More stories

  • in

    Higher tree diversity increases soil microbial resistance to drought

    Forest sites and soil sampling
    The sites used in this study are part of a permanent network of existing mature forest plots across Europe established in 2011–2012 (see Baeten et al.54 for detailed descriptions). We included four sites ranging over a large climatic gradient: North Karelia (Finland), Białowieża (Poland), Râşca (Romania), and Colline Metallifere (Italy), which correspond to typical boreal forests, hemiboreal mixed broadleaved-coniferous, montane mixed beech, and Mediterranean thermophilous, respectively (Supplementary Table 1, Supplementary Fig. 1). At each site, we selected 30 m × 30 m forest plots dominated by either one tree species (monospecific stands) or by three co-dominating tree species, hereafter referred to as mixed stands, resulting in a total of 34 species combinations (species were considered co-dominant if they composed >15% of the stand; see Supplementary Data file 1 for plot and tree species information). Each site differed in total species numbers, species identity, and species combinations (Supplementary Table 1). There were two replicates per tree species for the monospecific plots of each site, except for Picea abies and Quercus robur, which were only replicated once and Betula pendula which had no mono-specific plot in Białowieża. There was a minimum of three mixed species plot replicates per site that were composed of any of the target species present at the site (Supplementary Table 1), i.e., the replicate mixed plots at each site did not necessarily have the same tree species combinations. There were 64 plots in total. The sampling design with the total plot number, their distribution over four forest ecosystems, and including a wide range of tree species is well suited to address the generality of our hypothesis that microbial responses to DRW cycles are modified by tree species mixing but poorly suited to identify site-specific patterns with plot numbers too limiting within specific sites for robust testing.
    Within each plot, we selected five tree triplets, a triplet being a triangle of three tree individuals within a maximum distance of 8 m from each other and no obstructing tree individuals within the triangle. Each triplet was composed of either the same species in the monospecific stands (monospecific triplet) or the three tree species present in the mixed stands (mixed triplet). At the estimated tree individual size weighted (based on individual diameter at breast height) center within the triangle, we collected five soil cores from the topsoil (10 cm deep, 5.3 cm diameter) after the litter layer had been removed. The five soil cores were spaced at roughly 35 cm from each other circling the center point (approximate sampled area 50 cm × 50 cm). A depth of 10 cm was selected because it is the standard topsoil sampling depth in soil ecology, has the highest soil microbial activity, and is under the most influence from the plant community19. All soil cores from each sampling location (i.e., tree triplet) within a plot were then sieved together through a 2 mm sieve and air-dried immediately after sampling for transportation and experiment preparation.
    Experimental design
    The soils collected from the 64 forest plots at the four sites were split into six replicate microcosms, yielding a total of 384 microcosms that were housed at the Montpellier European Ecotron CNRS in Montpellier, France. Each microcosm contained 95 g dry weight of soil in a glass vial (soil volume 51–72 ml; air volume 259–279 ml), initially incubated at 80% of water holding capacity (WHC) using deionized water, 25 °C, no light, and 40% relative air humidity (the vials were covered with Parafilm® to allow gas exchange but to prevent soil desiccation) for 3 weeks to reactivate the microbial community (Supplementary Fig. 3). After this acclimation period, half of the microcosms (192, i.e., n = 3 per plot) was assigned to a drying-rewetting (DRW) treatment and the other half (192, i.e., n = 3 per plot) to a control treatment. Maximum microbial mineralization activity appears to be reached between 60% and 80% WHC55. We chose 80% to ensure soils were entirely and homogeneously humid; very sandy soils with a low WHC, such as those from the Polish site, were not completely wetted at the typically chosen 60% WHC. Each treatment replicate was housed in a 2 m3 individual growth chamber (n = 6). Within each chamber, the microcosms were randomly distributed on a single shelf and re-randomized weekly. The DRW treatment was defined as two DRW cycles while the soils in the control treatment were maintained at 80% WHC throughout the experiment (Supplementary Fig. 3). Water content was adjusted gravimetrically 2–3 times a week.
    Due to the large latitudinal distribution and varying soil and climate conditions of the sites (Supplementary Table 1), the soil microbial communities do not necessarily have the same degree of drought history and adaptation56. We therefore applied a site-specific drought treatment representative of each of the four study sites, i.e., site-specific drought intensity and duration. We used the permanent wilting point as a water stress threshold indicator since there is not a known microbial equivalent. The permanent wilting point was measured using a pressure plate extractor (1500F2, Soilmoisture Equipment Corp., Santa Barbara, USA) at pF 4.2 (15.5 bar) for the plots with the fastest and slowest drying soils of each site. The soil drying speed, i.e., the number of days it took for the soil to dry from 80% WHC down to constant weight, was measured gravimetrically for each plot using a subsample of soil that was subsequently excluded from the experiment. We then averaged the permanent wilting point values per site and designated this average as the drought intensity: Colline Metallifere 11% H2O g−1 dry soil, Râşca 30%, Białowieża 12%, and North Karelia 12%. The beginning of the drought was considered the moment the soil water content arrived at this threshold. The drought duration was calculated using the forest drought history data from Grossiord et al.56 as the average annual number of days the relative extractable water (REW) dropped below 0.2 (unitless) over the 1997–2010 period. REW is the ratio of available soil water to maximum extractable water (i.e., WHC), ranging between the field capacity (REW 1.0) and the permanent wilting point (REW 0.0)56. Plants are in non-water limited conditions when REW is >0.4 and water limited when REW is 2 mm diameter) and fine roots (≤2 mm in diameter). Fine roots were further separated into tree and understory roots. Tree fine roots were further divided into dead (which are hollow, brittle, and dark-colored) and live fine roots, which were then sorted by species (based on distinct color, architecture, morphology, and mycorrhizal types) and subsequently further divided based on their functions into absorptive and transport roots66. Ectomycorrhizal root tips were counted on absorptive tree roots using a binocular. All absorptive tree fine-root samples were scanned with a flat-bed scanner (resolution of 800 dpi) and scans were then analyzed using WinRhizo (Regent Instruments, Quebec, Canada, 2009) to quantify root length, surface area, volume, and diameter. Coarse root samples were also scanned to obtain coarse root volume, which was used together with the stone mass to calculate fine-earth volume (cm−3) of each soil sample. Root samples were dried (minimum 72 h, 40 °C) and weighed. Carbon and nitrogen concentrations of milled absorptive fine-root samples were measured for samples pooled at the plot level using dry combustion (Elementar Vario El Cube). Absorptive root analysis results are provided in Supplementary Table 2. We chose absorptive root traits rather than the commonly used leaf traits to characterize functional trait characteristics of tree communities, because the majority of soil microorganisms are intimately associated to the rhizosphere and thus root traits67. CWM is a measure of the relative species abundance weighted trait values. FDis is a measure of the abundance weighted mean distance between the “trait space’ of individual species. Both indices were calculated with the same standard root chemical and morphological traits (Supplementary Table 2) using the R function ‘dbFD’ in the FD package (version 1.0-1268). Due to difficulties in differentiating between Quercus species in root samples from some of the Italian plots, we were unable to determine mean absorptive root trait values at the plot level. We therefore used mean root trait values at the site level calculated from the mono-specific stands. Although the root trait values were not at the plot level, we were still able to determine the CWM and FDis indices at plot level since the root traits values were reported to tree species relative abundance in each plot. The relative abundance of each tree species was calculated using the basal areas of the tree individuals used in the five plot tree triplets (three tree individuals per tree triplet). Within each plot, the basal areas of a tree species (including five or fifteen tree individuals depending on whether the plot was mixed or mono-specific, respectively) were summed and then reported to the total basal area of the 15 tree individual, giving the relative basal area of each tree species within each plot. In order to synthesize this data, we incorporated them in a principal component analysis (PCA) and extracted the first axis scores (explaining 52.8% of the variance; Supplementary Fig. 2). Although the evidence supporting a universal root economics spectrum (RES) for woody species is inconsistent69,70,71, we consider our PCA1 axis as an acquisitive to conservative trait gradient with lower scores represented acquisitive root traits (high N content, specific root length, and ectomycorrhizal colonization intensity) and higher scores represented conservative traits (large diameter and high tissue density). The FDis was calculated following Laliberté & Legendre64 based on all traits at the plot level. The mono-specific stands had a FDis value of zero, which limits FDis variability for half of the plots. Accordingly, there was one single FDis value per plot that was used in our statistical analyses.
    Since soil microbial resistance and recovery are tied to soil parameters and resource availability17,18, we also included major topsoil parameters (0–10 cm) known to affect microbial activity and/or community composition (Supplementary Table 2) measured previously during the FunDivEurope project54 at the plot level. Similar to the CWM absorptive root traits, we incorporated the topsoil variables into a PCA using the function ‘prcomp’ from the factoextra package (version 1.0.662) and extracted the first axis scores (explaining 52.5% of the variance; Supplementary Fig. 2) for a synthetic soil parameter measure for each individual plot. High PC1 scores are associated with higher pH, carbon content, and clay content and lower bulk density, the inverse is correlated with low PC1 scores.
    We used generalized mixed-effects linear models (two-sided) using the lme4 package (version 1.1–2172) to assess the effects of the DRW treatment and the influence of the tree species number on microbial C and N-related parameters. The root FDis, root CWM PC1, and soil PC1 variables were included with the treatment × tree species interaction as explanatory variables. For the response variables (instantaneous CO2 and N2O fluxes measured five times over the experiment and cumulative fluxes, DOC, and TDN leaching, qCO2, and resistance and recovery indices), extreme values were removed (±3 times the IQR of all values for each variable). The soil collection site and plot as well as the growth chambers used for the incubation were included as random variables with plot nested within site. We did not include any climatic variables from the different sites, because they were highly correlated to site, which was already a random effect in the model. The model structure was as follows: response variable ~ Root FDis + Root CWM PC1 + Soil PCA axis + Treatment * Tree species number * Flux measurement time + (1|Chamber) + (1 | Site/Plot). The “Flux measurement time” variable, which identifies the times the five flux measurements were taken (i.e., beginning, drought 1, rewetting 1, drought 2, rewetting 2; Supplementary Fig. 3), was used only in the models that looked at the temporal dynamics of CO2 and N2O fluxes. For the analysis of resistance and recovery indices, we did not keep the “Treatment” variable in the model since these indices were calculated using both the DRW and control treatment results (see above). Additionally, for the resistance and recovery indices, instead of a “Flux measurement time” variable, a “Cycle” variable was included to distinguish the microbial activity resistance and recovery of the first and second cycles; the “Cycle” result indicates the change between the first and second cycle. Model residuals were plotted to test for normality, and data was transformed (log2 or BoxCox) when normality was not met. We also verified for data homogeneity and model probability (Q–Q plots). In order to identify the most parsimonious model we used the R software (version 3.5.3) and the “dredge” function in the MuMIn package (version 1.43.673) which uses the lowest Akaike information criteria (AIC) to rank all possible models with all possible combinations of the explanatory variables in the full model.
    The data presented here is tied to specific spatial and temporal ecological conditions (e.g., forest drought history, tree species presence, microbial community composition, and soil property heterogeneity) which are susceptible to change. This makes exact study replication challenging and underlines the importance of including a wide range of conditions (e.g., multiple forest types, tree species, tree species combinations, climatic conditions, and soil types) as done here in order to explore general, potentially reproducible, trends oppose to site-specific trends.
    Reporting summary
    Further information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Echolocation at high intensity imposes metabolic costs on flying bats

