More stories

  • in

    Genetic diversity and structure in wild Robusta coffee (Coffea canephora A. Froehner) populations in Yangambi (DR Congo) and their relation to forest disturbance

    Aguilar R, Cristóbal-Pérez ED, Balvino-Olvera FJ, Aguilar-Aguilar MDJ, Aguirre-Acosta N, Ashworth L et al. (2019) Habitat fragmentation reduces plant progeny quality: a global synthesis. Ecol Lett 22:1163–1173Article 

    Google Scholar 
    Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqcBarlow J, Lennow GD, Ferreira J, Berenguer E, Lees AC, Nally RM et al. (2016) Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535:144–147Article 
    CAS 

    Google Scholar 
    Barret SC, Eckert CG (1990) Current issues in plant reproductive ecology. Isr J Plant Sci 39:5–12
    Google Scholar 
    Bawa KS, Bullock SH, Perry DR, Coville RE, Grayum MH (1985) Reproductive biology of tropical lowland rain forest trees II. Pollination systems. Am J Bot 72:346–356Article 

    Google Scholar 
    Bello C, Galetti M, Pizo MA, Magnago LFS, Roch MF, Lima RA, et al. (2015) Defaunation affects carbon storage in tropical forests. Sci Adv 1:e1501105. https://doi.org/10.1126/sciadv.1501105Blouin MS (2003) DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends Ecol Evol 18:503–511Article 

    Google Scholar 
    Born C, Kjellberg F, Chevallier M-H, Vignes H, Dikangadissi J-T, Sanguié J et al. (2008) Colonization processes and the maintenance of genetic diversity: insight from a pioneer rainforest tree, Aucoumea Klaineana. Proc R Soc B 275:2171–2179Article 

    Google Scholar 
    Braun M, Dantas L, Esposito T, Pedrosa-Harand A (2020) Strong genetic differentiation on a small geographic scale in the Neotropical rainforest understory tree Paypayrola blanchetiana (Violaceae). Tree Genet Genomes. https://doi.org/10.1007/s11295-020-01477-5Campbell AJ, Carvalheiro LG, Maués MM, Jaffé R, Giannini TC, Freitas MAB et al. (2018) Anthropogenic disturbance of tropical forests threatens pollination services to açai palm in the Amazon river delta. J Appl Ecol 55:1725–1736Article 

    Google Scholar 
    Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience https://doi.org/10.1186/s13742-015-0047-8Chiriboga-Arroyo F, Jansen M, Bardales-Lozano R, Ismail SA, Thomas E, Garcia M et al. (2021) Genetic threats to the Forest Giants of the Amazon: Habitat degradation effects on the socio-economically important Brazil nut tree (Bertholletia excelsa). Plants People Planet 3:194–210Article 

    Google Scholar 
    Cramer PJS, Wellman FL (1957) Review of literature of coffee research in Indonesia. SIC Editorial, Inter-American Institute of Agricultural SciencesCraparo ACW, Van Asten PJ, Läderach P, Jassogne LT, Grab SW (2015) Coffea arabica yields decline in Tanzania due to climate change: Global implications. Agric Meteorol 207:1–10Article 

    Google Scholar 
    Cubry P, De Bellis F, Pot D, Musoli P, Leroy P (2013) Global analysis of Coffea canephora Pierre ex Froehner (Rubiaceae) from the Guineo-Congolese region reveals impacts from climatic refuges and migration effects. Genet Resour Crop Evol 60:483–501Article 

    Google Scholar 
    Curtis PG, Slay CM, Harris NL, Tyukavina A, Hansen MC (2018) Classifying drivers of global forest loss. Science 361:1108–1111Article 
    CAS 

    Google Scholar 
    Da Silva JMC, Tabarelli M (2000) Tree species impoverishment and the future flora of the Atlantic forest of northeast Brazil. Nature 404:72–74Article 

    Google Scholar 
    Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA et al. (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158Article 
    CAS 

    Google Scholar 
    Davis AP, Gole TW, Baena S, Moat J (2012) The impact of climate change on indigenous arabica coffee (Coffea arabica): predicting future trends and identifying priorities. PLoS One. https://doi.org/10.1371/journal.pone.0047981Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M et al. (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345:1181–1184Article 
    CAS 

    Google Scholar 
    Depecker J, Asimonyio JA, Miteho R, Hatangi Y, Kambale J-L, Verleysen L, et al. (2022) The association between rainforest disturbance and recovery, tree community composition, and community traits in the Yangambi area in the Democratic Republic of the Congo. J Trop Ecol. https://doi.org/10.1017/S0266467422000347Dick CW, Etchelecu G, Austerlitz F (2003) Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest. Mol Ecol 12:753–764Article 

    Google Scholar 
    Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bull 19:11–15
    Google Scholar 
    Edwards DP, Socolar JB, Mills SC, Burivalova Z, Koh LP, Wilcove DS (2019) Conservation of tropical forests in the Anthropocene. Curr Biol 29:R1008–R1020Article 
    CAS 

    Google Scholar 
    El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839Article 
    CAS 

    Google Scholar 
    Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES et al. (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. https://doi.org/10.1371/journal.pone.0019379Ernst C, Mayaux P, Verhegghen A, Bodart C, Christophe M, Defourny P (2013) National forest cover change in Congo Basin: deforestation, reforestation, degradation and regeneration for the years 1990, 2000 and 2005. Glob Chang Biol 19:1173–1187Article 

    Google Scholar 
    Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620Article 
    CAS 

    Google Scholar 
    FAO, UNEP (2020) The State of the World’s Forests 2020. In Forests, bio-diversity and people. FAO and UNEPFerrão RG, da Fonseca AFA, Ferrão MAG, De Mune LH (2019) Conilon Coffee: the Coffea canephora produced in Brazil. Incaper, Vitória-ES, Brasil
    Google Scholar 
    Gardner TA, Barlow J, Chazdon R, Ewers RM, Harvey CA, Peres CA et al. (2009) Prospects for tropical forest biodiversity in a human‐modified world. Ecol Lett 12:561–582Article 

    Google Scholar 
    García-Fernández C, Sánchez JA, Blanco G (2018) SNP-haplotypes: An accurate approach for parentage and relatedness inference in gilthead sea bream (Sparus aurata). Aquaculture 495:582–591Article 

    Google Scholar 
    Gomez C, Dussert S, Hamon P, Hamon S, De Kochko A, Poncert V (2009) Current genetic differentiation of Coffea canephora pierre ex a. Froehn in the guineo-Congolian african zone: Cumulative impact of ancient climatic changes and recent human activities. BMC Evol Biol 9:167Article 

    Google Scholar 
    Goudet J (2013) hierfstat: estimation and tests of hierarchical F-statistics. R Package version 0:04–10. http://CRAN.R-project.org/package=hierfstatHubbell SP, Foster RB (1986) Biology, chance and history and the structure of tropical rain forest tree communities. In: Diamond JM, Case TJ (eds) Community ecology. Harper and Row, New York, NY, p 314–329
    Google Scholar 
    ICO (2022) Coffee Market Report: August 2022. Donwloaded from International Coffee Organization https://www.ico.org/documents/cy2021-22/cmr-0822-e.pdfIsmail SA, Ghazoul J, Ravikanth G, Kushalappa CG, Uma Shaanker R, Kettle CJ (2017) Evaluating realized seed dispersal across fragmented tropical landscapes: A two‐fold approach using parentage analysis and the neighbourhood model. N Phytol 214:1307–1316Article 
    CAS 

    Google Scholar 
    Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405Article 
    CAS 

    Google Scholar 
    Jombart T, Collins C (2015) Analysing genome-wide SNP data using adegenet 2.0.0. https://adegenet.r-forge.r-project.org/files/tutorial-genomics.pdfJones AG, Small CM, Paczolt KA, Ratterman NL (2010) A practical guide to methods of parentage analysis. Mol Ecol Resour 10:6–30Article 

    Google Scholar 
    Jones OR, Wang J (2012) A comparison of four methods for detecting weak genetic structures from maker data. Ecol Evol 2:1048–1055Article 

    Google Scholar 
    Kalinowski ST, Wagner AP, Taper ML (2006) ML-Relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579Article 
    CAS 

    Google Scholar 
    Kearsley E, Verbeeck H, Hufkens K, Van, de Perre F, doetterl S, Baert G et al. (2017) Functional community structure of African monodominant Gilbertiodendron dewevrei forest influenced by local environmental filtering. Ecol Evol 7:295–304Article 

    Google Scholar 
    Kier G, Mutke J, Dinerstein E, Ricketss TH, Küper W, Kreft H et al. (2005) Global patterns of plant diversity and floristic knowledge. J Biogeogr 32:1107–1116Article 

    Google Scholar 
    Kiwuka C, Goudsmit E, Tournebize R, Oliveir de Aquino S, Douma JC, Bellanger L et al. (2021) Genetic diversity of native and cultivated Ugandan Robusta coffee (Coffea canephora Pierre ex A. Froehner): Climate influences, breeding potential and diversity conservation. PLoS One 16:e0245965Article 
    CAS 

    Google Scholar 
    Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci USA 104:5925–5930Article 
    CAS 

    Google Scholar 
    Lachenaud P, Zhang D (2008) Genetic diversity and population structure in wild stands of cacao trees (Theobroma cacao L.) in French Guiana. Ann For Sci. https://doi.org/10.1051/forest:2008011Lashermes P, Combes MC, Ribas A, Cenci A, Mahé L, Etienne H (2010) Genetic and physical mapping of the SH3 region that confers resistance to leaf rust in coffee tree (Coffea arabica L.). Tree Genet Genomes 6:973–980Article 

    Google Scholar 
    Leroy T, Marraccini P, Dufour M, Montagnon C, Lashermes P, Sabau X et al. (2005) Construction and characterization of a Coffea canephora BAC library to study the organization of sucrose biosynthesis genes. Theor Appl Genet 111:1031–1041Article 

    Google Scholar 
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 14:2078–2079Article 

    Google Scholar 
    Li YL, Liu JX (2018) StructureSelector: A web‐based software to select and visualize the optimal number of clusters using multiple methods. Mol Ecol Resour 18:176–177Article 

    Google Scholar 
    Makelele IA, Verheyen K, Boeckx P, Ntaboba LC, Bazirake BM, Ewango C et al. (2021) Afrotropical secondary forests exhibit fast diversity and functional recovery, but slow compositional and carbon recovery after shifting cultivation. J Veg Sci 32:1–13Article 

    Google Scholar 
    Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12Article 

    Google Scholar 
    Mateu-Andrés I, De Paco L (2006) Genetic diversity and the reproductive system in related species of Antirrhinum. Ann Bot 98:1053–1060Article 

    Google Scholar 
    Mayr E (1954) Change of genetic environment and evolution. In: Huxley A, Hardy AC, Ford EB (eds) Evolution as a process. Allen and Unwin, London, p 157–180
    Google Scholar 
    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al. (2010) The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303Article 
    CAS 

    Google Scholar 
    Merot-L’anthoene V, Tournebize R, Darracq O, Rattina V, Lepelley M, Bellanger L et al. (2019) Development and evaluation of a genome-wide Coffee 8.5K SNP array and its application for high-density genetic mapping and for investigating the origin of Coffea arabica L. Plant Biotechnol J 17:1418–1430Article 

    Google Scholar 
    Musoli P, Cubry P, Aluka P, Billot C, Dufour M, De Bellis F et al. (2009) Genetic differentiation of wild and cultivated populations: diversity of Coffea canephora Pierre in Uganda. Genome 52:634–646Article 
    CAS 

    Google Scholar 
    Neushulz EL, Mueller T, Schleuning M, Böhning-Gaese K (2016) Pollination and seed dispersal are the most threatened processes of plant regeneration. Sci Rep 6:1–6
    Google Scholar 
    Norden N, Chazdon RL, Chao A, Jiang YH, Vilchez-Alvarado B (2009) Resilience of tropical rain forests: tree community reassembly in secondary forests. Ecol Lett 12:385–394Article 

