More stories

  • in

    A cosmopolitan fungal pathogen of dicots adopts an endophytic lifestyle on cereal crops and protects them from major fungal diseases

    Plant and fungal materials, maintenance, and preparation
    The winter wheat cultivar Zheng 9023 and the spring wheat cultivar Yongliang 4 were purchased from the commercial seed market in Wuhan City and Minqin County in China, respectively. The barley cultivar Huadamai 14 was provided from Prof. Dongfa Sun in Huazhong Agricultural University, Wuhan, China. The oat cultivar Mengmai 2 was donated by Prof. Jun Zhao in Neimeng Agricultural University. The maize cultivar Zhengdan 958 was purchased from the commercial seed market in Wuhan City. The rice cultivar LTH was donated by Prof. Youliang Peng of China Agricultural University. All seeds were surface-sterilized with a 0.5% sodium hypochlorite solution (NaClO) before sowing or S. sclerotiorum treatment.
    S. sclerotiorum strain DT-8, which was originally isolated from a sclerotium collected from a diseased rapeseed, is a hypovirulent strain infected by a DNA mycovirus. Strain DT-8VF, a virulent strain, is a virus-free derivative of DT-8 [21]. Strain DT-8VFRFP is a derivative of DT-8VF labeled with the mCherry fluorophore by DNA transformation; it shows normal virulence. The wheat Fusarium head blight (FHB) pathogen, F. graminearum strain PH-1, was used to inoculate wheat spikes. An S. sclerotiorum virulent strain Ep-1PNA367 and three hypovirulent strains, AH98, SCH941, and T1-1-20, were also used to investigate their potential endophytic growth on wheat. AH98 is infected by a negative-stranded RNA virus [22], while SCH941 and T1-1-20 are infected by various other mycoviruses. All S. sclerotiorum strains and F. graminearum strain PH-1 were grown on potato dextrose agar (PDA) or potato dextrose broth (PDB) at 20 °C; Magnaporthe oryzae strain 131 was grown on PDA at 28 °C, or grown on tomato–oat medium to produce conidia, and was stored on PDA slants at 4 °C.
    Microscopic observation
    To observe the growth of S. sclerotiorum in wheat by confocal microscopy, seeds were surface-sterilized with NaClO and sown on half-strength Murashige and Skoog (MS) agarose medium amended with 25 mM sucrose for 8 days, then root crowns were inoculated with mycelia of the strain DT-8VFRFP. Wheat seedlings were maintained at 20 °C for 4 days under a 12-h photoperiod. Seedlings were subsequently washed three times with PBS for 10 min each, and then root sections were separated and incubated in a 1:100 dilution of wheat germ agglutinin conjugated to FITC (Sigma) for 1 h at room temperature according to the manufacturer’s instructions. The roots were visualized with a LEICA confocal microscope (LEICA SP8) using the 488-nm line of a 25-mW Argon ion laser for FITC and the 561-nm line of a 20-mW solid-state laser for mCherry.
    For further observation with a transmission electron microscopy (TEM), 5-mm root segments from wheat seedlings grown on MS medium for 15 days after inoculation with strain DT-8VFRFP were fixed in 0.4% (v/v) glutaraldehyde solution overnight at 4 °C. After washing in PBS buffer, roots were dehydrated with a graded ethanol series. Samples were then embedded in Epon-821 and polymerized at 60 °C. Thin sections (50 nm) were cut using a Leica ULTRACUT UCT ultramicrotome with a diamond knife.
    For TEM immunodetection, wheat seedling roots were fixed in 4% (w/v) freshly depolymerized paraformaldehyde and 0.4% (v/v) glutaraldehyde in 1× PBS, pH 7.4, for 1 h at 4 °C. The samples were then embedded using an LR white embedding kit (Fluka) and polymerized at 50 °C for 24 h. Immunogold labeling specificity was detected by displacing the anti-mCherry antibodies with rabbit preimmune serum. The method for TEM immunodetection was performed as previously described [23].
    For scanning electron microscopy (SEM) observation, 2-mm root segments from the wheat, barley, oat, maize, and rice seedlings treated with different strains of S. sclerotiorum grown on MS medium for 15 days were used. All segments were fixed in a 0.4% (v/v) glutaraldehyde solution overnight at 4 °C. For SEM analysis, the sections were allowed to air-dry overnight in a desiccator at room temperature, sputter-coated with gold, and prepared for SEM analysis (EVO MA 10 Carl Zeiss SMT AG, Germany). Root segments from nontreated wheat were sampled and observed as a control comparison.
    For confocal microscopy observations, 45 days after the root crown inoculation with mycelia of the DT-8VFRFP strain, stems from wheat plants growing in soil in the greenhouse were carefully washed with distilled water and embedded in Tissue-Tek O.C.T. compound medium (Sakura Finetek USA, Inc., Torrance, CA) at −23 °C overnight. Microtome sections (25 µm thick) were sliced using a freezing microtome (LEICA SP8, Germany). The stem microtome sections were then visualized with a LEICA confocal microscope using the 561-nm excitation wavelength for mCherry.
    Re-isolation of S. sclerotiorum
    To further probe whether S. sclerotiorum can go to aerial parts of wheat when inoculated on root of wheat seedling, plants were grown in sterile nutrient soil for 45 days. The samples for re-isolation were taken from the second segment near the base of wheat stem of eleven individual DT-8VFRFP-treated wheat plants, and were cut into 5 mm long segments, then surface-sterilized by dipping them in 70% EtOH for 2 min and then in 0.5% NaClO for 2 min, followed by rinsing three times with sterile distilled water. The sterilized stem segments were placed on hygromycin-amended PDA medium plates (50 µg/mL) and incubated at 20 °C for 8 days. Then, the emerging colonies were identified as S. sclerotiorum based on colony morphology, and PCR amplification [24].
    PCR determination of S. sclerotiorum and mycoviruses
    DNA samples of either wheat or fungi were extracted using a cetyltrimethylammonium bromide method. A primer pair XJJ21/XJJ222 (GTTGCTTTGGCGTGCTGCTC/CTGACATGGACTCAATACCAATCTG) was used for detection of S. sclerotiorum [24], and a primer pair pRep-F/pRep-R (GTCACCACCCAAACATTACAAAGAGCGTATTCC/ACGTCA GGTGC) was used for detection of viral DNA of SsHADV-1. A procedure described by Yu et al. [21] was used for PCR amplification.
    Seed treatment of wheat with S. sclerotiorum and sowing
    To determine whether S. sclerotiorum could promote growth and disease resistance of wheat in the greenhouse, wheat seeds were washed with tap water and surface-sterilized with 0.5% NaClO for 10 min, then washed three times with sterile water. Surface-sterilized seeds were soaked in sterile water for 4 h, and then collected and blotted dry. Meanwhile, fresh mycelium of strains DT-8 and DT-8VF were collected from PDA medium and then cultured in PDB medium in 250-mL flasks in a shaker at 20 °C for 4 days to obtain hyphal fragment suspensions; the number of viable fungal fragments was adjusted to 1.4 × 105 cfu/mL before inoculation of wheat seeds. The hyphal fragment suspensions were then used to inoculate the prepared seeds (100 mL of hyphal fragment suspension/kg wheat seeds) by thoroughly mixing the hyphal fragment suspension and wheat seeds for 6 h. The inoculated seeds were further dried using an electric fan for 12 h at room temperature. Wheat seeds soaked only in sterile water for 6 h and then dried with the same method were used as a control.
    To test whether the treated seeds were successfully colonized by S. sclerotiorum, S. sclerotiorum-treated seeds were surface-sterilized with 0.5% NaClO for 10 min, rinsed three times with sterile distilled water, and then cut in half and placed on PDA plates and incubated at 20 °C for 7 days. All emerging colonies from S. sclerotiorum-treated seeds were confirmed as S. sclerotiorum based on colony morphology and PCR amplification. In addition, a small number of S. sclerotiorum-treated seeds were randomly picked and sown into soil taken from the field and grown in the greenhouse. The seedlings were then tested after 21 days for the presence of S. sclerotiorum by PCR amplification; all seedlings tested positive. Hence, the seed treatment was confirmed as an efficient method for inoculation of wheat seeds with S. sclerotiorum. Consequently, we used this method to treat wheat seeds for the rest of the study, and kept treated seeds under dry conditions at room temperature for up to 7 days before sowing.
    Seeds treated either with strains DT-8VF or DT-8 were sown in pots in a greenhouse. In a laboratory test, treated seeds were allowed to germinate in a Petri dish on a layer of wet filter paper. Germinating seeds were then sown either into soil that was taken from the field or sterile nutrient soil. Twelve plants were grown in each pot. Wheat seedlings were maintained under greenhouse conditions at 20 °C. Strain DT-8-treated seeds were also tested in the field. Those seeds were sown as rows in the wheat field in exactly the same way as farmers normally do in each sowing season. Field management was conducted as per normal farmer practice, except that no fungicide was applied.
    In order to investigate whether S. sclerotiorum colonization can spread to aerial parts of wheat plants originating from DT-8-treated seeds, ten plants from each plot were randomly sampled from the field. A total of 30 wheat plants from the strain DT-8-treated group and 20 plants from the nontreated group were sampled. First, the roots were rinsed thoroughly with tap water. Then the roots, flag leaves, and spikes were given three brief rinses in distilled water. Each wheat plant was given a number, from 1 to 30 for DT-8-inoculated plants, and from 1 to 20 for nontreated plants. DNA samples were extracted individually from the root, flag leaf, and spike of each plant and used to determine the presence of S. sclerotiorum and mycovirus.
    Evaluating the growth of treated wheat in the greenhouse and field
    To evaluate the growth of S. sclerotiorum-treated wheat in greenhouse experiments, plant height was measured at the seedling and anthesis stages, while flag leaf and spike lengths were evaluated only at the anthesis stage. There were 60 plants in each group treated with strain DT-8 and strain DT-8VF and 60 plants in the nontreated group. Determination of 1000-grain weight was repeated, four in each group. Measurement data for each group were calculated for statistical analysis.
    To investigate whether other strains could promote wheat growth, strains Ep-1PNA367, AH98, SCH941, and T1-1-20 were used instead of strains DT-8 and DT-8VF. Wheat seeds were treated and then sown in a sterile mixture of vermiculite and perlite at the ratio of 3:1 in pots and placed in greenhouse, with ~50 seedlings in each pot. Seedling shoot fresh weight was measured at 25 days after planting. There were 30 plants in each treatment and control, and the average weight of ten seedlings was calculated.
    For field tests, plant height and the length, width, and thickness of flag leaves at the early flowering stage were measured in the field at EZhou. Forty plants from each plot were randomly measured from a total of 120 plants in the DT-8-treated group and from 120 plants in the nontreated group. Measurement data for each group were calculated for statistical analysis. All the results were confirmed with independent lines and over two planting seasons.
    Field experiments and wheat yield tests
    To examine whether S. sclerotiorum treatment could enhance wheat yield under natural field conditions, DT-8-treated seeds were sown in a wheat field located at EZhou in late October of 2016 and harvested in mid-May of 2017. This experiment was repeated at EZhou, Jingmen City, and Xiangyang City in late October of 2017 and 2018 and harvested in mid-May of 2018 and 2019. Furthermore, seeds of the spring wheat cultivar Yongliang 4 were also treated with strain DT-8 and sown in mid-April of 2017 at Minqin and Tianzhu Counties in Gansu province and harvested in late July of 2017. All wheat was managed as per normal farmer practice, except that no fungicide was applied. The treatments with or without strain DT-8 were replicated four times at Tianzhu County and Jingmen City in 2017 and five times at other places and the wheat yield from 5 m2 was measured in each plot and used for statistical analysis.
    Analysis of chlorophyll content and photosynthetic rate in flag leaves
    To determine chlorophyll content, leaf tissues were harvested using a circular punch that yields 0.5-cm diameter leaf discs. There were four flag leaf replicates for each treatment. Chlorophyll was extracted from wheat flag leaves obtained from the field at EZhou using 95% (v/v) ethanol (analytically pure, Sinopharm Chemical Reagent Co., Ltd) and the extracted chlorophyll concentration was determined using a spectrophotometer (UV2102, Unico, Shanghai, China) [25].
    For the photosynthetic rate, flag leaf samples were obtained from the field at EZhou. Each treatment had three flag leaf replicates. Photosynthetic rate determination was performed as previously described [26].
    Assay of plant hormones
    Five frozen flag leaf and spike replicates from each treatment (~100 mg for each flag leaf and spike sample) were ground to a fine powder in liquid nitrogen using a mortar and pestle. Each sample was weighed into a 1.5-mL tube, mixed with 750 μL of cold extraction buffer (methanol: water: acetic acid, 80:19:1, v/v/v) supplemented with internal standards, 10 ng of 2H6ABA, 10 ng of DHJA, and 5 μg of NAA, vigorously shaken on a shaking bed for 16 h at 4 °C in the dark, and then centrifuged at 12,000 rpm for 15 min at 4 °C. Supernatant was carefully transferred to a new 1.5-mL tube and pellets remixed with 400 μL of extraction buffer, shaken for 4 h at 4 °C, and centrifuged. The two supernatants were combined and filtered using a syringe-facilitated 13-mm diameter nylon filter with a pore size of 0.22 μm (Nylon 66; Jinteng Experiment Equipment Co., Ltd, Tianjing, China). The filtrate was dried by evaporation under nitrogen gas flow for ~5 h at room temperature and then dissolved in 200 μL of methanol. Aliquots of dissolved samples were further diluted 40 times using methanol for jasmonic acid (JA), abscisic acid (ABA), and indole-3-acetic acid (IAA) quantification. Liquid chromatography was carried out using an ultrafast liquid chromatography with an autosampler (Shimadzu Corporation, Kyoto, Japan). The method used for hormone determination was as previously described [27].
    Inoculation of F. graminearum and rating of disease
    Infection assays on flowering wheat spikes were performed as previously described [28]. At the early flowering stage, a conidial suspension of F. graminearum strain PH-1 was collected from 5-day-old cultures growing in carboxymethylcellulose medium, then filtered through three layers of lens-wiping paper and then mixed with 0.01% (v/v) Tween 20. Ten microliters of 1 × 105 conidia mL−1 conidial suspension was inoculated individually onto the fourth spikelet from the bottom using a micropipette. The inoculated wheat spikes were maintained at a relative humidity of 95% for 72 h. Symptomatic spikes were examined and images captured after 14 days.
    For the greenhouse test, 15 spikes from each treatment were inoculated and the spikelet infection rate of each spike was calculated; then, the average spikelet infection rate for each treatment was calculated for statistical analysis. For the field test, ten spikes from each plot were inoculated from a total of 30 inoculated spikes in the strain DT-8-treated plots and 30 spikes in the nontreated plots. The spikelet infection rate for each plot was calculated and the average spikelet infection rate for strain DT-8 treatment and nontreated control were then calculated for statistical analysis. The field test was conducted twice, once in 2017 and repeated in 2018.
    FHB survey in a natural, noninoculated field
    To investigate natural FHB infection in strain DT-8-treated wheat, an FHB field survey was conducted in experimental fields located at EZhou City, Jingmen City, and Xiangyang City in 2018. The field survey protocol described by the National Agricultural Technology Extension Service Center of China was adopted for the FHB survey with minor modifications. A total of 500 spikes were sampled randomly in each plot; in total, 1500 spikes were collected from DT-8-treated plots, with the same number of spikes being collected from nontreated plots to calculate disease incidence (spikelet infection rate) and severity (disease index). The number of infected and noninfected spikelets on each spike was counted and the average spikelet infection rate for each plot was calculated and used for statistical analysis. To calculate the disease index, the infected spikes were divided into five grades, namely: grade 0, no spikelet was infected; grade 1, the spike was infected, but less than 25% of spikelets were infected; grade 2, more than 25%, but less than 50%, of the spikelets were infected; grade 3, more than 50%, but less than 75%, of the spikelets were infected; and grade 4, more than 75% of the spikelets were infected. Finally, the disease severity for each plot was calculated using a formula for disease index, DI = ∑(nX/4 N) × 100, where “X” is the scale value of each spike, “n” is the number of spikes in the category, and “N” is the total number of spikes assessed for each plot. The disease index for each group was used for statistical analysis.
    Inoculation of M. oryzae on barley and rice
    To probe if S. sclerotiorum could enhance resistance against the rice blast fungus (M. oryzae) in barley and rice, an inoculation test was carried out according to a method described by Kong et al. [29]. Conidia of M. oryzae were collected with sterile water from 4-day-old cultures growing on tomato–oat medium and then filtered through three layers of lens-wiping paper. Infection assays were performed in whole plant leaves by spray inoculation using an airbrush nebulizer compressor. Strain DT-8-treated seedlings, which were grown in a sterile mixture of vermiculite and perlite at the ratio of 3:1 in pots and placed in greenhouse for 9 days for barley at 20 °C and 20 days for rice at 28 °C, were sprayed with a conidial suspension [105 conidia/mL mixed with 0.02% (v/v) Tween 20], using 4 mL suspension for each pot. The plants were further incubated at 28 °C, 80% relative humidity, under a 16 h light/8 h darkness photoperiod. Then, we assessed the presence of S. sclerotiorum in aerial parts of DT-8-treated barley and rice by PCR amplification in greenhouse plants; 92% of samples were confirmed as positive for S. sclerotiorum. For barley, lesions of leaves with the same leaf age (bottom leaves) were examined and typical infected leaves were photographed with a digital camera at 5 days post inoculation (dpi); for rice, the leaves were examined and photographed at 7 dpi.
    Detection of toxins (DON)
    To assay point-inoculated spikelets from strain DT-8-treated and nontreated plants, each sample was placed in a 50-mL centrifuge tube and mixed with 400 μL of a mixed isotope internal standard. The solution was remixed with 20 mL of an acetonitrile–water solution after standing for 30 min, vigorously shaken on a shaking bed for 4 h at 4 °C, and then centrifuged at 10,000 rpm for 5 min. The supernatants were carefully transferred to a new tube. The supernatants were combined and filtered using a syringe-facilitated 13-mm diameter nylon filter with a pore size of 0.22 μm (Nylon 66; Jinteng Experiment Equipment Co., Ltd, Tianjing, China). The filtrate was dried by evaporation under the nitrogen gas flow for ~5 h at room temperature, and then dissolved in 200 μL of methanol. The method for DON determination was performed as described by the National Agricultural Technology Extension Service Center of China (GB5009.111-2016).
    RNA sequencing and analysis
    Sterilized wheat seeds were inoculated with strain DT-8, and then were sown in experimental fields located at EZhou City in 2017. Wheat flag leaves and spikes were collected from this field during the initial bloom stage, with three spikes and leaves being randomly sampled from each of the three replicate plots. The flag leaves and spikes of nontreated wheat plants in the same field were randomly taken from each of the three control replicate plots. The samples were immediately placed in liquid nitrogen and ground into powder. Total RNA samples were extracted with a TRIzol Plus RNA Purification Kit (Takara, Dalian, China) and treated with RNase-free DNase I (Takara, Dalian, China) according to the manufacturer’s instructions. The RNA quality was checked using a Nanodrop Spectrophotometer (Thermo Fisher Scientific Inc., Wilmington, DE, USA). Then, mRNA was enriched with magnetic beads Oligo (dT) (TransGen Biotech, Beijing, China). Subsequently, cDNA was synthesized using the mRNA as template. The cDNA fragments were linked with adapters, and suitable fragments were selected for PCR amplification. Agilent 2100 Bioanalyzer and ABI StepOnePlus Real-Time PCR Systems were used in the quantification and qualification of the sample library. Subsequently, the library was sequenced for raw data using an Illumina HiSeq X sequencer at BGI (The Beijing Genomics Institute, China). Then, adapters, low-quality sequences, and reads with high content of unknown base (N) reads were removed to obtain clean reads. The clean reads were then mapped to the wheat genome or S. sclerotiorum genome and the sequence results evaluated in terms of read quality, alignment, saturation, and the distribution of reads on reference genes [30]. Mismatches of no more than two bases were accepted in the alignment. Gene expression was calculated by the number of reads mapped to the reference genomes using the fragments per kilobase of transcript per million mapped reads method [31]. Subsequently, differentially expressed genes (DEGs) were selected with FDR  More