    1.
    Podos, J. & Cohn-Haft, M. Extremely loud mating songs at close range in white bellbirds. Curr. Biol. 29, R1068–R1069 (2019).
    CAS  Article  Google Scholar 
    2.
    Van Belle, S., Estrada, A. & Garber, P. A. The function of loud calls in black howler monkeys (Alouatta pigra): food, mate, or infant defense? Am. J. Primatol. 76, 1196–1206 (2014).
    Article  Google Scholar 

    3.
    Shen, J.-X. & Xu, Z.-M. The Lombard effect in male ultrasonic frogs: regulating antiphonal signal frequency and amplitude in noise. Sci. Rep. 6, 27103 (2016).
    CAS  Article  Google Scholar 

    4.
    Surlykke, A. & Kalko, E. K. V. Echolocating bats cry out loud to detect their prey. PLoS ONE 3, e2036 (2008).
    Article  Google Scholar 

    5.
    Holderied, M. W. & von Helversen, O. Echolocation range and wingbeat period match in aerial-hawking bats. Proc. R. Soc. Lond. B 270, 2293–2299 (2003).
    CAS  Article  Google Scholar 

    6.
    Jakobsen, L., Brinkløv, S. & Surlykke, A. Intensity and directionality of bat echolocation signals. Front. Physiol. 4, 89 (2013).
    Article  Google Scholar 

    7.
    Voigt, C. C. & Lewanzik, D. ‘No cost of echolocation for flying bats’ revisited. J. Comp. Physiol. B 182, 831–840 (2012).
    Article  Google Scholar 

    8.
    Speakman, J. R. & Racey, P. A. No cost of echolocation for bats in flight. Nature 350, 421–423 (1991).
    CAS  Article  Google Scholar 

    9.
    Speakman, J. R., Anderson, M. E. & Racey, P. A. The energy cost of echolocation in pipistrelle bats (Pipistrellus pipistrellus). J. Comp. Physiol. A 165, 679–685 (1989).
    Article  Google Scholar 

    10.
    Winter, Y. & von Helversen, O. The energy cost of flight: do small bats fly more cheaply than birds? J. Comp. Physiol. B 168, 105–111 (1998).
    CAS  Article  Google Scholar 

    11.
    Suthers, R. A., Thomas, S. P. & Suthers, B. J. Respiration, wing-beat and ultrasonic pulse emission in an echolocating bat. J. Exp. Biol. 56, 37–48 (1972).
    Google Scholar 

    12.
    Lancaster, W. C., Henson, O. W. & Keating, A. W. Respiratory muscle activity in relation to vocalization in flying bats. J. Exp. Biol. 198, 175–191 (1995).
    CAS  PubMed  Google Scholar 

    13.
    Wong, J. & Waters, D. The synchronisation of signal emission with wingbeat during the approach phase in soprano pipistrelles (Pipistrellus pygmaeus). J. Exp. Biol. 204, 575–583 (2001).
    CAS  PubMed  Google Scholar 

    14.
    Luo, J., Goerlitz, H. R., Brumm, H. & Wiegrebe, L. Linking the sender to the receiver: vocal adjustments by bats to maintain signal detection in noise. Sci. Rep. 5, 18556 (2015).
    CAS  Article  Google Scholar 

    15.
    Hage, S. R., Jiang, T., Berquist, S. W., Feng, J. & Metzner, W. Ambient noise induces independent shifts in call frequency and amplitude within the Lombard effect in echolocating bats. Proc. Natl Acad. Sci. USA 110, 4063–4068 (2013).
    CAS  Article  Google Scholar 

    16.
    Amichai, E., Blumrosen, G. & Yovel, Y. Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats. Proc. R. Soc. Lond. B 282, 2064 (2015).
    Article  Google Scholar 

    17.
    Voigt-Heucke, S. L., Zimmer, S. & Kipper, S. Does interspecific eavesdropping promote aerial aggregations in European Pipistrelle bats during autumn? Ethology 122, 745–757 (2016).
    Article  Google Scholar 

    18.
    Speakman, J. R. & Thomson, S. C. Validation of the labelled bicarbonate technique for measurement of short-term energy expenditure in the mouse. Z. Ernahrungswiss. 36, 273–277 (1997).
    CAS  Article  Google Scholar 

    19.
    Troxell, S.A., Holderied, M.W., Pētersons, G. & Voigt, C.C. Nathusius’ bats optimize long-distance migration by flying at maximum range speed. J. Exp. Biol. 222, 176396 (2019).
    Article  Google Scholar 

    20.
    Lancaster, W. C. & Speakman, J. R. Variations in respiratory muscle activity during echolocation when stationary in three species of bat (Microchiroptera: Vespertilionidae). J. Exp. Biol. 204, 4185–4197 (2001).
    CAS  PubMed  Google Scholar 

    21.
    Fattu, J. M. & Suthers, R. A. Subglottic pressure and the control of phonation by the echolocating bat. Eptesicus. J. Comp. Physiol. 143, 465–475 (1981).
    Article  Google Scholar 

    22.
    Šuba, J., Petersons, G. & Rydell, J. Fly-and-forage strategy in the bat Pipistrellus nathusii during autumn migration. Acta Chiropterol. 14, 377 (2012).
    Google Scholar 

    23.
    Kurta, A., Bell, G. P., Nagy, K. A. & Kunz, T. H. Energetics of pregnancy and lactation in freeranging little brown bats (Myotis lucifugus). Physiol. Zool. 62, 804–818 (1989).
    Article  Google Scholar 

    24.
    Koblitz, J. C., Stilz, P. & Schnitzler, H.-U. Source levels of echolocation signals vary in correlation with wingbeat cycle in landing big brown bats (Eptesicus fuscus). J. Exp. Biol. 213, 3263–3268 (2010).
    Article  Google Scholar 

    25.
    Kalko, E. K. V. & Schnitzler, H. U. Plasticity in echolocation signals of European pipistrelle bats in search flight: implications for habitat use and prey detection. Behav. Ecol. Sociobiol. 33, 415–428 (1993).
    Article  Google Scholar 

    26.
    Passmore, N. I. Sound levels of mating calls of some African frogs. Herpetologica 37, 166–171 (1981).
    Google Scholar 

    27.
    Sanvito, S. & Galimberti, F. Source level of male vocalisations in the genus Mirounga: repeatability and correlates. Bioacoustics 14, 47–59 (2003).
    Article  Google Scholar 

    28.
    Nemeth, E. Measuring the sound pressure level of the song of the screaming piha Lipaugus vociferans: one of the loudest birds in the world? Bioacoustics 14, 225–228 (2004).
    Article  Google Scholar 

    29.
    Wyman, M. T., Mooring, M. S., McCowan, B., Penedo, M. C. T. & Hart, L. A. Amplitude of bison bellows reflects male quality, physical condition and motivation. Anim. Behav. 76, 1625–1639 (2008).
    Article  Google Scholar 

    30.
    Fletcher, N. H. A simple frequency-scaling rule for animal communication. J. Acoust. Soc. Am. 115, 2334–2338 (2004).
    Article  Google Scholar 

