More stories

  • in

    Global wind patterns and the vulnerability of wind-dispersed species to climate change

    1.
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
    Google Scholar 
    2.
    Hampe, A. Plants on the move: the role of seed dispersal and initial population establishment for climate-driven range expansions. Acta Oecol. 37, 666–673 (2011).
    Google Scholar 

    3.
    Kremer, A. et al. Long‐distance gene flow and adaptation of forest trees to rapid climate change. Ecol. Lett. 15, 378–392 (2012).
    Google Scholar 

    4.
    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    Google Scholar 

    5.
    Felicísimo, Á. M., Muñoz, J. & González-Solis, J. Ocean surface winds drive dynamics of transoceanic aerial movements. PLoS ONE 3, e2928 (2008).
    Google Scholar 

    6.
    Gillespie, R. G. et al. Long-distance dispersal: a framework for hypothesis testing. Trends Ecol. Evol. 27, 47–56 (2012).
    Google Scholar 

    7.
    Muñoz, J., Felicísimo, Á. M., Cabezas, F., Burgaz, A. R. & Martínez, I. Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 304, 1144–1147 (2004).
    Google Scholar 

    8.
    Smith, D. J. et al. Intercontinental dispersal of bacteria and archaea by transpacific winds. Appl. Environ. Microbiol. 79, 1134–1139 (2013).
    CAS  Google Scholar 

    9.
    Austerlitz, F., Dutech, C., Smouse, P. E., Davis, F. & Sork, V. L. Estimating anisotropic pollen dispersal: a case study in Quercus lobata. Heredity 99, 193–204 (2007).
    CAS  Google Scholar 

    10.
    Bullock, J. M. & Clarke, R. T. Long distance seed dispersal by wind: measuring and modelling the tail of the curve. Oecologia 124, 506–521 (2000).
    CAS  Google Scholar 

    11.
    Gassmann, M. I. & Pérez, C. F. Trajectories associated to regional and extra-regional pollen transport in the southeast of Buenos Aires province, Mar del Plata (Argentina). Int. J. Biometeorol. 50, 280–291 (2006).
    Google Scholar 

    12.
    Skarpaas, O. & Shea, K. Dispersal patterns, dispersal mechanisms, and invasion wave speeds for invasive thistles. Am. Naturalist 170, 421–430 (2007).
    Google Scholar 

    13.
    Wang, Z. F. et al. Pollen and seed flow under different predominant winds in wind-pollinated and wind-dispersed species Engelhardia roxburghiana. Tree Genet. Genomes 12, 19 (2016).
    CAS  Google Scholar 

    14.
    Soubeyrand, S., Enjalbert, J., Sanchez, A. & Sache, I. Anisotropy, in density and in distance, of the dispersal of yellow rust of wheat: experiments in large field plots and estimation. Phytopathology 97, 1315–1324 (2007).
    CAS  Google Scholar 

    15.
    Born, C., le Roux, P. C., Spohr, C., McGeoch, M. A. & van Vuuren, B. J. Plant dispersal in the sub‐Antarctic inferred from anisotropic genetic structure. Mol. Ecol. 21, 184–194 (2012).
    Google Scholar 

    16.
    Geremew, A., Woldemariam, M. G., Kefalew, A., Stiers, I. & Triest, L. Isotropic and anisotropic processes influence fine-scale spatial genetic structure of a keystone tropical plant. AoB Plants 10, plx076 (2018).
    Google Scholar 

    17.
    Brown, J. K. & Hovmøller, M. S. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297, 537–541 (2002).
    CAS  Google Scholar 

    18.
    Vanschoenwinkel, B., Gielen, S., Seaman, M. & Brendonck, L. Any way the wind blows—frequent wind dispersal drives species sorting in ephemeral aquatic communities. Oikos 117, 125–134 (2008).
    Google Scholar 

    19.
    Ahmed, S., Compton, S. G., Butlin, R. K. & Gilmartin, P. M. Wind-borne insects mediate directional pollen transfer between desert fig trees 160 kilometers apart. Proc. Natl Acad. Sci. USA 106, 20342–20347 (2009).
    CAS  Google Scholar 

    20.
    Larson-Johnson, K. Field observations of Carpinus (Betulaceae) demonstrate high dispersal asymmetry and inform migration simulations with implications for times of rapid climate change. Int. J. Plant Sci. 177, 389–399 (2016).
    Google Scholar 

    21.
    Nathan, R. et al. Spread of North American wind‐dispersed trees in future environments. Ecol. Lett. 14, 211–219 (2011).
    Google Scholar 

    22.
    Sorte, C. J. Predicting persistence in a changing climate: flow direction and limitations to redistribution. Oikos 122, 161–170 (2013).
    Google Scholar 

    23.
    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).
    CAS  Google Scholar 

    24.
    Molinos, J. G., Burrows, M. T. & Poloczanska, E. S. Ocean currents modify the coupling between climate change and biogeographical shifts. Sci. Rep. 7, 1332 (2017).
    Google Scholar 

    25.
    Higgins, S. I. et al. Forecasting plant migration rates: managing uncertainty for risk assessment. J. Ecol. 91, 341–347 (2003).
    Google Scholar 

    26.
    Bullock, J. M. et al. Modelling spread of British wind‐dispersed plants under future wind speeds in a changing climate. J. Ecol. 100, 104–115 (2012).
    Google Scholar 

    27.
    Kuparinen, A., Katul, G., Nathan, R. & Schurr, F. M. Increases in air temperature can promote wind-driven dispersal and spread of plants. Proc. R. Soc. B 276, 3081–3087 (2009).
    Google Scholar 

    28.
    Davis, H. G., Taylor, C. M., Lambrinos, J. G. & Strong, D. R. Pollen limitation causes an Allee effect in a wind-pollinated invasive grass (Spartina alterniflora). Proc. Natl Acad. Sci. USA 101, 13804–13807 (2004).
    CAS  Google Scholar 

    29.
    Dullinger, S., Dirnböck, T. & Grabherr, G. Patterns of shrub invasion into high mountain grasslands of the Northern Calcareous Alps, Austria. Arct. Antarct. Alp. Res. 35, 434–441 (2003).
    Google Scholar 

    30.
    Payette, S. The range limit of boreal tree species in Québec-Labrador: an ecological and palaeoecological interpretation. Rev. Palaeobot. Palynol. 79, 7–30 (1993).
    Google Scholar 

    31.
    Sandel, B., Monnet, A. C., Govaerts, R. & Vorontsova, M. Late Quaternary climate stability and the origins and future of global grass endemism. Ann. Bot. 119, 279–288 (2016).
    Google Scholar 

    32.
    Svenning, J. C. & Skov, F. Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? Ecol. Lett. 10, 453–460 (2007).
    Google Scholar 

    33.
    Schurr, F. M. et al. Colonization and persistence ability explain the extent to which plant species fill their potential range. Glob. Ecol. Biogeogr. 16, 449–459 (2007).
    Google Scholar 

    34.
    Saha, S. et al. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 91, 1015–1058 (2010).
    Google Scholar 

    35.
    Hamann, A., Roberts, D. R., Barber, Q. E., Carroll, C. & Nielsen, S. E. Velocity of climate change algorithms for guiding conservation and management. Glob. Change Biol. 21, 997–1004 (2015).
    Google Scholar 

    36.
    Kling, M. M., Auer, S. L., Comer, P. J., Ackerly, D. D. & Hamilton, H. Multiple axes of ecological vulnerability to climate change. Glob. Change Biol. 26, 2798–2813 (2020).
    Google Scholar 

    37.
    Keeley, A. T. et al. New concepts, models, and assessments of climate-wise connectivity. Environ. Res. Lett. 13, 073002 (2018).
    Google Scholar 

    38.
    Savage, D., Barbetti, M. J., MacLeod, W. J., Salam, M. U. & Renton, M. Timing of propagule release significantly alters the deposition area of resulting aerial dispersal. Diversity Distrib. 16, 288–299 (2010).
    Google Scholar 

    39.
    Nathan, R. et al. Long‐distance biological transport processes through the air: can nature’s complexity be unfolded in silico? Divers. Distrib. 11, 131–137 (2005).
    Google Scholar 

    40.
    Zeller, K. A., McGarigal, K. & Whiteley, A. R. Estimating landscape resistance to movement: a review. Landsc. Ecol. 27, 777–797 (2012).
    Google Scholar 

    41.
    Treml, E. A., Halpin, P. N., Urban, D. L. & Pratson, L. F. Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation. Landsc. Ecol. 23, 19–36 (2008).
    Google Scholar 

    42.
    Fernández‐López, J. & Schliep, K. rWind: download, edit and include wind data in ecological and evolutionary analysis. Ecography 42, 804–810 (2019).
    Google Scholar 

    43.
    Thompson, S. & Katul, G. Plant propagation fronts and wind dispersal: an analytical model to upscale from seconds to decades using superstatistics. Am. Naturalist 171, 468–479 (2008).
    Google Scholar 

    44.
    Savage, D., Barbetti, M. J., MacLeod, W. J., Salam, M. U. & Renton, M. Can mechanistically parameterised, anisotropic dispersal kernels provide a reliable estimate of wind-assisted dispersal? Ecol. Model. 222, 1673–1682 (2011).
    Google Scholar 

    45.
    Regal, P. J. Pollination by wind and animals: ecology of geographic patterns. Annu. Rev. Ecol. Syst. 13, 497–524 (1982).
    Google Scholar 

    46.
    Carroll, C., Lawler, J. J., Roberts, D. R. & Hamann, A. Biotic and climatic velocity identify contrasting areas of vulnerability to climate change. PLoS ONE 10, e0140486 (2015).
    Google Scholar 

    47.
    Jackson, S. T. & Sax, D. F. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25, 153–160 (2010).
    Google Scholar 

    48.
    Ackerly, D. D. et al. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).
    Google Scholar 

    49.
    Owens, J. N. The Reproductive Biology of Lodgepole Pine Extension Note 07 (Forest Genetics Council of British Columbia, 2006).

    50.
    Bontrager, M. & Angert, A. L. Gene flow improves fitness at a range edge under climate change. Evol. Lett. 3, 55–68 (2019).
    Google Scholar 

    51.
    Sexton, J. P., Strauss, S. Y. & Rice, K. J. Gene flow increases fitness at the warm edge of a species’ range. Proc. Natl Acad. Sci. USA 108, 11704–11709 (2011).
    CAS  Google Scholar 

    52.
    Rehfeldt, G. E., Ying, C. C., Spittlehouse, D. L. & Hamilton, D. A. Jr Genetic responses to climate in Pinus contorta: niche breadth, climate change, and reforestation. Ecol. Monogr. 69, 375–407 (1999).
    Google Scholar 

    53.
    Wang, T., O’Neill, G. A. & Aitken, S. N. Integrating environmental and genetic effects to predict responses of tree populations to climate. Ecol. Appl. 20, 153–163 (2010).
    CAS  Google Scholar 

    54.
    Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).
    Google Scholar 

    55.
    Dobrowski, S. Z. et al. The climate velocity of the contiguous United States during the 20th century. Glob. Change Biol. 19, 241–251 (2013).
    Google Scholar 

    56.
    van Etten, J. R Package gdistance: distances and routes on geographical grids. J. Stat. Softw. 76, 1–21 (2017).
    Google Scholar 

    57.
    IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

    58.
    Schleussner, C. F. et al. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C. Earth Syst. Dyn. 7, 327–351 (2016).
    Google Scholar 

    59.
    Little, E. L. Jr Atlas of United States Trees. Volume 1, Conifers and Important Hardwoods Miscellaneous Publication 1146 (US Department of Agriculture, 1971).

