-WCMC). Data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua Ocean Colour website (NASA OB.DAAC, Greenbelt, MD, USA), (2014).General Bathymetric Chart of the Oceans. GEBCO_2014 Grid. version 20150318. www.gebco.net (2015).XGBoost: A Scalable Tree Boosting System v. 1.4.1.1 (In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). New York, NY, USA: ACM, 2016).Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).Article 
    CAS 

    Google Scholar 
    ArcGIS Pro 2.7.0 (Environmental Systems Research Institute) (2020).Ferreira, L. C. & Simpfendorer, C. Galeocerdo cuvier. The IUCN Red List of Threatened Species 2019, e.T39378A2913541 (2019).Beta Regression v. 3.1-4 (2021).Butchart, S. H. et al. Improvements to the Red List Index. PLoS ONE. 2, e140 (2007).Article 
    ADS 

    Google Scholar 
    Sherman, C. S. et al. Half a century of rising extinction risk of coral reef sharks and rays, sammsherman27/CoralReefSharkRayIUCN: Data and Code Used in Sherman et al. Half a century of rising extinction risk of coral reef sharks and rays v1.0.0. https://doi.org/10.5281/zenodo.7267904 (2022). More

  • in

    Plant nitrogen retention in alpine grasslands of the Tibetan Plateau under multi-level nitrogen addition

