More stories

  • in

    The timing and effect of the earliest human arrivals in North America

    1.
    Meltzer, D. J. The Great Paleolithic War: How Science Forged an Understanding of America’s Ice Age Past (Univ. Chicago Press, 2015).
    2.
    Mix, A. C., Bard, E. & Schneider, R. Environmental processes of the Ice Age: land, oceans, glaciers (EPILOG). Quat. Sci. Rev. 20, 627–657 (2001).
    ADS  Google Scholar 

    3.
    Clark, P. U. et al. The Last Glacial Maximum. Science 325, 710–714 (2009).
    ADS  CAS  PubMed  Google Scholar 

    4.
    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).
    ADS  Google Scholar 

    5.
    Waters, M. R. & Stafford, T. W. Jr. Redefining the age of Clovis: implications for the peopling of the Americas. Science 315, 1122–1126 (2007).
    ADS  CAS  PubMed  Google Scholar 

    6.
    Dillehay, T. D. Monte Verde, a Late Pleistocene Settlement in Chile: The Archaeological Context and Interpretation (Smithsonian Institution Press, 1997).

    7.
    Williams, T. J. et al. Evidence of an early projectile point technology in North America at the Gault site, Texas, USA. Sci. Adv. 4, eaar5954 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    8.
    Waters, M. R. et al. Pre-Clovis projectile points at the Debra L. Friedkin site, Texas–implications for the Late Pleistocene peopling of the Americas. Sci. Adv. 4, eaat4505 (2018).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    9.
    Haynes, G. The millennium before Clovis. PaleoAmerica 1, 134–162 (2015).
    Google Scholar 

    10.
    Sandweiss, D. H. et al. Quebrada Jaguay: early South American maritime adaptations. Science 281, 1830–1832 (1998).
    ADS  CAS  PubMed  Google Scholar 

    11.
    Goebel, T. & Keene, J. L. in Archaeology in the Great Basin and Southwest: Papers in Honor of Don D. Fowler (eds Parezo, N. J. & Janetski, J. C.) 35–60 (Univ. Utah Press, 2014).

    12.
    Méndez, C., Jackson, D., Seguel, R. & Delaunay, A. N. Early high-quality lithic procurement in the semiarid north of Chile. Curr. Res. Pleistocene 27, 19–21 (2010).
    Google Scholar 

    13.
    Méndez, C. & Jackson, D. Terminal Pleistocene lithic technology and use of space in Central Chile. Chungara (Arica) 47, 53–65 (2015).
    Google Scholar 

    14.
    Jones, K. B., Hodgins, G. W. L. & Sandweiss, D. H. Radiocarbon chronometry of site QJ-280, Quebrada Jaguay, a Terminal Pleistocene to Early Holocene fishing site in southern Peru. J. Island Coast. Archaeol. 14, 82–100 (2017).
    Google Scholar 

    15.
    Davis, L. G. et al. Late Upper Paleolithic occupation at Cooper’s Ferry, Idaho, USA shows Americas settled before ~16,000 years ago. Science 365, 891–897 (2019).
    ADS  CAS  Google Scholar 

    16.
    Braje, T. J., Dillehay, T. D., Erlandson, J. M., Klein, R. G. & Rick, T. C. Finding the first Americans. Science 358, 592–594 (2017).
    ADS  CAS  PubMed  Google Scholar 

    17.
    Potter, B. A. et al. Current evidence allows multiple models for the peopling of the Americas. Sci. Adv. 4, eaat5473 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    18.
    Bronk Ramsey, C. Development of the radiocarbon program OxCal. Radiocarbon 43, 355–363 (2001).
    Google Scholar 

    19.
    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).
    Google Scholar 

    20.
    Rasmussen, S. O. et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. 111, D06102 (2006).
    ADS  Google Scholar 

    21.
    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).
    CAS  Google Scholar 

    22.
    Adolphi, F. et al. Connecting the Greenland ice-core and U/Th timescales via cosmogenic radionuclides: testing the synchroneity of Dansgaard–Oeschger events. Clim. Past 14, 1755–1781 (2018).
    Google Scholar 

    23.
    Ray, N. & Adams, J. A GIS-based vegetation map of the world at the last glacial maximum (25,000–15,000 BP). Internet Archaeol. 11, https://doi.org/10.11141/ia.11.2 (2001).

    24.
    Jackson, S. T. et al. Vegetation and environment in Eastern North America during the Last Glacial Maximum. Quat. Sci. Rev. 19, 489–508 (2000).
    ADS  Google Scholar 

    25.
    Williams, J. W. Variations in tree cover in North America since the Last Glacial Maximum. Global Planet. Change 35, 1–23 (2003).
    ADS  MathSciNet  Google Scholar 

    26.
    Lyle, M. et al. Out of the tropics: the Pacific, Great Basin lakes, and late Pleistocene water cycle in the western United States. Science 337, 1629–1633 (2012).
    ADS  CAS  PubMed  Google Scholar 

    27.
    Goebel, T., Hockett, B., Adams, K. D., Rhode, D. & Graf, K. Climate, environment, and humans in North America’s Great Basin during the Younger Dryas, 12,900–11,600 calendar years ago. Quat. Int. 242, 479–501 (2011).
    Google Scholar 

    28.
    Menking, K. M., Anderson, R. Y., Shafike, N. G., Syed, K. H. & Allen, B. D. Wetter or colder during the Last Glacial Maximum? Revisiting the pluvial lake question in southwestern North America. Quat. Res. 62, 280–288 (2004).
    Google Scholar 

    29.
    Kirby, M. E. et al. A late Wisconsin (32–10k cal a BP) history of pluvials, droughts and vegetation in the Pacific south-west United States (Lake Elsinore, CA). J. Quat. Sci. 33, 238–254 (2018).
    Google Scholar 

    30.
    Ibarra, D. E. et al. Warm and cold wet states in the western United States during the Pliocene–Pleistocene. Geology 46, 355–358 (2018).
    ADS  Google Scholar 

    31.
    Feakins, S. J., Wu, M. S., Ponton, C. & Tierney, J. E. Biomarkers reveal abrupt switches in hydroclimate during the last glacial in southern California. Earth Planet. Sci. Lett. 515, 164–172 (2019).
    ADS  CAS  Google Scholar 

    32.
    Stanford, D. J. & Bradley, B. A. Across Atlantic Ice: The Origin of America’s Clovis Culture (Univ of California Press, 2013).

    33.
    Aubry, T. & Almeida, M. Analyse critique des bases chronostratigraphiques de la structuration du Solutréen. Le Solutréen 40, 37e52 (2013).
    Google Scholar 

    34.
    Eren, M. I., Patten, R. J., O’Brien, M. J. & Meltzer, D. J. Refuting the technological cornerstone of the Ice-Age Atlantic crossing hypothesis. J. Archaeol. Sci. 40, 2934–2941 (2013).
    Google Scholar 

    35.
    Raff, J. A. & Bolnick, D. A. Does mitochondrial haplogroup X indicate ancient trans-Atlantic migration to the Americas? A critical re-evaluation. PaleoAmerica 1, 297–304 (2015).
    Google Scholar 

    36.
    Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).
    ADS  Google Scholar 

    37.
    Spratt, R. M. & Lisiecki, L. E. A Late Pleistocene sea level stack. Clim. Past 12, 1079–1092 (2016).
    Google Scholar 

    38.
    Pico, T., Mitrovica, J. X., Ferrier, K. L. & Braun, J. Global ice volume during MIS 3 inferred from a sea-level analysis of sedimentary core records in the Yellow River Delta. Quat. Sci. Rev. 152, 72–79 (2016).
    ADS  Google Scholar 

    39.
    Batchelor, C. L. et al. The configuration of Northern Hemisphere ice sheets through the Quaternary. Nat. Commun. 10, 3713 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    40.
    Dalton, A. S., Finkelstein, S. A., Barnett, P. J. & Forman, S. L. Constraining the Late Pleistocene history of the Laurentide Ice Sheet by dating the Missinaibi Formation, Hudson Bay Lowlands, Canada. Quat. Sci. Rev. 146, 288–299 (2016).
    ADS  Google Scholar 

    41.
    Pico, T., Mitrovica, J. X. & Mix, A. C. Sea level fingerprinting of the Bering Strait flooding history detects the source of the Younger Dryas climate event. Sci. Adv. 6, eaay2935 (2020).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    42.
    Dyke, A. S. An outline of North American deglaciation with emphasis on central and northern Canada. Develop. Quat. Sci. 2, 373–424 (2004).
    Google Scholar 

    43.
    Lesnek, A. J., Briner, J. P., Lindqvist, C., Baichtal, J. F. & Heaton, T. H. Deglaciation of the Pacific coastal corridor directly preceded the human colonization of the Americas. Sci. Adv. 4, eaar5040 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    44.
    Tamm, E. et al. Beringian standstill and spread of Native American founders. PLoS ONE 2, e829 (2007).
    ADS  PubMed  PubMed Central  Google Scholar 

    45.
    Moreno-Mayar, J. V. et al. Early human dispersals within the Americas. Science 362, eaav2621 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    46.
    Moreno-Mayar, J. V. et al. Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans. Nature 553, 203–207 (2018).
    ADS  CAS  PubMed  Google Scholar 

    47.
    Ardelean, C. F. et al. Evidence of human occupation in Mexico around the Last Glacial Maximum. Nature https://doi.org/10.1038/s41586-020-2509-0 (2020).

    48.
    Goodyear, A. C. in Paleoamerican Origins: Beyond Clovis (eds. Bonnichesen, R. et al.) 103–112 (Centre for the Study of the First Americans, 2005).

    49.
    Llamas, B. et al. Ancient mitochondrial DNA provides high-resolution time scale of the peopling of the Americas. Sci. Adv. 2, e1501385 (2016).
    ADS  PubMed  PubMed Central  Google Scholar 

    50.
    Pinotti, T. et al. Y chromosome sequences reveal a short Beringian standstill, rapid expansion, and early population structure of Native American founders. Curr. Biol. 29, 149–157.e3 (2019).
    CAS  PubMed  Google Scholar 

    51.
    Bergström, A. et al. Insights into human genetic variation and population history from 929 diverse genomes. Science 367, eaay5012 (2020).
    PubMed  Google Scholar 

    52.
    Raghavan, M. et al. Genomic evidence for the Pleistocene and recent population history of Native Americans. Science 349, aab3884 (2015).
    PubMed  PubMed Central  Google Scholar 

    53.
    Rasmussen, M. et al. The genome of a Late Pleistocene human from a Clovis burial site in western Montana. Nature 506, 225–229 (2014).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    54.
    Reich, D. et al. Reconstructing Native American population history. Nature 488, 370–374 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Scheib, C. L. et al. Ancient human parallel lineages within North America contributed to a coastal expansion. Science 360, 1024–1027 (2018).
    ADS  CAS  PubMed  Google Scholar 

    56.
    Erlandson, J. M. & Braje, T. J. From Asia to the Americas by boat? Paleogeography, paleoecology, and stemmed points of the northwest Pacific. Quat. Int. 239, 28–37 (2011).
    Google Scholar 

    57.
    Williams, T. J. & Madsen, D. B. The Upper Paleolithic of the Americas. PaleoAmerica 6, 4–22 (2019).
    Google Scholar 

    58.
    Gilbert, M. T. P. et al. DNA from pre-Clovis human coprolites in Oregon, North America. Science 320, 786–789 (2008).
    ADS  CAS  PubMed  Google Scholar 

    59.
    Pedersen, M. W. et al. Postglacial viability and colonization in North America’s ice-free corridor. Nature 537, 45–49 (2016).
    ADS  CAS  Google Scholar 

    60.
    Heintzman, P. D. et al. Bison phylogeography constrains dispersal and viability of the ice free corridor in western Canada. Proc. Natl Acad. Sci. USA 113, 8057–8063 (2016).
    CAS  PubMed  Google Scholar 

    61.
    Darvill, C. M., Menounos, B., Goehring, B. M., Lian, O. B. & Caffee, M. W. Retreat of the western Cordilleran Ice Sheet margin during the last deglaciation. Geophys. Res. Lett. 45, 9710–9720 (2018).
    ADS  Google Scholar 

    62.
    Taylor, M. A., Hendy, I. L. & Pak, D. K. Deglacial ocean warming and marine margin retreat of the Cordilleran Ice Sheet in the North Pacific Ocean. Earth Planet. Sci. Lett. 403, 89–98 (2014).
    ADS  CAS  Google Scholar 

    63.
    Martin, P. S. The discovery of America. Science 179, 969–974 (1973).
    ADS  CAS  PubMed  Google Scholar 

    64.
    Surovell, T. A., Pelton, S. R., Anderson-Sprecher, R. & Myers, A. D. Test of Martin’s overkill hypothesis using radiocarbon dates on extinct megafauna. Proc. Natl Acad. Sci. USA 113, 886–891 (2016).
    ADS  CAS  PubMed  Google Scholar 

    65.
    Robinson, G. S., Pigott Burney, L. & Burney, D. A. Landscape paleoecology and megafaunal extinction in southwestern New York state. Ecol. Monogr. 75, 295–315 (2005).
    Google Scholar 

    66.
    Guthrie, R. D. New carbon dates link climatic change with human colonization and Pleistocene extinctions. Nature 441, 207–209 (2006).
    ADS  CAS  PubMed  Google Scholar 

    67.
    Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359–364 (2011).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    68.
    Prescott, G. W., Williams, D. R., Balmford, A., Green, R. E. & Manica, A. Quantitative global analysis of the role of climate and people in explaining Late Quaternary megafaunal extinctions. Proc. Natl Acad. Sci. USA 109, 4527–4531 (2012).
    ADS  CAS  PubMed  Google Scholar 

    69.
    Cooper, A. et al. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349, 602–606 (2015).
    ADS  CAS  PubMed  Google Scholar 

    70.
    Araujo, B. B. A., Oliveira-Santos, L. G. R., Lima-Ribeiro, M. S., Diniz-Filho, J. A. F. & Fernandez, F. A. S. Bigger kill than chill: the uneven roles of humans and climate on Late Quaternary megafaunal extinctions. Quat. Int. 431, 216–222 (2017).
    Google Scholar 

    71.
    Firestone, R. B. et al. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proc. Natl Acad. Sci. USA 104, 16016–16021 (2007).
    ADS  CAS  PubMed  Google Scholar 

    72.
    Broughton, J. M. & Weitzel, E. M. Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions. Nat. Commun. 9, 5441 (2018).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    73.
    Grayson, D. K. & Meltzer, D. J. Revisiting Paleoindian exploitation of extinct North American mammals. J. Archaeol. Sci. 56, 177–193 (2015).
    Google Scholar 

    74.
    Buck, C. E. & Bard, E. A calendar chronology for Pleistocene mammoth and horse extinction in North America based on Bayesian radiocarbon calibration. Quat. Sci. Rev. 26, 2031–2035 (2007).
    ADS  Google Scholar 

    75.
    Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608 (2017).
    ADS  CAS  Google Scholar 

    76.
    Bueno, L., Politis, G., Prates, L. & Steele, J. A Late Pleistocene/early Holocene archaeological 14C database for Central and South America: palaeoenvironmental contexts and demographic interpretations. Quat. Int. 301, 1–158 (2013).
    Google Scholar 

    77.
    Bond, J. D. Paleodrainage map of Beringia, Yukon Geological Survey, open file 2019-2. http://data.geology.gov.yk.ca/Reference/81642#InfoTab (2019).

