More stories

  • in

    Sustainability indicators in the dairy industry

    Industrial milk production results in waste products and pollutants including greenhouse gas emissions, product packaging, wastewater and effluents. Sustainability indicators are poorly defined for the industry, making efforts to measure and monitor sustainability challenging. Alexandre André Feil, from Universidade do Vale do Taquari, Brazil, and colleagues conducted a systematic review to identify and assess the characteristics of sustainability indicators used in the dairy sector to date.

    The literature search covered a 50-year period of publication, from 1969 to the present. Although 130 publications containing the phrases ‘sustainability indicator’ and ‘dairy industry’ were included in the review, the authors found that only about 5% of these studies directly addressed sustainability indicators. The ‘triple bottom line’ of sustainability — environmental, social and economic factors — were used by Feil and colleagues to assess indicators used in the literature. The environmental indicators that emerged included ozone depletion, water eutrophication, energy consumption, ecotoxicity, abiotic depletion, global warming, water acidification, photochemical oxidation, human toxicity and water consumption. Social indicators included product delivery capacity, quality of raw materials and product, traceability systems, workers’ health and safety, noise pollution and traffic accidents. Among economic indicators were profit margin, participation in milk processing, costs of production, storage and distribution. Feil and colleagues note that the frequency of these indicators and their composite assessment in the literature to date is low, as is literature considering the triple bottom line. But, the theme of sustainability is, they note, incipient in the dairy industry.

    Establishing a holistic approach to sustainability in the dairy industry is crucial. In this systematic review and analysis, Feil and colleagues also note the importance of tailoring sustainability indicators to regional issues — a strategy that will be important as emerging economies are set to increase their dairy production in the coming decades. More

  • in

    Does fertilization with dehydrated sewage sludge affect Terminalia argentea (Combretaceae) and associated arthropods community in a degraded area?

    1.
    Frišták, V., Pipíška, M. & Soja, G. Pyrolysis treatment of sewage sludge: a promising way to produce phosphorus fertilizer. J. Clean. Prod. 172, 1772–1778. https://doi.org/10.1016/j.jclepro.2017.12.015 (2018).
    CAS  Article  Google Scholar 
    2.
    Antonkiewicz, J. et al. A mixture of cellulose production waste with municipal sewage as new material for an ecological management of wastes. Ecotoxicol. Environ. Saf. 169, 607–614. https://doi.org/10.1016/j.ecoenv.2018.11.070 (2019).
    CAS  Article  PubMed  Google Scholar 

    3.
    Kimberley, M. O., Wang, H., Wilks, P. J., Fisher, C. R. & Magesan, G. N. Economic analysis of growth response from a pine plantation forest applied with biosolids. Forest Ecol. Manag. 189, 345–351. https://doi.org/10.1016/j.foreco.2003.09.003 (2004).
    Article  Google Scholar 

    4.
    Caldeira, M. V. W. et al. Lodo de esgoto como componente de substrato para produção de mudas de Acacia mangium Wild. Comun. Sci. 5, 34–43 (2014).
    Google Scholar 

    5.
    Silva, J. L. et al. Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area. R. Soc. Open Sci. 7, 2. https://doi.org/10.1098/rsos.191196 (2020).
    Article  Google Scholar 

    6.
    Nogueira, T. A. R. et al. Metais pesados e patógenos em milho e feijão caupi consorciados, adubados com lodo de esgoto. Rev. Bras. Eng. Agríc. Ambient. 11, 331–338. https://doi.org/10.1590/S1415-43662007000300014 (2007).
    Article  Google Scholar 

    7.
    Lorenzi, H. Árvores Brasileiras: Manual de Identificação e Cultivo de Plantas Arbóreas Nativas do Brasil (Instituto Plantarum, Nova, 2002).
    Google Scholar 

    8.
    Boff, S., Graciolli, G., Boaretto, A. G. & Marques, M. R. Visiting insects of exudated gums by Terminalia argentea Mart. & Zucc (Combretaceae). Rev. Bras. Entomol. 52, 477–479. https://doi.org/10.1590/S0085-56262008000300025 (2008).
    Article  Google Scholar 

    9.
    Santos, M. S. et al. Riqueza de formigas (Hymenoptera, Formicidade) da serapilheira em fragmentos de floresta semidecídua da Mata Atlântica na região do Alto do Rio Grande, MG, Brasil. Iheringi. Sér. Zool. 96, 95–101. https://doi.org/10.1590/S0073-47212006000100017 (2006).
    Article  Google Scholar 

    10.
    Davis, A. J. et al. Dung beetles as indicators of change in the forests of northern Borneo. J. Appl. Ecol. 38, 593–616. https://doi.org/10.1046/j.1365-2664.2001.00619.x (2001).
    Article  Google Scholar 

    11.
    Bowers, M. D. & Stamp, N. E. Effects of plant-age, genotype, and herbivory on Plantago performance and chemistry. Ecology 74, 1778–1791. https://doi.org/10.2307/1939936 (1993).
    Article  Google Scholar 

    12.
    Coley, P. D. & Barone, J. A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335, https://doi.org/10.1146/annurev.ecolsys.27.1.305 (1996.)

    13.
    Leite, G. L. D., Picanço, M., Zanuncio, J. C., Moreira, M. D. & Jham, G. N. Hosting capacity of horticultural plants for insect pests in Brazil. Chil. J. Agric. Res. 71, 383–389. https://doi.org/10.4067/S0718-58392011000300006 (2011).
    Article  Google Scholar 

    14.
    Mass, K. D. B. Biossólido Como Substrato na Produção de Mudas de Timburi. Graduate theses and dissertations (2010).

    15.
    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, Princeton, 1967).
    Google Scholar 

    16.
    Espírito Santo, M. M., Neves, F. S., Andrade Neto, F. R. & Fernandes, G. W. Plant architecture and meristem dynamics as the mechanisms determining the diversity of gall-inducing insects. Oecologia 153, 353–364. https://doi.org/10.1007/s00442-007-0737-8 (2007).
    ADS  Article  PubMed  Google Scholar 

    17.
    Leite, G. L. D. et al. Architectural diversity and galling insects on Caryocar brasiliense trees. Sci. Rep. 7, 16677. https://doi.org/10.1038/s41598-017-16954-6 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    18.
    Morris, R. J., Lewis, O. T. & Godfray, H. C. J. Experimental evidence for apparent competition in a tropical forest food web. Nature 428, 310–313. https://doi.org/10.1038/nature02394 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    19.
    Leite, G. L. D. et al. Habitat complexity and Caryocar brasiliense herbivores (Insecta; Arachnida; Araneae). Fla. Entomol. 95, 819–830. https://doi.org/10.1653/024.095.0402 (2012).
    Article  Google Scholar 

    20.
    Auslander, M., Nevo, E. & Inbar, M. The effects of slope orientation on plant growth, developmental instability and susceptibility to herbivores. J. Arid Environ. 55, 405–416. https://doi.org/10.1016/S0140-1963(02)00281-1 (2003).
    ADS  Article  Google Scholar 

    21.
    Leite, G. L. D. et al. Seasonal damage caused by herbivorous insects on Caryocar brasiliense (Caryocaraceae) trees in the Brazilian savanna. Rev. Colombiana Entomol. 38, 108–113 (2012).
    Google Scholar 

    22.
    Kitahara, M. & Fujii, K. An island biogeographical approach to the analysis of butterfy community patterns in newly designed parks. Res. Popul. Ecol. 91, 23–35. https://doi.org/10.1007/BF02765247 (1997).
    Article  Google Scholar 

    23.
    Burns, K. C. Native–exotic richness relationships: a biogeographic approach using turnover in island plant populations. Ecology 97, 2932–2938, https://doi.org/10.1002/ecy.1579 (2016)

    24.
    Taiz, L., Zeiger, E., Moller, I. M. & Murphy, A. Fisiologia e desenvolvimento vegetal. (Artmed, 2017).

    25.
    Tiedge, K. & Lohaus, G. Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators’ preferences than organic acids and inorganic ions. PLoS ONE 12, 1–25. https://doi.org/10.1371/journal.pone.0176865 (2017).
    CAS  Article  Google Scholar 

    26.
    Stabler, D., Power, E. F., Borland, A. M., Barnes, J. D. & Wright, G. A. A method for analysing small samples of floral pollen for free and protein-bound amino acids. Methods Ecol. Evol. 9, 430–438. https://doi.org/10.1111/2041-210X.12867 (2018).
    Article  PubMed  Google Scholar 

    27.
    Kitamura, A. E., Alves, M. C., Sanches, S., Akihiro, L. G. & Antonio, P. G. Recuperação de um solo degradado com a aplicação de adubos verdes e lodo de esgoto. Rev. Bras. Cienc. Solo 32, 405–416. https://doi.org/10.1590/S0100-06832008000100038 (2008).
    Article  Google Scholar 

    28.
    Serra, B. D. V. & Campos, L. A. Polinização entomófila de abobrinha, Cucurbita moschata (Cucurbitaceae). Neotrop. Entomol. 39, 153–159. https://doi.org/10.1590/S1519-566X2010000200002 (2010).
    Article  PubMed  Google Scholar 

    29.
    Silva, F. W. S. et al. Spatial distribution of arthropods on Acacia mangium (Fabales: Fabaceae) trees as windbreaks in the Cerrado. Fla. Entomol. 97, 631–638. https://doi.org/10.1653/024.097.0240 (2014).
    Article  Google Scholar 

    30.
    Damascena, J. G. et al. Spatial distribution of phytophagous insects, natural enemies, and pollinators on Leucaena leucocephala (Fabaceae) trees in the Cerrado. Fla. Entomol. 100, 558–565. https://doi.org/10.1653/024.100.0311 (2017).
    Article  Google Scholar 

    31.
    Gratton, C. & Denno, R. F. Seasonal shift from bottom-up to top-down impact in phytophagous insect populations. Oecology 134, 487–495. https://doi.org/10.1007/s00442-002-1137-8 (2003).
    ADS  Article  Google Scholar 

    32.
    Marquis, R. J., Diniz, I. R. & Morais, H. C. Patterns and correlates of the interspecific variation in foliar insect herbivory and pathogen attack in Brazilian Cerrado. J. Trop. Ecol. 17, 127–148. https://doi.org/10.1017/S0266467401001080 (2001).
    Article  Google Scholar 

    33.
    Landis, D., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Ann. Rev. Entomol. 45, 175–201. https://doi.org/10.1146/annurev.ento.45.1.175 (2000).
    CAS  Article  Google Scholar 

    34.
    Langellotto, G. A. Aggregation of Invertebrate Predators in Complex-Structured Habitats: Role of Altered Cannibalism, Intraguild Predation, Prey Availability, and Microclimate. Graduate theses and dissertations (2003).

    35.
    Halaj, J., Halpern, C. B. & Yi, H. Responses of litter-dwelling spiders and carabid beetles to varying levels and patterns of green-tree retention. Forest Ecol. Manag. 255, 887–900. https://doi.org/10.1016/j.foreco.2007.09.083 (2008).
    Article  Google Scholar 

    36.
    Sunderland, K. & Samu, F. Effects of agricultural diversification on the abundance, distribution, and pest control potential of spiders: a review. Entomol. Exp. Appl. 95, 1–13. https://doi.org/10.1046/j.1570-7458.2000.00635.x (2000).
    Article  Google Scholar 

    37.
    Amalin, D. M., Reiskind, J., Peña, J. E. & Mcsorley, R. Predatory behavior of three species of sac spiders attacking citrus leafminer. J. Arachnol. 29, 72–81. https://doi.org/10.1636/0161-8202(2001)029[0072:PBOTSO]2.0.CO;2 (2001).
    Article  Google Scholar 

    38.
    Hogg, B. N., Mills, N. J. & Daane, K. M. Temporal patterns in the abundance and species composition of spiders on host plants of the invasive moth Epiphyas postvittana (Lepidoptera: Tortricidae). Environ. Entomol. 146, 502–510. https://doi.org/10.1093/ee/nvx065 (2017).
    Article  Google Scholar 

    39.
    Del-Claro, K. & Oliveira, P. S. Conditional outcomes in a neotropical treehopper-ant association: temporal and species-specific variation in ant protection and homopteran fecundity. Oecologia 124, 156–165. https://doi.org/10.1007/s004420050002 (2000).
    ADS  CAS  Article  PubMed  Google Scholar 

    40.
    Schmitz, O. J. Indirect Effects in Communities and Ecosystems: The Role of Trophic and Nontrophic Interactions (Princeton University Press, Princeton, 2006).
    Google Scholar 

    41.
    Costa, S. S. D. Insects and growth of Terminalia argentea Mart & Zucc (Combretaceae) fertilized with dehydrated sewage sludge. Graduate theses and dissertations (2019).

