1.
Deguines, N., Brashares, J. S. & Prugh, L. R. Precipitation alters interactions in a grassland ecological community. J. Anim. Ecol. 86, 262–272 (2017).
PubMed Google Scholar
2.
Bernabé, T. N. et al. Warming weakens facilitative interactions between decomposers and detritivores, and modifies freshwater ecosystem functioning. Glob. Change Biol. 24, 3170–3186 (2018).
ADS Google Scholar
3.
Boulangeat, I., Svenning, J. C., Daufresne, T., Leblond, M. & Gravel, D. The transient response of ecosystems to climate change is amplified by trophic interactions. Oikos 127, 1822–1833 (2018).
Google Scholar
4.
Salt, J. L., Bulit, C., Zhang, W., Qi, H. & Montagnes, D. J. S. Spatial extinction or persistence: Landscape–temperature interactions perturb predator–prey dynamics. Ecography (Cop.) 40, 1177–1186 (2017).
Google Scholar
5.
Zhang, L., Takahashi, D., Hartvig, M. & Andersen, K. H. Food-web dynamics under climate change. Proc. R. Soc. B 284, 20171772 (2017).
PubMed Google Scholar
6.
Campanati, C., Dupont, S., Williams, G. A. & Thiyagarajan, V. Differential sensitivity of larvae to ocean acidification in two interacting mollusc species. Mar. Environ. Res. 141, 66–74 (2018).
CAS PubMed Google Scholar
7.
Woehler, E., Patterson, T. A., Bravington, M. V., Hobday, A. J. & Chambers, L. E. Climate and competition in abundance trends in native and invasive Tasmanian gulls. Mar. Ecol. Prog. Ser. 511, 249–263 (2014).
ADS Google Scholar
8.
Frizzi, F., Bartalesi, V. & Santini, G. Combined effects of temperature and interspecific competition on the mortality of the invasive garden ant, Lasius neglectus: A laboratory study. J. Therm. Biol. 65, 76–81 (2017).
PubMed Google Scholar
9.
Grainger, T. N., Rego, A. I. & Gilbert, B. Temperature-dependent species interactions shape priority effects and the persistence of unequal competitors. Am. Nat. 191, 197–209 (2018).
PubMed Google Scholar
10.
Friesen, O. C., Poulin, R. & Lagrue, C. Parasite-mediated microhabitat segregation between congeneric hosts. Biol. Lett. 14, 20170671 (2018).
PubMed PubMed Central Google Scholar
11.
Srinivasan, U., Elsen, P. R., Tingley, M. W. & Wilcove, D. S. Temperature and competition interact to structure Himalayan bird communities. Proc. R. Soc. B Biol. Sci. 285, 20172593 (2018).
Google Scholar
12.
Franke, F., Armitage, S. A. O., Kutzer, M. A. M., Kurtz, J. & Scharsack, J. P. Environmental temperature variation influences fitness trade-offs and tolerance in a fish–tapeworm association. Parasit. Vectors 10, 252 (2017).
PubMed PubMed Central Google Scholar
13.
Castano-Vazquez, F., Martinez, J., Merino, S. & Lozano, M. Experimental manipulation of temperature reduce ectoparasites in nests of blue tits Cyanistes caeruleus. J. Avian Biol. 49, UNSP e01695 (2018).
Google Scholar
14.
Paull, S. H. & Johnson, P. T. J. How temperature, pond-drying, and nutrients influence parasite infection and pathology. EcoHealth 15, 396–408 (2018).
PubMed PubMed Central Google Scholar
15.
Larsen, M. H. & Mouritsen, K. N. Temperature–parasitism synergy alters intertidal soft-bottom community structure. J. Exp. Mar. Bio. Ecol. 460, 109–119 (2014).
Google Scholar
16.
Marcogliese, D. J. The distribution and abundance of parasites in aquatic ecosystems in a changing climate: More than just temperature. Integr. Comp. Biol. 56, 611–619 (2016).
PubMed Google Scholar
17.
Mouritsen, K. N., Sørensen, M. M., Poulin, R. & Fredensborg, B. L. Coastal ecosystems on a tipping point: Global warming and parasitism combine to alter community structure and function. Glob. Change Biol. 24, 4340–4356 (2018).
ADS Google Scholar
18.
Hatcher, M. J., Dick, J. T. A. & Dunn, A. M. Diverse effects of parasites in ecosystems: Linking interdependent processes. Front. Ecol. Environ. 10, 186–194 (2012).