    78.
    Clark, G. A. in The Settlement of the American Continents (ed. Barton, C. M. et al.) 103–112 (Univ. Arizona Press, 2004).

    79.
    Harris, E. C. Principles of Archaeological Stratigraphy (Elsevier, 2014).

    80.
    Gelfand, A. E. & Smith, A. F. M. Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85, 398–409 (1990).
    MathSciNet  MATH  Google Scholar 

    81.
    Gilks, W. R., Richardson, S. & Spiegelhalter, D. Markov Chain Monte Carlo in Practice (Chapman and Hall/CRC, 1995).

    82.
    Bronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37, 425–430 (1995).
    CAS  Google Scholar 

    83.
    Bronk Ramsey, C. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51, 1023–1045 (2009).
    Google Scholar 

    84.
    Rosenblatt, M. Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27, 832–837 (1956).
    MathSciNet  MATH  Google Scholar 

    85.
    Parzen, E. On estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065–1076 (1962).
    MathSciNet  MATH  Google Scholar 

    86.
    Bronk Ramsey, C. Methods for summarizing radiocarbon datasets. Radiocarbon 59, 1809–1833 (2017).
    Google Scholar 

    87.
    Silverman, B. W. Density Estimation for Statistics and Data Analysis (Chapman & Hall, 1986).

    88.
    Bronk Ramsey, C. OxCal 4.3 Manual. https://c14.arch.ox.ac.uk/oxcalhelp/hlp_contents.html (2020).

    89.
    Stafford, T. W. Jr, Duhamel, R. C., Haynes, C. V. Jr & Brendel, K. Isolation of proline and hydroxyproline from fossil bone. Life Sci. 31, 931–938 (1982).
    CAS  PubMed  Google Scholar 

    90.
    Stafford, T. W., Brendel, K. & Duhamel, R. C. Radiocarbon, 13C and 15N analysis of fossil bone: removal of humates with XAD-2 resin. Geochim. Cosmochim. Acta 52, 2257–2267 (1988).
    ADS  CAS  Google Scholar 

    91.
    Deviese, T., Comeskey, D., McCullagh, J., Bronk Ramsey, C. & Higham, T. New protocol for compound-specific radiocarbon analysis of archaeological bones. Rapid Commun. Mass Spectrom. 32, 373–379 (2018).
    ADS  CAS  PubMed  Google Scholar 

    92.
    Devièse, T. et al. Increasing accuracy for the radiocarbon dating of sites occupied by the first Americans. Quat. Sci. Res. 198, 171–180 (2018).
    ADS  Google Scholar 

    93.
    Becerra-Valdivia, L. et al. Reassessing the chronology of the archaeological site of Anzick. Proc. Natl Acad. Sci. USA 115, 7000–7003 (2018).
    CAS  PubMed  Google Scholar 

    94.
    Waters, M. R., Stafford, T. W. Jr, Kooyman, B. & Hills, L. V. Late Pleistocene horse and camel hunting at the southern margin of the ice-free corridor: reassessing the age of Wally’s Beach, Canada. Proc. Natl Acad. Sci. USA 112, 4263–4267 (2015).
    ADS  CAS  PubMed  Google Scholar 

    95.
    Bronk Ramsey, C., Housley, R. A., Lane, C. S., Smith, V. C. & Pollard, A. M. The RESET tephra database and associated analytical tools. Quat. Sci. Rev. 118, 33–47 (2015).
    ADS  Google Scholar 

    96.
    Derek Hamilton, W. & Krus, A. M. The myths and realities of Bayesian chronological modeling revealed. Am. Antiq. 83, 187–203 (2018).
    Google Scholar  More

  • in

    Quality of main types of hunted red deer meat obtained in Spain compared to farmed venison from New Zealand

    A number of studies have assessed meat sourced from wild deer originating from various countries (i.e.11,12 from Poland or13 from South Africa) or from farmed deer (i.e.14 from Czech Republic11,15, from Poland16, from Italy and17from SP). Studies have also examined the main marketed deer meats: meat from wild SP deer1,2,10 and farmed NZ ones6,7,8,18. Despite the number of studies cited below which assess meat quality from different countries or different types of breeding/killing (wild or farmed, stressful or sudden death), they have been undertaken by different research teams, using different scientific equipment and protocols. None of these studies have assessed meat samples from different countries with the same scientific equipment, reagents, and staff. It is therefore likely that some of the anomalies found through comparison of the available literature may actually be caused by methodological rather than regional differences per se.
    The quality of wild game meat depends on the hunting method19 and on the hunting season3. Wild deer shot with a projectile (e.g. a bullet) are not exsanguinated immediately after their death and often several hours elapse between death and dressing. Consequently, carcasses are often processed once rigor mortis has set in, which affects meat characteristics. In principle, a low stress death by stalking should result in a better quality of meat and, in fact, meat-processing companies pay better prices for meat from stalked animals than for stress hunted meat, as evidenced by game estate owners and personal interviews. Studies have assessed several types of hunted and farmed venison, but none included stressful pursuit by dogs. Our results show for the first time that the mixed effects of hunting type-season resulted in some differences in meat quality (pH, cooking losses), but surprisingly not in tenderness (shear force).
    Recently, Stanisz et al.3 have not observed differences for body weight with hunting season of hunt-harvested does. However, the authors observed a higher technological quality for venison obtained in winter showing compared to that harvested in summer. In fact, it was observed lower purge loss in vacuum, drip loss, free water, free water share in total water, and water loss during roasting. In addition, venison obtained in winter showed a greater brightness and a reduced redness comparing to venison obtained in summer. Colour traits and water retention capacity determine the meat shelf life and its suitability for storage in vacuum packaging.
    Values obtained in the current study for pH of meat were similar to those observed previously for meat from NZ farmed deer7,9 and for SP stressed, hunted red deer2,10. However, no data has been found to compare the average values of pH obtained in SP from stalked deer. Our results show that pH values were similar for wild deer in SP (pooled values) and farmed deer in NZ, but meat from stalked deer had the lowest values. This is not surprising as transporting deer to the abattoir also involves stress, and furthermore, recently, Gentsch et al.20 have observed that cortisol levels for stalked deer were much lower than those for deer hunted with dogs in driven hunts (21.8 vs. 66.1 nmol/L, respectively). With regard to the effect of seasons, meat hunted in winter had a higher pH than meat hunted in summer. However, recently, Stanisz et al.3 observed that the pH of the muscles Longissimus lumborum measured 24 h post-mortem was 0.22 units higher in the summer season, compared to the winter season. This is consistent with current results regarding colour and literature reports that pre-harvest stress affects the degree of bleed, leading to an increase in the level of oxymyoglobin21 and confirming the influence of hunting type on meat colour4. According to results obtained by Stanisz et al.3, venison sourced from does shot in summer was redder and had a greater chroma compared to venison obtained in winter. In our study, values obtained for colour traits were similar to those obtained for NZ farmed6,9 and for SP stress hunted10 deer meat.
    The IMF content was similar to the values previously reported for NZ farmed deer8,9 and for autumn–winter hunted deer from the same region of SP1,10. However, the most interesting information came from slight differences in IMF between seasons/type of hunting in wild SP: meat from summer stalking had an average IMF content of 0.90%, a value significantly higher than that for winter chased meat (0.11%). This may be only a seasonal difference (unlikely to be attributable to stress at death) because of increased grazing available during spring and summer for the deer. Thus, it is well established that body condition of deer improves, mainly in gaining fat and body weight, during spring and summer. In contrast, loss condition, involving loss of body fat, is higher in autumn and winter22. In addition, deer lose weight in autumn because feed intake decreases considerably during the rut23. Confirming this hypothesis, Serrano et al.2 have found higher contents of IMF and cholesterol in the loin of deer hunted in driven hunts in autumn compared to the loin from deer hunted in driven hunts in winter. The cooking losses of meat were similar to values reported previously for NZ farmed deer7 and for stressed deer hunted in driven hunts in SP10, although there was an effect of stress/season with values higher for stalking-summer. The effect of season on cooking losses has been previously described3. However, the cause of the differences observed in current study is likely to be due to the level of stress at slaughter, corroborated by Cifuni et al.4, who found that meat from culled (selective hunting) deer produced a greater degree of water loss during cooking than meat from deer slaughtered in driven hunts.
    In general, values reported for shear force present a high variability2,12,13. Values in the current trial were higher than those reported previously for deer meat1,8,9,10. Differences among authors might be due to a range of interrelated factors, including pH, amount of connective tissue, IMF content, proteolytic enzyme activity and age of the animal13. Differences observed for the shear force between countries of origin (58.7% higher for meat from SP than for NZ meat) are not caused by stress at death: no differences were observed regarding the shear force of SP meat by hunting type/season. In fact, Stanisz et al.3 concluded that a greater impact of season could be evidenced using biting measures (Volodkevich Bite Jaws, test speed 2 mm/s; strain 100%; force 5 g at 24 h and 14 days post-mortem) compared to Warner–Bratzler measures. However, biting measures were not included in the current study. Further studies may be needed to conclude whether there is an effect of season compensating for the apparent effect of stress that yields non-significant results.
    In general, the country of origin did not influence the total content of SFA or PUFA and a trend was only detected in the increase of the MUFA content of NZ meat. However, meat from NZ farms had higher content of n-3 FA and long chain n-3 PUFA, less content of n-6 FA and, in consequence, a lower n-6/n-3 ratio than SP wild meat. Values obtained for the n-6/n-3 ratio (ranging from 1.22 to 3.71) correspond with those reported by other authors for deer meat8,14. In any case, the average n-6/n-3 ratio for meat from both countries of origin was lower than 4, as recommended by WHO/FAO24.
    The FA profile differed for meat samples obtained by different hunting types/season. The differences observed in the current study between hunting types for the FA profile are likely to be caused by the effects of the diet FA profiles seasonal changes on ruminant products25. Thus, the main FA in winter driven hunt meat were PUFA, followed by SFA and MUFA. In summer stalked deer and farmed venison, the main FA were SFA followed by MUFA and PUFA. No differences were observed for the contents of n-3 FA. Consequently, the fat of animals sourced from driven hunts in winter showed a higher PUFA/SFA ratio, n-6 FA content and n-6/n-3 ratio than the fat of summer stalked deer.
    In general, the AA profile obtained in this study corresponds with that reported for meat from red deer, as previously indicated by Lorenzo et al.1. Interesting effects of country of origin and hunting type on AA profile of deer meat were observed in the current study. The SP wild meat had higher contents of total, essential and non-essential AA than NZ farm meat. Moreover, meat collected from summer-stalked deer presented a higher ratio for the essential/non-essential AA than meat collected from deer slaughtered in winter driven hunts. However, authors have not found previous studies comparing the AA profile of meat from SP and NZ deer slaughtered by different methods to compare with current results. It is postulated, therefore, that AA differences are attributable to seasonal effect, not the level of stress at death.
    Because mineral composition presented in deer meat is closely related to the natural environment as they graze and browse26, differences found in mineral content in our study seem to depend on season and diet composition rather than on level of stress at death. Therefore, the differences in fodder available in spring and summer as compared to winter, as well as the growth of leaves in deciduous trees and shrubs, may explain some of the differences in the mineral profile observed between meats sourced from winter driven hunts and summer stalking analysed in the current study. Actually, Estévez et al.27 found seasonal differences in the mineral content of plants consumed by deer in SP. It is highly unlikely that mineral differences between both meats are due to the level of stress at death: the only difference that could be expected (Na content) due to increased sweating resulting from the chase and stress, was actually the reverse of what was expected (greater in animals killed in winter driven hunts). These results suggest that the difference was due to a lower level of Na in plants in summer.
    One of the most significant effects in the seasonal differences found in the current study may not be related to mineral content of the diet, but to another very interesting and unique physiological characteristic of male deer (the sex examined in this study): cyclic physiologic osteoporosis. This effect is caused by rapid growth of the antlers (more than 1 cm/day), causing a depletion of mineral stores in certain bones in order to transfer the material to antlers28. Because minerals are blood borne, it is not surprising that they may also affect the mineral composition of muscles. This could explain why meat from osteoporotic deer (summer) had less than half the content of Zn, which forms part of alkaline phosphatase, the enzyme needed to deposit Ca in bone tissue29. For the same reason, it may explain the differences found for P and Ca contents (despite Ca is more stable in blood), and even for Mg (which can substitute Ca in the hydroxyapatite forming the antlers and bones). More

  • in

    What kind of seed dormancy occurs in the legume genus Cassia?