    31.
    Fletcher, N. in Springer Handbook of Acoustics (ed. Rossing, T. D.) 785–804 (Springer, 2007).

    32.
    Engel, S., Biebach, H. & Visser, G. H. Metabolic costs of avian flight in relation to flight velocity: a study in rose coloured starlings (Sturnus roseus, Linnaeus). J. Comp. Physiol. B 176, 415 (2006).
    Article  Google Scholar 

    33.
    Hambly, C., Harper, E. & Speakman, J. Cost of flight in the zebra finch (Taenopygia guttata): a novel approach based on elimination of 13C labelled bicarbonate. J. Comp. Physiol. B 172, 529–539 (2002).
    CAS  Article  Google Scholar 

    34.
    Hambly, C. & Voigt, C. C. Measuring energy expenditure in birds using bolus injections of 13C-labelled Na-bicarbonate. Comp. Biochem Physiol. A158, 323–328 (2011).
    Article  Google Scholar 

    35.
    Butler, P. J., Green, J. A., Boyd, I. L. & Speakman, J. R. Measuring metabolic rate in the field: the pros and cons of the doubly labelled water and heart rate methods. Funct. Ecol. 18, 168–183 (2004).
    Article  Google Scholar 

    36.
    Pennycuick, C. J. in Avian Biology Vol. 5 (eds Farner D. S., King J. R. & Parkes K. C.) 1–75 (Academic Press, 1975). More

  • in

    Temporal clustering of prey in wildlife passages provides no evidence of a prey-trap

    1.
    Benítez-López, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol. Cons. 143, 1307–1316. https://doi.org/10.1016/j.biocon.2010.02.009 (2010).
    Article  Google Scholar 
    2.
    Forman, R. T. & Alexander, L. E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 29, 207–231. https://doi.org/10.1146/annurev.ecolsys.29.1.207 (1998).
    Article  Google Scholar 

    3.
    Trombulak, S. C. & Frissell, C. A. Review of ecological effects of roads on terrestrial and aquatic communities. Conserv. Biol. 14, 18–30. https://doi.org/10.1046/j.1523-1739.2000.99084.x (2000).
    Article  Google Scholar 

    4.
    Fahrig, L. & Rytwinski, T. Effects of roads on animal abundance: an empirical review and synthesis. Ecology and Society 14, 21. https://doi.org/10.5751/ES-02815-140121 (2009).
    Article  Google Scholar 

    5.
    Clevenger, A. P., Chruszcz, B. & Gunson, K. Drainage culverts as habitat linkages and factors affecting passage by mammals. J. Appl. Ecol. 38, 1340–1349. https://doi.org/10.1016/S0006-3207(02)00127-1 (2001).
    Article  Google Scholar 

    6.
    McDonald, W. R. & St. Clair, C. C. The effects of artificial and natural barriers on the movement of small mammals in Banff National Park, Canada. Oikos 105, 397–407. https://doi.org/10.1111/j.0030-1299.2004.12640.x (2004).
    Article  Google Scholar 

    7.
    Shepard, D. B., Kuhns, A. R., Dreslik, M. J. & Phillips, C. A. Roads as barriers to animal movement in fragmented landscapes. Anim. Conserv. 11, 288–296. https://doi.org/10.1111/j.1469-1795.2008.00183.x (2008).
    Article  Google Scholar 

    8.
    McGregor, R. L., Bender, D. J. & Fahrig, L. Do small mammals avoid roads because of the traffic?. J. Appl. Ecol. 45, 117–123. https://doi.org/10.1111/j.1365-2664.2007.01403.x (2007).
    Article  Google Scholar 

    9.
    Hennessy, C., Tsai, C.-C., Anderson, S. J., Zollner, P. A. & Rhodes, O. E. Jr. What’s stopping you? Variability of interstate highways as barriers for four species of terrestrial rodents. Ecosphere 9, e02333. https://doi.org/10.1002/ecs2.2333 (2018).
    Article  Google Scholar 

    10.
    Glista, D. J., DeVault, T. L. & DeWoody, J. A. A review of mitigation measures for reducing wildlife mortality on roadways. Landsc. Urban Plan. 91, 1–7. https://doi.org/10.1016/j.landurbplan.2008.11.001 (2009).
    Article  Google Scholar 

    11.
    Yanes, M., Velasco, J. M. & Suarez, F. Permeability of roads and railways to vertebrates: the importance of culverts. Biol. Cons. 71, 217–222. https://doi.org/10.1016/0006-3207(94)00028-O (1995).
    Article  Google Scholar 

    12.
    Hunt, A., Dickens, H. & Whelan, R. Movement of mammals through tunnels under railway lines. Aust. Zool. 24, 89–93. https://doi.org/10.7882/AZ.1987.008 (1987).
    Article  Google Scholar 

    13.
    McDonald, W. R. & St. Clair, C. C. Elements that promote highway crossing structure use by small mammals in Banff National Park. J. Appl. Ecol. 41, 82–93. https://doi.org/10.1111/j.1365-2664.2004.00877.x (2004).
    Article  Google Scholar 

    14.
    Soanes, K. et al. Movement re-established but not restored: Inferring the effectiveness of road-crossing mitigation for a gliding mammal by monitoring use. Biol. Cons. 159, 434–441. https://doi.org/10.1016/j.biocon.2012.10.016 (2013).
    Article  Google Scholar 

    15.
    Clevenger, A. P. & Waltho, N. Performance indices to identify attributes of highway crossing structures facilitating movement of large mammals. Biol. Cons. 121, 453–464. https://doi.org/10.1016/j.biocon.2004.04.025 (2005).
    Article  Google Scholar 

    16.
    Ascensão, F. & Mira, A. Factors affecting culvert use by vertebrates along two stretches of road in southern Portugal. Ecol. Res. 22, 57–66. https://doi.org/10.1007/s11284-006-0004-1 (2007).
    Article  Google Scholar 

    17.
    Little, S. J., Harcourt, R. G. & Clevenger, A. P. Do wildlife passages act as prey-traps?. Biol. Cons. 107, 135–145. https://doi.org/10.1016/S0006-3207(02)00059-9 (2002).
    Article  Google Scholar 

    18.
    Mata, C., Bencini, R., Chambers, B. K. & Malo, J. E. Predator-Prey Interactions at Wildlife Crossing Structures: Between Myth and Reality 190–197 (Wiley, Hoboken, 2015).
    Google Scholar 

    19.
    Ford, A. T. & Clevenger, A. P. Validity of the prey-trap hypothesis for carnivore-ungulate interactions at wildlife-crossing structures. Conserv. Biol. 24, 1679–1685. https://doi.org/10.1111/j.1523-1739.2010.01564.x (2010).
    Article  PubMed  Google Scholar 

    20.
    Fischer, S., Oberhummer, E., Cunha-Saraiva, F., Gerber, N. & Taborsky, B. Smell or vision? The use of different sensory modalities in predator discrimination. Behav. Ecol. Sociobiol. 71, 143. https://doi.org/10.1007/s00265-017-2371-8 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    21.
    Dickman, C. R. & Doncaster, C. P. Responses of small mammals to red fox (Vulpes vulpes) odour. J. Zool. 204, 521–531. https://doi.org/10.1111/j.1469-7998.1984.tb02384.x (1984).
    Article  Google Scholar 

    22.
    Kats, L. B. & Dill, L. M. The scent of death: Chemosensory assessment of predation risk by prey animals. Écoscience 5, 361–394. https://doi.org/10.1080/11956860.1998.11682468 (1998).
    Article  Google Scholar 

    23.
    Caldwell, M. R. & Klip, J. M. K. Wildlife Interactions within Highway Underpasses. J. Wildl. Manag. 84, 227–236. https://doi.org/10.1002/jwmg.21801 (2020).
    Article  Google Scholar 

    24.
    Dupuis-Desormeaux, M. et al. Testing the Prey-Trap Hypothesis at Two Wildlife Conservancies in Kenya. PLoS ONE 10, e0139537. https://doi.org/10.1371/journal.pone.0139537 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    25.
    Soanes, K., Mitchell, B. & van der Ree, R. Quantifying predation attempts on arboreal marsupials using wildlife crossing structures above a major road. Aust. Mammal. https://doi.org/10.1071/am16044 (2017).
    Article  Google Scholar 

    26.
    Cote, J., Fogarty, S., Tymen, B., Sih, A. & Brodin, T. Personality-dependent dispersal cancelled under predation risk. Proc. R. Soc. B Biol. Sci. 280, 20132349. https://doi.org/10.1098/rspb.2013.2349 (2013).
    Article  Google Scholar 

    27.
    Wooster, D. & Sih, A. A review of the drift and activity responses of stream prey to predator presence. Oikos 73, 3–8. https://doi.org/10.2307/3545718 (1995).
    Article  Google Scholar 

    28.
    Clevenger, A. P. & Waltho, N. Factors influencing the effectiveness of wildlife underpasses in Banff National Park, Alberta, Canada. Conserv. Biol. 14, 47–56. https://doi.org/10.1046/j.1523-1739.2000.00099-085.x (2000).
    Article  Google Scholar 

    29.
    Martinig, A. R. & Bélanger-Smith, K. Factors influencing the discovery and use of wildlife passages for small fauna. J. Appl. Ecol. 53, 825–836. https://doi.org/10.1111/1365-2664.12616 (2016).
    Article  Google Scholar 

    30.
    Bédard, Y., Alain, E., Leblanc, Y., Poulin, M. A. & Morin, M. Conception et suivi des passages à petite faune sous la route 175 dans la réserve faunique des Laurentides. Can. Nat. 136, 66–71. https://doi.org/10.7202/1009109ar (2012).
    Article  Google Scholar 

    31.
    Reed, D. F. & Ward, A. L. in Routes et Faune Sauvage 285–293 (Service d’Etudes Techniques de Routes et Autoroutes, 1985).