  • in

    Hkakabo Razi landscape as one of the last exemplar of large contiguous forests

    1.
    FAO. Global forest resources assessment 2015: How are the world’s forests changing? 2nd edn, (Food and Agriculture Organization of the United Nations, 2015).
    2.
    Keenan, R. J. et al. Dynamics of global forest area: Results from the FAO global forest resources assessment. For. Ecol. Manag. 2015(352), 9–20 (2015).
    Google Scholar 

    3.
    Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600 (2016).
    ADS  CAS  PubMed  Google Scholar 

    4.
    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558–12558 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Duveiller, G., Hooker, J. & Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 9, 679 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    6.
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    7.
    Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Morales-Hidalgo, D., Oswalt, S. N. & Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the global forest resources assessment 2015. For. Ecol. Manag. 352, 68–77 (2015).
    Google Scholar 

    9.
    Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).
    PubMed  Google Scholar 

    10.
    Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827 (2015).
    ADS  CAS  PubMed  Google Scholar 

    11.
    Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    12.
    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108 (2018).
    ADS  CAS  PubMed  Google Scholar 

    13.
    Achard, F. et al. Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob. Change Biol. 20, 2540–2554 (2014).
    ADS  Google Scholar 

    14.
    Sloan, S. & Sayer, J. A. Forest Resources Assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. For. Ecol. Manag. 352, 134–145 (2015).
    Google Scholar 

    15.
    Leimgruber, P. et al. Forest cover change patterns in Myanmar (Burma) 1990–2000. Environ. Conserv. 32, 356–364 (2005).
    Google Scholar 

    16.
    Bhagwat, T. et al. Losing a jewel—Rapid declines in Myanmar’s intact forests from 2002–2014. PLoS ONE 12, e0176364 (2017).
    PubMed  PubMed Central  Google Scholar 

    17.
    FAO. Forests and tree supporting rural livelihoods: Case studies from Myanmar and Viet Nam by Kollert, W. Thuy, L.T.T., Voan, V.L, Oo, T.S. and Khaing, N. Planted Forests and Trees Working Paper FP/50/E. Rome, Italy (available at https://www.fao.org/3/a-i6710e.pdf) (2017).

    18.
    Kyaw, W. W., Sukchai, S., Ketjoy, N. & Ladpala, S. Energy utilization and the status of sustainable energy in Union of Myanmar. Energy Proc. 9, 351–358 (2011).
    Google Scholar 

    19.
    Mon, M. S., Mizoue, N., Htun, N. Z., Kajisa, T. & Yoshida, S. Factors affecting deforestation and forest degradation in selectively logged production forest: A case study in Myanmar. For. Ecol. Manag. 267, 190–198 (2012).
    Google Scholar 

    20.
    Woods, K. Timber trade flows and actors in Myanmar: The political economy of Myanmar’s timber trade. (2013).

    21.
    Lim, C. L., Prescott, G. W., De Alban, J. D. T., Ziegler, A. D. & Webb, E. L. Untangling the proximate causes and underlying drivers of deforestation and forest degradation in Myanmar. Conserv. Biol. 31, 1362–1372 (2017).
    PubMed  Google Scholar 

    22.
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. Global Biodiversity Conservation: The critical role of hotspot in Biodiversity Hotspots (eds F.E. Zachos & J.C. Habel) 3–22 (Springer, Berlin, 2011).

    24.
    Schaefer, H., Bartholomew, B. & Boufford, D. E. Indofevillea jiroi (Cucurbitaceae), a new floral oil producing species from Northeastern Myanmar. Bione 17, 323–332 (2012).
    Google Scholar 

    25.
    Hughes, M., Aung, M. M. & Armstrong, K. An updated checklist and new species of Begonia (B. rheophytica) from Myanmar. Edinb. J. Bot. 76, 285–295 (2019).
    Google Scholar 

    26.
    Rodda, M., Aung, M. M. & Armstrong, K. A new species, a new subspecies, and new records of Hoya (Apocynaceae, Asclepiadoideae) from Myanmar and China. Brittonia 71, 424–434 (2019).
    Google Scholar 

    27.
    Yang, B., Zhou, S.-S., Maung, W. & Tan, Y.-H. Two new species of Impatiens (Balsaminaceae) from Putao, Kachin State, northern Myanmar. Phytotaxa 321, 103–113 (2017).
    Google Scholar 

    28.
    Tong, Y. H. & Xia, N. H. New taxa of Agapetes (Ericaceae) from Myanmar. Phytotaxa 184, 39–45 (2014).
    Google Scholar 

    29.
    Rabinowitz, A., Amato, G. & Saw, T. K. Discovery of the black muntjac, Muntiacus crinifrons (Artiodactyla, Cervidae), in north Myanmar. Mammalia 62, 105–107 (1998).
    Google Scholar 

    30.
    Amato, G., Egan, M. G. & Rabinowitz, A. A new species of muntjac, Muntiacus putaoensis (Artiodactyla: Cervidae) from northern Myanmar. Anim. Conserv. 2, 1–7 (1999).
    Google Scholar 

    31.
    Soisook, P. et al. A new species of Murina (Chiroptera: Vespertilionidae) from sub-Himalayan forests of northern Myanmar. Zootaxa 4320, 159–172 (2017).
    Google Scholar 

    32.
    Rappole, J. H., Renner, S. C., Shwe, N. M. & Sweet, P. R. A new species of Scimitar-Babbler (Timaliidae: Jabouilleia) from the sub-Himalayan region of Myanmar. Auk 122, 1064–1069 (2005).
    Google Scholar 

    33.
    Rappole, J. H., Rasmussen, P. C., Aung, T., Milensky, C. M. & Renner, S. C. Observations on a new species: The Naung Mung Scimitar-Babbler Jabouilleia naungmungensis. Ibis 150, 623–627 (2008).
    Google Scholar 

    34.
    Renner, S. C., Rappole, J. H., Kyaw, M., Milensky, C. M. & Päckert, M. Genetic confirmation of the species status of Jabouilleia naungmungensis. J. Ornithol. 159, 63–71 (2018).
    Google Scholar 

    35.
    Päckert, M. et al. Pilot biodiversity assessment of the Hkakabo Razi passerine avifauna in northern Myanmar—implications for conservation from molecular genetics. Bird Conserv. Int. 30, 267–288 (2020).
    Google Scholar 

    36.
    Bates, P. et al. Intact forests of Hkakabo Razi Landscape are a hotspot of bat diversity in Southeast Asia. Oryx (In Press).

