More stories

  • in

    Avoid the reproduction of coloniality in decolonial studies in ecology

    Lander, E. A. A colonialidade do saber: eurocentrismo e ciencias sociais. Perspectivas latino-americanas (CLACSO, 2005).Césaire, A. Guaraguao 20, 157–193 (2005).
    Google Scholar 
    Fanon, F. Black Skin, White Masks (Pluto, 1986).Mbembe, A. Arts Humanit. High. Educ. 15, 29–45 (2016).Article 

    Google Scholar 
    Rivera Cusicanqui, S. Ch’ixinakax utxiwa: una reflexión sobre prácticas y discursosdescolonizadores (Tinta Limón, 2010).Castro-Gómez, S. & Grosfoguel, R. El Giro Decolonial (Siglo del hombre, 2007).Grosfoguel, R. Rev. (Fernand Braudel Center) 25, 203–224 (2002).
    Google Scholar 
    Quijano, A. Int. Sociol. 15, 215–232 (2000).Article 

    Google Scholar 
    Visvanathan, S. in Science and Citizens: Globalization and the Challenge of Engagement (eds Leach, M. et al.) 83–97 (Zed Books, 2005).Spivak, G. C. Can the Subaltern Speak? (Routledge, 1994).Bhargava, R. Glob. Policy 4, 413–417 (2013).Article 

    Google Scholar 
    Bhambra, G. K. Crit. Times 4, 73–89 (2021).Article 

    Google Scholar 
    Sousa Santos, B. Rev. (Fernand Braudel Center) 30, 45–89 (2007).
    Google Scholar 
    Maas, B. et al. Conserv. Lett. 14, e12797 (2021).Article 

    Google Scholar 
    Nuñez, M. A. et al. J. Appl. Ecol. 56, 4–9 (2019).Article 

    Google Scholar 
    Mohammed, R. S. et al. Am. Nat. 200, 140–155 (2022).Article 

    Google Scholar 
    Rau, J. et al. Ecol. Austral 27, 312–496 (2017).Article 

    Google Scholar 
    Raja, N. B. et al. Nat. Ecol. Evol. 6, 145–154 (2022).Article 

    Google Scholar 
    Trisos, C. H., Auerbach, J. & Katti, M. Nat. Ecol. Evol. 6, 1205–1212 (2021).Article 

    Google Scholar 
    Eichhorn, M. P., Baker, K. & Griffiths, M. Front. Biogeogr. 12, 1–7 (2020).
    Google Scholar 
    Baker, K., Eichhorn, M. P. & Griffiths, M. Biotropica 51, 288–292 (2019).Article 

    Google Scholar 
    Brandt, S. et al. Ecol. Evol. 10, 12450–12456 (2020).Article 

    Google Scholar 
    McGill, B. M. et al. Ecol. Evol. 11, 3636–3645 (2021).Article 

    Google Scholar 
    Melles, S. J. et al. Ecoscience 26, 323–340 (2019).Article 

    Google Scholar 
    Adebisi, F. Decolonisation is not about ticking a box: it must disrupt. criticallegalthinking.com, https://criticallegalthinking.com/2020/03/12/decolonisation-is-not-about-ticking-a-box/ (12 March 2020).Güttler, N. Ber. Wiss. 42, 235–258 (2019).
    Google Scholar 
    Worster, D. J. Nature’s Economy: A History of Ecological Ideas, 2nd edn (Cambridge Univ. Press, 1994).Nicolson, M. Hist. Sci. 26, 183–200 (1988).Article 

    Google Scholar 
    Lewinsohn, T. M. Filos. História Biol. 11, 347–381 (2016).
    Google Scholar 
    Raby, M. The Study of Ecology in Latin America and the Caribbean (Oxford Univ Press, 2021).Mignolo, W. D. Coloniality at Large: Time and the Colonial Difference (Taylor & Francis, 2020).Simpson, D. Y., Beatty, A. E. & Ballen, C. J. Trends Ecol. Evol. 36, 4–8 (2021).Article 

    Google Scholar 
    Smith, L. T. Decolonizing Methodologies: Research and Indigenous Peoples (Zed Books, 2013).Grosfoguel, R. Tabula Rasa 24, 123–143 (2016). More

  • in

    Detailed morphological structure and phylogenetic relationships of Degeeriella punctifer (Phthiraptera: Philopteridae), a parasite of the bearded vulture Gypaetus barbatus (Accipitriformes: Accipitridae)

    Durden, L. Lice (Phthiraptera). In Medical and Veterinary Entomology 3rd edn (eds Mullen, G. & Durden, L.) 79–106 (Academic Press, 2019).Chapter 

    Google Scholar 
    Stork, N. E. & Lyal, C. H. C. Extinction or ‘co-extinction’ rates?. Nature 366, 307. https://doi.org/10.1038/366307a0 (1993).Article 
    ADS 

    Google Scholar 
    Koh, L. P. et al. Species coextinctions and the biodiversity crisis. Science 305, 1632–1634. https://doi.org/10.1126/science.1101101 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Gerlach J (2014) Haematopinus oliveri. The IUCN Red List of Threatened Species 2014: e.T9621A21423551. https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.T9621A21423551.en.Mingozzi, T. & Stève, R. Analysis of a historical extirpation of the bearded vulture Gypaetus barbatus (L.) in the Western Alps (France-Italy): former distribution and causes of extirpation. Biol. Conserv. 79, 155–171. https://doi.org/10.1016/S0006-3207(96)00110-3 (1997).Article 

    Google Scholar 
    Schaub, M., Zink, R., Beissmann, H., Sarrazin, F. & Arlettaz, R. When to end releases in reintroduction programmes: demographic rates and population viability analysis of bearded vultures in the Alps. J. Appl. Ecol. 46, 92–100. https://doi.org/10.1111/j.1365-2664.2008.01585.x (2009).Article 

    Google Scholar 
    BirdLife International. Gypaetus barbatus (amended version of 2017 assessment). The IUCN Red List of Threatened Species 2017: e.T22695174A118590506. https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T22695174A118590506.en, accessed 07 Apr 2021 (2017).Price, R. D., Hellenthal, R. A., Palma, R. L., Johnson, K. P., & Clayton, D. H. The chewing lice: World checklist and biological overview. Illinois Natural History Survey Special Publication 24. Illinois (2003).Clay, T. Revisions of mallophaga genera. Degeeriella from the Falconiformes. Bull. Br. Mus. (Nat. Hist.) 7, 123–207 (1958).
    Google Scholar 
    Martín Mateo, M. P. Fauna Ibérica, Vol. 32. Phthiraptera, Ischnocera. Museo Nacional de Ciencias Naturales (CSIC), Madrid (2009).Hoberg, E. P., Brooks, D. R. & Siegel-Causey, D. Host-parasite co-speciation: history, principles, and prospects. In Host-Parasite Evolution: General Principles and Avian Models (eds Clayton, D. H. & Moore, J.) 212–235 (Oxford University Press, 1997).
    Google Scholar 
    Johnson, K. P., Weckstein, J. D., Witt, C. C., Faucett, R. C. & Moyle, R. G. The perils of using host relationships in parasite taxonomy: phylogeny of the Degeeriella complex. Mol. Phylogenet. Evol. 23, 150–157. https://doi.org/10.1016/S1055-7903(02)00014-3 (2002).Article 
    CAS 

    Google Scholar 
    Catanach, T. A. & Johnson, K. P. Independent origins of the feather lice (Insecta: Degeeriella) of raptors. Biol. J. Linn. Soc. 114, 837–847. https://doi.org/10.1111/bij.12453 (2015).Article 

    Google Scholar 
    Pérez, J. M., Ruiz-Martínez, I. & Cooper, J. E. Occurrence of chewing lice on Spanish raptors. Ardeola 43, 129–138 (1996).
    Google Scholar 
    Ash, J. S. A study of the mallophagan of birds with particular reference to their ecology. Ibis 102, 93–110. https://doi.org/10.1111/j.1474-919X.1960.tb05095.x (1960).Article 

    Google Scholar 
    Askew, R. R. Parasitic Insects (Heinemann Educational, 1971).
    Google Scholar 
    Marshall, A. G. The Ecology of Parasitic Insects (Academic Press, 1981).
    Google Scholar 
    Bartlow, A. W., Villa, S. M., Thompson, M. W. & Bush, S. E. Walk or ride? Phoretic behaviour of amblyceran and ischnoceran lice. Int. J. Parasitol. 46, 221–227. https://doi.org/10.1016/j.ijpara.2016.01.003 (2016).Article 

    Google Scholar 
    Leonardi, M. S., Crespo, E. A., Raga, J. A. & Fernández, M. Scanning electron microscopy of Antarctophthirus microchir (Phthiraptera: Anoplura: Echinophthiriidae): Studying morphological adaptations to aquatic life. Micron 43, 929–936. https://doi.org/10.1016/j.micron.2012.03.009 (2012).Article 

    Google Scholar 
    Ortega Insaurralde, I., Minoli, S., Toloza, A. C., Picollo, M. I. & Barrozo, R. B. The sensory machinery of the head louse Pediculus humanus capitis: from the antennae to the brain. Front. Physiol. 10, 434. https://doi.org/10.3389/fphys.2019.00434 (2019).Article 

    Google Scholar 
    Ortega Insaurralde, I., Picollo, M. I. & Barrozo, R. B. Sensory features of the human louse antenna: New contributions and comparisons between ecotypes. Med. Vet. Entomol. 35, 219–224. https://doi.org/10.1111/mve.12485 (2021).Article 
    CAS 