Google Scholar
19.
Repetto, M. & Griffen, B. D. Physiological consequences of parasite infection in the burrowing mud shrimp, Upogebia pugettensis, a widespread ecosystem engineer. Mar. Freshw. Res. 63, 60–67 (2012).
Google Scholar
20.
Boze, B. G. V. & Moore, J. The effect of a nematode parasite on feeding and dung-burying behavior of an ecosystem engineer. Integr. Comp. Biol. 54, 177–183 (2014).
CAS PubMed Google Scholar
21.
Laverty, C. et al. Temperature rise and parasitic infection interact to increase the impact of an invasive species. Int. J. Parasitol. 47, 291–296 (2017).
PubMed Google Scholar
22.
Labaude, S., Cézilly, F. & Rigaud, T. Temperature-related intraspecific variability in the behavioral manipulation of acanthocephalan parasites on their gammarid hosts. Biol. Bull. 232, 82–90 (2017).
23.
Labaude, S., Rigaud, T. & Cézilly, F. Additive effects of temperature and infection with an acanthocephalan parasite on the shredding activity of Gammarus fossarum (Crustacea: Amphipoda): The importance of aggregative behavior. Glob. Chang. Biol. 23, 1415–1424 (2017).
24.
MacNeil, C., Dick, J. T. A. & Elwood, R. W. The trophic ecology of freshwater Gammarus spp. (crustacea:amphipoda): Problems and perspectives concerning the functional feeding group concept. Biol. Rev. 72, 349–364 (1997).
Google Scholar
25.
Piscart, C., Genoel, R., Doledec, S., Chauvet, E. & Marmonier, P. Effects of intense agricultural practices on heterotrophic processes in streams. Environ. Pollut. 157, 1011–1018 (2009).
CAS PubMed Google Scholar
26.
Degani, G., Bromley, H. J., Ortal, R., Netzer, Y. & Harari, N. Diets of rainbow trout (Salmo gairdneri) in a thermally constant stream. Vie Milieu 37, 99–103 (1987).
Google Scholar
27.
Friberg, N. et al. The effect of brown trout (Salmo trutta L.) on stream invertebrate drift, with special reference to Gammarus pulex L. Hydrobiologia 294, 105–110 (1994).
Google Scholar
28.
Kelly, D. W., Dick, J. T. A. & Montgomery, W. I. The functional role of Gammarus (Crustacea, Amphipoda): Shredders, predators, or both?. Hydrobiologia 485, 199–203 (2002).
Google Scholar
29.
Piscart, C., Bergerot, B., Laffaille, P. & Marmonier, P. Are amphipod invaders a threat to regional biodiversity?. Biol. Invasions 12, 853–863 (2010).
Google Scholar
30.
Constable, D. & Birkby, N. J. The impact of the invasive amphipod Dikerogammarus haemobaphes on leaf litter processing in UK rivers. Aquat. Ecol. 50, 273–281 (2016).
Google Scholar
31.
Foucreau, N., Puijalon, S., Hervant, F. & Piscart, C. Effect of leaf litter characteristics on leaf conditioning and on consumption by Gammarus pulex. Freshw. Biol. 58, 1672–1681 (2013).
Google Scholar
32.
Maltby, L., Clayton, S. A., Wood, R. M. & McLoughlin, N. Evaluation of the Gammarus pulex in situ feeding assay as a biomonitor of water quality: Robustness, responsiveness, and relevance. Environ. Toxicol. Chem. 21, 361–368 (2002).
CAS PubMed Google Scholar
33.
Benesh, D. P., Lafferty, K. D. & Kuris, A. A life cycle database for parasitic acanthocephalans, cestodes, and nematodes. Ecology 98, 882–882 (2017).
PubMed Google Scholar
34.
Crompton, D. W. T. & Nickol, B. B. Biology of the Acanthocephala (Cambridge University Press, Cambridge, 1985).
Google Scholar
35.
Bakker, T. C. M., Frommen, J. G. & Thünken, T. Adaptive parasitic manipulation as exemplified by acanthocephalans. Ethology https://doi.org/10.1111/eth.12660 (2017).
Article Google Scholar
36.
Bethel, W. M. & Holmes, J. C. Altered evasive behavior and responses to light in amphipods harboring acanthocephalan cystacanths. J. Parasitol. 59, 945–956 (1973).