    37.
    Oo, S. S. L., Kyaw, M., Hlaing, N. M. & Renner, S. C. New to Myanmar: the Rosy Starling Pastor roseus (Aves: Passeriformes: Sturnidae) in the Hkakabo Razi Landscape. JoTT 12, 15493–15494 (2020).
    Google Scholar 

    38.
    Oo, S. S. L., Kyaw, M., Meyers, K. & Renner, S. C. Confirmation of the White-winged Duck from the Hkakabo Razi Landscape, Myanmar. BirdingASIA 30, 86–87 (2018).
    Google Scholar 

    39.
    Renner, S. C. et al. Land cover in the Northern forest complex of Myanmar: New insights for conservation. Oryx 41, 27–37 (2007).
    Google Scholar 

    40.
    Rao, M. et al. Biodiversity conservation in a changing climate: A review of threats and implications for conservation planning in Myanmar. Ambio 42, 789–804 (2013).
    PubMed  PubMed Central  Google Scholar 

    41.
    Webb, E. L., Phelps, J., Friess, D. A., Rao, M. & Ziegler, A. D. Environment-friendly reform in Myanmar. Science 336, 295–295 (2012).
    ADS  CAS  PubMed  Google Scholar 

    42.
    Prescott, G. W. et al. Political transition and emergent forest-conservation issues in Myanmar. Conserv. Biol. 31, 1257–1270 (2017).
    PubMed  Google Scholar 

    43.
    De Alban, D. J. et al. Integrating analytical frameworks to investigate land-cover regime shifts in dynamic landscapes. Sustainability 11, 1139 (2019).
    Google Scholar 

    44.
    Clifton, J., Hampton, M. P. & Jeyacheya, J. Opening the box? Tourism planning and development in Myanmar: Capitalism, communities and change. Asia Pac. Viewpoint 59, 323–337 (2018).
    Google Scholar 

    45.
    Belle, E., Shi, Y. & Bertzky, B. Comparative analysis methodology for World Heritage nominations under biodiversity criteria: A contribution to the IUCN evaluation of natural World Heritage nominations. 21 (UNEP-WCMC and IUCN, Cambridge, UK and Gland, Switzerland, 2014).

    46.
    Renner, S. C. et al. Avifauna of the Southeastern Himalayan mountains and neighboring Myanmar hill country. Bonn Zoological Bulletin—Supplementum 62, 1–75 (2015).
    Google Scholar 

    47.
    BirdLife International. Endemic Bird Area factsheet: Eastern Himalayas (130), (2015).

    48.
    BirdLife International. Endemic Bird Area factsheet: Yunnan mountains (139), (2015).

    49.
    BirdLife International. Endemic Bird Area factsheet: Northern Myanmar lowlands (s079), (2015).

    50.
    Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data. 4, 170122 (2017).
    PubMed  PubMed Central  Google Scholar 

    51.
    Renner, S. C. & Rappole, J. H. Bird diversity, biogeographic patterns, and endemism of the eastern Himalayas and southeastern Sub-Himalayan mountains in Ornithological Monographs Vol. 70 (ed M. L. Morrison) Ch. 8, 153–166 (American Ornithologists’ Union, 2011).

    52.
    Dumbacher, J. P., Miller, J. R., Flannery, M. E. & Yang Xiaojun. Avifauna of the Gaoligong Shan mountains of western China: A hotspot of avian species diversity in Ornithological Monographs Vol. 70 (eds S.C. Renner & J.H. Rappole) Ch. 3, 30–63 (American Ornithologists’ Union, 2011).

    53.
    Rappole, J. H., Thein Aung, Rasmussen, P. C. & Renner, S. C. Ornithological exploration in the southeastern sub-Himalayan region of Myanmar in Ornithological Monographs Vol. 70 (ed M. L. Morrison) Ch. 2, 10–29 (American Ornithologists’ Union, 2011).

    54.
    Zhu, Z., Wang, S. & Woodcock, C. E. Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 159, 269–277 (2015).
    ADS  Google Scholar 

    55.
    Riano, D., Chuvieco, E., Salas, J. & Aguado, I. Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types (2003). IEEE T Geosci. Remote 41, 1056–1061 (2003).
    ADS  Google Scholar 

    56.
    Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, 2 (2007).
    Google Scholar 

    57.
    Deng, Y., Chen, X., Chuvieco, E., Warner, T. & Wilson, J. P. Multi-scale linkages between topographic attributes and vegetation indices in a mountainous landscape. Remote Sens. Environ. 111, 122–134 (2007).
    ADS  Google Scholar 

    58.
    Guisan, A., Weiss, S. B. & Weiss, A. D. GLM versus CCA spatial modeling of plant species distribution. Plant Ecol. 143, 107–122 (1999).
    Google Scholar 

    59.
    Running, S. W. Estimating primary productivity by combining remote sensing with ecosystem simulation in Remote Sensing of Biosphere Functioning (eds R.J. Hobbs & H.A Mooney) 65–86 (Springer-Verlag, Berlin, 1990).

    60.
    Myneni, R. B., Hall, F., Sellers, P. & Marshak, A. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Rem. Sens. 33, 481–486 (1995).
    ADS  Google Scholar 

    61.
    Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
    ADS  Google Scholar 

    62.
    Liaw, A. & Wiener, M. Classification and regression by random. Forest 2, 18–22 (2002).
    Google Scholar 

    63.
    Plummer, M.JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling in Proceedings of the 3rd international workshop on distributed statistical computing. 125 (Vienna).

    64.
    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2014).

    65.
    Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M. & Rigol-Sanchez, J. P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 67, 93–104 (2012).
    ADS  Google Scholar 

    66.
    Connette, G., Oswald, P., Songer, M. & Leimgruber, P. Mapping distinct forest types improves overall forest identification based on multi-spectral landsat imagery for Myanmar’s Tanintharyi region. Remote Sens. 8, 2 (2016).
    Google Scholar 

    67.
    De Alban, J. D., Connette, G., Oswald, P. & Webb, E. Combined Landsat and L-Band SAR data improves land cover classification and change detection in dynamic tropical landscapes. Remote Sens. 10, 306 (2018).
    ADS  Google Scholar 

    68.
    Belgiu, M. & Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogram. Sens. 114, 24–31 (2016).
    Google Scholar 

    69.
    Horning, N. Random Forests: An algorithm for image classification and generation of continuous fields data sets. (2010).

    70.
    SNAP – ESA Sentinel Application Platform v2.0 (2015).

    71.
    Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).
    ADS  Google Scholar 

    72.
    Colditz, R. R. et al. Potential effects in multi-resolution post-classification change detection. Int. J. Remote Sens. 33, 6426–6445 (2012).
    ADS  Google Scholar 

    73.
    Cuba, N. Research note: Sankey diagrams for visualizing land cover dynamics. Landsc. Urban Plan. 139, 163–167 (2015).
    Google Scholar 

    74.
    Riitters, K. H. et al. Fragmentation of continental United States forests. Ecosystem 5, 815–822 (2002).
    Google Scholar 

    75.
    Riitters, K. H. & Wickham, J. D. Decline of forest interior conditions in the conterminous United States. Sci. Rep. 2, 653 (2012).
    ADS  PubMed  PubMed Central  Google Scholar 

    76.
    Riitters, K. H., O’Neill, R. V. & Jones, K. B. Assessing habitat suitability at multiple scales: A landscape-level approach. Biol. Conserv. 81, 191–202 (1997).
    Google Scholar 

    77.
    McIntyre, S. & Hobbs, R. A framework for conceptualizing human effects on landscapes and its relevance to management and research models. Conserv. Biol. 13, 1282–1292 (1999).
    Google Scholar 

    78.
    Vogt, P. & Riitters, K. GuidosToolbox: universal digital image object analysis. Eur. J. Remote Sens. 50, 352–361 (2017).
    Google Scholar 

    79.
    Gillanders, S. N., Coops, N. C., Wulder, M. A., Gergel, S. E. & Nelson, T. Multitemporal remote sensing of landscape dynamics and pattern change: Describing natural and anthropogenic trends. Prog. Phys. Geogr. 32, 503–528 (2008).
    Google Scholar 

    80.
    Rubiano, K., Clerici, N., Norden, N. & Etter, A. Secondary forest and shrubland dynamics in a highly transformed landscape in the northern Andes of Colombia (1985–2015). Forest 8, 216 (2017).
    Google Scholar 

    81.
    IUSS, W. G. W. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps, (2015).

    82.
    Oldeman, L., Hakkeling, R. & Sombroek, W. World map of the status of human-induced soil degradation: An explanatory note rev. (UNEP and ISRIC, Wageningen, 1991).
    Google Scholar 

    83.
    Fick, S. E. & Hijmans, R. J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 

    84.
    Venables, W. N. & Ripley, B. D. Modern applied statistics with S 4th edn. (Springer, Berlin, 2002).
    Google Scholar 

    85.
    Greene, W. H. Econometric analysis (Prentice Hall, Pearson, 2000).
    Google Scholar 

    86.
    Songer, M., Aung Myint, S. B., DeFries, R. & Leimgruber, P. Spatial and temporal deforestation dynamics in protected and unprotected dry forests: A case study from Myanmar (Burma). Metrics 18, 1001–1018 (2008).
    Google Scholar 

    87.
    Reddy, C. S. et al. Quantifying and predicting multi-decadal forest cover changes in Myanmar: A biodiversity hotspot under threat. Metrics 28, 1129–1149 (2019).
    Google Scholar 

    88.
    Hall, C. A. S., Tian, H., Qi, Y., Pontius, G. & Cornell, J. Modelling spatial and temporal patterns of tropical land use change. J. Biogrph. 22, 753–757 (1995).
    Google Scholar 

    89.
    Di Lallo, G., Mundhenk, P., Zamora López, S., Marchetti, M. & Köhl, M. REDD+: Quick assessment of deforestation risk based on available data. Forests 8, 29 (2017).
    Google Scholar 

    90.
    Bax, V. & Francesconi, W. Environmental predictors of forest change: An analysis of natural predisposition to deforestation in the tropical Andes region, Peru. Appl. Geogr. 91, 99–110 (2018).
    Google Scholar 

    91.
    Pacheco, P. et al. Landscape transformation in tropical Latin America: Assessing trends and policy implications for REDD+. Forest 2, 1–29 (2010).
    Google Scholar  More

  • in

    Microbial munchies

    Marine sediments comprise Earth’s largest organic carbon (OC) pool and a vast number of microorganism species (in the order of 1,029 species) that feed on it. However, the inaccessibility of the seafloor and the long timescales over which many sediment processes occur, has resulted in a limited and extremely patchy understanding of subseafloor biogeochemistry. Moreover, outside of data from specific sediment cores and laboratory experiments, how much energy microbes in marine sediments need to survive is not well known.

    James Bradley of Queen Mary University of London, UK, and colleagues, modelled the global degradation of OC in marine sediments deposited during the Quaternary and calculated the amount of energy subseafloor microbes use. Three different microbial metabolisms were considered — aerobic respiration, sulfate reduction and methanogenesis. 0.171 Pg C yr-1 of OC degradation was linked to sulfate reduction (64.5% of global Quaternary OC degraded), with another 0.076 C yr-1 (28.6%) associated with methanogenesis. Although aerobic respiration degraded only 0.018 Pg C yr-1 (6.9% of OC), it provided 54.5% (20.3 GW) of the power (energy flux) to the subseafloor. Sulfate reduction and methanogensis provided 39.1% (14.6 GW) and 6.4% (2.4 GW) of global subseafloor power, respectively. When these values were scaled on an individual cell basis, the average amount of power used per microbe was two orders of magnitude less than the lowest experimentally-based estimates of the minimum power required to sustain life. This result suggests that in situ microbial power requirements are much lower than previously thought. More

  • in

    Next generation sequencing-aided comprehensive geographic coverage sheds light on the status of rare and extinct populations of Aporia butterflies (Lepidoptera: Pieridae)

    1.
    Hughes, A. R. & Stachowicz, J. J. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc. Natl. Acad. Sci. U.S.A. 101, 8998–9002 (2004).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).
    Google Scholar 

    3.
    Koizumi, I., Usio, N., Kawai, T., Azuma, N. & Masuda, R. Loss of genetic diversity means loss of geological information: The endangered japanese crayfish exhibits remarkable historical footprints. PLoS ONE 7(3), e33986. https://doi.org/10.1371/journal.pone.0033986 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    4.
    Nazari, V., Schmidt, B. C., Prosser, S. & Hebert, P. D. N. Century-old DNA barcodes reveal phylogenetic placement of the extinct Jamaican Sunset Moth, Urania sloanus Cramer (Lepidoptera: Uraniidae). PLoS ONE 11(10), e0164405. https://doi.org/10.1371/journal.pone.0164405 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Nazari, V., Tarmann, G. & Efetov, K. A. Phylogenetic position of the ‘extinct’ Fijian coconut moth, Levuana iridescens (Lepidoptera: Zygaenidae). PLoS ONE 14(12), e0225590. https://doi.org/10.1371/journal.pone.0225590 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    6.
    Kim, Y. S. Illustrated Book of Korean Butterflies in Color (Kyo-Hak Publishing, Seoul, 2002).
    Google Scholar 

    7.
    Park, J. S., Cho, Y., Kim, M. J., Nam, S. H. & Kim, I. Description of complete mitochondrial genome of the black-veined white, Aporia crataegi (Lepidoptera: Papilionoidea), and comparison to papilionoid species. J. Asia-Pac. Entomol. 15, 331–341 (2012).
    CAS  Google Scholar 

    8.
    Park, H. C. et al. DNA barcode analysis for conservation of an endangered species, Aporia crataegi (Lepidoptera, Pieridae) in Korea. J. Seric. Entomol. Sci. 51, 201–206 (2013).
    Google Scholar 

    9.
    Della Bruna, C., Gallo, E. & Sbordoni, V. Pieridae, part I (2nd edition). Guide to the Butterflies of the Palearctic Region (ed. Bozano, G. C.) (Omnes Artes, 2013).