    42.
    Economo, E. P. et al. Global phylogenetic structure of the hyperdiverse ant genus Pheidole reveals the repeated evolution of macroecological patterns. Proc. R. Soc. B. 282, 1–10. https://doi.org/10.1098/rspb.2014.1416 (2014).
    Article  Google Scholar 

    43.
    Pérez-Lachaud, G. & Lachaud, J. P. Arboreal ant colonies as ‘hot-points’ of cryptic diversity for myrmecophiles: the weaver ant Camponotus sp. aff. textor and its interaction network with its associates. PLoS ONE 9, 1–8. https://doi.org/10.1371/journal.pone.0100155 (2014).
    CAS  Article  Google Scholar 

    44.
    Chomicki, G., Ward, P. S. & Renner, S. S. Macroevolutionary assembly of ant/plant symbioses: Pseudomyrmex ants and their ant-housing plants in the Neotropics. Proc. R. Soc. B. 282, 1–9. https://doi.org/10.1098/rspb.2015.2200 (2015).
    CAS  Article  Google Scholar 

    45.
    Sanches, A. Fidelity and promiscuity in an ant-plant mutualism: a case study of triplaris and Pseudomyrmex. PLoS ONE 10, 1–19. https://doi.org/10.1371/journal.pone.0143535 (2015).
    CAS  Article  Google Scholar 

    46.
    Miranda, M. M. M., Picanço, M., Leite, G. L. D., Zanuncio, J. C. & Clercq, P. Sampling and non-action levels for predators and parasitoids of virus vectors and leaf miners of tomato in Brazil. Med. Facul. Landb. Univ. Gent 63, 519–523 (1998).
    Google Scholar 

    47.
    Leite, G. L. D., Oliveira, I. R., Guedes, R. N. C. & Picanço, M. Comportamento de predação de Protonectarina sylveirae (Saussure) (Hymenoptera: Vespidae) em mostarda. Agro-Ciencia (Chillán) 17, 93–96 (2001).
    Google Scholar 

    48.
    Picanço, M., Ribeiro, L. J., Leite, G. L. D. & Gusmão, M. R. Seletividade de inseticidas a Polybia ignobilis (Haliday) (Hymenoptera: Vespidae) predador de Ascia monuste orseis (Godart) (Lepidoptera: Pieridae). An. Soc. Entomol. Bras. 27, 85–90. https://doi.org/10.1590/S0301-80591998000100011 (1998).
    Article  Google Scholar 

    49.
    Picanço, M. C. et al. Ecology of Vespidae (Hymenoptera) predators in Coffea arabica plantations. Sociobiology 59, 1269–1280 (2012).
    Google Scholar 

    50.
    Condon, M. A. et al. Lethal interactions between parasites and prey increase niche diversity in a tropical community. Science 343, 1240–1244. https://doi.org/10.1126/science.1245007 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    51.
    Larsen, K. J., Purrington, F. F., Brewer, S. R. & Taylor, D. H. Influence of sewage sludge and fertilizer on the ground geetle (Coleoptera: Carabidae) fauna of an old-field community. Environ. Entomol. 25, 452–459. https://doi.org/10.1093/ee/25.2.452 (1996).
    Article  Google Scholar 

    52.
    Milton, S. J., Dean, W. R. J., du Plessis, M. A. & Siegfried, W. R. A conceptual model of arid rangeland degradation. Bioscience 44, 70–76. https://doi.org/10.2307/1312204 (1994).
    Article  Google Scholar 

    53.
    Whisenant, S. G. Repairing damaged wildlands: a process-oriented, landscape-scale approach. Restor. Ecol. 9, 249–249. https://doi.org/10.1046/j.1526-100x.2001.009002249.x (1999).
    Article  Google Scholar 

    54.
    Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M. & Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 22, 711–728. https://doi.org/10.1127/0941-2948/2013/0507 (2013).
    Article  Google Scholar 

    55.
    Santana, P. H. L., Frazão, L. A., Santos, L. D. F., Fernandes, L. A. & Sampaio, R. A. Soil attributes and production of Eucalyptus in monoculture and silvopastoral systems in the north of Minas Gerais, Brazil. J. Agric. Sci. Technol. 6, 361–370. https://doi.org/10.17265/2161-6264/2016.06.001 (2016).
    Article  Google Scholar 

    56.
    Kopittke, P. M. & Menzies, N. W. A review of the use of the basic cation saturation ratio and the “ideal” soil. Soil Sci. Soc. Am. J. 71, 259–265. https://doi.org/10.2136/sssaj2006.0186 (2007).
    ADS  CAS  Article  Google Scholar 

    57.
    Sastawa, B. M., Lawan, M. & Maina, Y. T. Management of insect pests of soybean: effects of sowing date and intercropping on damage and grain yield in the Nigerian Sudan savanna. Crop Prot. 23, 155–161. https://doi.org/10.1016/j.cropro.2003.07.007 (2004).
    Article  Google Scholar 

    58.
    Mizumachi, E., Mori, A., Osawa, N., Akiyama, R. & Tokuchi, N. Shoot development and extension of Quercus serrata saplings in response to insect damage and nutrient conditions. Ann. Bot. 98, 219–226. https://doi.org/10.1093/aob/mcl091 (2006).
    Article  PubMed  PubMed Central  Google Scholar 

    59.
    Krebs, C. J. Bray-Curtis cluster analysis. 1. Biodiversity Pro Versão 2. https://biodiversity-pro.software.informer.com (1989).

    60.
    Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432. https://doi.org/10.2307/1934352 (1973).
    Article  Google Scholar 

    61.
    Jost, L. Entropy and diversity. Oikos 113, 363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.x (2006).
    Article  Google Scholar 

    62.
    Begon, M., Townsend, C. R., Harper, J. L. Ecologia: de indivíduos a ecossistemas. (Artmed, 2007).

    63.
    Lazo, J. A., Valdés, N. V., Sampaio, R. A. & Leite, G. L. D. Diversidad zoológica asociada a um silvopastoreo leucaena-guineacon diferentes edades de establecimiento. Pesq. Agropec. Bras. 42, 1667–1674. https://doi.org/10.1590/S0100-204X2007001200001 (2007).
    Article  Google Scholar 

    64.
    Wilcoxon, F. Individual comparisons by ranking methods. Biometrics Bull. 1, 80–83. https://doi.org/10.2307/3001968 (1945).
    Article  Google Scholar 

    65.
    SAEG—Sistema para Análises Estatísticas. https://arquivo.ufv.br/saeg/. (accessed on 30 june 2018) (2007).

    66.
    Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D. & Borsboom, D. qgraph: Network visualizations of relationships in psychometric data. J. Stat. Softw. 48, 1–18. https://doi.org/10.18637/jss.v048.i04 (2012).
    Article  Google Scholar 

    67.
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2014). More

  • in

    Genome-wide diversity and global migration patterns in dromedaries follow ancient caravan routes

    We performed double-digest restriction site associated DNA (ddRAD) sequencing on 122 dromedary DNA samples from 18 countries (Supplementary Data 1) representative of the species distribution range. We included one Bactrian camel to test for potential interspecific hybridization, as this continues to be a widespread practice in Central Asia that might have started as early as pre-Roman times11. Higher numbers of reads mapping to the Bactrian camel were detected in three individuals from Iran and in six from Kazakhstan (see “Methods”), and we decided to remove these samples from downstream analysis due to potential introgression from Bactrian camel (Supplementary Data 2). After stringent filtering for genotype and individual missingness, minor allele frequency and relatedness, the final dataset consisted of 95 dromedaries and 22,721 SNPs present in at least 75% of the individuals.
    Moderate genome-wide diversity and low population structure
    With 22,721 SNPs, we estimated expected (HE = 0.27 ± 0.17; mean ± SD) and observed (HO = 0.25 ± 0.17) heterozygosities in the global dromedary population (npop = 17; nind = 95). Separating the samples according to their continental origins, both Asian (nind = 49, HE = 0.27 ± 0.17/HO = 0.25 ± 0.17) and African dromedaries (nind = 46, HE = 0.26 ± 0.17/HO = 0.25 ± 0.18) showed similar genomic diversity. The mean HE (t = −2.2641, df = 45,398, P = 0.02) and inbreeding coefficients (t = −2.5159, df = 43,024, P = 0.01) were higher in Asian than African dromedaries, but mean HO (t = −1.2791, df = 45,385, P = 0.2) was not different between continents, according to Welch′s t test. Complete diversity and inbreeding values are given in Supplementary Table 1. In comparison with other domestic species, i.e., sheep (HE = 0.22–0.32)26 or cattle (HE = 0.24–0.30)27, we consider the genome-wide diversity in dromedaries as moderate at the best. Several bottlenecks during the last glacial period (see demographic analysis below, and Fitak et al.24) and during domestication left modern dromedaries with a minimum of only six maternal lineages1 and limited genome-wide diversity. This will have implications on future intensification of breeding and genomic selection in dromedaries from regions with increasing desertification.
    In general, the genome-wide differentiation within the global dromedary population was very low. Analysis of Molecular Variance (AMOVA) revealed that most of the variation, ~94.3%, is explained within individuals (Supplementary Table 2). Allelic richness (AR) was similar between countries (AR = 0.25–0.27) with exception of Kenya which was lower (AR = 0.21). The pairwise fixation index between African and Asian individuals was very low (FST = 0.006; P  More

  • in

    Mid and long-term ecological impacts of ski run construction on alpine ecosystems

    1.
    Rixen, C. et al. Winter tourism and climate change in the Alps: an assessment of resource consumption snow reliability and future snowmaking potential. Mt. Res. Dev. 31, 229–236 (2011).
    Google Scholar 
    2.
    Vanat, L. International Report on Snow & Mountain Tourism: Overview of the Key Industry Figures for Ski Resorts, 10th edition (2018).

    3.
    Negro, M. et al. Differential responses of ground dwelling arthropods to ski-piste restoration by hydroseeding. Biodivers. Conserv. 22, 2607–2634 (2013).
    Google Scholar 

    4.
    Körner, C. The Alpine life zone under global change. Gayana Bot. https://doi.org/10.4067/S0717-66432000000100001 (2000).
    Article  Google Scholar 

    5.
    Garcı́a-Llorente, M. et al. What can conservation strategies learn from the ecosystem services approach? Insights from ecosystem assessments in two Spanish protected areas. Biodivers. Conserv. 27, 1575–1597 (2016).

    6.
    Egan, P. A. & Price, M. F. Mountain Ecosystem Services and Climate Change. A Global Overview of Potential Threats and Strategies for Adaptation (UNESCO, Paris, 2017).
    Google Scholar 

    7.
    MeijerzuSchlochtern, M. P., Rixen, C., Wipf, S. & Cornelissen, J. H. C. Management, winter climate and plant–soil feedbacks on ski slopes: a synthesis. Ecol. Res. 29, 583–592 (2014).
    CAS  Google Scholar 

    8.
    Gros, R., Monrozier, L. J., Bartoli, F., Chotte, J. L. & Faivre, P. Relationships between soil physico-chemical properties and microbial activity along a restoration chronosequence of alpine grasslands following ski run construction. Appl. Soil Ecol. 27, 7–22 (2004).
    Google Scholar 

    9.
    Barni, E., Freppaz, M. & Siniscalco, C. Interactions between Vegetation, Roots, and Soil Stability in Restored High-altitude Ski Runs in the Alps. Arct. Antarct. Alp. Res. 39, 25–33 (2007).
    Google Scholar 

    10.
    Pohl, M., Alig, D., Körner, C. & Rixen, C. Higher plant diversity enhances soil stability in disturbed alpine ecosystems. Plant Soil 324, 91–102 (2009).
    CAS  Google Scholar 

    11.
    Burt, J. W. & Rice, K. J. Not all ski slopes are created equal: Disturbance intensity affects ecosystem properties. Ecol. Appl. 19, 2242–2253 (2009).
    PubMed  Google Scholar 

    12.
    Van Andel, J., Bakker, J. P., Bakker, J. P. & Grootjans, A. P. Mechanism of vegetation succession: a review of concepts and perspectives. Acta Bot. Neerlandica 42, 413–433 (1993).
    Google Scholar 

    13.
    Styczen, M. E. & Morgan, R. P. C. Engineering properties of vegetation 5–58 (E and FN Spon, New York, 1995).
    Google Scholar 

    14.
    Gray, D. H. & Sotir, R. B. Biotechnical and Soil Bioengineering Slope Stabilization: A Practical Guide for Erosion Control (Wiley, New York, 1996).
    Google Scholar 

    15.
    Gray, D. H. & Leiser, A. T. Biotechnical Slope Protection and Erosion Control (Van Nostrand Reinhold Company, London, 1982).
    Google Scholar 

    16.
    Argenti, G. & Ferrari, L. Plant cover evolution and naturalisation of revegetated ski runs in an Apennine ski resort (Italy). Forest 2, 178–182 (2009).
    Google Scholar 

    17.
    Pintaldi, E. et al. Hummocks affect soil properties and soil-vegetation relationships in a subalpine grassland (North-Western Italian Alps). CATENA 145, 214–226 (2016).
    Google Scholar 

    18.
    Stokes, A. et al. Ecological mitigation of hillslope instability: ten key issues facing researchers and practitioners. Plant Soil 377, 1 (2014).
    CAS  Google Scholar 

    19.
    Burt, J. W. & Clary, J. J. Initial disturbance intensity affects recovery rates and successional divergence on abandoned ski slopes. J. Appl. Ecol. 53, 607–615 (2016).
    Google Scholar 

    20.
    Krautzer, B. et al. The influence of recultivation technique and seed mixture on erosion stability after restoration in mountain environment. Nat. Haz. 56, 547–557 (2011).
    Google Scholar 