Google Scholar
37.
Bauer, A., Trouvé, S., Grégoire, A., Bollache, L. & Cézilly, F. Differential influence of Pomphorhynchus laevis (Acanthocephala) on the behaviour of native and invader gammarid species. Int. J. Parasitol. 30, 1453–1457 (2000).
CAS PubMed Google Scholar
38.
Kaldonski, N., Perrot-Minnot, M.-J. & Cézilly, F. Differential influence of two acanthocephalan parasites on the antipredator behaviour of their common intermediate host. Anim. Behav. 74, 1311–1317 (2007).
Google Scholar
39.
McCahon, C. P., Brown, A. F. & Pascoe, D. The effect of the acanthocephalan Pomphorhynchus laevis (Müller 1776) on the acute toxicity of cadmium to its intermediate host, the amphipod Gammarus pulex (L.). Arch. Environ. Contam. Toxicol. 17, 239–243 (1988).
CAS Google Scholar
40.
Médoc, V., Piscart, C., Maazouzi, C., Simon, L. & Beisel, J.-N. Parasite-induced changes in the diet of a freshwater amphipod: Field and laboratory evidence. Parasitology 138, 537–546 (2011).
PubMed Google Scholar
41.
Cornet, S., Franceschi, N., Bauer, A., Rigaud, T. & Moret, Y. Immune depression induced by acanthocephalan parasites in their intermediate crustacean host: Consequences for the risk of super-infection and links with host behavioural manipulation. Int. J. Parasitol. 39, 221–229 (2009).
CAS PubMed Google Scholar
42.
Plaistow, S. J., Troussard, J.-P. & Cézilly, F. The effect of the acanthocephalan parasite Pomphorhynchus laevis on the lipid and glycogen content of its intermediate host Gammarus pulex. Int. J. Parasitol. 31, 346–351 (2001).
CAS PubMed Google Scholar
43.
Bollache, L., Rigaud, T. & Cézilly, F. Effects of two acanthocephalan parasites on the fecundity and pairing status of female Gammarus pulex (Crustacea: Amphipoda). J. Invertebr. Pathol. 79, 102–110 (2002).
CAS PubMed Google Scholar
44.
Dezfuli, B. S., Lui, A., Giovinazzo, G. & Giari, L. Effect of Acanthocephala infection on the reproductive potential of crustacean intermediate hosts. J. Invertebr. Pathol. 98, 116–119 (2008).
CAS PubMed Google Scholar
45.
Labaude, S., Cézilly, F., Tercier, X. & Rigaud, T. Influence of host nutritional condition on post-infection traits in the association between the manipulative acanthocephalan Pomphorhynchus laevis and the amphipod Gammarus pulex. Parasit. Vectors 8, 403 (2015).
PubMed PubMed Central Google Scholar
46.
Rumpus, A. E. & Kennedy, C. R. The effect of the acanthocephalan Pomphorhynchus laevis upon the respiration of its intermediate host, Gammarus pulex. Parasitology 68, 271–284 (1974).
CAS PubMed Google Scholar
47.
Perrot-Minnot, M.-J., Kaldonski, N. & Cézilly, F. Increased susceptibility to predation and altered anti-predator behaviour in an acanthocephalan-infected amphipod. Int. J. Parasitol. 37, 645–651 (2007).
PubMed Google Scholar
48.
Hindsbo, O. Effects of Polymorphus (Acanthocephala) on colour and behaviour of Gammarus lacustris. Nature 238, 333 (1972).
ADS Google Scholar
49.
Dianne, L. et al. Protection first then facilitation: A manipulative parasite modulates the vulnerability to predation of its intermediate host according to its own developmental stage. Evolution 65, 2692–2698 (2011).
PubMed Google Scholar
50.
Lagrue, C., Kaldonski, N., Perrot-Minnot, M.-J., Motreuil, S. & Bollache, L. Modification of hosts’ behavior by a parasite: Field evidence for adaptive manipulation. Ecology 88, 2839–2847 (2007).
PubMed Google Scholar
51.
Kaldonski, N., Perrot-Minnot, M.-J., Motreuil, S. & Cézilly, F. Infection with acanthocephalans increases the vulnerability of Gammarus pulex (Crustacea Amphipoda) to non-host invertebrate predators. Parasitology 135, 627–632 (2008).