    10.
    Savela, M. Lepidoptera and some other life forms https://www.nic.funet.fi/pub/sci/bio/life/insecta/lepidoptera/ (2018). Accessed 10 November 2019.

    11.
    Braby, M. F., Vila, R. & Pierce, N. E. Molecular phylogeny and systematics of the Pieridae (Lepidoptera: Papilionoidea): Higher classification and biogeography. Zool. J. Linn. Soc. 147, 239–275 (2006).
    Google Scholar 

    12.
    Wahlberg, N., Rota, J., Braby, M. F., Pierce, N. E. & Wheat, C. W. Revised systematics and higher classification of pierid butterflies (Lepidoptera: Pieridae) based on molecular data. Zool. Scr. 43, 641–650 (2014).
    Google Scholar 

    13.
    Ding, C. & Zhang, Y. Phylogenetic relationships of Pieridae (Lepidoptera: Papilionoidea) in China based on seven gene fragments. Entomol. Sci. 20, 15–23 (2017).
    Google Scholar 

    14.
    Klots, A. B. A generic classification of the Pieridae (Lepidoptera) together with a study of the male genitalia. Entomol. Am. 12, 13–242 (1933).
    Google Scholar 

    15.
    Braby, M. F. Provisional checklist of genera of the Pieridae (Lepidoptera: Papilionidae). Zootaxa 832, 1–16 (2005).
    Google Scholar 

    16.
    Chou, I. Monograph of Chinese Butterflies, First Volume (Henan Scientific and Technological Publishing House, Zhengzhou, 1999).
    Google Scholar 

    17.
    Wu, C. Fauna Sinica, Insecta vol. 52, Lepidoptera, Pieridae (Science Press, Beijing, 2010).
    Google Scholar 

    18.
    Ding, C. & Zhang, Y. Phylogenetic relationships of the genera Aporia and Mesapia (Lepidoptera: Pieridae) based on COI and EF1α gene sequences. Acta Entomol. Sin. 59(8), 880–887 (2016).
    Google Scholar 

    19.
    Della Bruna, C., Gallo, E., Sbordoni, V. & Bozano, G. C. Addenda to the genus Aporia Hübner, [1819] (Lepidoptera: Pieridae). Nachrichten des Entomologischen Vereins Apollo N. F. 29(4), 205–209 (2009).
    Google Scholar 

    20.
    Deodati, T. Filogenesi molecolare, barcoding e stima dei tempi evolutivi in tre gruppi di farfalle diurne (Insecta: Lepidoptera) a distribuzione Sino-Himalayana (PhD thesis) (University of Rome Tor Vergata, 2010).

    21.
    Allan, P. B. M. Moths and Memories 1st edn. (Watkins & Doncaster, Pudleston, 1948).
    Google Scholar 

    22.
    Jugovic, J., Črne, M. & Lužnik, M. Movement, demography and behaviour of a highly mobile species: A case study of the black-veined white, Aporia crataegi (Lepidoptera: Pieridae). Eur. J. Entomol. 114, 113–122 (2017).
    Google Scholar 

    23.
    Kim, T. G., Han, Y. G., Kwon, O. & Cho, Y. Changes in Aporia crataegi’s potential habitats in accordance with climate changes in the northeast Asia. J. Ecol. Environ. 38(1), 15–23 (2015).
    Google Scholar 

    24.
    van Swaay, C. et al. Aporia crataegi. The IUCN Red List of Threatened Species; https://www.iucnredlist.org (2014). Accessed 10 November 2019.

    25.
    van Swaay, C. et al. Aporia crataegi. The IUCN Red List of Threatened Species; https://www.iucnredlist.org (2010). Accessed 10 November 2019.

    26.
    Ivanova, N. V., deWaard, J. R. & Hebert, P. D. N. An inexpensive, automation friendly protocol for recovering high-quality DNA. Mol. Ecol. Notes 6, 998–1002 (2006).
    CAS  Google Scholar 

    27.
    Prosser, S. W. J., de Waard, J. R., Miller, S. E. & Hebert, P. D. N. DNA barcodes from century-old type specimens using next-generation sequencing. Mol. Ecol. Resour. 16(2), 487–497 (2016).
    CAS  PubMed  Google Scholar 

    28.
    Hajibabaei, M. et al. Critical factors for assembling a high volume of DNA barcodes. Philos. Trans. R. Soc. Lond. B 360, 1959–1967 (2005).
    CAS  Google Scholar 

    29.
    deWaard, J. R., Ivanova, N. V., Hajibabaei, M. & Hebert, P. D. N. Assembling DNA barcodes: Analytical protocols. Method Mol. Biol. Environ. Genet. 410, 275–293 (2008).
    CAS  Google Scholar 

    30.
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547–1549 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).
    CAS  PubMed  Google Scholar 

    33.
    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
    CAS  PubMed  Google Scholar 

    35.
    Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006).
    CAS  Google Scholar 

    36.
    Boc, A., Diallo, A. B. & Makarenkov, V. T-REX: A web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Res. 40(W1), W573–W579 (2012).
    PubMed  PubMed Central  Google Scholar 

    37.
    Rambaut, A. Figtree v1.4. https://tree.bio.ed.ac.uk/software/figtree (2012). Accessed 23 November 2019.

    38.
    Kimura, M. Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. Genet. Res. 11, 247–269 (1968).
    CAS  PubMed  Google Scholar 

    39.
    Ramos-Onsins, S. & Rozas, J. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 19, 2092–2100 (2002).
    CAS  PubMed  Google Scholar 

    40.
    Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Ramirez-Soriano, A., Ramos-Onsins, S. E., Rozas, J., Calafell, F. & Navarro, A. Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination. Genetics 179, 555–567 (2008).
    PubMed  PubMed Central  Google Scholar 

    42.
    Holsinger K. E. Tajima’s D, Fu’s F S, Fay and Wu’s H, and Zeng et al.’s E. in Lecture Notes in Population Genetics (ed. Holsinger, K. E. 2001-2019) 291–296 (University of Connecticut, 2017).

    43.
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
    PubMed  PubMed Central  Google Scholar 

    44.
    Hudson, R. R. Gene genealogies and the coalescent process. In Oxford Surveys in Evolutionary Biology (eds Futuyma, D. J. & Antonovics, J. D.) 1–44 (Oxford University Press, Oxford, 1990).
    Google Scholar 

    45.
    Schneider, S. & Excoffier, L. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: Application to human mitochondrial DNA. Genetics 152, 1079–1089 (1999).
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Ray, N., Currat, M. & Excoffier, L. Intra-deme molecular diversity in spatially expanding populations. Mol. Biol. Evol. 20, 76–86 (2003).
    CAS  PubMed  Google Scholar 

    47.
    Excoffier, L. Patterns of DNA sequence diversity and genetic structure after a range expansion: Lessons from the infinite-island model. Mol. Ecol. 13, 853–864 (2004).
    CAS  PubMed  Google Scholar 

    48.
    Brower, A. V. Z. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato, inferred from patterns of mitochondrial DNA evolution. Proc. Natl. Acad. Sci. U.S.A. 91, 6491–6495 (1994).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Tadokoro, T., Koide, Y. & Hori, K. Description of a new subspecies of Mesapia peloria from central Nepal, and taxonomic notes for other subspecies (Lepidoptera, Pieridae). Lepidoptera Sci. 65(2), 51–59 (2014).
    Google Scholar 

    50.
    Schmitt, T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 4(1), 11 (2007).
    PubMed  PubMed Central  Google Scholar 

    51.
    Dapporto, L. et al. Integrating three comprehensive data sets shows that mitochondrial DNA variation is linked to species traits and paleogeographic events in European butterflies. Mol. Ecol. Resour. 00, 1–14 (2019).
    Google Scholar 

    52.
    Ehlers, J., Astakhov, V., Gibbard, P. L., Mangerud, J. & Svendsen, J. I. Late pleistocene glaciations in Europe. In Encyclopedia of Quaternary Science (ed. Elias, S. A.) 1085–1095 (Elsevier, Hoboken, 2006).
    Google Scholar 

    53.
    King, R. A. & Ferris, C. Chloroplast DNA phylogeography of Alnus glutinosa (L.) Gaertn. Mol. Ecol. 7, 1151–1161 (1998).
    CAS  Google Scholar 

    54.
    Wallis, G. P. & Arntzen, J. W. Mitochondrial-DNA variation in the crested newt superspecies: Limited cytoplasmic gene flow among species. Evolution 43, 88–104 (1989).
    CAS  PubMed  Google Scholar 

    55.
    Dapporto, L. Speciation in Mediterranean refugia and post-glacial expansion of Zerynthia polyxena (Lepidoptera, Papilionidae). J. Zool. Syst. Evol. Res. 48(3), 229–237 (2010).
    Google Scholar 

    56.
    Galtier, N., Nabholz, B., Glémin, S. & Hurst, G. D. D. Mitochondrial DNA as a marker of molecular diversity: A reappraisal. Mol. Ecol. 18(22), 4541–4550 (2009).
    CAS  PubMed  Google Scholar 

    57.
    Stein, E. D., Martinez, M. C., Stiles, S., Miller, P. E. & Zakharov, E. V. Is DNA barcoding actually cheaper and faster than traditional morphological methods: Results from a survey of freshwater bioassessment efforts in the United States?. PLoS ONE 9(4), e95525. https://doi.org/10.1371/journal.pone.0095525 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    58.
    Sanmartin, I. Dispersal vs. vicariance in the Mediterranean: historical biogeography of the Palearctic Pachydeminae (Coleoptera, Scarabaeoidea). J. Biogeogr. 30, 1883–1897 (2003).
    Google Scholar 

    59.
    Krijgsman, W. The Mediterranean: Mare nostrum of earth sciences. Earth Planet. Sci. Lett. 205, 1–12 (2002).
    ADS  CAS  Google Scholar 

    60.
    Steininger, F. F. & Rogl, F. Paleogeography and palinspastic reconstruction of the Neogene of the Mediterranean and Paratethys. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. & Robertson, A. H. F.) 659–668 (Geological Society Special Publication. Blackwell Scientific Publications, Hoboken, 1996).
    Google Scholar 

    61.
    De Jong, H. In search of historical biogeographic patterns in the western Mediterranean terrestrial fauna. Biol. J. Linnean Soc. 65, 99–164 (1998).
    Google Scholar 

    62.
    Nazari, V., Ten Hagen, W. & Bozano, G. C. Molecular systematics and phylogeny of the ‘Marbled Whites’ (Lepidoptera: Nymphalidae, Satyrinae, Melanargia Meigen). Syst. Entomol. 35, 132–147 (2010).
    Google Scholar 

    63.
    Todisco, V. et al. Molecular phylogeny of the Palaearctic butterfly genus Pseudophilotes (Lepidoptera: Lycaenidae) with focus on the Sardinian endemic P. barbagiae. BMC Zool. 3, 4 (2018).
    Google Scholar 

    64.
    Dinca, V., Dapporto, L. & Vila, R. A combined genetic-morphometric analysis unravels the complex biogeographical history of Polyommatus icarus and Polyommatus celina common blue butterflies. Mol. Ecol. 20, 3921–3935 (2011).
    CAS  PubMed  Google Scholar 

    65.
    Sañudo-Restrepo, C. P., Dinca, V., Talavera, G. & Vila, R. Biogeography and systematics of Aricia butterflies (Lepidoptera, Lycaenidae). Mol. Phylogenet. Evol. 66, 369–379 (2013).
    PubMed  Google Scholar  More

  • in

    Comparing methods for estimating leaf area index by multi-angular remote sensing in winter wheat

    1.
    Delegido, J. et al. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur. J. Agron. 46, 42–52 (2013).
    Google Scholar 
    2.
    Liang, L. et al. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens. Environ. 165, 123–134 (2015).
    ADS  Google Scholar 

    3.
    Meng, Q. Y. et al. Hot dark spot index method based on multi-angular remote sensing for leaf area index retrieval. Environ Earth Sci. 75, 732. https://doi.org/10.1007/s12665-016-5549-x (2016).
    Article  Google Scholar 

    4.
    Zhu, Y. H. et al. Exploring the potential of WorldView-2 red-edge band-based vegetation indices for estimation of mangrove leaf area index with machine learning algorithms. Remote Sens. 9, 1060. https://doi.org/10.3390/rs9101060 (2017).
    ADS  Article  Google Scholar 