    1.
    Irwin, H. S. & Barneby, R. C. Tribe Cassieae Bronn. In Recent Advances in Legume Systematics, pt 1 (eds Polhill, R. M. & Raven, P. H.) 97–106 (Royal Botanic Gardens, London, 1981).
    Google Scholar 
    2.
    Irwin, H. S. & Barneby, R. C. The American Cassiinae, a synoptical revision of Leguminosae tribe Cassiae subtribe Cassiinae in the New World. Mem. N. Y. Bot. Gard. 35, 1–918 (1982).
    Google Scholar 

    3.
    Irwin, H. S. & Turner, B. L. Chromosome relationships and taxonomic considerations in the genus Cassia. Am. J. Bot. 47, 309–318 (1960).
    Google Scholar 

    4.
    Randell, B. R. Revision of the Cassiinae in Australia. 1. Senna Miller sect. Chamaefistula (Colladon) Irwin and Barneby. J. Adelaide Bot. Gard. 11, 19–49 (1988).
    Google Scholar 

    5.
    Lewis, G. P. Tribe Cassieae. In Legumes of the World (eds Lewis, G. P. et al.) 111–126 (Royal Botanic Gardens, Kew, 2005).
    Google Scholar 

    6.
    Janzen, D. H. & Martin, P. S. Neotropical anachronisms: The fruits the Gomphotheres ate. Science 215, 19–27 (1982).
    ADS  CAS  PubMed  Google Scholar 

    7.
    Baskin, J. M. & Baskin, C. C. A classification system for seed dormancy. Seed Sci. Res. 14, 1–16 (2004).
    ADS  Google Scholar 

    8.
    Baskin, C. C. & Baskin, J. M. Seed dormancy in trees of climax tropical vegetation types. Trop. Ecol. 46, 17–28 (2005).
    Google Scholar 

    9.
    Baskin, C. C. & Baskin, J. M. Seeds: Ecology, biogeography and evolution of dormancy and germination 2nd edn. (Elsevier, Amsterdam, 2014).
    Google Scholar 

    10.
    De Paula, A. S., Delgado, C. M. L., Paulilo, M. T. S. & Santos, M. Breaking physical dormancy of Cassia leptophylla and Senna macranthera (Fabaceae: Caesalpinioideae) seeds: Water absorption and alternating temperatures. Seed Sci. Res. 22, 259–267 (2012).
    Google Scholar 

    11.
    Jayasuriya, K. M. G. G., Wijetunga, A. S. T. B., Baskin, J. M. & Baskin, C. C. Seed dormancy and storage behaviour in tropical Fabaceae: A study of 100 species from Sri Lanka. Seed Sci. Res. 23, 257–269 (2013).
    Google Scholar 

    12.
    Rodrigues-Junior, A. G., Faria, J. M. R., Vaz, T. A. A., Nakamura, A. T. & José, A. C. Physical dormancy in Senna multijuga (Fabaceae: Caesalpinioideae) seeds: The role of seed structures in water uptake. Seed Sci. Res. 24, 147–157 (2014).
    Google Scholar 

    13.
    Rodrigues-Junior, A. G. et al. A function for the pleurogram in physically dormant seeds. Ann. Bot. 123, 867–876 (2019).
    PubMed  Google Scholar 

    14.
    Erickson, T. E., Merritt, D. J. & Turner, S. R. Overcoming physical seed dormancy in priority native species for use in arid-zone restoration programs. Aust. J. Bot. 64, 401–416 (2016).
    Google Scholar 

    15.
    Baskin, J. M., Baskin, C. C. & Li, X. Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biol. 15, 139–152 (2000).
    Google Scholar 

    16.
    Gill, L. S., Hasaini, S. W. H. & Musa, A. H. Germination biology of some Cassia L. species (Leguminosae). Legume Res. 5, 97–104 (1982).
    Google Scholar 

    17.
    Grice, A. C. & Westoby, M. Aspects of the dynamics of the seed-banks and seedling populations of Acacia victoriae and Cassia spp. in arid western New South Wales. Aust. J. Ecol. 12, 209–215 (1987).
    Google Scholar 

    18.
    Jurado, E. & Westoby, M. Germination biology of selected central Australian plants. Aust. J. Ecol. 17, 341–348 (1992).
    Google Scholar 

    19.
    Todaria, N. P. & Negi, A. K. Pretreatment of some Indian Cassia seeds to improve their germination. Seed Sci. Technol. 20, 583–588 (1992).
    Google Scholar 

    20.
    Sahai, K. Structural diversity in the lens of the seed of some Cassia L. (Caesalpinioideae) species and its taxonomic significance. Phytomorphology 49, 203–208 (1999).
    Google Scholar 

    21.
    Jayasuriya, K. M. G. G., Baskin, J. M. & Baskin, C. C. Sensitivity cycling and its ecological role in seeds with physical dormancy. Seed Sci. Res. 19, 3–13 (2009).
    Google Scholar 

    22.
    Gama-Arachchige, N. S., Baskin, J. M., Geneve, R. L. & Baskin, C. C. Identification and characterization of ten new water gaps in seeds and fruits with physical dormancy and classification of water-gap complexes. Ann. Bot. 112, 69–84 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Geneve, R. L., Baskin, C. C., Baskin, J. M., Jayasuriya, K. M. G. G. & Gama-Arachchige, N. S. Functional morpho-anatomy of water-gap complexes in physically dormant seed. Seed Sci. Res. 28, 186–191 (2018).
    Google Scholar 

    24.
    Rodrigues-Junior, A. G., Baskin, C. C., Baskin, J. M. & Garcia, Q. S. Sensitivity cycling in physically dormant seeds of the Neotropical tree Senna multijuga (Fabaceae). Plant Biol. 20, 698–706 (2018).
    CAS  PubMed  Google Scholar 

    25.
    Rodrigues-Junior, A. G. et al. Why large seeds with physical dormancy become nondormant earlier than small ones. PLoS ONE 13, e0202038 (2018).
    PubMed  PubMed Central  Google Scholar 

    26.
    Cherubin, M. R., Moraes, M. T., Weirich, S. W., Fabbris, C. & Rocha, E. M. T. Avaliação de métodos de superação de dormência tegumentar em sementes de Cassia leptophylla Vog. Encicl. Biosf. 7, 1–7 (2011).
    Google Scholar 

    27.
    Reddy, V. Presowing treatments to improve Cassia and Calliandra seed germination. Acta Hortic. 226, 537–540 (1988).
    Google Scholar 

    28.
    Lopes, J. C., Capucho, M. T., Krohling, B. & Zanotti, P. Germinação de sementes de espécies florestais de Caesalpinea ferrea Mart. ex Tul. Var. leiostachya Benth., Cassia grandis L. e Samanea saman Merrill, após tratamentos para superar a dormência. Rev. Bras. Sem. 20, 80–86 (1998).
    Google Scholar 

    29.
    Faruqi, M. A., Kahan, M. K. & Uddin, M. G. Comparative studies on the effects of ultrasonics, red light and gibberellic acid, on the germination of Cassia holosericea Fres. seeds. Pak. J. Sci. Ind. Res. 81, 102–104 (1974).
    Google Scholar 

    30.
    Martin, R. E., Miller, R. L. & Cushwa, C. T. Germination response of legume seeds subjected to moist and dry heat. Ecology 56, 1441–1445 (1975).
    Google Scholar 

    31.
    Rizzini, C. T. Influência da temperatura sobre a germinação de diásporos do Cerrado. Rodriguésia 28, 341–381 (1976).
    Google Scholar 

    32.
    Bhatia, R. K., Chawan, D. D. & Sen, D. N. Environment controlled seed dormancy in Cassia spp.. Geobios 4, 208–210 (1977).
    Google Scholar 

    33.
    Zegers, C. D. & Lechuga, A. C. Antecedentes fenológicos y de germinación de espécies lenhosas chilenas. Rev. Cienc. For. 1, 31–37 (1978).
    Google Scholar 

    34.
    Daiya, K. S., Sharma, H. K., Chawan, D. D. & Sen, D. N. Effect of salt solutions of different osmotic potential on seed germination and seedling growth in some Cassia species. Folia Geobot. 15, 149–153 (1980).
    Google Scholar 

    35.
    Teem, D. H., Hoveland, C. S. & Buchanan, G. A. Sicklepod (Cassia obtusifolia) and Cofffe Senna (Cassia occidentalis): Geographic distribution, germination, and emergence. Weed Sci. 28, 68–71 (1980).
    Google Scholar 

    36.
    Felippe, G. M. & Polo, M. Germinação de ervas invasoras: efeito de luz e escarificação. Rev. Bras. Bot. 6, 55–60 (1983).
    Google Scholar 

    37.
    Kay, B. L., Pergler, C. C. & Graves, W. L. Storage of seed of Mojave desert shrubs. J. Seed Technol. 9, 20–28 (1984).
    Google Scholar 

    38.
    Khan, D., Shaukat, S. S. & Faheemuddin, M. Germination studies of certain desert plants. Pak. J. Bot. 16, 231–254 (1984).
    Google Scholar 

    39.
    Cissé, A.M. Dynamique de la strate herbacée des pâturages de la zone sud-sahélienne. Thesis. Wageningen, NL (1986).

    40.
    Al-Helal, A. A., Al-Farraj, M. M., El-Desoki, R. A. & Al-Habashi, I. Germination response of Cassia senna L. seeds to sodium salts and temperature. J Univ. Kuwait 16, 281–286 (1989).
    CAS  Google Scholar 

    41.
    Elberse, W. T. & Breman, H. Germination and establishment of Sahelian rangeland species. I. Seed properties. Oecologia 80, 477–484 (1989).
    ADS  PubMed  Google Scholar 

    42.
    Bhattacharya, A. & Saha, P. Ultrastructure of seed coat and water uptake pattern of seeds during germination in Cassia sp.. Seed Sci. Technol. 18, 97–100 (1990).
    Google Scholar 

    43.
    Rodrigues, E. H. A., Aguiar, I. B. & Sader, R. Quebra de dormência de sementes de três espécies do gênero Cassia. Rev. Bras. Sem. 12, 17–27 (1990).
    Google Scholar 

    44.
    Capelanes, T.M.C. Tecnologia de sementes de espécies florestais na Companhia Energética de São Paulo. II Simpósio Brasileiro sobre tecnologia de sementes florestais. 49–57 (1991).

    45.
    Francis, J.K. & Rodriguez, A. Seeds of Puerto Rican trees and shrubs: second installment. USDA. Forest Service, Southern Forest Experiment Station. Note SO-374: 1–5 (1993).

    46.
    Lezama, C. P., Polito, J. C. & Morfín, F. C. Germinación de semillas de espécies de vegetación primaria y secundaria (estúdios comparativos). Cienc. For. Méx. 18, 3–19 (1993).
    Google Scholar 

    47.
    Agboola, D. A. Dormancy and seed germination in some weeds of tropical waste lands. Niger. J. Bot. 11, 79–87 (1998).
    Google Scholar 

    48.
    Baskin, J. M., Nan, X. & Baskin, C. C. A comparative study of seed dormancy and germination in an annual and a perennial species of Senna (Fabaceae). Seed Sci. Res. 8, 501–512 (1998).
    Google Scholar 

    49.
    Jeller, H. & Perez, S. C. J. G. A. Estudo da superação da dormência e da temperatura em sementes de Cassia excelsa Schrad. Rev. Bras. Sem. 21, 32–40 (1999).
    Google Scholar 

    50.
    Fowler, J.A.P. & Bianchetti, A. Dormência em sementes florestais. Embrapa Florestas (2000).

    51.
    Bargali, K. & Singh, S. P. Germination behaviour of some leguminous and actinorhizal plants of Himalaya: Effect of temperature and medium. Trop. Ecol. 48, 99–105 (2007).
    Google Scholar 

    52.
    Dutra, A. S., Medeiros Filho, S., Teófilo, E. M. & Diniz, F. O. Seed germination of Senna siamea (Lam.) H.S. Irwin & Barneby—Caesalpinoideae. Rev. Bras. Sem. 29, 160–164 (2007).
    Google Scholar 

    53.
    Ellis, R. H. et al. Comparative analysis by protocol and key of seed storage behaviour of sixty Vietnamese tree species. Seed Sci. Technol. 35, 460–476 (2007).
    Google Scholar 

    54.
    Mishra, D. K. & Bohra, N. K. Effect of seed pre-treatment and time of sowing on germination and biomass of Cassia angustifolia Vahl. in arid regions. Ann. Arid Zone 55, 29–34 (2016).
    Google Scholar 

    55.
    Rolston, M. P. Water impermeable seed dormancy. Bot. Rev. 44, 365–396 (1978).
    CAS  Google Scholar 

    56.
    Baskin, C. C. Breaking physical dormancy in seeds—focusing on the lens. New Phytol. 158, 229–232 (2003).
    Google Scholar 

    57.
    Burrows, G. E., Alden, R. & Robinson, W. A. The lens in focus—lens structure in seeds of 51 Australian Acacia species and its implications for imbibition and germination. Aust. J. Bot. 66, 398–413 (2018).
    Google Scholar 

    58.
    Deng, W., Jeng, D.-S., Toorop, P. E., Squire, G. R. & Iannetta, P. P. M. A mathematical model of mucilage expansion in myxospermous seeds of Capsella bursa-pastoris (shepherd’s purse). Ann. Bot. 109, 419–427 (2012).
    CAS  PubMed  Google Scholar 

    59.
    Yang, X., Baskin, J. M., Baskin, C. C. & Huang, Z. More than just a coating: Ecological importance, taxonomic occurrence and phylogenetic relationships of seed coat mucilage. Perspect. Plant Ecol. Evol. Syst. 14, 434–442 (2012).
    Google Scholar 

    60.
    Van Klinken, R. D. & Flack, L. Wet heat as a mechanism for dormancy release and germination of seeds with physical dormancy. Weed Sci. 53, 663–669 (2005).
    Google Scholar 

    61.
    Van Klinken, R. D., Flack, L. K. & Pettit, W. Wet-season dormancy release in seed banks of a tropical leguminous shrub is determined by wet heat. Ann. Bot. 98, 875–883 (2006).
    PubMed  Google Scholar 

    62.
    Jayasuriya, K. M. G. G., Baskin, J. M. & Baskin, C. C. Cycling of sensitivity to physical dormancy-break in seeds of Ipomoea lacunosa (Convolvulaceae) and ecological significance. Ann. Bot. 101, 341–352 (2008).
    CAS  PubMed  Google Scholar 

    63.
    Jayasuriya, K. M. G. G., Baskin, J. M., Geneve, R. L. & Baskin, C. C. A proposed mechanism for physical dormancy break in seeds of Ipomoea lacunosa. Ann. Bot. 103, 433–445 (2009).
    PubMed  Google Scholar 

    64.
    Western, T. L. The sticky tale of seed coat mucilages: Production, genetics, and role in seed germination and dispersal. Seed Sci. Res. 22, 1–25 (2012).
    CAS  Google Scholar 

    65.
    Gutterman, Y. & Shem-Tov, S. Structure and function of the mucilaginous seed coats of Plantago coronopus inhabiting the Negev desert of Israel. Isr. J. Plant Sci. 44, 125–133 (1996).
    Google Scholar 

