More stories

  • in

    Two potential equilibrium states in long-term soil respiration activity of dry grasslands are maintained by local topographic features

    Spatial patterns of stability proxies and background variables
    Figure 2 a, b show the spatial distribution of our two proxy variables, the average rank of Rs per position (rankRs) and of the range of the ranks per position (rangeRs) in kriged maps. The middle to southern areas were found to have the largest, whilst the north-eastern areas the smallest rankRs values, whereas a slightly different pattern was characteristic for rangeRs with some additional north-western large values. Similarly, larger average soil organic carbon content (meanSOC) and average soil water content (meanSWC) (Fig. 2 c, d) were detected at the western-middle-southern regions and smaller at the north-eastern part of the study site.
    Figure 2

    Kriged patterns of stability proxies, rankRs (a) and rangeRs (b), as well as of background factors, meanSOC (%, c) and meanSWC (%, d).

    Full size image

    Correlations between stability proxies and background variables along DEMs: entire dataset
    We investigated the potential direct effects of the different terrain attributes (local mean elevation (mALT), standard deviation of elevation (SD), topographic position index (TPI), slope (Sl), Easterness and Northness (East, North)) on the spatial distributions of our proxy variables by using the terrain attributes originating from differently smoothed DEM rasters. DEM1 was the original, 0.2 m resolution model, while DEMs 2–6 were progressively smoothed by a factor of two resulting in different resolution DEM rasters (DEM2: 0.4 m, DEM3: 0.8 m, DEM4: 1.6 m, DEM5: 3.2 m, DEM6: 6.4 m, respectively), and finally DEM7 met the resolution of the field measuring campaigns (10 m). The terrain attributes were filtered out from the rasters for the 78 measuring positions of the sampling grid.
    On the basis of the correlation analysis we found an important difference in terrain attribute features between DEM 5 and 6, especially in SD, Sl, North and East. All subsequent results are then based on DEMs 1–5, which were found to be more similar to each other and to the original DEM1. The maps of terrain attributes with the box blur kernel from DEM1-5 can be found in the Supplementary Information (SI) together with the descriptions and calculations. As we couldn’t find any of the blur kernels superior to the other when considering correlations, the results hereafter are only presented for the box blur kernel calculations for simplicity.
    When we considered the entire dataset (named hereafter: “A” dataset), we could only find significant correlation between rangeRs and TPI at less smoothed DEMs but the correlation was very weak (black symbols and line in Fig. 3).
    Figure 3

    Direct correlation between TPI and stability proxy, rangeRs at less smoothed DEMs, DEM1-2 for datasets A (black symbols and line) and S (blue symbols and line, see the information later on). The correlations were significant at p = 0.0076 and p  = 0.0172 levels, although they were weak, r2 = 0.09, r2 = 0.42 for A and S (see the information later on), respectively.

    Full size image

    Any other correlation between the proxies and the terrain attributes could only be deduced indirectly from the positive correlations between rankRs and meanSOC, meanSWC (cf. Table 1b). These correlations were scale-independent, i.e., we detected them at every DEMs. In general, the larger the soil carbon content and soil moisture at a position (cf. Figure 2c,d, showing quite similar patterns to the proxy patterns in the figure upper row), the larger the Rs activity detected and the opposite was true for lower carbon content and soil moisture positions.
    Table 1 (a) Statistically significant (p  More

  • in

    Structures spread across our seas

    1.
    Duarte, C. M. et al. Front. Ecol. Environ. 11, 91–97 (2012).
    Article  Google Scholar 
    2.
    Firth, L. B. et al. in Oceanography and Marine Biology: An Annual Review Vol. 54 (eds Hughes, R. N. et al.) 193–269 (Taylor & Francis, 2016).

    3.
    Bugnot, A. B. et al. Nat. Sustain. https://doi.org/10.1038/s41893-020-00595-1 (2020).

    4.
    Bishop, M. J. et al. J. Exp. Mar. Biol. Ecol. 492, 7–30 (2017).
    Article  Google Scholar 

    5.
    Dong, Y., Huang, X., Wang, W., Li, Y. & Wang, J. et al. Divers. Distrib. 22, 731–744 (2016).
    Article  Google Scholar 

    6.
    Nagelkerken, I., Doney, S. C. & Munday, P. L. Oceanography and Marine Biology: An Annual Review Vol. 57 (eds Hawkins, S. J. et al.) 229–264 (Taylor & Francis, 2019).

    7.
    Hawkins, S. J. et al. Mar. Pollut. Bull. 156, 111150 (2020).
    CAS  Article  Google Scholar 

    8.
    Bayraktarov, E. et al. Ecol. Appl. 26, 1055–1074 (2016).
    Article  Google Scholar 

    9.
    Jones, P. J. S., Lieberknecht, L. M. & Qiu, W. Mar. Policy 71, 256–264 (2016).
    Article  Google Scholar 

    10.
    Bracewell, S. A., Spencer, M., Marrs, R. H., Iles, M. & Robinson, L. A. PLoS ONE 7, e48863 (2012).
    CAS  Article  Google Scholar 

    11.
    Evans, A. J. et al. Environ. Sci. Policy 91, 60–69 (2019).
    Article  Google Scholar 

    12.
    Firth, L. B. et al. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13683 (2020). More

  • in

    Ecological restoration impact on total terrestrial water storage

    1.
    Bryan, B. A. et al. China’s response to a national land-system sustainability emergency. Nature 559, 193–204 (2018).
    CAS  Google Scholar 
    2.
    Ouyang, Z. et al. Improvements in ecosystem services from investments in natural capital. Science 352, 1455–1459 (2016).
    CAS  Google Scholar 

    3.
    Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).
    Google Scholar 

    4.
    Tong, X. et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 1, 44–50 (2018).
    Google Scholar 

    5.
    Lu, F. et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl Acad. Sci. USA 115, 4039 (2018).
    CAS  Google Scholar 

    6.
    Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 6, 1019 (2016).
    Google Scholar 

    7.
    Jia, X., Shao, M. A., Zhu, Y. & Luo, Y. Soil moisture decline due to afforestation across the Loess Plateau, China. J. Hydrol. 546, 113–122 (2017).
    Google Scholar 

