More stories

  • in

    Crop climate suitability mapping on the cloud: a geovisualization application for sustainable agriculture

    1.
    Campbell, B. M. et al. Reducing risks to food security from climate change. Glob. Food Secur. 11, 34–43 (2016).
    Article  Google Scholar 
    2.
    Nair, P. K. R. Grand challenges in agroecology and land use systems. Front. Environ. Sci. 2, 1 (2014).
    Google Scholar 

    3.
    Connolly-Boutin, L. & Smit, B. Climate change, food security, and livelihoods in sub-Saharan Africa. Reg. Environ. Change 16, 385–399 (2016).
    Article  Google Scholar 

    4.
    Maxwell, D. The political economy of urban food security in Sub-Saharan Africa. World Dev. 27, 1939–1953 (1999).
    Article  Google Scholar 

    5.
    IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds. Shukla, P. R. et al.) (2019).

    6.
    Altieri, M. A., Nicholls, C. I., Henao, A. & Lana, M. A. Agroecology and the design of climate change-resilient farming systems. Agron. Sust. Dev. 35, 869–890 (2015).
    Article  Google Scholar 

    7.
    Tadross, M. et al. Growing-season rainfall and scenarios of future change in southeast Africa: Implications for cultivating maize. Clim. Res. 40, 147–161 (2009).
    Article  Google Scholar 

    8.
    Challinor, A., Wheeler, T., Garforth, C., Craufurd, P. & Kassam, A. Assessing the vulnerability of food crop systems in Africa to climate change. Clim. Change 83, 381–399 (2007).
    ADS  Article  Google Scholar 

    9.
    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    10.
    Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 114, 9326–9331 (2017).
    CAS  PubMed  Article  Google Scholar 

    11.
    Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2015).
    ADS  Article  Google Scholar 

    12.
    Hammond, S. T. et al. Food spoilage, storage, and transport: Implications for a sustainable future. Bioscience 65, 758–768 (2015).
    Article  Google Scholar 

    13.
    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    PubMed  Article  Google Scholar 

    14.
    Newton, A. C., Johnson, S. N. & Gregory, P. J. Implications of climate change for diseases, crop yields and food security. Euphytica 179, 3–18 (2011).
    Article  Google Scholar 

    15.
    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    16.
    Lee, J. G. & Kang, M. Geospatial big data: Challenges and opportunities. Big Data Res. 2, 74–81 (2015).
    Article  Google Scholar 

    17.
    Serra-Diaz, J. M. & Franklin, J. What’s hot in conservation biogeography in a changing climate? Going beyond species range dynamics. Divers. Distrib. 25, 492–498 (2019).
    Article  Google Scholar 

    18.
    Snyder, K. A., Miththapala, S., Sommer, R. & Braslow, J. The yield gap: Closing the gap by widening the approach. Exp. Agric. 53, 445–459 (2017).
    Article  Google Scholar 

    19.
    Wheeler, T. & von Braun, J. Climate change impacts on global food security. Science 341, 508–513 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    20.
    Fernández, M., Hamilton, H. & Kueppers, L. M. Characterizing uncertainty in species distribution models derived from interpolated weather station data. Ecosphere 4, 1–17 (2013).
    Article  Google Scholar 

    21.
    Grabowski, P. et al. Assessing adoption potential in a risky environment: The case of perennial pigeonpea. Agric. Syst. 171, 89–99 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Habib-Mintz, N. Biofuel investment in Tanzania: Omissions in implementation. Energy Policy 38, 3985–3997 (2010).
    Article  Google Scholar 

    23.
    Shiferaw, B. A., Okello, J. & Reddy, R. V. Adoption and adaptation of natural resource management innovations in smallholder agriculture: Reflections on key lessons and best practices. Environ. Dev. Sustain. 11, 601–619 (2009).
    Article  Google Scholar 

    24.
    Kwesiga, F., Akinnifesi, F. K., Mafongoya, P. L., McDermott, M. H. & Agumya, A. Agroforestry research and development in southern Africa during the 1990s: Review and challenges ahead. Agrofor. Syst. 59, 173–186 (2003).
    Article  Google Scholar 

    25.
    Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).
    Article  Google Scholar 

    26.
    Fischer, G. et al. Global agro-ecological zones (GAEZ v3. 0)-model documentation. In International Institute for Applied Systems Analysis/Food and Agriculture Organization of the United Nations (2012).

    27.
    Heal, G. & Millner, A. Reflections: Uncertainty and decision making in climate change economics. Rev. Environ. Econ. Policy 8, 120–137 (2014).
    Article  Google Scholar 

    28.
    Harth, A., Knoblock, C. A., Stadtmüller, S., Studer, R. & Szekely, P. On-the-fly integration of static and dynamic linked data. In Proceedings of the Fourth International Workshop on Consuming Linked Data (2013).

    29.
    Ginige, A., Javadi, B., Calheiros, R. N. & Hendriks, S. L. A smart computing framework centered on user and societal empowerment to achieve the sustainable development goals. In International Conference on Innovations and Interdisciplinary Solutions for Underserved Areas (eds. Bassioni, G., Kebe, C. M. F., Gueye, A. & Ndiaye, A.) 158–172 (Springer, Cham, 2019).

    30.
    Ramirez-Cabral, N. Y. Z., Kumar, L. & Taylor, S. Crop niche modeling projects major shifts in common bean growing areas. Agric. For. Meteorol. 218, 102–113 (2016).
    ADS  Article  Google Scholar 

    31.
    Mejias, P., & Piraux, M. AquaCrop, the crop water productivity model. In Food and Agriculture Organization of the United Nations (2017).

    32.
    Hijmans, R. J., Guarino, L., Cruz, M. & Rojas, E. Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet. Resour. Newsl. 127, 15–19 (2001).
    Google Scholar 

    33.
    Jones, J. W. et al. The DSSAT cropping system model. Eur. J. Agron. 18, 235–265 (2003).
    Article  Google Scholar 

    34.
    McCown, R. L., Hammer, G. L., Hargreaves, J. N. G., Holzworth, D. P. & Freebairn, D. M. APSIM: A novel software system for model development, model testing, and simulation in agricultural systems research. Agric. Syst. 50, 255–271 (1996).
    Article  Google Scholar 

    35.
    Dragićević, S. The potential of Web-based GIS. J. Geogr. Syst. 6, 79–81 (2004).
    Article  Google Scholar 

    36.
    Kraak, M. J. The role of the map in a Web-GIS environment. J. Geogr. Syst. 6, 83–93 (2004).
    Article  Google Scholar 

    37.
    Moore, R. Introducing Google Earth Engine. The Official google.org blog https://blog.google.org/2010/12/introducing-google-earth-engine_57.html (2010).

    38.
    Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
    ADS  Article  Google Scholar 

    39.
    Agapiou, A. Remote sensing heritage in a petabyte-scale: Satellite data and heritage Earth Engine© applications. Int. J. Digit. Earth. 10, 82–102 (2017).
    Article  Google Scholar 

    40.
    HarvestChoice-International Food Policy Research Institute (IFPRI). Agro-Ecological Zones for Africa South of the Sahara V3. Harvard Dataverse https://doi.org/10.7910/DVN/M7XIUB (2015).

    41.
    Kane, D. A., Roge, P. & Snapp, S. S. A systematic review of perennial staple crops literature using topic modeling and bibliometric analysis. PLoS ONE 11, e0155788 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Thornton, P. K. & Herrero, M. Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa. Nat. Clim. Change. 5, 830–836 (2015).
    ADS  Article  Google Scholar 

    43.
    Mayes, S. et al. The potential for underutilized crops to improve security of food production. J. Exp. Bot. 63, 1075–1079 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    44.
    Peter, B. G., Mungai, L. M., Messina, J. P. & Snapp, S. S. Nature-based agricultural solutions: Scaling perennial grains across Africa. Environ. Res. 159, 283–290 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Hannah, L. et al. Global climate change adaptation priorities for biodiversity and food security. PLoS ONE 8, e72590 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Snapp, S. S., Blackie, M. J., Gilbert, R. A., Bezner-Kerr, R. & Kanyama-Phiri, G. Y. Biodiversity can support a greener revolution in Africa. Proc. Natl. Acad. Sci. USA 107, 20840–20845 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    47.
    Sanchez, P. A. Soil fertility and hunger in Africa. Science 295, 2019–2020 (2002).
    CAS  PubMed  Article  Google Scholar 

    48.
    Foyer, C. H. et al. Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2, 16112 (2016).
    PubMed  Article  Google Scholar 

    49.
    Kole, C. et al. Application of genomics-assisted breeding for generation of climate resilient crops: Progress and prospects. Front. Plant Sci. 6, 563 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Sinha, P. et al. 2016 Identification and validation of selected universal stress protein domain containing drought-responsive genes in Pigeonpea (Cajanus cajan L.). Front. Plant Sci. 6, 1065 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    51.
    Choudhary, A. K., Sultana, R., Pratap, A., Nadarajan, N. & Jha, U. C. Breeding for abiotic stresses in pigeonpea. J. Food Legum. 24, 165–174 (2011).
    Google Scholar 

    52.
    Ehlers, J. D. & Hall, A. E. Cowpea (Vigna unguiculata L. walp.). Field Crops Res. 53, 187–204 (1997).
    Article  Google Scholar 

    53.
    De Ron, A. M. et al. 2019 Common bean genetics, breeding, and genomics for adaptation to changing to new agri-environmental conditions. In Genomic Designing of Climate-Smart Pulse Crops (ed. Kole, C.) 1–106 (Springer, Cham, 2019).
    Google Scholar 

    54.
    Smýkal, P. et al. Legume crops phylogeny and genetic diversity for science and breeding. Crit. Rev. Plant Sci. 34, 43–104 (2015).
    Article  Google Scholar 

    55.
    Snapp, S. S., Cox, C. M. & Peter, B. G. Multipurpose legumes for smallholders in sub-Saharan Africa: Identification of promising ‘scale out’ options. Glob. Food Secur. 23, 22–32 (2019).
    Article  Google Scholar 

    56.
    Ramírez-Villegas, J. & Thornton, P. K. Climate change impacts on African crop production. In CCAFS Working Paper No. 119. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) (2015).

    57.
    Robertson, C. C. Black, white, and red all over: Beans, women, and agricultural imperialism in twentieth-century Kenya. Agric. Hist. 71, 259–299 (1997).
    Google Scholar 

    58.
    Rusinamhodzi, L., Corbeels, M., Nyamangara, J. & Giller, K. E. Maize–grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique. Field Crops Res. 136, 12–22 (2012).
    Article  Google Scholar 

    59.
    Bezner-Kerr, R., Snapp, S., Chirwa, M., Shumba, L. & Msachi, R. Participatory research on legume diversification with Malawian smallholder farmers for improved human nutrition and soil fertility. Exp. Agric. 43, 437–453 (2007).
    Article  Google Scholar 

    60.
    Jones, A. D., Shrinivas, A. & Bezner-Kerr, R. Farm production diversity is associated with greater household dietary diversity in Malawi: Findings from nationally representative data. Food Policy 46, 1–12 (2014).
    Article  Google Scholar 

    61.
    Ojiewo, C. et al. The role of vegetables and legumes in assuring food, nutrition, and income security for vulnerable groups in Sub-Saharan Africa. World Med. Health Policy 7, 187–210 (2015).
    Article  Google Scholar 

    62.
    Wood, S., Sebastian, K., Nachtergaele, F., Nielsen, D. & Dai, A. Spatial aspects of the design and targeting of agricultural development strategies. In Environment and Production Technology Division, International Food Policy Research Institute, Washington, DC, EPTD Discussion Paper No. 44 (1999).

    63.
    Chivenge, P., Mabhaudhi, T., Modi, A. T. & Mafongoya, P. The potential role of neglected and underutilised crop species as future crops under water scarce conditions in Sub-Saharan Africa. International Journal of Environmental Research and Public Health 12, 5685–5711 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    64.
    Dakora, F. D. Biogeographic distribution, nodulation and nutritional attributes of underutilized indigenous African legumes. In II International Symposium on Underutilized Plant Species: Crops for the Future-Beyond Food Security, 53–64 International Society for Horticultural Science, ISHS Acta Horticulturae 979 (2011).

    65.
    Traub, J. et al. Screening for heat tolerance in Phaseolus spp. using multiple methods. Crop Sci. 58, 2459–2469 (2018).
    CAS  Article  Google Scholar 

    66.
    Knight, A. T. et al. Knowing but not doing: Selecting priority conservation areas and the research–implementation gap. Conserv. Biol. 22, 610–617 (2008).
    PubMed  Article  Google Scholar 

    67.
    Funk, C. et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2, 1–21 (2015).
    Article  Google Scholar 

    68.
    Vizy, E. K., Cook, K. H., Chimphamba, J. & McCusker, B. Projected changes in Malawi’s growing season. Clim. Dyn. 45, 1673–1698 (2015).
    Article  Google Scholar 

    69.
    Jayanthi, H. et al. Modeling rain-fed maize vulnerability to droughts using the standardized precipitation index from satellite estimated rainfall—Southern Malawi case study. Int. J. Disast. Risk Res. 4, 71–81 (2013).
    Google Scholar 

    70.
    FAO. ECOCROP, Crop Environmental Requirements Database. Food and Agriculture Organization of the United Nations (1991).

    71.
    Peter, B. G., Messina, J. P. & Lin, Z. Web-based GIS for spatiotemporal crop climate niche mapping https://doi.org/10.7910/DVN/UFC6B5,HarvardDataverse,V2 (2019).
    Article  Google Scholar 

    72.
    Beebe, S. et al. Genetic improvement of common beans and the challenges of climate change. In Crop Adaptation to Climate Change (eds. Yadav, S. S., Redden, R. J., Hatfield, J. L., Lotze-Campen, H. & Hall, A. E.) Ch. 16, 356–369 (Wiley-Blackwell, 2011).

    73.
    de Jong, R. & de Bruin, S. Linear trends in seasonal vegetation time series and the modifiable temporal unit problem. Biogeosciences 9, 71–77 (2012).
    ADS  Article  Google Scholar 

    74.
    Swist, T. & Magee, L. Academic publishing and its digital binds: Beyond the paywall towards ethical executions of code. Cult.s Unbound J. Curr. Cult. Res. 9, 240–259 (2018).
    Article  Google Scholar 

    75.
    Hedding, D. W. Comments on “Factors affecting global flow of scientific knowledge in environmental sciences” by Sonne et al. (2020). Sci. Total Environ. 705, 135933 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    76.
    Rippke, U. et al. Timescales of transformational climate change adaptation in sub-Saharan African agriculture. Nat. Clim. Change 6, 605–609 (2016).
    ADS  Article  Google Scholar 

    77.
    Sinclair, T. R., Marrou, H., Soltani, A., Vadez, V. & Chandolu, K. C. Soybean production potential in Africa. Glob. Food Secur. 3, 31–40 (2014).
    Article  Google Scholar 

    78.
    Hajjarpoor, A. et al. Characterization of the main chickpea cropping systems in India using a yield gap analysis approach. Field Crops Res. 223, 93–104 (2018).
    Article  Google Scholar 

    79.
    Ortega, D. L., Waldman, K. B., Richardson, R. B., Clay, D. C. & Snapp, S. Sustainable intensification and farmer preferences for crop system attributes: Evidence from Malawi’s central and southern regions. World Dev. 87, 139–151 (2016).
    Article  Google Scholar 

    80.
    Simtowe, F., Asfaw, S. & Abate, T. Determinants of agricultural technology adoption under partial population awareness: The case of pigeonpea in Malawi. Agric. Food Econ. 4, 7 (2016).
    Article  Google Scholar 

    81.
    Norris, K. Agriculture and biodiversity conservation: Opportunity knocks. Conservation Letters 1, 2–11 (2008).
    Article  Google Scholar 

    82.
    Donchyts, G. et al. Earth’s surface water change over the past 30 years. Nat. Clim. Change 6, 810–813 (2016).
    ADS  Article  Google Scholar 

    83.
    Pekel, J., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    84.
    Allen, R. G. et al. EEFlux: A Landsat-based evapotranspiration mapping tool on the Google Earth Engine. In 2015 ASABE/IA Irrigation Symposium: Emerging Technologies for Sustainable Irrigation-A Tribute to the Career of Terry Howell, Sr. Conference Proceedings, 1–11. American Society of Agricultural and Biological Engineers (2015).