    Google Scholar 
    Nowak MD, Davis AP, Anthony F, Yoder AD (2011) Expression and trans-specific polymorphism of self-incompatibility RNases in Coffea (Rubiaceae). PLoS One. https://doi.org/10.1371/journal.pone.0021019Nyakaana S (2007) Microgeographical genetic structure of forest robusta coffee (Coffea canephora, Pierre), in Kibale National Park, Uganda. Afr J Ecol 45:71–75Article 

    Google Scholar 
    Oberleitner F, Egger C, Oberdorfer S, Dullinger S, Wanek W, Hietz P (2021) Recovery of aboveground biomass, species richness and composition in tropical secondary forests in SW Costa Rica. Ecol Manag 479:118580Article 

    Google Scholar 
    Olsson O, Nuñez-Iturri G, Smith HG, Ottosson U, Effium EO (2019) Competition, seed dispersal and hunting: what drives germination and seedling survival in an Afrotropical forest? AoB Plants https://doi.org/10.1093/aobpla/plz018Oryem-Origa H (1999) Fruit and seed ecology of wild Robusta coffee (Coffea canephora Froehner) in Kibale National Park. Uganda Afr J Ecol 37:439–448Article 

    Google Scholar 
    Peakall R, Smouse RPP (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539Article 
    CAS 

    Google Scholar 
    Podani J (2000) Introduction to the exploration of multivariate biological data. Backhuys Publishers, Kerkwere
    Google Scholar 
    Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome. https://doi.org/10.3835/plantgenome2012.05.0005Poorter L, Craven D, Jakovac CC, van der Sande MT, Amissah L, Bongers F et al. (2021) Multidimensional tropical forest recovery. Science 374:1370–1376Article 
    CAS 

    Google Scholar 
    Raj A, Stephens M, Pritchard JK (2014) fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197:573–589Article 

    Google Scholar 
    RStudio Team (2016) RStudio: Integrated Development for RSasaki N, Putz FE (2009) Critical need for new definitions of “forest” and “forest degradation” in global climate change agreements. Conserv Lett 2:226–232Article 

    Google Scholar 
    Sezen UU, Chazdon RL, Holsinger KE (2007) Multigenerational genetic analysis of tropical secondary regeneration in a canopy palm. Ecology 88:3065–3075Article 

    Google Scholar 
    Schaumont D, Veeckman E, Van der Jeugt F, Haegeman A, van Glabeke S, Bawin Y et al. (2022) Stack Mapping Anchor Points (SMAP): a versatile suite of tools for read-backed haplotyping. Preprint at bioRxiv https://doi.org/10.1101/2022.03.10.483555Shapiro AC, Grantham HS, Aguilar-Amuchastegui N, Murray NJ, Gond V, Bonfils D, et al. (2021) Forest condition in the Congo Basin for the assessment of ecosystem conservation status. Ecol Indic. https://doi.org/10.1016/j.ecolind.2020.107268Silva MDC, Várzea V, Guerra-Guimarães L, Azinheira HG, Fernandez D, Petitot AS et al. (2006) Coffee resistance to the main diseases: leaf rust and coffee berry disease. Braz J Plant Physiol 18:119–147Article 
    CAS 

    Google Scholar 
    Theim TJ, Shirk RY, Givnish TJ (2014) Spatial genetic structure in four understorey Psychotria species (Rubiaceae) and implications for tropical forest diversity. Am J Bot 101:1189–1199Article 

    Google Scholar 
    Torti SD, Coley PD, Kursar TA (2001) Causes and consequences of monodominance in tropical lowland forests. Am Nat 157:141–153Article 
    CAS 

    Google Scholar 
    Tyukavina A, Hansen MC, Potapov P, Parker D, Okpa C, Stehman SV, et al. (2018) Congo Basin forest loss dominated by increasing smallholder clearing. Sci Adv. https://doi.org/10.1126/sciadv.aat2993Vanden Abeele S, Janssens SB, Asimonyio Anio J, Bawin Y, Depecker J, Kambale B et al. (2021) Genetic diversity of wild and cultivated Coffea canephora in northeastern DR Congo and the implications for conservation. Am J Bot 108:2425–2434Article 

    Google Scholar 
    Vandepitte K, Gristina AS, De Hert K, Meekers T, Roldán-Ruiz I, Honnay O (2012) Recolonization after habitat restoration leads to decreased genetic variation in populations of a terrestrial orchid. Mol Ecol 21:4206–4215Article 
    CAS 

    Google Scholar 
    Van Vliet N, Muhindo J, Kbale Nyumu J, Mushagalusa O, Nasi R (2018) Mammal depletion processes as evidenced from spatially explicit and temporal local ecological knowledge. Trop Conserv Sci 11:1–16
    Google Scholar 
    Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935Article 
    CAS 

    Google Scholar 
    Vranckx G, Jacquemyn H, Muys B, Honnay O (2012) Meta‐analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation. Conserv Biol 26:228–237Article 

    Google Scholar 
    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CAS 

    Google Scholar 
    Wellman FL (1961) Coffee. Botany, cultivation, and utilization. Leonard Hill, London
    Google Scholar 
    Widmer A, Lexer C (2001) Glacial refugia: sanctuaries for allelic richness, but not for gene diversity. Trends Ecol Evol 16:267–269Article 
    CAS 

    Google Scholar 
    Wright S (1932) The role of mutation, inbreeding, crossbreeding and selection in evolution. In: Proceedings of the sixth international congress of genetics. pp 356–366.Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End read merger. Bioinformatics 30:614–620Article 
    CAS 

    Google Scholar  More

  • in

    Spatio-temporal patterns of Synechococcus oligotypes in Moroccan lagoonal environments

    In a previous study18, we used bioinformatics tools to analyze the metagenome and the amplicon 16S sequences to gain an insight into microbial diversity in Moroccan lagoons, namely Marchica and Oualidia. 16S rRNA gene classification revealed a high percentage of bacteria in both lagoons. On average, bacteria accounted for 90% of the total prokaryotes in Marchica and ~ 70% in Oualidia. The five phyla that were the most abundant in both lagoons, Marchica and Oualidia, respectively, were Proteobacteria (53.62%, 29.18%), Bacteroidetes (16.46%, 43.49%), Cyanobacteria (0.53%, 34.35%), Verrucomicrobia (1.75%, 15.82%), and Actinobacteria (7.42%, 13.98%). At the genus level, we found that the highest assigned hits were attributed to Synechococcus, which was highly abundant in Marchica (32%) compared to Oualidia (0.07%) in 2014. This amount dropped to 22% in Marchica and 0.04% in Oualidia in 2015. Hence, in this study we performed the analysis of the Synechococcus genus community using oligotyping to investigate their dynamics and understand their co-occurrence and covariation in space and time within fragile ecosystems such as lagoons.We may divide our results into two emerging Synechococcus communities: one dominated in 2014 and the other was less present in 2015, each composed of different cooccurring Synechococcus oligotypes. The abundant Synechococcus community in Marchica in 2014 consisted of clades I, 5.3, III, IV, and VII. These clades are typically found in either warmer or more oligotrophic environments19,20. This result is in accordance with Marchica’s environmental characteristics; it is an oligotrophic ecosystem with high primary production and warmer water in summer21. The community included clades CB5 and WPC1 in Marchica 2014 and 2015 when the number of Synechococcus reads was lower. Strains belonging to the CB5 clade lack phycourobilin (PUB), contain one motile strain22,23, are present in temperate coastal waters and are prevalent in polar/subpolar waters24,25,26. WPC1 strains are observed in open-ocean and near-shore waters1,24,27. Clades IV and I usually co-occur and are more prevalent in cold coastal waters19,28,29,30. Interestingly, Clade III was prominent in Marchica. This clade is known to be motile and restricted to warm, oligotrophic water19,20,30. Although at a smaller read number, clade III was also observed in Oualidia, where the temperature is cooler compared to Marchica. Furthermore, we found that clade III growth has been shown to be severely affected at low temperatures30. Moreover, representatives of both clades I and IV were present in Oualidia in both the summers of 2014 and 2015. Some Synechococcus strains, which are known to prefer cooler water temperatures and salinities, were in higher relative abundance in the waters of Marchica. This result agrees with a previous study showing that Synechococcus isolates of clades I and IV exhibited temperature preferences31. Their growth rates were marginally lower at low temperatures in strains from clades I and IV, which were dominant in temperate regions.Nitrate levels are typically low or undetectable in these lagoons, which allows the persistence of clades that would not typically thrive in coastal waters at other times of the year. In 2014, the nitrate concentration was higher than the average of 10 mg/l, which could be due to increased agricultural activities and wastewater treatment plant effluent21. The decreasing nitrate concentration in Marchica in 2015 could be explained by the newly installed inlet in 2010, which was designed to improve water exchange with the open sea and reduce the amount of suspended matter21. Temperature and salinity have a large effect on nitrate in marine ecosystems32; the highest nitrate degradation rates were observed at 35 °C and at increasing salinity rates. Therefore, we expected to see correlations between salinity, temperature and nitrate concentrations. Interestingly, clades CB5 in Marchica and IV in Oualidia increased in relative abundance in summer 2015 compared to 2014, when the nitrate concentration decreased. Moreover, the Synechococcus microbial community diversity and density are variables depending on the variations in the physical and chemical parameters. These parameters are strongly influenced by the marine waters passing through the artificial inlets, which have an impact on the internal hydrodynamics of both lagoons and hence the distribution and co-occurrence of Synechococcus strains. In addition, anthropogenic activities also have a great influence on Synechococcales population growth and interactions with their viruses33,34.This study revealed some differences between Marchica and Oualidia in identified Synechococcus clades. The Marchica lagoon showed more heterogeneity (clades I, II, III, IV, VII, VIII, 5.3, WPC1, CB5, and IX) than the Oualidia lagoon, where fewer clades were identified (I, III, IV, and VII). There was a clear variation in the pattern of correlation between oligotypes of the same or different clades for both the 2014 and 2015 samplings. Furthermore, we observed complex patterns of co-occurrence among oligotypes; in 2014 (clades I, III, IV, 5.3, VII), and in 2015, we found clades CB5 and WPC1. In Oualidia, values decreased in comparison to Marchica in both 2014 and 2015 summer samplings, following a pattern of co-occurrence, especially for both clades I and IV in both sampling years. Many studies have shown that the relative proportions of cooccurring Synechococcus populations to each other at the clade and subclade levels vary in space and time based on environmental factors such as seasonal temperature fluctuations, nutrient availability and upwelling, circulation patterns, and abundance of other phytoplankton8.We presume that the greater variability in oligotype co-occurrence behavior observed in Marchica Lagoon, especially in the summer of 2014, could be due to the higher abundance and diversity of Synechococcus oligotypes, physico-chemical parameter fluctuations or rehabilitation of the lagoon.Less abundant oligotypes could also be considered potential bioindicators of Synechococcus genetic diversity. Their seasonal occurrence might contribute to changing ecological and biogeochemical characteristics of the marine environment35. The Synechococcus relative abundance count revealed that the Marchica Synechococcus community included the least abundant oligotypes in 2015. For instance, O7 and O8 were detected in 2014 and were absent in 2015 (Table 1). It is unclear which factors served to constrain the relative abundances of these least present oligotypes, but temperature and salinity could have an impact on their distribution in Marchica (Fig. 4) and the opposite for Oualidia, which are cooler-temperature adapted ones. We noticed that the relative abundance of cooccurring Synechococcus was not constant. For instance, oligotype 4 belonging to Clade IV showed higher values in summer 2014 (974 reads) in Marchica compared to summer 2015 (319 reads), and the opposite was observed in Oualidia, with a lower abundance compared to Marchica. Increased values of cooccurring clade I oligotypes (14, 26, and 6) were detected in the summer of 2014 in both lagoons.Figure 4Principle component analysis of Synechococcus oligotype relative abundance. The plot is generated using the relative abundance of each oligotype, T temperature, S Salinity, and NO3− Nitrate. Each point represents an oligotype. Colors represent the year of sampling; red for 2014 and blue for 2015. The shape of point indicates the sampling site; rounded points refer to Marchica lagoon, and triangles refer to Oualidia. Circles represent the normal distribution of oligotypes; the red circle refers to 2014, and the blue one refers to 2015.Full size imageIn comparing our results with a study from Little Sippewissett Marsh (LSM)8 that used oligotyping to investigate the distribution of the genus Synechococcus in space and time sequencing the V4-V6 hypervariable region of the 16S rRNA gene, we found 31 oligotypes, while they identified 12. In both studies, the proportion of Synechococcus oligotypes increased in summer and in coastal waters compared to estuaries. In addition, Clades I and IV were more abundant in saline conditions, such as Marchica Lagoon. However, these clades were found in greater relative abundances at cold temperatures, in contrast to our study, where they were identified in Marchica’s warm waters. Moreover, clade CB5 tended to be prominent at relatively warm temperatures (17–20 °C)6. In our work, it was not prevalent either in cooler or warmer water. Notably, the relative abundance of rare oligotypes was higher in warm hypersaline estuary waters8,18, while in our case study, they occurred in cooler moderately saline Oualidia waters.The dominance of a certain clade could have many different ecological ramifications, especially as the clades can be incredibly diverse in their growth, loss, nutrient utilization and other attributes. The dominant clade’s growth and loss patterns will set the stage for the population dynamics. For instance, if the dominant clade only blooms in a given environmental factor such as temperature, light, or salinity, it will then affect the timing of blooms, and follow-on the effects of subsequent grazing, lysis or even biogeochemical cycling. Even if the population is diverse, the dynamics as a whole will be a composite response of each individual clade’s ecophysiology, making it important to understand their composition and how it changes over space and time.While the rpoC1 gene is a higher resolution diversity marker36, 16S amplicon data can be used for exploring the entire bacterial assemblage including Synechococcus clade designations via oligotyping35. The latter has a great advantage in answering unexplained diversity contained in taxa using 16S rRNA gene sequences. Nevertheless, it has some limitations, as it acts optimally only when performed on taxa that are closely related. Regarding distantly related taxa, the high number of increased-entropy locations makes the supervision steps difficult. In addition, although oligotyping does not rely on clustering conditions or availability of existing reads within reference databases, it demands preliminary operational taxonomic unit clustering to find closely related species appropriate for the analysis. This method is under continuous improvement to better exploit the information within subtle variations in 16S rRNA gene sequences5.In conclusion, we explored the patterns of Synechococcus diversity in space and time using an oligotyping approach to examine these populations in lagoon waters of Mediterranean Marchica and Atlantic Oualidia, in Morocco. Patterns that have been observed at the clade and subclade levels, such as Synechococcus, relative abundance and the co-occurrence of groups from different clades, were shown to occur among oligotypes. The Marchica Lagoon showed a heterogeneous Synechococcus diversity compared to Oualidia in summer 2014. Thirty-one Synechococcus oligotypes were identified. Two distinct communities emerged in the 2014 and 2015 summer samplings, abundant and rare Synechococcus species, each comprising cooccurring Synechococcus oligotypes from different clades. Network analysis showed that six oligotypes were exclusive to Marchica Lagoon. The identified clades I, III, IV, VII, and 5.3 in Marchica were in accordance with its environmental characteristics. In addition, the relative abundance of some cooccurring Synechococcus strains was not constant over time and space (e.g., clades I and IV). Using gene oligotyping, we illustrated some of the challenges associated with the identification of novel Synechococcus strains or studied their co-occurrence in space and time. Oligotyping has been instrumental in discriminating closely related Synechococcus strains. However, this study leaves open questions about how samples differ by location and whether locations differ from year to year. Do cooccurring oligotypes interact with each other and to what extent do they correlate with physicochemical parameters? What triggers the coexistence of clades I and IV with clade III in warm water or 5.3 with VII, which do not know much about. Finally, how do relative abundances change over seasons. Hence, future work needs to consider additional stations and seasons to provide better statistical support for our findings and to better understand their correlation with physical and chemical environmental parameters. Other factors were not considered in this study, such as nutrient availability, chlorophyll, irradiance, viral lysis, and greater sequencing depth, which could also influence the observed seasonal dynamics. More