    8.
    Chen, Y. et al. Balancing green and grain trade. Nat. Geosci. 8, 739–741 (2015).
    Google Scholar 

    9.
    Tong, X. et al. Forest management in southern China generates short term extensive carbon sequestration. Nat. Commun. 11, 129 (2020).
    CAS  Google Scholar 

    10.
    Jackson, R. B. et al. Trading water for carbon with biological carbon sequestration. Science 310, 1944–1947 (2005).
    CAS  Google Scholar 

    11.
    Li, Y. et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 4, eaar4182 (2018).
    Google Scholar 

    12.
    Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).
    CAS  Google Scholar 

    13.
    Branch, O. & Wulfmeyer, V. Deliberate enhancement of rainfall using desert plantations. Proc. Natl Acad. Sci. USA 116, 18841–18847 (2019).
    CAS  Google Scholar 

    14.
    Ellison, D. et al. Trees, forests and water: cool insights for a hot world. Glob. Environ. Change 43, 51–61 (2017).
    Google Scholar 

    15.
    McDonnell, J. J. et al. Water sustainability and watershed storage. Nat. Sustain. 1, 378–379 (2018).
    Google Scholar 

    16.
    Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).
    CAS  Google Scholar 

    17.
    Mirzabaev, A. et al. in IPCC Special Report on Climate Change and Land (eds Akhtar-Schuster, M., Driouech, F. & Sankaran, M.) Ch. 3 (IPCC, Cambridge Univ. Press, 2019).

    18.
    Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).
    CAS  Google Scholar 

    19.
    Scanlon, B. R. et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl Acad. Sci. USA 115, E1080 (2018).
    CAS  Google Scholar 

    20.
    Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F. & Watkins, M. M. GRACE Measurements of Mass Variability in the Earth System. Science 305, 503–505 (2004).
    CAS  Google Scholar 

    21.
    Tapley, B. D. et al. Contributions of GRACE to understanding climate change. Nat. Clim. Change 9, 358–369 (2019).
    Google Scholar 

    22.
    Tian, H. et al. Response of vegetation activity dynamic to climatic change and ecological restoration programs in Inner Mongolia from 2000 to 2012. Ecol. Eng. 82, 276–289 (2015).
    Google Scholar 

    23.
    Zhang, Z. & Huisingh, D. Combating desertification in China: monitoring, control, management and revegetation. J. Clean. Prod. 182, 765–775 (2018).
    Google Scholar 

    24.
    Huang, Y., Wang, N.-a, He, T., Chen, H. & Zhao, L. Historical desertification of the Mu Us Desert, Northern China: A multidisciplinary study. Geomorphology 110, 108–117 (2009).
    Google Scholar 

    25.
    Xu, D. Y., Kang, X. W., Zhuang, D. F. & Pan, J. J. Multi-scale quantitative assessment of the relative roles of climate change and human activities in desertification–a case study of the Ordos Plateau, China. J. Arid Environ. 74, 498–507 (2010).
    Google Scholar 

    26.
    Yan, F., Wu, B. & Wang, Y. Estimating spatiotemporal patterns of aboveground biomass using Landsat TM and MODIS images in the Mu Us Sandy Land, China. Agric. For. Meteorol. 200, 119–128 (2015).
    Google Scholar 

    27.
    Li, S. et al. Vegetation changes in recent large-scale ecological restoration projects and subsequent impact on water resources in China’s Loess Plateau. Sci. Total Environ. 569–570, 1032–1039 (2016).
    Google Scholar 

    28.
    Xu, Z. et al. Recent greening (1981–2013) in the Mu Us dune field, north-central China, and its potential causes. Land Degrad. Dev. 29, 1509–1520 (2018).
    Google Scholar 

    29.
    Poulter, B. et al. Plant functional type classification for earth system models: results from the European Space Agency’s Land Cover Climate Change Initiative. Geosci. Model Dev. 8, 2315–2328 (2015).
    Google Scholar 

    30.
    Xu, Z., Mason, J. A. & Lu, H. Vegetated dune morphodynamics during recent stabilization of the Mu Us dune field, north-central China. Geomorphology 228, 486–503 (2015).
    Google Scholar 

    31.
    Review of the Kubuqi Ecological Restoration Project: A Desert Green Economy Pilot Initiative (United Nations Environment Programme, 2015).

    32.
    Cheng, D.-h et al. Estimation of groundwater evaportranspiration using diurnal water table fluctuations in the Mu Us Desert, northern China. J. Hydrol. 490, 106–113 (2013).
    Google Scholar 

    33.
    Yu, X., Huang, Y., Li, E., Li, X. & Guo, W. Effects of rainfall and vegetation to soil water input and output processes in the Mu Us Sandy Land, northwest China. CATENA 161, 96–103 (2018).
    Google Scholar 

    34.
    Li, Q. et al. Feasibility of the combination of CO2 Geological storage and saline water development in sedimentary basins of China. Energy Proc. 37, 4511–4517 (2013).
    CAS  Google Scholar 

    35.
    Xie, X., Xu, C., Wen, Y. & Li, W. Monitoring groundwater storage changes in the Loess Plateau using GRACE satellite gravity data, hydrological models and coal mining data. Remote Sens. 10, 605 (2018).
    Google Scholar 

    36.
    Griffin-Nolan, R. J. et al. Legacy effects of a regional drought on aboveground net primary production in six central US grasslands. Plant Ecol. 219, 505–515 (2018).
    Google Scholar 

    37.
    Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).
    CAS  Google Scholar 

    38.
    Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).
    Google Scholar 

    39.
    Cho, S., Ser-Oddamba, B., Batkhuu, N.-O. & Seok Kim, H. Comparison of water use efficiency and biomass production in 10-year-old Populus sibirica and Ulmus pumila plantations in Lun soum, Mongolia. For. Sci. Technol. 15, 147–158 (2019).
    Google Scholar 

    40.
    Swenson, S. C. & Lawrence, D. M. A GRACE-based assessment of interannual groundwater dynamics in the Community Land Model. Water Resour. Res. 51, 8817–8833 (2015).
    Google Scholar 

    41.
    Guo, J., Huang, G., Wang, X., Li, Y. & Lin, Q. Investigating future precipitation changes over China through a high-resolution regional climate model ensemble. Earth’s Future 5, 285–303 (2017).
    Google Scholar 