    85.
    Wan, Z., Hook, S. & Hulley, G. MOD11A2 MODIS/Terra land surface temperature/emissivity 8-day L3 global 1km SIN grid V006. NASA EOSDIS Land Process. DAAC https://doi.org/10.5067/MODIS/MOD11A2.006 (2015).
    Article  Google Scholar 

    86.
    Didan, K. MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN grid V006. NASA EOSDIS Land Process.. DAAC https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).
    Article  Google Scholar 

    87.
    Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+aqua land cover type yearly L3 global 500m SIN grid V006. NASA EOSDIS Land Process. DAAC https://doi.org/10.5067/MODIS/MCD12Q1.006 (2019).
    Article  Google Scholar 

    88.
    Friedl, M. A. et al. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).
    ADS  Article  Google Scholar 

    89.
    Teluguntla, P. G. et al. Global cropland area database (GCAD) derived from remote sensing in support of food security in the twenty-first century: Current achievements and future possibilities. In Remote Sensing Handbook, Land Resources: Monitoring, Modelling, and Mapping Vol 2, Ch. 7 (CRC Press, 2015).

    90.
    Arino, O., Ramos, J. R., Kalogirou, V., Defourny, P. & Achard, F. GlobCover 2009. In ESA Living Planet Symposium 1–3. European Space Agency (2010).

    91.
    Hengl, T. & MacMillan, R. A. Predictive Soil Mapping with R, https://www.soilmapper.org (OpenGeoHub foundation, Wageningen, The Netherlands, 2019).

    92.
    Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007).
    ADS  Article  Google Scholar 

    93.
    Rossel, R. A. V. & Bouma, J. Soil sensing: A new paradigm for agriculture. Agric. Syst. 148, 71–74 (2016).
    Article  Google Scholar 

    94.
    Herrick, J. E. et al. The global Land-Potential Knowledge System (LandPKS): Supporting evidence-based, site-specific land use and management through cloud computing, mobile applications, and crowdsourcing. J. Soil Water Conserv. 68, 5A-12A (2013).
    Article  Google Scholar 

    95.
    Pironon, S. et al. Potential adaptive strategies for 29 sub-Saharan crops under future climate change. Nat. Clim. Change. 9, 758–763 (2019).
    ADS  Article  Google Scholar 

    96.
    ESRI. ArcGIS Desktop: Release 10.8. (Environmental Systems Research Institute, CAs, 2020). More

  • in

    A symbiotic nutrient exchange within the cyanosphere microbiome of the biocrust cyanobacterium, Microcoleus vaginatus

    1.
    Garcia-Pichel F. Desert environments: biological soil crusts. encycl environ microbiol vol 6. New York, NY, USA: Set. Wiley-Interscience; 2003. p. 1019–23.
    Google Scholar 
    2.
    Belnap J, Büdel B, Lange OL. Biological soil crusts: characteristics and distribution. biological soil crust: structure, function, and management. Berlin: Springer-Verlag; 2001. p. 3–30.
    Google Scholar 

    3.
    Prăvălie R. Drylands extent and environmental issues. A global approach. Earth Sci Rev. 2016;161:259–78.
    Article  CAS  Google Scholar 

    4.
    Garcia-Pichel F, Pringault O. Cyanobacteria track water in desert soils. Nature. 2001;413:380–1.
    CAS  PubMed  Article  Google Scholar 

    5.
    Pringault O, Garcia-Pichel F. Hydrotaxis of cyanobacteria in desert crusts. Microb Ecol. 2004;47:366–73.
    CAS  PubMed  Article  Google Scholar 

    6.
    Soule T, Anderson IJ, Johnson SL, Bates ST, Garcia-Pichel F. Archaeal populations in biological soil crusts from arid lands in North America. Soil Biol Biochem. 2009;41:2069–74.
    CAS  Article  Google Scholar 

    7.
    Nunes da Rocha U, Cadillo-Quiroz H, Karaoz U, Rajeev L, Klitgord N, Dunn S, et al. Isolation of a significant fraction of non-phototroph diversity from a desert biological soil crust. Front Microbiol. 2015;6:1–14.
    Article  Google Scholar 

    8.
    Hu C, Zhang D, Huang Z, Liu Y. The vertical microdistribution of cyanobacteria and green algae within desert crusts and the development of the algal crusts. Plant Soil. 2003;257:97–111.
    CAS  Article  Google Scholar 

    9.
    Bates ST, Nash TH, Garcia-Pichel F. Patterns of diversity for fungal assemblages of biological soil crusts from the southwestern United States. Mycologia. 2012;104:353–61.
    CAS  PubMed  Article  Google Scholar 

    10.
    Ullmann I, Büdel B. Ecological determinants of species composition of biological soil crusts on a landscape scale. In: Belnap J, Lange OL, editors. Biological soil crusts: structure, function, and management, 1st ed. Berlin: Springer-Verlag; 2001. p. 203–13.
    Google Scholar 

    11.
    Lange OL, Belnap J, Reichenberger H, Meyer A. Photosynthesis of green algal soil crust lichens from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Flora. 1997;192:1–15.
    Article  Google Scholar 

    12.
    Garcia-Pichel F, López-Cortés A, Nübel U. Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl Environ Microbiol. 2001;67:1902–10.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Couradeau E, Karaoz U, Lim HC, Nunes Da Rocha U, Northen T, Brodie E, et al. Bacteria increase arid-land soil surface temperature through the production of sunscreens. Nat Commun. 2016;7:1–7.
    Article  CAS  Google Scholar 

    14.
    Yeager C, Kornosky J, Housman DC, Grote EE, Belnap J, Kuske CR. Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuan Desert. Appl Environ Microbiol. 2004;70:973–83.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Yeager CM, Kornosky JL, Morgan RE, Cain EC, Garcia-Pichel F, Housman DC, et al. Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N2-fixing members of biological soil crusts of the Colorado Plateau, USA. FEMS Microbiol Ecol. 2007;60:85–97.
    CAS  PubMed  Article  Google Scholar 

    16.
    Yeager CM, Kuske CR, Carney TD, Johnson SL, Ticknor LO, Belnap J. Response of biological soil crust diazotrophs to season, altered summer precipitation, and year-round increased temperature in an arid grassland of the Colorado Plateau, USA. Front Microbiol. 2012;3:1–14.
    Article  Google Scholar 

    17.
    Garcia-Pichel F. Cyanobacteria. In: Schaechter M, editor. Encyclopedia of microbiology. 3rd ed. 2009. New York: Elsevier Inc.; 2009. p. 107–24.

    18.
    Fernandes VMC, Machado de Lima NM, Roush D, Rudgers J, Collins SL, Garcia-Pichel F. Exposure to predicted precipitation patterns decreases population size and alters community structure of cyanobacteria in biological soil crusts from the Chihuahuan Desert. Environ Microbiol. 2018;20:259–69.
    PubMed  Article  Google Scholar 

    19.
    Garcia-Pichel F, Wojciechowski MF. The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates. PLoS ONE. 2009;4:4–9.
    Article  CAS  Google Scholar 

    20.
    Belnap J, Gardner J. Soil microstructure in soils of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatus. West N Am Nat. 1993;53:40–7.
    Google Scholar 

    21.
    Starkenburg SR, Reitenga KG, Freitas T, Johnson S, Chain PSG, Garcia-Piche F, et al. Genome of the cyanobacterium Microcoleus vaginatus FGP-2, a photosynthetic ecosystem engineer of arid land soil biocrusts worldwide. J Bacteriol. 2011;193:4569–70.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Rajeev L, Nunes U, Klitgord N, Luning EG, Fortney J, Axen SD, et al. Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J. 2013;7:2178–91.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Hooper DU, Johnson L. Nitrogen limitation in dryland ecosystems: responses to geographical and temporal variation in precipitation. Biogeochemistry. 1999;46:247–93.
    CAS  Google Scholar 

    24.
    James JJ, Tiller RL, Richards JH. Multiple resources limit plant growth and function in a saline-alkaline desert community. J Ecol. 2005;93:113–26.
    CAS  Article  Google Scholar 

    25.
    Neff JC, Reynolds RL, Belnap J, Lamothe P. Multi-decadal impacts of grazing on soil physical and biogeochemical properties in southeast Utah. Ecol Appl. 2005;15:87–95.
    Article  Google Scholar 

    26.
    Schlesinger WH, Raikks JA, Hartley AE, Cross AF. On the spatial pattern of soil nutrients in desert ecosystems. Ecology. 1996;77:364–74.
    Article  Google Scholar 

    27.
    Beraldi-Campesi H, Hartnett HE, Anbar A, Gordon GW, Garcia-Pichel F. Effect of biological soil crusts on soil elemental concentrations: Implications for biogeochemistry and as traceable biosignatures of ancient life on land. Geobiology. 2009;7:348–59.
    CAS  PubMed  Article  Google Scholar 

    28.
    Johnson SL, Budinoff CR, Belnap J, Garcia-pichel F. Relevance of ammonium oxidation within biological soil crust communities. Environ Microbiol. 2005;7:1–12.
    CAS  PubMed  Article  Google Scholar 

    29.
    Pepe-Ranney C, Koechli C, Potrafka R, Andam C, Eggleston E, Garcia-Pichel F, et al. Non-cyanobacterial diazotrophs mediate dinitrogen fixation in biological soil crusts during early crust formation. ISME J. 2016;10:287–98.
    CAS  PubMed  Article  Google Scholar 

    30.
    Couradeau E, Giraldo-Silva A, De Martini F, Garcia-Pichel F. Spatial segregation of the biological soil crust microbiome around its foundational cyanobacterium, Microcoleus vaginatus, and the formation of a nitrogen-fixing cyanosphere. Microbiome. 2019;7:111–22.
    Article  Google Scholar 

    31.
    Baran R, Brodie EL, Mayberry-lewis J, Hummel E, Nunes U, Rocha D, et al. Exometabolite niche partitioning among sympatric soil bacteria. Nat Commun. 2015;6:1–9.
    Article  CAS  Google Scholar 

    32.
    Baran R, Ivanova N, Jose N, Garcia-Pichel F, Kyrpides N, Gugger M, et al. Functional genomics of novel secondary metabolites from diverse cyanobacteria using untargeted metabolomics. Mar Drugs. 2013;11:3617–31.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Velasco Ayuso S, Giraldo-Silva A, Nelson C, Barger NN, Garcia-pichel F. Microbial nursery production of high quality biological soil crust biomass for restoration of degraded dryland soils. Appl Environ Microbiol. 2017;83:1–16.
    Article  Google Scholar 

    34.
    Giraldo-Silva A, Nelson C, Barger N, Garcia-Pichel F. Nursing biocrusts: isolation, cultivation and fitness test of indigenous cyanobacteria. Restor Ecol. 2019;27:793–803.
    Article  Google Scholar 

    35.
    Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, et al. Southern african biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol. 2009;57:229–47.
    PubMed  Article  Google Scholar 

    36.
    Ferreira D, Garcia-Pichel F. Mutational studies of putative biosynthetic genes for the cyanobacterial sunscreen scytonemin in Nostoc punctiforme ATCC 29133. Front Microbiol. 2016;7:1–10.
    Article  Google Scholar 

    37.
    Garcia-Pichel F, Loza V, Marusenko Y, Mateo P, Potrafka RM. Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science. 2013;340:1574–77.
    CAS  PubMed  Article  Google Scholar 

    38.
    Caporaso JG, Lauber CL, Walters WA, Berg-lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Gilbert JA, Meyer F, Jansson J, Gordon J, Pace N, Tiedje J, et al. The Earth Microbiome Project: meeting report of the ‘1 EMP meeting on sample selection and acquisition’ at Argonne National Laboratory October 6 2010. Stand Genom Sci. 2010;3:249–53.

    40.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–22.
    CAS  PubMed  Article  Google Scholar 

    43.
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:1–10.
    Google Scholar 

    45.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:242–5.
    Article  CAS  Google Scholar 

    48.
    Clarke KR, Gorley RN. PRIMER v6: user manual/tutorial. Prim Plymouth UK. 2006;7:192.
    Google Scholar 

    49.
    Nübel U, Garcia-Pichel F, Muyzer G. PCR primers to amplify 16S rRNA genes from cyanobacteria PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol. 1997;63:3327–32.
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Ando S, Goto M, Meunchang S, Thongra-ar P, Fujiwara T, Hayashi H, et al. Detection of nifH Sequences in Sugarcane (Saccharum officinarum L.) and Pineapple (Ananas comosus [L.] Merr.). Soil Sci Plant Nutr. 2005;51:303–8.
    CAS  Article  Google Scholar 

    51.
    Van Dorst J, Siciliano SD, Winsley T, Snape I, Ferrari BC. Bacterial targets as potential indicators of diesel fuel toxicity in subantarctic soils. Appl Environ Microbiol. 2014;80:4021–33.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    52.
    R Development Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2015. http://www.R-project.org/.
    Google Scholar 

    53.
    Mirza BS, Rodrigues JLM. Development of a direct isolation procedure for free-living diazotrophs under controlled hypoxic conditions. Appl Environ Microbiol. 2012;78:5542–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Döbereiner J, Marriel IE, Nery M. Ecological distribution of Spirillum lipoferum Beijerinck. Can J Microbiol. 1976;22:1464–73.
    PubMed  Article  Google Scholar 

    55.
    Dobereiner J, Urquiaga S, Boddey RM. Alternatives for nitrogen nutrition of crops in tropical agriculture. Fertil Res. 1995;42:339–46.
    CAS  Article  Google Scholar 

    56.
    Wilson PW, Knight SG. Experiments in Bacterial Physiology, 3rded. Minneapolis, Minnesota: Burgess; 1952 p. 62.

    57.
    Stanier RY, Kunisawa R, Mandel M. Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriological Reviews. 1971;35:171–205.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, et al. Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol. 2008;8:1–8.
    Article  CAS  Google Scholar 

    59.
    Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, et al. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 2007;4:283–90.
    Article  CAS  Google Scholar 

    60.
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.
    PubMed  PubMed Central  Article  Google Scholar 

    61.
    Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000;7:203–14.
    CAS  Article  Google Scholar 

    62.
    Ofek M, Hadar Y, Minz D. Ecology of root colonizing Massilia (Oxalobacteraceae). PLoS ONE. 2012;7:1–12.
    Article  CAS  Google Scholar 

    63.
    De Souza RSC, Okura VK, Armanhi JSL, Jorrín B, Lozano N, Da Silva MJ, et al. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep. 2016;6:1–15.
    Article  CAS  Google Scholar 

    64.
    Jones D, Keddie RM. The Genus Arthrobacter. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, editors. The prokaryotes: volume 3: archaea. bacteria: firmicutes, actinomycetes. New York, NY: Springer New York; 2006. p. 945–60.
    Google Scholar 

    65.
    Baldani JI, Rouws L, Cruz LM, Olivares FL, Schmid M, Hartmann A. The family oxalobacteraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: alphaproteobacteria and betaproteobacteria. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 919–74.
    Google Scholar 

    66.
    Mayilraj S, Stackebrandt E. The family paenibacillaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: firmicutes and tenericutes. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 267–80.
    Google Scholar 