  • in

    Prediction of tide level based on variable weight combination of LightGBM and CNN-BiGRU model

    LightGBMBefore explaining LightGBM23, it is necessary to introduce XGBoost24, which is also based on the gradient boosting decision tree (GBDT) algorithm30. XGBoost integrates multiple classification and regression trees (CART) to compensate for the lack of prediction accuracy of a single CART. It is an improved boosting algorithm based on GBDT, which is popular due to its high processing speed, high regression accuracy and ability to process large-scale data31. However, XGBoost uses a presorted algorithm to find data segmentation points, which takes up considerable memory in the calculation and seriously affects cache optimization.LightGBM is improved based on XGBoost. It uses a histogram algorithm to find the best data segmentation point, which occupies less memory and has a lower complexity of data segmentation. The flow of the histogram algorithm to find the optimal segmentation point is shown in Fig. 3.Figure 3Histogram algorithm.Full size imageMoreover, LightGBM abandons the levelwise decision tree growth strategy used by most GBDT tools and uses the leafwise algorithm with depth limitations. This leaf-by-leaf growth strategy can reduce more errors and obtain better accuracy. Decision trees in boosting algorithms may grow too deep while training, leading to model overfitting. Therefore, LightGBM adds a maximum depth limit to the leafwise growth strategy to prevent this from happening and maintains its high computational efficiency. To summarize, LightGBM can be better and faster used in industrial practice and is also very suitable as the base model in our tide level prediction task. The layer-by-layer growth strategy and leaf-by-leaf growth strategy are shown in Fig. 4.Figure 4Two GBDT growth strategies.Full size imageCNN-BiGRUConvolutional neural networkA convolutional neural network (CNN) is a deep feedforward neural network with the characteristics of local connection and weight sharing. It was first used in the field of computer vision and achieved great success32,33. In recent years, CNNs have also been widely used in time series processing. For example, Bai et al.34 proposed a temporal convolutional network (TCN) based on a convolutional neural network and residual connections, which is not worse than recurrent neural networks such as LSTM in some time series analysis tasks. At present, a convolutional neural network is generally composed of convolution layers, pooling layers and a fully connected layer. Its network structure is shown in Fig. 5. The pooling layer is usually added after the convolution layers. The maximum pooling layer can retain the strong features in the data after the convolution operation, eliminate the weak features to reduce the number of parameters in a network and avoid overfitting of the model.Figure 5Schematic diagram of a convolutional neural network.Full size imageBidirectional GRUIn previous attempts at tide level prediction by scholars, bidirectional long short-term memory networks35 have achieved good prediction results. However, in our subsequent experiments, the bidirectional gated recurrent unit achieved higher prediction accuracy than BiLSTM, so we used the BiGRU network for subsequent prediction tasks.The GRU network36 adds a gating mechanism to control information updating in a recurrent neural network. Different from the mechanism in LSTM, GRU consists of only two gates called the update gate ({z}_{t}) and the reset door ({r}_{t}).The recurrent unit structure of the GRU network is shown in Fig. 6.Figure 6Recurrent unit structure of the GRU network.Full size imageEach unit of GRU is calculated as follows:$${z}_{t}= sigma ({W}_{z}{x}_{t}+{U}_{z}{h}_{t-1}+{b}_{z})$$
    (7)
    $${r}_{t}= sigma ({W}_{r}{x}_{t}+{U}_{r}{h}_{t-1}+{b}_{r})$$
    (8)
    $${widetilde{h}}_{t}=tanh({W}_{h}{x}_{t}+{U}_{h}left({r}_{t}odot {h}_{t-1}right)+{b}_{h})$$
    (9)
    $${h}_{t}={z}_{t}odot {h}_{t-1}+left(1-{z}_{t}right)odot {widetilde{h}}_{t}$$
    (10)
    In the above formula, ({z}_{t}) represents the update gate, which controls how much information is retained from the previous state ({h}_{t-1}) (without nonlinear transformation) when calculating the current state ({h}_{t}). Meanwhile, it also controls how much information will be accepted by ({h}_{t}) from the candidate states ({widetilde{h}}_{t}). ({r}_{t}) represents the reset gate, which is used to ensure whether the calculation of the candidate state ({widetilde{h}}_{t}) depends on the previous state ({h}_{t-1}). (upsigma ) is the standard sigmoid activation function; (tanh(cdot )) is the hyperbolic tangent activation function; and (odot ) indicates the Hadamard product. The weight matrices of the update gate, reset gate, and ({widetilde{h}}_{t}) calculation layer are expressed as ({W}_{z},{W}_{r},{W}_{h}); the coefficient matrices of the update gate, reset gate, and ({widetilde{h}}_{t}) calculation layer are expressed as ({U}_{z},{U}_{r},{U}_{h}); and the offset vectors of the update gate, reset gate, and ({widetilde{h}}_{t}) calculation layer are expressed as ({b}_{z},{b}_{r},{b}_{h}).A bidirectional gated recurrent unit network37 is a combination of two GRUs whose information propagating directions are reversed, and it has independent parameters in each, which makes it able to fit both forward and backward data at first and then join up the results from two directions. BiGRU can capture sequence patterns that may be ignored by unidirectional GRU. The structure of BiGRU is shown in Fig. 7.Figure 7The structure of BiGRU.Full size imageTaking the BiGRU’s forward hidden state vector at time (t) as ({h}_{t}^{(1)}) and taking the BiGRU’s backward hidden state vector at time (t) as ({h}_{t}^{(2)}), (upsigma ) indicates the standard sigmoid activation function, and (oplus ) indicates a vector splicing operation. We can calculate the output ({y}_{t}) of a BiGRU network as follows:$${h}_{t}={h}_{t}^{(1)}oplus {h}_{t}^{(2)}$$
    (11)
    $${y}_{t}=sigma ({h}_{t} )$$
    (12)
    CNN-BiGRU prediction modelBecause CNN has significant advantages in extracting useful features from a picture or a sequence and BiGRU is good at processing time series, we combine CNN and BiGRU to build the CNN-BiGRU model. The model can be mainly divided into an input layer, a convolution layer, a BiGRU network layer, a dropout layer, a fully connected layer and an output layer. The CNN layer and BiGRU layer are the core structures of the model. The function of the dropout layer is to avoid model overfitting. The CNN layer consists of two one-dimensional convolution (Conv1D) layers and a one-dimensional maximum pooling (MaxPooling1D) layer. The input of BiGRU is the output sequence of the CNN layer, and the BiGRU network is set as a one-hidden-layer structure. The structure of the CNN-BiGRU combination model is shown in Fig. 8.Figure 8The structure of CNN-BiGRU.Full size imageVariable weight combination modelWhen we analyze and predict relatively stationary tide level time series, LightGBM can perform well. However, due to environmental factors such as air pressure, wind force and terrain in reality, most tide level observation sequences are sometimes not relatively stationary, which requires that our tide level prediction model be reasonably able to “extrapolate” based on the sample observations, that is, be capable of generating values that are not in the sample. LightGBM is a tree-based model, which leads to our prediction results being between the maximum and minimum values of sequences. Therefore, LightGBM will not be able to accurately predict the situation or tidal change trend that did not appear in previous observations. However, the CNN-BiGRU model, which is a kind of neural network, has no such problem in theory and will be able to find the trend information that may be hidden in the tide level series. Therefore, we consider providing an appropriate weight for a single base model to build a combination model to improve the accuracy of the tide level prediction task.Principle of the residual weight combination model and improved variable weight combination modelTo improve the prediction accuracy of the combination model, a simple and effective idea is to determine the base models’ weights in the combination model according to the error between the prediction value and the real value. This method is also called the residual weight method, and its calculation formulas for determining the weights are:$$gleft({x}_{t}right)= sum_{i=1}^{m}{omega }_{i}left(t-1right){f}_{i}({x}_{t})$$
    (13)
    $${omega }_{i}left(t-1right)=frac{frac{1}{overline{{varphi }_{i}}left(t-1right)}}{sum_{i=1}^{m}frac{1}{overline{{varphi }_{i}}left(t-1right)}}$$
    (14)
    $$sum_{i=1}^{m}{omega }_{i}left(t-1right)=1,{omega }_{i}left(t-1right)ge 0$$
    (15)