    Study siteThe field experiment was conducted at Namco Station (30°47’N, 90°58’E, altitude 4730 m) of the Institute of Tibetan Plateau Research, Chinese Academy of Sciences (ITPCAS), which is located in the alpine steppes of TP in China. The experiment was permitted by ITPCAS, complied with local and national guidelines and regulations. From 2006 to 2017, the mean annual temperature (MAT) and mean annual precipitation (MAP) was about − 0.6 °C and 406 mm, respectively. Monthly mean temperature varied from − 10.8 °C in January to 9.1 °C in July and most of the precipitation occurred from May to October37,38. During our six-year observations (2010, 2011, 2012, 2013, 2015 and 2017), climate change during the growing season from May to September varied differently, with the annual precipitation ranged from 255.9 mm to 493.8 mm and the MAT from 6.7 to 7.4 °C. Androsace tapete, Kobresia pygmaea, Stipa purpurea and Leontopodium pusillum were the dominant plant species at the alpine steppe.Experimental design and treatmentsThe long-term experiment began in May, 2010. Three homogenous plots were randomly arranged as replicates at the alpine steppe and six subplots (~ 13 m2) were distributed in each plot by a cycle, with a 2 m buffer zone between each adjacent subplot (Appendix S1: Fig. S1). In this experiment, six treatments of N fertilization rate (0, 1, 2, 4, 8, and 16 g N m−2 yr−1) were clockwise applied in each subplot. The subplots of 0 g N m−2 yr−1 were control group. We sprayed NH4NO3 solution on the first day of each month in the growing season (from May to September) each year. After fertilizing, we rinsed plant residual fertilizer with a little deionized water (no more than 2 mm rainfall). For the control groups, we added equivalent amount of water. The experiment was conducted from 2010 to 2017 (it should be pointed out that there was no fertilization in 2014 and 2016).Sampling and measurementsThe samples were collected with the training and permission of ITPCAS and involved plants that are common species and not endangered or protected. The identification of the plants was done by referring to a book of Chen and Yang39. Pictures of the corresponding specimens can be seen on the website of ITPCAS (http://itpcas.cas.cn/kxcb/kxtp/nmc_normal_plant/).Vegetation samples were collected in August in 2011 and repeated at the same time in 2012, 2013, 2015 and 2017. We established one 50 × 50 cm quadrat in each subplot, clipped aboveground biomass (AGB) and sorted species by families. The biomass was used to measure ANPP (g m−2 yr−1). Following aboveground portion collected, we used three soil cores (5 cm diameter) to collect the belowground roots at 0–30 cm depth and mixed into one sample, which were used to assess belowground net primary productivity (BNPP, g m−2 yr−1). The roots were cleaned with running water to remove sand and stones.Both plant and root samples were dried at 75 °C for 48 h and then ground into powder (particle size ~ 5 μm) by a laboratory mixer mill (MM400, Retsch). To determine N and C content of plants, we weighed the samples into tin capsules and measured with the elemental analyzer (MAT253, Finnigan MAT GmbH, Germany).Estimation of the critical N rate (Ncr), N retention fraction (NRF), N retention capacity and N-induced C gainAccording to the N saturation hypothesis, plant productivity increases gradually during N addition, reaches a maximum at the Ncr, and eventually declines16,17. We considered the Ncr to be the rate where ANPP no longer remarkably changed with N addition (Fig. 1).We defined plant N retention fraction (NRF, %; Eq. 1) as the aboveground N storage caused by unit N addition rate, and N retention capacity (g N m−2 yr−1; Eq. 2) was the increment of N storage due to exogenous N addition compared to the control40. The equations are as following:$$N;retention;fraction = frac{{ANPP_{tr} times N;content_{tr} – ANPP_{ck} times N;content_{ck} }}{N;rate}$$
    (1)
    $$N;retention;capacity = ANPP_{tr} times N;content_{tr} – ANPP_{ck} times N;content_{ck}$$
    (2)
    where ANPPtr and N contenttr (%) refer to those in the treatment (tr) groups, and ANPPck and N contentck refer to those in the control (ck) groups. These expressions are also used in the following equations (Eqs. 3–5).The N-induced C gain (g C m−2 yr−1; Eq. 3) was estimated by the increment of C storage owing to exogenous N addition compared to the control40. Maximum N retention capacity (MNRC, Eq. 4) and maximum N-induced C gain (Eq. 5) mean the maximum N and C storage increment in plant caused by exogenous N input at Ncr, respectively. The formulas are as following:$$N{text{-}}induced;C;gain = ANPP_{tr} times C;content_{tr} – ANPP_{ck} times C;content_{ck}$$
    (3)
    $$MNRC = ANPP_{max } times N;content_{max } – ANPP_{ck} times N;content_{ck}$$
    (4)
    $$Maximum;N{text{-}}induced;C;gain = ANPP_{max } times C;content_{max } – ANPP_{ck} times C;content_{ck}$$
    (5)
    where ANPPmax, N contentmax and C contentmax refer to the value of ANPP, N content and C content at Ncr, respectively.Data synthesisTo evaluate N limitation and saturation on the TP more accurately, we searched papers from the Web of Science (https://www.webofscience.com) and the China National Knowledge Infrastructure (https://www.cnki.net). The keywords used by article searching were: (a) N addition, N deposition or N fertilization, (b) grassland, steppe or meadow. Article selection was based on the following conditions. First, the experimental site must be conducted in a grassland ecosystem. Second, the experiment had at least three N addition levels and a control group. Third, if the experiment lasted for many years, we analyzed data with multi-year average. Based on the above, we collected 89 independent experimental cases. Among these, 27 cases were located on the TP alpine grasslands, 25 in the Inner Mongolia (IM) grasslands and 37 in other terrestrial grasslands (detailed information sees Appendix S2: Table S1).We extracted ANPP data and N addition rate of these cases and estimated Ncr and ANPPmax (Appendix S2: Fig. S2). We then calculated NRF, N retention and C gain of each group of data for further analysis (Appendix S2: Table S2). Most of the 89 cases did not have data on N and C content. To facilitate the calculation, we summarized N and C content from 40 articles in the neighboring areas of the cases and divided the N and C content into seven intervals according to the N addition rate (Appendix S2: Table S3 and Fig. S3). The unit of N addition rate was unified to “g N m−2 yr−1”. All the original data were obtained directly from texts and tables of published papers. If the data were displayed only in graphs, Getdata 2.20 was used to digitize the numerical data. For the estimation of N retention and C gain of the TP at current N deposition rates and future at Ncr, we fitted the exponential relationship to the data from 27 cases on the TP, and then substituted N rates into the fitted equations (Eq. 6):$$y = a times left[ {1 – exp left( { – bx} right)} right].$$
    (6)
    We also included MAT, MAP, soil C:N ratio, fencing management (fencing or grazing) and grassland type (meadow, steppe and desert steppe) of the experiment sites for exploring the drivers affecting N limitation (Appendix S2: Table S1). When climatic data were missing from the article, MAT and MAP were obtained from the WorldClim (http://www.worldclim.org).Species were usually divided into four functional groups (grasses, sedges, legumes and forbs) to study the response of species composition to N addition in previous study41. We synthesized 13 TP experimental cases (including our field experiment) from the data synthesis and each case included at least three functional groups (detailed references see Appendix S2).Statistical analysisThere were 42 species in our field experiment. We divided them by family into eleven groups: Asteraceae (forbs), Poaceae (grasses), Leguminosae (legumes), Rosaceae (forbs), Boraginaceae (forbs), Caryophyllaceae (forbs), Cyperaceae (sedges), Labiatae (forbs), Primulaceae (forbs), Scrophulariaceae (forbs) and Others. Due to species in the group of Others contributed only 1.22% of AGB, we analyzed AGB and foliar stoichiometry among other ten families (Appendix S1: Table S1). In Namco steppe, forbs, grasses, sedges and legumes accounted for 78.0%, 7.4%, 8.2% and 5.2% of the AGB respectively (Appendix S1: Table S1 and Fig. S2). Such a large number of forbs suggested that our experiment was conducted on a severely degraded grassland.For our field data, two-way ANOVAs were used to analyze the effects of year, N fertilization rate and their interactions on species AGB. One-way ANOVAs were used to test the response of ANPP, BNPP, root:shoot ratio, species foliar C content, N content and C:N ratio to N addition rate. Duncan’s new multiple range test was used to compare the fertilization influences at each rate in these ANOVAs. Prior to the above ANOVAs, we performed homogeneity of variance test and transformed the data logarithmically when necessary. Simple regression was used to estimate the relevance among ANPP, NRF, N retention capacity and C gain with N addition rates.Structural equation modeling (SEM) was used to explore complex relationships among multiple variables. To quantify the contribution of drivers such as climate and soil to Ncr, ANPP, NRF and MNRC, we constructed SEM based on existing ecological knowledge and the possible relationships between variables. We considered environmental factors (MAT, MAP and soil C:N) and ANPPck as explanatory variables, and Ncr, NRF and MNRC as response variables. We included the ANPPck in the SEM rather than the ANPPmax because we wonder whether there was a relationship between ANPP in the absence of exogenous N input and the ecosystem N retention in the presence of N saturation. This has important implications for assessing N input. Before constructing the SEM, we excluded collinearity between the factors. In addition, Student’s t-test and one-way ANOVAs were performed to explain the effect of fencing management and grassland type on above response variables, respectively. The SEM was constructed using the R package “piecewiseSEM”42. Fisher’s C was used to assess the goodness-of-model fit, and AIC was for model comparison.Given the influence of extreme values in the data synthesis, we calculated the geometric mean of Ncr, NRF, N retention and N-induced C gain. All statistical analyses were performed with SPSS 26.0 and RStudio (Version 1.2.1335) based on R version 3.6.2 (R Core Team, 2019). More