CAS PubMed Google Scholar
52.
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. B. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).
ADS CAS PubMed Google Scholar
53.
Roux, C. & Roux, A. L. Température et métabolisme respiratoire d’espèces sympatriques de gammares du groupe pulex (Crustacés, Amphipodes). Ann. Limnol. 3, 3–16 (1967).
Google Scholar
54.
Issartel, J., Hervant, F., Voituron, Y., Renault, D. & Vernon, P. Behavioural, ventilatory and respiratory responses of epigean and hypogean crustaceans to different temperatures. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 141, 1–7 (2005).
PubMed Google Scholar
55.
Foucreau, N., Cottin, D., Piscart, C. & Hervant, F. Physiological and metabolic responses to rising temperature in Gammarus pulex (Crustacea) populations living under continental or Mediterranean climates. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 168, 69–75 (2014).
CAS PubMed Google Scholar
56.
Moenickes, S. et al. From population-level effects to individual response: Modelling temperature dependence in Gammarus pulex. J. Exp. Biol. 214, 3678–3687 (2011).
PubMed Google Scholar
57.
Barber, I., Berkhout, B. W. & Ismail, Z. Thermal change and the dynamics of multi-host parasite life cycles in aquatic ecosystems. Integr. Comp. Biol. 56, 561–572 (2016).
PubMed PubMed Central Google Scholar
58.
Olson, R. E. & Pratt, I. The life cycle and larval development of Echinorhynchus lageniformis Ekbaum, 1938 (Acanthocephala: Echinorhynchidae). J. Parasitol. 57, 143–149 (1971).
Google Scholar
59.
Tokeson, J. P. E. & Holmes, J. C. The effects of temperature and oxygen on the development of Polymorphus marilis (Acanthocephala) in Gammarus lacustris (Amphipoda). J. Parasitol. 68, 112–119 (1982).
Google Scholar
60.
Sheath, D. J., Andreou, D. & Britton, J. R. Interactions of warming and exposure affect susceptibility to parasite infection in a temperate fish species. Parasitology 143, 1340–1346 (2016).
PubMed Google Scholar
61.
VanCleave, H. J. Seasonal distribution of some acanthocephala from fresh-water hosts. J. Parasitol. 2, 106–110 (1916).
Google Scholar
62.
Muzzall, P. M. & Rabalais, F. C. Studies on Acanthocephalus jacksoni Bullock, 1962 (Acanthocephala: Echinorhynchidae). I. Seasonal periodicity and new host records. Proc. Helminthol. Soc. Wash. 42, 31–34 (1975).
Google Scholar
63.
Brown, A. F. Seasonal dynamics of the acanthocephalan Pomphorhynchus laevis (Muller, 1776) in its intermediate and preferred definitive hosts. J. Fish Biol. 34, 183–194 (1989).
Google Scholar
64.
Rauque, C. A. & Semenas, L. Infection pattern of two sympatric acanthocephalan species in the amphipod Hyalella patagonica (Amphipoda: Hyalellidae) from Lake Mascardi (Patagonia, Argentina). Parasitol. Res. 100, 1271–1276 (2007).
PubMed Google Scholar
65.
Wali, A. et al. Distribution of helminth parasites in intestines and their seasonal rate of infestation in three freshwater fishes of Kashmir. J. Parasitol. Res. https://doi.org/10.1155/2016/8901518 (2016).
Article PubMed PubMed Central Google Scholar
66.
Guinnee, M. A. & Moore, J. The effect of parasitism on host fecundity is dependent on temperature in a cockroach-acanthocephalan system. J. Parasitol. 90, 673–677 (2004).
PubMed Google Scholar
67.
Benesh, D. P., Hasu, T., Seppälä, O. & Valtonen, E. T. Seasonal changes in host phenotype manipulation by an acanthocephalan: Time to be transmitted?. Parasitology 136, 219–230 (2009).
CAS PubMed Google Scholar
68.
Perrot-Minnot, M.-J., Maddaleno, M., Balourdet, A. & Cézilly, F. Host manipulation revisited: No evidence for a causal link between altered photophobia and increased trophic transmission of amphipods infected with acanthocephalans. Funct. Ecol. 26, 1007–1014 (2012).
Google Scholar
69.
Benesh, D. P., Duclos, L. M. & Nickol, B. B. The behavioral response of amphipods harboring Corynosoma constrictum (Acanthocephala) to various components of light. J. Parasitol. 91, 731–736 (2005).