    where ({omega }_{i}left(t-1right)) denotes the weight of the (i) th model at the moment (t-1), ({f}_{i}left({x}_{t}right)) denotes the prediction value of the (i) th model at the moment (t), (gleft({x}_{t}right)) denotes the prediction value of the combination model at the moment (t), and (overline{{varphi }_{i}}left(t-1right)) is the square sum of the predictive errors of the (i) th model at the moment (t-1).Our LightGBM-CNN-BiGRU (combination model) is based on the improved residual weight method. We call it the variable weight combination model. We use the weights calculated by formula (9) and formula (11) to calculate a series of new weights. The new weights from formula (11) will take the residual weight changes in (d) time steps into consideration by averaging the old weights in (d) time steps to improve the stability of the residual weight method.$${omega }_{j}left(tright)=frac{1}{d}sum_{k=1}^{d}{omega }_{i}left(t-kright)left(d=4right)$$
    (16)
    After obtaining a series of weights through formula (9) and formula (11), we take the absolute value of the error between the prediction value and the true value of each combination model at the moment of (t) as ({delta }_{i,t}) and ({delta }_{j,t}), respectively:$${delta }_{i,t}=mid sum_{i=1}^{m}{omega }_{i}left(tright){f}_{i}left({x}_{t}right)-{y}_{t}mid $$
    (17)
    $${delta }_{j,t}=mid sum_{i=1}^{m}{omega }_{j}left(tright){f}_{i}left({x}_{t}right)-{y}_{t}mid $$
    (18)
    Comparing ({delta }_{i,t}) and ({delta }_{j,t}), if ({delta }_{i,t} >{delta }_{j,t}), the combination model uses the new weight ({omega }_{j}left(tright)) in place of the original weight ({omega }_{i}left(tright)). Otherwise, the weight of the combination model remains unchanged.Parameter optimization of the combination modelBecause the LightGBM-CNN-BiGRU (combination model) is a variable weight combination of the prediction results from two base models, the performance of the combination model can be directly improved by separately optimizing the super parameters of the two base models. We mainly use the grid search algorithm and K-fold cross validation method to optimize the parameters. The grid search algorithm is a method to improve the performance of a certain model by iterating over a given set of parameters. With the help of the K-fold cross validation method, we can calculate the performance score of the LightGBM model on the training set and easily optimize its superparameters. The final parameters of the LightGBM model are set to num_leaves = 26, learning_rate = 0.05, and n_estimators = 46.For the CNN-BiGRU network, we mainly improve the prediction accuracy of the model by adjusting the size and number of hidden layers in the BiGRU structure and prevent the model from overfitting by changing the dropout ratio and tracking the validation loss of the network while training.The LightGBM and CNN-BiGRU variable weight combination modelThe workflow of our tide level prediction model is shown in Fig. 9. It mainly includes data preprocessing; training, optimization and prediction of the base models; construction of a variable weight combination prediction model; and evaluation and analysis of the combination model’s performance.

    (1)

    Data preprocessing: The quality of the data directly determines the upper limit of the prediction and generalization ability of a certain machine learning model. Standard, clean and continuous data are conducive to model training. The data used in this study are from the Irish National Tide Gauge Network, and all of them are subject to quality control. We filled in a small number of missing values and normalized the data to speed up the model training.

    (2)

    Construction and optimization of base models: We divide the dataset into a training set, a validation set and a test set according to the proportion of 7:1:2 and train the LightGBM model and CNN-BiGRU model with data on the training set. We optimize the parameters and monitor whether the model has been overfitted by tracking the validation loss of the network while training. Finally, we put the data into two base models for training and then obtain the prediction results of a single base model.

    (3)

    Construction of the variable weight combination model. Based on the prediction results of two single base models obtained in step (2), we calculate the weight of each base model according to the principle of the improved variable weight combination method and then obtain the prediction results of the variable weight combination model.

    (4)

    Model evaluation and analysis: According to the indexes of the model evaluation, the variable weight combination model is compared with other basic models to analyze its prediction performance after being improved.

    Figure 9Prediction flow of the LightGBM-CNN-BiGRU variable weight combination model.Full size image More

  • in

    Sulfoquinovose is a widespread organosulfur substrate for Roseobacter clade bacteria in the ocean

    Snow AJD, Burchill L, Sharma M, Davies GJ, Williams SJ. Sulfoglycolysis: Catabolic pathways for metabolism of sulfoquinovose. Chem Soc Rev. 2021;50:13628–45.Article 
    CAS 

    Google Scholar 
    Van Mooy BAS, Rocap G, Fredricks HF, Evans CT, Devol AH. Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. Proc Natl Acad Sci USA 2006;103:8607–12.Article 

    Google Scholar 
    Wu J, Sunda W, Boyle EA, Karl DM. Phosphate depletion in the western North Atlantic. Ocean Sci 2000;289:759–62.CAS 

    Google Scholar 
    Goddard-Borger ED, Williams SJ. Sulfoquinovose in the biosphere: occurrence, metabolism and functions. Biochem J. 2017;474:827–49.Article 
    CAS 

    Google Scholar 
    Harwood JL, Nicholls RG. The plant sulpholipid- a major component of the sulphur cycle. Biochem Soc Trans. 1979;7:440–7.Article 
    CAS 

    Google Scholar 
    Moran MA, Durham BP. Sulfur metabolites in the pelagic ocean. Nat Rev Microbiol. 2019;17:665–78.Article 
    CAS 

    Google Scholar 
    Tang K. Chemical diversity and biochemical transformation of biogenic organic sulfur in the ocean. Front Mar Sci. 2020;7:68.Article 

    Google Scholar 
    Denger K, Weiss M, Felux AK, Schneider A, Mayer C, Spiteller D, et al. Sulphoglycolysis in Escherichia coli K-12 closes a gap in the biogeochemical sulphur cycle. Nature 2014;507:114–7.Article 
    CAS 

    Google Scholar 
    Hanson BT, Kits KD, Loffler J, Burrichter AG, Fiedler A, Denger K, et al. Sulfoquinovose is a select nutrient of prominent bacteria and a source of hydrogen sulfide in the human gut. ISME J. 2021;15:2779–91.Article 
    CAS 

    Google Scholar 
    Strickland TC, Fitzgerald JW. Mineralization of sulfur in sulfoquinovose by forest soils. Soil Biol Biochem. 1983;15:347–9.Article 
    CAS 

    Google Scholar 
    Felux AK, Spiteller D, Klebensberger J, Schleheck D. Entner-Doudoroff pathway for sulfoquinovose degradation in Pseudomonas putida SQ1. Proc Natl Acad Sci USA 2015;112:E4298–E305.Article 
    CAS 

    Google Scholar 
    Frommeyer B, Fiedler AW, Oehler SR, Hanson BT, Loy A, Franchini P, et al. Environmental and intestinal phylum Firmicutes bacteria metabolize the plant sugar sulfoquinovose via a 6-deoxy-6-sulfofructose transaldolase pathway. Iscience. 2020;23:101510.Article 
    CAS 

    Google Scholar 
    Roy AB, Hewlins MJE, Ellis AJ, Harwood JL, White GF. Glycolytic breakdown of sulfoquinovose in bacteria: A missing link in the sulfur cycle. Appl Environ Microbiol. 2003;69:6434–41.Article 
    CAS 

    Google Scholar 
    Liu J, Wei Y, Ma K, An J, Liu X, Liu Y, et al. Mechanistically diverse pathways for sulfoquinovose degradation in bacteria. ACS Catal. 2021;11:14740–50.Article 
    CAS 

    Google Scholar 
    Zhang S, Li Z, Yan Y, Zhang C, Li J, Zhao B. Bacillus urumqiensis sp. nov., a moderately haloalkaliphilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol. 2016;66:2305–12.Article 
    CAS 

    Google Scholar 
    Durham BP, Sharma S, Luo H, Smith CB, Amin SA, Bender SJ, et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Natl Acad Sci USA 2015;112:453–7.Article 
    CAS 

    Google Scholar 
    Chen X, Liu L, Gao X, Dai X, Han Y, Chen Q, et al. Metabolism of chiral sulfonate compound 2,3-dihydroxypropane-1-sulfo-nate (DHPS) by Roseobacter bacteria in marine environment. Environ Int. 2021;157:106829.Article 
    CAS 

    Google Scholar 
    Liu J, Wei Y, Lin L, Teng L, Yin J, Lu Q, et al. Two Radical-dependent mechanisms for anaerobic degradation of the globally abundant Organosulfur Compound Dihydroxypropanesulfonate. Proc Natl Acad Sci USA 2020;117:15599.Article 
    CAS 

    Google Scholar 
    Xing M, Wei Y, Zhou Y, Zhang J, Lin L, Hu Y, et al. Radical-mediated C-S bond cleavage in C2 sulfonate degradation by anaerobic bacteria. Nat Commun. 2019;10:1609.Article 

    Google Scholar 
    Sharma M, Lingford JP, Petricevic M, Snow AJD, Zhang Y, Jarva MA, et al. Oxidative desulfurization pathway for complete catabolism of sulfoquinovose by bacteria. Proc Natl Acad Sci USA 2022;119:e2116022119.Article 
    CAS 

    Google Scholar 
    Scholz SS, Serif M, Schleheck D, Sayer MDJ, Cook AM, Kupper FC. Sulfoquinovose metabolism in marine algae. Bot Mar. 2021;64:301–12.Article 
    CAS 

    Google Scholar 
    Abayakoon P, Epa R, Petricevic M, Bengt C, Mui JWY, van der Peet PL, et al. Comprehensive synthesis of substrates, intermediates, and products of the sulfoglycolytic Embden-Meyerhoff-Parnas pathway. J Org Chem. 2019;84:2901–10.Article 
    CAS 

    Google Scholar 
    Denger K, Smits THM, Cook AM. L-Cysteate sulpho-lyase, a widespread pyridoxal 5 ‘-phosphate-coupled desulphonative enzyme purified from Silicibacter pomeroyi DSS-3. Biochem J. 2006;394:657–64.Article 
    CAS 

    Google Scholar 
    Guillard RRL. Culture of Phytoplankton for Feeding Marine Invertebrates. Smith WL, Chanley MH, (eds): Springer US; 1975. Boston, MA. pp 29–60.Moore LR, Coe A, Zinser ER, Saito MA, Sullivan MB, Lindell D, et al. Culturing the marine cyanobacterium Prochlorococcus. Limnol Oceanogr Methods. 2007;5:353–62.Article 
    CAS 

    Google Scholar 
    Waterbury J, Watson S, Valois F, Franks D. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Platt T, Li WKW, (eds). Department of Fisheries and Oceans, Ottawa 1986. pp 71–120.Olenina I, Hajdu S, Edler L, Andersson A, Wasmund N, Busch S, et al. Biovolumes and size-classes of phytoplankton in the Baltic Sea. HELCOM Balt Sea Environ Proc. 2006;106:144.
    Google Scholar 
    Zheng Q, Wang Y, Lu J, Lin W, Chen F, Jiao N. Metagenomic and metaproteomic insights into photoautotrophic and heterotrophic interactions in a Synechococcus culture. mbio 2020;11:e03261–19.Article 
    CAS 