    21.
    Pintaldi, E. et al. Sustainable soil management in ski areas: threats and challenges. Sustainability 9, 2150 (2017).
    Google Scholar 

    22.
    Pohl, M., Stroude, R., Buttler, A. & Rixen, C. Functional traits and root morphology of alpine plants. Ann. Bot. 108, 537–545 (2011).
    PubMed  PubMed Central  Google Scholar 

    23.
    Körner, C. Alpine Plant Life Functional Plant Ecology of High Mountain Ecosystems (Springer-Verlag, Berlin, 2003).
    Google Scholar 

    24.
    Mercalli, L. Atlante climatico della Valle d’Aosta (Società Meteorologica Italiana, Rome, 2003).
    Google Scholar 

    25.
    FAO-ISRIC. World Reference Base for Soil Resources 2014. World Soil Resources Reports No. 103 (FAO, 2014).

    26.
    Shannon, C. E. & Wiener, W. The Mathematical Theory of Communication (University Illinois Press, Champaign, 1963).
    Google Scholar 

    27.
    Van Andel, J. & Aronson, J. Restoration Ecology. The New Frontier 2nd edn. (Wiley-Blackwell, New York, 2012).
    Google Scholar 

    28.
    Landolt, E. et al. Flora Indicativa: Okologische Zeigerwerte und Biologische Kennzeichen zur Flora der Schweiz und der Alpen (Haupt, Bern, 2010).
    Google Scholar 

    29.
    Bovio, M. Lista Rossa e Lista Nera della flora vascolare della Valle d’Aosta (Italia, Alpi Nord-occidentali). Aggiornamento anno 2016. Rev. Valdôtaine Hist. Nat. 70, 57–74 (2016).
    Google Scholar 

    30.
    Rossi, G. et al. Lista Rossa della Flora Italiana. 1. Policy Species e Altre Specie Minacciate (Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Rome, 2013).
    Google Scholar 

    31.
    Aeschimann, P., Lauber, K., Moser, D. M. & Theurillat, J. P. Flora Alpina (Haupt Verlag, Bern, 2004).
    Google Scholar 

    32.
    Van Reeuwijk, L. P. Procedures for Soil Analysis. Technical Paper n. 9 (International Soil Reference and Information Centre, Wageningen, 2002).

    33.
    Zanini, E., Bonifacio, E., Alberston, J. D. & Nielsen, D. R. Topsoil aggregate breakdown under water-saturated conditions. Soil. Sci. 163, 288–298 (1998).
    ADS  CAS  Google Scholar 

    34.
    Kruskal, J. B. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29, 115–129 (1964).
    MATH  MathSciNet  Google Scholar 

    35.
    Oksanen, J. et al. Vegan: community ecology package. R Package Version 2.0-0. ttp://CRAN.Rproject.org/package=vegan (2011).

    36.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 

    37.
    Wipf, S., Rixen, C., Fischer, M., Schmid, B. & Stoeckli, V. Effects of ski piste preparation on alpine vegetation. J. Appl. Ecol. 42, 306–316 (2005).
    Google Scholar 

    38.
    Roux-Fouillet, P., Wipf, S. & Rixen, C. Long-term impacts of ski piste management on alpine vegetation and soils. J. Appl. Ecol. 48, 906–915 (2011).
    Google Scholar 

    39.
    Delgado, R. et al. Impact of ski pistes on soil properties, a case study from a mountainous area in the Mediterranean region. Soil Use Manag. 23, 269–277 (2007).
    Google Scholar 

    40.
    Argenti, G., Merati, M., Staglianò, N. & Talamucci, P. Establishment and evolution of technical ski slope covers in an alpine environment. Riv. Agron. 34, 186–190 (2000).
    Google Scholar 

    41.
    Krautzer, B. et al. Site-specific high zone restoration in the Alpine region: the current technological development (HBLFA Raumberg-Gumpenstein, Irdning, 2006).
    Google Scholar 

    42.
    Burt, J. W. Developing restoration planting mixes for active ski slopes: a multi-site reference community approach. J. Environ. Manage. 49, 636–648 (2012).
    ADS  Google Scholar 

    43.
    Klug, B. Seed mixtures, seeding methods, and soil seed pools: major factors in erosion control on graded ski-runs. WSEAS Trans. Environ. Dev. 4, 454–459 (2006).
    Google Scholar 

    44.
    Barrel, A. et al. Native Seeds for the Ecological Restoration in Mountain Zone: Production and Use of Preservation Mixtures (Institut Agricole Régional, Aosta, 2015).
    Google Scholar 

    45.
    Hagen, D., Hansen, T.-I., Graae, B. J. & Rydgren, K. To seed or not to seed in alpine restoration: introduced grass species outcompete rather than facilitate native species. Ecol. Eng. 64, 255–261 (2014).
    Google Scholar 

    46.
    Gretarsdottir, J., Aradottir, A. L., Vandvik, V., Heegaard, E. & Birks, H. J. B. Long-term effects of reclamation treatments on plant succession in Iceland. Restor. Ecol. 12, 268–278 (2004).
    Google Scholar 

    47.
    Florineth, F. Pflanzen statt Beton (Handbuch zur Ingenieurbiologie und Vegetationstechnik, Berlin-Hannover, 2004).
    Google Scholar 

    48.
    Lichtenegger, E. Root distribution in some alpine plants. Acta Phytogeogr Suec. 81, 76–82 (1996).
    Google Scholar 

    49.
    Nagelmüller, S., Hiltbrunner, E. & Körner, C. Critically low soil temperatures for root growth and root morphology in three alpine plant species. Alp. Bot. 126, 11–21 (2016).
    Google Scholar 

    50.
    Khan, M. A., Gemenet, D. C. & Villordon, A. Root system architecture and abiotic stress tolerance: current knowledge in root and tuber crops. Front. Plant Sci. 7, 1584 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Tracy, S. R. et al. Quantifying the impact of soil compaction on root system architecture in tomato (Solanum lycopersicum) by X-ray micro-computed tomography. Ann. Bot. 110, 511–519 (2012).
    PubMed  PubMed Central  Google Scholar 

    52.
    Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).
    CAS  PubMed  Google Scholar 

    53.
    Bardgett, R. D., Mommer, L. & De Vries, F. T. Going underground: root traits as drivers of ecosystem processes. Trends Ecol. Evol. 29, 692–699 (2014).
    PubMed  Google Scholar 

    54.
    Hudek, C., Stanchi, S., D’Amico, M. & Freppaz, M. Quantifying the contribution of the root system of alpine vegetation in the soil aggregate stability of moraine. Int. Soil Water Conserv. Res. 5, 36–42 (2017).
    Google Scholar 

    55.
    Gould, I. J., Quinton, J. N., Weigelt, A., De Deyn, G. B. & Bardgett, R. D. Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecol. Lett. 19, 1140–1149 (2016).
    PubMed  PubMed Central  Google Scholar 

    56.
    Solly, E. F. et al. Unravelling the age of fine roots of temperate and boreal forests. Nat. Commun. 9, 3006 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    57.
    Rixen, C., Freppaz, M., Stöckli, V., Huovinen, C. & Wipf, S. Altered snow density and chemistry change soil nitrogen mineralization and plant growth. Arct. Antarct. Alp. Res. 40, 568–575 (2008).
    Google Scholar 

    58.
    Miransari, M. Plant growth promoting Rhizobacteria. J. Plant Nutr. 37, 2227–2235 (2014).
    CAS  Google Scholar 

    59.
    Stokes, A., Atger, C., Bengough, A. G., Fourcaud, T. & Sidle, R. C. Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant Soil 324, 1–30 (2009).
    CAS  Google Scholar 

    60.
    Freppaz, M. et al. Soil Properties on Ski-Runs. In Impacts of Skiing and Related Winter Recreational Activities on Mountain Environments p (eds Rixen, C. & Rolando, A.) 45–64 (Bentham Science Publisher, Sharjah, 2013).
    Google Scholar 

    61.
    Locher Oberholzer, N. et al. Linee Guida per Il Rinverdimento ad Alta Quota; AGHB Bollettino n2 (Luglio, Verein für Ingenieurbiologie, 2008) ((In Italian)).
    Google Scholar 

    62.
    Graf, F. & Brunner, I. Natural and synthesized ectomycorrhizas of the alpine dwarf willow Salix herbacea. Mycorrhiza 6, 227–235 (1996).
    Google Scholar 

    63.
    Graf, F. Ectomycorrhiza in alpine eco-engineering. Rev. Valdôtaine Hist. Nat. 52, 314–323 (1997).
    MathSciNet  Google Scholar 

    64.
    Graf, F. & Gerber, W. Der Einfluss von Mykorrhizapilzen auf die Bodenstruktur und deren Bedeutung für den Lebendverbau Schweiz. Z. Forstwes 11, 863–886 (1997).
    Google Scholar 

    65.
    Frei, M. et al. Quantification of the influence of vegetation on soil stability. In Proceeding of the International Conference on Slope Engineering (Department of Civil Engineering, 2003).

    66.
    Krautzer, B., Graiss, W. & Klug, B. Ecological Restoration of Ski-Runs. The Impacts of Skiing and Related Winter Recreational Activities on Mountain Environments 184–209 (Bentham e books, Sharjah, 2013).
    Google Scholar 

    67.
    Peratoner, G. Organic Seed Propagation of Alpine Species and Their Use in Ecological Restoration of Ski-Runs in Mountain Regions. Diss. Univ. Kassel. Kassel University Press, 238 (2003). More

  • in

    Increased temperature has no consequence for behavioral manipulation despite effects on both partners in the interaction between a crustacean host and a manipulative parasite

    1.
    Deguines, N., Brashares, J. S. & Prugh, L. R. Precipitation alters interactions in a grassland ecological community. J. Anim. Ecol. 86, 262–272 (2017).
    PubMed  Google Scholar 
    2.
    Bernabé, T. N. et al. Warming weakens facilitative interactions between decomposers and detritivores, and modifies freshwater ecosystem functioning. Glob. Change Biol. 24, 3170–3186 (2018).
    ADS  Google Scholar 

    3.
    Boulangeat, I., Svenning, J. C., Daufresne, T., Leblond, M. & Gravel, D. The transient response of ecosystems to climate change is amplified by trophic interactions. Oikos 127, 1822–1833 (2018).
    Google Scholar 

    4.
    Salt, J. L., Bulit, C., Zhang, W., Qi, H. & Montagnes, D. J. S. Spatial extinction or persistence: Landscape–temperature interactions perturb predator–prey dynamics. Ecography (Cop.) 40, 1177–1186 (2017).
    Google Scholar 

    5.
    Zhang, L., Takahashi, D., Hartvig, M. & Andersen, K. H. Food-web dynamics under climate change. Proc. R. Soc. B 284, 20171772 (2017).
    PubMed  Google Scholar 

    6.
    Campanati, C., Dupont, S., Williams, G. A. & Thiyagarajan, V. Differential sensitivity of larvae to ocean acidification in two interacting mollusc species. Mar. Environ. Res. 141, 66–74 (2018).
    CAS  PubMed  Google Scholar 

    7.
    Woehler, E., Patterson, T. A., Bravington, M. V., Hobday, A. J. & Chambers, L. E. Climate and competition in abundance trends in native and invasive Tasmanian gulls. Mar. Ecol. Prog. Ser. 511, 249–263 (2014).
    ADS  Google Scholar 

    8.
    Frizzi, F., Bartalesi, V. & Santini, G. Combined effects of temperature and interspecific competition on the mortality of the invasive garden ant, Lasius neglectus: A laboratory study. J. Therm. Biol. 65, 76–81 (2017).
    PubMed  Google Scholar 

    9.
    Grainger, T. N., Rego, A. I. & Gilbert, B. Temperature-dependent species interactions shape priority effects and the persistence of unequal competitors. Am. Nat. 191, 197–209 (2018).
    PubMed  Google Scholar 

    10.
    Friesen, O. C., Poulin, R. & Lagrue, C. Parasite-mediated microhabitat segregation between congeneric hosts. Biol. Lett. 14, 20170671 (2018).
    PubMed  PubMed Central  Google Scholar 

    11.
    Srinivasan, U., Elsen, P. R., Tingley, M. W. & Wilcove, D. S. Temperature and competition interact to structure Himalayan bird communities. Proc. R. Soc. B Biol. Sci. 285, 20172593 (2018).
    Google Scholar 

    12.
    Franke, F., Armitage, S. A. O., Kutzer, M. A. M., Kurtz, J. & Scharsack, J. P. Environmental temperature variation influences fitness trade-offs and tolerance in a fish–tapeworm association. Parasit. Vectors 10, 252 (2017).
    PubMed  PubMed Central  Google Scholar 

    13.
    Castano-Vazquez, F., Martinez, J., Merino, S. & Lozano, M. Experimental manipulation of temperature reduce ectoparasites in nests of blue tits Cyanistes caeruleus. J. Avian Biol. 49, UNSP e01695 (2018).
    Google Scholar 

    14.
    Paull, S. H. & Johnson, P. T. J. How temperature, pond-drying, and nutrients influence parasite infection and pathology. EcoHealth 15, 396–408 (2018).
    PubMed  PubMed Central  Google Scholar 

    15.
    Larsen, M. H. & Mouritsen, K. N. Temperature–parasitism synergy alters intertidal soft-bottom community structure. J. Exp. Mar. Bio. Ecol. 460, 109–119 (2014).
    Google Scholar 

    16.
    Marcogliese, D. J. The distribution and abundance of parasites in aquatic ecosystems in a changing climate: More than just temperature. Integr. Comp. Biol. 56, 611–619 (2016).
    PubMed  Google Scholar 

    17.
    Mouritsen, K. N., Sørensen, M. M., Poulin, R. & Fredensborg, B. L. Coastal ecosystems on a tipping point: Global warming and parasitism combine to alter community structure and function. Glob. Change Biol. 24, 4340–4356 (2018).
    ADS  Google Scholar 

    18.
    Hatcher, M. J., Dick, J. T. A. & Dunn, A. M. Diverse effects of parasites in ecosystems: Linking interdependent processes. Front. Ecol. Environ. 10, 186–194 (2012).
    Google Scholar 

    19.
    Repetto, M. & Griffen, B. D. Physiological consequences of parasite infection in the burrowing mud shrimp, Upogebia pugettensis, a widespread ecosystem engineer. Mar. Freshw. Res. 63, 60–67 (2012).
    Google Scholar 

    20.
    Boze, B. G. V. & Moore, J. The effect of a nematode parasite on feeding and dung-burying behavior of an ecosystem engineer. Integr. Comp. Biol. 54, 177–183 (2014).
    CAS  PubMed  Google Scholar 

    21.
    Laverty, C. et al. Temperature rise and parasitic infection interact to increase the impact of an invasive species. Int. J. Parasitol. 47, 291–296 (2017).
    PubMed  Google Scholar 

    22.
    Labaude, S., Cézilly, F. & Rigaud, T. Temperature-related intraspecific variability in the behavioral manipulation of acanthocephalan parasites on their gammarid hosts. Biol. Bull. 232, 82–90 (2017).