PubMed Google Scholar
70.
Dianne, L., Bollache, L., Lagrue, C., Franceschi, N. & Rigaud, T. Larval size in acanthocephalan parasites: Influence of intraspecific competition and effects on intermediate host behavioural changes. Parasit. Vectors 5, 166 (2012).
PubMed PubMed Central Google Scholar
71.
Franceschi, N. et al. Co-variation between the intensity of behavioural manipulation and parasite development time in an acanthocephalan–amphipod system. J. Evol. Biol. 23, 2143–2150 (2010).
CAS PubMed Google Scholar
72.
Perrot-Minnot, M.-J., Sanchez-Thirion, K. & Cézilly, F. Multidimensionality in host manipulation mimicked by serotonin injection. Proc. R. Soc. B Biol. Sci. 281, 20141915 (2014).
Google Scholar
73.
Franceschi, N., Bauer, A., Bollache, L. & Rigaud, T. The effects of parasite age and intensity on variability in acanthocephalan-induced behavioural manipulation. Int. J. Parasitol. 38, 1161–1170 (2008).
CAS PubMed Google Scholar
74.
Franceschi, N. et al. Variation between populations and local adaptation in acanthocephalan-induced parasite manipulation. Evolution 64, 2417–2430 (2010).
PubMed Google Scholar
75.
Cézilly, F., Grégoire, A. & Bertin, A. Conflict between co-occuring manipulative parasites; an experimental study of the joint influence of two acanthocephalan parasites on the behaviour of Gammarus pulex. Parasitology 120, 625–630 (2000).
PubMed Google Scholar
76.
Bauer, A., Haine, E. R., Perrot-Minnot, M.-J. & Rigaud, T. The acanthocephalan parasite Polymorphus minutus alters the geotactic and clinging behaviours of two sympatric amphipod hosts: the native Gammarus pulex and the invasive Gammarus roeseli. J. Zool. 267, 39–43 (2005).
Google Scholar
77.
Xu, Y., Castel, T., Richard, Y., Cuccia, C. & Bois, B. Burgundy regional climate change and its potential impact on grapevines. Clim. Dyn. 39, 1613–1626 (2012).
Google Scholar
78.
Gunn, J. & Crumley, C. L. Global energy balance and regional hydrology: A Burgundian case study. Earth Surf. Process. Landforms 16, 579–592 (1991).
ADS Google Scholar
79.
Rowell, D. P. A scenario of European climate change for the late twenty-first century: Seasonal means and interannual variability. Clim. Dyn. 25, 837–849 (2005).
Google Scholar
80.
Bollache, L., Gambade, G. & Cézilly, F. The influence of micro-habitat segregation on size assortative pairing in Gammarus pulex (L.) (Crustacea, Amphipoda). Arch. für Hydrobiol. 147, 547–558 (2000).
Google Scholar
81.
Dezfuli, B. S., Zanini, N., Reggiani, G. & Rossi, R. Echinogammarus stammen (Amphipoda) as an intermediate host for Pomphorhynchus laevis (Acanthocephala) parasite of fishes from the river Brenta. Bolletino di Zool. 58, 267–271 (1991).
Google Scholar
82.
Dianne, L., Perrot-Minnot, M.-J., Bauer, A., Guvenatam, A. & Rigaud, T. Parasite-induced alteration of plastic response to predation threat: increased refuge use but lower food intake in Gammarus pulex infected with the acanothocephalan Pomphorhynchus laevis. Int. J. Parasitol. 44, 211–216 (2014).
PubMed Google Scholar
83.
Hammond, B. A. the proboscis mechanism of Acanthocephalus ranae. J. Exp. Biol. 45, 203–213 (1966).
Google Scholar
84.
Taraschewski, H. Host–parasite interactions in Acanthocephala: A morphological approach. Adv. Parasitol. 46, 1–179 (2000).
CAS PubMed Google Scholar
85.
Perrot-Minnot, M.-J., Gaillard, M., Dodet, R. & Cézilly, F. Interspecific differences in carotenoid content and sensitivity to UVB radiation in three acanthocephalan parasites exploiting a common intermediate host. Int. J. Parasitol. 41, 173–181 (2011).
CAS PubMed Google Scholar
86.