    32.
    Naughton, D. The Natural History of Canadian Mammals (University of Toronto Press, Toronto, 2012).
    Google Scholar 

    33.
    Smith, C. C. The adaptive nature of social organization in the genus of three squirrels Tamiasciurus. Ecol. Monogr. 38, 31–64. https://doi.org/10.2307/1948536 (1968).
    Article  Google Scholar 

    34.
    Hannon, S. J. & Cotterill, S. E. Nest predation in aspen woodlots in an agricultural area in Alberta: the enemy from within. Auk 115, 16–25. https://doi.org/10.2307/4089107 (1998).
    Article  Google Scholar 

    35.
    Martin, T. E. On the advantage of being different: nest predation and the coexistence of bird species. Proc. Natl. Acad. Sci. U.S.A. 85, 2196–2199. https://doi.org/10.1073/pnas.85.7.2196 (1988).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    36.
    Pelech, S. A., Smith, J. N. M. & Boutin, S. A predator’s perspective of nest predation: predation by red squirrels is learned, not incidental. Oikos 119, 841–851. https://doi.org/10.1111/j.1600-0706.2009.17786.x (2010).
    Article  Google Scholar 

    37.
    Tewksbury, J. J., Hejl, S. J. & Martin, T. E. Breeding productivity does not decline with increasing fragmentation in a western landscape. Ecology 79, 2890–2903. https://doi.org/10.1890/0012-9658(1998)079[2890:BPDNDW]2.0.CO;2 (1998).
    Article  Google Scholar 

    38.
    Ball, J. R., Bayne, E. M. & Machtans, C. Tundra to tropics: connecting birds, habitats and people.In Proceedings of the 4th International Partners in Flight Conference (eds T D Rich, C Arizmendi, D Demarest, & C Thompson) 37–44 (2009).

    39.
    Ford, A. T., Clevenger, A. P. & Bennett, A. Comparison of methods of monitoring wildlife crossing-structures on highways. J. Wildl. Manag. 73, 1213–1222. https://doi.org/10.2193/2008-387 (2009).
    Article  Google Scholar 

    40.
    O’Connell, A. F. Jr. et al. Estimating site occupancy and detection probability parameters for meso- and large mammals in a coastal ecosystem. J. Wildl. Manag. 70, 1625–1633. https://doi.org/10.2193/0022-541X(2006)70[1625:ESOADP]2.0.CO;2 (2006).
    Article  Google Scholar 

    41.
    Popescu, V. D., Valpine, P. & Sweitzer, R. A. Testing the consistency of wildlife data types before combining them: the case of camera traps and telemetry. Ecol. Evol. 4, 933–943. https://doi.org/10.1002/ece3.997 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    42.
    R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org (2019).

    43.
    Hurst, J. L., Robertson, D. H. L., Tolladay, U. & Beynon, R. J. Proteins in urine scent marks of male house mice extend the longevity of olfactory signals. Anim. Behav. 55, 1289–1297. https://doi.org/10.1006/anbe.1997.0650 (1998).
    CAS  Article  PubMed  Google Scholar 

    44.
    Koivula, M. & Korpimäk, I. E. Do scent marks increase predation risk of microtine rodents?. Oikos 95, 275–281. https://doi.org/10.1034/j.1600-0706.2001.950209.x (2001).
    Article  Google Scholar 

    45.
    Cheveau, M., Drapeau, P., Imbeau, L. & Bergeron, Y. Owl winter irruptions as an indicator of small mammal population cycles in the boreal forest of eastern North America. Oikos 107, 190–198. https://doi.org/10.1111/j.0030-1299.2004.13285.x (2001).
    Article  Google Scholar 

    46.
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400. https://doi.org/10.3929/ethz-b-000240890 (2017).
    Article  Google Scholar 

    47.
    Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113. https://doi.org/10.1111/j.2041-210X.2010.00012.x (2010).
    Article  Google Scholar 

    48.
    Lenth, R. V. Least-squares means: the RPackagelsmeans. J. Stat. Softw. https://doi.org/10.18637/jss.v069.i01 (2016).
    Article  Google Scholar 

    49.
    Boutin, S. et al. Anticipatory reproduction and population growth in seed predators. Science 314, 1928–1930. https://doi.org/10.1126/science.1135520 (2006).
    ADS  CAS  Article  PubMed  Google Scholar 

    50.
    Severud, W. J., Belant, J. L., Bruggink, J. G. & Windels, S. K. Predator cues reduce American beaver use of foraging trails. Human Wildl. Interact. 5, 296–305 (2011).
    Google Scholar 

    51.
    Shaffery, H. M. & Relyea, R. A. Dissecting the smell of fear from conspecific and heterospecific prey: investigating the processes that induce anti-predator defenses. Oecologia 180, 55–65. https://doi.org/10.1007/s00442-015-3444-x (2016).
    ADS  Article  PubMed  Google Scholar 

    52.
    Ebensperger, L. A. A review of the evolutionary causes of rodent group-living. Acta Theriologica 46, 115–144. https://doi.org/10.1007/BF03192423 (2001).
    Article  Google Scholar 

    53.
    Hamilton, W. D. Geometry for the selfish herd. J. Theor. Biol. 31, 295–311. https://doi.org/10.1016/0022-5193(71)90189-5 (1971).
    CAS  Article  Google Scholar 

    54.
    Stensland, E. V. A., Angerbjörn, A. & Berggren, P. E. R. Mixed species groups in mammals. Mammal Rev. 33, 205–223. https://doi.org/10.1046/j.1365-2907.2003.00022.x (2003).
    Article  Google Scholar 

    55.
    Harris, I. M., Mills, H. R. & Bencini, R. Owl winter irruptions as an indicator of small mammal population cycles in the boreal forest of eastern North America. Wildl. Res. 37, 127–133. https://doi.org/10.1071/wr09040 (2010).
    Article  Google Scholar 

    56.
    Orrock, J. L. & Fletcher, R. J. Jr. An island-wide predator manipulation reveals immediate and long-lasting matching of risk by prey. Proc. Biol. Sci. 281, 20140391. https://doi.org/10.1098/rspb.2014.0391 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    57.
    Schmidt, K. & Kuijper, D. P. J. A “death trap” in the landscape of fear. Mammal Res. 60, 275–284. https://doi.org/10.1007/s13364-015-0229-x (2015).
    Article  Google Scholar 

    58.
    Sonerud, G. A. Nest Hole Shift in Tengmalm’s Owl Aegolius funereus as Defence Against Nest Predation Involving Long-Term Memory in the Predator. J. Anim. Ecol. 54, 179–192. https://doi.org/10.2307/4629 (1985).
    Article  Google Scholar 

    59.
    Tinbergen, N., Impekoven, M. & Franck, D. An Experiment on Spacing-Out as a Defence against Predation. Behaviour 28, 307–321. https://doi.org/10.1163/156853967X00064 (1967).
    Article  Google Scholar 

    60.
    Angelstam, P. Predation on ground-nesting birds’ nests in relation to predator densities and habitat edge. Oikos 47, 365–373. https://doi.org/10.2307/3565450 (1986).
    Article  Google Scholar 

    61.
    Schmidt, K. A. & Whelan, C. J. Nest predation on woodland songbirds: when is nest predation density dependent?. Oikos 87, 65–74. https://doi.org/10.2307/3546997 (1999).
    Article  Google Scholar 

    62.
    Vickery, P. D., Hunter, M. L. Jr. & Wells, J. V. Evidence of incidental nest predation and its effects on nests of threatened grassland birds. Oikos 63, 281–288. https://doi.org/10.2307/3545389 (1992).
    Article  Google Scholar 

    63.
    Martinig, A. R. & McLaren, A. A. D. Vegetated highway medians as foraging habitat for small mammals. Wildl. Soc. Bull. 43, 317–322. https://doi.org/10.1002/wsb.967 (2019).
    Article  Google Scholar  More

  • in

    Earth’s soil harbours ancient carbon

    Affiliations

    Department of Ecology and Evolutionary Biology and Kansas Biological Survey, University of Kansas, Lawrence, KS, USA
    Sharon A. Billings & Lígia F. T. de Souza

    Authors
    Sharon A. Billings

    Lígia F. T. de Souza

    Corresponding author
    Correspondence to Sharon A. Billings. More

  • in

    DNA demethylases are required for myo-inositol-mediated mutualism between plants and beneficial rhizobacteria

    1.
    Lugtenberg, L. & Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556 (2009).
    CAS  PubMed  Google Scholar 
    2.
    Nobori, T., Mine, A. & Tsuda, K. Molecular networks in plant–pathogen holobiont. FEBS Lett. 592, 1937–1953 (2018).
    CAS  PubMed  Google Scholar 