    23.
    Labaude, S., Rigaud, T. & Cézilly, F. Additive effects of temperature and infection with an acanthocephalan parasite on the shredding activity of Gammarus fossarum (Crustacea: Amphipoda): The importance of aggregative behavior. Glob. Chang. Biol. 23, 1415–1424 (2017).

    24.
    MacNeil, C., Dick, J. T. A. & Elwood, R. W. The trophic ecology of freshwater Gammarus spp. (crustacea:amphipoda): Problems and perspectives concerning the functional feeding group concept. Biol. Rev. 72, 349–364 (1997).
    Google Scholar 

    25.
    Piscart, C., Genoel, R., Doledec, S., Chauvet, E. & Marmonier, P. Effects of intense agricultural practices on heterotrophic processes in streams. Environ. Pollut. 157, 1011–1018 (2009).
    CAS  PubMed  Google Scholar 

    26.
    Degani, G., Bromley, H. J., Ortal, R., Netzer, Y. & Harari, N. Diets of rainbow trout (Salmo gairdneri) in a thermally constant stream. Vie Milieu 37, 99–103 (1987).
    Google Scholar 

    27.
    Friberg, N. et al. The effect of brown trout (Salmo trutta L.) on stream invertebrate drift, with special reference to Gammarus pulex L. Hydrobiologia 294, 105–110 (1994).
    Google Scholar 

    28.
    Kelly, D. W., Dick, J. T. A. & Montgomery, W. I. The functional role of Gammarus (Crustacea, Amphipoda): Shredders, predators, or both?. Hydrobiologia 485, 199–203 (2002).
    Google Scholar 

    29.
    Piscart, C., Bergerot, B., Laffaille, P. & Marmonier, P. Are amphipod invaders a threat to regional biodiversity?. Biol. Invasions 12, 853–863 (2010).
    Google Scholar 

    30.
    Constable, D. & Birkby, N. J. The impact of the invasive amphipod Dikerogammarus haemobaphes on leaf litter processing in UK rivers. Aquat. Ecol. 50, 273–281 (2016).
    Google Scholar 

    31.
    Foucreau, N., Puijalon, S., Hervant, F. & Piscart, C. Effect of leaf litter characteristics on leaf conditioning and on consumption by Gammarus pulex. Freshw. Biol. 58, 1672–1681 (2013).
    Google Scholar 

    32.
    Maltby, L., Clayton, S. A., Wood, R. M. & McLoughlin, N. Evaluation of the Gammarus pulex in situ feeding assay as a biomonitor of water quality: Robustness, responsiveness, and relevance. Environ. Toxicol. Chem. 21, 361–368 (2002).
    CAS  PubMed  Google Scholar 

    33.
    Benesh, D. P., Lafferty, K. D. & Kuris, A. A life cycle database for parasitic acanthocephalans, cestodes, and nematodes. Ecology 98, 882–882 (2017).
    PubMed  Google Scholar 

    34.
    Crompton, D. W. T. & Nickol, B. B. Biology of the Acanthocephala (Cambridge University Press, Cambridge, 1985).
    Google Scholar 

    35.
    Bakker, T. C. M., Frommen, J. G. & Thünken, T. Adaptive parasitic manipulation as exemplified by acanthocephalans. Ethology https://doi.org/10.1111/eth.12660 (2017).
    Article  Google Scholar 

    36.
    Bethel, W. M. & Holmes, J. C. Altered evasive behavior and responses to light in amphipods harboring acanthocephalan cystacanths. J. Parasitol. 59, 945–956 (1973).
    Google Scholar 

    37.
    Bauer, A., Trouvé, S., Grégoire, A., Bollache, L. & Cézilly, F. Differential influence of Pomphorhynchus laevis (Acanthocephala) on the behaviour of native and invader gammarid species. Int. J. Parasitol. 30, 1453–1457 (2000).
    CAS  PubMed  Google Scholar 

    38.
    Kaldonski, N., Perrot-Minnot, M.-J. & Cézilly, F. Differential influence of two acanthocephalan parasites on the antipredator behaviour of their common intermediate host. Anim. Behav. 74, 1311–1317 (2007).
    Google Scholar 

    39.
    McCahon, C. P., Brown, A. F. & Pascoe, D. The effect of the acanthocephalan Pomphorhynchus laevis (Müller 1776) on the acute toxicity of cadmium to its intermediate host, the amphipod Gammarus pulex (L.). Arch. Environ. Contam. Toxicol. 17, 239–243 (1988).
    CAS  Google Scholar 

    40.
    Médoc, V., Piscart, C., Maazouzi, C., Simon, L. & Beisel, J.-N. Parasite-induced changes in the diet of a freshwater amphipod: Field and laboratory evidence. Parasitology 138, 537–546 (2011).
    PubMed  Google Scholar 

    41.
    Cornet, S., Franceschi, N., Bauer, A., Rigaud, T. & Moret, Y. Immune depression induced by acanthocephalan parasites in their intermediate crustacean host: Consequences for the risk of super-infection and links with host behavioural manipulation. Int. J. Parasitol. 39, 221–229 (2009).
    CAS  PubMed  Google Scholar 

    42.
    Plaistow, S. J., Troussard, J.-P. & Cézilly, F. The effect of the acanthocephalan parasite Pomphorhynchus laevis on the lipid and glycogen content of its intermediate host Gammarus pulex. Int. J. Parasitol. 31, 346–351 (2001).
    CAS  PubMed  Google Scholar 

    43.
    Bollache, L., Rigaud, T. & Cézilly, F. Effects of two acanthocephalan parasites on the fecundity and pairing status of female Gammarus pulex (Crustacea: Amphipoda). J. Invertebr. Pathol. 79, 102–110 (2002).
    CAS  PubMed  Google Scholar 

    44.
    Dezfuli, B. S., Lui, A., Giovinazzo, G. & Giari, L. Effect of Acanthocephala infection on the reproductive potential of crustacean intermediate hosts. J. Invertebr. Pathol. 98, 116–119 (2008).
    CAS  PubMed  Google Scholar 

    45.
    Labaude, S., Cézilly, F., Tercier, X. & Rigaud, T. Influence of host nutritional condition on post-infection traits in the association between the manipulative acanthocephalan Pomphorhynchus laevis and the amphipod Gammarus pulex. Parasit. Vectors 8, 403 (2015).
    PubMed  PubMed Central  Google Scholar 

    46.
    Rumpus, A. E. & Kennedy, C. R. The effect of the acanthocephalan Pomphorhynchus laevis upon the respiration of its intermediate host, Gammarus pulex. Parasitology 68, 271–284 (1974).
    CAS  PubMed  Google Scholar 

    47.
    Perrot-Minnot, M.-J., Kaldonski, N. & Cézilly, F. Increased susceptibility to predation and altered anti-predator behaviour in an acanthocephalan-infected amphipod. Int. J. Parasitol. 37, 645–651 (2007).
    PubMed  Google Scholar 

    48.
    Hindsbo, O. Effects of Polymorphus (Acanthocephala) on colour and behaviour of Gammarus lacustris. Nature 238, 333 (1972).
    ADS  Google Scholar 

    49.
    Dianne, L. et al. Protection first then facilitation: A manipulative parasite modulates the vulnerability to predation of its intermediate host according to its own developmental stage. Evolution 65, 2692–2698 (2011).
    PubMed  Google Scholar 

    50.
    Lagrue, C., Kaldonski, N., Perrot-Minnot, M.-J., Motreuil, S. & Bollache, L. Modification of hosts’ behavior by a parasite: Field evidence for adaptive manipulation. Ecology 88, 2839–2847 (2007).
    PubMed  Google Scholar 

    51.
    Kaldonski, N., Perrot-Minnot, M.-J., Motreuil, S. & Cézilly, F. Infection with acanthocephalans increases the vulnerability of Gammarus pulex (Crustacea Amphipoda) to non-host invertebrate predators. Parasitology 135, 627–632 (2008).
    CAS  PubMed  Google Scholar 

    52.
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. B. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).
    ADS  CAS  PubMed  Google Scholar 

    53.
    Roux, C. & Roux, A. L. Température et métabolisme respiratoire d’espèces sympatriques de gammares du groupe pulex (Crustacés, Amphipodes). Ann. Limnol. 3, 3–16 (1967).
    Google Scholar 

    54.
    Issartel, J., Hervant, F., Voituron, Y., Renault, D. & Vernon, P. Behavioural, ventilatory and respiratory responses of epigean and hypogean crustaceans to different temperatures. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 141, 1–7 (2005).
    PubMed  Google Scholar 

    55.
    Foucreau, N., Cottin, D., Piscart, C. & Hervant, F. Physiological and metabolic responses to rising temperature in Gammarus pulex (Crustacea) populations living under continental or Mediterranean climates. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 168, 69–75 (2014).
    CAS  PubMed  Google Scholar 

    56.
    Moenickes, S. et al. From population-level effects to individual response: Modelling temperature dependence in Gammarus pulex. J. Exp. Biol. 214, 3678–3687 (2011).
    PubMed  Google Scholar 

    57.
    Barber, I., Berkhout, B. W. & Ismail, Z. Thermal change and the dynamics of multi-host parasite life cycles in aquatic ecosystems. Integr. Comp. Biol. 56, 561–572 (2016).
    PubMed  PubMed Central  Google Scholar 

    58.
    Olson, R. E. & Pratt, I. The life cycle and larval development of Echinorhynchus lageniformis Ekbaum, 1938 (Acanthocephala: Echinorhynchidae). J. Parasitol. 57, 143–149 (1971).
    Google Scholar 

    59.
    Tokeson, J. P. E. & Holmes, J. C. The effects of temperature and oxygen on the development of Polymorphus marilis (Acanthocephala) in Gammarus lacustris (Amphipoda). J. Parasitol. 68, 112–119 (1982).
    Google Scholar 

    60.
    Sheath, D. J., Andreou, D. & Britton, J. R. Interactions of warming and exposure affect susceptibility to parasite infection in a temperate fish species. Parasitology 143, 1340–1346 (2016).
    PubMed  Google Scholar 

    61.
    VanCleave, H. J. Seasonal distribution of some acanthocephala from fresh-water hosts. J. Parasitol. 2, 106–110 (1916).
    Google Scholar 

    62.
    Muzzall, P. M. & Rabalais, F. C. Studies on Acanthocephalus jacksoni Bullock, 1962 (Acanthocephala: Echinorhynchidae). I. Seasonal periodicity and new host records. Proc. Helminthol. Soc. Wash. 42, 31–34 (1975).
    Google Scholar 

    63.
    Brown, A. F. Seasonal dynamics of the acanthocephalan Pomphorhynchus laevis (Muller, 1776) in its intermediate and preferred definitive hosts. J. Fish Biol. 34, 183–194 (1989).
    Google Scholar 

    64.
    Rauque, C. A. & Semenas, L. Infection pattern of two sympatric acanthocephalan species in the amphipod Hyalella patagonica (Amphipoda: Hyalellidae) from Lake Mascardi (Patagonia, Argentina). Parasitol. Res. 100, 1271–1276 (2007).
    PubMed  Google Scholar 

    65.
    Wali, A. et al. Distribution of helminth parasites in intestines and their seasonal rate of infestation in three freshwater fishes of Kashmir. J. Parasitol. Res. https://doi.org/10.1155/2016/8901518 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    66.
    Guinnee, M. A. & Moore, J. The effect of parasitism on host fecundity is dependent on temperature in a cockroach-acanthocephalan system. J. Parasitol. 90, 673–677 (2004).
    PubMed  Google Scholar 