Kennedy, C. R., Broughton, P. F. & Hine, P. M. The status of brown and rainbow trout, Salmo trutta and S. gairdneri as hosts of the acanthocephalan, Pomphorhynchus laevis. J. Fish Biol. 13, 265–275 (1978).
Google Scholar
87.
Foucreau, N., Piscart, C., Puijalon, S. & Hervant, F. Effects of rising temperature on a functional process: Consumption and digestion of leaf litter by a freshwater shredder. Fundam. Appl. Limnol./Arch. für Hydrobiol. 187, 295–306 (2016).
Google Scholar
88.
Noguchi, K., Gel, Y. R., Brunner, E. & Konietschke, F. nparLD: An R software package for the nonparametric analysis of longitudinal data in factorial experiments. J. Stat. Softw. 50, 1–23 (2012).
Google Scholar
89.
Pellan, L., Médoc, V., Renault, D., Spataro, T. & Piscart, C. Feeding choice and predation pressure of two invasive gammarids, Gammarus tigrinus and Dikerogammarus villosus, under increasing temperature. Hydrobiologia 781, 43–54 (2015).
Google Scholar
90.
Maure, F. et al. The cost of a bodyguard. Biol. Lett. 7, 843–846 (2011).
PubMed PubMed Central Google Scholar
91.
Maazouzi, C., Piscart, C., Legier, F. & Hervant, F. Ecophysiological responses to temperature of the ‘killer shrimp’ Dikerogammarus villosus: Is the invader really stronger than the native Gammarus pulex?. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 159, 268–274 (2011).
CAS PubMed Google Scholar
92.
Maynard, B. J., Wellnitz, T. A., Zanini, N., Wright, W. G. & Dezfuli, B. S. Parasite-altered behavior in a crustacean intermediate host: Field and laboratory studies. J. Parasitol. 84, 1102–1106 (1998).
CAS PubMed Google Scholar
93.
Dezfuli, B. S., Maynard, B. J. & Wellnitz, T. A. Activity levels and predator detection by amphipods infected with an acanthocephalan parasite, Pomphorhynchus laevis. Folia Parasitol. (Praha) 50, 129–134 (2003).
Google Scholar
94.
Stone, C. F. & Moore, J. Parasite-induced alteration of odour responses in an amphipod-acanthocephalan system. Int. J. Parasitol. 44, 969–975 (2014).
CAS PubMed Google Scholar
95.
Jacquin, L., Mori, Q., Pause, M., Steffen, M. & Medoc, V. Non-specific manipulation of gammarid behaviour by P. minutus parasite enhances their predation by definitive bird hosts. PLoS ONE 9, e101684 (2014).
ADS PubMed PubMed Central Google Scholar
96.
Thünken, T. et al. Impact of olfactory non-host predator cues on aggregation behaviour and activity in Polymorphus minutus infected Gammarus pulex. Hydrobiologia 654, 137–145 (2010).
Google Scholar
97.
Dianne, L. et al. Intraspecific conflict over host manipulation between different larval stages of an acanthocephalan parasite. J. Evol. Biol. 23, 2648–2655 (2010).
CAS PubMed Google Scholar
98.
Thomas, F., Brown, S. P., Sukhdeo, M. V. K. & Renaud, F. Understanding parasite strategies: A state-dependent approach?. Trends Parasitol. 18, 387–390 (2002).
PubMed Google Scholar
99.
Baldauf, S. A. et al. Infection with an acanthocephalan manipulates an amphipod’s reaction to a fish predator’s odours. Int. J. Parasitol. 37, 61–65 (2007).
PubMed Google Scholar
100.
Durieux, R., Rigaud, T. & Médoc, V. Parasite-induced suppression of aggregation under predation risk in a freshwater amphipod. Sociality of infected amphipods. Behav. Process. 91, 207–213 (2012).
Google Scholar
101.
Lewis, S. E., Hodel, A., Sturdy, T., Todd, R. & Weigl, C. Impact of acanthocephalan parasites on aggregation behavior of amphipods (Gammarus pseudolimnaeus). Behav. Process. 91, 159–163 (2012).
Google Scholar
102.
Labaude, S., Rigaud, T. & Cézilly, F. Host manipulation in the face of environmental changes: Ecological consequences. Int. J. Parasitol. Parasit. Wildl. 4, 442–451 (2015).
Google Scholar
103.
Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. PNAS 108, 17905–17910 (2011).
ADS CAS PubMed Google Scholar More