    Google Scholar 
    Partensky F, Hess WR, Vaulot D. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev. 1999;63:106–27.Article 
    CAS 

    Google Scholar 
    Han Y, Zhang M, Chen X, Zhai W, Tan E, Tang K. Transcriptomic evidences for microbial carbon and nitrogen cycles in the deoxygenated seawaters of Bohai Sea. Environ Int. 2022;158:106889.Article 
    CAS 

    Google Scholar 
    Li WKW. Primary production of prochlorophytes, cyanobacteria, and eukaryotic ultraphytoplankton – measurements from flow cytometric sorting. Limnol Oceanogr. 1994;39:169–75.Article 
    CAS 

    Google Scholar 
    Denger K, Ruff A, Rein U, Cook AM. Sulphoacetaldehyde sulpho-lyase (EC 4.4.1.12) from Desulfonispora thiosulfatigenes: purification, properties and primary sequence. Biochem J. 2001;357:581–6.Article 
    CAS 

    Google Scholar 
    Ismail R, Lee HY, Mahyudin NA, Abu, Bakar F. Linearity study on detection and quantification limits for the determination of avermectins using linear regression. J Food Drug Anal. 2014;22:407–12.Article 
    CAS 

    Google Scholar 
    Klemetsen T, Raknes IA, Fu J, Agafonov A, Balasundaram SV, Tartari G, et al. The MAR databases: development and implementation of databases specific for marine metagenomics. Nucleic Acids Res. 2018;46:D692–D9.Article 
    CAS 

    Google Scholar 
    Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 2007;23:1282–8.Article 
    CAS 

    Google Scholar 
    Rozewicki J, Li S, Amada KM, Standley DM, Katoh K. MAFFT-DASH: Integrated protein sequence and structural alignment. Nucleic Acids Res. 2019;47:W5–W10.CAS 

    Google Scholar 
    Schuller DJ, Reisch CR, Moran MA, Whitman WB, Lanzilotta WN. Structures of dimethylsulfoniopropionate-dependent demethylase from the marine organism Pelagabacter ubique. Protein Sci. 2012;21:289–98.Article 
    CAS 

    Google Scholar 
    Bharath SR, Bisht S, Harijan RK, Savithri HS, Murthy MR. Structural and mutational studies on substrate specificity and catalysis of Salmonella typhimurium D-cysteine desulfhydrase. PLoS One. 2012;7:e36267.Article 
    CAS 

    Google Scholar 
    Chartron J, Carroll KS, Shiau C, Gao H, Leary JA, Bertozzi CR, et al. Substrate Recognition, Protein Dynamics, and Iron-Sulfur Cluster in Pseudomonas aeruginosa Adenosine 5′-Phosphosulfate Reductase. J Mol Biol. 2006;364:152–69.Article 
    CAS 

    Google Scholar 
    Davis KM, Altmyer M, Martinie RJ, Schaperdoth I, Krebs C, Bollinger JM Jr, et al. Structure of a Ferryl Mimic in the Archetypal Iron(II)- and 2-(Oxo)-glutarate-Dependent Dioxygenase, TauD. Biochemistry 2019;58:4218–23.Article 
    CAS 

    Google Scholar 
    Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: Making protein folding accessible to all. Nat Methods. 2022;19:679–82.Article 
    CAS 

    Google Scholar 
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596:583–9.Article 
    CAS 

    Google Scholar 
    Zhang C, Shine M, Pyle AM, Zhang Y. US-align: universal structure alignments of proteins, nucleic acids, and macromolecular complexes. Nat Methods. 2022;19:1109–15.Article 
    CAS 

    Google Scholar 
    Xu J, Zhang Y. How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics 2010;26:889–95.Article 
    CAS 

    Google Scholar 
    Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2014;32:268–74.Article 

    Google Scholar 
    Villar E, Vannier T, Vernette C, Lescot M, Cuenca M, Alexandre A, et al. The Ocean Gene Atlas: exploring the biogeography of plankton genes online. Nucleic Acids Res. 2018;46:W289–W95.Article 
    CAS 

    Google Scholar 
    Vernette C, Henry N, Lecubin J, de Vargas C, Hingamp P, Lescot M. The Ocean barcode atlas: A web service to explore the biodiversity and biogeography of marine organisms. Mol Ecol Resour. 2021;21:1347–58.Article 
    CAS 

    Google Scholar 
    Paoli L, Ruscheweyh H-J, Forneris CC, Hubrich F, Kautsar S, Bhushan A, et al. Biosynthetic potential of the global ocean microbiome. Nature 2022;607:111–8.Article 
    CAS 

    Google Scholar 
    Sunagawa S, Acinas SG, Bork P, Bowler C, Acinas SG, Babin M, et al. Tara Oceans: towards global ocean ecosystems biology. Nat Rev Microbiol. 2020;18:428–45.Article 
    CAS 

    Google Scholar 
    Acinas SG, Sánchez P, Salazar G, Cornejo-Castillo FM, Sebastián M, Logares R, et al. Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Commun Biol. 2021;4:604.Article 
    CAS 

    Google Scholar 
    Biller SJ, Berube PM, Dooley K, Williams M, Satinsky BM, Hackl T, et al. Marine microbial metagenomes sampled across space and time. Sci Data. 2018;5:180176.Article 
    CAS 

    Google Scholar 
    Pachiadaki MG, Brown JM, Brown J, Bezuidt O, Berube PM, Biller SJ, et al. Charting the Complexity of the Marine Microbiome through Single-Cell Genomics. Cell 2019;179:1623–35.Article 
    CAS 

    Google Scholar 
    Delmont TO, Quince C, Shaiber A, Esen ÖC, Lee STM, Rappé MS, et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat Microbiol. 2018;3:804–13.Article 
    CAS 

    Google Scholar 
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.Article 
    CAS 

    Google Scholar 
    Subramanian B, Gao S, Lercher MJ, Hu S, Chen W-H. Evolview v3: A webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res. 2019;47:W270–W5.Article 
    CAS 

    Google Scholar 
    Xing M, Wei Y, Zhou Y, Zhang J, Lin L, Hu Y, et al. Radical-mediated C-S bond cleavage in C2 sulfonate degradation by anaerobic bacteria. Nat Commun. 2019;10:1609.Article 

    Google Scholar 
    Biebl H, Allgaier M, Tindall BJ, Koblizek M, Lunsdorf H, Pukall R, et al. Dinoroseobacter shibae gen. nov., sp nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol. 2005;55:1089–96.Article 
    CAS 

    Google Scholar 
    Fu H, Uchimiya M, Gore J, Moran MA. Ecological drivers of bacterial community assembly in synthetic phycospheres. Proc Natl Acad Sci USA 2020;117:3656–62.Article 
    CAS 

    Google Scholar 
    Chen I-MA, Chu K, Palaniappan K, Ratner A, Huang J, Huntemann M, et al. The IMG/M data management and analysis system v.7: content updates and new features. Nucleic Acids Res. 2022. https://doi.org/10.1093/nar/gkac976.Shiba T. Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. Syst Appl Microbiol. 1991;14:140–5.Article 

    Google Scholar 
    Kopriva S, Calderwood A, Weckopp SC, Koprivova A. Plant sulfur and big data. Plant Sci. 2015;241:1–10.Article 
    CAS 

    Google Scholar 
    Simon J, Kroneck PMH. Microbial sulfite respiration. Adv Micro Physiol. 2013;62:45–117.Article 
    CAS 

    Google Scholar 
    Gonzalez JM, Covert JS, Whitman WB, Henriksen JR, Mayer F, Scharf B, et al. Silicibacter pomeroyi sp nov and Roseovarius nubinhibens sp nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol. 2003;53:1261–9.Article 
    CAS 

    Google Scholar 
    Liang KYH, Orata FD, Boucher YF, Case RJ. Roseobacters in a sea of poly- and paraphyly: whole genome-based taxonomy of the family Rhodobacteraceae and the proposal for the split of the “Roseobacter clade” into a novel family, Roseobacteraceae fam. nov. Front Microbiol. 2021;12:683109.Article 

    Google Scholar 
    Howard EC, Sun S, Biers EJ, Moran MA. Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. Environ Microbiol. 2008;10:2397–410.Article 
    CAS 

    Google Scholar 
    Howard EC, Henriksen JR, Buchan A, Reisch CR, Buergmann H, Welsh R, et al. Bacterial taxa that limit sulfur flux from the ocean. Science. 2006;314:649–52.Article 
    CAS 

    Google Scholar 
    Durham BP, Boysen AK, Carlson LT, Groussman RD, Heal KR, Cain KR, et al. Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean. Nat Microbiol. 2019;4:1706–15.Article 
    CAS 

    Google Scholar 
    Smetacek V. Diatoms and the ocean carbon cycle. Protist 1999;150:25–32.Article 
    CAS 

    Google Scholar 
    Stoecker DK, Lavrentyev PJ. Mixotrophic plankton in the polar seas: A pan-Arctic review. Front Mar Sci. 2018;5:292.Article 

    Google Scholar 
    Turner SM, Malin G, Liss PS, Harbour DS, Holligan PM. The seasonal-variation of dimethyl sulfide and dimethylsulfoniopropionate concentrations in nearshore waters. Limnol Oceanogr. 1988;33:364–75.Article 
    CAS 

    Google Scholar 
    Belviso S, Kim S-K, Rassoulzadegan F, Krajka B, Nguyen BC, Mihalopoulos N, et al. Production of dimethylsulfonium propionate (DMSP) and dimethylsulfide (DMS) by a microbial food web. Limnol Oceanogr. 1990;35:1810–21.Article 
    CAS 

    Google Scholar 
    Simo R, Pedros-Alio C, Malin G, Grimalt JO. Biological turnover of DMS, DMSP and DMSO in contrasting open-sea waters. Mar Ecol Prog Ser. 2000;203:1–11.Article 
    CAS 

    Google Scholar 
    Flombaum P, Gallegos JL, Gordillo RA, Rincon J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA 2013;110:9824–9.Article 
    CAS 

    Google Scholar 
    Gasparovic B, Penezic A, Frka S, Kazazic S, Lampitt RS, Holguin FO, et al. Particulate sulfur-containing lipids: Production and cycling from the epipelagic to the abyssopelagic zone. Deep Sea Res Part I Oceanogr Res Pap. 2018;134:12–22.Article 
    CAS 

    Google Scholar 
    Zhan P, Tang K, Chen X, Yu L. Complete genome sequence of Maribacter sp T28, a polysaccharide-degrading marine flavobacteria. J Biotechnol. 2017;259:1–5.Article 
    CAS 

    Google Scholar 
    Van Mooy BAS, Fredricks HF. Bacterial and eukaryotic intact polar lipids in the eastern subtropical South Pacific: Water-column distribution, planktonic sources, and fatty acid composition. Geochim Cosmochim Acta. 2010;74:6499–516.Article 

    Google Scholar 
    Popendorf KJ, Tanaka T, Pujo-Pay M, Lagaria A, Courties C, Conan P, et al. Gradients in intact polar diacylglycerolipids across the Mediterranean Sea are related to phosphate availability. Biogeosciences 2011;8:3733–45.Article 
    CAS 

    Google Scholar  More

  • in

    Plant–pollinator network change across a century in the subarctic

    Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).Article 
    PubMed 

    Google Scholar 
    Lautenbach, S., Seppelt, R., Liebscher, J. & Dormann, C. F. Spatial and temporal trends of global pollination benefit. PLoS ONE 7, e35954 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).Article 

    Google Scholar 
    Rodger, J. G. et al. Widespread vulnerability of flowering plant seed production to pollinator declines. Sci. Adv. 7, eabd3524 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bennett, J. M. et al. Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nat. Commun. 11, 3999 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).Article 
    PubMed 