    42.
    Gong, T., Lei, H., Yang, D., Jiao, Y. & Yang, H. Monitoring the variations of evapotranspiration due to land use/cover change in a semiarid shrubland. Hydrol. Earth Syst. Sci. 21, 863–877 (2017).
    Google Scholar 

    43.
    Feng, W. et al. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 49, 2110–2118 (2013).
    Google Scholar 

    44.
    Famiglietti, J. S. Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett. 38, L03403 (2011).
    Google Scholar 

    45.
    Wang, J. et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 11, 926–932 (2018).
    CAS  Google Scholar 

    46.
    Chen, X. et al. Detecting significant decreasing trends of land surface soil moisture in eastern China during the past three decades (1979–2010). J. Geophys. Res. Atmos. 121, 5177–5192 (2016).
    Google Scholar 

    47.
    Peng, D. & Zhou, T. Why was the arid and semiarid northwest China getting wetter in the recent decades? J. Geophys. Res. Atmos. 122, 9060–9075 (2017).
    Google Scholar 

    48.
    Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Change 7, 220–226 (2017).
    Google Scholar 

    49.
    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645 (2017).
    CAS  Google Scholar 

    50.
    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
    CAS  Google Scholar 

    51.
    Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120, 2648–2671 (2015).
    Google Scholar 

    52.
    Wiese, D. N., Landerer, F. W. & Watkins, M. M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour. Res. 52, 7490–7502 (2016).
    Google Scholar 

    53.
    Myneni, R. B., Hall, F. G., Sellers, P. J. & Marshak, A. L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens. 33, 481–486 (1995).
    Google Scholar 

    54.
    Glenn, E. P., Huete, A. R., Nagler, P. L., Hirschboeck, K. K. & Brown, P. Integrating remote sensing and ground methods to estimate evapotranspiration. Crit. Rev. Plant Sci. 26, 139–168 (2007).
    Google Scholar 

    55.
    Pinzon, J. & Tucker, C. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).
    Google Scholar 

    56.
    Fan, X. & Liu, Y. Multisensor normalized difference vegetation index intercalibration: A comprehensive overview of the causes of and solutions for multisensor differences. IEEE Geosci. Remote Sens. Mag. 6, 23–45 (2018).
    Google Scholar 

    57.
    Huffman, G. J. et al. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38–55 (2007).
    Google Scholar 

    58.
    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
    Google Scholar 

    59.
    Zhou, Y., Shi, C., Du, J. & Fan, X. Characteristics and causes of changes in annual runoff of the Wuding River in 1956–2009. Environ. Earth Sci. 69, 225–234 (2013).
    Google Scholar 

    60.
    Rodell, M. Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett. 31, L20504 (2004).
    Google Scholar 

    61.
    Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W. & Sitch, S. Terrestrial vegetation and water balance—hydrological evaluation of a dynamic global vegetation model. J. Hydrol. 286, 249–270 (2004).
    CAS  Google Scholar 

    62.
    Smith, B. et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11, 2027–2054 (2014).
    Google Scholar 

    63.
    Haxeltine, A. & Prentice, I. C. BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Glob. Biogeochem. Cycles 10, 693–709 (1996).
    CAS  Google Scholar 

    64.
    Prestele, R. et al. Current challenges of implementing anthropogenic land-use and land-cover change in models contributing to climate change assessments. Earth Syst. Dyn. 8, 369–386 (2017).
    Google Scholar 

    65.
    Piao, S. et al. Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nat. Geosci. 11, 739–743 (2018).
    CAS  Google Scholar 

    66.
    Tian, H. et al. The Global N2O Model Intercomparison Project. Bull. Am. Meteorol. Soc. 99, 1231–1251 (2018).
    Google Scholar 

    67.
    Etheridge, D. M. et al. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res. Atmos. 101, 4115–4128 (1996).
    CAS  Google Scholar 

    68.
    Keeling, C. D., Whorf, T. P., Wahlen, M. & van der Plichtt, J. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666–670 (1995).
    CAS  Google Scholar  More

  • in

    Decoupling livestock and crop production at the household level in China

    1.
    Griggs, D. et al. Sustainable development goals for people and planet. Nature 495, 305–307 (2013).
    CAS  Article  Google Scholar 
    2.
    FAOSTAT: FAO Statistical Databases (FAO, 2020).

    3.
    Bai, Z. et al. China’s livestock transition: driving forces, impacts, and consequences. Sci. Adv. 4, r8534 (2018).
    Article  Google Scholar 

    4.
    Oenema, O. Nitrogen budgets and losses in livestock systems. Int. Congr. Ser. 1293, 262–271 (2006).
    Article  Google Scholar 

    5.
    Sutton, M. A. et al. Our Nutrient World: The Challenge to Produce More Food and Energy with Less Pollution (Centre for Ecology and Hydrology, 2013).

    6.
    van Grinsven, H. J. M. et al. Reducing external costs of nitrogen pollution by relocation of pig production between regions in the European Union. Reg. Environ. Change 18, 2403–2415 (2018).
    Article  Google Scholar 

    7.
    Sutton, M. A. et al. Too much of a good thing. Nature 472, 159–161 (2011).
    CAS  Article  Google Scholar 

    8.
    Gu, B., Zhang, X., Bai, X., Fu, B. & Chen, D. Four steps to food security for swelling cities. Nature 566, 31–33 (2019).
    CAS  Article  Google Scholar 

    9.
    Zhang, C. et al. Rebuilding the linkage between livestock and cropland to mitigate agricultural pollution in China. Resour. Conserv Recycl. 144, 65–73 (2019).
    Article  Google Scholar 

    10.
    Gu, B., Ju, X., Chang, S. X., Ge, Y. & Chang, J. Nitrogen use efficiencies in Chinese agricultural systems and implications for food security and environmental protection. Reg. Environ. Change 17, 1217–1227 (2017).
    Article  Google Scholar 

    11.
    Gu, B., Ju, X., Chang, J., Ge, Y. & Vitousek, P. M. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl Acad. Sci. USA 112, 8792–8797 (2015).
    CAS  Article  Google Scholar 

    12.
    Ma, L. et al. Exploring future food provision scenarios for China. Environ. Sci. Technol. 53, 1385–1393 (2018).
    Article  Google Scholar 

    13.
    Wu, Y. et al. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl Acad. Sci. USA 115, 7010–7015 (2018).
    CAS  Article  Google Scholar 