    3.
    Sasse, J., Martinoia, E. & Northen, T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 23, 25–41 (2018).
    CAS  PubMed  Google Scholar 

    4.
    Zhang, H., Lang, Z. & Zhu, J.-K. Dynamics and function of DNA methylation in plants. Nat. Rev. Mol. Cell Biol. 19, 489–506 (2018).
    CAS  PubMed  Google Scholar 

    5.
    Lang, Z. et al. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proc. Natl Acad. Sci. USA 114, E4511–E4519 (2017).
    CAS  PubMed  Google Scholar 

    6.
    Liu, R. et al. A DEMETER-like DNA demethylase governs tomato fruit ripening. Proc. Natl Acad. Sci. USA 112, 10804–10809 (2015).
    CAS  PubMed  Google Scholar 

    7.
    Zhu, J.-K. Active DNA demethylation mediated by DNA glycosylases. Annu. Rev. Genet. 43, 143–166 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Le, T.-N. et al. DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. Genome Biol. 15, 458 (2014).
    PubMed  PubMed Central  Google Scholar 

    9.
    Qian, W. et al. A histone acetyltransferase regulates active DNA demethylation in Arabidopsis. Science 336, 1445–1448 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    10.
    Vilchez, J. I. et al. Genome sequence of Bacillus megaterium strain YC4-R4, a plant growth-promoting rhizobacterium isolated from a high-salinity environment. Genome Announc. 6, e00527-18 (2018).
    PubMed  PubMed Central  Google Scholar 

    11.
    Onodera, Y. et al. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120, 613–622 (2005).
    CAS  PubMed  Google Scholar 

    12.
    Wierzbicki, A. T., Haag, J. R. & Pikaard, C. S. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135, 635–648 (2008).
    CAS  PubMed  PubMed Central  Google Scholar 

    13.
    Pini, F. et al. Bacterial biosensors for in vivo spatiotemporal mapping of root secretion. Plant Physiol. 174, 1289–1306 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Sannino, A., Demitri, C. & Madaghiele, M. Biodegradable cellulose-based hydrogels: design and applications. Materials 2, 353–373 (2009).
    CAS  PubMed Central  Google Scholar 

    15.
    Torabinejad, J., Donahue, J. L., Gunesekera, B. N., Allen-Daniels, M. J. & Gillaspy, G. E. VTC4 is a bifunctional enzyme that affects myoinositol and ascorbate biosynthesis in plants. Plant Physiol. 150, 951–961 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    16.
    Morcillo, R. J. et al. Rhizobacterium-derived diacetyl modulates plant immunity in a phosphate-dependent manner. EMBO J. 39, e102602 (2019).
    PubMed  PubMed Central  Google Scholar 

    17.
    Vilchez, J. I. et al. Complete genome sequence of Bacillus megaterium strain TG1-E1, a plant drought tolerance-enhancing bacterium. Microbiol. Resour. Announc. 7, e00842-18 (2018).
    PubMed  PubMed Central  Google Scholar 

    18.
    Bais, H. P., Fall, R. & Vivanco, J. M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134, 307–319 (2004).
    CAS  PubMed  PubMed Central  Google Scholar 

    19.
    Yu, A. et al. Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc. Natl Acad. Sci. USA 110, 2389–2394 (2013).
    CAS  PubMed  Google Scholar 

    20.
    López Sánchez, A., Stassen, J. H., Furci, L., Smith, L. M. & Ton, J. The role of DNA (de)methylation in immune responsiveness of Arabidopsis. Plant J. Cell Mol. Biol. 88, 361–374 (2016).
    Google Scholar 

    21.
    Ma, L. et al. Arabidopsis FHY3 and FAR1 regulate light-induced myo-inositol biosynthesis and oxidative stress responses by transcriptional activation of MIPS1. Mol. Plant 9, 541–557 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    22.
    Glawischnig, E. Camalexin. Phytochemistry 68, 401–406 (2007).
    CAS  PubMed  Google Scholar 

    23.
    Tang, K., Lang, Z., Zhang, H. & Zhu, J.-K. The DNA demethylase ROS1 targets genomic regions with distinct chromatin modifications. Nat. Plants 2, 16169 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Bacete, L., Mélida, H., Miedes, E. & Molina, A. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. Plant J. Cell Mol. Biol. 93, 614–636 (2018).
    CAS  Google Scholar 

    25.
    Schulze-Lefert, P. Knocking on the heaven’s wall: pathogenesis of and resistance to biotrophic fungi at the cell wall. Curr. Opin. Plant Biol. 7, 377–383 (2004).
    CAS  PubMed  Google Scholar 

    26.
    Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838 (2013).
    CAS  PubMed  Google Scholar 

    27.
    Busby, P. E. et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 15, e2001793 (2017).
    PubMed  PubMed Central  Google Scholar 

    28.
    Finkel, O. M., Castrillo, G., Herrera Paredes, S., Salas González, I. & Dangl, J. L. Understanding and exploiting plant beneficial microbes. Curr. Opin. Plant Biol. 38, 155–163 (2017).
    PubMed  PubMed Central  Google Scholar 

    29.
    Martin, F. M., Uroz, S. & Barker, D. G. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science 356, eaad4501 (2017).
    PubMed  Google Scholar 

    30.
    Gillaspy, G. E. The cellular language of myo-inositol signaling. New Phytol. 192, 823–839 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Yoshida, K. I., Aoyama, D., Ishio, I., Shibayama, T. & Fujita, Y. Organization and transcription of the myo-inositol operon, iol, of Bacillus subtilis. J. Bacteriol. 179, 4591–4598 (1997).
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Vives-Peris, V., de Ollas, C, Gómez-Cadenas, A. & Pérez-Clemente, R. M. Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep. 39, 3–17 (2020).
    CAS  PubMed  Google Scholar 

    33.
    Lung, S. C. et al. Phytase activity in tobacco (Nicotiana tabacum) root exudates is exhibited by a purple acid phosphatase. Phytochemistry 69, 365–373 (2008).
    CAS  PubMed  Google Scholar 

    34.
    Jones, P., Garcia, B. J., Furches, A., Tuskan, G. A. & Jacobson, D. Plant host-associated mechanisms for microbial selection. Front. Plant Sci. 10, 862 (2019).
    PubMed  PubMed Central  Google Scholar 

    35.
    Kohler, P. R. A., Zheng, J. Y., Schoffers, E. & Rossbach, S. Inositol catabolism, a key pathway in Sinorhizobium meliloti for competitive host nodulation. Appl. Environ. Microbiol. 76, 7972–7980 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Donahue, J. L. et al. The Arabidopsis thaliana myo-inositol 1-phosphate synthase1 gene is required for myo-inositol synthesis and suppression of cell death. Plant Cell 22, 888–903 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    37.
    Kanter, U. et al. The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursors for cell-wall matrix polysaccharides. Planta 221, 243–254 (2005).
    CAS  PubMed  Google Scholar 

    38.
    Lei, M. et al. Regulatory link between DNA methylation and active demethylation in Arabidopsis. Proc. Natl Acad. Sci. USA 112, 3553–3557 (2015).
    CAS  PubMed  Google Scholar 

    39.
    Williams, B. P., Pignatta, D., Henikoff, S. & Gehring, M. Methylation-sensitive expression of a DNA demethylase gene serves as an epigenetic rheostat. PLoS Genet. 11, e1005142 (2015).
    PubMed  PubMed Central  Google Scholar 

    40.
    Kawakatsu, T. et al. Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell 166, 492–505 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Satgé, C. et al. Reprogramming of DNA methylation is critical for nodule development in Medicago truncatula. Nat. Plants 2, 16166 (2016).
    PubMed  Google Scholar 

    42.
    Huang, A. C. et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364, eaau6389 (2019).
    CAS  PubMed  Google Scholar 

    43.
    Stringlis, I. A. et al. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc. Natl Acad. Sci. USA 115, E5213–E5222 (2018).
    CAS  PubMed  Google Scholar 

    44.
    Voges, M. J. E. E. E., Bai, Y., Schulze-Lefert, P. & Sattely, E. S. Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proc. Natl Acad. Sci. USA 116, 12558–12565 (2019).
    PubMed  Google Scholar 

    45.
    Hamon, M. A. & Lazazzera, B. A. The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol. Microbiol. 42, 1199–1209 (2001).
    CAS  PubMed  Google Scholar 

    46.
    López, A. & Alippi, A. Phenotypic and genotypic diversity of Bacillus cereus isolates recovered from honey. Int. J. Food Microbiol. 117, 175–184 (2007).
    PubMed  Google Scholar 

    47.
    Heras, J., Domínguez, C., Mata, E. & Pascual, V. GelJ—a tool for analyzing DNA fingerprint gel images. BMC Bioinformatics 16, 270 (2015).
    PubMed  PubMed Central  Google Scholar 

    48.
    Hu, L. et al. Root exudate metabolites drive plant–soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9, 2738 (2018).
    PubMed  PubMed Central  Google Scholar 

    49.
    Walker, T. S., Bais, H. P., Grotewold, E. & Vivanco, J. M. Root exudation and rhizosphere biology. Plant Physiol. 132, 44–51 (2003).
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N. & Willmitzer, L. Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry. Plant J. Cell Mol. Biol. 23, 131–142 (2000).
    CAS  Google Scholar 