    Google Scholar 
    Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A.-L. & Totland, Ø. How does climate warming affect plant–pollinator interactions? Ecol. Lett. 12, 184–195 (2009).Article 
    PubMed 

    Google Scholar 
    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).Article 
    PubMed 

    Google Scholar 
    Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).Article 
    PubMed 

    Google Scholar 
    Valdovinos, F. S. et al. Species traits and network structure predict the success and impacts of pollinator invasions. Nat. Commun. 9, 2153 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Waser, N. M., Chittka, L., Price, M. V., Williams, N. M. & Ollerton, J. Generalization in pollination systems, and why it matters. Ecology 77, 1043–1060 (1996).Article 

    Google Scholar 
    Brosi, B. J. Pollinator specialization: from the individual to the community. New Phytol. 210, 1190–1194 (2016).Article 
    PubMed 

    Google Scholar 
    Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).Article 

    Google Scholar 
    Waser, N. M. & Ollerton, J. Plant–Pollinator Interactions: From Specialization to Generalization (Univ. of Chicago Press, 2006).Ashman, T.-L., Arceo-Gómez, G., Bennett, J. M. & Knight, T. M. Is heterospecific pollen receipt the missing link in understanding pollen limitation of plant reproduction? Am. J. Bot. 107, 845–847 (2020).Article 
    PubMed 

    Google Scholar 
    Garibaldi, L. A. et al. Trait matching of flower visitors and crops predicts fruit set better than trait diversity. J. Appl. Ecol. 52, 1436–1444 (2015).Article 

    Google Scholar 
    CaraDonna, P. J. et al. Seeing through the static: the temporal dimension of plant–animal mutualistic interactions. Ecol. Lett. 24, 149–161 (2021).Article 
    PubMed 

    Google Scholar 
    Burkle, L. A., Marlin, J. C. & Knight, T. M. Plant–pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339, 1611–1615 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jacquemin, F. et al. Loss of pollinator specialization revealed by historical opportunistic data: insights from network-based analysis. PLoS ONE 15, e0235890 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mathiasson, M. E. & Rehan, S. M. Wild bee declines linked to plant–pollinator network changes and plant species introductions. Insect Conserv. Divers. 13, 595–605 (2020).Article 

    Google Scholar 
    Bennett, J. M. et al. A review of European studies on pollination networks and pollen limitation, and a case study designed to fill in a gap. AoB Plants 10, ply068 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Doré, M., Fontaine, C. & Thébault, E. Relative effects of anthropogenic pressures, climate, and sampling design on the structure of pollination networks at the global scale. Glob. Change Biol. 27, 1266–1280 (2021).Article 

    Google Scholar 
    Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl Acad. Sci. USA 113, 146–151 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Post, E. et al. Ecological dynamics across the arctic associated with recent climate change. Science 325, 1355–1358 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hung, K.-L. J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. B 285, 20172140 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kearns, C. A. Anthophilous fly distribution across an elevation gradient. Am. Midl. Nat. 127, 172–182 (1992).Article 

    Google Scholar 
    Kevan, P. G. Insect pollination of high arctic flowers. J. Ecol. 60, 831–847 (1972).Article 

    Google Scholar 
    Tiusanen, M., Hebert, P. D. N., Schmidt, N. M. & Roslin, T. One fly to rule them all—muscid flies are the key pollinators in the arctic. Proc. Roy. Soc. B 283, 20161271 (2016).Article 

    Google Scholar 
    Weiner, C., Werner, M., Linsenmair, K. E. & Blüthgen, N. Land use intensity in grasslands: changes in biodiversity, species composition and specialisation in flower visitor networks. Basic Appl. Ecol. 12, 292–299 (2011).Article 

    Google Scholar 
    Rader, R., Edwards, W., Westcott, D. A., Cunningham, S. A. & Howlett, B. G. Pollen transport differs among bees and flies in a human-modified landscape. Divers. Distrib. 17, 519–529 (2011).Article 

    Google Scholar 
    Bartley, T. J. et al. Food web rewiring in a changing world. Nat. Ecol. Evol. 3, 345–354 (2019).Article 
    PubMed 

    Google Scholar 
    Ghisbain, G., Gérard, M., Wood, T. J., Hines, H. M. & Michez, D. Expanding insect pollinators in the Anthropocene. Biol. Rev. 96, 2755–2770 (2021).Article 
    PubMed 

    Google Scholar 
    Silén, F. Blombiologiska iakttagelser i Kittilä Lappmark. Medd. Soc. Fauna Flora Fennica 31, 80–99 (1906).
    Google Scholar 
    Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).Article 

    Google Scholar 
    Erhardt, A. Pollination of Dianthus superbus L. Flora 185, 99–106 (1991).Article 

    Google Scholar 
    Witt, T., Jürgens, A., Geyer, R. & Gottsberger, G. Nectar dynamics and sugar composition in flowers of Silene and Saponaria species (Caryophyllaceae). Plant Biol. 1, 334–345 (1999).Article 
    CAS 

    Google Scholar 
    Morales, C. L. & Traveset, A. Interspecific pollen transfer: magnitude, prevalence and consequences for plant fitness. Crit. Rev. Plant Sci. 27, 221–238 (2008).Article 
    CAS 

    Google Scholar 
    Ashman, T.-L. & Arceo-Gómez, G. Toward a predictive understanding of the fitness costs of heterospecific pollen receipt and its importance in co-flowering communities. Am. J. Bot. 100, 1061–1070 (2013).Article 
    PubMed 

    Google Scholar 
    Orford, K. A., Vaughan, I. P. & Memmott, J. The forgotten flies: the importance of non-syrphid Diptera as pollinators. Proc. R. Soc. B 282, 20142934 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stavert, J. R. et al. Hairiness: the missing link between pollinators and pollination. PeerJ 4, e2779 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Doyle, T. et al. Pollination by hoverflies in the Anthropocene. Proc. R. Soc. B 287, 20200508 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Albrecht, M., Schmid, B., Hautier, Y. & Müller, C. B. Diverse pollinator communities enhance plant reproductive success. Proc. R. Soc. B. 279, 4845–4852 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fründ, J., Dormann, C. F., Holzschuh, A. & Tscharntke, T. Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology 94, 2042–2054 (2013).Article 
    PubMed 

    Google Scholar 
    Magrach, A., Molina, F. P. & Bartomeus, I. Niche complementarity among pollinators increases community-level plant reproductive success. Peer Commun. J. 1, e1 (2021).Article 

    Google Scholar 
    Giménez-Benavides, L., Dötterl, S., Jürgens, A., Escudero, A. & Iriondo, J. M. Generalist diurnal pollination provides greater fitness in a plant with nocturnal pollination syndrome: assessing the effects of a Silene–Hadena interaction. Oikos 116, 1461–1472 (2007).
    Google Scholar 
    Vázquez, D. P., Blüthgen, N., Cagnolo, L. & Chacoff, N. P. Uniting pattern and process in plant–animal mutualistic networks: a review. Ann. Bot. 103, 1445–1457 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vizentin-Bugoni, J., Debastiani, V. J., Bastazini, V. A. G., Maruyama, P. K. & Sperry, J. H. Including rewiring in the estimation of the robustness of mutualistic networks. Methods Ecol. Evol. 11, 106–116 (2020).Article 

    Google Scholar 
    Brosi, B. J. & Briggs, H. M. Single pollinator species losses reduce floral fidelity and plant reproductive function. Proc. Natl Acad. Sci. USA 110, 13044–13048 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pekkarinen, A. & Teräs, I. Zoogeography of Bombus and Psithyrus in northwestern Europe (Hymenoptera, Apidae). Ann. Zool. Fennici 30, 187–208 (1993).
    Google Scholar 
    Arbetman, M. P., Gleiser, G., Morales, C. L., Williams, P. & Aizen, M. A. Global decline of bumblebees is phylogenetically structured and inversely related to species range size and pathogen incidence. Proc. R. Soc. B 284, 20170204 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kerr, J. T. et al. Climate change impacts on bumblebees converge across continents. Science 349, 177–180 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Arceo-Gómez, G., Barker, D., Stanley, A., Watson, T. & Daniels, J. Plant–pollinator network structural properties differentially affect pollen transfer dynamics and pollination success. Oecologia 192, 1037–1045 (2020).Article 
    PubMed 

    Google Scholar 
    de Santiago-Hernández, M. H. et al. The role of pollination effectiveness on the attributes of interaction networks: from floral visitation to plant fitness. Ecology 100, e02803 (2019).Article 
    PubMed 

    Google Scholar 
    Koch, V., Zoller, L., Bennett, J. M. & Knight, T. M. Pollinator dependence but no pollen limitation for eight plants occurring north of the Arctic Circle. Ecol. Evol. 10, 13664–13672 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Loboda, S., Savage, J., Buddle, C. M., Schmidt, N. M. & Høye, T. T. Declining diversity and abundance of High Arctic fly assemblages over two decades of rapid climate warming. Ecography 41, 265–277 (2018).Article 

    Google Scholar 
    Høye, T. T., Post, E., Schmidt, N. M., Trøjelsgaard, K. & Forchhammer, M. C. Shorter flowering seasons and declining abundance of flower visitors in a warmer Arctic. Nat. Clim. Change 3, 759–763 (2013).Article 

    Google Scholar 
    Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zattara, E. E. & Aizen, M. A. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 4, 114–123 (2021).Article 

    Google Scholar 
    Bartomeus, I., Stavert, J. R., Ward, D. & Aguado, O. Historical collections as a tool for assessing the global pollination crisis. Philos. Trans. R. Soc. B 374, 20170389 (2019).Article 

    Google Scholar 
    Rakosy, D., Ashman, T.-L., Zoller, L., Stanley, A. & Knight, T. M. Integration of historic collections can shed light on patterns of change in plant–pollinator interactions and pollination service. Func. Ecol. https://doi.org/10.1111/1365-2435.14211 (2022).Hyne, C. J. C. W. Through Arctic Lapland (A. and C. Black, 1898).Knuth, P. Handbuch der Blütenbiologie, unter Zugrundelegung von Herman Müllers Werk: ‘Die Befruchtung der Blumen durch Insekten’ (W. Engelmann, 1898).Zoller, L. & Knight, T. M. Historical records of plant-insect interactions in subarctic Finland.BMC Res. Notes 15, 317 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zoller, L. & Knight, T. M. Historical records of plant–insect interactions in subarctic Finland. figshare https://doi.org/10.6084/m9.figshare.c.5828663.v4 (2022).Zoller, L., Bennett, J. M. & Knight, T. M. Diel-scale temporal dynamics in the abundance and composition of pollinators in the arctic summer. Sci. Rep. 10, 21187 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).Article 

    Google Scholar 
    Klotz, S., Kühn, I. & Durka, W. Biolflor Database (UFZ—Centre for Environmental Research Leipzig-Halle, 2002); https://www.ufz.de/biolflor/index.jspOksanen, J. et al. vegan: Community ecology package. R version 2.5.7 (2020).Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T.-J. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62, 361–371 (2006).Article 
    PubMed 

    Google Scholar 
    Dormann, C. F. et al. bipartite: Visualising bipartite networks and calculating some (ecological) indices. R version 2.16 (2021).Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 9 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stefan, V. & Knight, T. M. bootstrapnet: Bootstrap network metrics. R version 1.0.0 https://valentinitnelav.github.io/bootstrapnet/ (2021).Poisot, T., Canard, E., Mouillot, D., Mouquet, N. & Gravel, D. The dissimilarity of species interaction networks. Ecol. Lett. 15, 1353–1361 (2012).Article 
    PubMed 

    Google Scholar 
    Poisot, T. Dissimilarity of species interaction networks: quantifying the effect of turnover and rewiring. Peer Community Journal 2, e35 (2022).Article 