    Google Scholar 
    Page, R. D. M., Lee, P. L. M., Becher, S. A., Griffiths, R. & Clayton, D. H. A different tempo of mitochondrial DNA evolution in birds and their parasitic lice. Mol. Phylogenet. Evol. 9, 276–293. https://doi.org/10.1006/mpev.1997.0458 (1998).Article 
    CAS 

    Google Scholar 
    Cruickshank, R. H. et al. Phylogenetic analysis of partial sequences of elongation factor 1α identifies major groups of lice (Insecta: Phthiraptera). Mol. Phylogenet. Evol. 19, 202–215. https://doi.org/10.1006/mpev.2001.0928 (2001).Article 
    CAS 

    Google Scholar 
    Murrell, A. & Barker, S. C. Multiple origins of parasitism in lice: phylogenetic analysis of SSU rDNA indicates that the Phthiraptera and Psocoptera are not monophyletic. Parasitol. Res. 97, 274–280. https://doi.org/10.1007/s00436-005-1413-8 (2005).Article 

    Google Scholar 
    Whiteman, N. K., Kimball, R. T. & Parker, P. G. Co-phylogeography and comparative population genetics of the threatened Galápagos hawk and three ectoparasite species: ecology shapes population histories within parasite communities. Mol. Ecol. 16, 4759–4773. https://doi.org/10.1111/j.1365-294X.2007.03512.x (2007).Article 
    CAS 

    Google Scholar 
    Palma, R. L. Slide-mounting of Lice: a detailed description of the Canada Balsam technique. N. Z. Entomol. 6, 432–436. https://doi.org/10.1080/00779962.1978.9722313 (1978).Article 

    Google Scholar 
    Soler-Cruz, M. D. & Martín-Mateo, M. P. Scanning electron microscopy of legs of two species of sucking lice (Anoplura: Phthiraptera). Micron 40, 401–408. https://doi.org/10.1016/j.micron.2008.10.001 (2009).Article 
    CAS 

    Google Scholar 
    Hafner, M. S. et al. Disparate rates of molecular evolution in cospeciating hosts and parasites. Science 265, 1087–1090. https://doi.org/10.1126/science.8066445 (1994).Article 
    ADS 
    CAS 

    Google Scholar 
    Simon, C. et al. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701. https://doi.org/10.1093/aesa/87.6.651 (1994).Article 
    CAS 

    Google Scholar 
    Danforth, B. N. & Ji, S. Elongation factor-1α occurs as two copies in bees: Implications for phylogenetic analysis of EF-1α sequences in insects. Mol. Biol. Evol. 15, 225–235. https://doi.org/10.1093/oxfordjournals.molbev.a025920 (1998).Article 
    CAS 

    Google Scholar 
    Smith, V. S., Page, R. D. M. & Johnson, K. P. Data incongruence and the problem of avian louse phylogeny. Zool. Scr. 33, 239–259. https://doi.org/10.1111/j.0300-3256.2004.00149.x (2004).Article 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 (1990).Article 
    CAS 

    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772. https://doi.org/10.1038/nmeth.2109 (2012).Article 
    CAS 

    Google Scholar 
    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754–755. https://doi.org/10.1093/bioinformatics/17.8.754 (2001).Article 
    CAS 

    Google Scholar 
    Zwickl, D. J. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. Thesis Dissertation, The University of Texas at Austin, Texas (2006).Rambaut, A. FigTree v1.4.2. Institute of Evolutionary Biology (University of Edinburgh, 2014).
    Google Scholar 
    Brown, C. J. Plumages and measurements of the Bearded Vulture in Southern Africa. Ostrich 60, 165–171 (1989).Article 

    Google Scholar 
    Chatterjee, P., Payra, A. & Sen, S. Insecta: Phthiraptera. In Faunal Diversity of Indian Himalaya (eds Chandra, K. et al.) 297–304 (Zoological Survey of India, 2018).
    Google Scholar 
    Liébanas, G. et al. The morphology of Colpocephalum pectinatum (Phthiraptera: Amblycera: Menoponidae) under scanning electron microscopy. Arthropod Struct. Dev. 64, 101085. https://doi.org/10.1016/j.asd.2021.101085 (2021).Article 

    Google Scholar 
    Pérez, J. M. Sobre algunos aspectos de la parasitación por malógafos en aves de presa. Ph.D. thesis Dissertation, Granada University (1990).Arya, G., Ahmad, A., Bansal, N., Saxena, R. & Saxena, A. K. Nature of placodean sensilla of four ischnoceran Phthiraptera. Entomon 35, 199–202 (2010).
    Google Scholar 
    Khan, V., Bansal, N., Arya, G., Ahmad, A. & Saxena, A. K. Contribution to the morphology of Degeeriella regalis (Insecta, Phthiraptera, Ischnocera). J. Entomol. Res. 35, 93–96 (2011).
    Google Scholar 
    Agarwal, G. P. et al. Bio-ecology of the louse, Upupicola upupae, infesting the Common Hoopoe, Upupa epops. J. Insect. Sci. 11, 46. https://doi.org/10.1673/031.011.4601 (2011).Article 
    CAS 

    Google Scholar 
    Singh, P., Gupta, N., Khan, G., Kumar, S. & Ahmad, A. Diagnostic characters of three nymphal instars and morphological features of adult Collard-dove louse Columbicola bacillus (Phthiraptera: Insecta). J. Appl. Nat. Sci. 11, 7–11. https://doi.org/10.31018/jans.v11i1.1855 (2019).Article 

    Google Scholar 
    Clayton, D. H. & Johnson, K. P. Linking coevolutionary history to ecological process: Doves and lice. Evolution 57, 2335–2341. https://doi.org/10.1111/j.0014-3820.2003.tb00245.x (2003).Article 

    Google Scholar 
    Barker, S. C. Lice, cospeciation and parasitism. Int J Parasitol 26, 219–222 (1996).Article 
    CAS 

    Google Scholar 
    Page, R. D. M., Clayton, D. H. & Paterson, A. A. Lice and cospeciation: A response to Barker. Int. J. Parasitol. 26, 213–218. https://doi.org/10.1016/0020-7519(95)00115-8 (1996).Article 
    CAS 

    Google Scholar 
    Paterson, A. M. & Gray, R. D. Host-parasite cospeciation, host-switching and missing the boat. In Host-Parasite Evolution: General Principles and Avian Models (eds Clayton, D. H. & Moore, J.) 236–250 (Oxford University Press, 1997).
    Google Scholar 
    Paterson, A. M., Palma, R. L. & Gray, R. D. How frequently do avian lice miss the boat? Implications for coevolutionary studies. Syst. Biol. 48, 214–223. https://doi.org/10.1080/106351599260544 (1999).Article 

    Google Scholar 
    Frey, H. & Walter, W. The reintroduction of the bearded vulture Gypaetus barbatus into the Alps. In Raptors in the Modern World (eds Meyburg, B. U. & Chancellor, R. D.) 341–344 (WWGBP, 1989).
    Google Scholar 
    Pérez, J. M., Sánchez, I. & Palma, R. L. The dilemma of conserving parasites: the case of Felicola (Lorisicola) isidoroi (Phthiraptera: Trichodectidae) and its host, the endangered Iberian lynx (Lynx pardinus). Insect. Conserv. Divers. 6, 680–686. https://doi.org/10.1111/icad.12021 (2013).Article 

    Google Scholar  More

  • in

    Ecological insights into soil health according to the genomic traits and environment-wide associations of bacteria in agricultural soils

    Doran JW. Soil health and global sustainability: translating science into practice. Agric Ecosyst Environ. 2002;88:119–27.Article 

    Google Scholar 
    Wander MM, Cihacek LJ, Coyne M, Drijber RA, Grossman JM, Gutknecht JLM, et al. Developments in Agricultural Soil Quality and Health: Reflections by the Research Committee on Soil Organic Matter Management. Front Environ Sci. 2019;7:1–9.Article 

    Google Scholar 
    Stewart RD, Jian J, Gyawali AJ, Thomason WE, Badgley BD, Reiter MS, et al. What we talk about when we talk about soil health. Agric Environ Lett. 2018;3:5–9.Article 

    Google Scholar 
    Rinot O, Levy GJ, Steinberger Y, Svoray T, Eshel G. Soil health assessment: A critical review of current methodologies and a proposed new approach. Sci Total Environ. 2019;648:1484–91.Article 
    CAS 

    Google Scholar 
    Hurisso TT, Culman SW, Zhao K. Repeatability and spatiotemporal variability of emerging soil health indicators relative to routine soil nutrient tests. Soil Sci Soc Am J. 2018;82:939–48.Article 
    CAS 

    Google Scholar 
    Lilburne L, Sparling G, Schipper L. Soil quality monitoring in New Zealand: Development of an interpretative framework. Agric Ecosyst Environ. 2004;104:535–44.Article 

    Google Scholar 
    Moebius-Clune BN, Moebius-Clune DJ, Gugino BK, Idowu OJ, Schindelbeck RR, Ristow AJ, et al. Comprehensive assessment of soil health – the Cornell framework manual, 3rd ed. Ithaca, NY:Cornell University; 2017.Fierer N, Wood SA, Bueno de Mesquita CP. How microbes can, and cannot, be used to assess soil health. Soil Biol Biochem. 2021;153:108111.Article 
    CAS 

    Google Scholar 
    Amsili JP, van Es HM, Schindelbeck RR. Cropping system and soil texture shape soil health outcomes and scoring functions. Soil Secur. 2021;4:100012.Article 