    51.
    Barsch, A., Carvalho, H. G., Cullimore, V. J. & Niehaus, K. GC–MS based metabolite profiling implies three interdependent ways of ammonium assimilation in Medicago truncatula root nodules. J. Biotechnol. 127, 79–83 (2006).
    CAS  PubMed  Google Scholar 

    52.
    Gorzolka, K., Lissel, M., Kessler, N., Loch-Ahring, S. & Niehaus, K. Metabolite fingerprinting of barley whole seeds, endosperms, and embryos during industrial malting. J. Biotechnol. 159, 177–187 (2012).
    CAS  PubMed  Google Scholar 

    53.
    Kopka, J. et al. GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21, 1635–1638 (2005).
    CAS  PubMed  Google Scholar 

    54.
    Ge, S. X., Son, E. W. & Yao, R. iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics 19, 534 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
    CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Maere, S., Heymans, K. & Kuiper, M. BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in biological networks. Bioinformatics 21, 3448–3449 (2005).
    CAS  PubMed  Google Scholar 

    57.
    Xi, Y. & Li, W. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics 10, 232 (2009).
    PubMed  PubMed Central  Google Scholar 

    58.
    Cox, M. P., Peterson, D. A. & Biggs, P. J. SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 11, 485 (2010).
    PubMed  PubMed Central  Google Scholar 

    59.
    Juhling, F. et al. Metilene: fast and sensitive calling of differentially methylated regions from bisulfite sequencing data. Genome Res. 26, 256–262 (2016).
    PubMed  PubMed Central  Google Scholar  More

  • in

    Impacts of international trade on global sustainable development

    1.
    Global Indicator Framework for the Sustainable Development Goals and Targets of the 2030 Agenda for Sustainable Development Report No. A/RES/71/313 (United Nations Statistics Division, 2017).
    2.
    Steen-Olsen, K., Weinzettel, J., Cranston, G., Ercin, A. E. & Hertwich, E. G. Carbon, land, and water footprint accounts for the European Union: consumption, production, and displacements through international trade. Environ. Sci. Technol. 46, 10883–10891 (2012).
    CAS  Google Scholar 

    3.
    Blanco, E. & Razzaque, J. Ecosystem services and human well-being in a globalized world: assessing the role of law. Hum. Rights Q. 31, 692–720 (2009).
    Google Scholar 

    4.
    Dalin, C., Konar, M., Hanasaki, N., Rinaldo, A. & Rodriguez-Iturbe, I. Evolution of the global virtual water trade network. Proc. Natl Acad. Sci. USA 109, 5989–5994 (2012).
    CAS  Google Scholar 

    5.
    Feng, K. et al. Outsourcing CO2 within China. Proc. Natl Acad. Sci. USA 110, 11654–11659 (2013).
    CAS  Google Scholar 

    6.
    Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).
    CAS  Google Scholar 

    7.
    Liu, J. Forest sustainability in China and implications for a telecoupled world. Asia Pac. Policy Stud. 1, 230–250 (2014).
    Google Scholar 

    8.
    Smith, R. D. Trade and public health: facing the challenges of globalisation. J. Epidemiol. Community Health 60, 650–651 (2006).
    Google Scholar 

    9.
    Laboy-Nieves, E. N., Schaffner, F. C., Abdelhadi, A. & Goosen, M. F. A. Environmental Management, Sustainable Development and Human Health (CRC Press, 2009).

    10.
    Givens, J. E., Huang, X. & Jorgenson, A. K. Ecologically unequal exchange: a theory of global environmental injustice. Sociol. Compass 13, e12693 (2019).
    Google Scholar 

    11.
    Asheim, G. B. Hartwick’s rule in open economies. Can. J. Econ. 19, 395–402 (1986).
    Google Scholar 

    12.
    Proops, J. L., Atkinson, G., Schlotheim, B. F. V. & Simon, S. International trade and the sustainability footprint: a practical criterion for its assessment. Ecol. Econ. 28, 75–97 (1999).
    Google Scholar 

    13.
    Atkinson, G., Agarwala, M. & Muñoz, P. in Inclusive Wealth Report 2012: Measuring Progress Toward Sustainability (eds UNU-IHDP & UNEP) 87–117 (Cambridge Univ. Press, 2012).

    14.
    Pendrill, F., Persson, U. M., Godar, J. & Kastner, T. Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett. 14, 055003 (2019).
    Google Scholar 

    15.
    Harris, J. & White, A. The sociology of global health: a literature review. Soc. Dev. 5, 9–30 (2019).
    Google Scholar 

    16.
    Anderson, E. W. International Boundaries: A Geopolitical Atlas (Routledge, 2003).

    17.
    Colson, D. A. & Smith, R. W. International Maritime Boundaries Vol. 5 (Martinus Nijhoff, 2005).

    18.
    Liu, J. et al. Systems integration for global sustainability. Science 347, 1258832 (2015).
    Google Scholar 

    19.
    Liu, J. et al. Framing sustainability in a telecoupled world. Ecol. Soc. 18, 26 (2013).
    CAS  Google Scholar 

    20.
    Liu, J. Integration across a metacoupled world. Ecol. Soc. 22, 29 (2017).
    Google Scholar 

    21.
    Gao, L. & Bryan, B. A. Finding pathways to national-scale land-sector sustainability. Nature 544, 217–222 (2017).
    CAS  Google Scholar 

    22.
    Chaudhary, A., Gustafson, D. & Mathys, A. Multi-indicator sustainability assessment of global food systems. Nat. Commun. 9, 848 (2018).
    Google Scholar 

    23.
    Singh, R. K., Murty, H. R., Gupta, S. K. & Dikshit, A. K. An overview of sustainability assessment methodologies. Ecol. Indic. 15, 281–299 (2012).
    Google Scholar 

    24.
    Moran, D. D., Wackernagel, M., Kitzes, J. A., Goldfinger, S. H. & Boutaud, A. Measuring sustainable development—nation by nation. Ecol. Econ. 64, 470–474 (2008).
    Google Scholar 

    25.
    Siche, J. R., Agostinho, F., Ortega, E. & Romeiro, A. Sustainability of nations by indices: comparative study between environmental sustainability index, ecological footprint and the emergy performance indices. Ecol. Econ. 66, 628–637 (2008).
    Google Scholar 

    26.
    Cord, A. F., Seppelt, R. & Turner, W. Monitor ecosystem services from space. Nature 525, 33 (2015).
    CAS  Google Scholar 

    27.
    Chen, B. et al. Global land–water nexus: agricultural land and freshwater use embodied in worldwide supply chains. Sci. Total Environ. 613–614, 931–943 (2018).
    Google Scholar 

    28.
    Oita, A. et al. Substantial nitrogen pollution embedded in international trade. Nat. Geosci. 9, 111–115 (2016).
    CAS  Google Scholar 

    29.
    Wiedmann, T. O. et al. The material footprint of nations. Proc. Natl Acad. Sci. USA 112, 6271–6276 (2015).
    CAS  Google Scholar 

    30.
    Jorgenson, A. Environment, development, and ecologically unequal exchange. Sustainability 8, 227 (2016).
    Google Scholar 

    31.
    World Bank Open Data (World Bank Group, 2017); https://data.worldbank.org/

    32.
    Meyfroidt, P., Lambin, E. F., Erb, K.-H. & Hertel, T. W. Globalization of land use: distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 5, 438–444 (2013).
    Google Scholar 

    33.
    Peters, G. P., Minx, J. C., Weber, C. L. & Edenhofer, O. Growth in emission transfers via international trade from 1990 to 2008. Proc. Natl Acad. Sci. USA 108, 8903–8908 (2011).
    CAS  Google Scholar 

    34.
    Le Quéré, C. et al. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2, 831–836 (2009).
    Google Scholar 

    35.
    Kanemoto, K., Moran, D., Lenzen, M. & Geschke, A. International trade undermines national emission reduction targets: new evidence from air pollution. Glob. Environ. Change 24, 52–59 (2014).
    Google Scholar 

    36.
    Weinzettel, J., Hertwich, E. G., Peters, G. P., Steen-Olsen, K. & Galli, A. Affluence drives the global displacement of land use. Glob. Environ. Change 23, 433–438 (2013).
    Google Scholar 

    37.
    Afionis, S., Sakai, M., Scott, K., Barrett, J. & Gouldson, A. Consumption‐based carbon accounting: does it have a future? WIREs Clim. Change 8, e438 (2017).
    Google Scholar 

    38.
    Liu, J. et al. Spillover systems in a telecoupled Anthropocene: typology, methods, and governance for global sustainability. Curr. Opin. Environ. Sustain. 33, 58–69 (2018).
    Google Scholar 

    39.
    Vandenbergh, M. P. & Gilligan, J. M. Beyond Politics: The Private Governance Response to Climate Change (Cambridge Univ. Press, 2017).

    40.
    Sachs, J., Schmidt-Traub, G., Kroll, C., Durand-Delacre, D. & Teksoz, K. SDG Index and Dashboards Report 2017 (Bertelsmann Stiftung and SDSN, 2017).