    60.
    Wang, T., Hamann, A., Yanchuk, A., O’Neill, G. A. & Aitken, S. N. Use of response functions in selecting lodgepole pine populations for future climates. Glob. Change Biol. 12, 2404–2416 (2006).
    Google Scholar 

    61.
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Google Scholar 

    62.
    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
    Google Scholar 

    63.
    R Core Team (2017). R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017); https://www.R-project.org/

    64.
    Kling, M. M. & Ackerly, D. D. Scripts and Data used in ‘Global Wind Patterns and the Vulnerability of Wind-Dispersed Species to Climate Change (Zenodo Repository, 2020); https://doi.org/10.5281/zenodo.3860687

    65.
    Kling, M. M. Windscape R Package v.1.0.0 (Zenodo Repository, 2020); https://doi.org/10.5281/zenodo.3857730 More

  • in

    Last glacial atmospheric CO2 decline due to widespread Pacific deep-water expansion

    1.
    Oppo, D. et al. Data constraints on glacial Atlantic water mass geometry and properties. Paleoceanogr. Paleoclimatol. 33, 1013–1034 (2018).
    Google Scholar 
    2.
    Lynch-Stieglitz, J. et al. Atlantic meridional overturning circulation during the Last Glacial Maximum. Science 316, 66–69 (2007).
    Google Scholar 

    3.
    Howe, J. N. W. et al. North Atlantic Deep Water production during the Last Glacial Maximum. Nat. Commun. 7, 11765 (2016).
    Google Scholar 

    4.
    Gebbie, G. How much did Glacial North Atlantic Water shoal? Paleoceanogr. Paleoclimatol. 29, 190–209 (2014).
    Google Scholar 

    5.
    Skinner, L., Fallon, S. J., Waelbroeck, C., Michel, E. & Barker, S. Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 328, 1147–1151 (2010).
    Google Scholar 

    6.
    Piotrowski, A. et al. Reconstructing deglacial North and South Atlantic deep water sourcing using foraminiferal Nd isotopes. Earth Planet. Sci. Lett. 357–358, 289–297 (2012).
    Google Scholar 

    7.
    Burke, A. et al. The glacial mid-depth radiocarbon bulge and its implications for the overturning circulation. Paleoceanogr. Paleoclimatol. 30, 1021–1039 (2015).
    Google Scholar 

    8.
    Robinson, L. F. & van de Flierdt, T. Southern Ocean evidence for reduced export of North Atlantic Deep Water during Heinrich event 1. Geology 37, 195–198 (2009).
    Google Scholar 

    9.
    Anderson, R. F. et al. Deep-sea oxygen depletion and ocean carbon sequestration during the last ice age. Glob. Biogeochem. Cycles 33, 301–317 (2019).
    Google Scholar 

    10.
    Jaccard, S. L. & Galbraith, E. D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nat. Geosci. 5, 151–156 (2012).
    Google Scholar 

    11.
    Key, R. M. et al. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Glob. Biogeochem. Cycles 18, GB4031 (2004).
    Google Scholar 

    12.
    Yu, J. et al. Sequestration of carbon in the deep Atlantic during the last glaciation. Nat. Geosci. 9, 319–324 (2016).
    Google Scholar 

    13.
    Burke, A. & Robinson, L. F. The Southern Ocean’s role in carbon exchange during the last deglaciation. Science 335, 557–561 (2012).
    Google Scholar 

    14.
    Skinner, L. C. et al. North Atlantic versus Southern Ocean contributions to a deglacial surge in deep ocean ventilation. Geology 41, 667–670 (2013).
    Google Scholar 

    15.
    Barker, S., Knorr, G., Vautravers, M., Diz, P. & Skinner, L. Extreme deepening of the Atlantic overturning circulation during deglaciation. Nat. Geosci. 3, 567–571 (2010).
    Google Scholar 

    16.
    Adkins, J. F., McIntyre, K. & Schrag, D. P. The salinity, temperature, and δ18O of the glacial deep ocean. Science 298, 1769–1773 (2002).
    Google Scholar 

    17.
    Yu, J. M. & Elderfield, H. Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state. Earth Planet. Sci. Lett. 258, 73–86 (2007).
    Google Scholar 

    18.
    Yu, J. et al. Loss of carbon from the deep sea since the Last Glacial Maximum. Science 330, 1084–1087 (2010).
    Google Scholar 

    19.
    Marchitto, T. & Broeker, W. Deep water mass geometry in the glacial Atlantic Ocean: a review of constraints from the paleonutrient proxy Cd/Ca. Geochem. Geophys. Geosyst. 7, (2006).

    20.
    Yu, J. More efficient North Atlantic carbon pump during the Last Glacial Maximum. Nat. Commun. 10, 2170 (2019).
    Google Scholar 

    21.
    Chalk, T. B., Foster, G. L. & Wilson, P. A. Dynamic storage of glacial CO2 in the Atlantic Ocean revealed by boron [CO32−] and pH records. Earth Planet. Sci. Lett. 510, 1–11 (2019).
    Google Scholar 

    22.
    Broecker, W., Yu, J. & Putnam, A. E. Two contributors to the glacial CO2 decline. Earth Planet. Sci. Lett. 429, 191–196 (2015).
    Google Scholar 

    23.
    Yu, J. M., Elderfield, H. & Piotrowski, A. Seawater carbonate ion–δ13C systematics and application to glacial–interglacial North Atlantic Ocean circulation. Earth Planet. Sci. Lett. 271, 209–220 (2008).
    Google Scholar 

    24.
    Menviel, L. et al. Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: a data-model comparison study. Paleoceanogr. Paleoclimatol. 31, 2–17 (2017).
    Google Scholar 

    25.
    Muglia, J., Skinner, L. & Schmittner, A. Weak overturning circulation and high Southern Ocean nutrient utilization maximized glacial ocean carbon. Earth Planet. Sci. Lett. 496, 47–56 (2018).
    Google Scholar 

    26.
    Hodell, D. A., Charles, C. D. & Sierro, F. J. Late Pleistocene evolution of the ocean’s carbonate system. Earth Planet. Sci. Lett. 192, 109–124 (2001).
    Google Scholar 

    27.
    Gottschalk, J. et al. Past carbonate preservation events in the deep southeast Atlantic Ocean (Cape Basin) and their implications for Atlantic overturning dynamics and marine carbon cycling. Paleoceanogr. Paleoclimatol. 33, 643–663 (2018).
    Google Scholar 

    28.
    Gottschalk, J. et al. Abrupt changes in the southern extent of North Atlantic Deep Water during Dansgaard–Oeschger events. Nat. Geosci. 8, 950–954 (2015).
    Google Scholar 

    29.
    Zhao, N. et al. Glacial–interglacial Nd isotope variability of North Atlantic Deep Water modulated by North American ice sheet. Nat. Commun. 10, 5773 (2019).
    Google Scholar 

    30.
    Roberts, J. et al. Evolution of South Atlantic density and chemical stratification across the last deglaciation. Proc. Natl Acad. Sci. USA 113, 514–519 (2016).
    Google Scholar 

    31.
    Ferrari, R. et al. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl Acad. Sci. USA 111, 8753–8758 (2014).
    Google Scholar 

    32.
    Adkins, J. F. The role of deep ocean circulation in setting glacial climates. Paleoceanogr. Paleoclimatol. 28, 539–561 (2013).
    Google Scholar 

    33.
    Talley, L. D. Closure of the global overturning circulation through the Indian, Pacific, and Southern oceans: schematics and transports. Oceanography 26, 80–97 (2013).
    Google Scholar 

    34.
    Matsumoto, K., Oba, T., Lynch-Stieglitz, J. & Yamamoto, H. Interior hydrography and circulation of the glacial Pacific Ocean. Q. Sci. Rev. 21, 1693–1704 (2002).
    Google Scholar 

    35.
    Hu, R., Piotrowski, A. M., Bostock, H. C., Crowhurst, S. & Rennie, V. Variability of neodymium isotopes associated with planktonic foraminifera in the Pacific Ocean during the Holocene and Last Glacial Maximum. Earth Planet. Sci. Lett. 447, 130–138 (2016).
    Google Scholar 

    36.
    Keigwin, L. D. North Pacific deep water formation during the latest glaciation. Nature 330, 362–364 (1987).
    Google Scholar 

    37.
    Anderson, D. M. & Archer, D. Glacial–interglacial stability of ocean pH inferred from foraminifer dissolution rates. Nature 416, 70–73 (2002).
    Google Scholar 

    38.
    Rae, J. W. B. et al. Deep water formation in the North Pacific and deglacial CO2 rise. Paleoceanogr. Paleoclimatol. 29, 645–667 (2014).
    Google Scholar 

    39.
    Umling, N. E. & Thunell, R. C. Mid-depth respired carbon storage and oxygenation of the eastern equatorial Pacific over the last 25,000 years. Q. Sci. Rev. 189, 43–56 (2018).
    Google Scholar 

    40.
    Doss, W. & Marchitto, T. M. Glacial deep ocean sequestration of CO2 driven by the eastern equatorial Pacific biologic pump. Earth Planet. Sci. Lett. 377, 43–54 (2013).
    Google Scholar 

    41.
    Kerr, J., Rickaby, R., Yu, J. M., Elderfield, H. & Sadekov, A. Y. The effect of ocean alkalinity and carbon transfer on deep-sea carbonate ion concentration during the past five glacial cycles. Earth Planet. Sci. Lett. 471, 42–53 (2017).
    Google Scholar 

    42.
    Yu, J. et al. Deep South Atlantic carbonate chemistry and increased interocean deep water exchange during last deglaciation. Q. Sci. Rev. 15, 80–89 (2014).
    Google Scholar 

    43.
    Galbraith, E. D. et al. Carbon dioxide release from the North Pacific abyss during the last deglaciation. Nature 449, 890–893 (2007).
    Google Scholar 

    44.
    Ronge, T. A. et al. Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool. Nat. Commun. 7, 11487 (2016).
    Google Scholar 

    45.
    Gottschalk, J. et al. Carbon isotope offsets between benthic foraminifer species of the genus Cibicides (Cibicidoides) in the glacial sub-Antarctic Atlantic. Paleoceanogr. Paleoclimatol. 31, 1583–1602 (2016).
    Google Scholar 

    46.
    Gottschalk, J. et al. Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes. Nat. Commun. 7, 11539 (2016).
    Google Scholar 

    47.
    Basak, C. et al. Breakup of last glacial deep stratification in the South Pacific. Science 359, 900–904 (2018).
    Google Scholar 