    Google Scholar 
    Dormann, C. F. How to be a specialist? Quantifying specialisation in pollination networks. Netw. Biol. 1, 1 (2011).
    Google Scholar  More

  • in

    Mutualism-enhancing mutations dominate early adaptation in a two-species microbial community

    Agostini, S. et al. Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical–temperate transition zone. Sci. Rep. 8, 11354 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gilbert, B. & Levine, J. M. Ecological drift and the distribution of species diversity. Proc. Biol. Sci. 284, 20170507 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    White, E. P. et al. A comparison of the species–time relationship across ecosystems and taxonomic groups. Oikos 112, 185–195 (2006).Article 

    Google Scholar 
    Sax, D. F. & Gaines, S. D. Species invasions and extinction: the future of native biodiversity on islands. Proc. Natl Acad. Sci. USA 105, 11490–11497 (2008).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thompson, J. N. Rapid evolution as an ecological process. Trends Ecol. Evol. 13, 329–332 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Post, D. M. & Palkovacs, E. P. Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Philos. Trans. R. Soc. Lond. B 364, 1629–1640 (2009).Article 

    Google Scholar 
    Reznick, D. N. & Travis, J. Experimental studies of evolution and eco-evo dynamics in guppies (Poecilia reticulata). Annu. Rev. Ecol. Evol. Syst. https://doi.org/10.1146/annurev-ecolsys-110218-024926 (2019).Hendry, A. P. Eco-evolutionary Dynamics (Princeton Univ. Press, 2020).Schoener, T. W. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331, 426–429 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F. & Hairston, N. G. Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424, 303–306 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hansen, S. K., Rainey, P. B., Haagensen, J. A. J. & Molin, S. Evolution of species interactions in a biofilm community. Nature 445, 533–536 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hillesland, K. L. & Stahl, D. A. Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc. Natl Acad. Sci. USA 107, 2124–2129 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Turcotte, M. M., Reznick, D. N. & Hare, J. D. The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics. Ecol. Lett. 14, 1084–1092 (2011).Article 
    PubMed 

    Google Scholar 
    Lawrence, D. et al. Species interactions alter evolutionary responses to a novel environment. PLoS Biol. 10, e1001330 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Celiker, H. & Gore, J. Clustering in community structure across replicate ecosystems following a long-term bacterial evolution experiment. Nat. Commun. 5, 4643 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Andrade-Domínguez, A. et al. Eco-evolutionary feedbacks drive species interactions. ISME J. 8, 1041–1054 (2014).Article 
    PubMed 

    Google Scholar 
    Reznick, D. Hard and soft selection revisited: how evolution by natural selection works in the real world. J. Hered. 107, 3–14 (2016).Article 
    PubMed 

    Google Scholar 
    Matthews, B., Aebischer, T., Sullam, K. E., Lundsgaard-Hansen, B. & Seehausen, O. Experimental evidence of an eco-evolutionary feedback during adaptive divergence. Curr. Biol. 26, 483–489 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Harcombe, W. R., Chacón, J. M., Adamowicz, E. M., Chubiz, L. M. & Marx, C. J. Evolution of bidirectional costly mutualism from byproduct consumption. Proc. Natl Acad. Sci. USA 115, 12000–12004 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Preussger, D., Giri, S., Muhsal, L. K., Oña, L. & Kost, C. Reciprocal fitness feedbacks promote the evolution of mutualistic cooperation. Curr. Biol. https://doi.org/10.1016/j.cub.2020.06.100 (2020).Adamowicz, E. M., Muza, M., Chacón, J. M. & Harcombe, W. R. Cross-feeding modulates the rate and mechanism of antibiotic resistance evolution in a model microbial community of Escherichia coli and Salmonella enterica. PLoS Pathog. 16, e1008700 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez-Verdugo, A. & Ackermann, M. Rapid evolution destabilizes species interactions in a fluctuating environment. ISME J. 15, 450–460 (2021).Article 
    PubMed 

    Google Scholar 
    Barber, J. N. et al. The evolution of coexistence from competition in experimental co-cultures of Escherichia coli and Saccharomyces cerevisiae. ISME J. 15, 746–761 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hart, S. F. M., Chen, C.-C. & Shou, W. Pleiotropic mutations can rapidly evolve to directly benefit self and cooperative partner despite unfavorable conditions. eLife 10, e57838 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kokko, H. et al. Can evolution supply what ecology demands? Trends Ecol. Evol. 32, 187–197 (2017).Article 
    PubMed 

    Google Scholar 
    Nuismer, S. Introduction to Coevolutionary Theory (Macmillan Learning, 2017).Stoltzfus, A. & McCandlish, D. M. Mutational biases influence parallel adaptation. Mol. Biol. Evol. 34, 2163–2172 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Payne, J. L. et al. Transition bias influences the evolution of antibiotic resistance in Mycobacterium tuberculosis. PLoS Biol. 17, e3000265 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Storz, J. F. et al. The role of mutation bias in adaptive molecular evolution: insights from convergent changes in protein function. Philos. Trans. R. Soc. Lond. B 374, 20180238 (2019).Article 
    CAS 

    Google Scholar 
    Gomez, K., Bertram, J. & Masel, J. Mutation bias can shape adaptation in large asexual populations experiencing clonal interference. Proc. Biol. Sci. 287, 20201503 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Venkataram, S., Monasky, R., Sikaroodi, S. H., Kryazhimskiy, S. & Kacar, B. Evolutionary stalling and a limit on the power of natural selection to improve a cellular module. Proc. Natl Acad. Sci. USA 117, 18582–18590 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hom, E. F. Y. & Murray, A. W. Niche engineering demonstrates a latent capacity for fungal–algal mutualism. Science 345, 94–98 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wolfe, B. E. & Dutton, R. J. Fermented foods as experimentally tractable microbial ecosystems. Cell 161, 49–55 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chacón, J. M., Hammarlund, S. P., Martinson, J. N. V., Smith, L. B. & Harcombe, W. R. The ecology and evolution of model microbial mutualisms. Annu. Rev. Ecol. Evol. Syst. 52, 363–384 (2021).Article 

    Google Scholar 
    Blasche, S., Kim, Y., Oliveira, A. P. & Patil, K. R. Model microbial communities for ecosystems biology. Curr. Opin. Syst. Biol. 6, 51–57 (2017).Article 

    Google Scholar 
    Levy, S. F. et al. Quantitative evolutionary dynamics using high-resolution lineage tracking. Nature 519, 181–186 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Venkataram, S. et al. Development of a comprehensive genotype-to-fitness map of adaptation-driving mutations in yeast. Cell 166, 1585–1596.e22 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jones, E. I., Bronstein, J. L. & Ferrière, R. The fundamental role of competition in the ecology and evolution of mutualisms. Ann. N. Y. Acad. Sci. 1256, 66–88 (2012).Article 
    PubMed 

    Google Scholar 
    Boyer, S., Hérissant, L. & Sherlock, G. Adaptation is influenced by the complexity of environmental change during evolution in a dynamic environment. PLoS Genet. 17, e1009314 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blundell, J. R. et al. The dynamics of adaptive genetic diversity during the early stages of clonal evolution. Nat. Ecol. Evol. 3, 293–301 (2019).Article 
    PubMed 

    Google Scholar 
    Good, B. H., Rouzine, I. M., Balick, D. J., Hallatschek, O. & Desai, M. M. Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations. Proc. Natl Acad. Sci. USA 109, 4950–4955 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Good, B. H., Martis, S. & Hallatschek, O. Adaptation limits ecological diversification and promotes ecological tinkering during the competition for substitutable resources. Proc. Natl Acad. Sci. USA 115, E10407–E10416 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhu, Y. O., Siegal, M. L., Hall, D. W. & Petrov, D. A. Precise estimates of mutation rate and spectrum in yeast. Proc. Natl Acad. Sci. USA 111, E2310–E2318 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dunham, M. J. et al. Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 99, 16144–16149 (2002).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yona, A. H. et al. Chromosomal duplication is a transient evolutionary solution to stress. Proc. Natl Acad. Sci. USA 109, 21010–21015 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sunshine, A. B. et al. The fitness consequences of aneuploidy are driven by condition-dependent gene effects. PLoS Biol. 13, e1002155 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gerrish, P. J. & Lenski, R. E. The fate of competing beneficial mutations in an asexual population. Genetica 102-103, 127–144 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Desai, M. M. & Fisher, D. S. Beneficial mutation–selection balance and the effect of linkage on positive selection. Genetics 176, 1759–1798 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schiffels, S., Szöllosi, G. J., Mustonen, V. & Lässig, M. Emergent neutrality in adaptive asexual evolution. Genetics 189, 1361–1375 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nguyen, Ba,A. N. et al. High-resolution lineage tracking reveals travelling wave of adaptation in laboratory yeast. Nature 575, 494–499 (2019).Article 

    Google Scholar 
    Foster, K. R., Shaulsky, G., Strassmann, J. E., Queller, D. C. & Thompson, C. R. L. Pleiotropy as a mechanism to stabilize cooperation. Nature 431, 693–696 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sachs, J. L., Mueller, U. G., Wilcox, T. P. & Bull, J. J. The evolution of cooperation. Q. Rev. Biol. 79, 135–160 (2004).Article 
    PubMed 

    Google Scholar 
    Harcombe, W. Novel cooperation experimentally evolved between species. Evolution 64, 2166–2172 (2010).PubMed 

    Google Scholar 
    Vasi, F., Travisano, M. & Lenski, R. E. Long-term experimental evolution in Escherichia coli. II. Changes in life-history traits during adaptation to a seasonal environment. Am. Nat. 144, 432–456 (1994).Article 

    Google Scholar 
    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 2001).Reznick, D., Bryant, M. J. & Bashey, F. r- and K-selection revisited: the role of population regulation in life-history evolution. Ecology 83, 1509–1520 (2002).Article 

    Google Scholar 
    Mueller, L. D. & Ayala, F. J. Trade-off between r-selection and K-selection in Drosophila populations. Proc. Natl Acad. Sci. USA 78, 1303–1305 (1981).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Novak, M., Pfeiffer, T., Lenski, R. E., Sauer, U. & Bonhoeffer, S. Experimental tests for an evolutionary trade-off between growth rate and yield in E. coli. Am. Nat. 168, 242–251 (2006).Article 
    PubMed 

    Google Scholar 
    Bachmann, H. et al. Availability of public goods shapes the evolution of competing metabolic strategies. Proc. Natl Acad. Sci. USA 110, 14302–14307 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lipson, D. A. The complex relationship between microbial growth rate and yield and its implications for ecosystem processes. Front. Microbiol. 6, 615 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Orivel, J. et al. Trade-offs in an ant–plant–fungus mutualism. Proc. Biol. Sci. 284, 20161679 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Fritts, R. K. et al. Enhanced nutrient uptake is sufficient to drive emergent cross-feeding between bacteria in a synthetic community. ISME J. 14, 2816–2828 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wortel, M. T., Noor, E., Ferris, M., Bruggeman, F. J. & Liebermeister, W. Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield. PLoS Comput. Biol. 14, e1006010 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cheng, C. et al. Laboratory evolution reveals a two-dimensional rate-yield tradeoff in microbial metabolism. PLoS Comput. Biol. 15, e1007066 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Luckinbill, L. S. r and K selection in experimental populations of Escherichia coli. Science 202, 1201–1203 (1978).Article 
    CAS 
    PubMed 

    Google Scholar 
    Oxman, E., Alon, U. & Dekel, E. Defined order of evolutionary adaptations: experimental evidence. Evolution 62, 1547–1554 (2008).Article 
    PubMed 