    41.
    Timmer, M. P., Dietzenbacher, E., Los, B., Stehrer, R. & Vries, G. J. An illustrated user guide to the world input–output database: the case of global automotive production. Rev. Int. Econ. 23, 575–605 (2015).
    Google Scholar 

    42.
    Kander, A., Jiborn, M., Moran, D. D. & Wiedmann, T. O. National greenhouse-gas accounting for effective climate policy on international trade. Nat. Clim. Change 5, 431–435 (2015).
    Google Scholar 

    43.
    Zhong, W., An, H., Fang, W., Gao, X. & Dong, D. Features and evolution of international fossil fuel trade network based on value of emergy. Appl. Energy 165, 868–877 (2016).
    Google Scholar 

    44.
    Genty, A., Arto, I. & Neuwahl, F. Final Database of Environmental Satellite Accounts: Technical Report on their Compilation WIOD Deliverable 4.6, Documentation (WIOD, 2012); https://go.nature.com/3g9Bb05

    45.
    Report of the Inter-agency and Expert Group on Sustainable Development Goal Indicators (UN, 2016); https://unstats.un.org/unsd/statcom/47th-session/documents/2016-2012-IAEG-SDGs-E.pdf

    46.
    Zhao, X. et al. Physical and virtual water transfers for regional water stress alleviation in China. Proc. Natl Acad. Sci. USA 112, 1031–1035 (2015).
    CAS  Google Scholar 

    47.
    Wood, S. A., Smith, M. R., Fanzo, J., Remans, R. & DeFries, R. S. Trade and the equitability of global food nutrient distribution. Nat. Sustain. 1, 34–37 (2018).
    Google Scholar 

    48.
    Yang, H. & Zehnder, A. “Virtual water”: an unfolding concept in integrated water resources management. Water Resour. Res. 43, W12301 (2007).
    Google Scholar 

    49.
    Allan, J. A. Virtual water: a strategic resource. Ground Water 36, 545–547 (1998).
    CAS  Google Scholar 

    50.
    Xu, Z. et al. Evolution of multiple global virtual material flows. Sci. Total Environ. 658, 659–668 (2019).
    CAS  Google Scholar 

    51.
    Xu, Z. et al. Assessing progress towards sustainable development over space and time. Nature 577, 74–78 (2020).
    CAS  Google Scholar 

    52.
    Handbook on Constructing Composite Indicators: Methodology and User Guide (Organisation for Economic Co-operation and Development, Joint Research Centre, 2016).

    53.
    Fullman, N. et al. Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016. Lancet 390, 1423–1459 (2017).
    Google Scholar 

    54.
    Schmidt-Traub, G., Kroll, C., Teksoz, K., Durand-Delacre, D. & Sachs, J. D. National baselines for the Sustainable Development Goals assessed in the SDG Index and Dashboards. Nat. Geosci. 10, 547–555 (2017).
    CAS  Google Scholar 

    55.
    Sachs, J., Schmidt-Traub, G., Kroll, C., Lafortune, G. & Fuller, G. Sustainable Development Report 2019 (Bertelsmann Stiftung and SDSN, 2019).

    56.
    Human Development Data (UNDP, 2017); http://hdr.undp.org/en/data

    57.
    Nielsen, L. Classifications of Countries Based on Their Level of Development: How It Is Done and How It Could Be Done IMF Working Paper (IMF, 2011).

    58.
    Timmer, M. P., Dietzenbacher, E., Los, B., Stehrer, R. & de Vries, G. J. An illustrated user guide to the world input–output database: the case of global automotive production. Rev. Int. Econ. 23, 575–605 (2015).
    Google Scholar 

    59.
    Indicators and a Monitoring Framework for the Sustainable Development Goals: Launching a Data Revolution for the SDGs (SDSN, 2015).

    60.
    R Core Team R: A Language and Environment for Statistical Computing v.3.4.4 (R Foundation for Statistical Computing, 2018). More

  • in

    To gel or not to gel: differential expression of carrageenan-related genes between the gametophyte and tetasporophyte life cycle stages of the red alga Chondrus crispus

    1.
    Butterfield, N. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26, 386–404 (2000).
    Article  Google Scholar 
    2.
    Gibson, T. M. et al. Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46, 135–138. https://doi.org/10.1130/G39829.1 (2018).
    ADS  CAS  Article  Google Scholar 

    3.
    Bengtson, S., Sallstedt, T., Belivanova, V. & Whitehouse, M. Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLoS Biol. 15, 2000735. https://doi.org/10.1371/journal.pbio.2000735 (2017).
    CAS  Article  Google Scholar 

    4.
    Popper, Z. A. et al. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu. Rev. Plant Biol. 62, 567–590 (2011).
    CAS  Article  Google Scholar 

    5.
    Potin, P., Bouarab, K., Kupper, F. & Kloareg, B. Oligosaccharide recognition signals and defence reactions in marine plant-microbe interactions. Curr. Opin. Microbiol. 2, 276–283. https://doi.org/10.1016/S1369-5274(99)80048-4 (1999).
    CAS  Article  PubMed  Google Scholar 

    6.
    Bouarab, K., Potin, P., Correa, J. & Kloareg, B. Sulfated oligosaccharides mediate the interaction between a marine red alga and its green algal pathogenic endophyte. Plant Cell 11, 1635–1650 (1999).
    CAS  Article  Google Scholar 

    7.
    Genicot-Joncour, S. et al. The cyclization of the 3,6-anhydro-galactose ring of iota-carrageenan is catalyzed by two D-galactose-2,6-sulfurylases in the red alga Chondrus crispus. Plant Physiol. 151, 1609–1616 (2009).
    Article  Google Scholar 

    8.
    Hehemann, J. H. et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908–912. https://doi.org/10.1038/nature08937 (2010).
    ADS  CAS  Article  PubMed  Google Scholar 

    9.
    Ciancia, M., Matulewicz, M. C. & Cerezo, A. S. A L-galactose-containing carrageenan from cystocarpic Gigartina skottsbergii. Phytochemistry 45, 1009–1013. https://doi.org/10.1016/S0031-9422(97)00060-5 (1997).
    CAS  Article  Google Scholar 

    10.
    Stortz, C. A., Cases, M. R. & Cerezo, A. S. The system of agaroids and carrageenans from the soluble fraction of the tetrasporic stage of the red seaweed Iridaea undulosa. Carbohyd. Polym. 34, 61–65. https://doi.org/10.1016/S0144-8617(97)00097-0 (1997).
    CAS  Article  Google Scholar 

    11.
    Takano, R., Shiomoto, K., Kamei, K., Hara, S., & Hirase, S (2003) Occurrence of carrageenan structure in an agar from the red seaweed Digenea simplex (Wulfen) C. agardh (Rhodomelaceae, Ceramiales) with a short review of carrageenan-agarocolloid hybrid in the florideophycidae. Bot. Mar. 46, 142–150. https://doi.org/10.1515/Bot.2003.015.

    12.
    Navarro, D. A. & Stortz, C. A. Determination of the configuration of 3,6-anhydrogalactose and cyclizable alpha-galactose 6-sulfate units in red seaweed galactans. Carbohydr. Res. 338, 2111–2118. https://doi.org/10.1016/S0008-6215(03)00345-8 (2003).
    CAS  Article  PubMed  Google Scholar 

    13.
    Chen, L.C.-M. & Mclachla, J. Life history of Chondrus crispus in culture. Can. J. Bot. 50, 1055–2000. https://doi.org/10.1139/b72-129 (1972).
    Article  Google Scholar 

    14.
    Krueger-Hadfield, S. A., Collen, J., Daguin-Thiebaut, C. & Valero, M. Genetic population structure and mating system in Chondrus crispus (Rhodophyta). J. Phycol. 47, 440–450. https://doi.org/10.1111/j.1529-8817.2011.00995.x (2011).
    Article  PubMed  Google Scholar 

    15.
    Fournet, I., Deslandes, E. & Floch, J. Y. Iridescence – a useful criterion to sort gametophytes from sporophytes in the red alga Chondrus crispus. J. Appl. Phycol. 5, 535–537. https://doi.org/10.1007/Bf02182512 (1993).
    Article  Google Scholar 

    16.
    Chen, L. C. M., Mclachla, J., Neish, A. C. & Shacklock, P. F. Ratio of kappa-carrageenan to lambda-carrageenan in nuclear phases of Rhodophycean algae, Chondrus crispus and Gigartina stellata. J. Mar. Biol. Assoc. UK 53, 11–16. https://doi.org/10.1017/S0025315400056599 (1973).
    CAS  Article  Google Scholar 

    17.
    McCandless, E., Craigie, J. & Walter, J. Carrageenans in the gametophytic and sporophytic stages of Chondrus crispus. Planta 112, 201–212 (1973).
    CAS  Article  Google Scholar 

    18.
    Pereira, L. Population studies and carrageenan properties in eight Gigartinales (Rhodophyta) from Western Coast of Portugal. Sci. World J https://doi.org/10.1155/2013/939830 (2013).
    Article  Google Scholar 

    19.
    Chopin, T. & Floc’h, J.-Y. Eco-physiological and biochemical study of two of the most contrasting forms of Chondrus crispus (Rhodophyta, Gigartinales). Mar. Ecol. Prog. Ser. 81, 185–195 (1992).
    ADS  Article  Google Scholar 

    20.
    Tasende, M. G., Cid, M. & Fraga, M. I. Spatial and temporal variations of Chondrus crispus (Gigartinaceae, Rhodophyta) carrageenan content in natural populations from Galicia (NW Spain). J. Appl. Phycol. 24, 941–951. https://doi.org/10.1007/s10811-011-9715-y (2012).
    Article  Google Scholar 

    21.
    Collen, J. et al. Chondrus crispus – A present and historical model organism for red seaweeds. Adv. Bot. Res. 71, 53–89. https://doi.org/10.1016/B978-0-12-408062-1.00003-2 (2014).
    Article  Google Scholar 

    22.
    Correa, J. A. & Mclachlan, J. L. Endophytic algae of Chondrus crispus (Rhodophyta). 3. Host specificity. J. Phycol. 27, 448–459. https://doi.org/10.1111/j.0022-3646.1991.00448.x (1991).
    Article  Google Scholar 

    23.
    Krueger-Hadfield, S. A. Population structure in the haploid-diploid red alga Chondrus crispus: mating system, genetic differentiation and epidemiology. Doctoral thesis, UPMC Paris 6 with l’Universidad católica de Chile (2011).