    48.
    Jacobel, A. W., McManus, J. F., Anderson, R. F. & Winckler, G. Repeated storage of respired carbon in the equatorial Pacific Ocean over the last three glacial cycles. Nat. Commun. 8, 1727 (2017).
    Google Scholar 

    49.
    Bereiter, B. et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42, 542–549 (2015).
    Google Scholar 

    50.
    Schlitzer, R. Ocean Data View v.5.3.0 (Alfred Wegener Institute, 2006); https://odv.awi.de/

    51.
    Barker, S., Greaves, M. & Elderfield, H. A. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosyst. 4, 8407 (2003).
    Google Scholar 

    52.
    Yu, J. M., Elderfield, H., Greaves, M. & Day, J. Preferential dissolution of benthic foraminiferal calcite during laboratory reductive cleaning. Geochem. Geophys. Geosyst. 8, Q06016 (2007).
    Google Scholar 

    53.
    Yu, J. M., Day, J., Greaves, M. & Elderfield, H. Determination of multiple element/calcium ratios in foraminiferal calcite by quadrupole ICP-MS. Geochem. Geophys. Geosyst. 6, Q08P01 (2005).
    Google Scholar 

    54.
    Feely, R. A. et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362–366 (2004).
    Google Scholar 

    55.
    Grant, K. M. et al. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744–747 (2012).
    Google Scholar 

    56.
    Mackensen, A., Hubberten, H.-W., Bickert, T., Fischer, G. & Fütterer, D. K. The δ13C in benthic foraminiferal tests of Fontbotia wuellerstorfi (Schwager) relative to the δ13C of dissolved inorganic carbon in Souther Ocean deep water: implications for glacial ocean circulation models. Paleoceanogr. Paleoclimatol. 8, 587–610 (1993).
    Google Scholar 

    57.
    Hodell, D. A., Venz, K. A., Charles, C. D. & Ninnemann, U. S. Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern Ocean. Geochem. Geophys. Geosyst. 4, 1004 (2003).
    Google Scholar 

    58.
    Curry, W. B. & Oppo, D. Glacial water mass geometry and the distribution of δ13C of ∑CO2 in the western Altantic Ocean. Paleoceanogr. Paleoclimatol. 20, PA1017 (2005).
    Google Scholar 

    59.
    Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanogr. Paleoclimatol. 20, PA1003 (2005).
    Google Scholar 

    60.
    Ninnemann, U. S. & Charles, C. D. Changes in the mode of Southern Ocean circulation over the last glacial cycle revealed by foraminiferal stable isotopic variability. Earth Planet. Sci. Lett. 201, 383–396 (2002).
    Google Scholar  More

  • in

    Adaptation to low parasite abundance affects immune investment and immunopathological responses of cavefish

    1.
    The Global Burden of Disease: 2004 Update (WHO, 2004).
    2.
    Sheldon, B. C. & Verhulst, S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 11, 317–321 (1996).
    CAS  PubMed  Google Scholar 

    3.
    Schmid-Hempel, P. Variation in immune defence as a question of evolutionary ecology. Proc. R. Soc. B. 270, 357–366 (2003).
    PubMed  Google Scholar 

    4.
    Schmid-Hempel, P. Evolutionary Parasitology (Oxford Univ. Press, 2013).

    5.
    Rook, G. A. Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc. Natl Acad. Sci. USA 110, 18360–18367 (2013).
    CAS  PubMed  Google Scholar 

    6.
    von Hertzen, L., Hanski, I. & Haahtela, T. Natural immunity. Biodiversity loss and inflammatory diseases are two global megatrends that might be related. EMBO Rep. 12, 1089–1093 (2011).
    Google Scholar 

    7.
    Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Lambrecht, B. N. & Hammad, H. The immunology of the allergy epidemic and the hygiene hypothesis. Nat. Immunol. 18, 1076–1083 (2017).
    CAS  PubMed  Google Scholar 

    9.
    Rook, G. A., Martinelli, R. & Brunet, L. R. Innate immune responses to mycobacteria and the downregulation of atopic responses. Curr. Opin. Allergy Clin. Immunol. 3, 337–342 (2003).
    CAS  PubMed  Google Scholar 

    10.
    Rosenblum, M. D., Remedios, K. A. & Abbas, A. K. Mechanisms of human autoimmunity. J. Clin. Invest. 125, 2228–2233 (2015).
    PubMed  PubMed Central  Google Scholar 

    11.
    Lafferty, K. D. Biodiversity loss decreases parasite diversity: theory and patterns. Philos. Trans. R. Soc. Lond. B 367, 2814–2827 (2012).
    Google Scholar 

    12.
    Kamiya, T., O’Dwyer, K., Nakagawa, S. & Poulin, R. Host diversity drives parasite diversity: meta-analytical insights into patterns and causal mechanisms. Ecography 37, 689–697 (2014).
    Google Scholar 

    13.
    McDade, T. W., Georgiev, A. V. & Kuzawa, C. W. Trade-offs between acquired and innate immune defenses in humans. Evol. Med. Public Health 2016, 1–16 (2016).
    PubMed  PubMed Central  Google Scholar 

    14.
    Lindstrom, K. M., Foufopoulos, J., Parn, H. & Wikelski, M. Immunological investments reflect parasite abundance in island populations of Darwin’s finches. Proc. R. Soc. B 271, 1513–1519 (2004).
    PubMed  Google Scholar 

    15.
    Mayer, A., Mora, T., Rivoire, O. & Walczak, A. M. Diversity of immune strategies explained by adaptation to pathogen statistics. Proc. Natl Acad. Sci. USA 113, 8630–8635 (2016).
    CAS  PubMed  Google Scholar 

    16.
    Scharsack, J. P., Kalbe, M., Harrod, C. & Rauch, G. Habitat-specific adaptation of immune responses of stickleback (Gasterosteus aculeatus) lake and river ecotypes. Proc. R. Soc. B 274, 1523–1532 (2007).
    PubMed  Google Scholar 

    17.
    Kaczorowski, K. J. et al. Continuous immunotypes describe human immune variation and predict diverse responses. Proc. Natl Acad. Sci. USA 114, E6097–E6106 (2017).
    CAS  PubMed  Google Scholar 

    18.
    Herman, A. et al. The role of gene flow in rapid and repeated evolution of cave-related traits in Mexican tetra, Astyanax mexicanus. Mol. Ecol. 27, 4397–4416 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    19.
    Fumey, J. et al. Evidence for late Pleistocene origin of Astyanax mexicanus cavefish. BMC Evol. Biol. 18, 43 (2018).
    PubMed  PubMed Central  Google Scholar 

    20.
    Gibert, J. & Deharveng, L. Subterranean ecosystems: a truncated functional biodiversity. BioScience 52, 473–481 (2002).

    21.
    Tabin, J. A. et al. Temperature preference of cave and surface populations of Astyanax mexicanus. Dev. Biol. 441, 338–344 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    22.
    Abolins, S. et al. The comparative immunology of wild and laboratory mice, Mus musculus domesticus. Nat. Commun. 8, 14811 (2017).
    PubMed  PubMed Central  Google Scholar 

    23.
    Trama, A. M. et al. Lymphocyte phenotypes in wild-caught rats suggest potential mechanisms underlying increased immune sensitivity in post-industrial environments. Cell Mol. Immunol. 9, 163–174 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Aspiras, A. C., Rohner, N., Martineau, B., Borowsky, R. L. & Tabin, C. J. Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions. Proc. Natl Acad. Sci. USA 112, 9668–9673 (2015).
    CAS  PubMed  Google Scholar 

    25.
    Xiong, S., Krishnan, J., Peuss, R. & Rohner, N. Early adipogenesis contributes to excess fat accumulation in cave populations of Astyanax mexicanus. Dev. Biol. 441, 297–304 (2018).
    CAS  PubMed  Google Scholar 

    26.
    Wiens, G. D. & Vallejo, R. L. Temporal and pathogen-load dependent changes in rainbow trout (Oncorhynchus mykiss) immune response traits following challenge with biotype 2 Yersinia ruckeri. Fish Shellfish Immunol. 29, 639–647 (2010).
    CAS  PubMed  Google Scholar 

    27.
    Krishnan, J. et al. Comparative transcriptome analysis of wild and lab populations of Astyanax mexicanus uncovers differential effects of environment and morphotype on gene expression. J. Exp. Zool. B https://doi.org/10.1002/jez.b.22933 (2020).

    28.
    Moller, A. M., Korytar, T., Kollner, B., Schmidt-Posthaus, H. & Segner, H. The teleostean liver as an immunological organ: intrahepatic immune cells (IHICs) in healthy and benzo[a]pyrene challenged rainbow trout (Oncorhynchus mykiss). Dev. Comp. Immunol. 46, 518–529 (2014).
    CAS  PubMed  Google Scholar 

    29.
    Traver, D. et al. Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat. Immunol. 4, 1238–1246 (2003).
    CAS  PubMed  Google Scholar 

    30.
    Stockdale, W. T. et al. Heart regeneration in the Mexican cavefish. Cell Rep. 25, 1997–2007 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Ramsey, S. et al. Transcriptional noise and cellular heterogeneity in mammalian macrophages. Philos. Trans. R. Soc. Lond. B. 361, 495–506 (2006).
    CAS  Google Scholar 

    32.
    Ogryzko, N. V., Renshaw, S. A. & Wilson, H. L. The IL-1 family in fish: swimming through the muddy waters of inflammasome evolution. Dev. Comp. Immunol. 46, 53–62 (2014).

    33.
    Wittamer, V., Bertrand, J. Y., Gutschow, P. W. & Traver, D. Characterization of the mononuclear phagocyte system in zebrafish. Blood 117, 7126–7135 (2011).
    CAS  PubMed  Google Scholar 

    34.
    Sunyer, J. O. Evolutionary and functional relationships of B cells from fish and mammals: Insights into their novel roles in phagocytosis and presentation of particulate antigen. Infect. Disord. Drug Targets 12, 200–212 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    35.
    Lugo-Villarino, G. et al. Identification of dendritic antigen-presenting cells in the zebrafish. Proc. Natl Acad. Sci. USA 107, 15850–15855 (2010).
    CAS  PubMed  Google Scholar 

    36.
    Haugland, G. T. et al. Phagocytosis and respiratory burst activity in lumpsucker (Cyclopterus lumpus L.) leucocytes analysed by flow cytometry. PLoS ONE 7, e47909 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    37.
    Lieschke, G. J. & Trede, N. S. Fish immunology. Curr. Biol. 19, R678–R682 (2009).
    CAS  PubMed  Google Scholar 

    38.
    Balla, K. M. et al. Eosinophils in the zebrafish: prospective isolation, characterization, and eosinophilia induction by helminth determinants. Blood 116, 3944–3954 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Bolnick, D. I., Shim, K. C., Schmerer, M. & Brock, C. D. Population-specific covariation between immune function and color of nesting male threespine stickleback. PLoS ONE 10, e0126000 (2015).
    PubMed  PubMed Central  Google Scholar 

    40.
    Peuß, R. et al. Label-independent flow cytometry and unsupervised neural network method for de novo clustering of cell populations. Preprint at bioRxiv https://doi.org/10.1101/603035 (2020).