  • in

    Soil–vegetation moisture capacitor maintains dry season vegetation productivity over India

    Good, S. P., Noone, D. & Bowen, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 349, 175–177 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Humphrey, V. et al. Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 592, 65–69 (2021).Article 
    CAS 

    Google Scholar 
    Devaraju, N., Bala, G. & Nemani, R. Modelling the influence of land-use changes on biophysical and biochemical interactions at regional and global scales. Plant Cell Environ. 38, 1931–1946 (2015).Article 
    CAS 

    Google Scholar 
    Chu, C. et al. Does climate directly influence NPP globally?. Glob. Change Biol. 22, 12–24 (2016).Article 
    ADS 

    Google Scholar 
    Pan, S. et al. Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century. J. Geogr. Sci. 25, 1027–1044 (2015).Article 

    Google Scholar 
    Musavi, T. et al. Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity. Nat. Ecol. Evol. 1, 48 (2017).Article 

    Google Scholar 
    Cheng, J. et al. Vegetation feedback causes delayed ecosystem response to East Asian Summer Monsoon Rainfall during the Holocene. Nat. Commun. 12, 1–9 (2021).ADS 

    Google Scholar 
    Yu, Y. et al. Observed positive vegetation-rainfall feedbacks in the Sahel dominated by a moisture recycling mechanism. Nat. Commun. 8, 1–9 (2017).Article 
    ADS 

    Google Scholar 
    Betts, R. A., Cox, P. M., Lee, S. E. & Woodward, F. I. Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387, 796–799 (1997).Article 
    ADS 
    CAS 

    Google Scholar 
    Forzieri, G. et al. Increased control of vegetation on global terrestrial energy fluxes. Nat. Clim. Chang. 10, 356–362 (2020).Article 
    ADS 

    Google Scholar 
    Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Chang. 6, 75–78 (2016).Article 
    ADS 

    Google Scholar 
    Steffen, W. et al. Trajectories of the earth system in the anthropocene. Proc. Natl. Acad. Sci. USA 115, 8252–8259 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Bruijnzeel, L. A. Hydrological functions of tropical forests: Not seeing the soil for the trees?. Agric. Ecosyst. Environ. 104, 185–228 (2004).Article 

    Google Scholar 
    Bierkens, M. F. P. & van den Hurk, B. J. J. M. Groundwater convergence as a possible mechanism for multi-year persistence in rainfall. Geophys. Res. Lett. 34, 2402 (2007).Article 
    ADS 

    Google Scholar 
    Idso, S. B. & Brazel, A. J. Rising atmospheric carbon dioxide concentrations may increase streamflow. Nature 312, 51–53 (1984).Article 
    ADS 
    CAS 

    Google Scholar 
    Betts, R. A. et al. Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448, 1037–1041 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Swann, A. L. S., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl. Acad. Sci. USA. 113, 10019–10024 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Frank, D. C. et al. Water-use efficiency and transpiration across European forests during the Anthropocene. Nat. Clim. Chang. 5, 579–583 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhang, K. et al. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. 5, 1–9 (2015).
    Google Scholar 
    Teuling, A. J., Seneviratne, S. I., Williams, C. & Troch, P. A. Observed timescales of evapotranspiration response to soil moisture. Geophys. Res. Lett. 33, 23 (2006).Article 

    Google Scholar 
    Teuling, A. J., Uijlenhoet, R., Hupert, F. & Troch, P. A. Impact of plant water uptake strategy on soil moisture and evapotranspiration dynamics during drydown. Geophys. Res. Lett. 33, 3401 (2006).Article 
    ADS 

    Google Scholar 
    Vivoni, E. R. et al. Observed relation between evapotranspiration and soil moisture in the North American monsoon region. Geophys. Res. Lett. 35, 22 (2008).Article 

    Google Scholar 
    Dirmeyer, P. A., Jin, Y., Csingh, C. & Yan, C. Evolving land-atmosphere interactions over North America from CMIP5 simulations. J. Clim. 26, 7313–7327 (2013).Article 
    ADS 