    67.
    Benesh, D. P., Hasu, T., Seppälä, O. & Valtonen, E. T. Seasonal changes in host phenotype manipulation by an acanthocephalan: Time to be transmitted?. Parasitology 136, 219–230 (2009).
    CAS  PubMed  Google Scholar 

    68.
    Perrot-Minnot, M.-J., Maddaleno, M., Balourdet, A. & Cézilly, F. Host manipulation revisited: No evidence for a causal link between altered photophobia and increased trophic transmission of amphipods infected with acanthocephalans. Funct. Ecol. 26, 1007–1014 (2012).
    Google Scholar 

    69.
    Benesh, D. P., Duclos, L. M. & Nickol, B. B. The behavioral response of amphipods harboring Corynosoma constrictum (Acanthocephala) to various components of light. J. Parasitol. 91, 731–736 (2005).
    PubMed  Google Scholar 

    70.
    Dianne, L., Bollache, L., Lagrue, C., Franceschi, N. & Rigaud, T. Larval size in acanthocephalan parasites: Influence of intraspecific competition and effects on intermediate host behavioural changes. Parasit. Vectors 5, 166 (2012).
    PubMed  PubMed Central  Google Scholar 

    71.
    Franceschi, N. et al. Co-variation between the intensity of behavioural manipulation and parasite development time in an acanthocephalan–amphipod system. J. Evol. Biol. 23, 2143–2150 (2010).
    CAS  PubMed  Google Scholar 

    72.
    Perrot-Minnot, M.-J., Sanchez-Thirion, K. & Cézilly, F. Multidimensionality in host manipulation mimicked by serotonin injection. Proc. R. Soc. B Biol. Sci. 281, 20141915 (2014).
    Google Scholar 

    73.
    Franceschi, N., Bauer, A., Bollache, L. & Rigaud, T. The effects of parasite age and intensity on variability in acanthocephalan-induced behavioural manipulation. Int. J. Parasitol. 38, 1161–1170 (2008).
    CAS  PubMed  Google Scholar 

    74.
    Franceschi, N. et al. Variation between populations and local adaptation in acanthocephalan-induced parasite manipulation. Evolution 64, 2417–2430 (2010).
    PubMed  Google Scholar 

    75.
    Cézilly, F., Grégoire, A. & Bertin, A. Conflict between co-occuring manipulative parasites; an experimental study of the joint influence of two acanthocephalan parasites on the behaviour of Gammarus pulex. Parasitology 120, 625–630 (2000).
    PubMed  Google Scholar 

    76.
    Bauer, A., Haine, E. R., Perrot-Minnot, M.-J. & Rigaud, T. The acanthocephalan parasite Polymorphus minutus alters the geotactic and clinging behaviours of two sympatric amphipod hosts: the native Gammarus pulex and the invasive Gammarus roeseli. J. Zool. 267, 39–43 (2005).
    Google Scholar 

    77.
    Xu, Y., Castel, T., Richard, Y., Cuccia, C. & Bois, B. Burgundy regional climate change and its potential impact on grapevines. Clim. Dyn. 39, 1613–1626 (2012).
    Google Scholar 

    78.
    Gunn, J. & Crumley, C. L. Global energy balance and regional hydrology: A Burgundian case study. Earth Surf. Process. Landforms 16, 579–592 (1991).
    ADS  Google Scholar 

    79.
    Rowell, D. P. A scenario of European climate change for the late twenty-first century: Seasonal means and interannual variability. Clim. Dyn. 25, 837–849 (2005).
    Google Scholar 

    80.
    Bollache, L., Gambade, G. & Cézilly, F. The influence of micro-habitat segregation on size assortative pairing in Gammarus pulex (L.) (Crustacea, Amphipoda). Arch. für Hydrobiol. 147, 547–558 (2000).
    Google Scholar 

    81.
    Dezfuli, B. S., Zanini, N., Reggiani, G. & Rossi, R. Echinogammarus stammen (Amphipoda) as an intermediate host for Pomphorhynchus laevis (Acanthocephala) parasite of fishes from the river Brenta. Bolletino di Zool. 58, 267–271 (1991).
    Google Scholar 

    82.
    Dianne, L., Perrot-Minnot, M.-J., Bauer, A., Guvenatam, A. & Rigaud, T. Parasite-induced alteration of plastic response to predation threat: increased refuge use but lower food intake in Gammarus pulex infected with the acanothocephalan Pomphorhynchus laevis. Int. J. Parasitol. 44, 211–216 (2014).
    PubMed  Google Scholar 

    83.
    Hammond, B. A. the proboscis mechanism of Acanthocephalus ranae. J. Exp. Biol. 45, 203–213 (1966).
    Google Scholar 

    84.
    Taraschewski, H. Host–parasite interactions in Acanthocephala: A morphological approach. Adv. Parasitol. 46, 1–179 (2000).
    CAS  PubMed  Google Scholar 

    85.
    Perrot-Minnot, M.-J., Gaillard, M., Dodet, R. & Cézilly, F. Interspecific differences in carotenoid content and sensitivity to UVB radiation in three acanthocephalan parasites exploiting a common intermediate host. Int. J. Parasitol. 41, 173–181 (2011).
    CAS  PubMed  Google Scholar 

    86.
    Kennedy, C. R., Broughton, P. F. & Hine, P. M. The status of brown and rainbow trout, Salmo trutta and S. gairdneri as hosts of the acanthocephalan, Pomphorhynchus laevis. J. Fish Biol. 13, 265–275 (1978).
    Google Scholar 

    87.
    Foucreau, N., Piscart, C., Puijalon, S. & Hervant, F. Effects of rising temperature on a functional process: Consumption and digestion of leaf litter by a freshwater shredder. Fundam. Appl. Limnol./Arch. für Hydrobiol. 187, 295–306 (2016).
    Google Scholar 

    88.
    Noguchi, K., Gel, Y. R., Brunner, E. & Konietschke, F. nparLD: An R software package for the nonparametric analysis of longitudinal data in factorial experiments. J. Stat. Softw. 50, 1–23 (2012).
    Google Scholar 

    89.
    Pellan, L., Médoc, V., Renault, D., Spataro, T. & Piscart, C. Feeding choice and predation pressure of two invasive gammarids, Gammarus tigrinus and Dikerogammarus villosus, under increasing temperature. Hydrobiologia 781, 43–54 (2015).
    Google Scholar 

    90.
    Maure, F. et al. The cost of a bodyguard. Biol. Lett. 7, 843–846 (2011).
    PubMed  PubMed Central  Google Scholar 

    91.
    Maazouzi, C., Piscart, C., Legier, F. & Hervant, F. Ecophysiological responses to temperature of the ‘killer shrimp’ Dikerogammarus villosus: Is the invader really stronger than the native Gammarus pulex?. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 159, 268–274 (2011).
    CAS  PubMed  Google Scholar 

    92.
    Maynard, B. J., Wellnitz, T. A., Zanini, N., Wright, W. G. & Dezfuli, B. S. Parasite-altered behavior in a crustacean intermediate host: Field and laboratory studies. J. Parasitol. 84, 1102–1106 (1998).
    CAS  PubMed  Google Scholar 

    93.
    Dezfuli, B. S., Maynard, B. J. & Wellnitz, T. A. Activity levels and predator detection by amphipods infected with an acanthocephalan parasite, Pomphorhynchus laevis. Folia Parasitol. (Praha) 50, 129–134 (2003).
    Google Scholar 

    94.
    Stone, C. F. & Moore, J. Parasite-induced alteration of odour responses in an amphipod-acanthocephalan system. Int. J. Parasitol. 44, 969–975 (2014).
    CAS  PubMed  Google Scholar 

    95.
    Jacquin, L., Mori, Q., Pause, M., Steffen, M. & Medoc, V. Non-specific manipulation of gammarid behaviour by P. minutus parasite enhances their predation by definitive bird hosts. PLoS ONE 9, e101684 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    96.
    Thünken, T. et al. Impact of olfactory non-host predator cues on aggregation behaviour and activity in Polymorphus minutus infected Gammarus pulex. Hydrobiologia 654, 137–145 (2010).
    Google Scholar 

    97.
    Dianne, L. et al. Intraspecific conflict over host manipulation between different larval stages of an acanthocephalan parasite. J. Evol. Biol. 23, 2648–2655 (2010).
    CAS  PubMed  Google Scholar 

    98.
    Thomas, F., Brown, S. P., Sukhdeo, M. V. K. & Renaud, F. Understanding parasite strategies: A state-dependent approach?. Trends Parasitol. 18, 387–390 (2002).
    PubMed  Google Scholar 

    99.
    Baldauf, S. A. et al. Infection with an acanthocephalan manipulates an amphipod’s reaction to a fish predator’s odours. Int. J. Parasitol. 37, 61–65 (2007).
    PubMed  Google Scholar 

    100.
    Durieux, R., Rigaud, T. & Médoc, V. Parasite-induced suppression of aggregation under predation risk in a freshwater amphipod. Sociality of infected amphipods. Behav. Process. 91, 207–213 (2012).
    Google Scholar 

    101.
    Lewis, S. E., Hodel, A., Sturdy, T., Todd, R. & Weigl, C. Impact of acanthocephalan parasites on aggregation behavior of amphipods (Gammarus pseudolimnaeus). Behav. Process. 91, 159–163 (2012).
    Google Scholar 

    102.
    Labaude, S., Rigaud, T. & Cézilly, F. Host manipulation in the face of environmental changes: Ecological consequences. Int. J. Parasitol. Parasit. Wildl. 4, 442–451 (2015).
    Google Scholar 

    103.
    Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. PNAS 108, 17905–17910 (2011).
    ADS  CAS  PubMed  Google Scholar  More

  • in

    Antarctica’s wilderness fails to capture continent’s biodiversity

    1.
    Mittermeier, R. A. et al. Wilderness and biodiversity conservation. Proc. Natl. Acad. Sci. USA 100, 10309–10313 (2003).
    ADS  CAS  PubMed  Google Scholar 
    2.
    Watson, J. E. M. et al. Protect the last of the wild. Nature 563, 27–30 (2018).
    ADS  CAS  PubMed  Google Scholar 

    3.
    Chown, S. L. et al. The changing form of Antarctic biodiversity. Nature 522, 431–438 (2015).
    ADS  CAS  PubMed  Google Scholar 

    4.
    Rintoul, S. R. et al. Choosing the future of Antarctica. Nature 558, 233–241 (2018).
    ADS  CAS  PubMed  Google Scholar 

    5.
    Pertierra, L. R., Hughes, K. A., Vega, G. C. & Olalla-Tárraga, M. Á. High resolution spatial mapping of human footprint across Antarctica and its implications for the strategic conservation of avifauna. PLoS One 12, e0168280 (2017).
    PubMed  PubMed Central  Google Scholar 

    6.
    Hughes, K. A., Fretwell, P., Rae, J., Holmes, K. & Fleming, A. Untouched Antarctica: mapping a finite and diminishing environmental resource. Antarct. Sci. 23, 537–548 (2011).
    ADS  Google Scholar 

    7.
    Secretariat of the Antarctic Treaty. Protocol on Environmental Protection to the Antarctic Treaty https://www.ats.aq/e/protocol.html (Antarctic Treaty Secretariat, 1991).

    8.
    Coetzee, B. W. T., Convey, P. & Chown, S. L. Expanding the protected area network in Antarctica is urgent and readily achievable. Conserv. Lett. 10, 670–680 (2017).
    Google Scholar 

    9.
    Keys, H. Towards Additional Protection of Antarctic Wilderness Areas https://documents.ats.aq/ATCM23/ip/ATCM23_ip080_e.doc (submitted by the Government of New Zealand, Doc. IP80, ATCM XXIII, 1999).

    10.
    Summerson, R. & Tin, T. Twenty years of protection of wilderness values in Antarctica. Polar J. 8, 265–288 (2018).
    Google Scholar 

    11.
    Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).
    ADS  PubMed  Google Scholar 

    12.
    Cole, D. N. & Landres, P. B. Threats to wilderness ecosystems: impacts and research needs. Ecol. Appl. 6, 168–184 (1996).
    Google Scholar 

    13.
    Watson, J. E. M. et al. Catastrophic declines in wilderness areas undermine global environment targets. Curr. Biol. 26, 2929–2934 (2016).
    CAS  PubMed  Google Scholar 

    14.
    Lim, E. et al. Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex. Nat. Geosci. 12, 896–901 (2019).
    ADS  CAS  Google Scholar 

    15.
    Summerson, R. & Riddle, M. J. in Antarctic Ecosystems: Models for Wider Ecological Understanding (eds Davison, W. et al.) 303–307 (New Zealand Natural Sciences, Christchurch, 2000).