    5.
    Guyot, G., Baret, F. & Jacquemoud, S. Imaging spectroscopy for vegetation studies. In Imaging Spectroscopy: Fundamentals and Prospective Applications (eds Toselli, F. & Bodechtel, J.) 145–165 (Kluwer Academic Publications, Dordrecht, 1992).
    Google Scholar 

    6.
    Mutanga, O., Adam, E. & Cho, M. A. High density biomass estimation for wetland vegetation using worldview-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geo. Inf. 18, 399–406 (2012).
    ADS  Google Scholar 

    7.
    Broge, N. H. & Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 76, 156–172 (2001).
    ADS  Google Scholar 

    8.
    Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J. & Strachan, I. B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 90, 337–352 (2004).
    ADS  Google Scholar 

    9.
    LeMaire, G. et al. Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens. Environ. 112, 3846–3864 (2008).
    ADS  Google Scholar 

    10.
    Yang, X. H. et al. Comparison between radial basis function neural network and regression model for estimation of rice biophysical parameters using remote sensing. Pedosphere 19, 176–188 (2009).
    Google Scholar 

    11.
    Noh, H., Zhang, Q., Han, S. & Feng, L. A Neural network model of maize crop nitrogen stress assessment for multi-spectral imaging sensor. Biosyst. Eng. 94, 477–485 (2006).
    Google Scholar 

    12.
    Liu, M. L., Liu, X. N., Li, M., Fang, M. H. & Chi, W. X. Neural-network model for estimating leaf chlorophyll concentration in rice under stress from heavy metals using four spectral indices. Biosyst. Eng. 106, 223–233 (2010).
    Google Scholar 

    13.
    Ye, X., Sakai, K., Garciano, L. Q., Asada, S.-I. & Sasao, A. Estimation of citrus yield from airborne hyperspectral images using a neural network model. Ecol. Model. 198, 426–432 (2006).
    Google Scholar 

    14.
    Walthall, C. et al. A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery. Remote Sens. Environ. 92, 465–474 (2004).
    ADS  Google Scholar 

    15.
    Huang, Z., Turner, B. J., Dury, S. J., Wallis, I. R. & Foley, W. J. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sens. Environ. 93, 18–29 (2004).
    ADS  Google Scholar 

    16.
    Hansen, P. M. & Schjoerring, J. K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 86, 542–553 (2003).
    ADS  Google Scholar 

    17.
    Darvishzadeh, R. et al. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS J. Photogramm. Remote Sens. 63, 409–426 (2008).
    ADS  Google Scholar 

    18.
    Nguyen, H. T. & Lee, B. W. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression. Eur. J. Agron. 24, 349–356 (2006).
    Google Scholar 

    19.
    Jin, X. L. et al. Estimation of leaf water content in winter wheat using grey relational analysis-partial least squares modeling with hyperspectral data. Agron. J. 105, 1385–1392 (2013).
    Google Scholar 

    20.
    Atzberger, C., Guérif, M., Baret, F. & Werner, W. Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Comput. Electro. Agric. 73, 165–173 (2010).
    Google Scholar 

    21.
    Mirzaie, M. et al. Comparative analysis of different uni- and multi-variate methods for estimation of vegetation water content using hyper-spectral measurements. Int. J. Appl. Earth Obs. Geo. Inf. 26, 1–11 (2014).
    ADS  Google Scholar 

    22.
    Durbha, S. S., King, R. L. & Younan, N. H. Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer. Remote Sens. Environ. 107, 348–361 (2007).
    ADS  Google Scholar 

    23.
    Yang, G. J., Zhao, C. J., Xing, Z. R., Huang, W. J. & Wang, J. H. LAI inversion of spring wheat based on PROBA/CHRIS hyperspectral multi-angular data and PROSAIL model. Trans CSAE. 27, 88–94 (2011) (In Chinese with English abstract).
    CAS  Google Scholar 

    24.
    Chen, J. M., Menges, C. H. & Leblanc, S. G. Global mapping of foliage clumping index using multi-angular satellite data. Remote Sens. Environ. 97, 447–457 (2005).
    ADS  Google Scholar 

    25.
    Wang, Q. et al. The potential of forest biomass inversion based on vegetation indices using multi-angel CHRIS-PROBA data. Remote Sens. 8, 891. https://doi.org/10.3390/rs8110891 (2016).
    ADS  Article  Google Scholar 

    26.
    Rougean, J. L. & Breon, F. M. Estimating PAR absorbed by vegetation from bidrectional reflectance measurements. Remote Sens. Environ. 51, 375–384 (1995).
    ADS  Google Scholar 

    27.
    Gemmell, F. & McDonald, A. J. View zenith angle effects on the forest information content of three spectral indices. Remote Sens. Environ. 72, 139–158 (2000).
    ADS  Google Scholar 

    28.
    Pocewicz, A., Vierling, L. A., Lentile, L. B. & Smith, R. View angle effects on relationships between MISR vegetation indices and leaf index in a recently burned ponderosa pine forest. Remote Sens. Environ. 107, 322–333 (2007).
    ADS  Google Scholar 

    29.
    Stagakis, S., Markos, N., Sykioti, O. & Kyparissis, A. Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis fruticosa Mediterranean ecosystem using multi-angular CHRIS/PROBA observations. Remote Sens. Environ. 114, 977–994 (2010).
    ADS  Google Scholar 

    30.
    Hasegawa, K., Matsuyama, H., Tsuzuki, H. & Sweda, T. Improving the estimation of leaf area index by using remotely sensed NDVI with BRDF signatures. Remote Sens. Environ. 114, 514–519 (2010).
    ADS  Google Scholar 

    31.
    Wu, C., Han, X., Niu, Z. & Dong, J. An evaluation of EO-1 hyperspectral Hyperion data for chlorophyll content and leaf area index estimation. Int. J. Remote Sens. 31, 1079–1086 (2010).
    ADS  Google Scholar 

    32.
    Herrmann, I. et al. LAI assessment of wheat and potato crops by VENS and Sentinel-2 bands. Remote Sens. Environ. 115, 2141–2151 (2011).
    ADS  Google Scholar 

    33.
    Peñuelas, J. & Filella, I. Reflectance assessment of mite effects on apple trees. Int. J. Remote Sens. 16, 2727–2733 (1995).
    ADS  Google Scholar 

    34.
    Vogelmann, J. E., Rock, B. N. & Moss, D. M. Red-edge spectral measurements from Sugar Maple leaves. Int. J. Remote Sens. 14, 1563–1575 (1993).
    ADS  Google Scholar 

    35.
    He, L. et al. Estimating canopy leaf nitrogen concentration in winter wheat based on multi-angular hyperspectral remote sensing. Eur. J. Agron. 73, 170–185 (2016).
    CAS  Google Scholar 

    36.
    Shen, W. Y. et al. Inversion model for severity of powdery mildew in wheat leaves based on factor analysis-BP neural network. Trans CSAE. 31, 183–190 (2015) (in Chinese with English abstract).
    Google Scholar 

    37.
    Asner, G. P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens. Environ. 64, 234–253 (1998).
    ADS  Google Scholar 

    38.
    Verrelst, J., Schaepman, M. E., Koetz, B. & Kneubühler, M. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sens. Environ. 11, 2341–2353 (2008).
    ADS  Google Scholar 

    39.
    He, L. et al. Improved remote sensing of leaf nitrogen concentration in winter wheat using multi-angular hyperspectral data. Remote Sens. Environ. 174, 122–133 (2016).
    ADS  Google Scholar 

    40.
    Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., Harlan, J. C. Monitoring the vernal advancements and retrogradation of natural vegetation. In: NASA/GSFC, Final Report, Greenbelt, MD, USA (pp. 1–137) (1974).

    41.
    Jordan, C. F. Derivation of leaf area index from quality of light on the forest floor. Ecology 50, 663–666 (1969).
    Google Scholar 

    42.
    Rondeaux, G., Steven, M. & Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 55, 95–107 (1996).
    ADS  Google Scholar 

    43.
    Gamon, J. A., Penuelas, J. & Field, C. B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 41, 35–44 (1992).
    ADS  Google Scholar 

    44.
    Peng, Y. & Gitelson, A. A. Application of chlorophyll-related vegetation indices for remote estimation of maize productivity. Agric. Forest Meteorol. 151, 1267–1276 (2011).
    ADS  Google Scholar 

    45.
    Gitelson, A. A., Gritz, Y. & Merzlyak, M. N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 160, 271–282 (2003).
    CAS  PubMed  Google Scholar 

    46.
    Sims, D. A. & Gamon, J. A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 81, 331–354 (2002).
    ADS  Google Scholar 

    47.
    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).
    ADS  Google Scholar 

    48.
    Dash, J. & Curran, P. J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 25, 5403–5413 (2004).
    ADS  Google Scholar 

    49.
    Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J. & Dextraze, L. Integrated narrowband vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 81, 416–426 (2002).
    ADS  Google Scholar 

    50.
    Qi, J., Chehbouni, A., Huete, A. R., Keer, Y. H. & Sorooshian, S. A modified soil vegetation adjusted index. Remote Sens. Environ. 48, 119–126 (1994).
    ADS  Google Scholar 

    51.
    Guyot, G., Baret, F. & Major, D. J. High spectral resolution: determination of spectral shifts between the red and the near infrared. Int. Arch. Photogramm. Remote Sens. 11, 750–760 (1988).
    Google Scholar 

    52.
    LeMaire, G., François, C. & Dufrêne, E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sens. Environ. 89, 1–28 (2004).
    ADS  Google Scholar 

    53.
    Wang, X. L. & Li, Z. B. Identifying the parameters of the Kernel Function in Support Vector Machines based on the Grid-Search method. Periodical of Ocean University of China 35, 859–862 (2005) (in Chinese with English abstract).
    MathSciNet  Google Scholar 

    54.
    Feng, C. X., Yu, Z. G., King, U., Baig, M. P. Threefold vs. Fivefold cross validation in one-hidden-layer and two-hidden-layer predictive neural network modeling of machining surface roughness data. J. Manuf. Syst. 24, 93–107 (2005). More

  • in

    Temperature increase altered Daphnia community structure in artificially heated lakes: a potential scenario for a warmer future

    1.
    IPCC. Summary for policymakers 1–32 (Cambridge, United Kingdom and New York, NY, USA, 2014).
    2.
    Carey, C. C., Ibelings, B. W., Hoffmann, E. P., Hamilton, D. P. & Brookes, J. D. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 46, 1394–1407 (2012).
    CAS  PubMed  Google Scholar 

    3.
    Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. USA 106, 12788–12793 (2009).
    ADS  CAS  PubMed  Google Scholar 

    4.
    Forster, J., Hirst, A. G. & Atkinson, D. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc. Natl. Acad. Sci. USA 109, 19310–19314 (2012).
    ADS  CAS  PubMed  Google Scholar 

    5.
    Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).
    PubMed  Google Scholar 

    6.
    De Senerpont Domis, L. N., Bartosiewicz, M., Davis, C. & Cerbin, S. The effect of small doses of toxic cyanobacterial food on the temperature response of Daphnia galeata: is bigger better? Freshw. Biol. 58, 560–572 (2013).

    7.
    Magnuson, J. J. et al. Historical trends in lake and river ice cover in the northen hemisphere. Science 289, 1743–1746 (2000).
    ADS  CAS  PubMed  Google Scholar 

    8.
    Schoebel, C. N., Tellenbach, C., Spaak, P. & Wolinska, J. Temperature effects on parasite prevalence in a natural hybrid complex. Biol. Lett. 7, 108–111 (2011).
    PubMed  Google Scholar 

    9.
    Winder, M. & Schindler, D. E. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85, 2100–2106 (2004).
    Google Scholar 

    10.
    Verschoor, A. M., Van Dijk, M. A., Huisman, J. & Van Donk, E. Elevated CO2 concentrations affect the elemental stoichiometry and species composition of an experimental phytoplankton community. Freshw. Biol. 58, 597–611 (2013).
    CAS  Google Scholar 

    11.
    Zander, A., Bersier, L.-F. & Gray, S. M. Effects of temperature variability on community structure in a natural microbial food web. Glob. Change Biol. 23, 56–67 (2017).
    ADS  Google Scholar 

    12.
    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    13.
    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).
    ADS  CAS  PubMed  Google Scholar 

    14.
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
    PubMed  PubMed Central  Google Scholar 

    15.
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).
    PubMed  Google Scholar 

    16.
    Meester, L. D., Stoks, R. & Brans, K. I. Genetic adaptation as a biological buffer against climate change: potential and limitations. Integr. Zool. 13, 372–391 (2018).
    PubMed  PubMed Central  Google Scholar 

    17.
    Scranton, K. & Amarasekare, P. Predicting phenological shifts in a changing climate. Proc. Natl. Acad. Sci. USA 114, 13212–13217 (2017).
    CAS  PubMed  Google Scholar 

    18.
    Hulme, P. E. Climate change and biological invasions: evidence, expectations, and response options. Biol. Rev. 92, 1297–1313 (2017).
    PubMed  Google Scholar 

    19.
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
    Google Scholar 

    20.
    Van Doorslaer, W. et al. Local adaptation to higher temperatures reduces immigration success of genotypes from a warmer region in the water flea Daphnia. Glob. Change Biol. 15, 3046–3055 (2009).
    ADS  Google Scholar 

    21.
    Bellard, C. et al. Will climate change promote future invasions?. Glob. Change Biol. 19, 3740–3748 (2013).
    ADS  Google Scholar 

    22.
    Holzapfel, A. M. & Vinebrooke, R. D. Environmental warming increases invasion potential of alpine lake communities by imported species. Glob. Change Biol. 11, 2009–2015 (2005).
    Google Scholar 

    23.
    Burns, C. W. Predictors of invasion success by Daphnia species: influence of food, temperature and species identity. Biol. Invas. 15, 859–869 (2013).
    Google Scholar 

    24.
    Spaak, P., Fox, J. & Hairston, N. G. Jr. Modes and mechanisms of a Daphnia invasion. Proc. Biol. Sci. 279, 2936–2944 (2012).
    PubMed  PubMed Central  Google Scholar 

    25.
    Wejnerowski, Ł., Sikora-Koperska, A. & Dawidowicz, P. Temperature elevation reduces the sensitivity of invasive cladoceran Daphnia lumholtzi to filamentous cyanobacterium Raphidiopsis raciborskii. Freshw Biol 935–946, https://doi.org/10.1111/fwb.13480 (2020).