    67.
    Slepecky RA, Hemphill HE. The Genus Bacillus–Nonmedical. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, editors. The prokaryotes: volume 4: bacteria: firmicutes, cyanobacteria. New York, NY: Springer US; 2006. p. 530–62.
    Google Scholar 

    68.
    Carareto Alves LM, de Souza JAM, Varani A, de M, Lemos EG, de M. The family rhizobiaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: alphaproteobacteria and betaproteobacteria. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 419–37.
    Google Scholar 

    69.
    Normand P, Daffonchio D, Gtari M. The family geodermatophilaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: actinobacteria. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 361–79.
    Google Scholar 

    70.
    Kämpfer P, Glaeser SP, Parkes L, van Keulen G, Dyson P. The family streptomycetaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: actinobacteria. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 889–1010.
    Google Scholar 

    71.
    Octavia S, Lan R. The family enterobacteriaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: gammaproteobacteria. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 225–86.
    Google Scholar 

    72.
    Poly F, Monrozier LJ, Bally R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol. 2001;152:95–103.
    CAS  PubMed  Article  Google Scholar 

    73.
    Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Schulz-Bohm K, Gerards S, Hundscheid M, Melenhorst J, de Boer W, Garbeva P. Calling from distance: attraction of soil bacteria by plant root volatiles. ISME J. 2018;12:1252–62.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Zhalnina K, Louie KB, Hao Z, Mansoori N, Da Rocha UN, Shi S, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol. 2018;3:470–80.
    CAS  PubMed  Article  Google Scholar 

    76.
    Garcia-Pichel F. A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnol Oceanogr. 1994;39:1704–17.
    Article  Google Scholar 

    77.
    Garcia-Pichel F, Belnap J. Small-scale environments and distribution of biological soil crusts. biological soil crusts: structure, function, and management. Berlin Heidelberg: Springer; 2001. p. 193–201.
    Google Scholar 

    78.
    Paerl HW, Bebout BM. Direct measurement of O2-depleted microzones in marine oscillatoria: relation to N2 fixation. Science. 1988;241:442–5.
    CAS  PubMed  Article  Google Scholar 

    79.
    Barger NN, Webber B, Garcia-Pichel F, Zaady E, Belnap J. Patterns and controls on nitrogen cycling of biological soil crusts. In: Weber B, Caldwell MM, Jayne B, Bettina W, Büdel B, Belnap J, et al. editors. Biological soil crusts: an organizing principle in drylands, 2nd ed. Switzerland: Springer; 2016. p. 257–85.

    80.
    Sancho L, Belnap J, Colesie C, Raggio J. Carbon budgets of biological soil crusts at micro-, meso-, and global scales. In: Belnap J, Weber B, Burkhard B, editors. Biological soil crusts: an organizing principle in drylands. Switzerland: Springer; 2016. p. 287–304.

    81.
    Weber B, Wu D, Tamm A, Ruckteschler N, Rodríguez-Caballero E, Steinkamp J, et al. Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands. Proc Natl Acad Sci USA. 2015;112:15384–9.
    CAS  PubMed  Article  Google Scholar 

    82.
    Garcia-Pichel F, Belnap J, Neuer S, Schanz F. Estimates of global cyanobacterial biomass and its distribution. Arch Hydrobiol Suppl Algol Stud. 2003;109:213–27.
    Google Scholar 

    83.
    Belnap J, Eldridge D. Disturbance and recovery of biological soil crusts. In: Belnap J, Lange O, editors. Biological soil crusts: structure, function and management. Berlin: Springer; 2001. p. 363–83.
    Google Scholar 

    84.
    Zaady E, Eldridge DJ, Bowker MA. Effect of local-scale disturbance on biocrusts. In: Weber B, Büdel B, Belnap J, editors. Biological soil crusts: an organizing principle in drylands. Cham: Springer International Publishing; 2016. p. 429–50.
    Google Scholar 

    85.
    Williams WJ, Eldridge DJ, Alchin BM. Grazing and drought reduce cyanobacterial soil crusts in an Australian Acacia woodland. J Arid Environ. 2008;72:1064–75.
    Article  Google Scholar  More

  • in

    Rhizobacterial species richness improves sorghum growth and soil nutrient synergism in a nutrient-poor greenhouse soil

    1.
    Liu, Z. et al. Effect of simulated acid rain on soil CO2, CH4 and N2O emissions and microbial communities in an agricultural soil. Geoderma 366, 114222 (2020).
    ADS  CAS  Article  Google Scholar 
    2.
    Li, M. et al. Biochemical response, histopathological change and DNA damage in earthworm (Eisenia fetida) exposed to sulfentrazone herbicide. Ecol. Indic. 115, 106465 (2020).
    CAS  Article  Google Scholar 

    3.
    Zhang, Q., Saleem, M. & Wang, C. Effects of biochar on the earthworm (Eisenia foetida) in soil contaminated with and/or without pesticide mesotrione. Sci. Total Environ. 671, 52–58 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Wu, Y. et al. Ecological clusters based on responses of soil microbial phylotypes to precipitation explain ecosystem functions. Soil Biol. Biochem. 142, 107717 (2020).
    CAS  Article  Google Scholar 

    5.
    Saleem, M., Hu, J. & Jousset, A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu. Rev. Ecol. Evol. Syst. 50, 6.1-6.24 (2019).
    Article  Google Scholar 

    6.
    Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Saleem, M. Ecoevolutionary processes regulating microbiome community assembly in a changing global ecosystem. In Microbiome Community Ecology: Fundamentals and Applications (ed. Saleem, M.) 55–87 (Springer, Berlin, 2015). https://doi.org/10.1007/978-3-319-11665-5_3.
    Google Scholar 

    8.
    Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).
    ADS  CAS  Article  Google Scholar 

    9.
    Prosser, J. I. et al. The role of ecological theory in microbial ecology. Nat. Rev. Micro. 5, 384–392 (2007).
    CAS  Article  Google Scholar 

    10.
    Lugtenberg, B. & Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Bashan, Y., Bashan, L. E., Prabhu, S. R. & Hernandez, J.-P. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378, 1–33 (2013).
    Article  CAS  Google Scholar 

    12.
    Sun, T., Li, M., Saleem, M., Zhang, X. & Zhang, Q. The fungicide “fluopyram” promotes pepper growth by increasing the abundance of P-solubilizing and N-fixing bacteria. Ecotoxicol. Environ. Saf. 188, 109947 (2020).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    13.
    Dimkpa, C., Weinand, T. & Asch, F. Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 32, 1682–1694 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Sun, T. et al. Bacterial compatibility and immobilization with biochar improved tebuconazole degradation, soil microbiome composition and functioning. J. Hazard. Mater. 398, 122941 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    van Elsas, J. D. et al. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl. Acad. Sci. 109, 1159–1164 (2012).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Hu, J. et al. Probiotic Pseudomonas communities enhance plant growth and nutrient assimilation via diversity-mediated ecosystem functioning. Soil Biol. Biochem. 113, 122–129 (2017).
    CAS  Article  Google Scholar 

    18.
    Woo, S. L. & Pepe, O. Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Front. Plant Sci. 9, 1801 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Paterson, A. H. et al. The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551–556 (2009).
    ADS  CAS  Article  Google Scholar 

    20.
    USDA. Sorghum Production by Country | World Agricultural Production 2019/2020. https://www.worldagriculturalproduction.com/crops/sorghum.aspxhttps://www.worldagriculturalproduction.com/crops/sorghum.aspx (2019).

    21.
    Zhao, Z.-Y., Che, P., Glassman, K. & Albertsen, M. Nutritionally enhanced sorghum for the arid and semiarid tropical areas of Africa. In Sorghum: Methods and Protocols (eds Zhao, Z.-Y. & Dahlberg, J.) 197–207 (Springer, Berlin, 2019).
    Google Scholar 

    22.
    Schlemper, T. R. et al. Rhizobacterial community structure differences among sorghum cultivars in different growth stages and soils. FEMS Microbiol. Ecol https://doi.org/10.1093/femsec/fix096/4002672 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    23.
    Xu, L. et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc. Natl. Acad. Sci. 115, E4284–E4293 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Hara, S. et al. Identification of nitrogen-fixing bradyrhizobium associated with roots of field-grown sorghum by metagenome and proteome analyses. Front. Microbiol. 10, 407 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Idris, H. A., Labuschagne, N. & Korsten, L. Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. Biol. Control 40, 97–106 (2007).
    Article  Google Scholar 

    26.
    Idris, A., Labuschagne, N. & Korsten, L. Efficacy of rhizobacteria for growth promotion in sorghum under greenhouse conditions and selected modes of action studies. J. Agric. Sci. 147, 17–30 (2009).
    CAS  Article  Google Scholar 

    27.
    Kort, J., Collins, M. & Ditsch, D. A review of soil erosion potential associated with biomass crops. Biomass Bioenergy 14, 351–359 (1998).
    Article  Google Scholar 

    28.
    Truong, S. K., McCormick, R. F. & Mullet, J. E. Bioenergy sorghum crop model predicts VPD-limited transpiration traits enhance biomass yield in water-limited environments. Front. Plant Sci. 8, 335 (2017).
    PubMed  PubMed Central  Google Scholar 

    29.
    Li, C. et al. Soil carbon sequestration potential in semi-arid grasslands in the Conservation Reserve Program. Geoderma 294, 80–90 (2017).
    ADS  CAS  Article  Google Scholar 

    30.
    Saleem, M., Ji, H., Amirullah, A. & Brian Traw, M. Pseudomonas syringae pv tomato DC3000 growth in multiple gene knockouts predicts interactions among hormonal, biotic and abiotic stress responses. Eur. J. Plant Pathol. 149, 779–786 (2017).
    CAS  Article  Google Scholar 

    31.
    Zhang, Q., Saleem, M. & Wang, C. Probiotic strain Stenotrophomonas acidaminiphila BJ1 degrades and reduces chlorothalonil toxicity to soil enzymes, microbial communities and plant roots. AMB Express 7, 227 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Mahmood, A., Turgay, O. C., Farooq, M. & Hayat, R. Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiw112 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    33.
    Mortlock, M. Y. & Vanderlip, R. L. Germination and establishment of pearl millet and sorghum of different seed qualities under controlled high-temperature environments. Field Crops Res. 22, 195–209 (1989).
    Article  Google Scholar 

    34.
    Bond, J. J., Army, T. J. & Lehman, O. R. Row spacing, plant populations and moisture supply as factors in dryland grain sorghum production 1. Agron. J. 56, 3–6 (1964).
    Article  Google Scholar 

    35.
    Jones, O. R. & Johnson, G. L. Row width and plant density effects on texas high plains sorghum. J. Prod. Agric. 4, 613–621 (1991).
    Article  Google Scholar 

    36.
    Faisal, M., Barani, A. R. S., Malik, A., Hussain, M. & Awan, S. I. Yield response of fodder sorghum (Sorghum bicolor) to seed rate and row spacing under rain-fed conditions. J. Agric. Soc. Sci. Pak. 3, 95 (2007).
    Google Scholar 

    37.
    McGuire, S. J. Vulnerability in farmer seed systems: Farmer practices for coping with seed insecurity for sorghum in Eastern Ethiopia. Econ. Bot. 61, 211 (2007).
    Article  Google Scholar 

    38.
    Snider, J. L., Raper, R. L. & Schwab, E. B. The effect of row spacing and seeding rate on biomass production and plant stand characteristics of non-irrigated photoperiod-sensitive sorghum (Sorghum bicolor (L.) Moench). Ind. Crops Prod. 37, 527–535 (2012).
    Article  Google Scholar 

    39.
    Place, G. T., Reberg-Horton, S. C., Dunphy, J. E. & Smith, A. N. Seeding rate effects on weed control and yield for organic soybean production. Weed Technol. 23, 497–502 (2009).
    Article  Google Scholar 

    40.
    Harvey, T. L. & Thompson, C. A. Effects of sorghum density and resistance on infestations of Greenbug, Schizaphis graminum (Homoptera: Aphididae). J. Kans. Entomol. Soc. 61, 68–71 (1988).
    Google Scholar 

    41.
    Riedell, W. E. Mineral-nutrient synergism and dilution responses to nitrogen fertilizer in field-grown maize. J. Plant Nutr. Soil Sci. 173, 869–874 (2010).
    CAS  Article  Google Scholar 

    42.
    Pii, Y., Cesco, S. & Mimmo, T. Shoot ionome to predict the synergism and antagonism between nutrients as affected by substrate and physiological status. Plant Physiol. Biochem. 94, 48–56 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Rietra, R. P. J. J., Heinen, M., Dimkpa, C. O. & Bindraban, P. S. Effects of Nutrient antagonism and synergism on yield and fertilizer use efficiency. Commun. Soil Sci. Plant Anal. 48, 1895–1920 (2017).
    CAS  Article  Google Scholar 

    44.
    Santos, E. F., Pongrac, P., Reis, A. R., White, P. J. & Lavres, J. Phosphorus–zinc interactions in cotton: consequences for biomass production and nutrient-use efficiency in photosynthesis. Physiol. Plant. 166, 996–1007 (2018).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    45.
    Egamberdiyeva, D. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol. 36, 184–189 (2007).
    Article  Google Scholar 

    46.
    Bindraban, P. S., Dimkpa, C., Nagarajan, L., Roy, A. & Rabbinge, R. Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol. Fertil. Soils 51, 897–911 (2015).
    CAS  Article  Google Scholar 

    47.
    Yahya, A. Salinity effects on growth and on uptake and distribution of sodium and some essential mineral nutrients in sesame. J. Plant Nutr. 21, 1439–1451 (1998).
    CAS  Article  Google Scholar 

    48.
    Alam, S., Kamei, S. & Kawai, S. Effect of iron deficiency on the chemical composition of the xylem sap of barley. Soil Sci. Plant Nutr. 47, 643–649 (2001).
    CAS  Article  Google Scholar 

    49.
    Wei Yang, T. J., Perry, P. J., Ciani, S., Pandian, S. & Schmidt, W. Manganese deficiency alters the patterning and development of root hairs in Arabidopsis. J. Exp. Bot. 59, 3453–3464 (2008).
    PubMed Central  Article  CAS  Google Scholar 

    50.
    Dimkpa, C. O. et al. ZnO nanoparticles and root colonization by a beneficial pseudomonad influence essential metal responses in bean (Phaseolus vulgaris). Nanotoxicology 9, 271–278 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Petti, C., Hirano, K., Stork, J. & DeBolt, S. Mapping of a cellulose-deficient mutant named dwarf1-1 in sorghum bicolor to the green revolution gene gibberellin20-oxidase reveals a positive regulatory association between gibberellin and cellulose biosynthesis. Plant Physiol. 169, 705–716 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Xia, Y., Greissworth, E., Mucci, C., Williams, M. A. & Bolt, S. D. Characterization of culturable bacterial endophytes of switchgrass (Panicum virgatum L.) and their capacity to influence plant growth. GCB Bioenergy 5, 674–682 (2013).
    Article  Google Scholar 

    53.
    Chaney, A. L. & Marbach, E. P. Modified reagents for determination of urea and ammonia. Clin. Chem. 8, 130–132 (1962).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Fiske, C. H. & Subbarow, Y. The colorimetric determination of phosphorus. J. Biol. Chem. 66, 375–400 (1925).
    CAS  Google Scholar 

    55.
    Miller, G. L. & Dickens, R. Bermudagrass carbohydrate levels as influenced by potassium fertilization and cultivar. Crop Sci. 36(5), 1283–1289 (1996).
    Article  Google Scholar 

    56.
    Serson, W. et al. Development of whole and ground seed near-infrared spectroscopy calibrations for oil, protein, moisture, and fatty acids in Salvia hispanica. J. Am. Oil Chem. Soc. 97, 3–13 (2020).
    CAS  Article  Google Scholar 