    16.
    Bastmeijer, K. & van Hengel, S. The role of the protected area concept in protecting the world’s largest natural reserve: Antarctica. Utrecht Law Rev. 5, 61–79 (2009).
    Google Scholar 

    17.
    Chown, S. L. et al. Antarctica and the strategic plan for biodiversity. PLoS Biol. 15, e2001656 (2017).
    PubMed  PubMed Central  Google Scholar 

    18.
    Brooks, S. T., Jabour, J., van den Hoff, J. & Bergstrom, D. M. Our footprint on Antarctica competes with nature for rare ice-free land. Nat. Sustain. 2, 185–190 (2019).
    Google Scholar 

    19.
    Hughes, K. A. et al. Human-mediated dispersal of terrestrial species between Antarctic biogeographic regions: a preliminary risk assessment. J. Environ. Manage. 232, 73–89 (2019).
    PubMed  Google Scholar 

    20.
    Lee, J. R. et al. Climate change drives expansion of Antarctic ice-free habitat. Nature 547, 49–54 (2017).
    ADS  CAS  PubMed  Google Scholar 

    21.
    Hughes, K. A., Cowan, D. A. & Wilmotte, A. Protection of Antarctic microbial communities—‘out of sight, out of mind’. Front. Microbiol. 6, 151 (2015).
    PubMed  PubMed Central  Google Scholar 

    22.
    Hughes, K. A. et al. Pristine Antarctica: threats and protection. Antarct. Sci. 25, 1 (2013).
    ADS  Google Scholar 

    23.
    Shaw, J. D., Terauds, A., Riddle, M. J., Possingham, H. P. & Chown, S. L. Antarctica’s protected areas are inadequate, unrepresentative, and at risk. PLoS Biol. 12, e1001888 (2014).
    PubMed  PubMed Central  Google Scholar 

    24.
    Secretariat of the Antarctic Treaty. Antarctic Protected Areas Database https://www.ats.aq/devph/en/apa-database (2019).

    25.
    Committee for Environmental Protection (CEP). Understanding Concepts of Footprint and Wilderness Related to Protection of the Antarctic Environment https://documents.ats.aq/ATCM34/wp/ATCM34_wp035_e.doc (submitted by the Government of New Zealand, Doc. WP35, ATCM XXXIV, 2011).

    26.
    Committee for Environmental Protection (CEP). Annex V Inviolate and Reference Areas: Current Management Practices https://documents.ats.aq/ATCM35/ip/ATCM35_ip049_e.doc (submitted by ASOC, IP 49, ATCM XXXV, 2012).

    27.
    Committee for Environmental Protection (CEP). Report of the Twenty-second Meeting of the Committee for Environmental Protection https://documents.ats.aq/ATCM42/fr/ATCM42_fr001_e.pdf (CEP, 2019).

    28.
    Terauds, A. & Lee, J. R. Antarctic biogeography revisited: updating the Antarctic Conservation Biogeographic Regions. Divers. Distrib. 22, 836–840 (2016).
    Google Scholar 

    29.
    Council of Managers of National Antarctic Programs. Antarctic Facilities Operated by National Antarctic Programs in the Antarctic Treaty Area (South of 60° Latitude South) version 3.0.1 https://www.comnap.aq (COMNAP, accessed 8 August 2018).

    30.
    Tin, T., Liggett, D., Maher, P. T. & Lamers, M. (eds) Antarctic Futures: Human Engagement with the Antarctic Environment (Springer, Dordrecht, 2014).

    31.
    Dingwall, P. R. (ed.) Antarctica in the Environmental Era (Department of Conservation, Wellington, 1998).

    32.
    Summerson, R. in Protection of the Three Poles (ed. Huettmann, F.) 77–109 (Springer, Tokyo, 2012).

    33.
    Brooks, S. T., Tejedo, P. & O’Neill, T. A. Insights on the environmental impacts associated with visible disturbance of ice-free ground in Antarctica. Antarct. Sci. 31, 304–314 (2019).
    ADS  Google Scholar 

    34.
    O’Neill, T. A., Balks, M. R. & López-Martínez, J. Visual recovery of desert pavement surfaces following impacts from vehicle and foot traffic in the Ross Sea region of Antarctica. Antarct. Sci. 25, 514–530 (2013).
    ADS  Google Scholar 

    35.
    Convey, P. The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota. Biol. Rev. Camb. Philos. Soc. 71, 191–225 (1996).
    Google Scholar 

    36.
    Ayres, E. et al. Effects of human trampling on populations of soil fauna in the McMurdo Dry Valleys, Antarctica. Conserv. Biol. 22, 1544–1551 (2008).
    PubMed  Google Scholar 

    37.
    Convey, P., Hughes, K. A. & Tin, T. Continental governance and environmental management mechanisms under the Antarctic Treaty System: sufficient for the biodiversity challenges of this century? Biodiversity (Nepean) 13, 234–248 (2012).
    Google Scholar 

    38.
    Chown, S. L. & Brooks, C. M. The state and future of Antarctic environments in a global context. Annu. Rev. Environ. Res. 44, 1–30 (2019).
    Google Scholar 

    39.
    Brooks, C. M. et al. Science-based management in decline in the Southern Ocean. Science 354, 185–187 (2016).
    CAS  PubMed  Google Scholar 

    40.
    Secretariat of the Antarctic Treaty. Revised Guidelines for Environmental Impact Assessment in Antarctica https://documents.ats.aq/recatt/Att605_e.pdf (Antarctic Treaty Secretariat, Buenos Aires, 2016).

    41.
    Agence Nationale Recherche. East Antarctic International Ice Sheet Traverse (DS0101) https://anr.fr/Project-ANR-16-CE01-0011 (ANR, France, 2016).

    42.
    Harris, C. M. et al. Important Bird Areas in Antarctica 2015 (BirdLife International and Environmental Research & Assessment Ltd., Cambridge, 2015).

    43.
    Cowan, D. A. et al. Non-indigenous microorganisms in the Antarctic: assessing the risks. Trends Microbiol. 19, 540–548 (2011).
    CAS  PubMed  Google Scholar 

    44.
    Montross, S. et al. Debris-rich basal ice as a microbial habitat, Taylor Glacier, Antarctica. Geomicrobiol. J. 31, 76–81 (2014).
    Google Scholar 

    45.
    Archer, S. D. J. et al. Airborne microbial transport limitation to isolated Antarctic soil habitats. Nat. Microbiol. 4, 925–932 (2019).
    CAS  PubMed  Google Scholar 

    46.
    Fretwell, P. T., Convey, P., Fleming, A. H., Peat, H. J. & Hughes, K. A. Detecting and mapping vegetation distribution on the Antarctic Peninsula from remote sensing data. Polar Biol. 34, 273–281 (2011).
    Google Scholar 

    47.
    Schwaller, M. R., Lynch, H. J., Tarroux, A. & Prehn, B. A continent-wide search for Antarctic petrel breeding sites with satellite remote sensing. Remote Sens. Environ. 210, 444–451 (2018).
    ADS  Google Scholar 

    48.
    Duffy, G. A. et al. Barriers to globally invasive species are weakening across the Antarctic. Divers. Distrib. 23, 982–996 (2017).
    Google Scholar 

    49.
    Consultative Parties to the Antarctic Treaty. Santiago Declaration https://www.ats.aq/documents/ATCM39/ad/atcm39_ad003_e.pdf (Antarctic Treaty Secretariat, Buenos Aires, 2016).
    Google Scholar 

    50.
    Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R News 5, 9–13 (2005).
    Google Scholar 

    51.
    R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2017).

    52.
    Environmental Systems Research Institute (ESRI). ArcGIS Desktop, release 10.6 (Environmental Systems Research Institute, Redlands, CA, 2011).

    53.
    Scientific Committee on Antarctic Research (SCAR). Antarctic Digital Database version 7 https://www.add.scar.org/ (2018).

    54.
    Headland, R. K. Chronological List of Antarctic Expeditions and Related Historical Events (Cambridge Univ. Press, Cambridge, 1989).
    Google Scholar 

    55.
    Scientific Committee on Antarctic Research. Composite Gazetteer of Antarctica https://data.aad.gov.au/aadc/gaz/scar/ (GCMD Metadata, 1992, updated 2014).

    56.
    Evans, J. S. spatialEco. R package version 0.0.1-7 https://CRAN.R-project.org/package=spatialEco (2017).

    57.
    Hijmans, R. J. raster: geographic data analysis and modeling. R package version 2.6-7 https://CRAN.R-project.org/package=raster (2017).

    58.
    Hughes, K. A. How committed are we to monitoring human impacts in Antarctica? Environ. Res. Lett. 5, 041001 (2010).
    ADS  Google Scholar 

    59.
    Bivand, R., Keitt, T. & Rowlingson, B. rgdal: bindings for the ‘geospatial’ data abstraction library. R package version 1.3-4 https://CRAN.R-project.org/package=rgdal (2018).

    60.
    International Association of Antarctica Tour Operators (IAATO). 2017–2018 Tourism Statistics http://iaato.org/tourism-statistics (IAATO, accessed 29 October 2018).

    61.
    United States Antarctic Program (USAP). USAP Science Planning Summaries 2003–2016 https://www.usap.gov/sciencesupport/2179/ (USAP, 2019).

    62.
    Bargagli, R. Antarctic Ecosystems: Environmental Contamination, Climate Change, and Human Impact (Springer, Berlin, 2005).

    63.
    Hughes, K. A. & Convey, P. The protection of Antarctic terrestrial ecosystems from inter- and intra-continental transfer of non-indigenous species by human activities: a review of current systems and practices. Glob. Environ. Change 20, 96–112 (2010).
    Google Scholar 

    64.
    Campbell, I. B., Claridge, G. G. C. & Balks, M. R. Short-and long-term impacts of human disturbances on snow-free surfaces in Antarctica. Polar Rec. (Gr. Brit.) 34, 15–24 (1998).
    Google Scholar 

    65.
    Tejedo, P. et al. Soil trampling in an Antarctic Specially Protected Area: tools to assess levels of human impact. Antarct. Sci. 21, 229–236 (2009).
    ADS  Google Scholar 

    66.
    Chown, S. L. et al. Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proc. Natl. Acad. Sci. USA 109, 4938–4943 (2012).
    ADS  CAS  PubMed  Google Scholar 

    67.
    Duffy, G. A. & Lee, J. R. Ice-free area expansion compounds the non-native species threat to Antarctic terrestrial biodiversity. Biol. Conserv. 232, 253–257 (2019).
    Google Scholar 

    68.
    Antarctica New Zealand. McMurdo Dry Valleys ASMA Manual 4th edn (Christchurch, New Zealand, 2015).

    69.
    BirdLife International. Antarctic Important Bird Areas http://datazone.birdlife.org/home (BirdLife International, Cambridge, 2018).

    70.
    Terauds, A. Antarctic Terrestrial Biodiversity Database (Australian Antarctic Data Centre, 2019).

    71.
    Casanovas, P., Black, M., Fretwell, P. & Convey, P. Mapping lichen distribution on the Antarctic Peninsula using remote sensing, lichen spectra and photographic documentation by citizen scientists. Polar Res. 34, 25633 (2015).
    Google Scholar 

    72.
    Fretwell, P. T. et al. An emperor penguin population estimate: the first global, synoptic survey of a species from space. PLoS One 7, e33751 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    73.
    Wauchope, H. S., Shaw, J. D. & Terauds, A. A snapshot of biodiversity protection in Antarctica. Nat. Commun. 10, 946 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    74.
    Lynch, H. J., Naveen, R. & Fagan, W. F. Censuses of penguin, blue-eyed shag Phalacrocorax atriceps and southern giant petrel Macronectes giganteus populations on the Antarctic Peninsula, 2001-2007. Mar. Ornithol. 36, 83–97 (2008).
    Google Scholar 

    75.
    Burton-Johnson, A., Black, M., Fretwell, P. & Kaluza-Gilbert, J. An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent. Cryosphere 10, 1665–1677 (2016).
    ADS  Google Scholar  More

  • in

    Determination of the most effective design for the measurement of photosynthetic light-response curves for planted Larix olgensis trees

    1.
    Henley, W. J. Measurement and interpretation of photosynthetic light response curves in algae in the context of photoinhibition and diel changes. J. Phycol. 29, 729–739 (1993).
    Article  Google Scholar 
    2.
    Kosugi, Y., Shibata, S. & Kobashi, S. Parameterization of the CO2 and H2O gas exchange of several temperate deciduous broad-leaved trees at the leaf scale considering seasonal changes. Plant Cell Environ. 26, 285–301 (2003).
    Article  Google Scholar 

    3.
    Mission, L., Tu, K. P., Boniello, R. A. & Goldstein, A. H. Seasonality of photosynthetic parameters in a multi-specific and vertically complex forest ecosystem in the Sierra Nevada of California. Tree Physiol. 26, 729–741 (2006).
    Article  Google Scholar 

    4.
    Coble, A. P., Vanderwall, B., Mau, A. & Cavaleri, M. How vertical patterns in leaf traits shift seasonally and the implications for modeling canopy photosynthesis in a temperate deciduous forest. Tree Physiol. 36, 1077–1091 (2016).
    CAS  Article  Google Scholar 

    5.
    Wilson, K. B., Baldocchi, D. D. & Hanson, P. J. Leaf age affects the seasonal pattern of photosynthetic capacity and net ecosystem exchange of carbon in a deciduous forest. Plant Cell Environ. 24, 571–583 (2011).
    Article  Google Scholar 

    6.
    Jin, S., Zhou, X. & Fan, J. Modeling daily photosynthesis of nine major tree species in northeast China. Forest Ecol. Manag. 184, 125–140 (2003).
    Article  Google Scholar 