    26.
    Wittmann, M. J., Gabriel, W., Harz, E.-M., Laforsch, C. & Jeschke, J. Can Daphnia lumholtzi invade European lakes?. NeoBiota 16, 39–57 (2013).
    Google Scholar 

    27.
    Keller, B., Wolinska, J., Manca, M. & Spaak, P. Spatial, environmental and anthropogenic effects on the taxon composition of hybridizing Daphnia. Philos. Trans. R. Soc. Lond, B Biol. Sci. 363, 2943–2952 (2008).
    Google Scholar 

    28.
    Petrusek, A. et al. A taxonomic reappraisal of the European Daphnia longispina complex (Crustacea, Cladocera, Anomopoda). Zool Scr. 37, 507–519 (2008).
    Google Scholar 

    29.
    Zeis, B., Horn, W., Gigengack, U., Koch, M. & Paul, R. J. A major shift in Daphnia genetic structure after the first ice-free winter in a German reservoir. Freshw. Biol. 55, 2296–2304 (2010).
    Google Scholar 

    30.
    Van Doorslaer, W., Stoks, R., Duvivier, C., Bednarska, A. & De Meester, L. Population dynamics determine genetic adaptation to temperature in Daphnia. Evolution 63, 1867–1878 (2009).
    PubMed  Google Scholar 

    31.
    Woszczyk, M. et al. Stable C and N isotope record of short term changes in water level in lakes of different morphometry: Lake Anastazewo and Lake Skulskie, central Poland. Org. Geochem. 76, 278–287 (2014).
    CAS  Google Scholar 

    32.
    Bernatowicz, P., Radzikowski, J., Paterczyk, B., Bebas, P. & Slusarczyk, M. Internal structure of Daphnia ephippium as an adaptation to dispersion. Zool Anz. 277, 12–22 (2018).
    Google Scholar 

    33.
    Moss, B. et al. Climate change and the future of freshwater biodiversity in Europe: a primer for policy-makers. Freshw. Rev. 2, 103–130 (2009).
    Google Scholar 

    34.
    Ma, X., Hu, W., Smilauer, P., Yin, M. & Wolinska, J. Daphnia galeata and D. dentifera are geographically and ecologically separated whereas their hybrids occur in intermediate habitats: A survey of 44 Chinese lakes. Mol. Ecol. 28, 785–802 (2019).

    35.
    Dzialowski, A. R., Lennon, J. T. & Smith, V. H. Food web structure provides biotic resistance against plankton invasion attempts. Biol. Invas. 9, 257–267 (2007).
    Google Scholar 

    36.
    Birks, H. H., Whiteside, M. C., Stark, D. M. & Bright, R. C. Recent paleolimnology of three lakes in Northwestern Minnesota. Quat. Res. 6, 249–272 (1976).
    Google Scholar 

    37.
    Tsugeki, N. K., Ishida, S. & Urabe, J. Sedimentary records of reduction in resting egg production of Daphnia galeata in Lake Biwa during the 20th century: a possible effect of winter warming. J. Paleolimnol. 42, 155–165 (2009).
    ADS  Google Scholar 

    38.
    Keller, B., Wolinska, J., Tellenbach, C. & Spaak, P. Reproductive isolation keeps hybridizing Daphnia species distinct. Limnol. Oceanogr. 52, 984–991 (2007).
    ADS  Google Scholar 

    39.
    Spaak, P. & Boersma, M. Predator mediated coexistence of hybrid and parental Daphnia taxa. Arch. Für Hydrobiol. 167, 55–76 (2006).
    Google Scholar 

    40.
    Kozłowski, J., Czarnołęski, M. & Dańko, M. Can optimal resource allocation models explain why ectotherms grow larger in cold?. Integr. Comput. Biol. 44, 480–493 (2004).
    Google Scholar 

    41.
    Angilletta, M. J. Jr., Steury, T. D. & Sears, M. W. Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr. Comput. Biol. 44, 498–509 (2004).
    Google Scholar 

    42.
    Brooks, J. L. & Dodson, S. I. Predation, body size, and composition of plankton. Science 150, 28–35 (1965).
    ADS  CAS  PubMed  Google Scholar 

    43.
    Gliwicz, Z. M. Relative significance of direct and indirect effects of predation by planktivorous fish on zooplankton. Hydrobiologia 272, 201–210 (1994).
    Google Scholar 

    44.
    Maszczyk, P. et al. Combined effects of elevated epilimnetic temperature and metalimnetic hypoxia on the predation rate of planktivorous fish. J. Plankton Res. 41, 709–722 (2019).
    PubMed  PubMed Central  Google Scholar 

    45.
    Świerzowski, A. & Godlewska, M. Effects of hydropower plant activities on fish population, abundance and distribution. Arch. Pol. Fish. 9, 157–172 (2001).
    Google Scholar 

    46.
    Thorslund, A. E. Potential uses of wastewaters and heated effluents. European Inland Fisheries Advisory Commission Occasional Paper No. 5. (Food and Agriculture Organization of the United Nations, 1971).

    47.
    Warren, G. J., Evans, M. S., Jude, D. J. & Ayers, J. C. Seasonal variations in copepod size: effects of temperature, food abundance, and vertebrate predation. J. Plankton Res. 8, 841–853 (1986).
    Google Scholar 

    48.
    Tunowski, J. Zooplankton structure in heated lakes with differing thermal regimes and water retention. Arch. Pol. Fish. 17, 291–303 (2009).
    Google Scholar 

    49.
    Tunowski, J. Changes in zooplankton abundance and community structure in the cooling channel system of the Konin and Pątnów power plants. Arch. Pol. Fish. 17, 279–289 (2009).
    Google Scholar 

    50.
    Stibor, H. & Lampert, W. Components of additive variance in life-history traits of Daphnia hyalina: seasonal differences in the response to predator signals. Oikos 88, 129–138 (2000).
    Google Scholar 

    51.
    Tereshchenko, V. G., Kapusta, A., Wilkońska, H. & Strelnikova, A. P. Long-term changes in 0+ fish assemblages in the littoral zone of heated lakes. I. Diversity, evennes and dynamic phase portrait of species structure. Arch Pol Fish 15, 415–430 (2007).

    52.
    Brzezinski, T. Filamentous cyanobacteria alter the relative fitness in a Daphnia hybrid species complex. Freshw. Biol. 60, 101–110 (2015).
    Google Scholar 

    53.
    Dziuba, M. K., Cerbin, S. & Wejnerowski, L. Is bigger better? A possibility for adaptation of Daphnia to filamentous cyanobacteria in the face of global warming. Hydrobiologia 798, 105–118 (2017).
    Google Scholar 

    54.
    Socha, D. & Hutorowicz, A. Changes in the quantitative relations of the phytoplankton in heated lakes. Arch. Pol. Fish. 17, 239–251 (2009).
    Google Scholar 

    55.
    Geerts, A. N. et al. Rapid evolution of thermal tolerance in the water flea Daphnia. Nat. Clim. Change 5, 665–668 (2015).
    ADS  Google Scholar 

    56.
    Van Doorslaer, W. et al. Experimental thermal microevolution in community-embedded Daphnia populations. Clim. Res. 43, 81–89 (2010).
    Google Scholar 

    57.
    Wolinska, J., Löffler, A. & Spaak, P. Taxon-specific reaction norms to predator cues in a hybrid Daphnia complex. Freshw. Biol. 52, 1198–1209 (2007).
    Google Scholar 

    58.
    Wolinska, J., Bittner, K., Ebert, D. & Spaak, P. The coexistence of hybrid and parental Daphnia: the role of parasites. Proc Biol Sci 273, 1977–1983 (2006).
    PubMed  PubMed Central  Google Scholar 

    59.
    Lindberg, R. T. & Collins, S. Quality–quantity trade-offs drive functional trait evolution in a model microalgal ‘climate change winner’. Ecol. Lett. 23, 780–790 (2020).
    PubMed  Google Scholar 

    60.
    Lampert, W. Daphnia: model herbivore, predator and prey. Pol. J. Ecol. 54, 607–620 (2006).
    Google Scholar 

    61.
    Bartosiewicz, M. et al. Hot tops, cold bottoms: Synergistic climate warming and shielding effects increase carbon burial in lakes. Limnol. Oceanogr. Lett. 4, 132–144 (2019).
    CAS  Google Scholar 

    62.
    Stawecki, K., Zdanowski, B. & Pyka, J. P. Long-term changes in post-cooling water loads from power plants and thermal and oxygen conditions in stratified lakes. Arch. Pol. Fish. 21, 331–342 (2013).
    CAS  Google Scholar 

    63.
    Bledzki, L. A. & Rybak, J. I. Freshwater Crustacean Zooplankton of Europe. Cladocera & Copepoda (Calanoida, Cyclopoida) Key to species identification, with notes on ecology, distribution, methods and introduction to data analysis. (Springer International Publishing Switzerland, 2016).

    64.
    Appleby, P. G. Chronostratigraphic techniques in recent sediments. In Last, W.M. and Smol, J.P., editors, Tracking environmental change using lake sediments volume 1: basin analysis, coring, and chronological techniques. (Kluwer Academic, London, 2001).

    65.
    Bruel, R. & Sabatier, P. Serac: a R package for ShortlivED RAdionuclide Chronology of recent sediment cores. J. Environ. Activity https://doi.org/10.31223/osf.io/f4yma (2020).
    Article  Google Scholar 

    66.
    Szczuciński, W. et al. Modern sedimentation and sediment dispersal pattern on the continental shelf off the Mekong River delta, South China Sea. Glob. Planet. Change 110, 195–213 (2013).
    ADS  Google Scholar 

    67.
    Dabert, M., Witalinski, W., Kazmierski, A., Olszanowski, Z. & Dabert, J. Molecular phylogeny of acariform mites (Acari, Arachnida): Strong conflict between phylogenetic signal and long-branch attraction artifacts. Mol. Phylogenet. Evol. 56, 222–241 (2010).
    PubMed  Google Scholar 

    68.
    Brede, N. et al. Microsatellite markers for European Daphnia. Mol. Ecol. Notes 6, 536–539 (2006).
    CAS  Google Scholar 

    69.
    Toonen, R. J. & Hughes, S. Increased throughput for fragment analysis on ABI Prism 377 automated sequencer using a membrane comb and STR and software. Biotechniques 31, 1320–1324 (2001).
    CAS  PubMed  Google Scholar 

    70.
    Alberto, F. MsatAllele: Visualizes the scoring and binning of microsatellite fragment sizes. R Package Version 104 (2013).