    57.
    Saleem, M., Law, A. D. & Moe, L. A. Nicotiana roots recruit rare rhizosphere taxa as major root-inhabiting microbes. Microb. Ecol. 71, 469–472 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Meng, L. et al. Soil-applied biochar increases microbial diversity and wheat plant performance under herbicide fomesafen stress. Ecotoxicol. Environ. Saf. 171, 75–83 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Mounde, L. G., Boh, M. Y., Cotter, M. & Rasche, F. Potential of Rhizobacteria for promoting sorghum growth and suppressing Striga hermonthica development. J. Plant Dis. Prot. 122, 100–106 (2015).
    Article  Google Scholar 

    60.
    Kumar, H., Dubey, R. C. & Maheshwari, D. K. Seed-coating fenugreek with Burkholderia rhizobacteria enhances yield in field trials and can combat Fusarium wilt. Rhizosphere 3, 92–99 (2017).
    Article  Google Scholar 

    61.
    Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Van, A. L. & Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196–1206 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    62.
    Singh, M. et al. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth. Sci. Rep. 5, 15500 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Lei, S. A. Intraspecific competition among blackbrush (Coleogyne ramosissima) seedlings in a controlled environmental glasshouse. J. Ariz.-Nev. Acad. Sci. 37, 100–104 (2004).
    Article  Google Scholar 

    64.
    XiaoAn, Z. et al. Seasonal changes in the relationship between species richness and community biomass in grassland under grazing and exclosure, Horqin Sandy Land, northern China. Sci. Cold Arid Reg. 5, 177–183 (2013).
    Article  Google Scholar 

    65.
    de Aguiar, M. I., Fialho, J. S., de Araújo, F. C. S., Campanha, M. M. & de Oliveira, T. S. Does biomass production depend on plant community diversity?. Agrofor. Syst. 87, 699–711 (2013).
    Article  Google Scholar 

    66.
    Falzari, L. M., Menary, R. C. & Dragar, V. A. Optimum stand density for maximum essential oil yield in commercial fennel crops. HortScience 41, 646–650 (2006).
    Article  Google Scholar 

    67.
    Ghiasy-Oskoee, M., AghaAlikhani, M., Mokhtassi-Bidgoli, A., Sefidkon, F. & Ayyari, M. Seed and biomass yield responses of blessed thistle to nitrogen and density. Agron. J. 111, 601–611 (2019).
    CAS  Article  Google Scholar 

    68.
    Isaac, M. E., Ulzen-Appiah, F., Timmer, V. R. & Quashie-Sam, S. J. Early growth and nutritional response to resource competition in cocoa-shade intercropped systems. Plant Soil 298, 243–254 (2007).
    CAS  Article  Google Scholar 

    69.
    Blank, R. R. Intraspecific and interspecific pair-wise seedling competition between exotic annual grasses and native perennials: plant–soil relationships. Plant Soil 326, 331–343 (2010).
    CAS  Article  Google Scholar 

    70.
    Dobermann, A. R. et al. Understanding and Managing Corn Yield Potential. Agron. Hortic. — Fac. Publ. (2002).

    71.
    Sabais, A. C. W. et al. Soil organisms shape the competition between grassland plant species. Oecologia 170, 1021–1032 (2012).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    72.
    Munoz, A. E. & Weaver, R. W. Competition between Subterranean Clover and Rygrass for uptake of 15N-labeled fertilizer. Plant Soil 211, 173–178 (1999).
    CAS  Article  Google Scholar 

    73.
    Eisenhauer, N. & Scheu, S. Invasibility of experimental grassland communities: the role of earthworms, plant functional group identity and seed size. Oikos 117, 1026–1036 (2008).
    Article  Google Scholar 

    74.
    Tesfaye, M. et al. Influence of enhanced malate dehydrogenase expression by alfalfa on diversity of rhizobacteria and soil nutrient availability. Soil Biol. Biochem. 35, 1103–1113 (2003).
    CAS  Article  Google Scholar 

    75.
    Fernandez, A. L. et al. Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment. Sci. Total Environ. 566–567, 949–959 (2016).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    76.
    Bashan, Y., Holguin, G. & de-Bashan, L. E. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can. J. Microbiol. 50, 521–577 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    77.
    Dinesh, R. et al. Effects of plant growth-promoting rhizobacteria and NPK fertilizers on biochemical and microbial properties of soils under ginger (Zingiber officinale) Cultivation. Agric. Res. 2, 346–353 (2013).
    CAS  Article  Google Scholar 

    78.
    Li, Q. et al. Belowground interactions impact the soil bacterial community, soil fertility, and crop yield in maize/peanut intercropping systems. Int. J. Mol. Sci. 19, 622 (2018).
    CAS  PubMed Central  Article  Google Scholar 

    79.
    Maron, P.-A. et al. High microbial diversity promotes soil ecosystem functioning. Appl. Environ. Microbiol. 84, e02738-e2817 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Loreau, M., Naeem, S. & Inchausti, P. Biodiversity and ecosystem functioning: synthesis and perspectives. In Biodiversity and Ecosystem Functioning: Synthesis and Perspectives (eds Loreau, M. et al.) (Oxford University Press, Oxford, 2002).
    Google Scholar 

    81.
    Patten, C. L. & Glick, B. R. Role of pseudomonas putida Indoleacetic Acid in development of the host plant root system. Appl. Environ. Microbiol. 68, 3795–3801 (2002).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    Compant, S., Clément, C. & Sessitsch, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42, 669–678 (2010).
    CAS  Article  Google Scholar 

    83.
    Sahn, D. E. The Fight Against Hunger and Malnutrition: The Role of Food, Agriculture, and Targeted Policies (OUP, Oxford, 2015).
    Google Scholar 

    84.
    Schmidt, S. B., Jensen, P. E. & Husted, S. Manganese deficiency in plants: the impact on photosystem II. Trends Plant Sci. 21, 622–632 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    85.
    Lambers, H., Hayes, P. E., Laliberté, E., Oliveira, R. S. & Turner, B. L. Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends Plant Sci. 20, 83–90 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    86.
    de Santiago, A., Quintero, J. M., Avilés, M. & Delgado, A. Effect of Trichoderma asperellum strain T34 on iron, copper, manganese, and zinc uptake by wheat grown on a calcareous medium. Plant Soil 342, 97–104 (2011).
    CAS  Article  Google Scholar 

    87.
    Rajkumar, M., Sandhya, S., Prasad, M. N. V. & Freitas, H. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol. Adv. 30, 1562–1574 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    88.
    Gyaneshwar, P., Naresh Kumar, G., Parekh, L. J. & Poole, P. S. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245, 83–93 (2002).
    CAS  Article  Google Scholar 

    89.
    Kuo, S. & Mikkelsen, D. S. Effect of P and Mn on growth response and uptake of Fe, Mn and P by sorghum. Plant Soil 62, 15–22 (1981).
    CAS  Article  Google Scholar 

    90.
    Shri, P. U. & Pillay, V. Excess of soil zinc interferes with uptake of other micro and macro nutrients in Sorghum bicolor (L.) plants. Indian J. Plant Physiol. 22, 304–308 (2017).
    CAS  Article  Google Scholar 

    91.
    Slaton, N. A., Roberts, T. L., Golden, B. R., Ross, W. J. & Norman, R. J. Soybean response to phosphorus and potassium supplied as inorganic fertilizer or poultry litter. Agron. J. 105, 812–820 (2013).
    CAS  Article  Google Scholar 

    92.
    Griffin, E. A., Wright, S. J., Morin, P. J. & Carson, W. P. Pervasive interactions between foliar microbes and soil nutrients mediate leaf production and herbivore damage in a tropical forest. New Phytol. 216, 99–112 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    93.
    Harpole, W. S. et al. Nutrient co-limitation of primary producer communities. Ecol. Lett. 14, 852–862 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    94.
    Zuo, Y. & Zhang, F. Soil and crop management strategies to prevent iron deficiency in crops. Plant Soil 339, 83–95 (2011).
    CAS  Article  Google Scholar  More

  • in

    Potential of aquatic weeds to improve water quality in natural waterways of the Zambezi catchment

    Study area description
    The Zambezi is Africa’s fourth largest river and the most important draining into the Indian Ocean. We focused our analysis on four sub-catchments of the Zambezi River in southern Zambia where invasions of Water Hyacinth have been reported in literature and/or which we observed from satellite imagery. These rivers are: Kafue, Chongwe, Maramba and Little Chongwe (Fig. 1). The catchments differ in size and dominant human land-use.
    Figure 1

    Location of the four catchments: Chongwe, Kafue (subcatchment between Itezhi-Tezhi Dam and Kafue Gorge), Little Chongwe and Maramba, covered in this study with urban and agricultural land cover15, wetlands and major dams in southern Zambia (www.openstreetmap.org). The four primary surface water sampling sites (pink) as well as reference sampling sites (yellow) are located through crosses. Map created using QGIS 3.4.11 (https://qgis.org).

    Full size image

    The Kafue River is a major tributary of the Zambezi and is characterized by two major hydropower dams bracketing the large Kafue Flats floodplain: Itezhi-Tezhi Dam upstream and Kafue Gorge Upper Power Station (which we subsequently refer to as simply “Kafue Gorge Dam”) downstream. Operation of these dams has greatly altered the hydrology of the lower reaches of the Kafue River leading to changes in the seasonal biochemical functioning of the Kafue Flats16,17 compared to the Barotse Plains, a reference floodplain unmodified by dams18. The lower end of the Kafue Flats has expansive coverage of sugar cane cultivation and the downstream river reach above the reservoir formed by the Kafue Gorge Dam (“Kafue Gorge Reservoir”) receives urban and industrial wastewaters from Kafue. Local reports implicate these nutrient sources as drivers of the recurrence of Water Hyacinth blooms in this area including the Kafue Gorge Reservoir. The Kafue River was subject to nutrient loading studies and intensive weed control campaigns from 1998 to 200019. Confusingly, control efforts are described as “ineffective” in the literature19, and yet the weed problem abated for a decade from 2001 to 2011. Water Hyacinth is back in recent years, following a seasonal pattern of coverage on the Kafue Gorge Reservoir surface. Mechanical control efforts have also been resumed (personal observations of the authors, February 2019).
    The Chongwe River drains one of the more densely populated catchments in Zambia, including parts of the capital, Lusaka, and several nearby townships. After tumbling down the same geographic escarpment as the Kafue, it meets the Zambezi in the Lower Zambezi National Park, approximately 55 km downstream from the confluence of the Kafue with the Zambezi River.
    The Maramba River meets the Zambezi just upstream of Victoria Falls and drains a small, but highly urbanized catchment containing most of Livingstone, a popular tourist destination for its convenient access to the falls. According to reports, overflow discharge from Livingstone’s wastewater treatment pools enters the Maramba just upstream of the confluence with the Zambezi19. During the latter stages of the dry season, low flows in the Maramba allow the river to build up a dense coverage of Water Hyacinth. These mats are seasonally flushed into the Zambezi when the rains at the end of the dry season restore the flow of the Maramba20,21.
    The Little Chongwe River meets the Kafue just 8 km upstream of the Kafue’s confluence with the Zambezi. Its small catchment drains a small portion of a large array of pivot irrigation agriculture.
    Assessment of floating vegetation cover
    To assess levels of floating vegetation, we used a combination of field surveys and analysis of satellite imagery. Floating vegetation on the Kafue Gorge Reservoir can clearly be detected with Landsat imagery. We used Google Earth Engine to group all available images in the Landsat archive in two-month intervals and extracted floating vegetation cover from 1990 to 201922.
    To assess floating vegetation cover on the Maramba, we visually inspected all available historical high-resolution imagery in Google Earth Pro (35 images from 2005 to 2019). We hand-digitized floating vegetation cover over the lower reaches of the river for which channel morphology was clearly and consistently visible and resolvable (2.3 km of linear stream reach). Since there were multiple cases of complete coverage on the Maramba River surface we interpreted complete coverage as a conservative estimate for annual Water Hyacinth biomass export in the catchment.
    Relatively few high-resolution satellite images are available in Google Earth Pro for the lower reaches of the Chongwe River and the Little Chongwe (8 each) and they do not provide complete seasonal coverage, making it impossible to apply the same process as for the Maramba. Instead we simply hand-digitized the area of visible floating vegetation from the image with the most cover (16 June, 2016) and added to this an estimate of the area of fringing floating vegetation based on four ground-based inspections of the coverage in 2018 and 2019. We estimated that fringing vegetation has a coverage of 0.5 m wide running for 1.2 km upstream of the confluence with the Zambezi. Hippo presence prevented us from surveying further upstream and we assumed no floating vegetation presence beyond this point, making our estimates conservative.
    To convert areal coverage to biomass and nutrient content, we used a synthetic mean of biomass per area from 15 studies and synthetic mean nitrogen and phosphorus content from 14 and 17 studies respectively to estimate the total pool macronutrients bound to Water Hyacinth (Supplemental Tables S1,S2). The nutrient content of Water Hyacinth varies substantially between and within studies, presumably in response to differences in nutrient availability and limitation is experiences as it grows and ages23. The Water Hyacinth in Zambian waters spends different parts of its life cycle in very different nutrient settings, ranging from urban wastewater effluent to hyperoligotrophic natural rivers, and we should therefore expect that its nutrient content should also vary substantially in space and time. The synthetic mean nutrient content from varied nutrient settings probably represent a reasonable estimate the nutrient content of Water Hyacinth in Zambia, which grows under a similarly wide range of nutrient conditions. We report uncertainty surrounding mean nutrient content using the standard error of this mean.
    Nutrient sampling
    In order to assess the potential for floating vegetation to sequester nutrients from river systems we modelled river nutrient loading for four Zambezi tributaries infested with invasive floating vegetation and estimated the amount of nutrients bound within floating vegetation biomass. We collected surface water samples from these rivers: the Maramba, the Chongwe, the Little Chongwe and the Kafue near the town of Kafue, once every three months for a year starting in March 2018. To evaluate the nutrient environment in the backwaters where we expect Water Hyacinth to be originating, we also sampled two additional sites in the larger catchments in November 2019. In the Kafue Catchment, we sampled two drainage canals conveying industrial wastewater from Kafue. In the Chongwe catchment, we sampled two points on the Gwerere River, an urban stream draining densely populated portions of Lusaka. We sampled additional points on the Kafue and Zambezi Rivers to provide reference nutrient conditions for the region’s major rivers. These sites include the Kafue River: near Hook Bridge, below the Itezhi-Tezhi Dam, near Mazabuka, near Chirundu; and the Zambezi: near Livingstone, below Kariba Dam, near Chirundu, just above Lower Zambezi National Park (for coordinates and exact sampling dates, see Supplemental Table S3).
    We passed nitrate and phosphate samples through pre-combusted, pre-weighed glass fiber filters and collected unfiltered samples for analysis of bulk nitrogen and phosphorus content. We collected all samples in triplicate and kept them cool during handling and until analysis in the laboratories at Eawag, Switzerland. We digested unfiltered water samples via autoclave with an alkaline potassium peroxidisulfate solution. We analyzed filtered water samples and digests colorimetrically using a Skalar (Breda, Netherlands) SAN++ automated flow injection analyzer following24 and standard procedure ISO 13395:1996. We note that acid digestion of unfiltered surface water is susceptible to underestimation of total phosphorus because of settling of clay particles during sample storage and sub-sampling leading to a bias against potentially phosphorus-rich particulate matter25. We assume that such underestimation in our samples is relatively minor because of low stream velocities we observed at our sampling sites, dominance of sandy rather than clay-rich soils in the region, and because we observed low C:N ratios in particulate matter (Supplemental Table S4), indicating a low-density microbial (rather than mineral) composition. Nevertheless, we refer to our P data as “digestible” rather than “total,” to allow for this potential underestimation.
    Discharge calculations, nutrient load estimation and relative importance
    We calculated average monthly discharges based on hydrographs collected by the Zambia Electricity Supply Corporation (ZESCO) between 1977 and 2017 for the Kafue Gorge Dam. For the Maramba, Chongwe and Little Chongwe Rivers, we estimated discharge by generating a catchment area: discharge curve using nearby stations from the Global Runoff Data Centre. We estimated rainfall for the Maramba catchment through monthly means from the Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) dataset26.
    In order to estimate annual river nutrient loading, we multiplied mean annual discharge by mean digestible phosphorus and mean digestible nitrogen concentrations from our surface water sampling. Our reliance on using the mean of four seasonal concentration values may not fully capture the seasonality of load and is susceptible to effects from outliers. In order to check for evidence of bias from outliers, we also calculated loading based on median concentrations and found that differences translated into a maximum decreased relative importance of plant-bound nutrients of approximately 2%. This is a minor difference compared to other sources of error, such as those stemming from uncertainty in plant biomass per area and nutrient content of plant biomass.
    We estimated the relative contributions of plant-bound versus bulk surface water nutrients to riverine nutrient export, by simply calculating the percentage of each relative to their sum. We used the product of standard errors of mean plant biomass and nutrient content values from literature to generate uncertainty envelops around our estimations for the importance of plant-bound nutrients. Here we assumed that the peak plant biomass we detected represents an annual export of intact plant material from each watershed. This assumption provides a conservative underestimate of the importance of plants because the choke points where the plants accumulate seasonally are unlikely to be 100% efficient as traps. Some plant biomass may be exported without being accounted for, but at least in the case of the Maramba and Kafue where hydrologic conditions favor clear trapping and flushing seasons, this is the most reliable approach available to estimate annual plant-bound nutrient export.
    Landcover analysis
    The river catchments were extracted from the HydroSheds global database27. For the Kafue River, we considered only the catchment below the Itezhi-Tezhi Dam, as we expected the dam to interfere with the nutrient transport from further upstream28.
    To calculate the area of urban and agricultural land within each catchment we used fractional land cover maps for 2015 from the Copernicus Global Land Service29. Using the raster package30 in R, we extracted pixel values within each catchment polygon and then calculated the area for all pixels with a fraction of more than 50% for the respective class.
    All analyses and figures were completed using R version 3.6.131. More