    66.
    Gutterman, Y. & Shem-Tov, S. The efficiency of the strategy of mucilaginous seeds of some common annuals of the Negev adhering to the soil crust to delay collection by ants. Isr. J. Plant Sci. 45, 317–327 (1997).
    Google Scholar 

    67.
    Yang, X., Dong, M. & Huang, Z. Role of mucilage in the germination of Artemisia sphaerocephala (Asteraceae) achenes exposed to osmotic stress and salinity. Plant Physiol. Biochem. 48, 131–135 (2010).
    CAS  PubMed  Google Scholar 

    68.
    Moreno-Casasola, P., Grime, J. P. & Martínez, M. L. A comparative study of the effects of fluctuations in temperature and moisture supply on hard coat dormancy in seeds of coastal tropical legumes in Mexico. J. Trop. Ecol. 10, 67–86 (1994).
    Google Scholar 

    69.
    Williams, P. R., Congdon, R. A., Grice, A. C. & Clarke, P. J. Fire-related cues break seed dormancy of six legumes of tropical eucalypt savannas in north-eastern Australia. Aust. Ecol. 28, 507–514 (2003).
    Google Scholar 

    70.
    Maia, F. V., Messias, M. C. T. B. & Moraes, M. G. Efeitos de tratamentos pré-germinativos na germinação de Chamaecrista dentata (Vogel) H.S. Irwin & Barneby. Floram 17, 44–50 (2010).
    Google Scholar 

    71.
    Fichino, B. S., Dombroski, J. R. G., Pivello, V. R. & Fidelis, A. Does fire trigger seed germination in the Neotropical savanas? Experimental tests with six Cerrado species. Biotropica 48, 181–187 (2016).
    Google Scholar 

    72.
    Daibes, F. L. et al. Fire and legume germination in a tropical savanna: Ecological and historical factors. Ann. Bot. 123, 1219–1229 (2019).
    PubMed  PubMed Central  Google Scholar 

    73.
    Finch-Savage, W. E. & Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 171, 501–523 (2006).
    CAS  PubMed  Google Scholar 

    74.
    Willis, C. G. et al. The evolution of seed dormancy: Environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytol. 203, 300–309 (2014).
    PubMed  Google Scholar 

    75.
    Marazzi, B. & Sanderson, M. Large-scale patterns of diversification in the widespread legume genus Senna and the evolutionary role of extrafloral nectaries. Evolution 64, 3570–3592 (2010).
    PubMed  Google Scholar 

    76.
    Acharya, L., Mukherjee, A. K. & Panda, P. C. Separation of the genera in the subtribe Cassiinae (Leguminosae: Caesalpinioideae). Acta Bot. Bras. 25, 223–233 (2011).
    Google Scholar 

    77.
    Scheidegger, N.M.B. & Rando, J.G. Cassia in Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro. https://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB22858 (2019).

    78.
    Klink, C. A. & Machado, R. B. Conservation of the Brazilian Cerrado. Conserv. Biol. 19, 707–713 (2005).
    Google Scholar 

    79.
    McDowell, E. M. & Trump, B. F. Histologic fixatives suitable for diagnostic light and electron microscopy. Arch. Pathol. Lab. Med. 100, 405–414 (1976).
    CAS  PubMed  Google Scholar 

    80.
    Robards, A. W. An introduction to techniques for scanning electron microscopy of plant cells. In Electron Microscopy and Cytochemistry of Plant Cells (ed. Hall, J. L.) 343–403 (Elsevier, Amsterdam, 1978).
    Google Scholar 

    81.
    R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org (2011).

    82.
    Tietema, T., Merkesdal, E. & Schroten, J. Seed Germination of Indigenous Trees in Botswana (ACTS Press, Anaheim, 1992).
    Google Scholar 

    83.
    Watkins, G. Trees and Shrubs for Planting in Tanganyika. (Government Printer, 1960).

    84.
    Martins, C. C., Machado, C. G., Martinelli-Seneme, A. & Zucareli, C. Methods for harvesting and breaking the dormancy of Cassia ferruginea seeds. Semina 33, 491–498 (2012).
    Google Scholar 

    85.
    Moreira, F. M. S. & Moreira, F. W. Características da germinação de sementes de 64 espécies de leguminosas florestais nativas da Amazônia, em condições de viveiro. Acta Amaz. 26, 3–16 (1996).
    Google Scholar 

    86.
    Souza, L. A. G. & Silva, M. F. Tratamentos escarificadores em sementes duras de sete leguminosas nativas da ilha de Maracá, Roraima, Brasil. Bol. Mus. Para. Emílio Goeldi Série botânica 14, 11–32 (1998).
    MathSciNet  Google Scholar 

    87.
    Jaganathan, G. K. Physical dormancy alleviation and soil seed bank establishment in Cassia roxburghii is determined by soil microsite characteristics. Flora 244, 19–23 (2018).
    Google Scholar 

    88.
    Knowles, O. H. & Parrotta, J. A. Amazonian forest restoration: An innovative system for native species selection based on phenological data and field performance indices. Commonw. For. Rev. 74, 230–243 (1995).
    Google Scholar  More

  • in

    Global status and conservation potential of reef sharks

    Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
    M. Aaron MacNeil & Taylor Gorham

    Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
    Demian D. Chapman, Michael Heithaus, Jeremy Kiszka, Mark E. Bond, Kathryn I. Flowers, Gina Clementi, Khadeeja Ali, Laura García Barcia, Erika Bonnema, Camila Cáceres, Naomi F. Farabough, Virginia Fourqurean, Kirk Gastrich, Devanshi Kasana, Yannis P. Papastamatiou, Jessica Quinlan, Maurits van Zinnicq Bergmann & Elizabeth Whitman

    Australian Institute of Marine Science, Townsville, Queensland, Australia
    Michelle Heupel & Leanne M. Currey-Randall

    Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, Australia
    Colin A. Simpfendorfer, C. Samantha Sherman, Stacy Bierwagen, Brooke D’Alberto, Lachlan George, Sushmita Mukherji & Audrey Schlaff

    Australian Institute of Marine Science, Crawley, Western Australia, Australia
    Mark Meekan, Conrad W. Speed, Matthew J. Rees & Dianne McLean

    The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
    Mark Meekan, Conrad W. Speed & Dianne McLean

    School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
    Euan Harvey & Jordan Goetze

    Marine Program, Wildlife Conservation Society, New York, NY, USA
    Jordan Goetze

    Centre for Sustainable Ecosystems Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
    Matthew J. Rees

    Australian Institute of Marine Science, Arafura Timor Research Facility, Darwin, Northern Territory, Australia
    Vinay Udyawer

    School of Marine and Atmospheric Science, Stony Brook University, Stony Brook, NY, USA
    Jasmine Valentin-Albanese, Diego Cardeñosa, Stephen Heck & Bradley Peterson

    International Pole and Line Foundation, Malé, Maldives
    M. Shiham Adam

    Maldives Marine Research Institute, Ministry of Fisheries, Marine Resources and Agriculture, Malé, Maldives
    Khadeeja Ali

    Centro de Investigaciones de Ecosistemas Costeros (CIEC), Cayo Coco, Morón, Ciego de Ávila, Cuba
    Fabián Pina-Amargós

    Centro de Investigaciones Marinas, Universidad de la Habana, Havana, Cuba
    Jorge A. Angulo-Valdés & Alexei Ruiz-Abierno

    Galbraith Marine Science Laboratory, Eckerd College, St Petersburg, FL, USA
    Jorge A. Angulo-Valdés

    Joint Institute for Marine and Atmospheric Research, University of Hawaii at Manoa, Honolulu, HI, USA
    Jacob Asher

    Habitat and Living Marine Resources Program, Ecosystem Sciences Division, Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, Honolulu, HI, USA
    Jacob Asher

    Réseau requins des Antilles Francaises, Kap Natirel, Vieux-Fort, Guadeloupe
    Océane Beaufort

    Mahonia Na Dari Research and Conservation Centre, Kimbe, Papua New Guinea
    Cecilie Benjamin

    South African Institute for Aquatic Biodiversity, Grahamstown, South Africa
    Anthony T. F. Bernard

    Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
    Anthony T. F. Bernard

    Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
    Michael L. Berumen, Jesse E. M. Cochran & Royale S. Hardenstine

    Blue Resources Trust, Colombo, Sri Lanka
    Rosalind M. K. Bown, Daniel Fernando, Nishan Perera & Akshay Tanna

    Bren School of Environmental Sciences and Management, University of California Santa Barbara, Santa Barbara, CA, USA
    Darcey Bradley

    Shark Research and Conservation Program, Cape Eleuthera Institute, Cape Eleuthera, Eleuthera, Bahamas
    Edd Brooks

    Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
    J. Jed Brown

    University of the West Indies, Discovery Bay Marine Laboratory, Discovery Bay, Jamaica
    Dayne Buddo

    Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
    Patrick Burke

    Albion College, Albion, MI, USA
    Jeffrey C. Carrier

    Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, USA
    Jennifer E. Caselle

    Coastal Impact, Quitula, Aldona Bardez, India
    Venkatesh Charloo

    CUFR Mayotte & Marine Biodiversity, Exploitation and Conservation (MARBEC), Université de Montpellier, CNRS, IRD, IFREMER, Montpellier, France
    Thomas Claverie

    PSL Research University, LABEX CORAIL, CRIOBE USR3278 EPHE-CNRS-UPVD, Mòorea, French Polynesia
    Eric Clua

    Environmental Research Institute Charlotteville, Charlotteville, Trinidad and Tobago
    Neil Cook, Lanya Fanovich & Aljoscha Wothke

    School of Biosciences, Cardiff University, Cardiff, UK
    Neil Cook

    ARC Centre of Excellence in Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
    Jessica Cramp & Joshua E. Cinner

    Sharks Pacific, Rarotonga, Cook Islands
    Jessica Cramp

    Wageningen Marine Research, Wageningen University & Research, IJmuiden, The Netherlands
    Martin de Graaf

    Graduate School of Global Environmental Studies, Sophia University, Tokyo, Japan
    Mareike Dornhege

    Waitt Institute, La Jolla, CA, USA
    Andy Estep

    Marine Megafauna Foundation, Truckee, CA, USA
    Anna L. Flam, Andrea Marshall & Alexandra M. Watts

    The South African Association for Marine Biological Research, Oceanographic Research Institute, Durban, South Africa
    Camilla Floros

    Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
    Ricardo Garla

    Independent consultant, Hull, UK
    Rory Graham

    Bimini Biological Field Station Foundation, South Bimini, Bahamas
    Tristan Guttridge & Maurits van Zinnicq Bergmann

    Saving the Blue, Kendall, Miami, FL, USA
    Tristan Guttridge

    Biology Department, College of Science, UAE University, Al Ain, United Arab Emirates
    Aaron C. Henderson

    The School for Field Studies Center for Marine Resource Studies, South Caicos, Turks and Caicos Islands
    Aaron C. Henderson & Heidi Hertler

    Center for Shark Research, Mote Marine Laboratory, Sarasota, FL, USA
    Robert Hueter

    Operation Wallacea, Spilsby, Lincolnshire, UK
    Mohini Johnson

    Wildlife Conservation Society, Melanesia Program, Suva, Fiji
    Stacy Jupiter

    Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, USA
    Steven T. Kessel

    Kenya Fisheries Service, Mombasa, Kenya
    Benedict Kiilu

    Ministry of Fisheries and Marine Resources, Development, Kiritimati, Kiribati
    Taratu Kirata

    Tanzania Fisheries Research Institute, Dar Es Salaam, Tanzania
    Baraka Kuguru

    University of the West Indies, Kingston, Jamaica
    Fabian Kyne

    School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
    Tim Langlois

    Fish Ecology and Conservation Physiology Laboratory, Carleton University, Ottawa, Ontario, Canada
    Elodie J. I. Lédée

    Coral Reef Research Foundation, Koror, Palau
    Steve Lindfield

    Departamento de Ecología y Territorio, Facultad de Estudios Ambientales y Rurales, Pontificia Universidad Javeriana, Bogotá, Colombia
    Andrea Luna-Acosta

    National Institute of Water and Atmospheric Research, Hataitai, New Zealand
    Jade Maggs

    Endangered Marine Species Research Unit, Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
    B. Mabel Manjaji-Matsumoto

    Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
    Philip Matich

    Aquarium of the Pacific, Long Beach, CA, USA
    Erin McCombs

    Khaled bin Sultan Living Oceans Foundation, Annapolis, MD, USA
    Llewelyn Meggs

    Department of Biodiversity, Conservation & Attractions, Parks & Wildlife WA, Pilbara Region, Nickol, Western Australia, Australia
    Stephen Moore

    Large Marine Vertebrates Research Institute Philippines, Jagna, The Philippines
    Ryan Murray & Alessandro Ponzo

    Wasage Divers, Wakatobi and Buton, Indonesia
    Muslimin Kaimuddin

    Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, North Beach, Western Australia, Australia
    Stephen J. Newman & Michael J. Travers

    Island Conservation Society Seychelles, Victoria, Mahé, Seychelles
    Josep Nogués

    CORDIO East Africa, Mombasa, Kenya
    Clay Obota & Melita Samoilys

    The Centre for Ocean Research and Education, Gregory Town, Eleuthera, Bahamas
    Owen O’Shea

    Department of Environment and Geography, University of York, York, UK
    Kennedy Osuka

    Center for Fisheries Research, Ministry for Marine Affairs and Fisheries, Jakarta Utara, Indonesia
    Andhika Prasetyo

    Universitas Dayanu Ikhsanuddin Bau-Bau, Bau-Bau, Indonesia
    L. M. Sjamsul Quamar

    Pristine Seas, National Geographic Society, Washington, DC, USA
    Enric Sala

    Department of Zoology, University of Oxford, Oxford, UK
    Melita Samoilys

    HJR Reefscaping, Boquerón, Puerto Rico
    Michelle Schärer-Umpierre

    SalvageBlue, Kingstown, Saint Vincent and the Grenadines
    Nikola Simpson

    School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
    Adam N. H. Smith

    Indo Ocean Project, PT Nomads Diving Bali, Nusa Penida, Indonesia
    Lauren Sparks

    Manchester Metropolitan University, Manchester, UK
    Akshay Tanna & Alexandra M. Watts

    Reef Check Dominican Republic, Santo Domingo, Dominican Republic
    Rubén Torres

    Institut de Recherche pour le Développement, UMR ENTROPIE (IRD-UR-UNC-CNRS-IFREMER), Nouméa, New Caledonia
    Laurent Vigliola