    71.
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl. Acids Res. 32, 1792–1797 (2004).
    CAS  PubMed  Google Scholar 

    72.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    73.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    74.
    Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet Resour. 4, 359–361 (2012).
    Google Scholar 

    75.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Google Scholar 

    76.
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).
    PubMed  PubMed Central  Google Scholar 

    77.
    Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2006).
    PubMed  Google Scholar 

    78.
    Bohonak, A. J. IBD (isolation by distance): a program for analyses of isolation by distance. J. Hered. 93, 153–154 (2002).
    CAS  PubMed  Google Scholar  More

  • in

    N2 fixation dominates nitrogen cycling in a mangrove fiddler crab holobiont

    1.
    Lee, S. Y. et al. Reassessment of mangrove ecosystem services. Glob. Ecol. Biogeogr. 23, 726–743 (2014).
    Google Scholar 
    2.
    Kathiresan, K. & Bingham, B. L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 40, 81–251 (2001).
    Google Scholar 

    3.
    Dittmar, T., Hertkorn, N., Kattner, G. & Lara, R. J. Mangroves, a major source of dissolved organic carbon to the oceans. Glob. Biogeochem. Cycles 20(1), GB1012. https://doi.org/10.1029/2005GB002570 (2006).
    ADS  CAS  Article  Google Scholar 

    4.
    Kristensen, E., Bouillon, S., Dittmard, T. & Marchande, C. Organic carbon dynamics in mangrove ecosystems: A review. Aquat. Bot. 89, 201–219 (2008).
    CAS  Google Scholar 

    5.
    Reef, R., Feller, I. C. & Lovelock, C. E. Nutrition of mangroves. Tree Physiol. 30(9), 1148–1160 (2010).
    CAS  PubMed  Google Scholar 

    6.
    Woolfe, K. J., Dale, P. J. & Brunskill, G. J. Sedimentary C/S relationships in a large tropical estuary: evidence for refractory carbon inputs from mangroves. Geo-Mar. Lett. 15(3–4), 140–144 (1995).
    ADS  Google Scholar 

    7.
    Woitchik, A. F. et al. Nitrogen enrichment during decomposition of mangrove leaf litter in an east African coastal lagoon (Kenya): relative importance of biological nitrogen fixation. Biogeochemistry 39(1), 15–35 (1997).
    CAS  Google Scholar 

    8.
    Zuberer, D. & Silver, W. S. Biological dinitrogen fixation (acetylene reduction) associated with Florida mangroves. Appl. Environ. Microbiol. 35(3), 567–575 (1978).
    CAS  PubMed  PubMed Central  Google Scholar 

    9.
    Kristensen, E. et al. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar. Ecol. Prog. Ser. 446, 285–302 (2012).
    ADS  Google Scholar 

    10.
    Welsh, D. T. It’s a dirty job but someone has to do it: the role of marine benthic macrofauna in organic matter turnover and nutrient recycling to the water column. Chem. Ecol. 19, 321–342 (2003).
    CAS  Google Scholar 

    11.
    Stief, P. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications. Biogeosciences 10(12), 7829–7846 (2013).
    ADS  Google Scholar 

    12.
    Gilbertson, W. W., Solan, M. & Prosser, J. I. Differential effects of microorganism–invertebrate interactions on benthic nitrogen cycling. FEMS Microbiol. Ecol. 82, 11–12 (2012).
    PubMed  Google Scholar 

    13.
    Laverock, B., Gilbert, J. A., Tait, K., Osborn, A. M. & Widdicombe, S. Bioturbation: impact on the marine nitrogen cycle. Biochem. Soc. Trans. 39, 315–320 (2011).
    CAS  PubMed  Google Scholar 

    14.
    Magri, M. et al. Benthic N pathways in illuminated and bioturbated sediments studied with network analysis. Limnol. Oceanogr. 63, S68–S84. https://doi.org/10.1002/lno.10724 (2018).
    CAS  Article  Google Scholar 

    15.
    Kristensen, E. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. J. Sea Res. 59, 30–43 (2008).
    ADS  Google Scholar 

    16.
    Booth, J. M., Fusi, M., Marasco, R., Mbobo, T. & Daffonchioco, D. Fiddler crab bioturbation determines consistent changes in bacterial communities across contrasting environmental conditions. Sci. Rep. 9, 3749. https://doi.org/10.1038/s41598-019-40315-0 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    17.
    Cuellar-Gempeler, C. & Leibold, M. A. Multiple colonist pools shape fiddler crab-associated bacterial communities. ISME J. 12(3), 825–837 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Reinsel, K. A. Impact of fiddler crab foraging and tidal inundation on an intertidal sandflat: season-dependent effects in one tidal cycle. J. Exp. Mar. Biol. Ecol. 313, 1–17 (2004).
    Google Scholar 

    19.
    Nordhaus, I., Diele, K. & Wolff, M. Activity patterns, feeding and burrowing behaviour of the crab Ucides cordatus (Ucididae) in a high intertidal mangrove forest in North Brazil. J. Exp. Mar. Biol. Ecol. 374, 104–112 (2009).
    Google Scholar 

    20.
    Nordhaus, I. & Wolff, M. Feeding ecology of the mangrove crab Ucides cordatus (Ocypodidae): food choice, food quality and assimilation efficiency. Mar. Biol. 151, 1665–1681 (2007).
    Google Scholar 

    21.
    Fanjul, E., Bazterrica, M. C., Escapa, M., Grela, M. A. & Iribarne, O. Impact of crab bioturbation on benthic flux and nitrogen dynamics of Southwest Atlantic intertidal marshes and mudflats. Estuar. Coast. Shelf Sci. 92, 629–638 (2011).
    ADS  CAS  Google Scholar 

    22.
    Quintana, C. O. et al. Carbon mineralization pathways and bioturbation in coastal Brazilian sediments. Sci. Rep. 5, 16122. https://doi.org/10.1038/srep16122 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    Thongtham, N. & Kristensen, E. Physical and chemical characteristics of mangrove crab (Neoepisesarma versicolor) burrows in the Bangrong mangrove forest, Phuket, Thailand; with emphasis on behavioural response to changing environmental conditions. Vie et Milieu 53, 141–151 (2003).
    Google Scholar 

    24.
    De la Iglesia, H. O., Rodríguez, E. M. & Dezi, R. E. Burrow plugging in the crab Uca uruguayensis and its synchronization with photoperiod and tides. Physiol. Behav. 55(5), 913–919 (1994).
    PubMed  Google Scholar 

    25.
    Arfken, A., Song, B., Bowman, J. S. & Piehler, M. Denitrification potential of the eastern oyster microbiome using a 16S rRNA gene based metabolic inference approach. PLoS ONE 12(9), e0185071. https://doi.org/10.1371/journal.pone.0185071 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Caffrey, J. M., Hollibaugh, J. T. & Mortazavi, B. Living oysters and their shells as sites of nitrification and denitrification. Mar. Pollut. Bull. 112(1–2), 86–90 (2016).
    CAS  PubMed  Google Scholar 

    27.
    Glud, R. N. et al. Copepod carcasses as microbial hot spots for pelagic denitrification. Limnol. Oceanogr. 60, 2026–2036 (2015).
    ADS  CAS  Google Scholar 

    28.
    Heisterkamp, I. M. et al. Shell biofilm-associated nitrous oxide production in marine molluscs: processes, precursors and relative importance. Environ. Microbiol. 15(7), 1943–1955 (2013).
    CAS  PubMed  Google Scholar 

    29.
    Ray, N. E., Henning, M. C. & Fulweiler, R. W. Nitrogen and phosphorus cycling in the digestive system and shell biofilm of the eastern oyster Crassostrea virginica. Mar. Ecol. Prog. Ser. 621, 95–105 (2019).
    ADS  CAS  Google Scholar 

    30.
    Stief, P. et al. Freshwater copepod carcasses as pelagic microsites of dissimilatory nitrate reduction to ammonium. FEMS Microbiol. Ecol. 94(10), fiy144. https://doi.org/10.1093/femsec/fiy144 (2018).
    CAS  Article  PubMed Central  Google Scholar 

    31.
    Wahl, M., Goecke, F., Labes, A., Dobretsov, S. & Weinberger, F. The second skin: ecological role of epibiotic biofilms on marine organisms. Front. Microbiol. 3, 292. https://doi.org/10.3389/fmicb.2012.00292 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Foshtomi, M. Y. et al. The link between microbial diversity and nitrogen cycling in marine sediments is modulated by macrofaunal bioturbation. PLoS ONE 10, e0130116. https://doi.org/10.1371/journal.pone.0130116 (2015).
    CAS  Article  Google Scholar 

    33.
    Pelegri, S. P., Nielsen, L. P. & Blackburn, T. H. Denitrification in estuarine sediment stimulated by the irrigation activity of the amphipod Corophium volutator. Mar. Ecol. Prog. Ser. 105(3), 285–290 (1994).
    ADS  Google Scholar 

    34.
    Stief, P. & Beer, D. D. Probing the microenvironment of freshwater sediment macrofauna: Implications of deposit-feeding and bioirrigation for nitrogen cycling. Limnol. Oceanogr. 51, 2538–2548 (2006).
    ADS  Google Scholar 

    35.
    Pischedda, L., Cuny, P., Esteves, J. L., Pogiale, J. C. & Gilbert, F. Spatial oxygen heterogeneity in a Hediste diversicolor irrigated burrow. Hydrobiologia 680, 109–124 (2012).
    CAS  Google Scholar 

    36.
    Poulsen, M., Kofoed, M. V., Larsen, L. H., Schramm, A. & Stief, P. Chironomus plumosus larvae increase fluxes of denitrification products and diversity of nitrate-reducing bacteria in freshwater sediment. Syst. Appl. Microbiol. 37, 51–59 (2014).
    CAS  PubMed  Google Scholar 

    37.
    Petersen, J. M. et al. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat. Microbiol. 2, 16196. https://doi.org/10.1038/nmicrobiol.2016.195 (2016).
    CAS  Article  Google Scholar 

    38.
    Samuiloviene, A. et al. The effect of chironomid larvae on nitrogen cycling and microbial communities in soft sediments. Water 11, 1931. https://doi.org/10.3390/w11091931 (2019).
    CAS  Article  Google Scholar 

    39.
    Reis, C. R. G., Nardoto, G. B. & Oliveira, R. S. Global overview on nitrogen dynamics in mangroves nd consequences of increasing nitrogen availability for these systems. Plant Soil 410, 1–19 (2017).
    CAS  Google Scholar 

    40.
    Nagata, R. M., Moreira, M. Z., Pimentel, C. R. & Morandini, A. C. Food web characterization based on d15N and d13C reveals isotopic niche partitioning between fish and jellyfish in a relatively pristine ecosystem. Mar. Ecol. Progr. Ser. 519, 13–27 (2015).
    ADS  CAS  Google Scholar 

    41.
    Alfaro-Espinoza, G. & Ullrich, M. S. Bacterial N2-fixation in mangrove ecosystems: insights from a diazotroph–mangrove interaction. Front. Microbiol. 6, 445. https://doi.org/10.3389/fmicb.2015.00445 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    42.
    Jiménez, M.F.S.-S., Cerqueda-García, D., Montero-Muñoz, J. L., Aguirre-Macedo, M. L. & García-Maldonado, J. Q. Assessment of the bacterial community structure in shallow and deep sediments of the Perdido Fold Belt region in the Gulf of Mexico. PeerJ 6, e5583. https://doi.org/10.7717/peerj.5583 (2018).
    CAS  Article  Google Scholar 

    43.
    Wang, Y. et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of Illumina tags. Appl. Environ. Microbiol. 78(23), 8264–8271 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Dias, A. C. F. et al. The bacterial diversity in a Brazilian non-disturbed mangrove sediment. Antonie Van Leeuwenhoek 98, 541–551 (2010).
    PubMed  Google Scholar 

    45.
    Grim, S. L. & Dick, G. J. Photosynthetic versatility in the genome of Geitlerinema sp. PCC (formerly Oscillatoria limnetica ‘Solar Lake’), a model anoxygenic photosynthetic cyanobacterium. Front. Microbiol. 7, 1546. https://doi.org/10.3389/fmicb.2016.01546 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    46.
    Zehr, J. P., Church, M. J. & Moisander, P. H. Diversity, distribution and biogeochemical significance of nitrogen-fixing microorganisms in anoxic and suboxic ocean environments. In Past and Present Water Column Anoxia. Nato Science Series: IV: Earth and Environmental Sciences (ed. Neretin, L.) 64, 337–369 (Springer, Berlin, 2006).
    Google Scholar 

    47.
    Brauer, V. S. et al. Competition and facilitation between the marine nitrogen-fixing cyanobacterium Cyanothece and its associated bacterial community. Front. Microbiol. 7, 795. https://doi.org/10.3389/fmicb.2014.00795 (2015).
    Article  Google Scholar 

    48.
    Beltrán, Y., Centeno, C. M., García-Oliva, F., Legendre, P. & Falcón, L. I. N2 fixation rates and associated diversity (nifH) of microbialite and mat-forming consortia from different aquatic environments in Mexico. Aquat. Microb. Ecol. 65, 15–24 (2012).
    Google Scholar 

    49.
    Wong, H. L., Smith, D.-L., Visscher, P. T. & Burns, B. P. Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. Sci. Rep. 5, 15607. https://doi.org/10.1038/srep15607 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Rasigraf, O., Schmitt, J., Jetten, M. S. M. & Lüke, C. Metagenomic potential for and diversity of N-cycle driving microorganisms in the Bothnian Sea sediment. Microbiol. Open 6(4), 1. https://doi.org/10.1002/mbo3.475 (2017).
    CAS  Article  Google Scholar 

    51.
    Zhang, S. et al. Responses of bacterial community structure and denitrifying bacteria in biofilm to submerged macrophytes and nitrate. Sci. Rep. 6, 36178. https://doi.org/10.1038/srep36178 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    52.
    Holmes, A. J., Costello, A., Lidstrom, M. E. & Murrell, J. C. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 132(3), 203–208 (1995).
    CAS  PubMed  Google Scholar 

    53.
    Kraft, B. et al. Nitrogen cycling. The environmental controls that govern the end product of bacterial nitrate respiration. Science 345, 676–679 (2014).
    ADS  CAS  PubMed  Google Scholar 

    54.
    Jiang, X., Dang, H. & Jiao, N. Ubiquity and diversity of heterotrophic bacterial nasA genes in diverse marine environments. PLoS ONE 10(2), e0117473. https://doi.org/10.1371/journal.pone.0117473 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    55.
    Xu, T. et al. Genomic insight into Aquimarina longa SW024T: its ultra-oligotrophic adapting mechanisms and biogeochemical functions. BMC Genom. 16, 772. https://doi.org/10.1186/s12864-015-2005-3 (2015).
    CAS  Article  Google Scholar 

    56.
    Li, J. et al. Janibacter alkaliphilus sp. nov., isolated from coral Anthogorgia sp. Antonie Van Leeuwenhoek 102(1), 157–162 (2012).
    CAS  PubMed  Google Scholar 