    14.
    Ju, X., Gu, B., Wu, Y. & Galloway, J. N. Reducing China’s fertilizer use by increasing farm size. Glob. Environ. Change 41, 26–32 (2016).
    Article  Google Scholar 

    15.
    Fan, L. et al. Decreasing farm number benefits the mitigation of agricultural non-point source pollution in China. Environ. Sci. Pollut. Res. Int. 26, 464–472 (2019).
    Article  Google Scholar 

    16.
    Naylor, R. Losing the links between livestock and land. Science 310, 1621–1622 (2005).
    CAS  Article  Google Scholar 

    17.
    Willems, J. et al. Why Danish pig farms have far more land and pigs than Dutch farms? Implications for feed supply, manure recycling and production costs. Agric. Syst. 144, 122–132 (2016).
    Article  Google Scholar 

    18.
    Garnier, J. et al. Reconnecting crop and cattle farming to reduce nitrogen losses to river water of an intensive agricultural catchment (Seine basin, France): past, present and future. Environ. Sci. Policy 63, 76–90 (2016).
    CAS  Article  Google Scholar 

    19.
    National Data (National Bureau of China, 2019).

    20.
    Bai, X., Shi, P. & Liu, Y. Society: realizing China’s urban dream. Nature 509, 158–160 (2014).
    Article  Google Scholar 

    21.
    Zheng, C., Liu, Y., Bluemling, B., Mol, A. P. J. & Chen, J. Environmental potentials of policy instruments to mitigate nutrient emissions in Chinese livestock production. Sci. Total Environ. 502, 149–156 (2015).
    CAS  Article  Google Scholar 

    22.
    Cui, Z. et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363–366 (2018).
    CAS  Article  Google Scholar 

    23.
    Bai, Z. et al. China’s pig relocation in balance. Nat. Sustain. 2, 888 (2019).
    Article  Google Scholar 

    24.
    Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).
    CAS  Article  Google Scholar 

    25.
    van Grinsven, H. J. M. et al. Costs and benefits of nitrogen for Europe and implications for mitigation. Environ. Sci. Technol. 47, 3571–3579 (2013).
    Article  Google Scholar 

    26.
    Oenema, O. et al. in The European Nitrogen Assessment: Sources, Effects and Policy Perspectives (eds M. A. Sutton et al.) 62–81 (Cambridge Univ. Press, 2011).

    27.
    The Technical Guidelines for Measuring the Bearing Capacity of Soil Contaminated by Livestock and Poultry Manure (Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2018).

    28.
    Gu, B. et al. Toward a generic analytical framework for sustainable nitrogen management: application for China. Environ. Sci. Technol. 53, 1109–1118 (2019).
    CAS  Article  Google Scholar  More

  • in

    Incorporating hydrology into climate suitability models changes projections of malaria transmission in Africa

    1.
    World Health Organisation. World Malaria Report 2018 (World Health Organization, Geneva, 2018).
    2.
    Caminade, C. et al. Impact of climate change on global malaria distribution. Proc. Natl Acad. Sci. 111, 3286–3291 (2014).
    ADS  CAS  PubMed  Google Scholar 

    3.
    Shapiro, L. L., Whitehead, S. A. & Thomas, M. B. Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria. PLoS Biol. 15, 2003489 (2017).
    Google Scholar 

    4.
    Jepson, W. F., Moutia, A. & Courtois, C. The malaria problem in Mauritius: the binomics of Mauritian anophelines. Bull. Entomol. Res. 38, 177–208 (1947).
    CAS  PubMed  Google Scholar 

    5.
    Waite, J. L., Suh, E., Lynch, P. A. & Thomas, M. B. Exploring the lower thermal limits for development of the human malaria parasite, Plasmodium falciparum. Biol. Lett. 15, 20190275 (2019).
    PubMed  PubMed Central  Google Scholar 

    6.
    Bayoh, M. N. & Lindsay, S. W. Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bull. Entomol. Res. 93, 375–381 (2003).
    CAS  PubMed  Google Scholar 

    7.
    Depinay, J. M. et al. A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malar. J. 3, 29 (2004).
    PubMed  PubMed Central  Google Scholar 

    8.
    Mordecai, E. A. et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol. Lett. 16, 22–30 (2012).
    PubMed  Google Scholar 

    9.
    Craig, M. H., Snow, R. W. & Le Sueur, D. Climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol. Today 15, 105–111 (1999).
    CAS  PubMed  Google Scholar 

    10.
    Parham, P. E. & Michael, E. Modeling the effects of weather and climate change on malaria transmission. Environ. Health Perspect. 118, 620–626 (2010).
    PubMed  Google Scholar 

    11.
    Ryan, S. J. et al. Mapping physiological suitability limits for malaria in Africa under climate change. Vector-Borne Zoonotic Dis. 15, 718–725 (2015).
    PubMed  PubMed Central  Google Scholar 

    12.
    Smith, M. W., Macklin, M. G. & Thomas, C. J. Hydrological and geomorphological controls of malaria transmission. Earth Sci. Rev. 116, 109–127 (2013).
    ADS  Google Scholar 

    13.
    Bomblies, A., Duchemin, J. B. & Eltahir, E. A. Hydrology of malaria: model development and application to a Sahelian village. Water Resour. Res. 44, W12445 (2008).
    ADS  Google Scholar 

    14.
    Yamana, T. K., Bomblies, A. & Eltahir, E. A. Climate change unlikely to increase malaria burden in West Africa. Nat. Clim. Change 6, 1009–1013 (2016).
    ADS  Google Scholar 

    15.
    Small, J., Goetz, S. J. & Hay, S. I. Climatic suitability for malaria transmission in Africa, 1911–1995. Proc. Natl Acad. Sci. USA 100, 15341–15345 (2003).
    ADS  CAS  PubMed  Google Scholar 

    16.
    Thomas, C. J., Davies, G. & Dunn, C. E. Mixed picture for changes in stable malaria distribution with future climate in Africa. Trends Parasitol. 20, 216–220 (2004).
    PubMed  Google Scholar 

    17.
    Ebi, K. L. et al. Climate suitability for stable malaria transmission in Zimbabwe under different climate change scenarios. Clim. Change 73, 375–393 (2005).
    ADS  Google Scholar 