    Google Scholar 
    Wade J, Culman SW, Gasch CK, Lazcano C, Maltais-Landry G, Margenot AJ, et al. Rigorous, empirical, and quantitative: a proposed pipeline for soil health assessments. Soil Biol Biochem. 2022;170:108710.Article 
    CAS 

    Google Scholar 
    Simonin M, Voss KA, Hassett BA, Rocca JD, Wang SY, Bier RL, et al. In search of microbial indicator taxa: shifts in stream bacterial communities along an urbanization gradient. Environ Microbiol. 2019;21:3653–68.Article 

    Google Scholar 
    Bissett A, Brown MV, Siciliano SD, Thrall PH. Microbial community responses to anthropogenically induced environmental change: Towards a systems approach. Ecol Lett. 2013;16:128–39.Article 

    Google Scholar 
    Wilhelm RC, Cardenas E, Maas KR, Leung H, McNeil L, Berch S, et al. Biogeography and organic matter removal shape long-term effects of timber harvesting on forest soil microbial communities. ISME J. 2017;11:2552–68.Article 

    Google Scholar 
    Gibbons SM, Scholz M, Hutchison AL, Dinner AR, Gilbert JA, Colemana ML, et al. Disturbance regimes predictably alter diversity in an ecologically complex bacterial system. MBio. 2016;7:1–10.Article 

    Google Scholar 
    Trivedi P, Delgado-Baquerizo M, Anderson IC, Singh BK. Response of soil properties and microbial communities to agriculture: Implications for primary productivity and soil health indicators. Front Plant Sci. 2016;7:1–13.Article 

    Google Scholar 
    Jiao S, Xu Y, Zhang J, Hao X. Core microbiota in agricultural soils and their potential associations with nutrient cycling. mSystems. 2019;4:1–16.Article 

    Google Scholar 
    Chang HX, Haudenshield JS, Bowen CR, Allen R, Iii W, Parnell JJ, et al. Metagenome-wide association study and machine learning prediction of bulk soil microbiome and crop productivity. Front Microbiol. 2017;8:519.Article 

    Google Scholar 
    Trivedi P, Delgado-Baquerizo M, Jeffries TC, Trivedi C, Anderson IC, Lai K, et al. Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content. Environ Microbiol. 2017;19:3070–86.Article 
    CAS 

    Google Scholar 
    Armbruster M, Goodall T, Hirsch PR, Ostle N, Puissant J, Fagan KC, et al. Bacterial and archaeal taxa are reliable indicators of soil restoration across distributed calcareous grasslands. Eur J Soil Sci. 2021;72:2430–44.Rieke EL, Cappellazzi SB, Cope M, Liptzin D, Mac Bean G, Greub KLH, et al. Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage. Soil Biol Biochem. 2022;168:108618.Article 
    CAS 

    Google Scholar 
    Wilhelm RC, Van Es HM, Buckley DH. Predicting measures of soil health using the microbiome and supervised machine learning. Soil Biol Biochem. 2022;164:108472.Article 
    CAS 

    Google Scholar 
    Douglas GM, Maffei VJ, Zaneveld J, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2: An improved and customizable approach for metagenome inference 2. bioRxiv. 2020. https://doi.org/10.1101/672295.Gravuer K, Eskelinen A. Nutrient and rainfall additions shift phylogenetically estimated traits of soil microbial communities. Front Microbiol. 2017;8:1–16.Article 

    Google Scholar 
    Chen Y, Maier RM, Barberán A, Neilson JW, Kushwaha P, Maier RM, et al. Life-history strategies of soil microbial communities in an arid ecosystem. ISME J. 2021;15:649–57.Article 
    CAS 

    Google Scholar 
    Fierer N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.Article 
    CAS 

    Google Scholar 
    Malik AA, Martiny JBHH, Brodie EL, Martiny AC, Treseder KK, Allison SD, et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 2020;14:1–9.Article 
    CAS 

    Google Scholar 
    Roller BRK, Stoddard SF, Schmidt TM. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat Microbiol. 2016;1:1–7.Nunan N, Schmidt H, Raynaud X, Schmidt H. The ecology of heterogeneity: Soil bacterial communities and C dynamics. Philos Trans R Soc B Biol Sci. 2020;375:20190249.Article 
    CAS 

    Google Scholar 
    Grime JP. Evidence for the existence of three primary strategies in plants and its relevance for ecological and evolutionary theory. Am Nat. 1977;111:1169–94.Article 

    Google Scholar 
    Barnett S, Youngblut ND, Koechli CN, Buckley DH. Multisubstrate DNA stable isotope probing reveals guild structure of bacteria that mediate soil carbon cycling. PNAS. 2021;118:e2115292118.Wilhelm RC, Pepe-Ranney C, Weisenhorn P, Lipton M, Buckley DH. Competitive exclusion and metabolic dependency among microorganisms structure the cellulose economy of an agricultural soil. MBio. 2021;12:1–19.Article 

    Google Scholar 
    Schmidt R, Gravuer K, Bossange AV, Mitchell J, Scow K. Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil. PLoS ONE. 2018;13:1–19.Article 

    Google Scholar 
    Neal AL, Hughes D, Clark IM, Jansson JK, Hirsch PR. Microbiome Aggregated Traits and Assembly Are More Sensitive to Soil Management than Diversity. mSystems 2021;6:e0105620.Lupatini M, Korthals GW, de Hollander M, Janssens TKS, Kuramae EE. Soil microbiome is more heterogeneous in organic than in conventional farming system. Front Microbiol. 2017;7:1–13.Article 

    Google Scholar 
    Koechli C, Campbell AN, Pepe-ranney C, Buckley DH. Assessing fungal contributions to cellulose degradation in soil by using high- throughput stable isotope probing. Soil Biol Biochem. 2019;130:150–8.Article 
    CAS 

    Google Scholar 
    Furtak K, Grządziel J, Gałązka A, Niedźwiecki J. Prevalence of unclassified bacteria in the soil bacterial community from floodplain meadows (fluvisols) under simulated flood conditions revealed by a metataxonomic approachss. Catena. 2020;188:104448.Article 
    CAS 

    Google Scholar 
    Schmidt R, Mitchell J, Scow K. Cover cropping and no-till increase diversity and symbiotroph: saprotroph ratios of soil fungal communities. Soil Biol Biochem. 2019;129:99–109.Article 
    CAS 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.Article 
    CAS 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.Article 

    Google Scholar 
    Levy R, Borenstein E. Reverse Ecology: From systems to environments and back. Adv Exp Med Biol. 2012;751:329–45.Article 
    CAS 

    Google Scholar 
    Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.Article 

    Google Scholar 
    Hamilton JP, Neeno-Eckwall EC, Adhikari BN, Perna NT, Tisserat N, Leach JE, et al. The Comprehensive Phytopathogen Genomics Resource: a web-based resource for data-mining plant pathogen genomes. Database. 2011;2011:bar053.Detheridge AP, Brand G, Fychan R, Crotty FV, Sanderson R, Griffith GW, et al. The legacy effect of cover crops on soil fungal populations in a cereal rotation. Agric Ecosyst Environ. 2016;228:49–61.Article 

    Google Scholar 
    McKenna TP, Crews TE, Kemp L, Sikes BA. Community structure of soil fungi in a novel perennial crop monoculture, annual agriculture, and native prairie reconstruction. PLoS ONE. 2020;15:1–15.Article 

    Google Scholar 
    Rocca JD, Simonin M, Blaszczak JR, Ernakovich JG, Gibbons SM, Midani FS, et al. The Microbiome Stress Project: Toward a global meta-analysis of environmental stressors and their effects on microbial communities. Front Microbiol. 2019;9:3272.Article 

    Google Scholar 
    Ramirez KS, Knight CG, De Hollander M, Brearley FQ, Constantinides B, Cotton A, et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat Microbiol. 2018;3:189–96.Article 
    CAS 

    Google Scholar 
    Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.Article 
    CAS 

    Google Scholar 
    Lagkouvardos I, Joseph D, Kapfhammer M, Giritli S, Horn M, Haller D, et al. IMNGS: A comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Sci Rep. 2016;6:1–9.Article 

    Google Scholar 
    Jurburg SD, Konzack M, Eisenhauer N, Heintz-Buschart A. The archives are half-empty: a field-wide assessment of the availability of microbial community sequencing data. Commun Biol. 2020;3:474.Emerson JB, Everhart SE, Eversole K, Frost KE, Herr JR, Huerta AI, et al. Community-driven metadata standards for agricultural microbiome research. Phytobiomes J. 2020; 4:115-121.Anderson TH, Martens R. DNA determinations during growth of soil microbial biomasses. Soil Biol Biochem. 2013;57:487–95.Article 
    CAS 

    Google Scholar 
    Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the Miseq Illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–20.Article 
    CAS 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.Article 
    CAS 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.Article 

    Google Scholar 
    Harrell F, Dupont C. Hmisc: Harrell miscellaneous. R Package 2015.Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc. 1995;57:289–300.
    Google Scholar 
    Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 2016;10:1669–81.Article 
    CAS 

    Google Scholar 
    Mills RH, Dulai PS, Vázquez-Baeza Y, Sauceda C, Daniel N, Gerner RR, et al. Multi-omics analyses of the ulcerative colitis gut microbiome link Bacteroides vulgatus proteases with disease severity. Nat Microbiol. 2022;7:262–76.Article 
    CAS 

    Google Scholar 
    De Cáceres M, Legendre P, De Caceres M, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–74.Article 

    Google Scholar 
    Markowitz VM, Ivanova NN, Szeto E, Palaniappan K, Chu K, Dalevi D, et al. IMG/M: A data management and analysis system for metagenomes. Nucleic Acids Res. 2008;36:534–8.Article 