    41.
    van der Meer, W., Scott, C. S. & de Keijzer, M. H. Automated flagging influences the inconsistency and bias of band cell and atypical lymphocyte morphological differentials. Clin. Chem. Lab. Med. 42, 371–377 (2004).
    PubMed  Google Scholar 

    42.
    Getz, G. S. Thematic review series: the immune system and atherogenesis. Bridging the innate and adaptive immune systems. J. Lipid Res. 46, 619–622 (2005).
    CAS  PubMed  Google Scholar 

    43.
    Wan, F. et al. Characterization of gammadelta T cells from zebrafish provides insights into their important role in adaptive humoral immunity. Front. Immunol. 7, 675 (2016).
    PubMed  Google Scholar 

    44.
    Shilpi, Paul,S. & Lal, G. Role of gamma-delta (gammadelta) T cells in autoimmunity. J. Leukoc. Biol. 97, 259–271 (2015).
    PubMed  Google Scholar 

    45.
    Fan, X. & Rudensky, A. Y. Hallmarks of tissue-resident lymphocytes. Cell 164, 1198–1211 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Papotto, P. H., Reinhardt, A., Prinz, I. & Silva-Santos, B. Innately versatile: gammadelta17 T cells in inflammatory and autoimmune diseases. J. Autoimmun. 87, 26–37 (2018).
    CAS  PubMed  Google Scholar 

    47.
    Fay, N. S., Larson, E. C. & Jameson, J. M. Chronic Inflammation and gammadelta T. Cells Front. Immunol. 7, 210 (2016).
    PubMed  Google Scholar 

    48.
    Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA 102, 9194–9199 (2005).
    CAS  PubMed  Google Scholar 

    49.
    Bolli, N. et al. Expression of the cytoplasmic NPM1 mutant (NPMc+) causes the expansion of hematopoietic cells in zebrafish. Blood 115, 3329–3340 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Stachura, D. L. et al. Clonal analysis of hematopoietic progenitor cells in the zebrafish. Blood 118, 1274–1282 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Reavie, L. et al. Regulation of hematopoietic stem cell differentiation by a single ubiquitin ligase-substrate complex. Nat. Immunol. 11, 207–215 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Cabezas-Wallscheid, N. et al. Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. Cell Stem Cell 15, 507–522 (2014).
    CAS  PubMed  Google Scholar 

    53.
    Cheng, J. et al. Hematopoietic defects in mice lacking the sialomucin CD34. Blood 87, 479–490 (1996).
    CAS  PubMed  Google Scholar 

    54.
    Anjos-Afonso, F. et al. CD34(–) cells at the apex of the human hematopoietic stem cell hierarchy have distinctive cellular and molecular signatures. Cell Stem Cell 13, 161–174 (2013).
    CAS  PubMed  Google Scholar 

    55.
    Amin, R. H. & Schlissel, M. S. Foxo1 directly regulates the transcription of recombination-activating genes during B cell development. Nat. Immunol. 9, 613–622 (2008).
    CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Han, S., Zheng, B., Schatz, D. G., Spanopoulou, E. & Kelsoe, G. Neoteny in lymphocytes: Rag1 and Rag2 expression in germinal center B cells. Science 274, 2094–2097 (1996).
    CAS  PubMed  Google Scholar 

    57.
    Naito, Y. et al. Germinal center marker GL7 probes activation-dependent repression of N-glycolylneuraminic acid, a sialic acid species involved in the negative modulation of B-cell activation. Mol. Cell Biol. 27, 3008–3022 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Laszlo, G., Hathcock, K. S., Dickler, H. B. & Hodes, R. J. Characterization of a novel cell-surface molecule expressed on subpopulations of activated T and B cells. J. Immunol. 150, 5252–5262 (1993).
    CAS  PubMed  Google Scholar 

    59.
    Fänge, R. & Nilsson, S. The fish spleen: structure and function. Experientia 41, 152–158 (1985).
    PubMed  Google Scholar 

    60.
    Steinel, N. C. & Bolnick, D. I. Melanomacrophage centers as a histological indicator of immune function in fish and other poikilotherms. Front. Immunol. 8, 827 (2017).
    PubMed  PubMed Central  Google Scholar 

    61.
    Cervenak, L., Magyar, A., Boja, R. & Laszlo, G. Differential expression of GL7 activation antigen on bone marrow B cell subpopulations and peripheral B cells. Immunol. Lett. 78, 89–96 (2001).
    CAS  PubMed  Google Scholar 

    62.
    Secombes, C. J., Wang, T. & Bird, S. The interleukins of fish. Dev. Comp. Immunol. 35, 1336–1345 (2011).
    CAS  PubMed  Google Scholar 

    63.
    Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175 e114 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    65.
    McAlpine, C. S. et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 566, 383–387 (2019).

    66.
    Heidt, T. et al. Chronic variable stress activates hematopoietic stem cells. Nat. Med. 20, 754–758 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Mitchell, R. G., Russell, W. H. & Elliott, W. R. Mexican Eyeless Characin Fishes, Genus Astyanax: Environment, Distribution, and Evolution (Texas Tech Press, 1977).

    68.
    Espinasa, L. et al. A new cave locality for Astyanax cavefish in Sierra de El Abra, Mexico. Subterr. Biol. 26, 39–53 (2018).
    Google Scholar 

    69.
    Embryo Surface Sanitation (Egg Bleaching) Protocol https://zebrafish.org/wiki/protocols/ess (ZIRC, 2019).

    70.
    Peuß, R., Eggert, H., Armitage, S. A. & Kurtz, J. Downregulation of the evolutionary capacitor Hsp90 is mediated by social cues. Proc. R. Soc. B 282, 20152041 (2015).
    PubMed  Google Scholar 

    71.
    Pfaffl, M. W., Horgan, G. W. & Dempfle, L. Relative expression software tool (REST(C)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, 36e (2002).
    Google Scholar 

    72.
    Zhang, Y. A. et al. IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nat. Immunol. 11, 827–835 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    73.
    Rowe, R. G., Mandelbaum, J., Zon, L. I. & Daley, G. Q. Engineering hematopoietic stem cells: lessons from development. Cell Stem Cell 18, 707–720 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    74.
    Stachura, D. L. et al. The zebrafish granulocyte colony-stimulating factors (Gcsfs): 2 paralogous cytokines and their roles in hematopoietic development and maintenance. Blood 122, 3918–3928 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    75.
    de Jong, J. L. & Zon, L. I. Use of the zebrafish system to study primitive and definitive hematopoiesis. Ann. Rev. Genet. 39, 481–501 (2005).
    PubMed  Google Scholar 

    76.
    Athanasiadis, E. I. et al. Single-cell RNA-sequencing uncovers transcriptional states and fate decisions in haematopoiesis. Nat. Commun. 8, 2045 (2017).
    PubMed  PubMed Central  Google Scholar 

    77.
    Zeng, A. et al. Prospectively isolated tetraspanin(+) neoblasts are adult pluripotent stem cells underlying planaria regeneration. Cell 173, 1593–1608 (2018).
    CAS  PubMed  Google Scholar 

    78.
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
    CAS  Google Scholar 

    79.
    Sun, K. et al. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nat. Commun. 5, 3485 (2014).
    PubMed  PubMed Central  Google Scholar 

    80.
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).

    81.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
    Google Scholar  More

  • in

    Rapid adaptation to invasive predators overwhelms natural gradients of intraspecific variation

    1.
    Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions. Biol. Lett. 12, 20150623 (2016).
    PubMed  PubMed Central  Google Scholar 
    2.
    Mack, R. N. et al. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).
    Google Scholar 

    3.
    Lockwood, J. L., Hoopes, M. F. & Marchetti, M. P. Invasion Ecology (John Wiley & Sons, 2013).

    4.
    Sih, A. et al. Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119, 610–621 (2010).
    Google Scholar 

    5.
    Cox, J. G. & Lima, S. L. Naiveté and an aquatic–terrestrial dichotomy in the effects of introduced predators. Trends Ecol. Evol. 21, 674–680 (2006).
    PubMed  Google Scholar 

    6.
    Skelly, D. K. & Freidenburg, L. K. Effects of beaver on the thermal biology of an amphibian. Ecol. Lett. 3, 483–486 (2000).
    Google Scholar 

    7.
    Nunes, A. L., Orizaola, G., Laurila, A. & Rebelo, R. Rapid evolution of constitutive and inducible defenses against an invasive predator. Ecology 95, 1520–1530 (2014).
    PubMed  Google Scholar 

    8.
    Phillips, B. L. & Shine, R. An invasive species induces rapid adaptive change in a native predator: cane toads and black snakes in Australia. Proc. Biol. Sci. 273, 1545–1550 (2006).
    PubMed  PubMed Central  Google Scholar 

    9.
    Cattau, C. E., Fletcher, R. J. Jr, Kimball, R. T., Miller, C. W. & Kitchens, W. M. Rapid morphological change of a top predator with the invasion of a novel prey. Nat. Ecol. Evol. 2, 108 (2018).
    PubMed  Google Scholar 

    10.
    Stuart, Y. E. et al. Rapid evolution of a native species following invasion by a congener. Science 346, 463–466 (2014).
    ADS  CAS  PubMed  Google Scholar 

    11.
    Carroll, S. P. et al. And the beak shall inherit–evolution in response to invasion. Ecol. Lett. 8, 944–951 (2005).
    Google Scholar 

    12.
    Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).

    13.
    Leger, E. A. & Goergen, E. M. Invasive Bromus tectorum alters natural selection in arid systems. J. Ecol. 105, 1509–1520 (2017).
    Google Scholar 

    14.
    Mooney, H. A. & Cleland, E. E. The evolutionary impact of invasive species. PNAS 98, 5446–5451 (2001).
    ADS  CAS  PubMed  Google Scholar 

    15.
    Thawley, C. J., Goldy‐Brown, M., McCormick, G. L., Graham, S. P. & Langkilde, T. Presence of an invasive species reverses latitudinal clines of multiple traits in a native species. Glob. Change Biol. 25, 620–628 (2019).
    ADS  Google Scholar 

    16.
    Cenzer, M. L. Adaptation to an invasive host is driving the loss of a native ecotype. Evolution 70, 2296–2307 (2016).
    PubMed  Google Scholar 

    17.
    Berven, K. A. The genetic basis of altitudinal variation in the wood frog Rana sylvatica II. An experimental analysis of larval development. Oecologia 52, 360–369 (1982).
    ADS  PubMed  Google Scholar 

    18.
    Conover, D. O., Duffy, T. A. & Hice, L. A. The covariance between genetic and environmental influences across ecological gradients. Ann. NY Acad. Sci. 1168, 100–129 (2009).
    ADS  PubMed  Google Scholar 

    19.
    Kiesecker, J. M., Chivers, D. P., Anderson, M. & Blaustein, A. R. Effect of predator diet on life history shifts of red-legged frogs, Rana aurora. J. Chem. Ecol. 28, 1007–1015 (2002).
    CAS  PubMed  Google Scholar 

    20.
    Urban, M. C. et al. Microgeographic adaptation of Wood Frog tadpoles to an apex predator. Copeia 105, 451–461(2017).
    Google Scholar 

    21.
    Chivers, D. P., Kiesecker, J. M., Marco, A., Wildy, E. L. & Blaustein, A. R. Shifts in life history as a response to predation in western toads (Bufo boreas). J. Chem. Ecol. 25, 2455–2463 (1999).
    CAS  Google Scholar 

    22.
    De Block, M. & Stoks, R. Fitness effects from egg to reproduction: bridging the life history transition. Ecology 86, 185–197 (2005).
    Google Scholar 

    23.
    Relyea, R. A. Getting out alive: how predators affect the decision to metamorphose. Oecologia 152, 389–400 (2007).
    ADS  PubMed  Google Scholar 

    24.
    Burraco, P., Valdés, A. E. & Orizaola, G. Metabolic costs of altered growth trajectories across life transitions in amphibians. J. Anim. Ecol. 89, 855–866 (2020).