    18.
    Van Lieshout, M., Kovats, R. S., Livermore, M. T. J. & Martens, P. Climate change and malaria: analysis of the SRES climate and socio-economic scenarios. Glob. Environ. Change 14, 87–99 (2004).
    Google Scholar 

    19.
    Kiszewski, A. et al. A global index representing the stability of malaria transmission. Am. J. Trop. Med. Hyg. 70, 486–498 (2004).
    PubMed  Google Scholar 

    20.
    Ermert, V., Fink, A. H., Jones, A. E. & Morse, A. P. Development of a new version of the Liverpool Malaria Model. II. Calibration and validation for West Africa. Malar. J. 10, 62 (2011).
    PubMed  PubMed Central  Google Scholar 

    21.
    Martens, W. J. M., Niessen, L. W., Rotmans, J. & McMichael, A. J. Potential impacts of global climate change on malaria risk. Environ. Health Perspect. 103, 458–464 (1995).
    CAS  PubMed  PubMed Central  Google Scholar 

    22.
    Tanser, F., Sharp, B. L. & Le Sueur, D. Potential effect of climate change on malaria transmission in Africa. Lancet 362, 1792–9178 (2003).
    PubMed  Google Scholar 

    23.
    Garnham, P. C. C. The incidence of malaria at high altitudes. J. Malar. Soc. 7, 275–284 (1948).
    CAS  Google Scholar 

    24.
    Lindsay, S. W., Parson, L. & Thomas, C. J. Mapping the ranges and relative abundance of the two principal African malaria vectors, Anopheles gambiae sensu stricto and An. arabiensis, using climate data. Proc. R. Soc. B Biol. Sci. 265, 847–854 (1998).
    CAS  Google Scholar 

    25.
    Mabaso, M. L., Craig, M., Ross, A. & Smith, T. Environmental predictors of the seasonality of malaria transmission in Africa: the challenge. Am. J. Trop. Med. Hyg. 76, 33–38 (2007).
    PubMed  Google Scholar 

    26.
    Kibret, S. et al. Malaria impact of large dams in sub-Saharan Africa: maps, estimates and predictions. Malar. J. 14, 339 (2015).
    PubMed  PubMed Central  Google Scholar 

    27.
    Lysenko, A. J. & Semashko, I. N. in Itogi Nauki: Medicinskaja Geografija (ed. Lebedew, A. W.) 25–146 (Academy of Sciences, Moscow, 1968) (in Russian).

    28.
    Ageep, T. B. et al. Spatial and temporal distribution of the malaria mosquito Anopheles arabiensis in northern Sudan: influence of environmental factors and implications for vector control. Malar. J. 8, 123 (2009).
    PubMed  PubMed Central  Google Scholar 

    29.
    Fuller, D. O., Parenti, M. S., Hassan, A. N. & Beier, J. C. Linking land cover and species distribution models to project potential ranges of malaria vectors: an example using Anopheles arabiensis in Sudan and Upper Egypt. Malar. J. 11, 264 (2012).
    PubMed  PubMed Central  Google Scholar 

    30.
    Gemperli, A., Vounatsou, P., Sogoba, N. & Smith, T. Malaria mapping using transmission models: application to survey data from Mali. Am. J. Epidemiol. 163, 289–297 (2005).
    PubMed  Google Scholar 

    31.
    Snow, R. W., Noor, A. M. & Hay, S. I. Malaria in Somalia: Assembling the Evidence and Modeling Risks (University of Oxford, UK, 2006).

    32.
    Hulme, M., Doherty, R., Ngara, T., New, M. & Lister, D. African climate change: 1900–2100. Clim. Res. 17, 145–168 (2001).
    Google Scholar 

    33.
    Tierney, J. E., Ummenhofer, C. C. & de Menocal, P. B. Past and future rainfall in the Horn of Africa. Sci. Adv. 1, e1500682 (2015).
    ADS  PubMed  PubMed Central  Google Scholar 

    34.
    Reiter, P. Global warming and malaria: knowing the horse before hitching the cart. Malar. J. 7, S3 (2008).
    PubMed  PubMed Central  Google Scholar 

    35.
    Gething, P. et al. Climate change and the global malaria recession. Nature 465, 342–345 (2010).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Yamazaki, D., Kanae, S., Kim, H. & Oki, T. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resour. Res. 47, W04501 (2011).
    ADS  Google Scholar 

    37.
    Hazeleger, W. et al. EC-Earth V2.2: description and validation of a new seamless earth system prediction model. Clim. Dyn. 39, 2611–2629 (2012).
    Google Scholar 

    38.
    Alfieri, L. et al. Global projections of river flood risk in a warmer world. Earth’s Future 5, 171–182 (2017).
    ADS  Google Scholar 

    39.
    Muerth, M. J. et al. On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff. Hydrol. Earth Syst. Sci. 17, 1189–1204 (2013).
    ADS  Google Scholar 

    40.
    Hirpa, F. A. et al. Streamflow response to climate change in the Greater Horn of Africa. Clim. Change 156, 341–363 (2019).
    ADS  Google Scholar 

    41.
    van der Knijff, J. M., Younis, J. & de Roo, A. P. J. LISFLOOD: a GIS-based distributed model for river basin scale water balance and flood simulation. Int. J. Geograph. Inf. Sci. 24, 189–212 (2010).
    Google Scholar 

    42.
    Burek, P., van der Knijff, J. & de Roo, A. P. J. LISFLOOD, Distributed Water Balance and Flood Simulation Model Revised User Manual (Publ. Off., Luxembourg, 2013).

    43.
    Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos, Trans. Am. Geophys. Union 89, 93–94 (2008).
    ADS  Google Scholar 

    44.
    Wu, H. et al. A new global river network database for macroscale hydrologic modeling. Water Resour. Res. 48, W09701 (2012).
    ADS  Google Scholar 

    45.
    Hengl, T. et al. SoilGrids1km—global soil information based on automated mapping. PLoS ONE 9, e105992 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    46.
    Paaijmans, K. P., Takken, W., Githeko, A. K. & Jacobs, A. F. G. The effect of water turbidity on the near-surface water temperature of larval habitats of the malaria mosquito Anopheles gambiae. Int. J. Biometeorol. 52, 747–753 (2008).
    ADS  CAS  PubMed  Google Scholar 

    47.
    Thomas, C. J., Cross, D. E. & Bøgh, C. Landscape movements of Anopheles gambiae malaria vector mosquitoes in rural Gambia. PLoS ONE 8, e68679 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    48.
    Worldpop. Africa Continental Population Datasets (2000–2020) v2.0. https://doi.org/10.5258/SOTON/WP00004 (2016).

