1.
Levins, R. Evolution in Changing Environments: Some Theoretical Explorations. (Princeton University Press, 1968).
2.
Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).
Google Scholar
3.
Ducatez, S. Brood parasitism: a good strategy in our changing world? Proc. R. Soc. B: Biol. Sci. 281, 20132404 (2014).
Google Scholar
4.
Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).
Google Scholar
5.
Futuyma, D. J. & Moreno, G. The evolution of ecological specialisation. Annu. Rev. Ecol. Syst. 19, 207–233 (1988).
Google Scholar
6.
Abrams, P. A., Grover, J. P. & DeAngelis, E. D. L. The prerequisites for and likelihood of generalist‐specialist coexistence. Am. Naturalist 167, 329–342 (2006).
Google Scholar
7.
Bradshaw, W. E. & Holzapfel, C. M. Evolutionary response to rapid climate change. Science 312, 1477–1478 (2006).
CAS PubMed Google Scholar
8.
Skelly, D. K. et al. Evolutionary responses to climate change. Conserv. Biol. 21, 1353–1355 (2007).
PubMed Google Scholar
9.
Norberg, J., Urban, M. C., Vellend, M., Klausmeier, C. A. & Loeuille, N. Eco-evolutionary responses of biodiversity to climate change. Nat. Clim. Change 2, 747–751 (2012).
Google Scholar
10.
Diffenbaugh, N. S. & Field, C. B. Changes in ecologically critical terrestrial climate conditions. Science 341, 486–492 (2013).
ADS CAS PubMed Google Scholar
11.
Dunn, R. R., Harris, N. C., Colwell, R. K., Koh, L. P. & Sodhi, N. S. The sixth mass coextinction: are most endangered species parasites and mutualists? Proc. R. Soc. B: Biol. Sci. 276, 3037–3045 (2009).
Google Scholar
12.
Davies, N. B. Cuckoos, Cowbirds and Other Cheats. (T & A D Poyser, 2000). https://doi.org/10.5040/9781472597472?locatt=label:secondary_bloomsburyCollections.
13.
Stoddard, M. C. & Hauber, M. E. Colour, vision and coevolution in avian brood parasitism. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160339 (2017).
Google Scholar
14.
Thorogood, R., Spottiswoode, C. N., Portugal, S. J. & Gloag, R. The coevolutionary biology of brood parasitism: a call for integration. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20180190 (2019).
Google Scholar
15.
Huelsenbeck, J. P., Nielsen, R. & Bollback, J. P. Stochastic mapping of morphological characters. Syst. Biol. 52, 131–158 (2003).
PubMed Google Scholar
16.
Johnsgard, P. A. The Avian Brood Parasites: Deception at the Nest. (Oxford University Press, 1997).
17.
Soler, M. Avian Brood Parasitism: Behaviour, Ecology, Evolution and Coevolution. (Springer, Berlin Heidelberg, 2017). https://doi.org/10.1007/978-3-319-73138-4.
18.
Krüger, O. & Davies, N. B. The evolution of cuckoo parasitism: a comparative analysis. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 269, 375–381 (2002).
Google Scholar
19.
Hauber, M. E. Interspecific brood parasitism and the evolution of host clutch sizes. Evol. Ecol. Res. 5, 559–570 (2003).
Google Scholar
20.
Kilner, R. M. The evolution of virulence in brood parasites. Ornithological Sci. 4, 55–64 (2005).
Google Scholar
21.
Feeney, W. E. et al. Brood parasitism and the evolution of cooperative breeding in birds. Science 342, 1506–1508 (2013).
ADS CAS PubMed Google Scholar
22.
Medina, I., Langmore, N. E., Lanfear, R. & Kokko, H. The evolution of clutch size in hosts of avian brood parasites. Am. Naturalist 190, E112–E123 (2017).
Google Scholar
23.
Krüger, O., Sorenson, M. D. & Davies, N. B. Does coevolution promote species richness in parasitic cuckoos? Proc. R. Soc. B: Biol. Sci. 276, 3871–3879 (2009).
Google Scholar
24.
Krüger, O. & Kolss, M. Modelling the evolution of common cuckoo host-races: speciation or genetic swamping? J. Evolut. Biol. 26, 2447–2457 (2013).
Google Scholar
25.
Medina, I. & Langmore, N. E. The evolution of host specialisation in avian brood parasites. Ecol. Lett. 19, 1110–1118 (2016).
PubMed Google Scholar
26.
Büchi, L. & Vuilleumier, S. Coexistence of specialist and generalist species is shaped by dispersal and environmental factors. Am. Naturalist 183, 612–624 (2014).
Google Scholar
27.
De Mársico, M. C., Mahler, B., Chomnalez, M., Di Giácomo, A. G. & Reboreda, J. C. Host Use by Generalist and Specialist Brood-Parasitic Cowbirds at Population and Individual Levels. In Advances in the Study of Behavior (ed. Macedo, R.) Ch. 3, Vol. 42, 83–121 (Academic Press, 2010), https://doi.org/10.1016/s0065-3454(10)42003-3.