  • in

    Forensic tracers of exposure to produced water in freshwater mussels: a preliminary assessment of Ba, Sr, and cyclic hydrocarbons

    1.
    Clark, C. & Veil, J. Produced water volumes and management practices in the United States. Argonne Natl. Lab. Rep. https://doi.org/10.2172/1007397 (2009).
    Article  Google Scholar 
    2.
    Dolan, F. C., Cath, T. Y. & Hogue, T. S. Assessing the feasibility of using produced water for irrigation in Colorado. Sci. Total Environ. 640–641, 619–628 (2018).
    ADS  PubMed  Google Scholar 

    3.
    McDevitt, B. et al. Isotopic and element ratios fingerprint salinization impact from beneficial use of oil and gas produced water in the Western U.S. Sci. Total Environ. 716, 137006 (2020).
    ADS  CAS  PubMed  Google Scholar 

    4.
    McLaughlin, M. C., Borch, T., McDevitt, B., Warner, N. R. & Blotevogel, J. Water quality assessment downstream of oil and gas produced water discharges intended for beneficial reuse in arid regions. Sci. Total Environ. 713, 136607 (2020).
    ADS  CAS  PubMed  Google Scholar 

    5.
    Kahrilas, G. A., Blotevogel, J., Stewart, P. S. & Borch, T. Biocides in hydraulic fracturing fluids: a critical review of their usage, mobility, degradation, and toxicity. Environ. Sci. Technol. 49, 16–32 (2015).
    ADS  CAS  PubMed  Google Scholar 

    6.
    Haluszczak, L. O., Rose, A. W. & Kump, L. R. Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania, USA. Appl. Geochem. 28, 55–61 (2013).
    CAS  Google Scholar 

    7.
    Lester, Y. et al. Characterization of hydraulic fracturing flowback water in Colorado: Implications for water treatment. Sci. Total Environ. 512–513, 637–644 (2015).
    ADS  PubMed  Google Scholar 

    8.
    Michael Thurman, E., Ferrer, I., Blotevogel, J. & Borch, T. Analysis of hydraulic fracturing flowback and produced waters using accurate mass: identification of ethoxylated surfactants. Anal. Chem. 86, 9653–9661 (2014).
    PubMed  Google Scholar 

    9.
    Hoelzer, K. et al. Indications of transformation products from hydraulic fracturing additives in shale-gas wastewater. Environ. Sci. Technol. 50, 8036–8048 (2016).
    ADS  CAS  PubMed  Google Scholar 

    10.
    Piotrowski, P. K. et al. Elucidating environmental fingerprinting mechanisms of unconventional gas development through hydrocarbon analysis. Anal. Chem. 90, 5466–5473 (2018).
    CAS  PubMed  Google Scholar 

    11.
    Piotrowski, P. K. et al. Non-Targeted chemical characterization of a Marcellus shale gas well through GC × GC with scripting algorithms and high-resolution time-of-flight mass spectrometry. Fuel 215, 363–369 (2018).
    CAS  Google Scholar 

    12.
    He, Y. et al. Chemical and toxicological characterizations of hydraulic fracturing flowback and produced water. Water Res. 114, 78–87 (2017).
    CAS  PubMed  Google Scholar 

    13.
    Llewellyn, G. T. et al. Evaluating a groundwater supply contamination incident attributed to Marcellus Shale gas development. Proc. Natl. Acad. Sci. 112, 6325 (2015).
    ADS  CAS  PubMed  Google Scholar 

    14.
    Drollette, B. D. et al. Elevated levels of diesel range organic compounds in groundwater near Marcellus gas operations are derived from surface activities. Proc. Natl. Acad. Sci. USA 112, 13184–13189 (2015).
    ADS  CAS  PubMed  Google Scholar 

    15.
    Cozzarelli, I. M. et al. Environmental signatures and effects of an oil and gas wastewater spill in the Williston Basin, North Dakota. s 579, 1781–1793 (2016).
    Google Scholar 

    16.
    Digiulio, D. C. & Jackson, R. B. Impact to underground sources of drinking water and domestic wells from production well stimulation and completion practices in the Pavillion, Wyoming, Field. Environ. Sci. Technol. 50, 4524–4536 (2016).
    ADS  CAS  PubMed  Google Scholar 

    17.
    Gross, S. A. et al. Analysis of BTEX groundwater concentrations from surface spills associated with hydraulic fracturing operations. J. Air Waste Manag. Assoc. 63, 424–432 (2013).
    CAS  PubMed  Google Scholar 

    18.
    Hildenbrand, Z. L. et al. Temporal variation in groundwater quality in the Permian Basin of Texas, a region of increasing unconventional oil and gas development. Sci. Total Environ. 562, 906–913 (2016).
    ADS  CAS  PubMed  Google Scholar 

    19.
    Kassotis, C. D. et al. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site. Sci. Total Environ. 557–558, 901–910 (2016).
    ADS  PubMed  Google Scholar 

    20.
    Burgos, W. D. et al. Watershed-scale impacts from surface water disposal of oil and gas wastewater in Western Pennsylvania. Environ. Sci. Technol. 51, 8851–8860 (2017).
    ADS  CAS  PubMed  Google Scholar 

    21.
    Getzinger, G. J. et al. Natural gas residual fluids: sources, endpoints, and organic chemical composition after centralized waste treatment in Pennsylvania. Environ. Sci. Technol. 49, 8347–8355 (2015).
    ADS  CAS  PubMed  Google Scholar 

    22.
    Blewett, T. A. et al. Sublethal and reproductive effects of acute and chronic exposure to flowback and produced water from hydraulic fracturing on the water Flea Daphnia magna. Environ. Sci. Technol. 51, 3032–3039 (2017).
    ADS  CAS  PubMed  Google Scholar 

    23.
    Blewett, T. A., Delompré, P. L. M., Glover, C. N. & Goss, G. G. Physical immobility as a sensitive indicator of hydraulic fracturing fluid toxicity towards Daphnia magna. Sci. Total Environ. 635, 639–643 (2018).
    ADS  CAS  PubMed  Google Scholar 

    24.
    He, Y. et al. Developmental toxicity of the organic fraction from hydraulic fracturing Flowback and produced waters to early life stages of Zebrafish (Danio rerio). Environ. Sci. Technol. 52, 3820–3830 (2018).
    ADS  CAS  PubMed  Google Scholar 

    25.
    He, Y. et al. Effects on biotransformation, oxidative stress, and endocrine disruption in rainbow trout (Oncorhynchus mykiss) exposed to hydraulic fracturing flowback and produced water. Environ. Sci. Technol. 51, 940–947 (2017).
    ADS  CAS  PubMed  Google Scholar 

    26.
    Blewett, T. A., Weinrauch, A. M., Delompré, P. L. M. & Goss, G. G. The effect of hydraulic flowback and produced water on gill morphology, oxidative stress and antioxidant response in rainbow trout (Oncorhynchus mykiss). Sci. Rep. 7, 46582 (2017).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Tasker, T. L. et al. Environmental and human health impacts of spreading oil and gas wastewater on roads. Environ. Sci. Technol. 52, 7081–7091 (2018).
    ADS  CAS  PubMed  Google Scholar 

    28.
    McDevitt, B. et al. Emerging investigator series: radium accumulation in carbonate river sediments at oil and gas produced water discharges: implications for beneficial use as disposal management. Environ. Sci. Process. Impacts 21, 324–338 (2019).
    MathSciNet  CAS  PubMed  Google Scholar 

    29.
    McLaughlin, M. C. et al. Mutagenicity assessment downstream of oil and gas produced water discharges intended for agricultural beneficial reuse. Sci. Total Environ. 715, 136944 (2020).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    30.
    Folkerts, E. J., Blewett, T. A., He, Y. & Goss, G. G. Alterations to Juvenile Zebrafish (Danio rerio) swim performance after acute embryonic exposure to sub-lethal exposures of hydraulic fracturing flowback and produced water. Aquat. Toxicol. 193, 50–59 (2017).
    CAS  PubMed  Google Scholar 

    31.
    Folkerts, E. J., Blewett, T. A., He, Y. & Goss, G. G. Cardio-respirometry disruption in zebrafish (Danio rerio) embryos exposed to hydraulic fracturing flowback and produced water. Environ. Pollut. 231, 1477–1487 (2017).
    CAS  PubMed  Google Scholar 

    32.
    Delompré, P. L. M. et al. The osmotic effect of hyper-saline hydraulic fracturing fluid on rainbow trout, Oncorhynchus mykiss. s 211, 1–10 (2019).
    Google Scholar 

    33.
    Wang, N. et al. Acute toxicity of sodium chloride and potassium chloride to a unionid mussel (Lampsilis siliquoidea) in water exposures. Environ. Toxicol. Chem. 37, 3041–3049 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Wang, N., Kunz, J. L., Cleveland, D., Steevens, J. A. & Cozzarelli, I. M. Biological effects of elevated major ions in surface water contaminated by a produced water from oil production. Arch. Environ. Contam. Toxicol. 76, 670–677 (2019).
    CAS  PubMed  Google Scholar 

    35.
    Wang, N. et al. Evaluation of chronic toxicity of sodium chloride or potassium chloride to a unionid mussel (Lampsilis siliquoidea) in water exposures using standard and refined toxicity testing methods. Environ. Toxicol. Chem. 37, 3050–3062 (2018).
    CAS  PubMed  Google Scholar 

    36.
    Patnode, K. A., Hittle, E., Anderson, R. M., Zimmerman, L. & Fulton, J. W. Effects of high salinity wastewater discharges on unionid mussels in the allegheny river Pennsylvania. J. Fish Wildl. Manag. 6, 55–70 (2015).
    Google Scholar 

    37.
    Geeza, T. J., Gillikin, D. P., McDevitt, B., Van Sice, K. & Warner, N. R. Accumulation of marcellus formation oil and gas wastewater metals in freshwater mussel shells. Environ. Sci. Technol. 52, 10883–10892 (2018).
    ADS  CAS  PubMed  Google Scholar 

    38.
    De los Ríos, A. et al. Assessment of the effects of discontinuous sources of contamination through biomarker analyses on caged mussels. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2018.03.297 (2018).
    Article  PubMed  Google Scholar 

    39.
    Pilote, M., André, C., Turcotte, P., Gagné, F. & Gagnon, C. Metal bioaccumulation and biomarkers of effects in caged mussels exposed in the Athabasca oil sands area. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2017.08.023 (2018).
    Article  PubMed  Google Scholar 

    40.
    Bonnefille, B., Arpin-Pont, L., Gomez, E., Fenet, H. & Courant, F. Metabolic profiling identification of metabolites formed in Mediterranean mussels (Mytilus galloprovincialis) after diclofenac exposure. Sci. Total Environ. 583, 257–268 (2017).
    ADS  CAS  PubMed  Google Scholar 

    41.
    Spring, S. NOAA Technical Memorandum NOS ORCA 71 National Status and Trends Program for Marine Environmental Quality Sampling and Analytical Methods of the National Status and Trends Program National Benthic Surveillance and Mussel Watch Projects 1984–1992 Volume I Overview and Summary of Methods noaa NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Coastal Monitoring and Bioeffects Assessment Division Office of Ocean Resources Conservation and Assessment National Ocean Service. (1993).

    42.
    Lydeard, C. et al. The global decline of Nonmarine Mollusks. Bioscience 54, 321–330 (2004).
    Google Scholar 

    43.
    Strayer, D. L. et al. Changing perspectives on pearly mussels, North America’s most imperiled animals. Bioscience 54, 429–439 (2004).
    Google Scholar 

    44.
    Lopes-Lima, M. et al. Conservation status of freshwater mussels in Europe: state of the art and future challenges. Biol. Rev. 92, 572–607 (2017).
    PubMed  Google Scholar 

    45.
    Shulkin, V. M., Presley, B. J. & Kavun, V. I. Metal concentrations in mussel Crenomytilus grayanus and oyster Crassostrea gigas in relation to contamination of ambient sediments. Environ. Int. https://doi.org/10.1016/S0160-4120(03)00004-7 (2003).
    Article  PubMed  Google Scholar 

    46.
    Ishikawa, Y., Kagaya, H. & Saga, K. Biomagnification of 7Be, 234Th, and 228Ra in marine organisms near the northern Pacific coast of Japan. J. Environ. Radioact. https://doi.org/10.1016/j.jenvrad.2004.03.021 (2004).
    Article  PubMed  Google Scholar 

    47.
    Brenner, M., Smoak, J. M., Leeper, D. A., Streubert, M. & Baker, S. M. Radium-226 accumulation in Florida freshwater mussels. Limnol. Oceanogr. 52, 1614–1623 (2007).
    ADS  CAS  Google Scholar 

    48.
    Jeffree, R. A., Markich, S. J. & Brown, P. L. Comparative accumulation of alkaline-earth metals by two freshwater mussel species from the Nepean River, Australia: consistencies and a resolved paradox. Aust. J. Mar. Freshw. Res. 44, 609–634 (1993).
    CAS  Google Scholar 

    49.
    Markich, S. J., Brown, P. L. & Jeffree, R. A. Divalent metal accumulation in freshwater bivalves: an inverse relationship with metal phosphate solubility. Sci. Total Environ. https://doi.org/10.1016/S0048-9697(00)00721-X (2001).
    Article  PubMed  Google Scholar 

    50.
    Markich, S. J. & Jeffree, R. A. Absorption of divalent trace metals as analogues of calcium by Australian freshwater bivalves: an explanation of how water hardness reduces metal toxicity. Aquat. Toxicol. https://doi.org/10.1016/0166-445X(94)90072-8 (1994).
    Article  Google Scholar 

    51.
    Fritz, L., Ragone, L., Lutz, R. & Swapp, S. Biomineralization of barite in the shell of the freshwater asiatic clam Corbicula fluminea (Mollusca: Bivalvia). Limnol. Oceanogr. 35, 756–762 (1990).
    ADS  CAS  Google Scholar 

    52.
    Ricciardi, A., Neves, R. J. & Rasmussen, J. B. Impending extinctions of North American freshwater mussels (Unionoida) following the zebra mussel (Dreissena polymorpha) invasion. J. Anim. Ecol. 67, 613–619 (1998).
    Google Scholar 

    53.
    Ricciardi, A. & Rasmussen, J. B. Extinction rates of North American freshwater fauna. Conserv. Biol. 13, 1220–1222 (1999).
    Google Scholar 

    54.
    Vaughn, C. C. & Taylor, C. M. Impoundments and the decline of freshwater mussels: a case study of an extinction gradient. Conserv. Biol. 13, 912–920 (1999).
    Google Scholar 

    55.
    Weggler, B. A. et al. Untargeted identification of wood type-specific markers in particulate matter from wood combustion. Environ. Sci. Technol. 50, 10073–10081 (2016).
    ADS  CAS  PubMed  Google Scholar 

    56
    Colborn, T. & Smolen, M. J. Epidemiological analysis of persistent organochlorine contaminants in cetaceans. Rev. Environ. Contam. Toxicol. https://doi.org/10.1007/978-1-4613-8478-6_4 (1996).
    Article  PubMed  Google Scholar 

    57.
    Halbrook, R. S., Kirkpatrick, R. L., Scanlon, P. F., Vaughan, M. R. & Veit, H. P. Environmental Contamination a n d Toxicology Muskrat Populations in Virginia’s Elizabeth River: Physiological Condition and Accumulation of Environmental Contaminants. Arch. Environ. Contain. Toxicol 25, (ARCHIVES OF, 1993).