    Google Scholar 
    Dirmeyer, P. A. et al. Verification of land-atmosphere coupling in forecast models, reanalyses, and land surface models using flux site observations. J. Hydrometeorol. 19, 375–392 (2018).Article 
    ADS 

    Google Scholar 
    Friedlingstein, P. et al. Positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett. 28, 1543–1546 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Arora, K. et al. Carbon-concentration and carbon-climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences 17, 4173–4222 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Song, X., Wang, D. Y., Li, F. & Zeng, X. D. Evaluating the performance of CMIP6 Earth system models in simulating global vegetation structure and distribution. Adv. Clim. Chang. Res. 12, 584–595 (2021).Article 

    Google Scholar 
    Levine, P. A., Randerson, J. T., Swenson, S. C. & Lawrence, D. M. Evaluating the strength of the land-atmosphere moisture feedback in Earth system models using satellite observations. Hydrol. Earth Syst. Sci. 20, 4837–4856 (2016).Article 
    ADS 

    Google Scholar 
    Wei, N. et al. Evolution of uncertainty in terrestrial carbon storage in earth system models from CMIP5 to CMIP6. J. Clim. 35, 5483–5499 (2022).Article 
    ADS 

    Google Scholar 
    Smith, N. G. et al. Toward a better integration of biological data from precipitation manipulation experiments into Earth system models. Rev. Geophys. 52, 412–434 (2014).Article 
    ADS 

    Google Scholar 
    Yuan, K., Zhu, Q., Riley, W. J., Li, F. & Wu, H. Understanding and reducing the uncertainties of land surface energy flux partitioning within CMIP6 land models. Agric. For. Meteorol. 319, 108920 (2022).Article 
    ADS 

    Google Scholar 
    Baker, J. C. A. et al. An assessment of land-atmosphere interactions over south america using satellites, reanalysis, and two global climate models. J. Hydrometeorol. 22, 905–922 (2021).Article 
    ADS 

    Google Scholar 
    Mooley, D. A. & Parthasarathy, B. Fluctuations in All-India summer monsoon rainfall during 1871?1978. Clim. Change 6, 287–301 (1984).Article 
    ADS 

    Google Scholar 
    Guhathakurta, P. & Rajeevan, M. Trends in the rainfall pattern over India. Int. J. Climatol. 28, 1453–1469 (2008).Article 

    Google Scholar 
    Sarkar, S. & Kafatos, M. Interannual variability of vegetation over the Indian sub-continent and its relation to the different meteorological parameters. Remote Sens. Environ. 90, 268–280 (2004).Article 
    ADS 

    Google Scholar 
    Roy, P. S. et al. New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities. Int. J. Appl. Earth Obs. Geoinf. 39, 142–159 (2015).ADS 

    Google Scholar 
    Koster, R. D. et al. Regions of strong coupling between soil moisture and precipitation. Science 305, 1138–1140 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Paul, S. et al. Weakening of Indian summer monsoon rainfall due to changes in land use land cover. Sci. Rep. 6, 1–10 (2016).Article 

    Google Scholar 
    Pathak, A., Ghosh, S., Kumar, P. & Murtugudde, R. Role of oceanic and terrestrial atmospheric moisture sources in intraseasonal variability of indian summer monsoon rainfall. Sci. Rep. 7, 12729 (2017).Article 
    ADS 

    Google Scholar 
    Pradhan, R., Singh, N. & Singh, R. P. Onset of summer monsoon in Northeast India is preceded by enhanced transpiration. Sci. Rep. 9, 1–11 (2019).Article 

    Google Scholar 
    Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Le Quéré, C. et al. Global carbon budget 2017. Earth Syst. Sci. Data 10, 405–448 (2018).Article 
    ADS 

    Google Scholar 
    Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).Article 

    Google Scholar 
    Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Pathak, A. et al. Role of oceanic and land moisture sources and transport in the seasonal and interannual variability of summer monsoon in India. J. Clim. 30, 1839–1859 (2017).Article 
    ADS 

    Google Scholar 
    Myers, N., Mittermeler, R. A., Mittermeler, C. G., Da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).Article 
    ADS 
    CAS 

    Google Scholar 
    Venkateswarlu, B. & Prasad, J. V. N. Carrying capacity of Indian agriculture: issues related to rainfed agriculture. Curr. Sci. 102, 6 (2012).
    Google Scholar 
    Pai, D. S. et al. Development of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam 65, 1–18 (2014).Article 

    Google Scholar 
    Rodríguez-Fernández, N. J. et al. Long term global surface soil moisture fields using an SMOS-trained neural network applied to AMSR-E data. Remote Sens. 8, 959 (2016).Article 
    ADS 

    Google Scholar 
    Martens, B. et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).Article 
    ADS 

    Google Scholar 
    Miralles, D. G. et al. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 15, 453–469 (2011).Article 
    ADS 

    Google Scholar 
    Doelling, D. R. et al. Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Ocean. Technol. 30, 1072–1090 (2013).Article 
    ADS 