28.
Hopper, K. R. Risk-spreading and bet-hedging in insect population biology. Annu. Rev. Entomol. 44, 535–560 (1999).
CAS PubMed Google Scholar
29.
Farnsworth, G. L. & Simons, T. R. How many baskets? Clutch sizes that maximize annual fecundity of multiple-brooded birds. Auk 118, 973–982 (2001).
Google Scholar
30.
Starrfelt, J. & Kokko, H. Bet‐hedging—a triple trade‐off between means, variances and correlations. Biol. Rev. 87, 742–755 (2012).
PubMed Google Scholar
31.
Rubenstein, D. R. Spatiotemporal environmental variation, risk aversion, and the evolution of cooperative breeding as a bet-hedging strategy. Proc. Natl Acad. Sci. 108, 10816–10822 (2011).
ADS CAS PubMed Google Scholar
32.
Moskát, C., Barta, Z., Hauber, M. E. & Honza, M. High synchrony of egg laying in common cuckoos (Cuculus canorus) and their great reed warbler (Acrocephalus arundinaceus) hosts. Ethol. Ecol. Evolution 18, 159–167 (2006).
Google Scholar
33.
Brooker, L. C. & Brooker, M. G. Why are cuckoos host specific? Oikos 57, 301–309 (1990).
Google Scholar
34.
Botero, C. A., Weissing, F. J., Wright, J. & Rubenstein, D. R. Evolutionary tipping points in the capacity to adapt to environmental change. Proc. Natl Acad. Sci. 112, 184–189 (2015).
ADS CAS PubMed Google Scholar
35.
Olofsson, H., Ripa, J. & Jonzén, N. Bet-hedging as an evolutionary game: the trade-off between egg size and number. Proc. R. Soc. B: Biol. Sci. 276, 2963–2969 (2009).
Google Scholar
36.
Akre, K. L. & Johnsen, S. Psychophysics and the evolution of behavior. Trends Ecol. Evolution 29, 291–300 (2014).
Google Scholar
37.
Botero, C. A., Dor, R., McCain, C. M. & Safran, R. J. Environmental harshness is positively correlated with intraspecific divergence in mammals and birds. Mol. Ecol. 23, 259–268 (2014).
PubMed Google Scholar
38.
Poulin, B., Lefebvre, G. & McNeil, R. Tropical avian phenology in relation to abundance and exploitation of food resources. Ecology 73, 2295–2309 (1992).
Google Scholar
39.
Botero, C. A. & Rubenstein, D. R. Fluctuating environments, sexual selection and the evolution of flexible mate choice in birds. PLoS ONE 7, e32311 (2012).
ADS CAS PubMed PubMed Central Google Scholar
40.
Schwinning, S. & Sala, O. E. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141, 211–220 (2004).
ADS PubMed Google Scholar
41.
Visser, M. E., Holleman, L. J. M. & Caro, S. P. Temperature has a causal effect on avian timing of reproduction. Proc. R. Soc. B Biol. Sci. 276, 2323–2331 (2009).
Google Scholar
42.
Nevoux, M., Forcada, J., Barbraud, C., Croxall, J. & Weimerskirch, H. Bet-hedging response to environmental variability, an intraspecific comparison. Ecology 91, 2416–2427 (2010).
PubMed Google Scholar
43.
Salaberria, C., Celis, P., López‐Rull, I. & Gil, D. Effects of temperature and nest heat exposure on nestling growth, dehydration and survival in a Mediterranean hole-nesting passerine. Ibis 156, 265–275 (2014).
Google Scholar
44.
Ospina, E. A., Merrill, L. & Benson, T. J. Incubation temperature impacts nestling growth and survival in an open-cup nesting passerine. Ecol. Evolution 8, 3270–3279 (2018).
Google Scholar
45.
Nagy, J., Hauber, M. E., Hartley, I. R. & Mainwaring, M. C. Correlated evolution of nest and egg characteristics in birds. Anim. Behav. 158, 211–225 (2019).
Google Scholar
46.
Martin, T. E. et al. Enclosed nests may provide greater thermal than nest predation benefits compared with open nests across latitudes. Funct. Ecol. 31, 1231–1240 (2017).
Google Scholar
47.
Turtumøygard, T. & Slagsvold, T. Evolution of brood parasitism in birds: constraints related to prey type. Behaviour 147, 299–317 (2010).
Google Scholar
48.
Douglas, D. J. T., Newson, S. E., Leech, D. I., Noble, D. G. & Robinson, R. A. How important are climate-induced changes in host availability for population processes in an obligate brood parasite, the European cuckoo? Oikos 119, 1834–1840 (2010).
Google Scholar
49.