    25.
    Ficetola, G. F. & De Bernardi, F. Supplementation or in situ conservation? Evidence of local adaptation in the Italian agile frog Rana latastei and consequences for the management of populations. Anim. Conserv. 8, 33–40 (2005).

    26.
    Nentwig, W., Bacher, S., Kumschick, S., Pyšek, P. & Vilà, M. More than “100 worst” alien species in Europe. Biol. Invasions 20, 1611–1621 (2018).
    Google Scholar 

    27.
    Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection From The Global Invasive Species Database (Invasive Species Specialist Group, Auckland, 2000).

    28.
    Ficetola, G. F. et al. Early assessment of the impact of alien species: differential consequences of an invasive crayfish on adult and larval amphibians. Divers Distrib. 17, 1141–1151 (2011).
    Google Scholar 

    29.
    Gamradt, S. C. & Kats, L. B. Effect of introduced crayfish and mosquitofish on California newts. Conserv. Biol. 10, 1155–1162 (1996).
    Google Scholar 

    30.
    Cruz, M., Segurado, P., Sousa, M. & Rebelo, R. Collapse of the amphibian community of the Paul do Boquilobo Natural Reserve (central Portugal) after the arrival of the exotic American crayfish Procambarus clarkii. Herpetol. J. 18, 197–204 (2008).
    Google Scholar 

    31.
    Wells, K. D. The Ecology and Behavior of Amphibians. (University of Chicago Press, Chicago, 2007).
    Google Scholar 

    32.
    Levis, N. A. & Pfennig, D. W. (eds). in Seminars in Cell & Developmental Biology (Elsevier, 2019).

    33.
    Lo Parrino, E., Ficetola, G. F., Manenti, R. & Falaschi, M. Thirty years of invasion: the distribution of the invasive crayfish Procambarus clarkii in Italy. Biogeographia 35, 43–50 (2020).
    Google Scholar 

    34.
    Edge, C. B., Houlahan, J. E., Jackson, D. A. & Fortin, M. J. The response of amphibian larvae to environmental change is both consistent and variable. Oikos 125, 1700–1711 (2016).
    Google Scholar 

    35.
    Kern, P., Cramp, R. L. & Franklin, C. E. Physiological responses of ectotherms to daily temperature variation. J. Exp. Biol. 218, 3068–3076 (2015).
    PubMed  Google Scholar 

    36.
    Lanza, B., Andreone, F., Bologna, M. A., Corti, C. & Razzetti, E. Amphibia (Edizioni Calderini, 2007).

    37.
    Gillis, M. K. & Walsh, M. R. Rapid evolution mitigates the ecological consequences of an invasive species (Bythotrephes longimanus) in lakes in Wisconsin. Proc. Biol. Sci. 284, 20170814 (2017).
    PubMed  PubMed Central  Google Scholar 

    38.
    Manenti, R., Bonelli, M., Scaccini, D., Binda, A. & Zugnoni, A. Austropotamobius pallipes reduction vs. Procambarus clarkii spreading: management implications. J. Nat. Conserv. 22, 586–591 (2014).
    Google Scholar 

    39.
    Hossie, T., Landolt K. & Murray, D. L. Determinants and co-expression of anti-predator responses in amphibian tadpoles: a meta-analysis. Oikos 126, 173–184 (2017).

    40.
    Relyea, R. A. The lasting effects of adaptive plasticity: predator-induced tadpoles become long-legged frogs. Ecology 82, 1947–1955 (2001).
    Google Scholar 

    41.
    Thawley, C. J. & Langkilde, T. Attracting unwanted attention: generalization of behavioural adaptation to an invasive predator carries costs. Anim. Behav. 123, 285–291 (2017).
    Google Scholar 

    42.
    Langkilde, T. Invasive fire ants alter behavior and morphology of native lizards. Ecology 90, 208–217 (2009).
    PubMed  Google Scholar 

    43.
    Wisenden, B. D. Chemically mediated strategies to counter predation. In: Sensory processing in aquatic environments, 236–251 (Springer, New York, 2003).

    44.
    Chivers, D. P., Mirza, R. S., Bryer, P. J. & Kiesecker, J. M. Threat-sensitive predator avoidance by slimy sculpins: understanding the importance of visual versus chemical information. Can. J. Zool. 79, 867–873 (2001).
    Google Scholar 

    45.
    Hettyey, A., Roelli, F., Thürlimann, N., Zürcher, A.-C. & Van Buskirk, J. Visual cues contribute to predator detection in anuran larvae. Biol. J. Linn. Soc. 106, 820–827 (2012).
    Google Scholar 

    46.
    Mathis, A. & Vincent, F. Differential use of visual and chemical cues in predator recognition and threat-sensitive predator-avoidance responses by larval newts (Notophthalmus viridescens). Can. J. Zool. 78, 1646–1652 (2000).
    CAS  Google Scholar 

    47.
    Kats, L. B. & Dill, L. M. The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5, 361–394 (1998).
    Google Scholar 

    48.
    Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation—a review and prospectus. Can. J. Zool. 68, 619–640 (1990).
    Google Scholar 

    49.
    Hettyey, A. et al. Naive tadpoles do not recognize recent invasive predatory fishes as dangerous. Ecology 97, 2975–2985 (2016).
    PubMed  Google Scholar 

    50.
    Gomez-Mestre, I. & Díaz-Paniagua, C. Invasive predatory crayfish do not trigger inducible defences in tadpoles. Proc. Biol. Sci. 278, 3364–3370 (2011).
    PubMed  PubMed Central  Google Scholar 

    51.
    Epp, K. J. & Gabor, C. R. Innate and learned predator recognition mediated by chemical signals in Eurycea nana. Ethology 114, 607–615 (2008).
    Google Scholar 

    52.
    Ferrari, M. C. O., Gonzalo, A., Messier, F. & Chivers, D. P. Generalization of learned predator recognition: an experimental test and framework for future studies. Proc. Biol. Sci. 274, 1853–1859 (2007).
    PubMed  PubMed Central  Google Scholar 

    53.
    Davis, D. R., Epp, K. J. & Gabor, C. R. Predator generalization decreases the effect of introduced predators in the San Marcos Salamander, Eurycea nana. Ethology 118, 1191–1197 (2012).
    Google Scholar 

    54.
    Falaschi, M., Melotto, A., Manenti, R. & Ficetola, G. F. Invasive species and amphibian conservation. Herpetologica 76, 216–227 (2020).

    55.
    Wilson, E. A., Dudley, T. L. & Briggs, C. J. Shared behavioral responses and predation risk of anuran larvae and adults exposed to a novel predator. Biol. Invasions 20, 475–485 (2018).
    Google Scholar 

    56.
    Brown, G. E., Ferrari, M. C., Elvidge, C. K., Ramnarine, I. & Chivers, D. P. Phenotypically plastic neophobia: a response to variable predation risk. Proc. Biol. Sci. 280, 20122712 (2013).
    PubMed  PubMed Central  Google Scholar 

    57.
    Gherardi, F., Renai, B. & Corti, C. Crayfish predation on tadpoles: a comparison between a native (Austropotamobius pallipes) and an alien species (Procambarus clarkii). Bull. Fr. Pêche Piscic. 361, 659–668 (2001).
    Google Scholar 

    58.
    Levis, N. A., Isdaner, A. J. & Pfennig, D. W. Morphological novelty emerges from pre-existing phenotypic plasticity. Nat. Ecol. Evol. 2, 1289–1297 (2018).
    PubMed  Google Scholar 

    59.
    Auld, J. R., Agrawal, A. A. & Relyea, R. A. Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc. Biol. Sci. 277, 503–511 (2010).
    PubMed  Google Scholar 

    60.
    Richter‐Boix, A., Tejedo, M. & Rezende, E. L. Evolution and plasticity of anuran larval development in response to desiccation. A comparative analysis. Ecol. Evol. 1, 15–25 (2011).
    PubMed  PubMed Central  Google Scholar 

    61.
    Gervasi, S. S. & Foufopoulos, J. Costs of plasticity: responses to desiccation decrease post-metamorphic immune function in a pond-breeding amphibian. Funct. Ecol. 22, 100–108 (2008).
    Google Scholar 

    62.
    Van Buskirk, J. & Relyea, R. A. Selection for phenotypic plasticity in Rana sylvatica tadpoles. Biol. J. Linn. Soc. 65, 301–328 (1998).
    Google Scholar 

    63.
    Capellan, E. & Nicieza, A. G. Trade-offs across life stages: does predator-induced hatching plasticity reduce anuran post-metamorphic performance? Evol. Ecol. 21, 445–458 (2007).
    Google Scholar 

    64.
    Ficetola, G. F. & De Bernardi, F. Trade-off between larval development rate and post-metamorphic traits in the frog Rana latastei. Evol. Ecol. 20, 143–158 (2006).
    Google Scholar 

    65.
    Vonesh, J. R. & Bolker, B. M. Compensatory larval responses shift trade‐offs associated with predator-induced hatching plasticity. Ecology 86, 1580–1591 (2005).
    Google Scholar 

    66.
    Capellan, E. & Nicieza, A. G. Non-equivalence of growth arrest induced by predation risk or food limitation: context-dependent compensatory growth in anuran tadpoles. J. Anim. Ecol. 76, 1026–1035 (2007).
    CAS  PubMed  Google Scholar 

    67.
    Székely, D. et al. How to recover from a bad start: size at metamorphosis affects growth and survival in a tropical amphibian. BMC Ecol. 20, 24 (2020).
    PubMed  PubMed Central  Google Scholar 

    68.
    Álvarez, D. & Nicieza, A. G. Effects of induced variation in anuran larval development on postmetamorphic energy reserves and locomotion. Oecologia 131, 186–195 (2002).
    ADS  PubMed  Google Scholar 

    69.
    Clavero, M. & Garcia-Berthou, E. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20, 110 (2005).
    PubMed  Google Scholar 

    70.
    Sindaco, R. et al. in The IUCN Red List of Threatened Species 2009 (ed. IUCN) (2009).

    71.
    Ultsch, G., Bradford, D. & Freda, J. in Tadpoles: The Biology of Anuran Larvae (eds McDiarmid, R. W. & Altig, R.) 189–214 (The University of Chicago Press, Chicago, 1999).