    Google Scholar 
    Doelling, D. R. et al. Advances in geostationary-derived longwave fluxes for the CERES synoptic (SYN1deg) product. J. Atmos. Ocean. Technol. 33, 503–521 (2016).Article 
    ADS 

    Google Scholar 
    Running, S. W., Mu, Q. & Zhao, M. MOD17A2H MODIS/Terra Gross Primary Productivity 8-Day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. (2015). https://doi.org/10.5067/MODIS/MOD17A2H.006. Accessed 22 May 2021.Pathak, A., Ghosh, S. & Kumar, P. Precipitation recycling in the Indian subcontinent during summer monsoon. J. Hydrometeorol. 15, 2050 (2014).Article 
    ADS 

    Google Scholar 
    Paul, S., Ghosh, S., Rajendran, K. & Murtugudde, R. Moisture supply from the western ghats forests to water deficit east coast of India. Geophys. Res. Lett. 45, 4337–4344 (2018).Article 
    ADS 

    Google Scholar 
    Sebastian, D. E. et al. Multi-scale association between vegetation growth and climate in India: A wavelet analysis approach. Remote Sens. 11, 2073 (2019).Article 

    Google Scholar 
    Tabari, H. & Hosseinzadeh Talaee, P. Sensitivity of evapotranspiration to climatic change in different climates. Glob. Planet. Change 115, 16–23 (2014).Article 
    ADS 

    Google Scholar 
    Roy, A., Das, S. K., Tripathi, A. K., Singh, N. U. & Barman, H. K. Biodiversity in North East India and their conservation. Progress. Agric. 15, 182 (2015).Article 

    Google Scholar 
    Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. USA. 112, 436–441 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Verma, A., Chandel, V. & Ghosh, S. Climate drivers of the variations of vegetation productivity in India. Environ. Res. Lett. 17, 084023 (2022).Article 
    ADS 

    Google Scholar 
    Dimri, A. P. et al. Western disturbances: A review. Rev. Geophys. 53, 225–246 (2015).Article 
    ADS 

    Google Scholar 
    Joseph, J., Scheidegger, J. M., Jackson, C. R., Barik, B. & Ghosh, S. Is flood to drip irrigation a solution to groundwater depletion in the Indo-Gangetic plain?. Environ. Res. Lett. 17, 104002 (2022).Article 
    ADS 

    Google Scholar 
    Sahastrabuddhe, R., Ghosh, S., Saha, A. & Murtugudde, R. A minimalistic seasonal prediction model for Indian monsoon based on spatial patterns of rainfall anomalies. Clim. Dyn. 52, 3661–3681 (2019).Article 

    Google Scholar 
    Liang, X., Lettenmaier, D. P., Wood, E. F. & Burges, S. J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. 99, 14415 (1994).Article 
    ADS 

    Google Scholar 
    Friedl, M. A. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. (2019). https://doi.org/10.5067/MODIS/MCD12Q1.006. Accessed 22 May 2021.Myneni, R., Knyazikhin, Y. & Park, T. MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V061. NASA EOSDIS Land Processes DAAC. (2021) https://doi.org/10.5067/MODIS/MOD15A2H.061. Accessed 22 May 2021.Schaaf, C. & Wang, Z. MCD43A3 MODIS/Terra+Aqua BRDF/Albedo Daily L3 Global – 500m V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MCD43A3.006. (2015). https://www.umb.edu/spectralmass/terra_aqua_modis/v006. Accessed 22 May 2021.Didan, K., Barreto Munoz, A., Solano, R. & Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series).Liu, S.-J., Zhang, J.-H., Tian, G.-H. & Cai, D.-X. Detection Fractional Vegetation Cover Changes Using MODIS Data. in 2008 Congress on Image and Signal Processing 707–710 (IEEE, 2008). https://doi.org/10.1109/CISP.2008.46. More

  • in

    Evolution of snow algae, from cosmopolitans to endemics, revealed by DNA analysis of ancient ice