    58.
    Birdsall, K., Kukor, J. J. & Cheney, M. A. Uptake of polycyclic aromatic hydrocarbon compounds by the gills of the bivalve mollusk Elliptio complanata. Environ. Toxicol. Chem. 20, 309–316 (2001).
    CAS  PubMed  Google Scholar 

    59.
    Thorsen, W. A. et al. Elimination rate constants of 46 polycyclic aromatic hydrocarbons in the unionid mussel, Elliptio complanata. Arch. Environ. Contam. Toxicol. https://doi.org/10.1007/s00244-004-3186-y (2004).
    Article  PubMed  Google Scholar 

    60.
    Gewurtz, S. B., Drouillard, K. G., Lazar, R. & Haffner, G. D. Quantitative biomonitoring of PAHs using the barnes mussel (Elliptio complanata). Arch. Environ. Contam. Toxicol. https://doi.org/10.1007/s00244-002-1153-z (2002).
    Article  PubMed  Google Scholar 

    61.
    Gewurtz, S. G., Lazar, R. & Haffner, G. D. Biomonitoring of bioavailable PAH and PCB water concentrations in the Detroit River using the freshwater mussel Elliptio complanata. J. Great Lakes Res. 29, 242–255 (2003).
    CAS  Google Scholar 

    62.
    Metcalfe, J. L. & Charlton, M. N. Freshwater mussels as biomonitors for organic industrial contaminants and pesticides in the St Lawrence River. Sci. Total Environ. 98, 595–615 (1990).
    ADS  Google Scholar 

    63
    Drouillard, K. G. et al. Quantitative biomonitoring in the Detroit River using Elliptio complanata: verification of steady state correction factors and temporal trends of PCBs in water between 1998 and 2015. Bull. Environ. Contam. Toxicol. 97, 757–762 (2016).
    CAS  PubMed  Google Scholar 

    64.
    Drouillard, K. G., Chan, S., O’Rourke, S., Douglas Haffner, G. & Letcher, R. J. Elimination of 10 polybrominated diphenyl ether (PBDE) congeners and selected polychlorinated biphenyls (PCBs) from the freshwater mussel, Elliptio complanata. Chemosphere 69, 362–370 (2007).
    ADS  CAS  PubMed  Google Scholar 

    65.
    O’Rourke, S., Drouillard, K. G. & Haffner, G. D. Determination of laboratory and field elimination rates of polychlorinated biphenyls (PCBs) in the freshwater mussel, Elliptio complanata. Environ. Contam. Toxicol. 47, 74–83 (2004).
    Google Scholar 

    66.
    Xu, M. et al. Quantitative structure-activity relationship for the depuration rate constants of polychlorinated biphenyls in the freshwater mussel, Elliptio complanata. J. Environ. Sci. Heal. Part B 44, 278–283 (2009).
    CAS  Google Scholar 

    67.
    Sabik, H., Gagné, F., Blaise, C., Marcogliese, D. J. & Jeannot, R. Occurrence of alkylphenol polyethoxylates in the St. Lawrence River and their bioconcentration by mussels (Elliptio complanata). Chemosphere 51, 349–356 (2003).
    ADS  CAS  PubMed  Google Scholar 

    68.
    Donkin, P., Smith, E. L. & Rowland, S. J. Toxic effects of unresolved complex mixtures of aromatic hydrocarhons accumulated by mussels, Mytilus edulis, from contaminated field sites. Environ. Sci. Technol. 37, 4825–4830 (2003).
    ADS  CAS  PubMed  Google Scholar 

    69.
    Booth, A. M. et al. Unresolved complex mixtures of aromatic hydrocarbons: thousands of overlooked persistent, bioaccumulative, and toxic contaminants in mussels. Environ. Sci. Technol. 41, 457–464 (2007).
    ADS  CAS  PubMed  Google Scholar 

    70.
    Gillikin, D. P. et al. Barium uptake into the shells of the common mussel (Mytilus edulis) and the potential for estuarine paleo-chemistry reconstruction. Geochim. Cosmochim. Acta https://doi.org/10.1016/j.gca.2005.09.015 (2006).
    Article  Google Scholar 

    71.
    Geeza, T. J. et al. Controls on magnesium, manganese, strontium, and barium concentrations recorded in freshwater mussel shells from Ohio. Chem. Geol. https://doi.org/10.1016/j.chemgeo.2018.01.001 (2019).
    Article  Google Scholar 

    72.
    Abualfaraj, N., Gurian, P. L. & Olson, M. S. Characterization of marcellus shale flowback water. Environ. Eng. Sci. 31, 514–524 (2014).
    CAS  Google Scholar 

    73.
    Chapman, E. C. et al. Geochemical and strontium isotope characterization of produced waters from marcellus shale natural gas extraction. Environ. Sci. Technol. 46, 3545–3553 (2012).
    ADS  CAS  PubMed  Google Scholar 

    74.
    Poulain, C. et al. An evaluation of Mg/Ca, Sr/Ca, and Ba/Ca ratios as environmental proxies in aragonite bivalve shells. Chem. Geol. 396, 42–50 (2015).
    ADS  CAS  Google Scholar 

    75.
    Lorens, R. B. & Bender, M. L. The impact of solution chemistry on Mytilus edulis calcite and aragonite. Geochim. Cosmochim. Acta 44, 1265–1278 (1980).
    ADS  CAS  Google Scholar 

    76.
    Wheeler, A. Mechanisms of molluscan shell formation. (1992).

    77.
    Wilbur, K. M. The Mollusca (Academic Press, Cambridge, 1983).
    Google Scholar 

    78.
    Crenshaw, M. A. The inorganic composition of molluscan extrapallial fluid. Biol. Bull. 143, 6–512 (1972).
    Google Scholar 

    79.
    Mount, A. S., Wheeler, A. P., Paradkar, R. P. & Snider, D. Hemocyte-mediated shell mineralization in the Eastern Oyster. Science 304, 297–300 (2004).
    ADS  CAS  PubMed  Google Scholar 

    80.
    Nair, P. S. & Robinson, W. E. Calcium speciation and exchange between blood and extrapallial fluid of the quahog Mercenaria mercenaria (L.). Biol. Bull. 195, 43–51 (1998).
    CAS  PubMed  Google Scholar 

    81.
    Kelemen, Z., Gillikin, D. P. & Bouillon, S. Relationship between river water chemistry and shell chemistry of two tropical African freshwater bivalve species. Chem. Geol. 526, 130–141 (2019).
    ADS  CAS  Google Scholar 

    82.
    Canadian Council of Ministers of the Environment. Canadian water quality guidelines for the protection of aquatic life. Water Quality Index. (2001).

    83.
    Todd, A. K. & Kaltenecker, M. G. Warm season chloride concentrations in stream habitats of freshwater mussel species at risk. Environ. Pollut. 171, 199–206 (2012).
    CAS  PubMed  Google Scholar 

    84.
    O’Neil, D. D. & Gillikin, D. P. Do freshwater mussel shells record road-salt pollution?. Sci. Rep. 4, 1–6 (2014).
    Google Scholar 

    85.
    Ganoe, L. S., Brown, J. D., Yabsley, M. J., Lovallo, M. J. & Walter, W. D. A review of pathogens, diseases, and contaminants of muskrats (Ondatra zibethicus) in North America. Frontiers Veterin. Sci. 7, 233 (2020).
    Google Scholar 

    86.
    Warner, N. R., Christie, C. A., Jackson, R. B. & Vengosh, A. Impacts of shale gas wastewater disposal on water quality in Western Pennsylvania. Environ. Sci. Technol. 47, 11849–11857 (2013).
    ADS  CAS  PubMed  Google Scholar 

    87.
    United States Environmental Protection Agency. Method 3510C (SW-846): Separatory Funnel Liquid-Liquid Extraction, Revision 3. (1996).

    88.
    United States Environmental Protection Agency. Method 3005A (SW-846): Acid Digestion of Waters for Total Recoverable or Dissolved Metals for Analysis by FLAA or ICP Spectroscopy, Revision 3. (1992).

    89.
    Chong, J. et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Web Serv. 46, W486–W494 (2018).
    CAS  Google Scholar  More

  • in

    A database of chlorophyll and water chemistry in freshwater lakes

    1.
    Beeton, A. M. Large freshwater lakes: present state, trends, and future. Environ Conserv. 29, 21–38 (2002).
    CAS  Google Scholar 
    2.
    Shiklomanov, I. A. Water in Crisis: A Guide to the World’s Fresh Water Resources (Oxford Univ. Press, 1993).

    3.
    McMichael, A. J., Woodruff, R. E. & Hales, S. Climate change and human health: present and future risks. The Lancet 367, 859–869 (2006).
    Google Scholar 

    4.
    Meyer, M. F., Labou, S. G., Cramer, A. N., Brousil, M. R. & Luff, B. T. The global lake area, climate, and population dataset. Sci. Data 7, 1–12 (2020).
    Google Scholar 

    5.
    Wrona, F. J. et al. Climate change effects on aquatic biota, ecosystem structure and function. Ambio 35, 359–369 (2006).
    CAS  PubMed  Google Scholar 

    6.
    Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009).
    ADS  PubMed  PubMed Central  Google Scholar 

    7.
    Nürnberg, G. K. & Shaw, M. Productivity of clear and humic lakes: nutrients, phytoplankton, bacteria. Hydrobiologia 382, 97–112 (1998).
    Google Scholar 

    8.
    Makri, S., Lami, A., Lods-Crozet, B. & Loizeau, J. L. Reconstruction of trophic state shifts over the past 90 years in a eutrophicated lake in western Switzerland, inferred from the sedimentary record of photosynthetic pigments. J. Paleolimnol. 61, 129–145 (2019).
    ADS  Google Scholar 

    9.
    Håkanson, L. & Boulion, V. V. Regularities in primary production, Secchi depth and fish yield and a new system to define trophic and humic state indices for lake ecosystems. Int. Rev. Hydrobiol. 86, 23–62 (2001).
    Google Scholar 

    10.
    Carlson, R. E. A trophic state index for lakes. Limnol. Oceanogr. 22, 361–369 (1977).
    ADS  CAS  Google Scholar 

    11.
    Sterner, R. W. In situ-measured primary production in Lake Superior. J. Great Lakes Res. 36, 139–149 (2010).
    Google Scholar 

    12.
    Li, X., Sha, J. & Wang, Z. L. Chlorophyll-a prediction of lakes with different water quality patterns in China based on hybrid neural networks. Water 9, 524 (2017).
    ADS  Google Scholar 

    13.
    Vollenweider, R. & Kerekes, J. Eutrophication of Waters: Monitoring, Assessment and Control. OECD (1982).

    14.
    Bennion, D. H., Warner, D. M., Esselman, P. C., Hobson, B. & Kieft, B. A comparison of chlorophyll a values obtained from an autonomous underwater vehicle to satellite-based measures for Lake Michigan. J. Great Lakes Res. 45, 726–734 (2019).
    CAS  Google Scholar 

    15.
    Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).
    PubMed  Google Scholar 

    16.
    Hall, R. I., Leavitt, P. R., Quinlan, R., Dixit, A. S. & Smol, J. P. Effects of agriculture, urbanization, and climate on water quality in the northern Great Plains. Limnol. Oceanogr. 44, 739–756 (1999).
    ADS  CAS  Google Scholar 

    17.
    Bennett, E. M., Carpenter, S. R. & Caraco, N. F. Human impact on erodable phosphorus and eutrophication: a global perspective: increasing accumulation of phosphorus in soil threatens rivers, lakes, and coastal oceans with eutrophication. AIBS Bulletin 51, 227–234 (2001).
    Google Scholar 

    18.
    Williamson, C. E., Dodds, W., Kratz, T. K. & Palmer, M. A. Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Front. Ecol. Environ. 6, 247–254 (2008).
    Google Scholar 

    19.
    Carpenter, S. R. et al. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 8, 559–568 (1998).
    Google Scholar 

    20.
    Williamson, C. E., Saros, J. E., Vincent, W. F. & Smol, J. P. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol. Oceanogr. 54, 2273–2282 (2009).
    ADS  Google Scholar 

    21.
    Li, L., Li, L., Shi, K., Li, Z. & Song, K. A semi-analytical algorithm for remote estimation of phycocyanin in inland waters. Sci. Total Environ. 435, 141–150 (2012).
    ADS  PubMed  Google Scholar 

    22.
    Odermatt, D., Danne, O., Philipson, P. & Brockmann, C. Diversity II water quality parameters from ENVISAT (2002-2012): a new global information source for lakes. Earth Syst. Sci. Data 10, 1527–1549 (2018).
    ADS  Google Scholar 

    23.
    Palmer, S. C., Kutser, T. & Hunter, P. D. Remote sensing of inland waters: Challenges, progress and future directions. Remote Sens. Environ. 157, 1–8 (2015).
    ADS  Google Scholar 

    24.
    Salama, M. S. & Verhoef, W. Two-stream remote sensing model for water quality mapping: 2SeaColor. Remote Sens. Environ. 157, 111–122 (2015).
    ADS  Google Scholar 

    25.
    Soranno, P. A. et al. LAGOS-NE: A multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of U.S. lakes. Gigascience 6, 1–22 (2017).
    PubMed  PubMed Central  Google Scholar 

    26.
    Zeng, L. H. & Li, D. L. Development of in situ sensors for chlorophyll concentration measurement. J. Sens. 2015, 1–16 (2015).
    Google Scholar 

    27.
    Shimaraeva, S. V., Pislegina, E. V., Krashchuk, L. S., Shchapov, K. S. & Silow, E. A. Dynamics of chlorophyll a concentration in the South Baikal pelagic during the direct temperature stratification period. Inland Water Biol. 10, 59–63 (2017).
    Google Scholar 

    28.
    Eaton, A. D., & Franson, M. A. H. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, Denver, Alexandria (2005).