    7.
    Zhang, X. Q. & Xu, D. Y. Eco-physiological modelling of canopy photosynthesis and growth of a Chinese fir plantation. Forest Ecol. Manag. 173, 201–211 (2003).
    Article  Google Scholar 

    8.
    Marino, G., Aqil, M. & Shipley, B. The leaf economics spectrum and the prediction of photosynthetic light-response curves. Funct. Ecol. 24, 263–272 (2010).
    Article  Google Scholar 

    9.
    Lachapelle, P. P. & Shipley, B. Interspecific prediction of photosynthetic light response curves using specific leaf mass and leaf nitrogen content: Effects of differences in soil fertility and growth irradiance. Ann. Bot. 109, 1149–1157 (2012).
    CAS  Article  Google Scholar 

    10.
    Xu, J. Z., Yu, Y. M., Peng, S. Z., Yang, S. H. & Liao, L. X. A modified nonrectangular hyperbola equation for photosynthetic light-response curves of leaves with different nitrogen status. Photosynthetica 52, 117–123 (2014).
    CAS  Article  Google Scholar 

    11.
    Calama, R., Puértolas, J., Madrigal, G. & Pardos, M. Modeling the environmental response of leaf net photosynthesis in Pinus pinea L. natural regeneration. Ecol. Model. 251, 9–21 (2013).
    Article  Google Scholar 

    12.
    Mayoral, C., Calama, R., Sánchez-González, M. & Pardos, M. Modelling the influence of light, water and temperature on photosynthesis in young trees of mixed Mediterranean forests. New For. 46, 485–506 (2015).
    Article  Google Scholar 

    13.
    Liu, Q., Dong, L. H. & Li, F. R. Modeling net CO2, assimilation (AN) within the crown of young planted Larix olgensis trees. Can. J. For. Res. 48, 1085–1098 (2018).
    CAS  Article  Google Scholar 

    14.
    Cavaleri, M. A., Oberbauer, S. F., Clark, D. B., Clark, D. A. & Ryan, M. G. Height is more important than light in determining leaf morphology in a tropical forest. Ecology 91, 1730–1739 (2010).
    Article  Google Scholar 

    15.
    Han, Q. Height-related decreases in mesophyll conductance, leaf photosynthesis and compensating adjustments associated with leaf nitrogen concentrations in Pinus densiflora. Tree Physiol. 31, 976–984 (2011).
    CAS  Article  Google Scholar 

    16.
    Kosugi, Y., Takanashi, S., Yokoyama, N. & Kamakura, M. Vertical variation in leaf gas exchange parameters for a Southeast Asian tropical rainforest in Peninsular Malaysia. J. Plant Res. 125, 735–748 (2012).
    Article  Google Scholar 

    17.
    Liu, Q., Dong, L. H., Li, F. R. & Xie, L. F. Spatial heterogeneity of canopy photosynthesis for Larix olgensis. Chin. J. Appl. Ecol. 27, 2789–2796 (2016) (in Chinese).
    Google Scholar 

    18.
    Liu, Q. & Li, F. R. Spatial and seasonal variations of standardized photosynthetic parameters under different environmental conditions for young planted Larix olgensis Henry Trees. Forests 9, 522 (2018).
    Article  Google Scholar 

    19.
    Ye, Z. P. A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica 45, 637–640 (2007).
    CAS  Article  Google Scholar 

    20.
    Mengistu, T., Sterck, F. J., Fetene, M., Tadesse, W. & Bongers, F. Leaf gas exchange in the frankincense tree (Boswellia papyrifera) of African dry woodlands. Tree Physiol. 31, 740–750 (2011).
    Article  Google Scholar 

    21.
    Chen, Z. Y., Peng, Z. S., Yang, J., Chen, W. Y. & Ou-Yang, Z. M. A mathematical model for describing light-response curves in Nicotiana tabacum L. Photosynthetica 49, 467–471 (2011).
    Google Scholar 

    22.
    Benomar, L., Desrochers, A. & Larocque, G. R. Changes in specific leaf area and photosynthetic nitrogen-use efficiency associated with physiological acclimation of two hybrid poplar clones to intraclonal competition. Can. J. For. Res. 41, 1465–1476 (2011).
    CAS  Article  Google Scholar 

    23.
    Ye, Z. P., Suggett, D. J., Robakowski, P. & Kang, H. J. A mechanistic model for the photosynthesis–light response based on the photosynthetic electron transport of photosystem II in C3 and C4 species. New Phytol. 199, 110–120 (2013).
    CAS  Article  Google Scholar 

    24.
    Xu, C. L., Sun, X. M., Zhang, S. G. & Dong, J. Maternal and paternal effects on photosynthetic characteristics of several Larix kaempferi × L. olgensis Hybrids . For. Res. 24, 8–12 (2011) (in Chinese).
    Google Scholar 

    25.
    Casella, E. & Ceulemans, R. Spatial distribution of leaf morphological and physiological characteristics in relation to local radiation regime within the canopies of 3-year-old Populus clones in coppice culture. Tree Physiol. 22, 1277–1288 (2002).
    CAS  Article  Google Scholar 

    26.
    Wieser, G., Oberhuber, W., Walder, L., Spieler, D. & Gruber, A. Photosynthetic temperature adaptation of Pinus cembra within the timberline ecotone of the Central Austrian Alps. Ann. For. Sci. 67, 201 (2010).
    Article  Google Scholar 

    27.
    Wang, Z., Kang, S., Jensen, C. R. & Liu, F. L. Alternate partial root-zone irrigation reduces bundle-sheath cell leakage to CO2 and enhances photosynthetic capacity in maize leaves. J. Exp. Bot. 63, 1145–1153 (2012).
    CAS  Article  Google Scholar 

    28.
    Quan, X. K. & Wang, C. K. Responses and influencing factors of foliar photosynthetic characteristics of Larix gmelinii to changing environments. Chin. Sci. Bull. 61, 2273–2286 (2016) (in Chinese).
    Article  Google Scholar 

    29.
    Posada, J. M., Lechowicz, M. J. & Kitajima, K. Optimal photosynthetic use of light by tropical tree crowns achieved by adjustment of individual leaf angles and nitrogen content. Ann. Bot. 103, 795–805 (2009).
    CAS  Article  Google Scholar 

    30.
    Rosati, A., Metcalf, S. G. & Lampinen, B. D. A simple method to estimate photosynthetic radiation use efficiency of canopies. Ann. Bot. 93, 567–574 (2004).
    CAS  Article  Google Scholar 

    31.
    Kern, S. O., Hovenden, M. J. & Jordan, G. J. The impacts of leaf shape and arrangement on light interception and potential photosynthesis in southern beech (Nothofagus cunninghamii). Funct. Plant Bio. 31, 471–480 (2004).
    Article  Google Scholar 

    32.
    Montalbán, I. A., De-Diego, N. & Moncaleán, P. Testing novel cytokinins for improved in vitro adventitious shoots formation and subsequent ex vitro performance in Pinus radiata. Forestry 84, 363–373 (2011).
    Article  Google Scholar 

    33.
    Lewis, J. D., Mckane, R. B., Tingey, D. T. & Beedlow, P. Vertical gradients in photosynthetic light response within an old-growth Douglas-fir and western hemlock canopy. Tree Physiol. 20, 447–456 (2000).
    Article  Google Scholar 

    34.
    Calder, W. J., Horn, K. J. & Clair, S. B. S. Conifer expansion reduces the competitive ability and herbivore defense of aspen by modifying light environment and soil chemistry. Tree Physiol. 31, 582–591 (2011).
    CAS  Article  Google Scholar 

    35.
    Joesting, H. M., Mccarthy, B. C. & Brown, K. J. The photosynthetic response of American chestnut seedlings to differing light conditions. Can. J. For. Res. 37, 1714–1722 (2007).
    CAS  Article  Google Scholar 

    36.
    Xu, L. & Baldocchi, D. D. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol. 23, 865–877 (2003).
    Article  Google Scholar 

    37.
    Wang, Q., Iio, A., Tenhunen, J. & Kakubari, Y. Annual and seasonal variations in photosynthetic capacity of Fagus crenata along an elevation gradient in the Naeba Mountains, Japan. Tree Physiol. 28, 277–285 (2008).
    Article  Google Scholar 

    38.
    Luo, Y. et al. Canopy quantum yield in a mesocosm study. Agric. For. Meteorol. 100, 35–48 (2000).
    ADS  Article  Google Scholar 

    39.
    Gardiner, E. S. & Krauss, K. W. Photosynthetic light response of flooded cherrybark oak (Quercus pagoda) seedlings grown in two light regimes. Tree Physiol. 21, 1103–1111 (2001).
    CAS  Article  Google Scholar 

    40.
    Wickham, H., Francois, R., Henry, L., Müller, K. RStudio. dplyr: A grammar of data manipulation. R Package Version 0.8.3. (2019). More

  • in

    Bacterial chemolithoautotrophy via manganese oxidation

    1.
    Beijerinck, M. Oxydation des mangancarbonates durch Bakterien und Schimmelpilze. Folia Microbiol. (Delft) 2, 123–134 (1913).
    Google Scholar 
    2.
    Nealson, K. H., Tebo, B. M. & Rosson, R. A. Occurrence and mechanisms of microbial oxidation of manganese. Adv. Appl. Microbiol. 33, 279–318 (1988).
    CAS  Google Scholar 

    3.
    Tebo, B. M., Johnson, H. A., McCarthy, J. K. & Templeton, A. S. Geomicrobiology of manganese(II) oxidation. Trends Microbiol. 13, 421–428 (2005).
    CAS  Google Scholar 

    4.
    Hansel, C. & Learman, D. R. in Ehrlich’s Geomicrobiology (eds Ehrlich, H. L. et al.) 401–452 (CRC, 2015).

    5.
    Myers, C. R. & Nealson, K. H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240, 1319–1321 (1988).
    ADS  CAS  Google Scholar 

    6.
    Lovley, D. R. & Phillips, E. J. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54, 1472–1480 (1988).
    CAS  PubMed  PubMed Central  Google Scholar 

    7.
    Winogradsky, S. Über schwefelbakterien. Bot. Ztg 45, 489ff (1887).
    Google Scholar 

    8.
    Kelly, D. P. & Wood, A. P. in The Prokaryotes: Prokaryotic Communities and Ecophysiology (eds Rosenberg, E. et al.) 275–287 (Springer, 2013).

    9.
    Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    10.
    Könneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546 (2005).
    ADS  Google Scholar 

    11.
    Strous, M. et al. Missing lithotroph identified as new planctomycete. Nature 400, 446–449 (1999).
    ADS  CAS  Google Scholar 

    12.
    van Kessel, M. A. H. J. et al. Complete nitrification by a single microorganism. Nature 528, 555–559 (2015).
    ADS  PubMed  PubMed Central  Google Scholar 

    13.
    Watson, S. W. & Waterbury, J. B. Characteristics of two marine nitrite oxidizing bacteria, Nitrospina gracilis nov. gen. nov. sp. and Nitrococcus mobilis nov. gen. nov. sp. Arch. Mikrobiol. 77, 203–230 (1971).
    Google Scholar 

    14.
    Lovley, D. R., Holmes, D. E. & Nevin, K. P. in Advances in Microbial Physiology (ed Poole, R. K.) 219–286 (Elsevier, 2004).

    15.
    Henkel, J. V. et al. A bacterial isolate from the Black Sea oxidizes sulfide with manganese(IV) oxide. Proc. Natl Acad. Sci. USA 116, 12153–12155 (2019).
    CAS  Google Scholar 

    16.
    Ghiorse, W. C. & Ehrlich, H. L. Microbial biomineralization of iron and manganese. Catena Suppl. 21, 75–99 (1992).
    Google Scholar 

    17.
    Ehrlich, H. L. & Salerno, J. C. Energy coupling in Mn2+ oxidation by a marine bacterium. Arch. Microbiol. 154, 12–17 (1990).
    CAS  Google Scholar 

    18.
    Ehrlich, H. L. Manganese as an energy source for bacteria. Environ. Biogeochem. 2, 633–644 (1976).
    CAS  Google Scholar 

    19.
    Dick, G. J. et al. Genomic insights into Mn(II) oxidation by the marine alphaproteobacterium Aurantimonas sp. strain SI85-9A1. Appl. Environ. Microbiol. 74, 2646–2658 (2008).
    CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Nealson, K. H. in The Prokaryotes (eds Dworkin, M. et al.) 222–231 (Springer, 2006).

    21.
    van Veen, W. L. Biological oxidation of manganese in soils. Antonie van Leeuwenhoek 39, 657–662 (1973).
    Google Scholar 

    22.
    Morgan, J. J. Kinetics of reaction between O2 and Mn(II) species in aqueous solutions. Geochim. Cosmochim. Acta 69, 35–48 (2005).
    ADS  CAS  Google Scholar 

    23.
    Kits, K. D. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549, 269–272 (2017).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Flagan, S. F. & Leadbetter, J. R. Utilization of capsaicin and vanillylamine as growth substrates by Capsicum (hot pepper)-associated bacteria. Environ. Microbiol. 8, 560–565 (2006).
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Kanzler, B. E. M., Pfannes, K. R., Vogl, K. & Overmann, J. Molecular characterization of the nonphotosynthetic partner bacterium in the consortium “Chlorochromatium aggregatum”. Appl. Environ. Microbiol. 71, 7434–7441 (2005).
    CAS  PubMed  PubMed Central  Google Scholar 

    26.
    Emerson, D. & Moyer, C. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl. Environ. Microbiol. 63, 4784–4792 (1997).
    CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Neidhardt, F. C. Escherichia coli and Salmonella: Cellular and Molecular Biology, vol. 1 (ASM, 1996).