    Classification of snow algae in the ice core based on ITS2 sequencesWe used high-throughput sequencing to obtain DNA sequences of algae from 19 layers of an ice core drilled on a glacier in central Asia, dated from present time to 8000 years ago (Fig. 1 and Table S1). In total, 17,016 unique sequences (phylotypes) for the fast-evolving algal nuclear rDNA internal transcribed spacer 2 (ITS2) region were determined in the ice core, from which 290 OTUs were defined with ≥98% nt sequence identity among all OTUs.The ITS2 sequences were classified at the species level according to the genetic species concept based on secondary structural differences in the ITS2 region, which correlate with the boundaries of most biological species [38]. The ITS2 sequences from ice core samples were classified into 24 subgroups consisting of 17 chlorophycean, 5 trebouxiophycean, and 2 ulvophycean groups based on their secondary structures and BLASTn results (Fig. S1 and Tables S3–S4). The 17 subgroups of Chlorophyceae were subdivided into 10 subgroups of the Chloromonadinia clade, 1 subgroup of the Monadinia clade (recently treated as the genus Microglena [54]), 3 subgroups of the Reinhardtinia clade, 2 subgroups of the Stephanosphaerinia clade, and 1 subgroup corresponding to an unnamed group (which is related to Ploeotila sp. CCCryo 086-99) (for the clade names, see [55]). Although the Chloromonadinia clade contains several snow species belonging to Chloromonas or Chlainomonas, the 10 subgroups of the Chloromonadinia clade were considered to be Chloromonas. The 5 trebouxiophycean subgroups were composed of 2 subgroups of the Chlorella group, 1 subgroup of the Raphidonema group, 1 subgroup of the Trebouxia group, and 1 subgroup of the Neocystis group. The 2 subgroups of Ulvophyceae were closely related to the genus Chamaetrichon and Planophila, respectively. It is noted that Sanguina (‘Chlamydomonas’-snow group B [6]), Ancylonema, and Mesotaenium, which are snow algal genera found throughout the world [56, 57], were not detected in the ice core samples (Tables S3–S4).Global distribution of the Raphidonema groupTo understand the process by which snow algae form geographically specific population structures and how they migrate globally across the glaciers and snow fields, it is necessary to focus on the microbial species that inhabit the global cryosphere. Previous work elucidated that the Raphidonema group and ‘Chlamydomonas’-snow group B (Sanguina) are the cosmopolitans at both poles [6], but the latter was not detected in ice core samples examined in this study. Therefore, to elucidate the evolutionary history of the Raphidonema group, we further analyzed the ITS2 sequences obtained from the ice core sample as well as the glacier-surface samples from both poles [6] and from the mid-latitudes (samples from 10 sites, obtained in this study) (hereafter, surface samples; Table S2). Members of the Raphidonema group were detected in the older (deep core) layers of the ice core and at the glacier surface of central Asia (Fig. S1 and Tables S3–S4), as well as in the red snow samples from both poles [6]. In central Asia, the Raphidonema group was found in the Russian, Chinese, and Kyrgyz samples but was not detected in the Japanese and Tajik samples (Fig. S1 and Tables S3–S4). Combining these sequences yielded 893,649 reads and 22,389 unique sequences for subsequent detailed analysis (Tables S5–S6). The taxonomic composition of the Raphidonema communities differed among the mid-latitude, ice core, Arctic, and Antarctic samples as determined by PERMANOVA (Table S7). Most of the unique sequences in the Raphidonema group were consistent with an endemic distribution (Tables S8–S10). An average of 77% of the unique sequences of the Raphidonema group were endemic to a specific region (mid-latitude, 96%; Antarctic, 66%; Arctic, 79%), accounting for 40% of the total sequencing reads (mid-latitude, 77%; Antarctic, 74%; Arctic, 22%) (Fig. 2a, b and Tables S9–S10). This result suggested that most of the unique sequences are endemic, indicating that their dispersal has been limited to their respective regions [58,59,60,61].Fig. 2: Distribution types of the Raphidonema group obtained from each region and the ice core based on ITS2 unique sequences.Proportions of unique sequence and number of sequencing reads are shown. a Unique sequences from surface snow and ice-core samples. b Number of sequencing reads from surface snow and ice core samples. c Unique sequences from the indicated locations within the ice core. d Number of sequencing reads of the unique sequences from the indicated locations within the ice core.Full size imageNext, we analyzed the global distribution of the cosmopolitan phylotypes of the Raphidonema group, because a previous study analyzed their distribution only at the poles [6]. Only a limited number of unique sequences were distributed in all regions (mid-latitude, 1.4%; Antarctic, 5.6%; Arctic, 3.1%), accounting for a large proportion of the sequencing reads in polar regions but for only a small proportion in the mid-latitudes (mid-latitude, 2.8%; Antarctic, 20%; Arctic, 55%) (Figs. 2a, b, S2–S3, and Tables S9–S10). The distribution types of the Raphidonema group obtained from each region and the ice core were similar between the USEARCH and DADA2 analyses (Figs. 2, S4). In addition, we note that in ancient samples, post-mortem nt substitutions, such as cytosine to thymine, accumulate over many years of deposition [62], and these are not included in the DADA2 error model, which leads to the elimination of minor sequences in the DADA2 analysis. Therefore, we based our analysis on the results of the USEARCH unique sequences. These results suggested that only a few snow algae in the Raphidonema group were detected in samples from the mid-latitude regions.Snow algae of the Raphidonema group were detected in different ice core layers, corresponding to different time periods. The ice core records revealed that the distribution types of the Raphidonema group