    72.
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data. 4, 170122 (2017).
    PubMed  PubMed Central  Google Scholar 

    73.
    Ficetola, G. F., Siesa, M. E., Padoa-Schioppa, E. & De Bernardi, F. Wetland features, amphibian communities and distribution of the alien crayfish, Procambarus clarkii. Alytes 29, 75–87 (2012).
    Google Scholar 

    74.
    Manenti, R., Falaschi, M., Delle Monache, D., Marta, S. & Ficetola, G. F. Network-scale effects of invasive species on spatially-structured amphibian populations. Ecography 43, 119–127 (2020).
    Google Scholar 

    75.
    Gherardi, F. Crayfish invading Europe: the case study of Procambarus clarkii. Mar. Freshw. Behav. Physiol. 39, 175–191 (2006).
    Google Scholar 

    76.
    Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).
    Google Scholar 

    77.
    Cabrera-Guzmán, E., Crossland, M. R., Brown, G. P. & Shine, R. Larger body size at metamorphosis enhances survival, growth and performance of young cane toads (Rhinella marina). PLoS ONE 8, e70121 (2013).
    ADS  PubMed  PubMed Central  Google Scholar 

    78.
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    79.
    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: Repeatability estimation and variance decomposition by generalized linear mixed‐effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).
    Google Scholar 

    80.
    Semlitsch, R. D., Pickle, J., Parris, M. J. & Sage, R. D. Jumping performance and short-term repeatability of newly metamorphosed hybrid and parental leopard frogs (Rana sphenocephala and Rana blairi). Can. J. Zool. 77, 748–754 (1999).
    Google Scholar 

    81.
    Heinen, J. T. & Hammond, G. Antipredator behaviors of newly metamorphosed green frogs (Rana clamitans) and leopard frogs (R. pipiens) in encounters with eastern garter snakes (Thamnophis s. sirtalis). Am. Midl. Nat. 137, 136–144 (1997).

    82.
    Watkins, T. B. A quantitative genetic test of adaptive decoupling across metamorphosis for locomotor and life-history traits in the Pacific tree frog, Hyla regilla. Evolution 55, 1668–1677 (2001).
    CAS  PubMed  Google Scholar 

    83.
    Kaplan, R. H. Maternal effects, developmental plasticity, and life history evolution. An amphibian model. In: Maternal effects as adaptations (eds Mousseau, T. A. & Fox, C. W.). 244–260 (Oxford University Press, 1998).

    84.
    Rosseel, Y. Lavaan: an R package for structural equation modeling and more. Version 0. 5–12 (BETA). J. Stat. Softw. 48, 1–36 (2012).
    Google Scholar 

    85.
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    86.
    Breheny, P. & Burchett, W. visreg: Visualization of regression models. R J. 9, 56–71 (2017).

    87.
    Jussila, J., Toljamo, A., Makkonen, J., Kukkonen, H. & Kokko, H. Practical disinfection chemicals for fishing and crayfishing gear against crayfish plague transfer. Know. Manag. Aquat. Ec. 413, 02 (2014).

    88.
    Bosch, J. et al. Successful elimination of a lethal wildlife infectious disease in nature. Biol. Lett. 11, 20150874 (2015).
    PubMed  PubMed Central  Google Scholar  More

  • in

    Protecting endangered species in the USA requires both public and private land conservation

    1.
    Convention on Biological Diversity. Aichi biodiversity targets. Aichi Biodivers. Targets 9–10 https://www.cbd.int/sp/targets/ (2010).
    2.
    Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 1–7 (2016).
    Google Scholar 

    3.
    Joppa, L. N. & Pfaff, A. Global protected area impacts. Proc. R. Soc. B Biol. Sci. 278, 1633–1638 (2011).
    Article  Google Scholar 

    4.
    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).
    Article  Google Scholar 

    5.
    Coetzee, B. W. T., Gaston, K. J. & Chown, S. L. Local scale comparisons of biodiversity as a test for global protected area ecological performance: a meta-analysis. PLoS One 9, e105824 (2014).
    ADS  Article  Google Scholar 

    6.
    UNEP-WCMC, IUCN & NGS. Protected Planet Live Report 2020. https://livereport.protectedplanet.net/ (2020).

    7.
    Visconti, B. P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).
    ADS  CAS  PubMed  Google Scholar 

    8.
    Jenkins, C. N., Van Houtan, K. S., Pimm, S. L. & Sexton, J. O. US protected lands mismatch biodiversity priorities. Proc. Natl. Acad. Sci. 112, 5081–5086 (2015).
    ADS  CAS  Article  Google Scholar 

    9.
    Venter, O. et al. Bias in protected-area location and its effects on long-term aspirations of biodiversity conventions. Conserv. Biol. 32, 127–134 (2018).
    Article  Google Scholar 

    10.
    USGS. U.S. Geological Survey Gap Analysis Project (GAP): Protected Areas Database of the United States (PAD-US). https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/data-tools (2018).

    11.
    Comay, L. B., Crafton, R. E., Vincent, C. H. & Hoover, K. Federal Land Designations : A Brief Guide. https://fas.org/sgp/crs/misc/R45340.pdf (2018).

    12.
    Horton, G. Downsizing national monuments: The current debate and lessons from history. UCLA J. Environ. Law Policy 38, 79–102 (2020).
    Google Scholar 

    13.
    Kamal, S., Grodzińska-Jurczak, M. & Brown, G. Conservation on private land: a review of global strategies with a proposed classification system. J. Environ. Plan. Manag. 58, 576–597 (2015).
    Article  Google Scholar 

    14.
    Bargelt, L., Fortin, M. J. & Murray, D. L. Assessing connectivity and the contribution of private lands to protected area networks in the United States. PLoS ONE 15, 1–13 (2020).
    Article  Google Scholar 

    15.
    Vergílio, M. et al. Assessing the efficiency of protected areas to represent biodiversity: A small island case study. Environ. Conserv. 43, 337–349 (2016).
    Article  Google Scholar 

    16.
    Epperly, J. et al. Relationships between borders, management agencies, and the likelihood of watershed impairment. PLoS ONE 13, 1–14 (2018).
    Article  Google Scholar 

    17.
    Betts, M. G. & Villard, M.-A. Landscape thresholds in species occurrence as quantitative targets in forest management: generality in space and time? Setting conservation targets for managed forest landscapes (ed. Villard & Jonsson) 185–206 (Cambridge University Press, 2009). doi:10.1017/cbo9781139175388.010

    18.
    Smith, J. R. et al. A global test of ecoregions. Nat. Ecol. Evol. 2, 1889–1896 (2018).
    Article  Google Scholar 

    19.
    Small, C. & Nicholls, R. J. A global analysis of human settlement in coastal zones. J. Coast. Res. 19, 584–599 (2003).
    Google Scholar 

    20.
    Le Saout, S. et al. Protected areas and effective biodiversity conservation. Science 342, 803–805 (2013).
    ADS  Article  Google Scholar 

    21.
    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).
    ADS  CAS  Article  Google Scholar 

    22.
    Deguise, I. & Kerr, J. Protected areas and prospects for endangered species conservation in Canada. Conserv. Biol. 20, 48–55 (2006).
    Article  Google Scholar 

    23.
    Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, https://doi.org/10.1371/journal.pbio.1001891 (2014).

    24.
    Mittermeier, R. A. et al. Wilderness and biodiversity conservation. Proc. Natl. Acad. Sci. 100, 10309–10313 (2003).
    ADS  CAS  Article  Google Scholar 

    25.
    Kukkonen, M. O. & Tammi, I. Systematic reassessment of Laos’ protected area network. Biol. Conserv. 229, 142–151 (2019).
    Article  Google Scholar 

    26.
    Prieto-Torres, D. A., Nori, J. & Rojas-Soto, O. R. Identifying priority conservation areas for birds associated to endangered Neotropical dry forests. Biol. Conserv. 228, 205–214 (2018).
    Article  Google Scholar 

    27.
    Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).
    CAS  Article  Google Scholar 

    28.
    MRLC. 2001 National land cover database. https://www.mrlc.gov/ (2005).

    29.
    Adams, V. M., Pressey, R. L. & Naidoo, R. Opportunity costs: who really pays for conservation?. Biol. Conserv. 143, 439–448 (2010).
    Article  Google Scholar 

    30.
    Sutton, N. J., Cho, S. & Armsworth, P. R. A reliance on agricultural land values in conservation planning alters the spatial distribution of priorities and overestimates the acquisition costs of protected areas. Biol. Conserv. 194, 2–10 (2016).
    Article  Google Scholar 

    31.
    Merenlender, A. M., Huntsinger, L., Guthey, G. & Fairfax, S. K. Land trusts and conservation easements: who is conserving what for whom?. Conserv. Biol. 18, 65–75 (2004).
    Article  Google Scholar 

    32.
    Cortés Capano, G., Toivonen, T., Soutullo, A. & Di Minin, E. The emergence of private land conservation in scientific literature: a review. Biol. Conserv. 237, 191–199 (2019).
    Article  Google Scholar 

    33.
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).
    ADS  CAS  Article  Google Scholar 

    34.
    The Nature Conservancy. TNC terrestrial Ecoregions. (2009).

    35.
    Omernik, J. M. & Griffith, G. E. Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environ. Manage. 54, 1249–1266 (2014).
    ADS  Article  Google Scholar 

    36.
    USGS Gap Analysis Program. Protected Areas Database of the United States (PAD-US), version 1.4 [vector digital data]. https://www.sciencebase.gov/catalog/item/5963ea3fe4b0d1f9f059d955 (2016).

    37.
    Baldwin, R. F. & Fouch, N. T. Understanding the biodiversity contributions of small protected areas presents many challenges. Land https://doi.org/10.3390/land7040123 (2018).
    Article  Google Scholar 

    38.
    Luja, V. H., Navarro, C. J., Torres Covarrubias, L. A., Cortés Hernández, M. & Vallarta Chan, I. L. Small protected areas as stepping-stones for jaguars in western Mexico. Trop. Conserv. Sci. 10, 194008291771705 (2017).
    Article  Google Scholar 

    39.
    Saura, S., Bodin, Ö & Fortin, M. J. Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 51, 171–182 (2014).
    Article  Google Scholar 

    40.
    Pebesma, E., Bivand, R., Rowlingson, B. & Gomez-Rubio, V. Sp: classes and methods for spatial data. http//CRAN.R-project.org/package=sp, R Packag. version 1.0–14 (2013).

    41.
    Hijmans, R. J. et al. Raster: raster: Geographic data analysis and modeling. R Packag. version 2–0 (2011).

    42.
    Nicholas J. Lewin-Koh contributions by Edzer J. Pebesma, Eric Archer, Adrian Baddeley, Hans-Jörg Bibiko, Stéphane Dray, David Forrest, Patrick Giraudoux, Duncan Golicher, Virgilio Gómez Rubio, Patrick Hausmann, Thomas Jagger, Sebastian P. Luque, Don MacQ, R. B. maptools: Tools for reading and handling spatial objects. (2009).

    43.
    Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the geospacial data abstraction library. (2013).