    28.
    Kostanjšek, R., Pašić, L., Daims, H. & Sket, B. Structure and community composition of sprout-like bacterial aggregates in a dinaric karst subterranean stream. Microb. Ecol. 66, 5–18 (2013).
    Google Scholar 

    29.
    Wrighton, K. C. et al. Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science 337, 1661–1665 (2012).
    ADS  CAS  Google Scholar 

    30.
    Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).
    CAS  Google Scholar 

    31.
    Castelle, C. et al. A new iron-oxidizing/O2-reducing supercomplex spanning both inner and outer membranes, isolated from the extreme acidophile Acidithiobacillus ferrooxidans. J. Biol. Chem. 283, 25803–25811 (2008).
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Jeans, C. et al. Cytochrome 572 is a conspicuous membrane protein with iron oxidation activity purified directly from a natural acidophilic microbial community. ISME J. 2, 542–550 (2008).
    CAS  Google Scholar 

    33.
    Croal, L. R., Jiao, Y. & Newman, D. K. The fox operon from Rhodobacter strain SW2 promotes phototrophic Fe(II) oxidation in Rhodobacter capsulatus SB1003. J. Bacteriol. 189, 1774–1782 (2007).
    CAS  Google Scholar 

    34.
    Jiao, Y. & Newman, D. K. The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. J. Bacteriol. 189, 1765–1773 (2007).
    CAS  Google Scholar 

    35.
    He, S., Barco, R. A., Emerson, D. & Roden, E. E. Comparative genomic analysis of neutrophilic iron(II) oxidizer genomes for candidate genes in extracellular electron transfer. Front. Microbiol. 8, 1584 (2017).
    PubMed  PubMed Central  Google Scholar 

    36.
    Richardson, D. J. et al. The ‘porin-cytochrome’ model for microbe-to-mineral electron transfer. Mol. Microbiol. 85, 201–212 (2012).
    CAS  Google Scholar 

    37.
    Luther, G. W., III. Manganese(II) oxidation and Mn(IV) reduction in the environment—two one-electron transfer steps versus a single two-electron Step. Geomicrobiol. J. 22, 195–203 (2005).
    CAS  Google Scholar 

    38.
    Lücker, S. et al. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc. Natl Acad. Sci. USA 107, 13479–13484 (2010).
    ADS  Google Scholar 

    39.
    Mundinger, A. B., Lawson, C. E., Jetten, M. S. M., Koch, H. & Lücker, S. Cultivation and transcriptional analysis of a canonical Nitrospira under stable growth conditions. Front. Microbiol. 10, 1325 (2019).
    PubMed  PubMed Central  Google Scholar 

    40.
    Koch, H. et al. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science 345, 1052–1054 (2014).
    ADS  CAS  Google Scholar 

    41.
    Levicán, G., Ugalde, J. A., Ehrenfeld, N., Maass, A. & Parada, P. Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations. BMC Genomics 9, 581 (2008).
    PubMed  PubMed Central  Google Scholar 

    42.
    Berg, I. A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 77, 1925–1936 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    43.
    Thauer, R. K., Jungermann, K. & Decker, K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100–180 (1977).
    CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Baradaran, R., Berrisford, J. M., Minhas, G. S. & Sazanov, L. A. Crystal structure of the entire respiratory complex I. Nature 494, 443–448 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Chadwick, G. L., Hemp, J., Fischer, W. W. & Orphan, V. J. Convergent evolution of unusual complex I homologs with increased proton pumping capacity: energetic and ecological implications. ISME J. 12, 2668–2680 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Lücker, S., Nowka, B., Rattei, T., Spieck, E. & Daims, H. The genome of Nitrospina gracilis illuminates the metabolism and evolution of the major marine nitrite oxidizer. Front. Microbiol. 4, 27 (2013).
    PubMed  PubMed Central  Google Scholar 

    47.
    Watson, S. W., Bock, E., Valois, F. W., Waterbury, J. B. & Schlosser, U. Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch. Microbiol. 144, 1–7 (1986).
    Google Scholar 

    48.
    Hippe, H. Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992). Int. J. Syst. Evol. Microbiol. 50, 501–503 (2000).
    Google Scholar 

    49.
    Henry, E. A. et al. Characterization of a new thermophilic sulfate-reducing bacterium Thermodesulfovibrio yellowstonii, gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain. Arch. Microbiol. 161, 62–69 (1994).
    CAS  Google Scholar 

    50.
    Lin, X., Kennedy, D., Fredrickson, J., Bjornstad, B. & Konopka, A. Vertical stratification of subsurface microbial community composition across geological formations at the Hanford site. Environ. Microbiol. 14, 414–425 (2012).
    CAS  Google Scholar 

    51.
    Flagan, S., Ching, W.-K. & Leadbetter, J. R. Arthrobacter strain VAI-A utilizes acyl-homoserine lactone inactivation products and stimulates quorum signal biodegradation by Variovorax paradoxus. Appl. Environ. Microbiol. 69, 909–916 (2003).
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Leadbetter, J. R. & Greenberg, E. P. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182, 6921–6926 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    53.
    Krumbein, W. E. & Altmann, H. J. A new method for the detection and enumeration of manganese oxidizing and reducing microorganisms. Helgol. Wiss. Meeresunters. 25, 347–356 (1973).
    CAS  Google Scholar 

    54.
    Emerson, D. & Revsbech, N. P. Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: laboratory studies. Appl. Environ. Microbiol. 60, 4032–4038 (1994).
    CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).
    CAS  Google Scholar 

    56.
    Illumina. 16S Metagenomic sequencing library preparation, https://support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation.html (2013).

    57.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
    CAS  Google Scholar 

    59.
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
    CAS  Google Scholar 

    60.
    Lane, D. J. in Nucleic Acid Techniques in Bacterial Systematics (eds Stackebrandt, E. & Goodfellow, M.) 115–175 (John Wiley & Sons, 1991).

    61.
    Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).
    CAS  PubMed  PubMed Central  Google Scholar 

    62.
    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).
    CAS  Google Scholar 

    63.
    Schönmann, S. et al. 16S rRNA gene-based phylogenetic microarray for simultaneous identification of members of the genus Burkholderia. Environ. Microbiol. 11, 779–800 (2009).
    Google Scholar 

    64.
    Greuter, D., Loy, A., Horn, M. & Rattei, T. probeBase—an online resource for rRNA-targeted oligonucleotide probes and primers: new features 2016. Nucleic Acids Res. 44, D586–D589 (2016).
    CAS  Google Scholar 

    65.
    Amann, R. I. et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–1925 (1990).
    CAS  PubMed  PubMed Central  Google Scholar 

    66.
    Stoecker, K., Dorninger, C., Daims, H. & Wagner, M. Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl. Environ. Microbiol. 76, 922–926 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Schramm, A., Fuchs, B. M., Nielsen, J. L., Tonolla, M. & Stahl, D. A. Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environ. Microbiol. 4, 713–720 (2002).
    CAS  PubMed  PubMed Central  Google Scholar 

    68.
    Daims, H., Stoecker, K. & Wagner, M. in Molecular Microbial Ecology (eds Osborn, M. A. and Smith, C. J.) 208–228 (Taylor & Francis, 2004).

    69.
    Daims, H., Lücker, S. & Wagner, M. daime, a novel image analysis program for microbial ecology and biofilm research. Environ. Microbiol. 8, 200–213 (2006).
    CAS  Google Scholar 

    70.
    Taylor, G. J. & Crowder, A. A. Use of the DCB technique for extraction of hydrous iron oxides from roots of wetland plants. Am. J. Bot. 70, 1254 (1983).
    CAS  Google Scholar 

    71.
    Polerecky, L. et al. Look@NanoSIMS—a tool for the analysis of nanoSIMS data in environmental microbiology. Environ. Microbiol. 14, 1009–1023 (2012).
    CAS  Google Scholar 

    72.
    Brewer, P. G. & Spencer, D. W. Colorimetric determination of manganse in anoxic waters. Limnol. Oceanogr. 16, 107–110 (1971).
    ADS  CAS  Google Scholar 

    73.
    Oldham, V. E., Miller, M. T., Jensen, L. T. & Luther, G. W. Revisiting Mn and Fe removal in humic rich estuaries. Geochim. Cosmochim. Acta 209, 267–283 (2017).
    ADS  CAS  Google Scholar 

    74.
    Suzuki, M. T., Taylor, L. T. & DeLong, E. F. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl. Environ. Microbiol. 66, 4605–4614 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    75.
    William, S., Feil, H. & Copeland, A. Bacterial genomic DNA isolation using CTAB, Department of Energy Joint Genome Institute, https://jgi.doe.gov/user-programs/pmo-overview/protocols-sample-preparation-information/ (2012).

    76.
    Arkin, A. P. et al. KBase: the United States Department of Energy systems biology knowledgebase. Nat. Biotechnol. 36, 566–569 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    77.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    78.
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
    MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

    79.
    Karst, S. M., Kirkegaard, R. H. & Albertsen, M. mmgenome: a toolbox for reproducible genome extraction from metagenomes. Preprint at https://www.biorxiv.org/content/ 10.1101/059121v1.full (2016).

    80.
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    81.
    Chen, I. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2019).
    CAS  Google Scholar 

    82.
    NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 46, D8–D13 (2018).
    Google Scholar 

    83.
    Bagos, P. G., Liakopoulos, T. D., Spyropoulos, I. C. & Hamodrakas, S. J. PRED-TMBB: a web server for predicting the topology of β-barrel outer membrane proteins. Nucleic Acids Res. 32, W400–W404 (2004).
    CAS  PubMed  PubMed Central  Google Scholar 

    84.
    Federhen, S. The NCBI taxonomy database. Nucleic Acids Res. 40, D136–D143 (2012).
    CAS  Google Scholar 

    85.
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    86.
    Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    87.
    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
    PubMed  PubMed Central  Google Scholar 

    88.
    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    89.
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    90.
    Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).
    PubMed  PubMed Central  Google Scholar 

    91.
    Lever, M. A. et al. A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types. Front. Microbiol. 6, 476 (2015).
    PubMed  PubMed Central  Google Scholar 

    92.
    Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).
    CAS  Google Scholar 

    93.
    Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).
    CAS  PubMed  Google Scholar 

    94.
    Pimentel, H., Bray, N. L., Puente, S., Melsted, P. & Pachter, L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat. Methods 14, 687–690 (2017).
    CAS  Google Scholar 

    95.
    van Waasbergen, L. G., Hildebrand, M. & Tebo, B. M. Identification and characterization of a gene cluster involved in manganese oxidation by spores of the marine Bacillus sp. strain SG-1. J. Bacteriol. 178, 3517–3530 (1996).
    PubMed  PubMed Central  Google Scholar 

    96.
    Jung, W. K. & Schweisfurth, R. Manganese oxidation by an intracellular protein of a Pseudomonas species. Z. Allg. Mikrobiol. 19, 107–115 (1979).
    CAS  Google Scholar 

    97.
    Esteve-Núñez, A., Rothermich, M., Sharma, M. & Lovley, D. Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture. Environ. Microbiol. 7, 641–648 (2005).
    Google Scholar 

    98.
    Neubauer, S. C., Emerson, D. & Megonigal, J. P. Life at the energetic edge: kinetics of circumneutral iron oxidation by lithotrophic iron-oxidizing bacteria isolated from the wetland-plant rhizosphere. Appl. Environ. Microbiol. 68, 3988–3995 (2002).
    CAS  PubMed  PubMed Central  Google Scholar 

    99.
    Nowka, B., Daims, H. & Spieck, E. Comparison of oxidation kinetics of nitrite-oxidizing bacteria: nitrite availability as a key factor in niche differentiation. Appl. Environ. Microbiol. 81, 745–753 (2015).
    PubMed  PubMed Central  Google Scholar 

    100.
    Ehrich, S., Behrens, D., Lebedeva, E., Ludwig, W. & Bock, E. A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship. Arch. Microbiol. 164, 16–23 (1995).
    CAS  Google Scholar 

    101.
    Kim, S. & Lee, S. B. Catalytic promiscuity in dihydroxy-acid dehydratase from the thermoacidophilic archaeon Sulfolobus solfataricus. J. Biochem. 139, 591–596 (2006).
    CAS  Google Scholar 

    102.
    Safarian, S. et al. Structure of a bd oxidase indicates similar mechanisms for membrane-integrated oxygen reductases. Science 352, 583–586 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    103.
    Lovley, D. R. & Phillips, E. J. P. Manganese inhibition of microbial iron reduction in anaerobic sediments. Geomicrobiol. J. 6, 145–155 (1988).
    CAS  Google Scholar 

    104.
    Perez-Benito, J. F., Arias, C. & Amat, E. A kinetic study of the reduction of colloidal manganese dioxide by oxalic acid. J. Colloid Interface Sci. 177, 288–297 (1996).
    ADS  CAS  Google Scholar  More