    Google Scholar 
    Jasmin, J.-N., Dillon, M. M. & Zeyl, C. The yield of experimental yeast populations declines during selection. Proc. Biol. Sci. 279, 4382–4388 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Laan, L., Koschwanez, J. H. & Murray, A. W. Evolutionary adaptation after crippling cell polarization follows reproducible trajectories. eLife 4, e09638 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blount, Z. D., Lenski, R. E. & Losos, J. B. Contingency and determinism in evolution: replaying life’s tape. Science 362, eaam5979 (2018).Article 
    PubMed 

    Google Scholar 
    Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).Article 

    Google Scholar 
    Rainey, P. B. & Travisano, M. Adaptive radiation in a heterogeneous environment. Nature 394, 69–72 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Meyer, J. R. et al. Repeatability and contingency in the evolution of a key innovation in phage lambda. Science 335, 428–432 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Herron, M. D. & Doebeli, M. Parallel evolutionary dynamics of adaptive diversification in Escherichia coli. PLoS Biol. 11, e1001490 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hillesland, K. L. et al. Erosion of functional independence early in the evolution of a microbial mutualism. Proc. Natl Acad. Sci. USA 111, 14822–14827 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meroz, N., Tovi, N., Sorokin, Y. & Friedman, J. Community composition of microbial microcosms follows simple assembly rules at evolutionary timescales. Nat. Commun. 12, 2891 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    MacLean, R. C. The tragedy of the commons in microbial populations: insights from theoretical, comparative and experimental studies. Heredity 100, 471–477 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dunn, B. et al. Recurrent rearrangement during adaptive evolution in an interspecific yeast hybrid suggests a model for rapid introgression. PLoS Genet. 9, e1003366 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barillot, E., Lacroix, B. & Cohen, D. Theoretical analysis of library screening using a N-dimensional pooling strategy. Nucleic Acids Res. 19, 6241–6247 (1991).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baym, M., Shaket, L., Anzai, I. A., Adesina, O. & Barstow, B. Rapid construction of a whole-genome transposon insertion collection for Shewanella oneidensis by Knockout Sudoku. Nat. Commun. 7, 13270 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baym, M. et al. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS ONE 10, e0128036 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Venkataram, S., Kuo, H., Hom, E., Kryazhimskiy, S. Early adaptation in a microbial community is dominated by mutualism-enhancing mutations. Dryad https://doi.org/10.6076/D14K5X (2022). More

  • in

    Forest conservation in Indigenous territories and protected areas in the Brazilian Amazon

    Qin, Y. et al. Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017. Nat. Sustain. 2, 764–772 (2019).Article 

    Google Scholar 
    Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Change 11, 442–448 (2021).Article 

    Google Scholar 
    Jenkins, C., Pimm, S. & Joppa, L. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).Article 
    CAS 

    Google Scholar 
    Nogueira, E., Yanai, A., de Vasconcelos, S., de Alencastro, G. & Fearnside, P. Brazil’s Amazonian protected areas as a bulwark against regional climate change. Reg. Environ. Change 18, 573–579 (2018).Article 

    Google Scholar 
    Ochoa-Quintero, J., Gardner, T., Rosa, I., Ferraz, S. & Sutherland, W. Thresholds of species loss in Amazonian deforestation frontier landscapes. Conserv. Biol. 29, 440–451 (2015).Article 

    Google Scholar 
    Cabral, A., Saito, C., Pereira, H. & Laques, A. Deforestation pattern dynamics in protected areas of the Brazilian Legal Amazon using remote sensing data. Appl. Geogr. 100, 101–115 (2018).Article 

    Google Scholar 
    Nepstad, D. et al. Inhibition of Amazon deforestation and fire by parks and Indigenous lands. Conserv. Biol. 20, 65–73 (2006).Article 
    CAS 

    Google Scholar 
    Ricketts, T. et al. Indigenous lands, protected areas, and slowing climate change. PLoS Biol. 8, e1000331 (2010).Article 

    Google Scholar 
    Herrera, D., Pfaff, A. & Robalino, J. Impacts of protected areas vary with the level of government: comparing avoided deforestation across agencies in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 116, 14916–14925 (2019).Article 
    CAS 

    Google Scholar 
    Jusys, T. Changing patterns in deforestation avoidance by different protection types in the Brazilian Amazon. PLoS ONE 13, e0195900 (2018).Article 

    Google Scholar 
    Matricardi, E. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).Article 
    CAS 

    Google Scholar 
    Silva, C. et al. Benchmark maps of 33 years of secondary forest age for Brazil. Sci. Data 7, 269 (2020).Article 

    Google Scholar 
    Laurance, W. et al. The future of the Brazilian Amazon. Science 291, 438–439 (2001).Article 
    CAS 

    Google Scholar 
    Laurance, W. et al. Development of the Brazilian Amazon. Response. Science 292, 1652–1654 (2001).
    Google Scholar 
    Silveira, J. Development of the Brazilian Amazon. Science 292, 1651–1654 (2001).Article 
    CAS 

    Google Scholar 
    Kauano, É., Silva, J., Diniz, J. & Michalski, F. Do protected areas hamper economic development of the Amazon region? An analysis of the relationship between protected areas and the economic growth of Brazilian Amazon municipalities. Land Use Policy 92, 104473 (2020).Article 

    Google Scholar 
    Silveira, F., Ferreira, M., Perillo, L., Carmo, F. & Neves, F. Brazil’s protected areas under threat. Science 361, 459–459 (2018).Article 
    CAS 

    Google Scholar 
    Begotti, R. & Peres, C. Brazil’s indigenous lands under threat. Science 363, 592–592 (2019).Article 

    Google Scholar 
    Fearnside, P. Deforestation of the Brazilian Amazon. Oxford Research Encyclopedias: Environmental Science (Oxford Univ. Press, 2017); https://doi.org/10.1093/acrefore/9780199389414.013.102Ferreira, J. et al. Brazil’s environmental leadership at risk. Science 346, 706–707 (2014).Article 
    CAS 

    Google Scholar 
    Villén-Pérez, S., Anaya-Valenzuela, L., Conrado da Cruz, D. & Fearnside, P. Mining threatens isolated indigenous peoples in the Brazilian Amazon. Glob. Environ. Change 72, 102398 (2022).Article 

    Google Scholar 
    Tollefson, J. Illegal mining in the Amazon hits record high amid Indigenous protests. Nature 598, 15–16 (2021).Article 
    CAS 

    Google Scholar 
    Silva, C. et al. The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nat. Ecol. Evol. 5, 144–145 (2021).Article 

    Google Scholar 
    Vale, M. et al. The COVID-19 pandemic as an opportunity to weaken environmental protection in Brazil. Biol. Conserv. 255, 108994 (2021).Article 

    Google Scholar 
    Charlier, P. & Varison, L. Is COVID-19 being used as a weapon against Indigenous Peoples in Brazil? Lancet 396, 1069–1070 (2020).Article 
    CAS 

    Google Scholar 
    Davidson, E. et al. The Amazon basin in transition. Nature 481, 321–328 (2012).Article 
    CAS 

    Google Scholar 
    Ferrante, L. & Fearnside, P. Brazil’s new president and ‘ruralists’ threaten Amazonia’s environment, traditional peoples and the global climate. Environ. Conserv. 46, 261–263 (2019).Article 

    Google Scholar 
    PRODES Legal Amazon Deforestation Monitoring System (INPE, 2020); http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodesHansen, M. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).Article 
    CAS 

    Google Scholar 
    Qin, Y. et al. Annual dynamics of forest areas in South America during 2007–2010 at 50 m spatial resolution. Remote Sens. Environ. 201, 73–87 (2017).Article 

    Google Scholar 
    Collection 6 of the Annual Land Use Land Cover Maps of Brazil (MapBiomas Project, accessed 10 July 2022); https://mapbiomas.org/enTree Cover Loss (Global Forest Watch, 2021); https://www.globalforestwatch.org/map/?modalMeta=tree_cover_lossFuller, C., Ondei, S., Brook, B. & Buettel, J. Protected-area planning in the Brazilian Amazon should prioritize additionality and permanence, not leakage mitigation. Biol. Conserv. 248, 108673 (2020).Article 

    Google Scholar 
    Nolte, C., Agrawal, A., Silvius, K. & Soares, B. Governance regime and location influence avoided deforestation success of protected areas in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 110, 4956–4961 (2013).Article 
    CAS 

    Google Scholar 
    Tesfaw, A. et al. Land-use and land-cover change shape the sustainability and impacts of protected areas. Proc. Natl Acad. Sci. USA 115, 2084–2089 (2018).Article 
    CAS 

    Google Scholar 
    OECD Environmental Performance Reviews: Brazil (OECD, 2015).Campos-Silva, J. et al. Sustainable-use protected areas catalyze enhanced livelihoods in rural Amazonia. Proc. Natl Acad. Sci. USA 118, e2105480118 (2021).Article 
    CAS 

    Google Scholar 
    Fearnside, P., Nogueira, E. & Yanai, A. Maintaining carbon stocks in extractive reserves in Brazilian Amazonia. Desenvolv. Meio. Ambie. 48, 446–476 (2018).
    Google Scholar 
    Nelson, A. & Chomitz, K. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods. PLoS ONE 6, e22722 (2011).Article 
    CAS 

    Google Scholar 
    BenYishay, A., Heuser, S., Runfola, D. & Trichler, R. Indigenous land rights and deforestation: evidence from the Brazilian Amazon. J. Environ. Econ. Manag. 86, 29–47 (2017).Article 

    Google Scholar 
    Bonilla-Mejía, L. & Higuera-Mendieta, I. Protected areas under weak institutions: evidence from Colombia. World Dev. 122, 585–596 (2019).Article 

    Google Scholar 
    Baragwanath, K. & Bayi, E. Collective property rights reduce deforestation in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 117, 20495–20502 (2020).Article 
    CAS 

    Google Scholar 
    Mangonnet, J., Kopas, J. & Urpelainen, J. Playing politics with environmental protection: the political economy of designating protected areas. J. Politics 84, 1453–1468 (2022).Article 

    Google Scholar 
    Nepstad, D. et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344, 1118–1123 (2014).Article 
    CAS 

    Google Scholar 
    Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).Article 
    CAS 

    Google Scholar 
    West, T. & Fearnside, P. Brazil’s conservation reform and the reduction of deforestation in Amazonia. Land Use Policy 100, 105072 (2021).Article 

    Google Scholar 
    Soares-Filho, B. et al. Cracking Brazil’s forest code. Science 344, 363–364 (2014).Article 
    CAS 

    Google Scholar 
    Ferrante, L. & Fearnside, P. Military forces and COVID-19 as smokescreens for Amazon destruction and violation of indigenous rights. J. Geogr. Soc. 151, 258–263 (2020).
    Google Scholar 
    Jiménez-Muñoz, J. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 6, 33130 (2016).Article 

    Google Scholar 
    Ferrante, L. & Fearnside, P. The Amazon’s road to deforestation. Science 369, 634–634 (2020).Article 

    Google Scholar 
    Feng, X. et al. How deregulation, drought and increasing fire impact Amazonian biodiversity. Nature 597, 516–521 (2021).Article 
    CAS 

    Google Scholar 
    Aragão, L. et al. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).Article 

    Google Scholar 
    Silva, J., Barbosa, L., Topf, J., Vieira, I. & Scarano, F. Minimum costs to conserve 80% of the Brazilian Amazon. Perspect. Ecol. Conserv. 20, 216–222 (2022).
    Google Scholar 
    Lovejoy, T. & Nobre, C. Amazon tipping point. Sci. Adv. 4, eaat2340 (2018).Article 

    Google Scholar 
    Xiao, X., Biradar, C., Czarnecki, C., Alabi, T. & Keller, M. A simple algorithm for large-scale mapping of evergreen forests in tropical America, Africa and Asia. Remote Sens. 1, 355–374 (2009).Article 

    Google Scholar 
    Natural Protected Areas and Indigenous Territories Maps in Brazil (RAISG, 2018); https://www.amazoniasocioambiental.org/en/ More