    Secretariat of the Pacific Regional, Environment Programme, Apia, Samoa
    Juney Ward

    Department of Life Science, Tunghai University, Taichung, Taiwan
    Colin Wen

    School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
    Aaron J. Wirsing

    Corales del Rosario and San Bernardo National Natural Park, GIBEAM Research Group, Universidad del Sinú, Cartagena, Colombia
    Esteban Zarza-Gonzâlez

    D. Chapman and M. Heithaus conceived the study with assistance from M. Heupel, C.A.S., M.M., E.H. and M.A.M. D. Chapman, M. Heithaus, M. Heupel, C.A.S., M.M. and E.H. directed fieldwork run by J.G., J.K., M.E.B., L.M.C.-R., C.W.S., K.I.F., J.V.-A., G.C. and C.S.S. Database management was by T. Gorham. M.A.M. and D. Chapman drafted the manuscript, with help from M. Heithaus, M. Heupel, C.A.S., J.E.M.C., M.M., E.H., J.G., J.K., M.E.B., L.M.C.-R., C.W.S., C.S.S., M.J.R., V.U. and T. Gorham. All other authors contributed equally, made substantial contributions to data collection, provided input and approved the text in the manuscript. More

  • in

    Domestication-driven changes in plant traits associated with changes in the assembly of the rhizosphere microbiota in tetraploid wheat

    1.
    Nesbitt, M. & Samuel, D. Wheat domestication: Archaeobotanical evidence. Science 279, 1431–1431 (1998).
    ADS  Google Scholar 
    2.
    Hammer, K. Das Domestikationssyndrom. Kult. 32, 11–34 (1984).
    Google Scholar 

    3.
    Peleg, Z., Fahima, T., Korol, A. B., Abbo, S. & Saranga, Y. Genetic analysis of wheat domestication and evolution under domestication. J. Exp. Bot. 62, 5051–5061 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    4.
    Simons, K. J. et al. Molecular characterization of the major wheat domestication gene Q. Genetics 172, 547 (2006).
    CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Simonetti, M. C. et al. Quantitative trait loci influencing free-threshing habit in tetraploid wheats. Genet. Resour. Crop Evol. 46, 267–271 (1999).
    Google Scholar 

    6.
    Tzarfati, R. et al. Threshing efficiency as an incentive for rapid domestication of emmer wheat. Ann. Bot. 112, 829–837 (2013).
    PubMed  PubMed Central  Google Scholar 

    7.
    Matsuoka, Y. Evolution of polyploid triticum wheats under cultivation: The role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol. 52, 750–764 (2011).
    CAS  PubMed  Google Scholar 

    8.
    Araus, J. L., Bort, J., Steduto, P., Villegas, D. & Royo, C. Breeding cereals for Mediterranean conditions: Ecophysiological clues for biotechnology application. Ann. Appl. Biol. 142, 129–141 (2003).
    Google Scholar 

    9.
    Gioia, T. et al. Impact of domestication on the phenotypic architecture of durum wheat under contrasting nitrogen fertilization. J. Exp. Bot. 66, 5519–5530 (2015).
    CAS  PubMed  Google Scholar 

    10.
    Thuillet, A.-C., Bataillon, T., Poirier, S., Santoni, S. & David, J. L. Estimation of long-term effective population sizes through the history of durum wheat using microsatellite data. Genetics 169, 1589 (2005).
    CAS  PubMed  PubMed Central  Google Scholar 

    11.
    Haudry, A. et al. Grinding up wheat: A massive loss of nucleotide diversity since domestication. Mol. Biol. Evol. 24, 1506–1517 (2007).
    CAS  PubMed  Google Scholar 

    12.
    Pérez-Jaramillo, J. E., Mendes, R. & Raaijmakers, J. M. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol. Biol. 90, 635–644 (2016).
    PubMed  Google Scholar 

    13.
    Philippot, L., Raaijmakers, J. M., Lemanceau, P. & van der Putten, W. H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789 (2013).
    CAS  PubMed  Google Scholar 

    14.
    Pozo, M. J. & Azcón-Aguilar, C. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 10, 393–398 (2007).
    CAS  PubMed  Google Scholar 

    15.
    Cook, R. J. et al. Molecular mechanisms of defense by rhizobacteria against root disease. Proc. Natl. Acad. Sci. 92, 4197 (1995).
    ADS  CAS  PubMed  Google Scholar 

    16.
    Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    17.
    Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. 110, 6548 (2013).
    ADS  CAS  PubMed  Google Scholar 

    18.
    İnceoğlu, Ö, Salles, J. F., van Overbeek, L. & van Elsas, J. D. Effects of plant genotype and growth stage on the betaproteobacterial communities associated with different potato cultivars in two fields. Appl. Environ. Microbiol. 76, 3675 (2010).
    PubMed  PubMed Central  Google Scholar 

    19.
    Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91 (2012).
    ADS  CAS  PubMed  Google Scholar 

    20.
    Hardoim, P. R. et al. Rice root-associated bacteria: Insights into community structures across 10 cultivars. FEMS Microbiol. Ecol. 77, 154–164 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Pérez-Jaramillo, J. E. et al. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J. 11, 2244 (2017).
    PubMed  PubMed Central  Google Scholar 

    22.
    Bulgarelli, D. et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392–403 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Leff, J. W., Lynch, R. C., Kane, N. C. & Fierer, N. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus. New Phytol. 214, 412–423 (2017).
    CAS  PubMed  Google Scholar 

    24.
    Roucou, A. et al. Shifts in plant functional strategies over the course of wheat domestication. J. Appl. Ecol. 55, 25–37 (2018).
    CAS  Google Scholar 

    25.
    Röder, M. S. et al. A microsatellite map of wheat. Genetics 149, 2007 (1998).
    PubMed  PubMed Central  Google Scholar 

    26.
    Berry, D., Ben Mahfoudh, K., Wagner, M. & Loy, A. Barcoded Primers used in multiplex amplicon pyrosequencing bias amplification. Appl. Environ. Microbiol. 77, 7846 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Takahashi, S., Tomita, J., Nishioka, K., Hisada, T. & Nishijima, M. Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS ONE 9, e105592 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    28.
    Muyzer, G., de Waal, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695 (1993).
    CAS  PubMed  PubMed Central  Google Scholar 

    29.
    White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols (eds Innis, M. A. et al.) 315–322 (Academic Press, Cambridge, 1990).
    Google Scholar 

    30.
    Tourna, M., Freitag, T. E., Nicol, G. W. & Prosser, J. I. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ. Microbiol. 10, 1357–1364 (2008).
    CAS  PubMed  Google Scholar 

    31.
    Leininger, S. et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809 (2006).
    ADS  CAS  PubMed  Google Scholar 

    32.
    Henry, S. et al. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J. Microbiol. Methods 59, 327–335 (2004).
    CAS  PubMed  Google Scholar 

    33.
    Henry, S., Bru, D., Stres, B., Hallet, S. & Philippot, L. Quantitative detection of the nosZ Gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl. Environ. Microbiol. 72, 5181 (2006).
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Jones, C. M., Graf, D. R., Bru, D., Philippot, L. & Hallin, S. The unaccounted yet abundant nitrous oxide-reducing microbial community: A potential nitrous oxide sink. ISME J. 7, 417 (2012).
    PubMed  PubMed Central  Google Scholar 

    35.
    Bru, D. et al. Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale. ISME J. 5, 532 (2010).
    PubMed  PubMed Central  Google Scholar 

    36.
    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2013).
    PubMed  PubMed Central  Google Scholar 

    37.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
    PubMed  PubMed Central  Google Scholar 

    39.
    Caporaso, J. G. et al. PyNAST: A flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267 (2009).
    PubMed  PubMed Central  Google Scholar 

    40.
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
    ADS  PubMed  PubMed Central  Google Scholar 

    41.
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
    CAS  PubMed  Google Scholar 

    42.
    McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610 (2011).
    PubMed  PubMed Central  Google Scholar 

    43.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    CAS  PubMed  Google Scholar 

    44.
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).
    CAS  PubMed  Google Scholar 

    45.
    Rohart, F., Gautier, B., Singh, A. & Cao, K.-A.L. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 13, e1005752 (2017).
    PubMed  PubMed Central  Google Scholar 

    46.
    A. Singh, et al., DIABLO—An integrative, multi-omics, multivariate method for multi-group classification. bioRxiv, 067611 (2016).

    47.
    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).
    PubMed  Google Scholar 

    48.
    Anderson, P. K. et al. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19, 535–544 (2004).
    PubMed  Google Scholar 

    49.
    Dreaden, T. J. et al. Development of multilocus PCR assays for Raffaelea lauricola, causal agent of laurel wilt disease. Plant Dis. 98, 379–383 (2013).
    Google Scholar 

    50.
    Takahashi, Y., Matsushita, N. & Hogetsu, T. Spatial distribution of Raffaelea quercivora in xylem of naturally infested and inoculated oak trees. Phytopathology 100, 747–755 (2010).
    PubMed  Google Scholar 

    51.
    Gramaje, D., Armengol, J. & Ridgway, H. J. Genetic and virulence diversity, and mating type distribution of Togninia minima causing grapevine trunk diseases in Spain. Eur. J. Plant Pathol. 135, 727–743 (2013).
    Google Scholar 

    52.
    Corradi, N. & Bonfante, P. The arbuscular mycorrhizal symbiosis: Origin and evolution of a beneficial plant infection. PLoS Pathog. 8, e1002600 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    53.
    Maherali, H. & Klironomos, J. N. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316, 1746–1748 (2007).
    ADS  CAS  PubMed  Google Scholar 

    54.
    Gosling, P., Proctor, M., Jones, J. & Bending, G. D. Distribution and diversity of Paraglomus spp. in tilled agricultural soils. Mycorrhiza 24, 1–11 (2014).
    PubMed  Google Scholar 

    55.
    B. D. Emmett, N. D. Youngblut, D. H. Buckley, L. E. Drinkwater, plant phylogeny and life history shape rhizosphere bacterial microbiome of summer annuals in an agricultural field. Front. Microbiol. 8, 2414 (2017).

    56.
    Hernández, M., Dumont, M. G., Yuan, Q. & Conrad, R. Different bacterial populations associated with the roots and rhizosphere of rice incorporate plant-derived carbon. Appl. Environ. Microbiol. 81, 2244–2253 (2015).
    PubMed  PubMed Central  Google Scholar 

    57.
    DeBruyn, J. M., Nixon, L. T., Fawaz, M. N., Johnson, A. M. & Radosevich, M. Global biogeography and quantitative seasonal dynamics of gemmatimonadetes in soil. Appl. Environ. Microbiol. 77, 6295 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Oldroyd, G. E. D. Speak, friend, and enter: Signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11, 252 (2013).
    CAS  PubMed  Google Scholar 

    59.
    Sikes, B. A. When do arbuscular mycorrhizal fungi protect plant roots from pathogens?. Plant Signal. Behav. 5, 763–765 (2010).
    PubMed  PubMed Central  Google Scholar  More

  • in

    Mimicry of emergent traits amplifies coastal restoration success

    1.
    Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).
    ADS  CAS  Google Scholar 
    2.
    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).
    Google Scholar 

    3.
    Polidoro, B. A. et al. The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS ONE 5, e10095 (2010).
    ADS  PubMed  PubMed Central  Google Scholar 

    4.
    Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl Acad. Sci. 106, 12377–12381 (2009).
    ADS  CAS  PubMed  Google Scholar 

    5.
    Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).
    PubMed  Google Scholar 

    6.
    Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).
    ADS  CAS  PubMed  Google Scholar 

    7.
    Duke, N. C. et al. Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event. Mar. Freshw. Res. 68, 1816–1829 (2017).
    Google Scholar 

    8.
    Strain, E. M. A. et al. The role of changing climate in driving the shift from perennial grasses to annual succulents in a Mediterranean saltmarsh. J. Ecol. 105, 1374–1385 (2017).
    Google Scholar 

    9.
    Beck, M. W. et al. Oyster reefs at risk and recommendations for conservation, restoration, and management. BioScience 61, 107–116 (2011).
    Google Scholar 

    10.
    Wilkinson, C. Status of Coral Reefs of the World: 2008, Vol. 296 (Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre, Townsville, 2008).

    11.
    Millennium Ecosystem Assessment. Ecosystems and Human Well-being (Island Press, 2005).

    12.
    Gedan, K. & Silliman, B. Patterns of Salt Marsh Loss within Coastal Regions of North America: Presettlement to Present (University of California Press, Berkeley, 2009).

    13.
    Possingham, H. P., Bode, M. & Klein, C. J. Optimal conservation outcomes require both restoration and protection. PLoS Biol. 13, e1002052 (2015).
    PubMed  PubMed Central  Google Scholar 

    14.
    Simenstad, C., Reed, D. & Ford, M. When is restoration not?: incorporating landscape-scale processes to restore self-sustaining ecosystems in coastal wetland restoration. Ecol. Eng. 26, 27–39 (2006).
    Google Scholar 

    15.
    Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).
    PubMed  Google Scholar 

    16.
    Silliman, B. R. et al. Facilitation shifts paradigms and can amplify coastal restoration efforts. Proc. Natl Acad. Sci. 112, 14295–14300 (2015).
    ADS  CAS  PubMed  Google Scholar 

    17.
    van Katwijk, M. M. et al. Global analysis of seagrass restoration: the importance of large-scale planting. J. Appl. Ecol. 53, 567–578 (2016).
    Google Scholar 

    18.
    Teas, H. J. Ecology and restoration of mangrove shorelines in Florida. Environ. Conserv. 4, 51–58 (1977).
    Google Scholar 

    19.
    Renzi, J. J., He, Q. & Silliman, B. R. Harnessing positive species interactions to enhance coastal wetland restoration. Front. Ecol. Evol. 7 https://doi.org/10.3389/fevo.2019.00131 (2019).

    20.
    Shaver, E. C. & Silliman, B. R. Time to cash in on positive interactions for coral restoration. PeerJ 5, e3499 (2017).
    PubMed  PubMed Central  Google Scholar 

    21.
    Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).
    Google Scholar 

    22.
    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
    PubMed  Google Scholar 

    23.
    Nock, C. A., Vogt, R. J. & Beisner, B. E. Functional Traits Vol. 10, a0026282 (eLS. John Wiley Sons, Ltd, Chichester, 2016).