    29.
    Torremorell, A., del Carmen Diéguez, M., Queimaliños, C., Izaguirre, I. & Zagarese, H. E. Phytoplankton limitation in Patagonian and Pampean shallow lakes: effect of phosphorus and light. Hydrobiologia 816, 91–105 (2018).
    CAS  Google Scholar 

    30.
    Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Filazzola, A. et al. A global database of chlorophyll and water chemistry in freshwater lakes. KNB Data Repository https://doi.org/10.5063/F1RV0M1S (2020).

    32.
    Marselina, M. & Burhanudin, M. Trophic status assessment of Saguling Reservoir, Upper Citarum Basin, Indonesia. Air, Soil and Water Res. 10, 1–8 (2017).
    Google Scholar 

    33.
    R Development Core Team. R: A language and environment for statistical computing (2019).

    34.
    Wickham, H. & Henry, L. tidyr: Tidy Messy Data. R package version 1.0.0. https://CRAN.R-project.org/package=tidyr (2019).

    35.
    Wickham, H., François, R., Henry, L., & Müller, K. dplyr: A Grammar of Data Manipulation. R package version 0.8.3. https://CRAN.R-project.org/package=dplyr (2019).

    36.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, New York, 2016).
    Google Scholar 

    37.
    Verpoorter, C., Kutser, T., Seekell, D. A. & Tranvik, L. J. A global inventory of lakes based on high‐resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).
    ADS  Google Scholar 

    38.
    Filazzola, A. afilazzola/ChlorophyllDataPaper: Initial-Release. Zenodo https://doi.org/10.5281/zenodo.3968735 (2020).

    39.
    Hampton, S. E. et al. Ecology under lake ice. Ecol. Lett. 20, 98–111 (2017).
    PubMed  Google Scholar 

    40.
    Karatayev, Vadim, A. et al. Eutrophication and Dreissena invasion as drivers of biodiversity: A century of change in the mollusc community of Oneida Lake. PloS One 9 (2014).

    41.
    Richardson, D. C. et al. Transparency, geomorphology and mixing regime explain variability in trends in lake temperature and stratification across northeastern North America (1975–2014). Water 9, 442 (2017).
    Google Scholar 

    42.
    Mantzouki, E. et al. The European Multi Lake Survey (EMLS) dataset of physical, chemical, algal pigments and cyanotoxin parameters 2015. Environmental Data Initiative (2018).

    43.
    Pollard, AminaI., Hampton, StephanieE. & Leech, DinaM. The Promise and Potential of Continental‐Scale Limnology Using the US Environmental Protection Agency’s National Lakes. Assessment. Limnol.Oceanogr. Bull. 27, 36–41 (2018).
    Google Scholar 

    44.
    Burnett, L., Moorhead, D., Hawes, I. & Howard-Williams, C. Environmental factors associated with deep chlorophyll maxima in Dry Valley lakes, South Victoria Land, Antarctica. Arct. Antarct. Alp. Res. 38, 179–189 (2006).
    Google Scholar 

    45.
    Takamura, N. & Nakagawa, M. The densities of bacteria, picophytoplankton, heterotrophic nanoflagellates and ciliates in Lake Kasumigaura (Japan) monitored monthly since 1996. Ecol. Res. 27, 839 (2012).
    Google Scholar 

    46.
    Gries, C., Gahler, M. R., Hanson, P. C., Kratz, T. K. & Stanley, E. H. Information management at the North Temperate Lakes Long-term Ecological Research site—Successful support of research in a large, diverse, and long running project. Ecol. Inform. 36, 201–208 (2016).
    Google Scholar  More

  • in

    Fine-scale landscape genetics unveiling contemporary asymmetric movement of red panda (Ailurus fulgens) in Kangchenjunga landscape, India

    1.
    Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405(6783), 243–253 (2000).
    CAS  PubMed  Article  Google Scholar 
    2.
    Lindenmayer, D. B. & Fischer, J. Habitat Fragmentation and Landscape Change: An Ecological and Conservation Synthesis (Island Press, Washington, 2013).
    Google Scholar 

    3.
    Hilty, J. A., Lidicker, W. Z. Jr. & Merenlender, A. M. Corridor Ecology: The Science and Practice of Linking Landscapes for Biodiversity Conservation (Island Press, Washington, 2012).
    Google Scholar 

    4.
    Katayama, N. et al. Landscape heterogeneity–biodiversity relationship: Effect of range size. PLoS ONE https://doi.org/10.1371/journal.pone.0093359 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    5.
    Doherty, T. S. & Driscoll, D. A. Coupling movement and landscape ecology for animal conservation in production landscapes. Proc. R. Soc. B Biol. Sci. 285(1870), 2017–2272 (2018).
    Google Scholar 

    6.
    Frankham, R. Challenges and opportunities of genetic approaches to biological conservation. Biol. Conserv. 143(9), 1919–1927 (2010).
    Article  Google Scholar 

    7.
    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1(2), e1500052 (2015).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Lambertucci, S. A. et al. Apex scavenger movements call for transboundary conservation policies. Biol. Conserv. 170, 145–150 (2014).
    Article  Google Scholar 

    9.
    Gurung, J. et al. Evolution of a transboundary landscape approach in the Hindu Kush Himalaya: Key learnings from the Kangchenjunga landscape. Glob. Ecol. Conserv. 17, 1–15 (2019).
    Google Scholar 

    10.
    Wei, F., Feng, Z., Wang, Z., Zhou, A. & Hu, J. Use of the nutrients in bamboo by the red panda (Ailurus fulgens). J. Zool. 248(4), 535–541 (1999).
    Google Scholar 

    11.
    Choudhury, A. An overview of the status and conservation of the red panda Ailurus fulgens in India, with reference to its global status. Oryx 35(3), 250–259 (2001).
    Google Scholar 

    12.
    Glatston, A., Wei, F., Than, Z., & Sherpa, A. Ailurus fulgens. The IUCN red list of threatened species, 4 (2015).

    13.
    Roberts, M. S. & Gittleman, J. L. Ailurus fulgens. Mamm. Species 222, 1–8 (1984).
    Google Scholar 

    14.
    Wei, F., Feng, Z., Wang, Z. & Hu, J. Current distribution, status and conservation of wild red pandas Ailurus fulgens in China. Biol. Conserv. 89, 285–291 (1999).
    Google Scholar 

    15.
    Hu, Y. et al. Genomic evidence for two phylogenetic species and long-term population bottlenecks in red pandas. Sci. Adv. 9, 5751 (2020).
    ADS  Google Scholar 

    16.
    Thapa, A. et al. Predicting the potential distribution of the endangered red panda across its entire range using MaxEnt modeling. Ecol. Evol. 8, 10542–10554 (2018).
    PubMed  PubMed Central  Google Scholar 

    17.
    Cohen, J. E. & Small, C. Hypsographic demography: The distribution of human population by altitude. Proc. Natl. Acad. Sci. U.S.A. 95, 14009–14014 (1998).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Panthi, S., Wang, T., Sun, Y. & Thapa, A. An assessment of human impacts on endangered red pandas (Ailurus fulgens) living in the Himalaya. Ecol. Evol. 9, 13413–13425 (2019).
    PubMed  PubMed Central  Google Scholar 

    19.
    Hansen, A. J. & De Fries, R. Ecological mechanisms linking protected areas to surrounding lands. Ecol. Appl. 17(4), 974–988 (2007).
    PubMed  Google Scholar 

    20.
    Pradhan, S., Saha, G. K. & Khan, J. A. Ecology of the red Panda Ailurus fulgens in the singhalila national Park, Darjeeling, India. Biol. Conserv. 98, 11–18 (2001).
    Google Scholar 

    21.
    Chakraborty, R. et al. Status, abundance, and habitat associations of the red panda (Ailurus fulgens) in Pangchen Valley, Arunachal Pradesh, India. Mammalia https://doi.org/10.1515/mammalia-2013-0105 (2015).
    Article  Google Scholar 

    22.
    Sharma, H. P., Belant, J. L. & Swenson, J. E. Effects of livestock on occurrence of the Vulnerable red panda Ailurus fulgens in Rara National Park, Nepal. Oryx 48(2), 228–231 (2014).
    Google Scholar 

    23.
    Panthi, S., Coogan, S. C., Aryal, A. & Raubenheimer, D. Diet and nutrient balance of red panda in Nepal. Sci. Nat. 102(9–10), 54 (2015).
    Google Scholar 

    24.
    Holderegger, R. & Wagner, H. H. Landscape genetics. Bioscience 58(3), 199–207 (2008).
    Google Scholar 

    25.
    Balkenhol, N., Waits, L. P. & Dezzani, R. J. Statistical approaches in landscape genetics: An evaluation of methods for linking landscape and genetic data. Ecography 32(5), 818–830 (2009).
    Google Scholar 

    26.
    Manel, S. et al. Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field. Mol. Ecol. 19(17), 3760–3772 (2010).
    CAS  PubMed  Google Scholar 

    27.
    Cushman, S. A., McKELVEY, K. S. & Schwartz, M. K. Use of empirically derived source-destination models to map regional conservation corridors. Conserv. Biol. 23(2), 368–376 (2009).
    PubMed  Google Scholar 

    28.
    Brodie, J. F. et al. Evaluating multispecies landscape connectivity in a threatened tropical mammal community. Conserv. Biol. 29(1), 122–132 (2015).
    PubMed  Google Scholar 

    29.
    Zeller, K. A. et al. Are all data types and connectivity models created equal? Validating common connectivity approaches with dispersal data. Divers. Distrib. 24(7), 868–879 (2018).
    Google Scholar 

    30.
    Menchaca, A. et al. Population genetic structure and habitat connectivity for jaguar (Panthera onca) conservation in Central Belize. BMC Genet. 20(1), 1–13 (2019).
    Article  CAS  Google Scholar 

    31.
    Hedrick, P. Large variance in reproductive success and the Ne/N ratio. Evolution 59(7), 1596–1599 (2005).
    PubMed  Article  Google Scholar 

    32.
    Mallick, J. K. Status of Red Panda Ailurus fulgens in Neora Valley National Park, Darjeeling District, West Bengal, India. Small Carnivore Conserv. 43(30), e36 (2010).
    Google Scholar 

    33.
    Zhang, Z. J. et al. Microhabitat separation during winter among sympatric giant pandas, red pandas and tufted deer: The effects of diet, body size, and energy metabolism. Can. J. Zool. 82, 1451–1458 (2004).
    Article  Google Scholar 

    34.
    Dorji, S., Vernes, K. & Rajaratnam, R. Habitat correlates of the Red Panda in the temperate forests of Bhutan. PLoS ONE 6(10), e26483 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Zhou, X. et al. The winter habitat selection of red panda (Ailurus fulgens) in the Meigu Dafengding national nature reserve, China. Curr. Sci. 105, 1425–1429 (2013).
    Google Scholar 

    36.
    Rao, A. N., Zhang, X. P. & Zhu, S. L. Selected papers on recent bamboo research in China (1991).

    37.
    Ziegler, S. et al. Sikkim-under the sign of the red panda. Z. Des Kölner Zoos 2, 79–92 (2010).
    Google Scholar 

    38.
    Ghose, D. & Dutta, P. K. Status and Distribution of Red Panda Ailurus fulgens fulgens in India. In Red Panda 357–373 (William Andrew Publishing, Park Ridge, 2011).
    Google Scholar 

    39.
    Buckland, S. T., Anderson, D. R., Burnham, K. P. & Laake, J. L. Distance Sampling: Estimating Abundance of Biological Populations (Chapman and Hall, London, 1993).
    Google Scholar 

    40.
    Hu, Y. et al. Genetic structuring and recent demographic history of red pandas (Ailurus fulgens) inferred from microsatellite and mitochondrial DNA. Mol. Ecol. 20(13), 2662–2675 (2011).
    PubMed  Google Scholar 

    41.
    Liu, Z., Zhang, B., Wei, F. & Li, M. Isolation and characterization of microsatellite loci for the red panda, Ailurus fulgens. Mol. Ecol. Notes 5(1), 27–29 (2005).
    CAS  Google Scholar 

    42.
    Mallick, J. K. In situ and ex situ conservation of Red Panda in Darjeeling district, West Bengal, India. Animal Divers. Nat. Hist. Conserv. 5, 283–305 (2015).
    Google Scholar 

    43.
    Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163(3), 1177–1191 (2003).
    PubMed  PubMed Central  Google Scholar 

    44.
    Bahuguna, N. C. & Mallick, J. K. Handbook of the Mammals of South Asia: With Special Emphasis on India, Bhutan, and Bangladesh (Natraj Publishers, Dehradun, 2010).
    Google Scholar 

    45.
    Deb, S., Ahmed, A. & Datta, D. An alternative approach for delineating eco-sensitive zones around a wildlife sanctuary applying geospatial techniques. Environ. Monit. Assess. 186(4), 2641–2651 (2014).
    PubMed  Article  Google Scholar 

    46.
    Angert, A. L. et al. Do species’ traits predict recent shifts at expanding range edges?. Ecol. Lett. 14, 677–689 (2011).
    PubMed  Article  Google Scholar 

    47.
    Guo, F., Lenoir, J. & Bonebrake, T. C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Santure, A. W. & Garant, D. Wild GWAS—Association mapping in natural populations. Mol. Ecol. Resour. 18(4), 729–738 (2018).
    PubMed  Article  Google Scholar 

    49.
    Provan, J., Glendinning, K., Kelly, R. & Maggs, C. A. Levels and patterns of population genetic diversity in the red seaweed Chondrus crispus (Florideophyceae): A direct comparison of single nucleotide polymorphisms and microsatellites. Biol. J. Linn. Soc. 108(2), 251–262 (2013).
    Article  Google Scholar 

    50.
    Allendorf, F. W., Hohenlohe, P. A. & Luikart, G. Genomics and the future of conservation genetics. Nat. Rev. Genet. 11(10), 697–709 (2010).
    CAS  PubMed  Google Scholar 

    51.
    Waraniak, J. M., Fisher, J. D., Purcell, K., Mushet, D. M. & Stockwell, C. A. Landscape genetics reveal broad and fine-scale population structure due to landscape features and climate history in the northern leopard frog (Rana pipiens) in North Dakota. Ecol. Evol. 9(3), 1041–1060 (2019).
    PubMed  PubMed Central  Google Scholar 

    52.
    Champion, S. H., & Seth, S. K. A revised survey of the forest types of India. In A revised survey of the forest types of India. (1968).