have not changed significantly for the last 8000 years, with p = 0.1924 based on a PERMANOVA between the newer (1800–2001 AD) and the older (6000–8000 years before present) layers (Fig. 2c, d). In ice core samples, 77% of the unique sequences of the Raphidonema group were detected only in the ice core samples, accounting for 23% of the total sequencing reads (Fig. S5). Although some of these unique sequences may be artifacts of the post-mortem nt substitution or sequencing errors, because we conducted sequence quality filtering and removed the majority of artifact sequences by removing the singleton clusters, most of the unique sequences in the ice core are not likely to be artifacts, but they could represent endemic phylotypes (Figs. 2a, b, S5).The cosmopolitan phylotypes were detected over a broad period as represented by ice core samples. They were present in approximately similar ratios in the newer and older layers (Fig. 2c, d). The cosmopolitan phylotypes were relatively abundant in the ice core samples (average, 4.0%; range, 0.2–13%), accounting for 13% (0.9–81% in the samples) of the total sequencing reads (Figs. 2c, d and S5).Microevolution of cosmopolitan and endemic phylotypesWe analyzed the evolutionary relationship between cosmopolitan and endemic phylotypes of the Raphidonema group among all snow surface and ice core samples. In total, 22,389 unique sequences of the Raphidonema group were clustered into 170 OTUs that were defined with ≥98% nt sequence identity among sequences within OTUs. The OTU sequences were subdivided into five subgroups (Groups A–E) based on phylogenetic analysis (Figs. S6–S11 and Tables S11–S12). Based on a previous study [63], Groups A–C and Group E were assigned to R. sempervirens and R. nivale, respectively, but Group D was not consistent with any species examined in that study (Fig. S6).The phylotypes were categorized into three subsets: the cosmopolitan phylotypes found at both poles and the mid-latitude regions; the multi-region phylotypes found in any two of the Antarctic, Arctic, and mid-latitude regions; and the endemic phylotypes found in only one of the three regions. Cosmopolitan phylotypes were found in Groups A, B, and C and accounted for 64.6% of the unique sequences. We then analyzed the dispersal of the three groups in detail.MJ networks [47] for the ITS2 sequences in each subgroup revealed that the cosmopolitan phylotypes were located at the center of the networks in Groups A and C that contained any types (endemics, multi-regions, and cosmopolitans) of the phylotypes, whereas the endemic phylotypes were considered to be derived from the cosmopolitan phylotypes (Figs. 3 and S12–S13). Moreover, the outgroup phylotypes were directly connected to the cosmopolitan phylotypes. These findings clearly showed that the cosmopolitan phylotypes were ancestral, whereas the endemic phylotypes were derived. In contrast, there were remarkable differences in the shape of the networks between Group B and the others (Groups A and C). In Group B, the Antarctic endemic phylotypes formed a distinct clade, and multi-region phylotypes seemed to be recently derived from this clade. In addition, the Arctic endemic phylotypes formed another distinct clade. These two Group-B clades split directly from a cosmopolitan phylotype (5.3% of the total sequencing reads). For Groups A and C, however, major portions of the total sequencing reads belonged to cosmopolitan phylotypes in Groups A (48.2%) and C (62.4%), and the endemic and multi-region phylotypes were directly connected to these major cosmopolitan phylotypes in a radial manner—the so-called “star-like” pattern [64]. These contrasting network shapes seem to have been formed as a consequence of the unique evolution of each of these groups. We also found that sequences from ice cores did not represent a basal position (Figs. 3 and S12–S13). This is because the haplotypes found in the modern samples have existed from times earlier than the ice core ages, due to the very small mutation numbers expected to have occurred since the ice core ages. Therefore, detected ice core ages were not included in the molecular evolution calculations of our demographic model. However, the phylogenetic networks themselves do not provide information on the evolutionary time scale. Hence, the ice core samples provide further direct evidence that Raphidonema, especially cosmopolitans belonging to this genus, persistently grew on snow and ice at least during the Holocene, and their ITS2 sequences have not changed over the last 8000 years.Fig. 3: Phylogenetic relationships among phylotypes of the Raphidonema groups.Phylotype networks for ITS2 sequences within Groups A (a), B (b), and C (c) of the Raphidonema group that include the cosmopolitan phylotypes in this study. The median-joining method was used. Circles indicate phylotypes; the size of each circle is proportional to the number of unique sequences. Each notch on the edges represents a mutation. Phylotypes are colored according to geographic region. The arrow represents the phylotype in the outgroup (see Fig. S6).Full size imageReferring to “ancestral” phylotypes as those having a longer history than other, more recently derived phylotypes, it is possible that individuals not closely related can share the same ancestral phylotype. In such cases, if genetically far-related individuals from various geographical regions share the same ancestral phylotype, they appear to be “cosmopolitan” (Fig. S14a). In order to distinguish between these “apparent cosmopolitans”, and “true cosmopolitans” that migrate globally, it is necessary to show that the cosmopolitan and endemic phylotypes have distinct demographic histories rather than being part of a continuous population sharing certain demographic dynamics (Fig. S14). Because phylotype networks are not useful for quantifying the rate(s) of microevolution, we used the coalescent model to quantify phylotype demographics [65]. As numerous phylotypes must be analyzed with this approach, we