    49.
    Worldpop. Africa Continental age/sex structure Population Datasets 2000/05/10/15/20 V5.0. https://www.worldpop.org/geodata/summary?id=1276 (2016).

    50.
    James, W. H. et al. Gridded birth and pregnancy datasets for Africa, Latin America and the Caribbean. Sci. Data 5, 180090 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019 Online ed (United Nations, 2019).

    52.
    Smith, M. W. et al. LIS-MAL Estimates of Hydro-Climatic Suitability for Malaria Transmission in Africa (1971–2100). [Dataset]. https://doi.org/10.5518/786 (University of Leeds, 2020). More

  • in

    The archives are half-empty: an assessment of the availability of microbial community sequencing data

    According to an initial keyword search, we selected the 17 most popular microbial ecology-related journals, as these were more likely to have sequence-specific data deposition instructions or requirements. We surveyed all the articles published in these journals between January 2015 and March 2019 (n = 26,927 articles, Supplementary Table S1), as concerns over data deposition practices began to grow in 201514 and were soon followed by stricter standards for data availability12. A custom-built pattern-based text extraction algorithm followed by manual curation, we selected those studies which performed 16S rRNA gene amplicon sequencing and listed INSDC-compliant accession numbers (n = 2015, Supplementary Table S1; 145,203 samples).
    To confirm that our parsing algorithm did not miss accession numbers in articles containing 16S rRNA gene amplicon sequencing, we randomly selected 150 articles which mentioned 16S rRNA, but for which no accession numbers were detected, for manual inspection. Of these, one contained a misspelled accession number, two had archived their sequences in unconventional repositories (Google Drive and GEO, a gene expression database, Supplementary Data 2), and 19 were identified as having performed 16S rRNA gene amplicon sequencing, but had not included any reference to the data. We found no cases in which accession numbers or sequence data were stored in supplementary materials. From this group, we estimate that 18% of the studies in our database (n = 469) performed 16S rRNA gene amplicon sequencing but did not provide access to the data (Fig. 1a). Four studies mentioned deposition data in dbGaP18, and we could verify the existence of three of these studies. We found that an additional 6.5% of the studies had deposited their data in the Qiita19, MG-RAST20, and figshare databases (n = 14, n = 134, and n = 24 studies, respectively). Of the estimated 2,656 studies employing 16S rRNA gene amplicon sequencing, 75.9% deposited their data to an INSDC database in the period studied (Fig. 1a).
    Fig. 1: Popular locations for data storage.

    Data for all studies which contained 16S rRNA amplicon sequencing (a), and the V3–V4 subset (b); n = 2656 and n = 635 studies, respectively. For the entirety of the study, studies which contained amplicon sequences but did not deposit them were inferred by manually checking 150 randomly-selected articles which did not contain INSDC accession numbers or refer to alternative databases, indicated in lighter yellow. For the V3–V4 subset, studies which contained the keywords “16S rRNA”, “515”, and “806” were selected. Studies for which INSDC-compliant accession numbers were reported but which did not exist on any INSDC database are shown in lighter blue.

    Full size image

    To obtain more precise estimates of the percentage of articles which deposited their data in each database, we focused on the subset of 635 studies which sequenced the V3–V4 region of the 16S rRNA gene between base pairs 515 and 806 (heretofore V3–V4 subset), a target region which has gained popularity since its development and use by the Earth Microbiome Project21,22. Of these, 74.5% (n = 474) studies listed INSDC-compliant accession numbers within the article, but of these, accession numbers from 5% of the studies (n = 33) were not findable on any INSDC database. Additionally, 19% (n = 121) did not provide an identifiable link to the data, and 6.8% of the studies deposited their data in the Qiita, MG-RAST, and figshare databases (n = 9, n = 24, n = 7, respectively, Fig. 1b). Two studies provided SRA submission IDs rather than accession numbers, and were also inaccessible.
    The increasing popularity of microbial community sequencing was evident in our data. Over the period studied, the number of studies in the V3–V4 subset rose from 56 in 2015 to 214 in 2018 (Supplementary Fig. 1a). The proportion of publications which claimed to deposit data to INSDC databases increased slightly over time, from 33/56 in 2015 to 172/214 in 2018 (χ2 = 6.6, p = 0.01, Supplementary Fig. 1b), suggesting an increasing tendency towards deposition in INSDC databases. Deposition to alternative databases decreased (χ2 = 14.04, p  More

  • in

    Species distribution models advance our knowledge of the Neanderthals’ paleoecology on the Iranian Plateau

    1.
    Gómez-Robles, A. Dental evolutionary rates and its implications for the Neanderthal–modern human divergence. Sci. Adv. 5, eaaw1268 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 
    2.
    Higham, T. et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306–309 (2014).
    ADS  CAS  PubMed  Google Scholar 

    3.
    Wenzel, S. Neanderthal presence and behaviour in central and Northwestern Europe during MIS. In Developments in Quaternary Sciences Vol. 7 (eds Sirocko, F. et al.) 173–193 (Elsevier, Amsterdam, 2007).
    Google Scholar 

    4.
    Sørensen, B. Demography and the extinction of European Neanderthals. J. Anthropol. Archaeol. 30, 17–29 (2011).
    Google Scholar 

    5.
    Salazar-García, D. C. et al. Neanderthal diets in central and southeastern Mediterranean Iberia. Quat. Int. 318, 3–18 (2013).
    Google Scholar 

    6.
    Wißing, C. et al. Isotopic evidence for dietary ecology of late Neandertals in North-Western Europe. Quat. Int. 411, 327–345 (2016).
    Google Scholar 

    7.
    Nielsen, T. K. et al. Investigating Neanderthal dispersal above 55°N in Europe during the Last Interglacial Complex. Quat. Int. 431, 88–103 (2017).
    Google Scholar 

    8.
    Nicholson, C. M. Eemian paleoclimate zones and Neanderthal landscape-use: a GIS model of settlement patterning during the last interglacial. Quat. Int. 438, 144–157 (2017).
    Google Scholar 

    9.
    Rhodes, S. E., Starkovich, B. M. & Conard, N. J. Did climate determine Late Pleistocene settlement dynamics in the Ach Valley, SW Germany?. PLoS ONE 14, e0215172 (2019).
    PubMed  PubMed Central  Google Scholar 

    10.
    Defleur, A. R. & Desclaux, E. Impact of the last interglacial climate change on ecosystems and Neanderthals behavior at Baume Moula-Guercy, Ardèche, France. J. Archaeol. Sci. 104, 114–124 (2019).
    Google Scholar 

    11.
    Hovers, E. Territorial Behavior in the Middle Paleolithic of the Southern Levant. In: Settlement dynamics of the Middle Paleolithic and Middle Stone Age, Conard, N. J., editor. Kerns Verlag T¨ubingen; 123–152 (2001).