    Google Scholar 
    Stoddard SF, Smith BJ, Hein R, Roller BRK, Schmidt M. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 2015;43:593–8.R Core Team. R: a language and environment for statistical computing. R Foundation. 2020.Wickham H. Reshaping data with the reshape package. J Stat Soft. 2007;21:1–20.Article 

    Google Scholar 
    Wickham H. The split-apply-combine strategy for data analysis. J Stat Soft. 2009;40:1–29.
    Google Scholar 
    Wickham H. Elegant graphics for data analysis. Media. 2009;35:211.
    Google Scholar 
    McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013;8:e61217.Grömping U. Relative importance for linear regression in R: the package relaimpo. J Stat Softw. 2006;17:1–27.Article 

    Google Scholar 
    Bastian M, Heymann S. Gephi: an open source software for exploring and manipulating networks. Proc Int AAAI Conf Web Soc Media. 2009:361–2.Hu Y. Efficient, high-quality force-directed graph drawing. Math J. 2006;10:37–71.
    Google Scholar 
    Ranea JAG, Grant A, Thornton JM, Orengo CA. Microeconomic principles explain an optimal genome size in bacteria. Trends Genet. 2005;21:21–5.Article 
    CAS 

    Google Scholar 
    Nielsen DA, Fierer N, Geoghegan JL, Gillings MR, Gumerov V, Madin JS, et al. Aerobic bacteria and archaea tend to have larger and more versatile genomes. Oikos. 2021;130:501–11.Article 
    CAS 

    Google Scholar 
    Chen Y, Leung PM, Wood JL, Bay SK, Kessler AJ, Shelley G, et al. Metabolic flexibility allows bacterial habitat generalists to become dominant in a frequently disturbed ecosystem. ISME J. 2021;15:2986–3004.Article 
    CAS 

    Google Scholar 
    Brewer TE, Handley KM, Carini P, Gilbert JA, Fierer N. Genome reduction in an abundant and ubiquitous soil bacterium ‘Candidatus Udaeobacter copiosus’. Nat Microbiol. 2016;2:16198.Willms IM, Rudolph AY, Göschel I, Bolz SH, Schneider D, Penone C, et al. Globally Abundant “Candidatus Udaeobacter” Benefits from Release of Antibiotics in Soil and Potentially Performs Trace Gas Scavenging. mSphere. 2020;5:1–17.Article 

    Google Scholar 
    Kaboré OD, Godreuil S, Drancourt M. Planctomycetes as host-associated bacteria: a perspective that holds promise for their future isolations, by mimicking their native environmental niches in clinical microbiology laboratories. Front Cell Infect Microbiol. 2020;10:1–19.Article 

    Google Scholar 
    Martens-Habbena W, Berube PM, Urakawa H, De La Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature. 2009;461:976–9.Article 
    CAS 

    Google Scholar 
    Zhalnina K, De Quadros PD, Gano KA, Davis-Richardson A, Fagen JR, Brown CT, et al. Ca. Nitrososphaera and Bradyrhizobium are inversely correlated and related to agricultural practices in long-term field experiments. Front Microbiol. 2013;4:1–13.Article 

    Google Scholar 
    Land M, Hauser L, Jun S, Nookaew I, Leuze MR, Ahn T, et al. Insights from 20 years of bacterial genome sequencing. Funct Integr Genom. 2015;15:141–61.Article 
    CAS 

    Google Scholar 
    Gil R, Latorre A, Postal A. Factors behind junk DNA in bacteria. Genes (Basel). 2012;3:634–50.Article 

    Google Scholar 
    Williamson KE, Radosevich M, Wommack KE. Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol. 2005;71:3119–25.Article 
    CAS 

    Google Scholar 
    Williamson KE, Corzo KA, Drissi CL, Buckingham JM, Thompson CP, Helton RR. Estimates of viral abundance in soils are strongly influenced by extraction and enumeration methods. Biol Fertil Soils. 2013;49:857–69.Article 

    Google Scholar 
    Van Goethem MW, Swenson TL, Trubl G, Roux S, Northen TR. Characteristics of wetting-induced bacteriophage blooms in biological soil crust. MBio. 2019;10:e02287-19.Westra ER, Van Houte S, Gandon S, Whitaker R, Van Houte S, Gandon S, et al. The ecology and evolution of microbial CRISPR-Cas adaptive immune systems. Philos Trans R Soc B Biol Sci. 2019;374:20190101.Martinez-Gutierrez CA, Aylward FO. Genome size distributions in bacteria and archaea are strongly linked to evolutionary history at broad phylogenetic scales. PLoS Genet. 2022;18:1–17.Article 

    Google Scholar 
    Saifuddin M, Bhatnagar JM, Finzi AC, Segrè D, Finzi AC. Microbial carbon use efficiency predicted from genome-scale metabolic models. Nat Commun. 2019;10:1–10.Article 
    CAS 

    Google Scholar  More

  • in

    Benthic composition changes on coral reefs at global scales

    Dudgeon, D. Multiple threats imperil freshwater biodiversity in the Anthropocene. Curr. Biol. 29, R942–R995 (2019).Article 

    Google Scholar 
    Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).Article 
    CAS 

    Google Scholar 
    Arrigo, K. R. et al. Synergistic interactions among growing stressors increase risk to an Arctic ecosystem. Nat. Commun. 11, 6255 (2020).Article 
    CAS 

    Google Scholar 
    Kopf, R. K., Finlayson, C. M., Humphries, P., Sims, N. C. & Hladyz, S. Anthropocene baselines: assessing change and managing biodiversity in human-dominated aquatic ecosystems. Bioscience 65, 798–811 (2015).Article 

    Google Scholar 
    Chapin, F. S. et al. Ecosystem stewardship: sustainability strategies for a rapidly changing planet. Trends Ecol. Evol. 25, 241–249 (2010).Article 

    Google Scholar 
    Seastedt, T. R., Hobbs, R. J. & Suding, K. N. Management of novel ecosystems: are novel approaches required? Front. Ecol. Environ. 6, 547–553 (2008).Article 

    Google Scholar 
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).Article 
    CAS 

    Google Scholar 
    Bellwood, D. R. et al. Coral reef conservation in the Anthropocene: confronting spatial mismatches and prioritizing functions. Biol. Conserv. 236, 604–615 (2019).Article 

    Google Scholar 
    Graham, N. A. J., Cinner, J. E., Norström, A. V. & Nyström, M. Coral reefs as novel ecosystems: embracing new futures. Curr. Opin. Environ. Sustain. 7, 9–14 (2014).Article 

    Google Scholar 
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).Article 
    CAS 

    Google Scholar 
    Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264 (2019).Article 
    CAS 

    Google Scholar 
    Fisher, R. et al. Species richness on coral reefs and the pursuit of convergent global estimates. Curr. Biol. 25, 500–505 (2015).Article 
    CAS 

    Google Scholar 
    Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).Article 

    Google Scholar 
    Teh, L. S. L., Teh, L. C. L. & Sumaila, U. R. A global estimate of the number of coral reef fishers. PLoS ONE 8, e65397 (2013).Article 
    CAS 

    Google Scholar 
    Ferrario, F. et al. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun. 5, 3794 (2014).Article 
    CAS 

    Google Scholar 
    Skirving, W. J. et al. The relentless march of mass coral bleaching: a global perspective of changing heat stress. Coral Reefs 38, 547–557 (2019).Article 

    Google Scholar 
    Donovan, M. K. et al. Local conditions magnify coral loss after marine heatwaves. Science 372, 977–980 (2021).Article 
    CAS 

    Google Scholar 
    Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an isolated coral reef system following severe disturbance. Science 340, 69–71 (2013).Article 

    Google Scholar 
    Diaz-Pulido, G. & McCook, L. J. The fate of bleached corals: patterns and dynamics of algal recruitment. Mar. Ecol. Prog. Ser. 232, 115–128 (2002).Article 

    Google Scholar 
    Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).Article 
    CAS 

    Google Scholar 
    Jouffray, J. B. et al. Parsing human and biophysical drivers of coral reef regimes. Proc. R. Soc. B Biol. Sci. 286, 20182544 (2019).Article 

    Google Scholar 
    Reverter, M., Helber, S. B., Rohde, S., Goeij, J. M. & Schupp, P. J. Coral reef benthic community changes in the Anthropocene: biogeographic heterogeneity, overlooked configurations, and methodology. Glob. Chang. Biol. 28, 1956–1971 (2022).Article 

    Google Scholar 
    Cheal, A. J., MacNeil, M. A., Emslie, M. J. & Sweatman, H. The threat to coral reefs from more intense cyclones under climate change. Glob. Chang. Biol. 23, 1511–1524 (2017).Article 

    Google Scholar 
    Done, T. in Perspectives on Coral Reefs (ed. Barnes, D. J.) 107–147 (Brian Clouston, 1983).Bruno, J. F., Côté, I. M. & Toth, L. T. Climate change, coral loss, and the curious case of the parrotfish paradigm: why don’t marine protected areas improve reef resilience? Ann. Rev. Mar. Sci. 11, 307–334 (2019).Article 

    Google Scholar 
    Gardner, T. A., Cote, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).Article 
    CAS 

    Google Scholar 
    Schutte, V. G. W., Selig, E. R. & Bruno, J. F. Regional spatio-temporal trends in Caribbean coral reef benthic communities. Mar. Ecol. Prog. Ser. 402, 115–122 (2010).Article 

    Google Scholar 
    Hughes, T. P. Catastrophes, phase shifts and large-scale degradation of a Caribbean coral reef. Science 265, 1547–1551 (1994).Article 
    CAS 