    53.
    Wikramanayake, E. D., Dinerstein, E. & Loucks, C. J. Terrestrial Ecoregions of the Indo-Pacific: A Conservation Assessment (Island Press, Washington, 2002).
    Google Scholar 

    54.
    Joshi, B. D. et al. Field testing of different methods for monitoring mammals in Trans-Himalayas: A case study from Lahaul and Spiti. Glob. Ecol. Conserv. 21, e00824 (2020).
    Google Scholar 

    55.
    Kramer-Schadt, S. et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 19(11), 1366–1379 (2013).
    Google Scholar 

    56.
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).
    PubMed  Google Scholar 

    57.
    Bista, D. et al. Distribution and habitat use of red panda in the Chitwan-Annapurna landscape of Nepal. PLoS ONE 12(10), e0178797 (2017).
    PubMed  PubMed Central  Google Scholar 

    58.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. J. R. Meteorol. Soc. 25(15), 1965–1978 (2005).
    Google Scholar 

    59.
    Negi, S. P. Forest cover in Indian Himalayan states—An overview. Indian J. For. 32(1), 1–5 (2009).
    MathSciNet  Google Scholar 

    60.
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3–4), 231–259 (2006).
    Google Scholar 

    61.
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2), 129–151 (2006).
    Google Scholar 

    62.
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17(1), 43–57 (2011).
    Google Scholar 

    63.
    Muscarella, R. et al. ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5(11), 1198–1205 (2014).
    Google Scholar 

    64.
    Dudík, M., Phillips, S. J. & Schapire, R. E. Correcting sample selection bias in maximum entropy density estimation. In Advances in Neural Information Processing Systems (eds Dietterich, T. G. et al.) 323–330 (MIT Press, Cambridge, 2006).
    Google Scholar 

    65.
    Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 33(3), 607–611 (2010).
    Google Scholar 

    66.
    Sharma, L. K., Mukherjee, T., Saren, P. C. & Chandra, K. Identifying suitable habitat and corridors for Indian Grey Wolf (Canis lupus pallipes) in Chotta Nagpur Plateau and lower Gangetic planes: A species with differential management needs. PLoS ONE https://doi.org/10.1371/journal.pone.0215019 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    67.
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Google Scholar 

    68.
    Bagaria, P. et al. West to east shift in range predicted for Himalayan Langur in climate change scenario. Glob. Ecol. Conserv. 22, e00926 (2020).
    Google Scholar 

    69.
    Yang, X. Q., Kushwaha, S. P. S., Saran, S., Xu, J. & Roy, P. S. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol. Eng. 51, 83–87 (2013).
    CAS  Google Scholar 

    70.
    Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 41(4), 629–643 (2014).
    Article  Google Scholar 

    71.
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24(1), 38–49 (1997).
    Article  Google Scholar 

    72.
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
    Article  Google Scholar 

    73.
    Amy, G. et al. Genetic landscapes GIS toolbox: Tools to map patterns of genetic divergence and diversity. Mol. Ecol. Resour. 11, 158–161. https://doi.org/10.1111/j.1755-0998.2010.02904 (2010).
    Article  Google Scholar 

    74.
    Liszka, T. An interpolation method for an irregular net of nodes. Int. J. Numer. Methods Eng. 20, 1599–1612 (1984).
    MATH  Article  Google Scholar 

    75.
    Mateo-Sánchez, M. C. et al. Estimating effective landscape distances and movement corridors: Comparison of habitat and genetic data. Ecosphere https://doi.org/10.1890/ES14-00387.1 (2015).
    Article  Google Scholar 

    76.
    Roffler, G. H., Schwartz, M. K. & Pilgrim, K. L. Identification of landscape features influencing gene flow: How useful are habitat selection models?. Evol. Appl. 9(6), 805–817 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    McRae, B. H. & Shah, V. B. Circuitscape User’s Guide (The University of California, Santa Barbara, 2009).
    Google Scholar 

    78.
    Liang, X. U. et al. Isolation and characterization of 16 tetranucleotide microsatellite loci in the red panda (Ailurus fulgens). Mol. Ecol. Notes 7(6), 1012–1014 (2007).
    CAS  Article  Google Scholar 

    79.
    Yang, A. et al. Twenty-five microsatellite loci of Ailurus fulgens identified by genome survey. Sichuan J. Zool. 38(1), 56–61 (2019).
    Google Scholar 

    80.
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4(3), 535–538 (2004).
    Google Scholar 

    81.
    Johnson, P. C. & Haydon, D. T. Maximum-likelihood estimation of allelic dropout and false allele error rates from microsatellite genotypes in the absence of reference data. Genetics 175(2), 827–842 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    82.
    Peakall, R. O. D. & Smouse, P. E. GENALEX 6: Genetic analysis in excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6(1), 288–295 (2006).
    Google Scholar 

    83.
    Rousset, F. Genepop ’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8(1), 103–106 (2008).
    PubMed  Google Scholar 

    84.
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38(6), 1358–1370 (1984).
    CAS  PubMed  Google Scholar 

    85.
    Bonferroni, C. E., Bonferroni, C., & Bonferroni, C. E. Teoria statistica delle classi e calcolo delle probabilita’ (1936).

    86.
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10(3), 564–567 (2010).
    PubMed  Google Scholar 

    87.
    Vergara, M. et al. Inferring population genetic structure in widely and continuously distributed carnivores: The stone marten (Martes foina) as a case study. PLoS ONE 10(7), e0134257 (2015).
    PubMed  PubMed Central  Google Scholar 

    88.
    Pritchard, J. K., Wen, W., & Falush, D. Documentation for STRUCTURE software: Version 2 (2003).

    89.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14(8), 2611–2620 (2005).
    CAS  PubMed  Article  Google Scholar 

    90.
    Earl, D. A. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4(2), 359–361 (2012).
    Google Scholar 

    91.
    Guillot, G., Santos, F. & Estoup, A. Analysing georeferenced population genetics data with Geneland: A new algorithm to deal with null alleles and a friendly graphical user interface. Bioinformatics 24(11), 1406–1407 (2008).
    CAS  PubMed  Google Scholar 

    92.
    Jombart, T. An introduction to adegenet 1.3-4. R vignette, R-Forge, The R Project for Statistical Computing (2012).

    93.
    Landguth, E. L., Cushman, S. A., Murphy, M. A. & Luikart, G. Relationships between migration rates and landscape resistance assessed using individual-based simulations. Mol. Ecol. Resour. 10(5), 854–862 (2010).
    CAS  PubMed  Google Scholar 

    94.
    Piry, S. et al. GENECLASS2: A software for genetic assignment and first-generation migrant detection. J. Hered. 95(6), 536–539 (2004).
    CAS  PubMed  Google Scholar 

    95.
    Paetkau, D., Slade, R., Burden, M. & Estoup, A. Genetic assignment methods for the direct, real-time estimation of migration rate: A simulation-based exploration of accuracy and power. Mol. Ecol. 13(1), 55–65 (2004).
    CAS  PubMed  Google Scholar  More

  • in

    Two-way microscale interactions between immigrant bacteria and plant leaf microbiota as revealed by live imaging

    1.
    Lindow SE, Brandl MT. Microbiology of the phyllosphere. Appl Environ Microbiol. 2003;69:1875–83.
    CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Lindow SE, Leveau JH. Phyllosphere microbiology. Curr Opin Biotechnol. 2002;13:238–43.
    CAS  PubMed  Google Scholar 

    3.
    Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol. 2012;10:828.
    CAS  PubMed  Google Scholar 

    4.
    Vacher C, Hampe A, Porté AJ, Sauer U, Compant S, Morris CE. The phyllosphere: microbial jungle at the plant–climate interface. Annu Rev Ecol Evol Syst. 2016;47:1–24.
    Google Scholar 

    5.
    Bringel F, Couée I. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front Microbiol. 2015;6:486.
    PubMed  PubMed Central  Google Scholar 

    6.
    Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol. 2010;12:2885–93.
    PubMed  PubMed Central  Google Scholar 

    7.
    Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JH. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J. 2012;6:1812.
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Beattie GA, Lindow SE. Bacterial colonization of leaves: a spectrum of strategies. Phytopathology. 1999;89:353–359.
    CAS  PubMed  Google Scholar 

    9.
    Agler MT, Ruhe J, Kroll S, Morhenn C, Kim S-T, Weigel D, et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 2016;14:e1002352.
    PubMed  PubMed Central  Google Scholar 

    10.
    Laforest-Lapointe I, Messier C, Kembel SW. Tree phyllosphere bacterial communities: exploring the magnitude of intra-and inter-individual variation among host species. PeerJ. 2016;4:e2367.
    PubMed  PubMed Central  Google Scholar 

    11.
    Monier J-M, Lindow S. Frequency, size, and localization of bacterial aggregates on bean leaf surfaces. Appl Environ Microbiol. 2004;70:346–55.
    CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Tecon R, Leveau JH. The mechanics of bacterial cluster formation on plant leaf surfaces as revealed by bioreporter technology. Environ Microbiol. 2012;14:1325–32.
    CAS  PubMed  Google Scholar 

    13.
    Remus-Emsermann MN, Lücker S, Müller DB, Potthoff E, Daims H, Vorholt JA. Spatial distribution analyses of natural phyllosphere-colonizing bacteria on A rabidopsis thaliana revealed by fluorescence in situ hybridization. Environ Microbiol. 2014;16:2329–40.
    CAS  PubMed  Google Scholar 

    14.
    Morris CE, Monier J, Jacques M. Methods for observing microbial biofilms directly on leaf surfaces and recovering them for isolation of culturable microorganisms. Appl Environ Microbiol. 1997;63:1570–6.
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Esser DS, Leveau JH, Meyer KM, Wiegand K. Spatial scales of interactions among bacteria and between bacteria and the leaf surface. FEMS Microbiol Ecol. 2015;91:fiu034.
    PubMed  Google Scholar 

    16.
    Remus-Emsermann MN, Schlechter RO. Phyllosphere microbiology: at the interface between microbial individuals and the plant host. N. Phytologist. 2018;218:1327–33.
    Google Scholar 

    17.
    Monier J-M, Lindow S. Spatial organization of dual-species bacterial aggregates on leaf surfaces. Appl Environ Microbiol. 2005;71:5484–93.
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Peredo EL, Simmons SL. Leaf-FISH: microscale imaging of bacterial taxa on phyllosphere. Front Microbiol. 2018;8:2669.
    PubMed  PubMed Central  Google Scholar 

    19.
    Remus-Emsermann MN, Tecon R, Kowalchuk GA, Leveau JH. Variation in local carrying capacity and the individual fate of bacterial colonizers in the phyllosphere. ISME J. 2012;6:756.
    CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Remus-Emsermann MN, Kowalchuk GA, Leveau JH. Single-cell versus population-level reproductive success of bacterial immigrants to pre-colonized leaf surfaces. Environ Microbiol Rep. 2013;5:387–92.
    PubMed  Google Scholar 

    21.
    Monier J-M, Lindow S. Aggregates of resident bacteria facilitate survival of immigrant bacteria on leaf surfaces. Microb Ecol. 2005;49:343–52.
    PubMed  Google Scholar 

    22.
    Poza-Carrion C, Suslow T, Lindow S. Resident bacteria on leaves enhance survival of immigrant cells of Salmonella enterica. Phytopathology. 2013;103:341–51.
    PubMed  Google Scholar 

    23.
    Grinberg M, Orevi T, Kashtan N. Bacterial surface colonization, preferential attachment and fitness under periodic stress. PLoS Comput Biol. 2019;15:e1006815.
    PubMed  PubMed Central  Google Scholar 

    24.
    Beattie GA, Lindow SE. Comparison of the behavior of epiphytic fitness mutants of Pseudomonas syringae under controlled and field conditions. Appl Environ Microbiol. 1994;60:3799–808.
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Loper JE, Lindow SE. Lack of evidence for the in situ fluorescent pigment production by Pseudomonas syringae pv. syringae on bean leaf surfaces. J Phytopathol. 1987;77:1449–54.
    Google Scholar 

    26.
    Wilson M, Hirano S, Lindow S. Location and survival of leaf-associated bacteria in relation to pathogenicity and potential for growth within the leaf. Appl Environ Microbiol. 1999;65:1435–43.
    CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Stockwell V, Johnson K, Sugar D, Loper J. Control of fire blight by Pseudomonas fluorescens A506 and Pantoea vagans C9-1 applied as single strains and mixed inocula. Phytopathology. 2010;100:1330–9.
    CAS  PubMed  Google Scholar 

    28.
    Wilson M, Lindow S. Interactions between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms. Phytopathology. 1993;83:117–23.
    Google Scholar 

    29.
    Choi K-H, Schweizer HP. mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc. 2006;1:153.
    CAS  PubMed  Google Scholar 

    30.
    Morris CE, Monier J-M, Jacques M-A. A technique to quantify the population size and composition of the biofilm component in communities of bacteria in the phyllosphere. Appl Environ Microbiol. 1998;64:4789–95.
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Wang Q, Niemi J, Tan CM, You L, West M. Image segmentation and dynamic lineage analysis in single-cell fluorescence microscopy. Cytometry A. 2010;77:101–10.
    PubMed  PubMed Central  Google Scholar 

    32.
    Daims H, Lücker S, Wagner M. Daime, a novel image analysis program for microbial ecology and biofilm research. Environ Microbiol. 2006;8:200–13.
    CAS  PubMed  Google Scholar 

    33.
    Daims H, Wagner M. In situ techniques and digital image analysis methods for quantifying spatial localization patterns of nitrifiers and other microorganisms in biofilm and flocs. Methods Enzymol. 2011;496:185–215.

    34.
    Reed M, Howard C. Stereological estimation of covariance using linear dipole probes. J Microsc. 1999;195:96–103.
    CAS  PubMed  Google Scholar 

    35.
    Van Der Wal A, Tecon R, Kreft J-U, Mooij WM, Leveau JH. Explaining bacterial dispersion on leaf surfaces with an individual-based model (PHYLLOSIM). PloS ONE. 2013;8:e75633.
    PubMed  PubMed Central  Google Scholar 

    36.
    Schmidt H, Nunan N, Höck A, Eickhorst T, Kaiser C, Woebken D, et al. Recognizing patterns: spatial analysis of observed microbial colonization on root surfaces. Front Environ Sci. 2018;6:61.
    Google Scholar 

    37.
    Gantner S, Schmid M, Dürr C, Schuhegger R, Steidle A, Hutzler P, et al. In situ quantitation of the spatial scale of calling distances and population density-independent N-acylhomoserine lactone-mediated communication by rhizobacteria colonized on plant roots. FEMS Microbiol Ecol. 2006;56:188–94.
    CAS  PubMed  Google Scholar 

    38.
    Schillinger C, Petrich A, Lux R, Riep B, Kikhney J, Friedmann A, et al. Co-localized or randomly distributed? Pair cross correlation of in vivo grown subgingival biofilm bacteria quantified by digital image analysis. PLoS ONE. 2012;7:e37583.
    CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Mercier J, Lindow S. Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl Environ Microbiol. 2000;66:369–74.
    CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Zhao K, Tseng BS, Beckerman B, Jin F, Gibiansky ML, Harrison JJ, et al. Psl trails guide exploration and microcolony formation in early P. aeruginosa biofilms. Nature. 2013;497:388.
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Hödl I, Hödl J, Wörman A, Singer G, Besemer K, Battin TJ. Voronoi tessellation captures very early clustering of single primary cells as induced by interactions in nascent biofilms. PloS ONE. 2011;6:e26368.
    PubMed  PubMed Central  Google Scholar 

    42.
    Mittelviefhaus M, Müller DB, Zambelli T, Vorholt JA. A modular atomic force microscopy approach reveals a large range of hydrophobic adhesion forces among bacterial members of the leaf microbiota. ISME J. 2019;13:1878–82.
    CAS  PubMed  PubMed Central  Google Scholar 

    43.
    Laganenka L, Colin R, Sourjik V. Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli. Nat Commun. 2016;7:12984.
    CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Laganenka L, Sourjik V. Autoinducer 2-dependent Escherichia coli biofilm formation is enhanced in a dual-species coculture. Appl Environ Microbiol. 2018;84:e02638–17.
    PubMed  PubMed Central  Google Scholar 

    45.
    Dulla G, Lindow SE. Quorum size of Pseudomonas syringae is small and dictated by water availability on the leaf surface. Proc Natl Acad Sci. 2008;105:3082–7.
    CAS  PubMed  Google Scholar 

    46.
    Bertsche U, Mayer C, Götz F, Gust AA. Peptidoglycan perception—sensing bacteria by their common envelope structure. Int J Med Microbiol. 2015;305:217–23.
    CAS  PubMed  Google Scholar 

    47.
    Monier J-M, Lindow S. Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces. Proc Natl Acad Sci. 2003;100:15977–82.
    CAS  PubMed  Google Scholar 

    48.
    Grinberg M, Orevi T, Steinberg S, Kashtan N. Bacterial survival in microscopic surface wetness. eLife. 2019;8:e48508.
    CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Shank EA, Kolter R. New developments in microbial interspecies signaling. Curr Opin Microbiol. 2009;12:205–14.
    CAS  PubMed  PubMed Central  Google Scholar  More