    12.
    Shea, J. J. Neandertals, competition, and the origin of modern human behavior in the Levant. Evol. Anthropol. 12, 173–187 (2003).
    Google Scholar 

    13.
    Been, E. et al. The first Neanderthal remains from an open-air Middle Palaeolithic site in the Levant. Sci. Rep. 7, 2958 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    14.
    Vahdati Nasab, H., Clark, G. A. & Torkamandi, S. Late Pleistocene dispersal corridors across the Iranian Plateau: a case study from Mirak, a Middle Paleolithic site on the Northern Edge of the Iranian Central Desert (Dasht-e Kavir). Quat. Int. 300, 267–281 (2013).
    Google Scholar 

    15.
    Heydari-Guran, S. Palaeolithic Landscapes of Iran. BAR International Series, 2568 (2014).

    16.
    Bazgir, B. et al. Understanding the emergence of modern humans and the disappearance of Neanderthals: Insights from Kaldar Cave (Khorramabad Valley, Western Iran). Sci. Rep. 7, 43460 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    17.
    Smith, P. E. L. Paleolithic Archaeology in Iran (University of Pennsylvania Press, Philadelphia, 1986).
    Google Scholar 

    18.
    Heydari-Guran, S. & Ghasidian, E. The MUP Zagros Project: tracking the Middle-Upper Palaeolithic transition in the Kermanshah region, West-Central Zagros, Iran. Antiquity 91, 1–7 (2017).
    Google Scholar 

    19.
    Heydari-Guran, S. & Ghasidian, E. Late Pleistocene hominin settlement patterns and population dynamics in the Zagros Mountains: Kermanshah region. Archaeol. Res. Asia 21, 100161 (2020).
    Google Scholar 

    20.
    Varela, S., Lobo, J. M. & Hortal, J. Using species distribution models in paleobiogeography: a matter of data, predictors and concepts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 310, 451–463 (2011).
    Google Scholar 

    21.
    Svenning, J. C., Fløjgaard, C., Marske, K. A., Nógues-Bravo, D. & Normand, S. Applications of species distribution modeling to paleobiology. Quat. Sci. Rev. 30, 2930–2947 (2011).
    ADS  Google Scholar 

    22.
    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R (Cambridge University Press, Cambridge, 2017).
    Google Scholar 

    23.
    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat858 (2019).
    Google Scholar 

    24.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Google Scholar 

    25.
    Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611 (2010).
    Google Scholar 

    26.
    Banks, W. E. et al. Neanderthal extinction by competitive exclusion. PLoS ONE 3, e3972 (2008).
    ADS  PubMed  PubMed Central  Google Scholar 

    27.
    Franklin, J., Potts, A. J., Fisher, E. C., Cowling, R. M. & Marean, C. M. Paleodistribution modeling in archaeology and paleoanthropology. Quat. Sci. Rev. 110, 1–14 (2015).
    Google Scholar 

    28.
    Benito, B. M. et al. The ecological niche and distribution of Neanderthals during the Last Interglacial. J. Biogeogr. 44, 51–61 (2017).
    Google Scholar 

    29.
    Giampoudakis, K. et al. Niche dynamics of Palaeolithic modern humans during the settlement of the Palaearctic. Glob. Ecol. Biogeogr. 26, 359–370 (2017).
    Google Scholar 

    30.
    Marean, C. W. A critique of the evidence for scavenging by Neandertals and early modern humans: new data from Kobeh Cave (Zagros Mountains, Iran) and Die Kelders Cave 1 layer 10 (South Africa). J. Hum. Evol. 35, 111–136 (1998).
    CAS  PubMed  Google Scholar 

    31.
    Marean, C. W. & Kim, S. Y. Mousterian large-mammal remains from Kobeh Cave: behavioural implications for Neanderthals and early modern humans. Curr. Anthropol. 39, S79–S114 (1998).
    Google Scholar 

    32.
    Mashkour, M. et al. Carnivores and their prey in the Wezmeh Cave (Kermanshah, Iran): a Late Pleistocene refuge in the Zagros. Int. J. Osteoarchaeol. 19, 678–694 (2009).
    Google Scholar 

    33.
    Biglari, F. et al. Qaleh Bozi, new evidence of late middle paleolithic occupation in the Zayandeh-Rud Basin, Esfahan Province. Archaeol. Res. Iran 7, 7–26 (2015).
    Google Scholar 

    34.
    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12, 361–371 (2003).
    Google Scholar 

    35.
    Melchionna, M. et al. Fragmentation of Neanderthals’ pre-extinction distribution by climate change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 496, 146–154 (2018).
    Google Scholar 

    36.
    Hole, F. & Flannery, K. V. The prehistory of Southwestern Iran: a preliminary report. Proc. Prehist. Soc. 22, 147–206 (1967).
    Google Scholar 

    37.
    Roustaei, K. et al. Recent paleolithic surveys in Lurestan. Curr. Anthropol. 45, 692–707 (2004).
    Google Scholar 

    38.
    Diedrich, C. Ice age spotted hyenas as Neanderthal exhumers and scavengers in Europe. Chronicles Sci. 1, 1–34 (2014).
    Google Scholar 

    39.
    Banks, W. E. The application of ecological niche modeling methods to archaeological data in order to examine culture-environment relationships and cultural trajectories. Quaternaire 28, 271–276 (2017).
    Google Scholar 