concentrated on statistical inference based on pairwise comparisons of phylotypes, for which the likelihood can be determined in a practical manner (see Materials and Methods). Histograms for the number of mismatched sites between two phylotypes chosen from a set of phylotypes, which will be called the pairwise mismatch distribution, are shown in Figs. 4 and S15. For Groups A and C, the distribution among cosmopolitans, multi-regions, and endemics was unimodal, in which the modes align from left to right with the order cosmopolitans, multi-regions, and endemics. Rogers and Harpending [48] noted that this “wave” propagation results from the expansion in size of a population, which leads to large mismatches, and the mode shifts to the right (see Fig. 2 of [48]). As time passes, the mode shifts to the left and eventually returns to the origin, i.e., representing a population that has not undergone an expansion event. Rogers and Harpending obtained an approximate solution for the wave and fitted the solution to human mitochondrial sequence data. We improved upon their method based on the coalescent model (see Materials and Methods) and applied it to the ITS2 sequence data for snow algae.Fig. 4: Mismatch distribution based on the number of pairwise differences in each distribution type in Raphidonema groups.The lines represent the observed number of pairwise differences in each distribution type (cosmopolitan, multi-region, endemic) within the Raphidonema Groups A (a), B (b) and C (c). Calculations were performed for all distribution types of Raphidonema Groups A and C, for which various cosmopolitan phylotypes were detected. On the other hand, calculations for only multi-region and endemic phylotypes were performed for Raphidonema group B, because no variation was found in cosmopolitan phylotypes.Full size imageFor Group A, when we fit the single demographic model to all phylotypes, the log-likelihood was –414,487. In contrast, when we fit the demographic model to each subset, that is, cosmopolitans, multi-regions, and endemics, separately, the log-likelihood was –341,964. Because the latter is larger than the former, we fit the model to each subset of phylotypes separately. For Group C, when we fit the demographic model to the cosmopolitans, multi-regions, and endemics separately, the log-likelihood was –142,106, which is larger than the log-likelihood, –218,080, when we fit the single demographic model to all phylotypes. In contrast to Groups A and C then, we fit the single demographic model to all phylotypes of Group B because the log-likelihood, –196,070, was larger than the log-likelihood, –220,145, when we fit the demographic model to the cosmopolitans, multi-regions, and endemics separately. These results suggested that cosmopolitans, multi-regions, and endemics experienced different demographic histories in Groups A and C, whereas they had the same demographic history in Group B (Table S13). These results indicate the cosmopolitans in Group A and C are true cosmopolitans, whereas the those in Group B can be regarded as an apparent cosmopolitan.The ML estimates of (tau = 2ut_0), (theta _0 = 2N_0u), and (theta _1 = 2N_1u) are shown in Table S13 with standard deviation values. The population expanded t years ago, with the size before and after the expansion being represented by N0 and N1, respectively. The mutation rate (u) was assumed to be 7.9 × 10–8/ sequence/generation, and the generation interval was assumed to be 24 days (Materials and Methods). In Group A, for the cosmopolitans, the estimates of t, N0, and N1 were (33.8/(2 times 7.9) times 10^8 times {textstyle{{24} over {365}}} = 1.4 times 10^7) years, ((0.108 – 0.010)/(2 times 7.9) times 10^8 = (6.8 – 0.63) times 10^5), and ((0.217)/(2 times 7.9) times 10^8 = 1.4 times 10^6), respectively. In the same way, we computed estimates of t, N0, and N1 of other phylotypes and other groups (Table S14). For the endemics, the respective values were 9.2 × 106 years, 80, and 2.1 × 107, and the values were 4.6 × 106 years, 139, and 1.5 × 107 for the multi-regions. Taking into account the minimum and maximum ranges of the mutation rates per generation as well as the generation intervals, t for cosmopolitans was 3.6 × 106–4.0 × 107 years ago, and t for endemics was 2.3 × 106–2.6 × 107 years ago (Table S14). These results suggested that the cosmopolitans existed at least 1.4 × 107 years ago, and the endemics were derived from the cosmopolitans 9.2 × 106 years ago. The size of the endemics expanded 2.6 × 105-fold, which may have resulted from extensive dispersal. The multi-regions tended to mimic the endemics. Note that our demographic model was simplified to avoid overparameterization. In reality, considering the branching patterns of the MJ network, it is plausible that the endemic phylotypes have been repetitively and continuously derived from the cosmopolitans in multiple lineages—from 9.2 × 106 years ago to the present. In the same way, as for Group C, our results suggested that the cosmopolitan population expanded 3.9-fold ~3.2 × 106 years ago, and the endemics were derived from the cosmopolitans 1.9 × 105 years ago. The size of the endemics expanded 59-fold. In contrast to the phylotypes of Groups A and C, those of Group B experienced no significant expansion (Supplementary Results). In Groups A and C, the derived endemics (and multi-regions) expanded greatly as compared with the ancestral cosmopolitans (Table S14). These extraordinary expansions constitute evidence for local adaptation by the endemic/multi-region populations. In contrast, there was no evidence of local adaptation in Group B. The mismatch distribution of the entire Group B (multi-regions + endemics) showed a multimodal pattern (Fig. 4), which is present in the populations with stable sizes for a long period. When the populations finally reach equilibrium, the mismatch distributions show the exponential distribution [48]. Based on our ML estimates (Table S14), the historical population of Group B has been stable. More