    Google Scholar 
    Souter, D. et al. Status of Coral Reefs of the World: 2020 (Global Coral Reef Monitoring Network, 2021).Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS One 2, e711 (2007).Article 

    Google Scholar 
    Ateweberhan, M., McClanahan, T. R., Graham, N. A. J. & Sheppard, C. R. C. Episodic heterogeneous decline and recovery of coral cover in the Indian Ocean. Coral Reefs 30, 739–752 (2011).Article 

    Google Scholar 
    Bellwood, D. R., Hemingson, C. R. & Tebbett, S. B. Subconscious biases in coral reef fish studies. Bioscience 70, 621–627 (2020).Article 

    Google Scholar 
    Kench, P. S. et al. Sustained coral reef growth in the critical wave dissipation zone of a Maldivian atoll. Commun. Earth Environ. 3, 9 (2022).Article 

    Google Scholar 
    Eddy, T. D. et al. Global decline in capacity of coral reefs to provide ecosystem services. One Earth 4, 1278–1285 (2021).Article 

    Google Scholar 
    Mumby, P. J., Hastings, A. & Edwards, H. J. Thresholds and the resilience of Caribbean coral reefs. Nature 450, 98–101 (2007).Article 
    CAS 

    Google Scholar 
    Roff, G. & Mumby, P. J. Global disparity in the resilience of coral reefs. Trends Ecol. Evol. 27, 404–413 (2012).Article 

    Google Scholar 
    Bruno, J. F., Sweatman, H., Precht, W. F., Selig, E. R. & Schutte, V. G. W. Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecology 90, 1478–1484 (2009).Article 

    Google Scholar 
    Renema, W. et al. Hopping hotspots: global shifts in marine biodiversity. Science 321, 654–657 (2008).Article 
    CAS 

    Google Scholar 
    Bellwood, D. R., Goatley, C. H. R. & Bellwood, O. The evolution of fishes and corals on reefs: form, function and interdependence. Biol. Rev. 92, 878–901 (2017).Article 

    Google Scholar 
    Roff, G. Evolutionary history drives biogeographic patterns of coral reef resilience. Bioscience 71, 26–39 (2021).
    Google Scholar 
    Siqueira, A. C., Bellwood, D. R. & Cowman, P. F. The evolution of traits and functions in herbivorous coral reef fishes through space and time. Proc. R. Soc. B Biol. Sci. 286, 20182672 (2019).Article 

    Google Scholar 
    Birrell, C. L., McCook, L. J., Willis, B. L. & Diaz-Pulido, G. A. Effects of benthic algae on the replenishment of corals and the implications for the resilience of coral reefs. Oceanogr. Mar. Biol. Annu. Rev. 46, 25–63 (2008).
    Google Scholar 
    Speare, K. E., Duran, A., Miller, M. W. & Burkepile, D. E. Sediment associated with algal turfs inhibits the settlement of two endangered coral species. Mar. Pollut. Bull. 144, 189–195 (2019).Article 
    CAS 

    Google Scholar 
    Diaz-Pulido, G., Harii, S., McCook, L. J. & Hoegh-Guldberg, O. The impact of benthic algae on the settlement of a reef-building coral. Coral Reefs 29, 203–208 (2010).Article 

    Google Scholar 
    Johns, K. A. et al. Macroalgal feedbacks and substrate properties maintain a coral reef regime shift. Ecosphere 9, e02349 (2018).Article 

    Google Scholar 
    Houk, P. et al. Commercial coral-reef fisheries across Micronesia: a need for improving management. Coral Reefs 31, 13–26 (2012).Article 

    Google Scholar 
    Edwards, C. B. et al. Global assessment of the status of coral reef herbivorous fishes: evidence for fishing effects. Proc. R. Soc. B Biol. Sci. 281, 20131835 (2014).Article 
    CAS 

    Google Scholar 
    Choat, J. H. & Clements, K. D. Vertebrate herbivores in marine and terrestrial environments: a nutritional ecology perspective. Annu. Rev. Ecol. Syst. 29, 375–403 (1998).Article 

    Google Scholar 
    Tebbett, S. B., Morais, R. A., Goatley, C. H. R. & Bellwood, D. R. Collapsing ecosystem functions on an inshore coral reef. J. Environ. Manag. 289, 112471 (2021).Article 

    Google Scholar 
    Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Natl Acad. Sci. USA. 118, e2015265118 (2021).Article 
    CAS 

    Google Scholar 
    Diaz-Pulido, G. et al. Greenhouse conditions induce mineralogical changes and dolomite accumulation in coralline algae on tropical reefs. Nat. Commun. 5, 3310 (2014).Article 

    Google Scholar 
    Nash, M. C. et al. Dolomite-rich coralline algae in reefs resist dissolution in acidified conditions. Nat. Clim. Chang. 3, 268–272 (2013).Article 
    CAS 

    Google Scholar 
    Lyons, M., Larsen K. & Skone, M. Allen Coral Atlas. Imagery, maps and monitoring of the world’s tropical coral reefs. Zenodo https://doi.org/10.5281/zenodo.3833242 (2020).Tebbett, S. B. & Bellwood, D. R. Algal turf sediments on coral reefs: what’s known and what’s next. Mar. Pollut. Bull. 149, 110542 (2019).Article 
    CAS 

    Google Scholar 
    Nugues, M. M. & Bak, R. P. M. Long-term dynamics of the brown macroalga Lobophora variegata on deep reefs in Curaçao. Coral Reefs 27, 389–393 (2008).Article 

    Google Scholar 
    Tsounis, G. & Edmunds, P. J. Three decades of coral reef community dynamics in St. John, USVI: a contrast of scleractinians and octocorals. Ecosphere 8, e01646 (2017).Article 

    Google Scholar 
    Toth, L. T. et al. Do no-take reserves benefit Florida’s corals? 14 years of change and stasis in the Florida Keys National Marine Sanctuary. Coral Reefs 33, 565–577 (2014).Article 

    Google Scholar 
    Smith, J. E. et al. Re-evaluating the health of coral reef communities: baselines and evidence for human impacts across the central Pacific. Proc. R. Soc. B Biol. Sci. 283, 20151985 (2016).Article 

    Google Scholar 
    Wolfe, K., Kenyon, T. M. & Mumby, P. J. The biology and ecology of coral rubble and implications for the future of coral reefs. Coral Reefs 40, 1769–1806 (2021).Article 

    Google Scholar 
    Harris, J. L., Lewis, L. S. & Smith, J. E. Quantifying scales of spatial variability in algal turf assemblages on coral reefs. Mar. Ecol. Prog. Ser. 532, 41–57 (2015).Article 

    Google Scholar 
    Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & Group, T. P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).Article 

    Google Scholar 
    Crisp, S. K., Tebbett, S. B. & Bellwood, D. R. A critical evaluation of benthic phase shift studies on coral reefs. Mar. Environ. Res. 178, 105667 (2022).Article 
    CAS 

    Google Scholar 
    WebPlotDigitizer v. 4.3 (A. Rohatgi, 2020); https://automeris.io/WebPlotDigitizerKulbicki, M. et al. Global biogeography of reef fishes: a hierarchical quantitative delineation of regions. PLoS ONE 8, e81847 (2013).Article 

    Google Scholar 
    Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).Article 

    Google Scholar 
    R Core Team: R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).Zychaluk, K., Bruno, J. F., Clancy, D., McClanahan, T. R. & Spencer, M. Data-driven models for regional coral-reef dynamics. Ecol. Lett. 15, 151–158 (2012).Article 

    Google Scholar 
    Dudgeon, S. R., Aronson, R. B., Bruno, J. F. & Precht, W. F. Phase shifts and stable states on coral reefs. Mar. Ecol. Prog. Ser. 413, 201–216 (2010).Article 

    Google Scholar 
    Jost, L., Chao, A. & Chazdon, R. L. in Biological Diversity: Frontiers in Measurement and Assessment (eds Magurran, A. E. & McGill, B. J.) 66–84 (Oxford Univ. Press, 2011).Oksanen, J. F. et al. Vegan: Community ecology package. R package version 2.5-6 (2019).Calenge, C. The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).Article 

    Google Scholar 
    Worton, B. J. Kernel methods for estimating the utilization distribution in home‐range studies. Ecology 70, 164–168 (1989).Article 

    Google Scholar 
    Blonder, B. Hypervolume concepts in niche- and trait-based ecology. Ecography 41, 1441–1455 (2018).Article 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: an Introduction with R 2nd edn (Chapman & Hall/CRC, 2017).Gräler, B., Pebesma, E. & Heuvelink, G. Spatio-temporal interpolation using gstat. R. J. 8, 204–218 (2016).Article 

    Google Scholar 
    Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3.3.0 (2020).Lenth, R. emmeans: Estimated marginal means, aka least-squares means. R package version 1.5.1 (2020).Wickham, H. et al. tidyverse: easily install and load the ‘tidyverse’. J. Open Source Softw. 4, 1686 (2019).Article 

    Google Scholar 
    Pebesma, E. Simple features for R: standardized support for spatial vector data. R. J. 10, 439–446 (2018).Article 

    Google Scholar 
    South, A. rnaturalearth: World map data from natural earth. R package version 0.1.0 (2017).Hamilton, N. E. & Ferry, M. ggtern: ternary diagrams using ggplot2. J. Stat. Softw., Code Snippets 87, 1–17 (2018).
    Google Scholar 
    Pedersen, T. L. patchwork: The composer of plots. R package version 1.1.1 (2020). More