    40.
    Banks, W. E. et al. Eco-cultural niches of the Badegoulian: unraveling links between cultural adaptation and ecology during the Last Glacial Maximum in France. J. Anthropol. Archaeol. 30, 359–374 (2011).
    Google Scholar 

    41.
    King, T. et al. Azokh cave hominin remains. In Azokh cave and the transcaucasian corridor, vertebrate paleobiology and paleoanthropology (eds Fernndez-Jalvo, Y. et al.) 103–106 (Springer, Dordrecht, 2016).
    Google Scholar 

    42.
    Solecki, R. S. Prehistory in Shanidar valley, Northern Iraq. Science 139, 179–193 (1963).
    ADS  CAS  PubMed  Google Scholar 

    43.
    Pomeroy, E. et al. Newly-discovered Neanderthal remains from Shanidar Cave, Iraqi Kurdistan, and their attribution to Shanidar 5. J. Hum. Evol. 111, 102–118 (2017).
    PubMed  Google Scholar 

    44.
    Zanolli, C. et al. A Neanderthal from the Central Western Zagros, Iran. Structural reassessment of the Wezmeh 1 maxillary premolar. J. Hum. Evol. 135, 102643 (2019).
    PubMed  Google Scholar 

    45.
    Coon, C. S. The seven caves. In: Archaeological Exploration in the Middle East. (Alfred Knopf, 1975).

    46.
    Biglari, F. & Heydari, S. Do-Ashkaft: a recent discovery Mousterian cave site in Kermanshah Plain, Iran. Antiquity 75, 487–488 (2001).
    Google Scholar 

    47.
    Conard, N. J., Ghasidian, E. & Heydari, S. The paleolithic of Iran. In Ancient Iran (ed. Potts, D. T.) 29–48 (Oxford Press, Oxford, 2013).
    Google Scholar 

    48.
    Power, R. C. Neanderthals and their diet. In eLS (Wiley, 2019).

    49.
    Perkins, D. Prehistoric fauna from Shanidar, Iraq. Science 144, 1565–1566 (1964).
    ADS  PubMed  Google Scholar 

    50.
    Turnbull, P. F. The mammalian fauna of Warwasi rock shelter, west-central Iran. Fieldiana Geol. 33, 141–155 (1975).
    Google Scholar 

    51.
    Hesse, B. Paleolithic Faunal Remains from Ghar-I-Khar, Western Iran (University of Alabama Press, Alabama, 1989).
    Google Scholar 

    52.
    Karami, M., Ghadirian, T. & Faizolahi, K. The Atlas of the Mammals of Iran (Jahad Daneshgahi Press, Tehran, 2016).
    Google Scholar 

    53.
    Naderi, S. Evolutionary history of wild goat (Capra aegagrus) and the goat (C. hircus) based on the analysis of mitochondrial and nuclear DNA polymorphism: Implications for conservation and for the origin of the domestication. Ecology, Environment. Grenoble: Université Joseph-Fourier – Grenoble I (2007).

    54.
    Yusefi, G. H., Faizolahi, K., Darvish, J., Safi, K. & Brito, J. C. The species diversity, distribution, and conservation status of the terrestrial mammals of Iran. J. Mammal. 100, 55–71 (2019).
    Google Scholar 

    55.
    Hijmans, R. J. Raster: Geographic Data Analysis and Modeling. R package, (2015).

    56.
    R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, Vienna, Austria, 2017).

    57.
    Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled SRTM for the globe Version 4. Available from the CGIAR-CSI SRTM 90m Database https://srtm.csi.cgiar.org on 15 April 2015 (2008).

    58.
    Quinn, G. P. & Keough, M. J. Experimental Designs and Data Analysis for Biologists (Cambridge University Press, Cambridge, 2002).
    Google Scholar 

    59.
    Naimi, B. Uncertainty Analysis for Species Distribution Models. R package version 1.1–15 (2015).

    60.
    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
    PubMed  Google Scholar 

    61.
    McCullagh, P. & Nelder, J. A. Generalized Linear Models (Chapman and Hall, London, 1989).
    Google Scholar 

    62.
    Hastie, T. J. & Tibshirani, R. Generalized Additive Models (Chapman and Hall, London, 1990).
    Google Scholar 

    63.
    Ridgeway, G. The state of boosting. J. Comput. Sci. 31, 172–181 (1999).
    Google Scholar 

    64.
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Google Scholar 

    65.
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
    MATH  Google Scholar 

    66.
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).
    Google Scholar 

    67.
    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).
    Google Scholar 

    68.
    Le Hirzel, A. H., Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).
    Google Scholar 

    69.
    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).
    ADS  MathSciNet  CAS  MATH  Google Scholar 

    70.
    Schoener, T. W. Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49, 704–726 (1968).
    Google Scholar  More

  • in

    Owls’ hoards rot

    For predators, climate change-induced shifts in prey numbers, behaviours and spatial or temporal locations can be a major threat to food security. For predators that hoard prey to ensure survival through harsh winters, climate variation can have a doubled effect — influencing both food capture and store stability. Although northern latitude autumn and winter temperatures have increased dramatically in recent years, the effects of climate on foraging and storing throughout winter remain understudied.

    Credit: Szymon Bartosz / Alamy Stock Photo

    Giulia Masoero at the University of Turku, Finland, and colleagues analysed the impact of climate on Eurasian pygmy owl (Glaucidium passerinum) food-hoarding behaviour across 16 years. They found increased freeze–thaw frequency, lower winter precipitation and deeper snow cover were linked to greater hoard consumption. Higher autumn precipitation and an early hoarding start led to food rot, which reduced female owl recapture (indicating death or emigration).

    Although owls delayed hoarding in autumns with fewer freeze–thaw events, suggesting some potential for climate change adaptation, the study indicates that altered climates can decrease owl overwinter survival, which may in turn have vast impacts on the boreal food web.

    Author information

    Affiliations

    Nature Climate Change
    Tegan Armarego-Marriott

    Authors
    Tegan Armarego-Marriott

    Corresponding author
    Correspondence to Tegan Armarego-Marriott.

    Rights and permissions

    About this article

    Cite this article
    Armarego-Marriott, T. Owls’ hoards rot. Nat. Clim. Chang. (2020). https://doi.org/10.1038/s41558-020-0903-0
    Download citation More