    44.
    Bivand, R., Rundel, C., Pebesma, E. & Hufthammer, K. O. Interface to geometry engine – open source (GEOS): Package ‘rgeos’. R Documentation (2016).

    45.
    Tennekes, M. et al. tmap: Thematic maps. (2019).

    46.
    R Development Core Team. R: A language and environment for statistical computing. https://www.R-project.org. [Google Scholar] (2019).

    47.
    US Fish and Wildlife Service. Environmental conservation online system. USFWS, https://ecos.fws.gov/ecp/. (2016).

    48.
    Ricketts, T. & Imhoff, M. Biodiversity, urban areas, and agriculture: Locating priority ecoregions for conservation. Ecol. Soc. 8, https://www.ecologyandsociety.org/vol8/iss2/art1/ (2003).

    49.
    Lamoreux, J. F. et al. Global tests of biodiversity concordance and the importance of endemism. Nature 440, 212–214 (2006).
    ADS  CAS  Article  Google Scholar 

    50.
    US Endowment for Forestry and Communities. National conservation easement database. https://www.conservationeasement.us/ (2014).

    51.
    Bureau of Land Management. BLM National Surface Management Agency GIS. (2019). More

  • in

    Artificial light at night can modify ecosystem functioning beyond the lit area

    Field experiment
    Study design
    In 2017, eight unmanaged meadows were selected in the Prealps of Switzerland. This region has low levels of light emission with a radiance lower than 0.25 × 10-9 W sr-1 cm-2 (data from https://www.lightpollutionmap.info). Meadows had an average linear distance to the nearest site of 1.45 ± 0.34 km. The sites were located in the middle of the meadows on as homogenous vegetation as possible, so that there was no influence by elements like bushes or forest edges. The most abundant and widespread plant species on the meadows was Cirsium oleraceum (Asteraceae), followed by other plant species being abundant but not present on all sampling sites: Angelica sylvestris (Apiaceae), Eupatorium cannabinum (Asteraceae), Erigeron annuus s.l. (Asteraceae) and Filipendula ulmaria (Rosaceae). On four out of the eight meadows we experimentally installed a LED street lamp (Schréder GmbH, type: AMPERA MIDI 48 LED, colour temperature: neutral white (4,000 K), nominal LED flux: 6,800 lm) on 6 m high poles. Street lamps were installed on one side of the meadows, which resulted in an experimental set-up, where during nighttime a part of the meadow was illuminated by a cone of light. The part of the meadow further from the experimentally set-up street lamp was not illuminated and its darkness corresponded to the darkness measured on the control meadows that had no artificial light source in the vicinity. In other words, the four meadows were divided by artificial light into two parts, one directly illuminated by the lamp and the other being dark but adjacent to the illuminated part. Subsequently, we refer to the two parts as two sites, even though they were part of the same meadow, i.e., the illuminated part is further referred to as illuminated site, the dark part adjacent to the illuminated part as adjacent site (see Fig. 1). It is important to notice, that the street lamp was experimentally established, i.e., there was no systematic bias in terms of other landscape structures (such as roads, forest edges or hedges) where the illuminated part of the meadow was, adjacent, respectively. Thus, landscape structures that were different between the illuminated and dark part of a meadow potentially influenced the results in a non-systematic way and increased variance, but did not create a systematic bias. The remaining four meadows were left completely dark (further referred to as dark control sites), but they were equipped with a fake street lamp to provide comparable conditions. Light intensity on illuminated sites followed a negative exponential curve as function of the distance from the lamp dropping from 75.73 ± 1.54 lx just under the lamp ( More

  • in

    SARS-CoV-2 failure to infect or replicate in mosquitoes: an extreme challenge

    1.
    World Health Organization. Coronavirus disease (COVID-19) advice for the public: Myth busters 2020 [cited 2020 2020/05/22]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public/myth-busters.
    2.
    Chandrashekar, A., Liu, J., Martinot, A. J., McMahan, K., Mercado, N, B,, Peter, L. et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science (2020).

    3.
    Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223), 497–506 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Turell, M. J., Dohm, D. J., Geden, C. J., Hogsette, J. A. & Linthicum, K. J. Potential for stable flies and house flies (Diptera: Muscidae) to transmit Rift Valley fever virus. J. Am. Mosq. Control Assoc. 26(4), 445–448 (2010).
    PubMed  Article  Google Scholar 

    5.
    Higgs, S., Schneider, B. S., Vanlandingham, D. L., Klingler, K. A. & Gould, E. A. Nonviremic transmission of West Nile virus. Proc. Natl. Acad. Sci. USA. 102(25), 8871–8874 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    6.
    McGee, C. E., Schneider, B. S., Girard, Y. A., Vanlandingham, D. L. & Higgs, S. Nonviremic transmission of West Nile virus: evaluation of the effects of space, time, and mosquito species. Am. J. Trop. Med .Hyg. 76(3), 424–430 (2007).
    PubMed  Article  Google Scholar 

    7.
    Reisen, W. K., Fang, Y. & Martinez, V. Is nonviremic transmission of West Nile virus by Culex mosquitoes (Diptera: Culicidae) nonviremic?. J. Med. Entomol. 44(2), 299–302 (2007).
    PubMed  Article  Google Scholar 

    8.
    Rosen, L. The use of Toxorhynchites mosquitoes to detect and propagate dengue and other arboviruses. Am. J. Trop. Med. Hyg. 30(1), 177–183 (1981).
    CAS  PubMed  Article  Google Scholar 

    9.
    Rosen, L. & Gubler, D. The use of mosquitoes to detect and propagate dengue viruses. Am. J. Trop. Med. Hyg. 23(6), 1153–1160 (1974).
    CAS  PubMed  Article  Google Scholar 

    10.
    Peloquin, J. J., Thomas, T. A. & Higgs, S. Pink bollworm larvae infection with a double subgenomic Sindbis (dsSIN) virus to express genes of interest. J. Cotton Sci. 5(2), 114–120 (2001).
    CAS  Google Scholar 

    11.
    Lewis, D. L. et al. Ectopic gene expression and homeotic transformations in arthropods using recombinant Sindbis viruses. Curr. Biol. 9(22), 1279–1287 (1999).
    CAS  PubMed  Article  Google Scholar 

    12.
    Vaughan, J. A., Trpis, M. & Turell, M. J. Brugia malayi microfilariae (Nematoda: Filaridae) enhance the infectivity of Venezuelan equine encephalitis virus to Aedes mosquitoes (Diptera: Culicidae). J. Med. Entomol. 36(6), 758–763 (1999).
    CAS  PubMed  Article  Google Scholar 

    13.
    Centers for Disease Control and Prevention. International Catalog of Arboviruses. In: Prevention CfDCa, editor. Atlanta, GA: Center for Disease Control and Prevention; 1985.

    14.
    Traavik, T., Mehl, R. & Kjeldsberg, E. “Runde” virus, a coronavirus-like agent associated with seabirds and ticks. Arch. Virol. 55(1–2), 25–38 (1977).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Calibeo-Hayes, D. et al. Mechanical transmission of turkey coronavirus by domestic houseflies (Musca domestica Linnaeaus). Avian Dis. 47(1), 149–153 (2003).
    PubMed  Article  Google Scholar 

    16.
    Fauver, J. R. et al. The use of xenosurveillance to detect human bacteria, parasites, and viruses in mosquito bloodmeals. Am. J. Trop. Med. Hyg. 97(2), 324–329 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Higgs, S. et al. Growth characteristics of ChimeriVax-Den vaccine viruses in Aedes aegypti and Aedes albopictus from Thailand. Am. J. Trop. Med. Hyg. 75(5), 986–993 (2006).
    PubMed  Article  Google Scholar 

    18.
    Wendell, M. D., Wilson, T. G., Higgs, S. & Black, W. C. Chemical and gamma-ray mutagenesis of the white gene in Aedes aegypti. Insect Mol. Biol. 9(2), 119–125 (2000).
    CAS  PubMed  Article  Google Scholar 

    19.
    Park, S. L., Huang, Y. S., Higgs, S. & Vanlandingham, D. L. Application of a nonpaper based matrix to preserve chikungunya virus infectivity at ambient temperature. Vector Borne Zoo. Dis. 18(5), 278–281 (2018).
    Article  Google Scholar 

    20.
    Huang, Y. J. et al. Culex species mosquitoes and Zika virus. Vector Borne Zoo. Dis. 16(10), 673–676 (2016).
    Article  Google Scholar 

    21.
    Huang, Y. S. et al. Differential outcomes of Zika virus infection in Aedes aegypti orally challenged with infectious blood meals and infectious protein meals. PLoS ONE 12(8), e0182386 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Ayers, V. B. et al. Culex tarsalis is a competent vector species for Cache Valley virus. Parasit. Vectors. 11(1), 519 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Ayers, V. B. et al. Infection and transmission of Cache Valley virus by Aedes albopictus and Aedes aegypti mosquitoes. Parasit. Vectors. 12(1), 384 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Tsetsarkin, K. A., Vanlandingham, D. L., McGee, C. E. & Higgs, S. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 3(12), e201 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Nuckols, J. T. et al. Evaluation of simultaneous transmission of chikungunya virus and dengue virus type 2 in infected Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 52(3), 447–451 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Cook, C. L. et al. North American Culex pipiens and Culex quinquefasciatus are competent vectors for Usutu virus. PLoS Negl. Trop. Dis. 12(8), e0006732 (2018).
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    The gut microbiota of brood parasite and host nestlings reared within the same environment: disentangling genetic and environmental effects

    1.
    Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.
    CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Parfrey LW, Moreau CS, Russell JA. Introduction: the host-associated microbiome: pattern, process and function. Mol Ecol. 2018;27:1749–65.
    PubMed  Google Scholar 

    3.
    Moran NA, Ochman H, Hammer TJ. Evolutionary and ecological consequences of gut microbial communities. Annu Rev Ecol Evol Syst. 2019;50:451–75.
    Google Scholar 

    4.
    McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Loso T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA. 2013;110:3229–36.
    CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Colston TJ, Jackson CR. Microbiome evolution along divergent branches of the vertebrate tree of life: what is known and unknown. Mol Ecol. 2016;25:3776–800.
    PubMed  Google Scholar 

    6.
    O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7:688–93.
    PubMed  PubMed Central  Google Scholar 

    7.
    Browne HP, Neville BA, Forster SC, Lawley TD. Transmission of the gut microbiota: spreading of health. Nat Rev Microbiol. 2017;15:531–43.
    PubMed  PubMed Central  Google Scholar 

    8.
    Mao K, Baptista AP, Tamoutounour S, Zhuang L, Bouladoux N, Martins AJ, et al. Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism. Nature. 2018;554:255–9.
    CAS  PubMed  Google Scholar 

    9.
    Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157:121–41.
    CAS  PubMed  PubMed Central  Google Scholar 

    10.
    Sherwin E, Bordenstein SR, Quinn JL, Dinan TG, Cryan JF. Microbiota and the social brain. Science. 2019;366:eaar2016.
    CAS  PubMed  Google Scholar 

    11.
    Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol. 2013;13:790–801.
    CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148:1258–70.
    CAS  PubMed  PubMed Central  Google Scholar 