  • in

    Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces

    Griggs, D. et al. Sustainable development goals for people and planet. Nature 495, 305–307 (2013).Article 
    CAS 

    Google Scholar 
    Charlop-Powers, Z. et al. Urban park soil microbiomes are a rich reservoir of natural product biosynthetic diversity. Proc. Natl Acad. Sci. USA 113, 14811 (2016).Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Sci. Adv. 7, eabg5809 (2021).Article 
    CAS 

    Google Scholar 
    Martínez, J. L. Antibiotics and antibiotic resistance genes in natural environments. Science 321, 365–367 (2008).Article 

    Google Scholar 
    Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012).Article 
    CAS 

    Google Scholar 
    Byrnes, J. E. K. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evolution 5, 111–124 (2014).Article 

    Google Scholar 
    Gamfeldt, L. & Roger, F. Revisiting the biodiversity–ecosystem multifunctionality relationship. Nat. Ecol. Evolution 1, 0168 (2017).Article 

    Google Scholar 
    Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936 (2015).Article 
    CAS 

    Google Scholar 
    Zavaleta, E. S. et al. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc. Natl Acad. Sci. USA 107, 1443 (2010).Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).Article 
    CAS 

    Google Scholar 
    Wagg, C. et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266 (2014).Article 
    CAS 

    Google Scholar 
    van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).Article 

    Google Scholar 
    Ramirez, K. S. et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc. R. Soc. B 281, 20141988 (2014).Article 

    Google Scholar 
    Schittko, C. et al. Biodiversity maintains soil multifunctionality and soil organic carbon in novel urban ecosystems. J. Ecol. https://doi.org/10.1111/1365-2745.13852 (2022).Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).Article 
    CAS 

    Google Scholar 
    Jing, X. et al. The links between ecosystem multifunctionality and above-and belowground biodiversity are mediated by climate. Nat. Commun. 6, 1–8 (2015).Article 

    Google Scholar 
    Kadowaki, K. et al. Mycorrhizal fungi mediate the direction and strength of plant–soil feedbacks differently between arbuscular mycorrhizal and ectomycorrhizal communities. Commun. Biol. 1, 196 (2018).Article 

    Google Scholar 
    Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).Article 
    CAS 

    Google Scholar 
    Berman, J. J. in Taxonomic Guide to Infectious Diseases (ed. Berman, J. J.) 37–47 (Academic Press, 2012).Berman, J. J. in Taxonomic Guide to Infectious Diseases (ed. Berman, J. J.) 25–31 (Academic Press, 2012).Busse, H.-J. in Methods in Microbiology (eds Rainey, F. & Oren. A.) Vol. 38, 239–259 (Academic Press, 2011).van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).Article 

    Google Scholar 
    van Bergeijk, D. A. et al. Ecology and genomics of Actinobacteria: new concepts for natural product discovery. Nat. Rev. Microbiol. 18, 546–558 (2020).Article 

    Google Scholar 
    Orellana, L. H. et al. Verrucomicrobiota are specialist consumers of sulfated methyl pentoses during diatom blooms. ISME J. 16, 630–641 (2022).Article 
    CAS 

    Google Scholar 
    Fincker, M. et al. Metabolic strategies of marine subseafloor Chloroflexi inferred from genome reconstructions. Environ. Microbiol. 22, 3188–3204 (2020).Article 
    CAS 

    Google Scholar 
    Stralis-Pavese, N. et al. Analysis of methanotroph community composition using a pmoA-based microbial diagnostic microarray. Nat. Protoc. 6, 609–624 (2011).Article 
    CAS 

    Google Scholar 
    Berube, P. M. et al. Physiology and evolution of nitrate acquisition in Prochlorococcus. ISME J. 9, 1195–1207 (2015).Article 
    CAS 

    Google Scholar 
    Liang, J.-L. et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J. 14, 1600–1613 (2020).Article 
    CAS 

    Google Scholar 
    Hättenschwiler, S. & Gasser, P. Soil animals alter plant litter diversity effects on decomposition. Proc. Natl Acad. Sci. USA 102, 1519 (2005).Article 

    Google Scholar 
    Erktan, A. et al. The physical structure of soil: determinant and consequence of trophic interactions. Soil Biol. Biochem. 148, 107876 (2020).Article 
    CAS 

    Google Scholar 
    Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).Article 

    Google Scholar 
    Barberán, A. et al. Why are some microbes more ubiquitous than others? Predicting the habitat breadth of soil bacteria. Ecol. Lett. 17, 794–802 (2014).Article 

    Google Scholar 
    Chen, Q. L. et al. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biol. Biochem. 141, 107686 (2020).Article 
    CAS 

    Google Scholar 
    Zhang, Z. et al. Rare species-driven diversity-ecosystem multifunctionality relationships are promoted by stochastic community assembly. mBio. mBio. 13, e00449–22 (2022).Article 

    Google Scholar 
    Domínguez-García, V. et al. Unveiling dimensions of stability in complex ecological networks. Proc. Natl Acad. Sci. USA 116, 25714 (2019).Article 

    Google Scholar 
    Zhang, L. et al. Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. ISME J. 12, 2339–2351 (2018).Article 
    CAS 

    Google Scholar 
    Couturier, M. et al. Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nat. Chem. Biol. 14, 306–310 (2018).Article 
    CAS 

    Google Scholar 
    Steinberg, G. et al. A lipophilic cation protects crops against fungal pathogens by multiple modes of action. Nat. Commun. 11, 1608 (2020).Article 
    CAS 

    Google Scholar 
    Johnston, A. S. A. & Sibly, R. M. The influence of soil communities on the temperature sensitivity of soil respiration. Nat. Ecol. Evol. 2, 1597–1602 (2018).Article 

    Google Scholar 
    Watson, C. J. et al. Ecological and economic benefits of low-intensity urban lawn management. J. Appl. Ecol. 57, 436–446 (2020).Article 

    Google Scholar 
    Williams, N. S. G. et al. A conceptual framework for predicting the effects of urban environments on floras. J. Ecol. 97, 4–9 (2009).Article 

    Google Scholar 
    Trabucco, A. & Zomer, R. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2 (figshare, 2019); https://doi.org/10.6084/m9.figshare.7504448.v3Kettler, T. A. et al. Simplifed method for soil particle-size determination to accompany soil-quality analyses. Soil Sci. Soc. Am. J. 65, 849–852 (2001).Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Changes in belowground biodiversity during ecosystem development. Proc. Natl Acad. Sci. USA 116, 6891 (2019).Article 
    CAS 

    Google Scholar 
    Ramirez, K. S. et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc. Biol. Sci. 281, 22 (2014).
    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 

    Google Scholar 
    Tedersoo, L. et al. Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in Northern Europe. Front. Microbiol. 11, 1953 (2020).Article 

    Google Scholar 
    Bastida, F. et al. Microbiological degradation index of soils in a semiarid climate. Soil Biol. Biochem. 38, 3463–3473 (2006).Article 
    CAS 

    Google Scholar 
    Lugato, E. et al. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nat. Geosci. 14, 295–300 (2021).Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo, M. et al. The influence of soil age on ecosystem structure and function across biomes. Nat. Commun. 11, 4721 (2020).Article 
    CAS 

    Google Scholar 
    Frostegård, Å. et al. Use and misuse of PLFA measurements in soils. Soil Biol. Biochem. 43, 1621–1625 (2011).Article 

    Google Scholar 
    Olsson, P. A. et al. The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol. Res. 99, 623–629 (1995).Article 
    CAS 

    Google Scholar 
    Campbell, C. D. et al. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69, 3593–3599 (2003).Article 
    CAS 

    Google Scholar 
    Bell, C. W. et al. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. J. Vis. Exp. 15, e50961 (2013).
    Google Scholar 
    Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).Article 

    Google Scholar 
    Fierer, N. et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl Acad. Sci. USA 109, 21390–21395 (2012).Article 
    CAS 

    Google Scholar 
    Fierer, N. et al. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342, 621–624 (2013).Article 
    CAS 

    Google Scholar 
    Buchfink, B., Reuter, K. & Drost, H. G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).Article 
    CAS 

    Google Scholar 
    Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evolution 2, 427–436 (2018).Article 

    Google Scholar 
    Legendre, P. & Legendre, L. Interpretation of Ecological Structures Numerical Ecology 3rd English edn (Elsevier Science BV, 2012).Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge University Press, 2006).Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417 (2014).Article 
    CAS 

    Google Scholar 
    Fan, K. et al. Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces. figshare https://doi.org/10.6084/m9.figshare.21175492.v3 (2022). More

  • in

    Arbuscular mycorrhizal fungi in oat-pea intercropping

    Biomass yield and WUEBiomass increased with precipitation, as expected and reported in Lee3. There was less water uptake in intercropping compared to sole oat and pea. In general, intercropping represented the median of the two sole cropping treatments, where oat had the highest biomass and WUE while pea had the lowest, and where pea had the highest mineral content and oat had the lowest3. Intercropping resulted in advantages in forage yield stability and was not associated with changes to the AMF community.Alpha diversityWe found differences in AMF species richness estimates in the roots across treatment combinations (i.e., intercropping systems × N fertilizer rate) in 2019 (Chao1, p  More

  • in

    Molecular analyses of pseudoscorpions in a subterranean biodiversity hotspot reveal cryptic diversity and microendemism

    Zupan Hajna, N. Dinaric karst: Geography and geology in Encyclopedia of Caves (eds. White, W. B. & Culver, D. C.) 195–203 (Academic Press, 2012).Jug-Dujaković, M., Ninčević, T., Liber, Z., Grdiša, M. & Šatović, Z. Salvia officinalis survived in situ Pleistocene glaciation in ‘refugia within refugia’ as inferred from AFLP markers. Plant Syst. Evol. 306, 1–12 (2020).Article 