    24.
    Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Vegetation Sci. 9, 113–122 (1998).
    Google Scholar 

    25.
    Winemiller, K. O., Fitzgerald, D. B., Bower, L. M. & Pianka, E. R. Functional traits, convergent evolution, and periodic tables of niches. Ecol. Lett. 18, 737–751 (2015).
    PubMed  PubMed Central  Google Scholar 

    26.
    Smaldino, P. E. The cultural evolution of emergent group-level traits. Behav. Brain Sci. 37, 243–254 (2014).
    PubMed  Google Scholar 

    27.
    Liu, Q. -X. et al. Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems. Nat. Commun. 5, 5234 (2014).
    ADS  CAS  PubMed  Google Scholar 

    28.
    Maxwell, P. S. et al. The fundamental role of ecological feedback mechanisms for the adaptive management of seagrass ecosystems—a review. Biol. Rev. 92, 1521–1538 (2016).
    PubMed  Google Scholar 

    29.
    Bouma, T. J. et al. Density-dependent linkage of scale-dependent feedbacks: a flume study on the intertidal macrophyte Spartina anglica. Oikos 118, 260–268 (2009).
    Google Scholar 

    30.
    Balke, T., Herman, P. M. J. & Bouma, T. J. Critical transitions in disturbance-driven ecosystems: identifying Windows of Opportunity for recovery. J. Ecol. 102, 700–708 (2014).
    Google Scholar 

    31.
    Christianen, M. J. A. et al. Low-canopy seagrass beds still provide important coastal protection services. PLoS ONE 8, e62413 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Lo, V., Bouma, T., Van Belzen, J., Van Colen, C. & Airoldi, L. Interactive effects of vegetation and sediment properties on erosion of salt marshes in the Northern Adriatic Sea. Mar. Environ. Res. 131, 32–42 (2017).
    CAS  PubMed  Google Scholar 

    33.
    Bouma, T. J. et al. Organism traits determine the strength of scale-dependent bio-geomorphic feedbacks: a flume study on three intertidal plant species. Geomorphology 180-181, 57–65 (2013).
    ADS  Google Scholar 

    34.
    Bouma, T. J. et al. Trade-offs related to ecosystem engineering: a case study on stiffness of emerging macrophytes. Ecology 86, 2187–2199 (2005).
    Google Scholar 

    35.
    Peralta, G., Van Duren, L., Morris, E. & Bouma, T. Consequences of shoot density and stiffness for ecosystem engineering by benthic macrophytes in flow dominated areas: a hydrodynamic flume study. Mar. Ecol. Prog. Ser. 368, 103–115 (2008).
    ADS  Google Scholar 

    36.
    Wolters, M., Bakker, J. P., Bertness, M. D., Jeffries, R. L. & Möller, I. Saltmarsh erosion and restoration in south-east England: squeezing the evidence requires realignment. J. Appl. Ecol. 42, 844–851 (2005).
    Google Scholar 

    37.
    Currin, C. A., Chappell, W. S. & Deaton, A. Developing alternative shoreline armoring strategies: The living shoreline approach in North Carolina, in (eds Shipman, H., Dethier, M. N., Gelfenbaum, G., Fresh, K. L. & Dinicola, R. S.), Puget Sound Shorelines and the Impacts of Armoring—Proceedings of a State of the Science Workshop, May 2009: U.S. Geological Survey Scientific Investigations Report 2010-5254, p. 91–102(2010).

    38.
    Herbert, D. et al. Mitigating erosional effects induced by boat wakes with living shorelines. Sustainability 10, 436 (2018).
    Google Scholar 

    39.
    Meyer, D. L., Townsend, E. C. & Thayer, G. W. Stabilization and erosion control value of oyster cultch for intertidal marsh. Restor. Ecol. 5, 93–99 (1997).
    Google Scholar 

    40.
    Baine, M. Artificial reefs: a review of their design, application, management and performance. Ocean Coast. Manag. 44, 241–259 (2001).
    Google Scholar 

    41.
    Graham, P. M., Palmer, T. A. & Beseres Pollack, J. Oyster reef restoration: substrate suitability may depend on specific restoration goals. Restor. Ecol. 25, 459–470 (2017).
    Google Scholar 

    42.
    Bersoza Hernández, A. et al. Restoring the eastern oyster: how much progress has been made in 53 years? Front. Ecol. Environ. 16, 463–471 (2018).
    Google Scholar 

    43.
    Spieler, R. E., Gilliam, D. S. & Sherman, R. L. Artificial substrate and coral reef restoration: what do we need to know to know what we need. Bull. Mar. Sci. 69, 1013–1030 (2001).
    Google Scholar 

    44.
    Morgan, R. P. & Rickson, R. J. Slope Stabilization and Erosion Control: A Bioengineering Approach (Taylor & Francis, 2003).

    45.
    Suykerbuyk, W. et al. Unpredictability in seagrass restoration: analysing the role of positive feedback and environmental stress on Zostera noltii transplants. J. Appl. Ecol. 53, 774–784 (2016).
    Google Scholar 

    46.
    Bouma, T. J., Vries, M. B. D. & Herman, P. M. J. Comparing ecosystem engineering efficiency of two plant species with contrasting growth strategies. Ecology 91, 2696–2704 (2010).
    CAS  PubMed  Google Scholar 

    47.
    De Battisti, D. et al. Intraspecific root trait variability along environmental gradients affects salt marsh resistance to lateral erosion. Front. Ecol. Evol. 7 https://doi.org/10.3389/fevo.2019.00150 (2019).

    48.
    Silliman, B. R. & He, Q. Physical stress, consumer control, and new theory in ecology. Trends Ecol. Evol. 33, 492–503 (2018).
    PubMed  Google Scholar 

    49.
    Manis, J. E., Garvis, S. K., Jachec, S. M. & Walters, L. J. Wave attenuation experiments over living shorelines over time: a wave tank study to assess recreational boating pressures. J. Coast. Conserv. 19, 1–11 (2015).
    Google Scholar 

    50.
    Angelini, C. et al. A keystone mutualism underpins resilience of a coastal ecosystem to drought. Nat. Commun. 7 https://doi.org/10.1038/ncomms12473 (2016).

    51.
    Bos, A. R. & van Katwijk, M. M. Planting density, hydrodynamic exposure and mussel beds affect survival of transplanted intertidal eelgrass. Mar. Ecol. Prog. Ser. 336, 121–129 (2007).
    ADS  Google Scholar 

    52.
    Valdez, S. R. et al. Positive ecological interactions and the success of seagrass restoration. Front. Mar. Sci. 91 https://doi.org/10.3389/fmars.2020.00091 (2020).

    53.
    De Groot, R. S. et al. Benefits of investing in ecosystem restoration. Conserv. Biol. 27, 1286–1293 (2013).
    Google Scholar 

    54.
    Romijn, E. et al. Land restoration in Latin America and the Caribbean: an overview of recent, ongoing and planned restoration initiatives and their potential for climate change mitigation. Forests 10, 510 (2019).
    Google Scholar 

    55.
    Broome, S. W., Seneca, E. D. & Woodhouse, W. W. Tidal salt marsh restoration. Aquat. Bot. 32, 1–22 (1988).
    Google Scholar 

    56.
    Pérez-Pagán, B. S. & Mercado-Molina, A. E. Evaluation of the effectiveness of 3D-printed corals to attract coral reef fish at Tamarindo Reef, Culebra, Puerto Rico. Conserv. Evid. 15, 43–47 (2018).
    Google Scholar 

    57.
    Strain, E. M. A. et al. Increasing microhabitat complexity on seawalls can reduce fish predation on native oysters. Ecol. Eng. 120, 637–644 (2018).
    Google Scholar 

    58.
    Cunha, A. H. et al. Changing paradigms in seagrass restoration. Restor. Ecol. 20, 427–430 (2012).
    Google Scholar 

    59.
    Derksen-Hooijberg, M. et al. Mutualistic interactions amplify saltmarsh restoration success. J. Appl. Ecol. 55, 405–414 (2018).
    Google Scholar 

    60.
    Ritchey, T. In 16th Euro Conference on Operational Analysis. Brussels. Online available at http://swemorph.com/pdf/gma.pdf.

    61.
    Narayan, S. et al. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS ONE 11, e0154735 (2016).
    PubMed  PubMed Central  Google Scholar 

    62.
    Bertness, M. D. & Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 9, 191–193 (1994).
    CAS  PubMed  Google Scholar 

    63.
    Bertness, M. D. & Shumway, S. W. Competition and facilitation in marsh plants. Am. Nat. 142, 718–724 (1993).
    CAS  PubMed  Google Scholar 

    64.
    Stachowicz, J. J. Mutualism, facilitation, and the structure of ecological communities. BioScience 51, 235–246 (2001).
    Google Scholar 

    65.
    Björk, M., Uku, J., Weil, A. & Beer, S. Photosynthetic tolerances to desiccation of tropical intertidal seagrasses. Mar. Ecol. Prog. Ser. 191, 121–126 (1999).
    ADS  Google Scholar 

    66.
    Silva, J. & Santos, R. Daily variation patterns in seagrass photosynthesis along a vertical gradient. Mar. Ecol. Prog. Ser. 257, 37–44 (2003).
    ADS  Google Scholar 

    67.
    Crotty, S. M. & Bertness, M. D. Positive interactions expand habitat use and the realized niches of sympatric species. Ecology 96, 2575–2582 (2015).
    PubMed  Google Scholar 

    68.
    Balke, T. et al. Windows of opportunity: thresholds to mangrove seedling establishment on tidal flats. Mar. Ecol. Prog. Ser. 440, 1–9 (2011).
    ADS  Google Scholar 

    69.
    Price, J. S. & Whitehead, G. S. Developing hydrologic thresholds for Sphagnum recolonization on an abandoned cutover bog. Wetlands 21, 32–40 (2001).
    Google Scholar 

    70.
    van der Heide, T. et al. Predation and habitat modification synergistically interact to control bivalve recruitment on intertidal mudflats. Biol. Conserv. 172, 163–169 (2014).
    Google Scholar 

    71.
    Schulte, D. M., Burke, R. P. & Lipcius, R. N. Unprecedented restoration of a native oyster metapopulation. Science 325, 1124–1128 (2009).
    ADS  CAS  PubMed  Google Scholar 

    72.
    Stokes, D. J., Healy, T. R. & Cooke, P. J. Expansion dynamics of monospecific, temperate mangroves and sedimentation in two embayments of a barrier-enclosed lagoon, Tauranga Harbour, New Zealand. J. Coast. Res., 113–122 https://doi.org/10.2112/08-1043.1 (2010).

    73.
    Bouma, T. J. et al. Spatial flow and sedimentation patterns within patches of epibenthic structures: combining field, flume and modelling experiments. Cont. Shelf Res. 27, 1020–1045 (2007).
    ADS  Google Scholar 

    74.
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    75.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 

    76.
    Lenth, R. & Lenth, M. R. Package ‘lsmeans’. Am. Statistician 34, 216–221 (2018).
    Google Scholar 

    77.
    R Core Team. R Foundation for Statistical Computing (R Core Team, Vienna, 2014).

    78.
    Schwarz, C. et al. Abiotic factors governing the establishment and expansion of two salt marsh plants in the Yangtze Estuary, China. Wetlands 31, 1011–1021 (2011).
    Google Scholar 

    79.
    Marbà, N. & Duarte, C. M. Rhizome elongation and seagrass clonal growth. Marine Ecology Progress Series 174, 269–280 (1998).
    ADS  Google Scholar 

    80.
    Bastyan, G. R. & Cambridge, M. L. Transplantation as a method for restoring the seagrass Posidonia australis. Estuarine, Coastal and Shelf Science 79, 289–299.

    81.
    Temmink, R. J. M. et al. Data from: mimicry of emergent traits amplifies coastal restoration success. DANS https://doi.org/10.17026/dans-xx2-s4c6 (2020). More

  • in

    Miocene cladocera from Poland

    The lignite mine at Bełchatów, Central Poland (Fig. 1), has recently yielded abundant Miocene remains of several species of branchiopod microcrustaceans. They pertain to the order Anomopoda or water fleas, families Chydoridae and Bosminidae. The main synapomorphy of the anomopods is the ephippium, a structure in which sexual or resting eggs are deposited and that forms when external conditions deteriorate. The Daphniidae include the well-known and speciose genus Daphnia, a highly specialized pelagic component of the freshwater zooplankton. The ephippium fossilizes well and is mostly the only structure that survives as a fossil. The Chydoridae are mostly found in the littoral of lakes and ponds, among water plants. The Bosminidae are pelagic, like Daphnia, but are much smaller (around 0.5 mm in body size) while Daphnia and other daphniids may reach up to 6–7 mm.
    Figure 1

    (A) View of the Bełchatów Lignite Mine outcrop (photo from the nineties of the twentieth century, when the material was collected). The sedimentary unit with deposits with the cladoceran fossils is to the lower right of the picture (photo: G. Worobiec). (B) Piece of mudstone with cladoceran remains (Collection KRAM-P 225, stored in the W. Szafer Institute of Botany, Polish Academy of Sciences). On the exposed surface leaves of trees and shrubs as well as the water plant Potamogeton (red circle) are seen (photo: A. Pociecha).

    Full size image

    The fossil-bearing deposits belong to a clayey-sandy (I-P) unit considered to be of mid to late Miocene age1,2. Beside by geology, this age is supported by fission track dating, and fossils of different animal (mollusks, fish) and plant (higher plants, water plants and algae) groups1,2,3,4,5,6,7. The fission track ages were 16.5 to 18.1 million years, while the Miocene, also known as the age of mammals, extended from 23 to 5.3 million years BP.
    The Branchiopoda (a class of the Crustacea composed ten extant orders) include some of the most ancient extant crustaceans (the Anostraca or fairy shrimp) with several credible fossils8. However, the fossil record is patchy. While the oldest known anostracan-like representatives date back to the Cambrian, fossils of the four extant so-called cladoceran orders, with an estimated 1,000 extant species, is poor9 and somewhat paradoxical. The order Ctenopoda is known from ca 60 extant species and several Mesozoic fossils (possibly representing orders in their own right) but is rare in the most abundant source of fossils, the sediments of late Pleistocene–Holocene lakes10,11. The Anomopoda, in contrast, have to date a limited Mesozoic fossil record, but their subfossils abound in Holocene lake sediments.
    The family Chydoridae is represented in Bełchatów by at least four genera: Alona, Acroperus, Camptocercus, and Chydorus. Alona s.l. rivals Daphnia as the most species-rich genus of the order9. All Alona fossils seen so far had two connected head-pores (Fig. 2), placing them near or in the somewhat controversial genus Biapertura. In modern European faunas, and except for Biapertura affinis, three-pored species are dominant, while two-pored ones tend to be typical of warm-climate faunas. The postabdomen, another typical anomopod structure functioning more or less as a ‘tail’, is similar but not identical to that of Biapertura affinis. Furthermore, distinct other species (Fig. 2) have been found as well.
    Figure 2

    Alona with two head pores from Miocene mudstone from Bełchatów [(A–C), headshields; (B) arrow, labrum; (D, F, G, H) abdomens; (E) shell with abdomen] (photo: A. Pociecha, E. Zawisza).