    57.
    Zumft, W. G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. R. 61(4), 533–616 (1997).
    CAS  Google Scholar 

    58.
    Elifantz, H., Horn, G., Ayon, M., Cohen, Y. & Minz, D. Rhodobacteraceae are the key members of the microbial community of the initial biofilm formed in Eastern Mediterranean coastal seawater. FEMS Microbiol. Ecol. 85(2), 348–357 (2013).
    CAS  PubMed  Google Scholar 

    59.
    Glaeser, S. P. & Kämpfer, P. The family Sphingomonadaceae. In The Prokaryotes (eds Rosenberg, E. et al.) 641–707 (Springer, Berlin, 2014).
    Google Scholar 

    60.
    Katayama, Y., Hiraishi, A. & Kuraishi, H. Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus. Microbiology 141, 1469–1477 (1995).
    CAS  PubMed  Google Scholar 

    61.
    Kraft, B., Tegetmeyer, H. E., Meier, D., Geelhoed, J. S. & Strous, M. Rapid succession of uncultured marine bacterialand archaeal populations in a denitrifying continuous culture. Environ. Microbiol. 16(10), 3275–3286 (2014).
    CAS  PubMed  Google Scholar 

    62.
    Härtig, E. & Zumft, W. G. Kinetics of nirS expression (cytochrome cd1 nitrite reductase) in Pseudomonas stutzeri during the transition from aerobic respiration to denitrification: evidence for a denitrification-specific nitrate- and nitrite-responsive regulatory system. J. Bacteriol. Res. 181(1), 161–166 (1999).
    Google Scholar 

    63.
    Marchant, H. K. et al. Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously. ISME J. 11, 1799–1812 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Patureau, D., Zumstein, E., Delgenes, J. P. & Moletta, R. Aerobic denitrifiers isolated from diverse natural and managed ecosystems. Microb. Ecol. 39(2), 145–152 (2000).
    CAS  PubMed  Google Scholar 

    65.
    Ji, B. et al. Aerobic denitrification: a review of important advances of the last 30 years. Biotechnol. Bioproc. E 20(4), 643–651 (2015).
    CAS  Google Scholar 

    66.
    Strous, M. et al. Missing lithotroph identified as new planctomycete. Nature 400, 446–449 (1999).
    ADS  CAS  PubMed  Google Scholar 

    67.
    Luvizotto, D. M. et al. The rates and players of denitrification, dissimilatory nitrate reduction to ammonia (DNRA) and anaerobic ammonia oxidation (anammox) in mangrove soils. An. Acad. Bras. Ciênc. 91, e20180373. https://doi.org/10.1590/0001-3765201820180373 (2018).
    CAS  Article  PubMed  Google Scholar 

    68.
    Weihrauch, D., Sandra Fehsenfeld, S. & Quijada-Rodriguez, A. Nitrogen excretion in aquatic crustaceans. In Acid–Base Balance and Nitrogen Excretion in Invertebrate (eds Weihrauch, D. & O’Donnell, M.) 1–25 (Springer, Berlin, 2017).
    Google Scholar 

    69.
    Jiang, D.-H., Lawrence, A. L., Neill, W. H. & Gong, H. Effects of temperature and salinity on nitrogenous excretion by Litopenaeus vannamei juveniles. J. Exp. Mar. Biol. Ecol. 253(2), 193–209 (2000).
    CAS  PubMed  Google Scholar 

    70.
    Cardini, U. et al. Chemosymbiotic bivalves contribute to the nitrogen budget of seagrass ecosystems. ISME J. 13, 3131–3134 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    71.
    Citadin, M., Costa, T. M. & Netto, S. A. The response of meiofauna and microphytobenthos to engineering effects of fiddler crabs on a subtropical intertidal sandflat. Aust. Ecol. 41(5), 572–579 (2016).
    Google Scholar 

    72.
    Dyea, A. H. & Lasiak, T. A. Assimilation efficiencies of fiddler crabs and deposit-feeding gastropods from tropical mangrove sediments. Comp. Biochem. Phys. Part A 87(2), 341–344 (1987).
    Google Scholar 

    73.
    Hopkins, P. Growth and regeneration patterns in the fiddler crab, Uca pugilator. Biol. Bull. 163, 301–319 (1982).
    Google Scholar 

    74.
    Masunari, S. Distribuição e abundância dos caranguejos Uca Leach (Crustacea, Decapoda, Ocypodidae) na Baía de Guaratuba, Paraná, Brasil. Rev. Bras. Zool. 23(4), 901–914 (2006).
    Google Scholar 

    75.
    Fusi, M. et al. Thermal sensitivity of the crab Neosarmatium africanum in tropical and temperate mangroves on the east coast of Africa. Hydrobiologia 803(1), 251–263 (2017).
    Google Scholar 

    76.
    Hemmi, J. M. & Zeil, J. Burrow surveillance in fiddler crabs I. Description of behaviour. J. Exp. Biol. 206, 3935–3950 (2003).
    PubMed  Google Scholar 

    77.
    Christy, J. H. Predation and the reproductive behavior of fiddler crabs (Genus Uca). In Evolutionary Ecology of Social and Sexual Systems—Crustaceans as Model Organisms (eds Duffy, E. J. & Thiel, M.) 211–231 (Oxford University Press, Oxford, 2007).
    Google Scholar 

    78.
    Teal, J. M. Respiration of crabs in Georgia salt marshes and its relation to their ecology. Physiol. Zool. 32, 1–14 (1959).
    Google Scholar 

    79.
    Michaels, R. E. & Zieman, J. C. Fiddler crab (Uca spp.) burrows have little effect on surrounding sediment oxygen concentrations. J. Exp. Mar. Biol. Ecol. 444, 104–113 (2013).
    Google Scholar 

    80.
    Alongi, D. M. Impact of global change on nutrient dynamics in mangrove forests. Forests 9(10), 596. https://doi.org/10.3390/f9100596 (2018).
    Article  Google Scholar 

    81.
    Barrera-Alba, J. J., Gianesella, S. M. F., Moser, G. A. O. & Saldanha-Corrêa, F. M. P. Bacterial and phytoplankton dynamics in a sub-tropical Estuary. Hydrobiologia 598, 229–246 (2008).
    Google Scholar 

    82.
    Bérgamo, A. L. Característica da hidrografia, circulação e transporte de sal: Barra de Cananéia, sul do Mar de Cananéia e Baía do Trapandé (Master in Physical Oceanography) (Universidade de São Paulo, São Paulo, Instituto Oceanográfico, 2000).
    Google Scholar 

    83.
    Cunha-Lignon, M. Dinâmica do Manguezal no Sistema Cananéia-Iguape, Estado de São Paulo—Brasil. Dissertação (Master in Biological Oceanography). Instituto Oceanográfico, Universidade de São Paulo, São Paulo (2001).

    84.
    Milani, C. et al. Assessing the fecal microbiota: an optimized ion torrent 16S rRNA gene-based analysis protocol. PLoS ONE 8, e68739. https://doi.org/10.1371/journal.pone.0068739 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    85.
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13(7), 581–583 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    86.
    Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online at https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).

    87.
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    88.
    Robertson, C. E. et al. Explicet: graphical user interface software for metadata-driven management, analysis and visualization of microbiome data. Bioinformatics 29(23), 3100–3101 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    89.
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357. https://doi.org/10.1038/nmeth.1923 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    90.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    91.
    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina paired-end reAd mergeR. Bioinformatics 30, 614–620 (2014).
    CAS  PubMed  Google Scholar 

    92.
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60. https://doi.org/10.1038/nmeth.3176 (2015).
    CAS  Article  PubMed  Google Scholar 

    93.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. Res. 215, 403–410 (1990).
    CAS  Google Scholar 

    94.
    Huson, D. H. & Mitra, S. Introduction to the analysis of environmental sequences: metagenomics with MEGAN. Methods Mol. Biol. 856, 415–429 (2012).
    CAS  PubMed  Google Scholar 

    95.
    Risgaard-Petersen, N. et al. Anaerobic ammonium oxidation in an estuarine. Aquat. Microb. Ecol. 36, 293–304 (2004).
    Google Scholar 

    96.
    Tréguer, P. & Le Corre, P. Manuel d’analysis des sels nutritifs dans l’eau de mer 2nd edn, 110 (Université de Bretagne Occidentale, Brest, 1975).
    Google Scholar 

    97.
    Kana, T. M. et al. Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Anal. Chem. 66, 4166–4170 (1994).
    CAS  Google Scholar 

    98.
    Colt, J. Dissolved gas concentration in water: computation as functions of temperature, salinity and pressure 2nd edn. (Elsevier, Amsterdam, 2012).
    Google Scholar 

    99.
    De Brabandere, L. et al. Oxygenation of an anoxic fjord basin strongly stimulates benthic denitrification and DNRA. Biogeochemistry 126(1–2), 131–152 (2015).
    Google Scholar 

    100.
    Warembourg, F. R. Nitrogen fixation in soil and plant systems. In Nitrogen Isotope Techniques (eds Knowles, R. & Blackburn, T. H.) 127–156 (Academic Press, Cambridge, 1993).
    Google Scholar 

    101.
    Thamdrup, B. & Dalsgaard, T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl. Environ. Microbiol. 68(3), 1312–1318 (2002).
    CAS  PubMed  PubMed Central  Google Scholar 

    102.
    Bonaglia, S. et al. Denitrification and DNRA at the Baltic Sea oxic–anoxic interface: substrate spectrum and kinetics. Limnol. Oceanogr. 61(5), 1900–1915 (2016).
    ADS  CAS  Google Scholar  More

  • in

    Publisher Correction: The tuatara genome reveals ancient features of amniote evolution

    Department of Anatomy, University of Otago, Dunedin, New Zealand
    Neil J. Gemmell, Kim Rutherford, Tim A. Hore, Nicolas Dussex, Helen Taylor, Hideaki Abe & Donna M. Bond

    LOEWE-Center for Translational Biodiversity Genomics, Senckenberg Museum, Frankfurt, Germany
    Stefan Prost

    South African National Biodiversity Institute, National Zoological Garden, Pretoria, South Africa
    Stefan Prost

    School of Life Sciences, Arizona State University, Tempe, AZ, USA
    Marc Tollis, Melissa Wilson & Shawn M. Rupp

    School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
    Marc Tollis

    School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
    David Winter

    Peralta Genomics Institute, Oakland, CA, USA
    J. Robert Macey, Charles G. Barbieri & Dustin P. DeMeo

    School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
    David L. Adelson, Terry Bertozzi, Lu Zeng, R. Daniel Kortschak & Joy M. Raison

    Department of Ecology and Genetics – Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala, Sweden
    Alexander Suh, Valentina Peona, Claire R. Peart & Vera M. Warmuth

    Department of Organismal Biology – Systematic Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala, Sweden
    Alexander Suh & Valentina Peona

    Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, Australia
    Terry Bertozzi

    Amedes Genetics, Amedes Medizinische Dienstleistungen, Berlin, Germany
    José H. Grau

    Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Berlin, Germany
    José H. Grau

    Department of Earth Sciences, Montana State University, Bozeman, MT, USA
    Chris Organ

    Department of Biochemistry, University of Otago, Dunedin, New Zealand
    Paul P. Gardner

    European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
    Matthieu Muffato, Mateus Patricio, Konstantinos Billis, Fergal J. Martin & Paul Flicek

    Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    Bent Petersen

    Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
    Lin Kang & Pawel Michalak

    Center for One Health Research, Virginia–Maryland College of Veterinary Medicine, Blacksburg, VA, USA
    Pawel Michalak

    Institute of Evolution, University of Haifa, Haifa, Israel
    Pawel Michalak

    Manaaki Whenua – Landcare Research, Auckland, New Zealand
    Thomas R. Buckley & Victoria G. Twort

    School of Biological Sciences, The University of Auckland, Auckland, New Zealand
    Thomas R. Buckley & Victoria G. Twort

    School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
    Yuanyuan Cheng

    Biomatters, Auckland, New Zealand
    Hilary Miller

    Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
    Ryan K. Schott

    The New Zealand Institute for Plant and Food Research, Auckland, New Zealand
    Melissa D. Jordan & Richard D. Newcomb

    Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
    José Ignacio Arroyo

    Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
    Nicole Valenzuela, Valeria Velásquez Zapata & Zhiqiang Wu

    Instituto de Investigaciones Biomédicas ‘Alberto Sols’ CSIC-UAM, Madrid, Spain
    Jaime Renart

    Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilian University of Munich, Planegg-Martinsried, Germany
    Claire R. Peart & Vera M. Warmuth

    Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain
    Didac Santesmasses, Marco Mariotti & Roderic Guigó

    School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
    James M. Paterson

    Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
    Daniel G. Mulcahy & Vanessa L. Gonzalez

    Austrian Institute of Technology (AIT), Center for Health and Bioresources, Molecular Diagnostics, Vienna, Austria
    Stephan Pabinger

    AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand
    Tracey Van Stijn & Shannon Clarke

    San Diego Zoo Institute for Conservation Research, Escondido, CA, USA
    Oliver Ryder

    Department of Organismic and Evolutionary Biology and the Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
    Scott V. Edwards

    Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
    Steven L. Salzberg

    School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
    Lindsay Anderson & Nicola Nelson

    Ngatiwai Trust Board, Whangarei, New Zealand
    Clive Stone, Clive Stone, Jim Smillie & Haydn Edmonds More