    Google Scholar 
    Bănărescu, P. M. Distribution pattern of the aquatic fauna of the Balkan Peninsula in Balkan Biodiversity. Pattern and Process in the European Hotspot (eds. Griffiths, H. I., Kryštufek, B. & Reed J. M.) 203–217 (Kluwer Academic Publishers, 2004).Sket, B. Diversity patterns in the Dinaric Karst in Encyclopedia of Caves (eds. White, W. B. & Culver, D. C.) 228–238 (Academic Press, 2012).Griffiths, H. I., Kryštufek, B., & Reed, J. M. Balkan biodiversity. Pattern and Process in the European Hotspot (eds. Griffiths, H. I., Kryštufek, B., & Reed, J. M.) 1–332 (Kluwer Academic Publishers, 2004).Culver, D. C., Pipan, T. & Schneider, K. Vicariance, dispersal and scale in the aquatic subterranean fauna of karst regions. Freshw. Biol. 54, 918–929 (2009).Article 

    Google Scholar 
    Gottstein Matočec, S. et al. An overview of the cave and interstitial biota of Croatia. Nat. Croat. 11, 1–112 (2002).
    Google Scholar 
    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).Article 
    ADS 

    Google Scholar 
    Bilandžija, H., Morton, B., Podnar, M. & Ćetković, H. Evolutionary history of relict Congeria (Bivalvia: Dreissenidae): Unearthing the subterranean biodiversity of the Dinaric Karst. Front. Zool. 10, 1–18 (2013).Article 

    Google Scholar 
    Bedek, J., Taiti, S., Bilandžija, H., Ristori, E. & Baratti, M. Molecular and taxonomic analyses in troglobiotic Alpioniscus (Illyrionethes) species from the Dinaric Karst (Isopoda: Trichoniscidae). Zool. J. Linn. Soc. 187, 539–584 (2019).Article 

    Google Scholar 
    Vörös, J., Márton, O., Schmidt, B. R., Gál, J. T. & Jelić, D. Surveying Europe’s only cave-dwelling chordate species (Proteus anguinus) using environmental DNA. PLoS ONE 12, e0170945. https://doi.org/10.1371/journal.pone.0170945 (2017).Article 

    Google Scholar 
    Delić, T., Švara, V., Coleman, C. O., Trontelj, P. & Fišer, C. The giant cryptic amphipod species of the subterranean genus Niphargus (Crustacea, Amphipoda). Zool. Scr. 46, 740–752 (2017).Article 

    Google Scholar 
    Delić, T., Trontelj, P., Rendoš, M. & Fišer, C. The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Sci. Rep. 7, 1–12 (2017).Article 

    Google Scholar 
    Delić, T., Stoch, F., Borko, Š., Flot, J. F. & Fišer, C. How did subterranean amphipods cross the Adriatic Sea? Phylogenetic evidence for dispersal–vicariance interplay mediated by marine regression–transgression cycles. J. Biogeogr. 47, 1875–1887 (2020).Article 

    Google Scholar 
    Podnar, M., Grbac, I., Tvrtković, N., Hörweg, C. & Haring, E. Hidden diversity, ancient divergences, and tentative Pleistocene microrefugia of European scorpions (Euscorpiidae: Euscorpiinae) in the eastern Adriatic region. J. Zool. Syst. Evol. Res. 59, 1824–1849 (2021).Article 

    Google Scholar 
    Beron, P. Zoogeography of Arachnida (ed. Beron, P.) Meth. Ecol. Evol. 1–987 (Springer Cham, 2018).Ćurčić, B. P. M. Cave-dwelling pseudoscorpions of the Dinaric karst (ed. Ćurčić, B. P. M.) 1–192 (Slovenska Akademija Znanosti in Umetnosti, 1988).Harms, D., Roberts, J. D. & Harvey, M. S. Climate variability impacts on diversification processes in a biodiversity hotspot: A phylogeography of ancient pseudoscorpions in south-western Australia. Zool. J. Linn. Soc. 186, 934–949 (2019).Article 

    Google Scholar 
    Muster, C., Schmarda, T. & Blick, T. Vicariance in a cryptic species pair of European pseudoscorpions (Arachnida, Pseudoscorpiones, Chthoniidae). Zool. Anz. 242, 299–311 (2004).Article 

    Google Scholar 
    Ozimec, R. List of Croatian pseudoscorpion fauna (Arachnida, Pseudoscorpiones). Nat. Croat. 13, 381–394 (2004).
    Google Scholar 
    World Pseudoscorpiones Catalog. Natural History Museum Bern. https://wac.nmbe.ch (2022).Ćurčić, B. P. M., Dimitrijević, R. N., Rađa, T., Makarov, S. E. & Ilić, B. S. Archaeoroncus, a new genus of pseudoscorpions from Croatia (Pseudoscorpiones, Neobisiidae), with descriptions of two new species. Acta Zool. Bulg. 64, 333–340 (2012).
    Google Scholar 
    Ćurčić, B. P. M. et al. On two new cave species of pseudoscorpions (Neobisiidae, Pseudoscorpiones) from Herzegovina and Dalmatia. Arch. Biol. Sci. 66, 377–384 (2014).Article 

    Google Scholar 
    Ćurčić, B. P. M. et al. Roncus sutikvae sp. n. (Pseudoscorpiones: Neobisiidae), a new epigean pseudoscorpion from central Dalmatia (Croatia). Arthropoda Sel. 30, 205–215 (2021).Article 

    Google Scholar 
    Ćurčić, B. P. M., Rađa, T., Dimitrijević, R., Ćurčić, N. B. & Ćurčić, S. Roncus ladestani sp. n. and Roncus pecmliniensis sp. n., two new Pseudoscorpions (Pseudoscorpiones, Neobisiidae) from Croatia and Bosnia and Herzegovina, respectively. Zool. Zhurnal. 100, 159–169 (2021).
    Google Scholar 
    Hebert, P. D. N., Cywinska, A., Ball, S. L. & DeWaard, J. R. Biological identifications through DNA barcodes. Proc. Royal Soc. B. 270, 313–321 (2003).Article 

    Google Scholar 
    Page, R. D. DNA barcoding and taxonomy: Dark taxa and dark texts. Philos. Trans. R. Soc. Lond., B. Biol. Sci. 371, 20150334. https://doi.org/10.1098/rstb.2015.0334 (2016).Article 

    Google Scholar 
    Ratnasingham, S. & Hebert, P. D. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8, e66213. https://doi.org/10.1371/journal.pone.0066213 (2013).Article 
    ADS 

    Google Scholar 
    Kekkonen, M. & Hebert, P. D. DNA barcode-based delineation of putative species: Efficient start for taxonomic workflows. Mol. Ecol. Res. 14, 706–715 (2014).Article 

    Google Scholar 
    Christophoryová, J., Šťáhlavský, F. & Fedor, P. An updated identification key to the pseudoscorpions (Arachnida: Pseudoscorpiones) of the Czech Republic and Slovakia. Zootaxa 2876, 35–48 (2011).Article 

    Google Scholar 
    Gardini, G. A revision of the species of the pseudoscorpion subgenus Chthonius (Ephippiochthonius) (Arachnida, Pseudoscorpiones, Chthoniidae) from Italy and neighbouring areas. Zootaxa 3655, 1–151 (2013).Article 

    Google Scholar 
    Gardini, G. The species of the Chthonius heterodactylus group (Arachnida, Pseudoscorpiones, Chthoniidae) from the eastern Alps and the Carpathians. Zootaxa 3887, 101–137 (2014).Article 

    Google Scholar 
    Gardini, G. The Italian species of the Chthonius ischnocheles group (Arachnida, Pseudoscorpiones, Chthoniidae), with reference to neighbouring countries. Zootaxa 4987, 1–131 (2021).Article 

    Google Scholar 
    Zaragoza, J. A. Revision of the Ephippiochthonius complex in the Iberian Peninsula, Balearic Islands and Macaronesia, with proposed changes to the status of the Chthonius subgenera (Pseudoscorpiones, Chthoniidae). Zootaxa 4246, 1–221 (2017).Article 

    Google Scholar 
    Gams, I. Kras v Sloveniji v prostoru in času. (ed. Gams, I.) 1–516 (Postojna: Inštitut za raziskovanje Krasa, 2004).European Union, Copernicus Land Monitoring Service. https://land.copernicus.eu (2016).Maddison, W. P., & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. http://mesquiteproject.org (2019).Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).Article 

    Google Scholar 
    Villesen, P. FaBox: An online toolbox for fasta sequences. Mol. Ecol. Notes. 7, 965–968 (2007).Article 

    Google Scholar 
    Felsenstein, J. Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Syst. Biol. 22, 240–249 (1973).Article 

    Google Scholar 
    Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).Article 

    Google Scholar 
    Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).Article 

    Google Scholar 
    Muster, C. et al. The dark side of pseudoscorpion diversity: The German Barcode of Life campaign reveals high levels of undocumented diversity in European false scorpions. Ecol. Evol. 11, 13815–13829 (2021).Article 

    Google Scholar 
    Ontano, A. Z. et al. Taxonomic sampling and rare genomic changes overcome long-branch attraction in the phylogenetic placement of pseudoscorpions. Mol. Biol. Evol. 38, 2446–2467 (2021).Article 

    Google Scholar 
    Rambaut A. FigTree v1.4.3 http://tree.bio.ed.ac.uk/software/figtree/ (2016).Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).Article 