    Full size image

    Another type of fossils (Fig. 3) shares characters of the genera Acroperus and Camptocercus. Some body parts suggest the presence of Acroperus cf. harpae, others are Campocercus like. One three-dimensional fossil of a first trunk limb (P1) with soft parts preserved shows an IDL (inner distal lobe) with two setae and a moderately well developed claw. In Acroperus, a seta instead of a claw is found here. In Camptocercus, P1 has a big hook here, and our fossils are therefore intermediate between both genera, suggesting the fossil to belong to an extinct ancestral stage. The genus Chydorus is represented by C. sphaericus-like fossils (Fig. 3), but the postabdomen is needed to decide on its taxonomic status.
    Figure 3

    Acroperus-Camptocercus from Miocene mudstone at Bełchatów [(A) complete animal with shell, headshield, and first antenna; (B) abdomen; (C) shell; (D) claw; (E) shell with abdomen; (F) headshield with soft parts, viz. first and second trunk limbs with IDL setae conserved] (photo: A. Pociecha, E. Zawisza).

    Full size image

    Significantly, Bosminidae in our material were almost as abundant as Alona, while in this family no pre-Pleistocene fossils were previously known at all. Most body parts have been recovered (Fig. 4), but not the postabdomen, which is diagnostic. There is strong variation in the fossils, like in the length of the first antenna (compare Fig. 4B with Fig. 4C,E) and the posterior mucro of the valve. It is impossible to decide whether these antennae belong to several or to a single cyclomorphotic species. However, the distinctly swollen mucros like in Fig. 4A, arrow, are not known in any modern Bosmina, and suggest an extinct taxon.
    Figure 4

    Bosmina from Miocene mudstone from Bełchatów [(A, D, F) shell; (B) shell with headshield; (C) headshield with first antenna; (E) first antenna)] (photo: A. Pociecha, E. Zawisza).

    Full size image

    Daphniid fossil evidence goes back to the Jurassic/Cretaceous boundary. Fossils are fairly common but only consist of resting eggs (ephippia). Ephippia can tentatively be identified to genus level, which has led to the idea that the two subfamilies of Daphniidae have been around, apparently unchanged, for more than 140 million years9. This is known as the morphological stasis hypothesis. Its factual basis is weak although we accept that true Daphnia ephippia occur in the cretaceous of China, Mongolia and Australia9. Credible ephippia have also been isolated from Eocene age Messel pit-oil shales11. Moina (a water flea related to Daphnia) ephippia have been recovered from the early Miocene Barstow formation12,13,14. In the latter place, fossils are three-dimensional, like in our case in Bełchatów. It should be emphasized, however, that at Bełchatów no daphniid fossils have to date been discovered.
    A variety of plant and animal groups, including water plants like Potamogeton have been documented from the Bełchatów site. Many are as beautifully preserved as the cladocerans3,4,5,6,7 and attempts have been made to reconstruct the climatic environment in which they lived. It is suggested to have been warmer than today (average 13.5°–16.5°C, cooling down gradually towards the end of the Miocene). The water was probably slowly flowing, through what may have been a swamp or a group of oxbow lakes from freshwater ecosystems2,15.
    That we recovered no daphniid fossils may refine our insight into the nature of the Bełchatów aquatic environment: We favour the idea of a series of shallow oxbow lakes in a climate warmer than todays, with at least locally an abundance of macrophytes. Chydorids thrive in such environments, and the genus Simocephalus among daphniids also prefers such an environment. Simocephalus is quite common and widespread in modern weedy lakes but it has not been found in Bełchatów either. Like Daphnia, Bosminids are truly planktonic and need open water. Therefore, the Bełchatów lakes were probably a patchwork of macrophyte beds and open water.
    So where did all the daphniids go? Daphniids are also relatively large species (up to several mm in size), while chydorids and bosminids are typically below a millimeter in size. This suggests size-selective predation on the zooplankton, most probably by fish16. Fish (tench, pike, and unidentified species) were present at Bełchatów4, at least until the middle Miocene. Tench is an omnivore and Pike is zooplanktivorous in its early stages, turning to piscivory in later life. Predation-driven exclusion of these large cladocerans may therefore well have acted in concert with the physical environment.
    Predatory exclusion is seldom absolute, especially in a non-tropical climate with a cold season (‘winter’) during which predation is relaxed. This allows the prey to recover. In Bełchatów, we see no such a recovery, so another factor must have intervened. We suggest this may have been linked to water chemistry. Cladocerans, though of worldwide occurrence, are sensitive to water chemistry, more than the copepods, the second main group making up the zooplankton. We are unable to specify the precise nature behind the chemical exclusion of daphniids, but there are many examples of lakes in which Cladocera are chemically depressed. Sometimes, like in Lake Tanganyika (Africa), and the Mallili lakes (Indonesia), Cladocera are excluded altogether17,18.
    In conclusion, our Miocene assemblage significantly expand our insights in anomopod evolution. They resemble modern faunas but at the same time show stronger signs of evolution at the species and at the genus level than expected under the morphological stasis hypothesis based on Daphnia ephippia. We also find clear indications of a species diversity that resembles todays’, with morphologies that look familiar at first sight but prove divergent in the details.
    Bosminid fossils used to be known from the Pleistocene only, but in the Bełchatów fauna they are remarkably abundant and some of them show an unfamiliar morphology. This is best interpreted as a case of paleo-competitive release. Daphniids normally dominate the pelagic and keep bosminid abundances down. But their absence gives these small crustaceans a chance to prosper and dominate the open waters. More

  • in

    Vertical distribution of brittle star larvae in two contrasting coastal embayments: implications for larval transport

    1.
    Uthicke, S., Schaffelke, B. & Byrne, M. A boom-bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecol. Monogr. 79, 3–24 (2009).
    Google Scholar 
    2.
    Sala, E. & Knowlton, N. Global marine biodiversity trends. Annu. Rev. Environ. Resour. 31, 93–122 (2006).
    Google Scholar 

    3.
    Fabricius, K. E., Okaji, K. & De’ath, G. Three lines of evidence to link outbreaks of the crown-of-thorns seastar Acanthaster planci to the release of larval food limitation. Coral Reefs 29, 593–605 (2010).
    ADS  Google Scholar 

    4.
    Hock, K., Wolff, N. H., Condie, S. A., Anthony, K. R. N. & Mumby, P. J. Connectivity networks reveal the risks of crown-of-thorns starfish outbreaks on the Great Barrier Reef. J. Appl. Ecol. 51, 1188–1196 (2014).
    Google Scholar 

    5.
    Wolfe, K., Graba-Landry, A., Dworjanyn, S. A. & Byrne, M. Larval phenotypic plasticity in the boom-and-bust crown-of-thorns seastar, Acanthaster planci. Mar. Ecol. Prog. Ser. 539, 179–189 (2015).
    ADS  Google Scholar 

    6.
    Pearson, T. H., Josefson, A. B. & Rosenberg, R. Petersen’s benthic stations revisited. I. Is the Kattegatt becoming eutrophic?. J. Exp. Mar. Biol. Ecol. 92, 157–206 (1985).
    Google Scholar 

    7.
    Barnes, D. K. A., Verling, E., Crook, A., Davidson, I. & O’Mahoney, M. Local population disappearance follows (20 yr after) cycle collapse in a pivotal ecological species. Mar. Ecol. Prog. Ser. 226, 311–313 (2002).
    ADS  Google Scholar 

    8.
    Hereu, B. et al. Multiple processes regulate long-term population dynamics of sea urchins on Mediterranean rocky reefs. PLoS ONE 7, e36901 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    9.
    Guillou, M. Biotic and abiotic interactions controlling starfish outbreaks in the Bay of Douarnenez, Brittany, France. Oceonol. Acta 19, 415–420 (1996).
    Google Scholar 

    10.
    Van Nes, E. H., Amaro, T., Scheffer, M. & Duineveld, G. C. A. Possible mechanisms for a marine benthic regime shift in the North Sea. Mar. Ecol. Prog. Ser. 330, 39–47 (2007).
    ADS  Google Scholar 

    11.
    Blanchet-Aurigny, A. et al. Multi-decadal changes in two co-occurring ophiuroid populations. Mar. Ecol. Prog. Ser. 460, 79–90 (2012).
    ADS  Google Scholar 

    12.
    Guillou, M., Blanchet-Aurigny, A. & Le Goaster, E. Density fluctuations of the ophiuroids Ophiothrix fragilis and Ophiocomina nigra in the Bay of Douarnenez, Brittany, France. Mar. Biodivers. Rec. 6, 1–5 (2013).
    Google Scholar 

    13.
    Blanchet-Aurigny, A., Dubois, S. F., Quéré, C., Guillou, M. & Pernet, F. Trophic niche of two co-occurring ophiuroid species in impacted coastal systems, derived from fatty acid and stable isotope analyses. Mar. Ecol. Prog. Ser. 525, 127–141 (2015).
    ADS  CAS  Google Scholar 

    14.
    Murat, A., Méar, Y., Poizot, E., Dauvin, J. C. & Beryouni, K. Silting up and development of anoxic conditions enhanced by high abundance of the geoengineer species Ophiothrix fragilis. Cont. Shelf Res. 118, 11–22 (2016).
    ADS  Google Scholar 

    15.
    Geraldi, N. R. et al. Aggregations of brittle stars can perform similar ecological roles as mussel reefs. Mar. Ecol. Prog. Ser. 563, 157–167 (2017).
    ADS  CAS  Google Scholar 

    16.
    Mortensen, T. Die Echinodermen-larven. Nord. Plankt. 9, 1–30 (1900).
    Google Scholar 

    17.
    Mortensen, T. Studies of the development and larval forms of Echinoderms. Copenhagen 266 pp (1921).

    18.
    Strathmann, R. R. The feeding behavior of planktotrophic echinoderm larvae: mechanisms, regulation, and rates of suspension-feeding. J. Exp. Mar. Biol. Ecol. 6, 109–160 (1971).
    Google Scholar 

    19.
    Cowen, R. K., Gawarkiewicz, G., Pineda, J., Thorrold, S. R. & Werner, F. E. Population connectivity in marine systems: An overview. Oceanography 20, 14–21 (2007).
    Google Scholar 

    20.
    Uthicke, S., Doyle, J., Duggan, S., Yasuda, N. & McKinnon, A. D. Outbreak of coral-eating crown-of-thorns creates continuous cloud of larvae over 320 km of the Great Barrier Reef. Sci. Rep. 5, 1–7 (2015).
    Google Scholar 

    21.
    Pratchett, M. S. et al. Thirty years of research on crown-of-thorns starfish (1986–2016): Scientific advances and emerging opportunities. Diversity 9, 1–50 (2017).
    Google Scholar 

    22.
    Wolfe, K., Graba-Landry, A., Dworjanyn, S. A. & Byrne, M. Superstars: Assessing nutrient thresholds for enhanced larval success of Acanthaster planci, a review of the evidence. Mar. Pollut. Bull. 116, 307–314 (2017).
    CAS  PubMed  Google Scholar 

    23.
    Metaxas, A. & Saunders, M. Quantifying the ‘Bio-’ components in biophysical models of larval transport in marine benthic invertebrates: advances and pitfalls. Biol. Bull. 216, 257–272 (2009).
    PubMed  Google Scholar 

    24.
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).
    PubMed  Google Scholar 

    25.
    Pineda, J., Hare, J. A. & Sponaugle, S. Larval transport and dispersal in the coastal ocean and consequences for population connectivity. Oceanography 20, 22–39 (2007).
    Google Scholar 

    26.
    Shanks, A. L. Pelagic larval duration and dispersal distance revisited. Biol. Bull. 216, 373–385 (2009).
    PubMed  Google Scholar 

    27.
    DiBacco, C., Sutton, D. & McConnico, L. Vertical migration behavior and horizontal distribution of brachyuran larvae in a low-inflow estuary: Implications for bay-ocean exchange. Mar. Ecol. Prog. Ser. 217, 191–206 (2001).
    ADS  Google Scholar 

    28.
    Chia, F. S. Locomotion of marine invertebrate larvae: A review. Can. J. Zool. 62, 1205–1222 (1984).
    Google Scholar 

    29.
    Thiébaut, E., Dauvin, J. C. & Lagadeuc, Y. Transport of Owenia fusiformis larvae (Annelida: Polychaeta) in the Bay of Seine. I. Vertical distribution in relation to water column stratification and ontogenetic vertical migration. Mar. Ecol. Prog. Ser. 80, 29–39 (1992).
    ADS  Google Scholar 

    30.
    Kunze, H. B., Morgan, S. G. & Lwiza, K. M. Field test of the behavioral regulation of larval transport. Mar. Ecol. Prog. Ser. 487, 71–87 (2013).
    ADS  Google Scholar 

    31.
    Miyake, Y. et al. Roles of vertical behavior in the open-ocean migration of teleplanic larvae: A modeling approach to the larval transport of Japanese spiny lobster. Mar. Ecol. Prog. Ser. 539, 93–109 (2015).
    ADS  Google Scholar 

    32.
    Gallager, S. M., Manuel, J. L., Manning, D. A. & O’Dor, R. Ontogenetic changes in the vertical distribution of giant scallop larvae, Placopecten magellanicus, in 9-m deep mesocosms as a function of light, food, and temperature stratification. Mar. Biol. 124, 679–692 (1996).
    Google Scholar 

    33.
    Daigle, R. M. & Metaxas, A. Modeling of the larval response of green sea urchins to thermal stratification using a random walk approach. J. Exp. Mar. Biol. Ecol. 438, 14–23 (2012).
    Google Scholar 