Saino Nicola et al. Climate change effects on migration phenology may mismatch brood parasitic cuckoos and their hosts. Biol. Lett. 5, 539–541 (2009).
CAS PubMed PubMed Central Google Scholar
50.
Møller, A. P. et al. Rapid change in host use of the common cuckoo Cuculus canorus linked to climate change. Proc. R. Soc. B: Biol. Sci. 278, 733–738 (2011).
Google Scholar
51.
Koleček, J., Procházka, P., Brlík, V. & Honza, M. Cross-continental test of natal philopatry and habitat-imprinting hypotheses to explain host specificity in an obligate brood parasite. Sci. Nat. 107, 1–8 (2020).
Google Scholar
52.
Payne, R. B., Payne, L. L., Woods, J. L. & Sorenson, M. D. Imprinting and the origin of parasite–host species associations in brood-parasitic indigobirds, Vidua chalybeata. Anim. Behav. 59, 69–81 (2000).
CAS PubMed Google Scholar
53.
Price, T., Kirkpatrick, M. & Arnold, S. J. Directional selection and the evolution of breeding date in birds. Science 240, 798–799 (1988).
ADS CAS PubMed Google Scholar
54.
Halupka, L. & Halupka, K. The effect of climate change on the duration of avian breeding seasons: a meta-analysis. Proc. R. Soc. B Biol. Sci. 284, 20171710 (2017).
Google Scholar
55.
Zink, A. G. & Lyon, B. E. Evolution of conspecific brood parasitism versus cooperative breeding as alternative reproductive tactics. Am. Naturalist 187, 35–47 (2016).
Google Scholar
56.
Wells, M. T. & Barker, F. K. Big groups attract bad eggs: brood parasitism correlates with but does not cause cooperative breeding. Anim. Behav. 133, 47–56 (2017).
Google Scholar
57.
Ursino, C. A., De Mársico, M. C., Sued, M., Farall, A. & Reboreda, J. C. Brood parasitism disproportionately increases nest provisioning and helper recruitment in a cooperatively breeding bird. Behav. Ecol. Sociobiol. 65, 2279–2286 (2011).
Google Scholar
58.
Cockburn, A. Prevalence of different modes of parental care in birds. Proc. R. Soc. B: Biol. Sci. 273, 1375–1383 (2006).
Google Scholar
59.
Guigueno, M. F. & Sealy, S. G. Nest sanitation in passerine birds: implications for egg rejection in hosts of brood parasites. J. Ornithol. 153, 35–52 (2012).
Google Scholar
60.
Dunn, P. O. & Winkler, D. W. Changes in timing of breeding and reproductive success in birds. In Effects of Climate Change on Birds. 113–128, (Oxford University Press, 2010) https://doi.org/10.1093/oso/9780198824268.003.0009.
61.
Hauber, M. E. Site selection and repeatability in Brown-Headed Cowbird (Molothrus ater) parasitism of Eastern Phoebe (Sayornis phoebe) nests. Can. J. Zool. 79, 1518–1523 (2001).
Google Scholar
62.
Kilner, R. M. How selfish is a cowbird nestling? Anim. Behav. 66, 569–576 (2003).
Google Scholar
63.
Lowther, P.E. Brood Parasitism—host Lists. (Field Museum of Natural History, Chicago, IL, 2019) https://www.fieldmuseum.org/blog/brood-parasitism-host-lists.
64.
BirdLife International and Handbook of the Birds of the World. Bird species distribution maps of the world. Version 2018.1. http://datazone.birdlife.org/species/requestdis (2018).
65.
ORNL DAAC 2018. MODIS and VIIRS Land Products Global Subsetting and Visualization Tool. (ORNL DAAC, Oak Ridge, Tennessee, USA, 2016) https://doi.org/10.3334/ORNLDAAC/1379.
66.
Lima-Ribeiro, M. S. et al. EcoClimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodiversity Informatics 10, https://doi.org/10.17161/bi.v10i0.4955 (2015).
67.
Colwell, R. K. Predictability, constancy, and contingency of periodic phenomena. Ecology 55, 1148–1153 (1974).
Google Scholar
68.
Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R Package. J. Stat. Softw. 33, 1–22 (2010).
Google Scholar
69.
Hackett, S. J. et al. A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768 (2008).
ADS CAS PubMed Google Scholar
70.
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
ADS CAS PubMed Google Scholar
71.
Millard SP. EnvStats: an R Package for Environmental Statistics. ISBN 978-1-4614-8455-4, (Springer, New York, 2013). http://www.springer.comhttps://doi.org/10.1002/9780470057339.vae043.pub2.
72.
Revelle, W. psych: procedures for psychological, psychometric, and personality research. Northwestern University, Evanston, Illinois. R package version 2.0.7, https://CRAN.R-project.org/package=psych (2020).
73.
Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).
Google Scholar
74.
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
CAS PubMed Google Scholar More