    13.
    Rosenbaum M, Knight R, Leibel RL. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab. 2015;26:493–501.
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. The evolution of the host microbiome as an ecosystem on a leash. Nature. 2017;548:43–51.
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Knowles SCL, Eccles RM, Baltrūnaitė L. Species identity dominates over environment in shaping the microbiota of small mammals. Ecol Lett. 2019;22:826–37.
    CAS  PubMed  Google Scholar 

    16.
    Henderson G, Cox F, Ganesh S, Jonker A, Young W, Janssen PH, et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep. 2015;5:14567.
    CAS  PubMed  PubMed Central  Google Scholar 

    17.
    Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016;529:212–5.
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Carmody Rachel N, Gerber Georg K, Luevano Jesus M Jr., Gatti Daniel M, Somes L, Svenson Karen L, et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe. 2015;17:72–84.
    CAS  PubMed  Google Scholar 

    19.
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.
    CAS  PubMed  Google Scholar 

    20.
    Seedorf H, Griffin Nicholas W, Ridaura Vanessa K, Reyes A, Cheng J, Rey Federico E, et al. Bacteria from diverse habitats colonize and compete in the mouse gut. Cell. 2014;159:253–66.
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Hildebrand F, Nguyen TLA, Brinkman B, Yunta RG, Cauwe B, Vandenabeele P, et al. Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol. 2013;14:R4.
    PubMed  PubMed Central  Google Scholar 

    22.
    Schloss PD, Iverson KD, Petrosino JF, Schloss SJ. The dynamics of a family’s gut microbiota reveal variations on a theme. Microbiome. 2014;2:25.
    PubMed  PubMed Central  Google Scholar 

    23.
    Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, et al. Cohabiting family members share microbiota with one another and with their dogs. eLife. 2013;2:e00458.
    PubMed  PubMed Central  Google Scholar 

    24.
    Maurice CF, Cl Knowles S, Ladau J, Pollard KS, Fenton A, Pedersen AB, et al. Marked seasonal variation in the wild mouse gut microbiota. ISME J. 2015;9:2423–34.
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Ren T, Boutin S, Humphries MM, Dantzer B, Gorrell JC, Coltman DW, et al. Seasonal, spatial, and maternal effects on gut microbiome in wild red squirrels. Microbiome. 2017;5:163.
    PubMed  PubMed Central  Google Scholar 

    26.
    Wang J, Chen L, Zhao N, Xu X, Xu Y, Zhu B. Of genes and microbes: solving the intricacies in host genomes. Protein Cell. 2018;9:446–61.
    PubMed  PubMed Central  Google Scholar 

    27.
    Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555:210–5.
    CAS  PubMed  Google Scholar 

    28.
    Amato KR, G. Sanders J, Song SJ, Nute M, Metcalf JL, Thompson LR, et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 2019;13:576–87.
    CAS  PubMed  Google Scholar 

    29.
    Nishida AH, Ochman H. Rates of gut microbiome divergence in mammals. Mol Ecol. 2018;27:1884–97.
    PubMed  PubMed Central  Google Scholar 

    30.
    Brooks AW, Kohl KD, Brucker RM, van Opstal EJ, Bordenstein SR. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 2016;14:e2000225.
    PubMed  PubMed Central  Google Scholar 

    31.
    Ochman H, Worobey M, Kuo C-H, Ndjango J-BN, Peeters M, Hahn BH, et al. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol. 2010;8:e1000546.
    PubMed  PubMed Central  Google Scholar 

    32.
    Kartzinel TR, Hsing JC, Musili PM, Brown BRP, Pringle RM. Covariation of diet and gut microbiome in African megafauna. Proc Natl Acad Sci USA. 2019;116:23588–93.
    CAS  PubMed  Google Scholar 

    33.
    Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332:970–4.
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Delsuc F, Metcalf JL, Wegener Parfrey L, Song SJ, González A, Knight R. Convergence of gut microbiomes in myrmecophagous mammals. Mol Ecol. 2014;23:1301–17.
    CAS  PubMed  Google Scholar 

    35.
    Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, et al. Evolution of mammals and their gut microbes. Science. 2008;320:1647–51.
    CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Ruiz-Rodríguez M, Martín-Vivaldi M, Martínez-Bueno M, Soler JJ. Gut microbiota of great spotted cuckoo nestlings is a mixture of those of their foster magpie siblings and of cuckoo adults. Genes. 2018;9:381.
    PubMed Central  Google Scholar 

    37.
    Davies NB. Cuckoo adaptations: trickery and tuning. J Zool. 2011;284:1–14.
    Google Scholar 

    38.
    Payne RB. The cuckoos. New York: Oxford University Press; 2005.
    Google Scholar 

    39.
    Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature. 2015;526:569–73.
    CAS  Google Scholar 

    40.
    Soler M, Martínez JG, Soler JJ, Møller AP. Preferential allocation of food by magpie Pica pica to great spotted cuckoo Clamator glandarius chicks. Behav Ecol Sociobiol. 1995;37:7–13.
    Google Scholar 

    41.
    Soler JJ, Martínez JG, Soler M, Møller AP. Coevolutionary interactions in a host-parasite system. Ecol Lett. 2001;4:470–6.
    Google Scholar 

    42.
    Birkhead TR. The Magpies. The ecology and behaviour of black-billed and yellow-billed magpies. London: T & A D Poyser; 1991.
    Google Scholar 

    43.
    Ruiz-Rodríguez M, Lucas FS, Heeb P, Soler JJ. Differences in intestinal microbiota between avian brood parasites and their hosts. Biol J Linn Soc. 2009;96:406–14.
    Google Scholar 

    44.
    Soler JJ, Martin-Galvez D, De Neve L, Soler M. Brood parasitism correlates with the strength of spatial autocorrelation of life history and defensive traits in Magpies. Ecology. 2013;94:1338–46.
    PubMed  Google Scholar 

    45.
    Moreno-Rueda G, Soler M, Soler JJ, Martínez JG, Pérez-Contreras T. Rules of food allocation between nestlings of the black-billed magpie Pica pica, a species showing brood reduction. Ardeola. 2007;54:15–25.
    Google Scholar 

    46.
    Soler M, Soler JJ, Martínez JG. Duration of sympatry and coevolution between the great spotted cuckoo (Clamator glandarius) and its primary host, the magpie (Pica pica). In: Rothstein SI, SK Robinson SK, editors. Parasitic Birds and their hosts, studies in coevolution. Oxford: Oxford University Press; 1998. p. 113–28.

    47.
    Soler M, Soler JJ. Growth and development of great spotted cuckoos and their magpie host. Condor. 1991;93:49–54.
    Google Scholar 

    48.
    Martín-Gálvez D, Pérez-Contreras T, Soler M, Soler JJ. Benefits associated with escalated begging behaviour of black-billed magpie nestlings overcompensate the associated energetic costs. J Exp Biol. 2011;214:1463–72.
    PubMed  Google Scholar 

    49.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu Z, et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems. 2017;2:e00191–00116.
    PubMed  PubMed Central  Google Scholar 

    52.
    Janssen S, McDonald D, Gonzalez A, Navas-Molina JA, Jiang L, Xu ZZ, et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. mSystems. 2018;3:e00021–00018.
    CAS  PubMed  PubMed Central  Google Scholar 

    53.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.
    CAS  PubMed  PubMed Central  Google Scholar 

    54.
    Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87.
    PubMed  PubMed Central  Google Scholar 

    55.
    de Goffau MC, Lager S, Salter SJ, Wagner J, Kronbichler A, Charnock-Jones DS, et al. Recognizing the reagent microbiome. Nat Microbiol. 2018;3:851–3.
    PubMed  Google Scholar 

    56.
    Whittaker RH. Evolution and measurement of species diversity. Taxon. 1972;21:213–51.
    Google Scholar 

    57.
    Shannon CE. A mathematical theory of communication. Bell Labs Tech J. 1948;27:379–423.
    Google Scholar 

    58.
    Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–35.
    CAS  PubMed  PubMed Central  Google Scholar 

    59.
    Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol. 2007;73:1576–85.
    CAS  PubMed  PubMed Central  Google Scholar 

    60.
    Goslee SC, Urban DL. The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw. 2007;22:i07.
    Google Scholar 

    61.
    Moeller A, Suzuki T, Lin D, Lacey E, Wasser S, Nachman M. Dispersal limitation promotes the diversification of the mammalian gut microbiota. Proc Natl Acad Sci USA. 2017;114:13768–73.
    CAS  PubMed  Google Scholar 

    62.
    Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV, Muller MN, et al. Cospeciation of gut microbiota with hominids. Science. 2016;353:380–2.
    CAS  PubMed  PubMed Central  Google Scholar 

    63.
    Groussin M, Mazel F, Sanders JG, Smillie CS, Lavergne S, Thuiller W, et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat Commun. 2017;8:14319.
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Soler M, Soler JJ. Innate versus learned recognition of conspecifics in great spotted cuckoos Clamator glandarius. Anim Cogn. 1999;2:97–102.
    Google Scholar 

    65.
    Donaldson GP, Ladinsky MS, Yu KB, Sanders JG, Yoo BB, Chou WC, et al. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science. 2018;360:795–800.
    CAS  PubMed  PubMed Central  Google Scholar 

    66.
    Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535:65–74.
    CAS  PubMed  Google Scholar 

    67.
    Sicard J-F, Le Bihan G, Vogeleer P, Jacques M, Harel J. Interactions of intestinal bacteria with components of the intestinal mucus. Front Cell Infect Microbiol. 2017;7:387.
    PubMed  PubMed Central  Google Scholar 

    68.
    Soler JJ, Møller AP, Soler M, Martíne1z JG. Interactions between a brood parasite and its host in relation to parasitism and immune defence. Evol Ecol Res. 1999;1:189–210.
    Google Scholar 

    69.
    Ruiz-Rodríguez M, Soler JJ, Lucas FS, Heeb P, Palacios M, Martín-Gálvez D, et al. Bacterial diversity at the cloaca relates to an immune response in magpie Pica pica and to body condition of great spotted cuckoo Clamator glandarius nestlings. J Avian Biol. 2009;40:42–8.
    Google Scholar 

    70.
    Soler JJ, De Neve L, Pérez-Contreras T, Soler M, Sorci G. Trade-off between immunocompetence and growth in magpies: an experimental study. Proc R Soc Lond B Biol Sci. 2003;270:241–8.
    Google Scholar 

    71.
    Soler M, Rubio LA, Perez-Contreras T, Ontanilla J, De Neve L. Intestinal digestibility of great spotted cuckoo nestlings is less efficient than that of magpie host nestlings. Biol J Linn Soc. 2017;122:675–80.
    Google Scholar 

    72.
    Clayton JB, Vangay P, Huang H, Ward T, Hillmann BM, Al-Ghalith GA, et al. Captivity humanizes the primate microbiome. Proc Natl Acad Sci USA. 2016;113:10376–81.
    CAS  PubMed  Google Scholar 

    73.
    Kohl K, Skopec M, Dearing MD. Captivity results in disparate loss of gut microbial diversity in closely related hosts. Cons Physiol. 2014;2:cou009.
    Google Scholar  More