    34.
    Bonicelli, J. et al. Diel vertical migration and cross-shore distribution of barnacle and bivalve larvae in the central Chile inner-shelf. J. Exp. Mar. Biol. Ecol. 485, 35–46 (2016).
    Google Scholar 

    35.
    Lefebvre, A. & Davoult, D. Vertical distribution of the ophioplutei of Ophiothrix fragilis (Echinodermata: Ophiuroidea) in the Dover Strait (Eastern English Channel, France). In Fifth European Conference on Echinoderms—Echinoderm Research 1998 (eds Carnevali, M. D. C. & Bonasoro, F.) 505–509 (Balkema, Rotterdam, 1998).
    Google Scholar 

    36.
    Grünbaum, D. & Strathmann, R. R. Form, performance and trade-offs in swimming and stability of armed larvae. J. Mar. Res. 61, 659–691 (2003).
    Google Scholar 

    37.
    Roy, A., Metaxas, A. & Ross, T. Swimming patterns of larval Strongylocentrotus droebachiensis in turbulence in the laboratory. Mar. Ecol. Prog. Ser. 453, 117–127 (2012).
    ADS  Google Scholar 

    38.
    Sameoto, J. A., Ross, T. & Metaxas, A. The effect of flow on larval vertical distribution of the sea urchin, Strongylocentrotus droebachiensis. J. Exp. Mar. Biol. Ecol. 383, 156–163 (2010).
    Google Scholar 

    39.
    Fuchs, H. L., Gerbi, G. P., Hunter, E. J., Christman, A. J. & Diez, F. J. Hydrodynamic sensing and behavior by oyster larvae in turbulence and waves. J. Exp. Biol. 218, 1419–1432 (2015).
    PubMed  Google Scholar 

    40.
    Wheeler, J. D., Chan, K. Y. K., Anderson, E. J. & Mullineaux, L. S. Ontogenetic changes in larval swimming and orientation of pre-competent sea urchin Arbacia punctulata in turbulence. J. Exp. Biol. 219, 1303–1310 (2016).
    PubMed  PubMed Central  Google Scholar 

    41.
    Strathmann, R. R. & Grünbaum, D. Good eaters, poor swimmers: compromises in larval form. Integr. Comp. Biol. 46, 312–322 (2006).
    PubMed  Google Scholar 

    42.
    Forward, R. B., Cronin, T. W. & Stearns, D. E. Control of diel vertical migration: Photoresponses of a larval crustacean. Limnol. Oceanogr. 29, 146–154 (1984).
    ADS  Google Scholar 

    43.
    Forward, R. B. Behavioral responses of larvae of the crab Rhithropanopeus harrisii (Brachyura: Xanthidae) during diel vertical migration. Mar. Biol. 90, 9–18 (1985).
    Google Scholar 

    44.
    Garland, E. D., Zimmer, C. A. & Lentz, S. J. Larval distributions in inner-shelf waters: The roles of wind-driven cross-shelf currents and diel vertical migrations. Limnol. Oceanogr. 47, 803–817 (2002).
    ADS  Google Scholar 

    45.
    Pennington, J. T. & Emlet, R. B. Ontogenetic and diel vertical migration of a planktonic echinoid larva, Dendraster excentricus (Eschscholtz): Occurrence, causes, and probable consequences. J. Exp. Mar. Biol. Ecol. 104, 69–95 (1986).
    Google Scholar 

    46.
    Lesser, M. P. & Barry, T. M. Survivorship, development, and DNA damage in echinoderm embryos and larvae exposed to ultraviolet radiation (290–400 nm). J. Exp. Mar. Biol. Ecol. 292, 75–91 (2003).
    CAS  Google Scholar 

    47.
    Tauchman, E. C. & Pomory, C. M. Effect of ultraviolet radiation on growth and percent settlement of larval Lytechinus variegatus (Echinodermata: Echinoidea). Invertebr. Reprod. Dev. 55, 152–161 (2011).
    Google Scholar 

    48.
    Metaxas, A. & Burdett-Coutts, V. Response of invertebrate larvae to the presence of the ctenophore Bolinopsis infundibulum, a potential predator. J. Exp. Mar. Biol. Ecol. 334, 187–195 (2006).
    Google Scholar 

    49.
    Raby, D., Lagadeuc, Y., Dodson, J. J. & Mingelbier, M. Relationship between feeding and vertical distribution of bivalve larvae in stratified and mixed waters. Mar. Ecol. Prog. Ser. 103, 275–284 (1994).
    ADS  Google Scholar 

    50.
    Burdett-Coutts, V. & Metaxas, A. The effect of the quality of food patches on larval vertical distribution of the sea urchins Lytechinus variegatus (Lamarck) and Strongylocentrotus droebachiensis (Mueller). J. Exp. Mar. Biol. Ecol. 308, 221–236 (2004).
    Google Scholar 

    51.
    Sameoto, J. A. & Metaxas, A. Interactive effects of haloclines and food patches on the vertical distribution of 3 species of temperate invertebrate larvae. J. Exp. Mar. Biol. Ecol. 367, 131–141 (2008).
    Google Scholar 

    52.
    Birrien, J. L., Wafar, M. V. M., Le Corre, P. & Riso, R. Nutrients and primary production in a shallow stratified ecosystem in the Iroise Sea. J. Plankton Res. 13, 721–742 (1991).
    Google Scholar 

    53.
    Le Corre, P., L’Helguen, S., Morin, P. & Birrien, J. L. Conditions de formation d’eaux colorées toxiques sur le plateau continental Manche-Atlantique; cas de Gyrodinium cf. aureolum. Hydroécologie Appliquée 2, 173–188 (1992).
    Google Scholar 

    54.
    Clay, T. W. & Grünbaum, D. Morphology-flow interactions lead to stage-selective vertical transport of larval sand dollars in shear flow. J. Exp. Biol. 213, 1281–1292 (2010).
    CAS  PubMed  Google Scholar 

    55.
    Soars, N. A. & Byrne, M. Contrasting arm elevation angles of multi- and two-armed sea urchin echinoplutei supports Grünbaum and Strathmann’s hydromechanical model. Mar. Biol. 162, 607–616 (2015).
    Google Scholar 

    56.
    Chan, K. Y. K., Grünbaum, D., Arnberg, M. & Dupont, S. Impacts of ocean acidification on survival, growth, and swimming behaviours differ between larval urchins and brittlestars. ICES J. Mar. Sci. 73, 951–961 (2016).
    Google Scholar 

    57.
    Burke, R. D. Structure of the digestive tract of the pluteus larva of Dendraster excentricus (Echinodermata: Echinoida). Zoomorphology 98, 209–225 (1981).
    Google Scholar 

    58.
    Chadwick, H. C. Echinoderm larvae. L.M.B.C. Mem. XXII (1914).

    59.
    Mileikovsky, S. A. Speed of active movement of pelagic larvae of marine bottom invertebrates and their ability to regulate their vertical position. Mar. Biol. 23, 11–17 (1973).
    Google Scholar 

    60.
    Fortier, L. & Leggett, W. C. Fickian transport and the dispersal of fish larvae in estuaries. Can. J. Fish. Aquat. Sci. 39, 1150–1163 (1982).
    Google Scholar 

    61.
    Knights, A. M., Crowe, T. P. & Burnell, G. Mechanisms of larval transport: Vertical distribution of bivalve larvae varies with tidal conditions. Mar. Ecol. Prog. Ser. 326, 167–174 (2006).
    ADS  Google Scholar 

    62.
    Rigal, F., Viard, F., Ayata, S. D. & Comtet, T. Does larval supply explain the low proliferation of the invasive gastropod Crepidula fornicata in a tidal estuary?. Biol. Invasions 12, 3171–3186 (2010).
    Google Scholar 

    63.
    Herbert, R. J. H. et al. Invasion in tidal zones on complex coastlines: Modelling larvae of the non-native Manila clam, Ruditapes philippinarum, in the UK. J. Biogeogr. 39, 585–599 (2012).
    Google Scholar 

    64.
    Hock, K. et al. Controlling range expansion in habitat networks by adaptively targeting source populations. Conserv. Biol. 30, 856–866 (2016).
    PubMed  Google Scholar 

    65.
    Dupont, S., Havenhand, J., Thorndyke, W., Peck, L. & Thorndyke, M. Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Mar. Ecol. Prog. Ser. 373, 285–294 (2008).
    ADS  CAS  Google Scholar 

    66.
    Strathmann, R. R., Fenaux, L. & Strathmann, M. F. Heterochronic developmental plasticity in larval sea urchins and its implications for evolution of nonfeeding larvae. Evolution 46, 972–986 (1992).
    PubMed  Google Scholar 

    67.
    Augris, C. et al. Atlas thématique de l’environnement marin de la baie de Douarnenez (Finistère). Edition IFREMER, Brest (2005).

    68.
    Bodin, P., Boucher, D., Guillou, J. & Guillou, M. The trophic system of the benthic communities in the bay of Douarnenez (Brittany). In Proceedings of the 19th European Marine Biology Symposium, Plymouth, Devon, UK, 16–21 September 1984 (ed Gibbs, P. E.) 361–370 (Cambridge University Press, 1985).

    69.
    Blanchet, A., Chevalier, C., Gaffet, J. & Hamon, D. Bionomie benthique subtidale en baie de Douarnenez. DEL/EC/BB.RST.04.01, Ifremer (2004).

    70.
    Del Amo, Y. et al. Impacts of high-nitrate freshwater inputs on macrotidal ecosystems. I. Seasonal evolution of nutrient limitation for the diatom-dominated phytoplankton of the Bay of Brest (France). Mar. Ecol. Prog. Ser. 161, 213–224 (1997).
    ADS  Google Scholar 

    71.
    Bowmer, T. Reproduction in Amphiura filiformis (Echinodermata: Ophiuroidea): Seasonality in gonad development. Mar. Biol. 68, 281–290 (1982).
    Google Scholar 

    72.
    Lefebvre, A., Davoult, D., Gentil, F. & Janquin, M. Spatio-temporal variability in the gonad growth of Ophiothrix fragilis (Echinodermata: Ophiuroidea) in the English Channel and estimation of carbon and nitrogen outputs towards the pelagic system. Hydrobiologia 414, 25–34 (1999).
    Google Scholar 

    73.
    Narasimhamurti, N. The development of Ophiocoma nigra. Q. J. Microsc. Sci. 76, 63–88 (1933).
    Google Scholar 

    74.
    Morgan, R. & Jangoux, M. Larval morphometrics and influence of adults on settlement in the gregarious ophiuroid Ophiothrix fragilis (Echinodermata). Biol. Bull. 208, 92–99 (2005).
    PubMed  Google Scholar 

    75.
    Dupont, S., Thorndyke, W., Thorndyke, M. C. & Burke, R. D. Neural development of the brittlestar Amphiura filiformis. Dev. Genes Evol. 219, 159–166 (2009).
    PubMed  Google Scholar 

    76.
    Schlitzer, R. Ocean Data View. odv.awi.de (2018).

    77.
    Lazure, P. & Dumas, F. An external-internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Adv. Water Resour. 31, 233–250 (2008).
    ADS  Google Scholar 

    78.
    Jouanneau, N., Sentchev, A. & Dumas, F. Numerical modelling of circulation and dispersion processes in Boulogne-sur-mer harbour (Eastern English Channel): Sensitivity to physical forcing and harbour design. Ocean Dyn. 63, 1321–1340 (2013).
    ADS  Google Scholar 

    79.
    Smagorinsky, J. General circulation experiments with the primitive equation. I. The basic experiment. Mon. Weather Rev. 111, 99–165 (1963).
    ADS  Google Scholar 

    80.
    Lazure, P., Garnier, V., Dumas, F., Herry, C. & Chifflet, M. Development of a hydrodynamic model of the Bay of Biscay: Validation of hydrology. Cont. Shelf Res. 29, 985–997 (2009).
    ADS  Google Scholar 

    81.
    Caillaud, M., Petton, S., Dumas, F., Rochette, S. & Mickael, V. Rejeu hydrodynamique à 500 m de résolution avec le modèle MARS3D-AGRIF-Zone Manche-Gascogne. Ifremer https://doi.org/10.12770/3edee80f-5a3e-42f4-9427-9684073c87f5 (2016).
    Article  Google Scholar 

    82.
    Frontier, S. Sur une méthode d’analyse faunistique rapide du zooplancton. J. Exp. Mar. Biol. Ecol. 3, 18–26 (1969).
    Google Scholar 

    83.
    MacBride, E. W. The development of Ophiothrix fragilis. J. Cell Sci. 51, 557–606 (1907).
    Google Scholar 

    84.
    Mortensen, T. Handbook of the Echinoderms of the British Isles (Oxford University Press, London, 1927).
    Google Scholar 

    85.
    Geiger, S. R. Echinodermata: Larvae. Classes: Ophiuroidea and Echinoidea (Plutei). In Fiches d’identification du zooplancton, Sheet 105 (eds Fraser, J. H. & Hansen, V. K.) 1–5 (Andr. Fred. Høst & Fils, Copenhagen, 1964).
    Google Scholar 

    86.
    Stöhr, S. Who’s who among baby brittle stars (Echinodermata: Ophiuroidea): Postmetamorphic development of some North Atlantic forms. Zool. J. Linn. Soc. 143, 543–576 (2005).
    Google Scholar 

    87.
    Planque, B., Lazure, P. & Jegou, A. M. Typology of hydrological structures modelled and observed over the Bay of Biscay shelf. Sci. Mar. 70, 43–50 (2006).
    Google Scholar 

    88.
    Tapia, F. J., DiBacco, C., Jarrett, J. & Pineda, J. Vertical distribution of barnacle larvae at a fixed nearshore station in southern California: stage-specific and diel patterns. Estuar. Coast. Shelf Sci. 86, 265–270 (2010).
    ADS  Google Scholar 

    89.
    Beet, A., Solow, A. R. & Bollens, S. M. Comparing vertical plankton profiles with replication. Mar. Ecol. Prog. Ser. 262, 285–287 (2003).
    ADS  Google Scholar 

    90.
    Hayek, L.-A. C. & Buzas, M. A. Surveying natural populations: quantitative tools for assessing biodiversity (Columbia University Press, New York, 1997).
    Google Scholar 

    91.
    Rowe, P. M. & Epifanio, C. E. Flux and transport of larval weakfish in Delaware Bay, USA. Mar. Ecol. Prog. Ser. 110, 115–120 (1994).
    ADS  Google Scholar  More