    Google Scholar 
    Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577 (2007).Article 

    Google Scholar 
    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).Article 

    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).Article 

    Google Scholar 
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).
    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).Article 

    Google Scholar 
    Miller, M. A., Pfeiffer, W., & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees in Proceedings of the Gateway Computing Environments Workshop (GCE). https://doi.org/10.1109/GCE.2010.5676129 (2010).Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).Article 
    ADS 

    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2020).Brown, S. D. et al. Spider: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Mol. Ecol. Resour. 12, 562–565 (2012).Article 

    Google Scholar 
    Meier, R., Shiyang, K., Vaidya, G. & Ng, P. K. L. DNA barcoding and taxonomy in Diptera: A tale of high intraspecific variability and low identification success. Syst. Biol. 55, 715–728 (2006).Article 

    Google Scholar 
    Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. J. M. E. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).Article 

    Google Scholar 
    Puillandre, N., Brouillet, S. & Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 21, 609–620 (2020).Article 

    Google Scholar 
    Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876 (2013).Article 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).Article 

    Google Scholar 
    Karney, C. F. Algorithms for geodesics. J. Geod. 87, 43–55 (2013).Article 
    ADS 

    Google Scholar 
    Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Meth. Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    Bregović, P., Fišer, C. & Zagmajster, M. Contribution of rare and common species to subterranean species richness patterns. Ecol. Evol. 9, 11606–11618 (2019).Article 

    Google Scholar 
    Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).Article 

    Google Scholar 
    Young, M. R. & Hebert, P. D. Patterns of protein evolution in cytochrome c oxidase 1 (COI) from the class Arachnida. PLoS ONE 10, e0135053. https://doi.org/10.1371/journal.pone.0135053 (2015).Article 

    Google Scholar 
    Yin, Y. et al. DNA barcoding uncovers cryptic diversity in minute herbivorous mites (Acari, Eriophyoidea). Mol. Ecol. Resour. 22, 1986–1998 (2022).Article 

    Google Scholar 
    Doña, J. et al. DNA barcoding and minibarcoding as a powerful tool for feather mite studies. Mol. Ecol. Resour. 15, 1216–1225 (2015).Article 

    Google Scholar 
    Blagoev, G. A. et al. Untangling taxonomy: A DNA barcode reference library for Canadian spiders. Mol. Ecol. Resour. 16, 325–341 (2016).Article 

    Google Scholar 
    Aliabadian, M., Kaboli, M., Nijman, V. & Vences, M. Molecular identification of birds: Performance of distance-based DNA barcoding in three genes to delimit parapatric species. PLoS ONE 4, e4119. https://doi.org/10.1371/journal.pone.0004119 (2009).Article 
    ADS 

    Google Scholar 
    Moritz, C. & Cicero, C. DNA barcoding: promise and pitfalls. PLoS Biol. 2, e354. https://doi.org/10.1371/journal.pbio.0020354 (2004).Article 

    Google Scholar 
    Dellicour, S. & Flot, J. F. The hitchhiker’s guide to single-locus species delimitation. Mol. Ecol. Resour. 18, 1234–1246 (2018).Article 

    Google Scholar 
    Polak, S., Delić, T., Kostanjšek, R. & Trontelj, P. Molecular phylogeny of the cave beetle genus Hadesia (Coleoptera: Leiodidae: Cholevinae: Leptodirini), with a description of a new species from Montenegro. Arthropod Syst. 74, 241–254 (2016).
    Google Scholar 
    Lukić, M., Delić, T., Pavlek, M., Deharveng, L. & Zagmajster, M. Distribution pattern and radiation of the European subterranean genus Verhoeffiella (Collembola, Entomobryidae). Zool. Scr. 49, 86–100 (2019).Article 

    Google Scholar 
    Casale, A., Jalžić, B., Lohaj, R. & Mlejnek, R. Two new highly specialised subterranean beetles from the Velebit massif (Croatia): Velebitaphaenops (new genus) giganteus Casale & Jalžić, new species (Coleoptera: Carabidae: Trechini) and Velebitodromus ozrenlukici Lohaj, Mlejnek & Jalžić, new species (Coleoptera: Cholevidae: Leptodirini). Nat. Croat. 21, 129–153 (2012).
    Google Scholar 
    Andersen, T. et al. Blind flight? A new troglobiotic Orthoclad (Diptera, Chironomidae) from the Lukina Jama-Trojama Cave in Croatia. PLoS ONE 11, e0152884. https://doi.org/10.1371/journal.pone.0152884 (2016).Article 

    Google Scholar 
    Velić, J. et al. A geological overview of glacial accumulation and erosional occurrences at the Velebit and the Biokovo Mts., Croatia. The Min. Geol. Petrol. Eng. Bull. 32, 77–96 (2017).
    Google Scholar 
    Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155 (2007).Article 

    Google Scholar 
    Trontelj, P. Adaptation and natural selection in caves in Encyclopedia of Caves (eds. White, W. B., Culver, D. B. & Pipan, T.) 40–46 (Academic Press, 2019).Beier, M. Die Höhlenpseudoscorpione der Balkanhalbinsel. Studien aus dem Gebiete der Allgemeinen Karstforschung, der Wissenschaftlichen Höhlenkunde, der Eiszeitforschung und den Nachbargebieten. 4, 1–83 (1939).
    Google Scholar 
    Antić, D., Dražina, T., Rađa, T., Tomić, V. T. & Makarov, S. E. Review of the family Anthogonidae (Diplopoda, Chordeumatida), with descriptions of three new species from the Balkan Peninsula. Zootaxa 3948, 151–181 (2015).Article 

    Google Scholar 
    Pretner, E. Koleopterološka fauna pećina i jama Hrvatske s historijskim pregledom istraživanja. Krš Jugoslavije. 8, 101–239 (1973).
    Google Scholar 
    Zaragoza, J. A. & Šťáhlavský, F. A new Roncus species (Pseudoscorpiones: Neobisiidae) from Montseny Natural Park (Catalonia, Spain), with remarks on karyology. Zootaxa 1693, 27–40 (2008).Article 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).Article 
    ADS 

    Google Scholar 
    Médail, F. & Diadema, K. Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J. Biogeogr. 36, 1333–1345 (2009).Article 

    Google Scholar 
    Borko, Š., Trontelj, P., Seehausen, O., Moškrič, A. & Fišer, C. A subterranean adaptive radiation of amphipods in Europe. Nat. Commun. 12, 1–12 (2021).Article 

    Google Scholar 
    Fišer, C. et al. The European green deal misses Europe’s subterranean biodiversity hotspots. Nat. Ecol. Evol. 6, 1403–1404 (2022).Article 

    Google Scholar 
    Moritz, C. Defining ‘evolutionarily significant units’ for conservation. Trends Ecol. Evol. 9, 373–375 (1994).Article 

    Google Scholar  More

  • in

    Geomagnetic disturbance associated with increased vagrancy in migratory landbirds

    To investigate whether vagrancy is associated with geomagnetic disturbance and solar activity, we developed a method for quantifying the relative vagrancy of spatiotemporal records for 152 North American landbird species (nfall = 150, nspring = 124). While vagrancy is often treated as a binary classification (i.e., an individual is either a vagrant or not) and then used as a discrete variable (i.e., a count of total vagrants in an area)16,18, here we calculated it as a continuous variable by combining two large-scale ornithological datasets—captures and encounters of individually marked birds from the USGS Bird Banding Lab (BBL)49 and weekly, species-specific abundance maps for the continental United States from the eBird Status and Trends (hereafter, eBird S&T; via the R package ‘ebirdst’, version 2.1.0)69. Banding records have the advantage over other potential databases of vagrancy records (such as eBird or rare bird lists) in that efforts are long-term, continent-wide, have limited false positives, and have only one record per individual. Additionally, eBird S&T has the advantage over static range maps in that they provide weekly predictions and incorporate relative abundance. With these two data sources, we constructed a species-specific vagrancy value (Fig. S1), that measures the spatiotemporal rarity for every banding record. Inclusion of all banding records rather than just rare records allowed for the analysis of the dispersion of whole species populations, mitigating the potential bias of effort in banding operations (i.e., more vagrant records with greater effort). We then used hierarchical Bayesian random-effects models to estimate the strength of the association between geomagnetic disturbance, solar activity, and avian vagrancy.Species data and inclusionWe considered all full—or partial-migrant landbird species with a breeding, non-breeding, or migratory range in the United States or Canada. To do this, we used species distribution maps accessed through Birds of the World70. Landbird species likely to be caught through banding efforts (excluding species like raptors, nightjars, and swifts) that regularly occur in  > 3 but  10 km. Each banding record included the date, latitude and longitude (and precision), species, and age (if known;71). Banding records were filtered to those captures that occurred during the species-specific migration period as defined by eBird S&T69. eBird S&T approximates stationary and migratory periods by determining when the distribution of whole species population is moving69. Our use of banding records within species-specific eBird S&T migratory periods was designed to maximize the proportion of migrant birds in the analysis, but likely excludes some early and late records of migrating individuals.Banding records of species that underwent taxonomic divisions or aggregations during the study period were eliminated if the date occurred during a period in which the species identity according to modern taxonomy is indeterminate (see Supplement 2). Taxonomic reclassifications were not considered when species divisions/aggregations would only affect records from outside North America, such as the split of a Southern American taxon, Chestnut-collared Swallow (Petrochelidon rufocollaris) from its North American counterpart, Cave Swallow (Petrochelidon fulva). In these cases, we assumed all banding records during the study period were of the North American species. For a full list of periods where species records were excluded, see Supplement 2. Species with  More