    24.
    Destombe, C., Valero, M., Vernet, P. & Couvet, D. What controls haploid–diploid ratio in the red alga Gracilaria verrucosa. . J. Evol. Biol. 2, 317–338. https://doi.org/10.1046/j.1420-9101.1989.2050317.x (1989).
    Article  Google Scholar 

    25.
    Thornber, C. S. & Gaines, S. D. Population demographics in species with biphasic life cycles. Ecology 85, 1661–1674. https://doi.org/10.1890/02-4101 (2004).
    Article  Google Scholar 

    26.
    Craigie, J. & Wong, H. Carrageenan biosynthesis. Proceedings of the International Seaweed Symposium, 369–377 (1979).

    27.
    Ficko-Blean, E., Hervé, C. & Michel, G. Sweet and sour sugars from the sea: the biosynthesis and remodeling of sulfated cell wall polysaccharides from marine macroalgae. PiP 2, 51–64 (2015).
    Article  Google Scholar 

    28.
    Wong, K. F. & Craigie, J. S. Sulfohydrolase activity and carrageenan biosynthesis in Chondrus crispus (Rhodophyceae). Plant Physiol. 61, 663–666 (1978).
    CAS  Article  Google Scholar 

    29.
    van de Velde, F., Knutsen, S. H., Usov, A. I., Rollema, H. S. & Cerezo, A. S. H-1 and C-13 high resolution NMR spectroscopy of carrageenans: application in research and industry. Trends Food Sci. Tech. 13, 73. https://doi.org/10.1016/S0924-2244(02)00066-3 (2002).
    Article  Google Scholar 

    30.
    Campo, V. L., Kawano, D. F., Silva, D. B. J. & Carvalho, I. Carrageenans: biological properties, chemical modifications and structural analysis – a review. Carbohyd. Polym. 77, 167–180 (2009).
    CAS  Article  Google Scholar 

    31.
    Carrington, E., Grace, S. P. & Chopin, T. Life history phases and the biomechanical properties of the red alga Chondrus crispus (Rhodophyta). J. Phycol. 37, 699–704. https://doi.org/10.1046/j.1529-8817.2001.00169.x (2001).
    Article  Google Scholar 

    32.
    Hughes, J. S. & Otto, S. P. Ecology and the evolution of biphasic life cycles. Am. Nat. 154, 306–320. https://doi.org/10.1086/303241 (1999).
    Article  PubMed  Google Scholar 

    33.
    Krueger-Hadfield, S. A. What’s ploidy got to do with it? Understanding the evolutionary ecology of macroalgal invasions necessitates incorporating life cycle complexity. Evol. Appl. https://doi.org/10.1111/eva.12843 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    34.
    Garbary, D. J., Tompkins, E., White, K., Corey, P. & Kim, J. K. Temporal and spatial variation in the distribution of life history phases of Chondrus crispus (Gigartinales, Rhodophyta). Algae 26, 61–71. https://doi.org/10.4490/algae.2011.26.1.061 (2011).
    Article  Google Scholar 

    35.
    Tveter-Gallagher, E., Mathieson, A. C. & Cheney, D. P. Ecology and developmental morphology of male plants of Chondrus crispus (Gigartinales, Rhodophyta). J. Phycol. 16, 257–264 (1980).
    Article  Google Scholar 

    36.
    Krueger-Hadfield, S. A., Roze, D., Mauger, S. & Valero, M. Intergametophytic selfing and microgeographic genetic structure shape populations of the intertidal red seaweed Chondrus crispus. Mol. Ecol. 22, 3242–3260. https://doi.org/10.1111/mec.12191 (2013).
    CAS  Article  PubMed  Google Scholar 

    37.
    Yaphe, W. & Arsenault, G. P. Improved resorcinol reagent for determination of fructose and of 3,6-anhydrogalactose in polysaccharides. Anal. Biochem. 13, 143. https://doi.org/10.1016/0003-2697(65)90128-4 (1965).
    CAS  Article  Google Scholar 

    38.
    Dyck, L., De Wreede, R. E. & Garbary, D. Life history phases in Iridaea cordata (Gigartinaceae): relative abundance and distribution from British Columbia to California. Jap. J. Phycol. 33, 225–232 (1985).
    Google Scholar 

    39.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Collen, J. et al. Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc. Natl. Acad. Sci. USA 110, 5247–5252 (2013).
    ADS  CAS  Article  Google Scholar 

    41.
    Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucl. Acids Res. 31, 5654–5666. https://doi.org/10.1093/nar/gkg770 (2003).
    CAS  Article  PubMed  Google Scholar 

    42.
    Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527. https://doi.org/10.1038/nbt.3519 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. https://doi.org/10.1186/s13059-014-0550-8 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    44.
    Madden, T. L., Tatusov, R. L. & Zhang, J. Applications of network BLAST server. Methods Enzymol. 266, 131–141 (1996).
    CAS  Article  Google Scholar 

    45.
    Mitchell, A. et al. The InterPro protein families database: the classification resource after 15 years. Nucl. Acids Res. 43, D213-221. https://doi.org/10.1093/nar/gku1243 (2015).
    Article  PubMed  Google Scholar 

    46.
    Punta, M. et al. The Pfam protein families database. Nucl. Acids Res. 40, D290-301. https://doi.org/10.1093/nar/gkr1065 (2012).
    CAS  Article  PubMed  Google Scholar 

    47.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    CAS  Article  Google Scholar 

    48.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    49.
    Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41, 95–98 (1998).
    Google Scholar 

    50.
    Whelan, S. & Goldman, N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 18, 691–699. https://doi.org/10.1093/oxfordjournals.molbev.a003851 (2001).
    CAS  Article  PubMed  Google Scholar 

    51.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    52.
    Kusche-Gullberg, M. & Kjellen, L. Sulfotransferases in glycosaminoglycan biosynthesis. Curr. Opin. Struct. Biol. 13, 605–611. https://doi.org/10.1016/j.sbi.2003.08.002 (2003).
    CAS  Article  PubMed  Google Scholar 

    53.
    Breton, C., Fournel-Gigleux, S. & Palcic, M. M. Recent structures, evolution and mechanisms of glycosyltransferases. Curr. Opin. Struct. Biol. 22, 540–549. https://doi.org/10.1016/j.sbi.2012.06.007 (2012).
    CAS  Article  PubMed  Google Scholar 

    54.
    Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucl. Acids Res. 42, D490-495 (2014).
    CAS  Article  Google Scholar 

    55.
    Brawley, S. H. et al. Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Proc. Natl. Acad. Sci. U.S.A. 114, E6361–E6370. https://doi.org/10.1073/pnas.1703088114 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    56.
    Madson, M. et al. The MUR3 gene of Arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins. Plant Cell 15, 1662–1670. https://doi.org/10.1105/tpc.009837 (2003).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Iwai, H., Masaoka, N., Ishii, T. & Satoh, S. A pectin glucuronyltransferase gene is essential for intercellular attachment in the plant meristem. Proc. Natl. Acad. Sci. USA 99, 16319–16324. https://doi.org/10.1073/pnas.252530499 (2002).
    ADS  CAS  Article  PubMed  Google Scholar 

    58.
    Jensen, J. K. et al. Identification of a xylogalacturonan xylosyltransferase involved in pectin biosynthesis in Arabidopsis. Plant Cell 20, 1289–1302. https://doi.org/10.1105/tpc.107.050906 (2008).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    59.
    Harholt, J. et al. ARABINAN DEFICIENT 1 is a putative arabinosyltransferase involved in biosynthesis of pectic arabinan in Arabidopsis. Plant Physiol. 140, 49–58. https://doi.org/10.1104/pp.105.072744 (2006).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    60.
    Dilokpimol, A. & Geshi, N. Arabidopsis thaliana glucuronosyltransferase in family GT14. Plant Signal. Behav. https://doi.org/10.4161/psb.28891 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    61.
    Knoch, E. et al. A beta-glucuronosyltransferase from Arabidopsis thaliana involved in biosynthesis of type II arabinogalactan has a role in cell elongation during seedling growth. Plant J. 76, 1016–1029. https://doi.org/10.1111/tpj.12353 (2013).
    CAS  Article  PubMed  Google Scholar 

    62.
    Pak, J. E. et al. X-ray crystal structure of leukocyte type core 2 beta 1,6-N-acetylglucosaminyltransferase—evidence for a convergence of metal ion-independent glycosyltransferase mechanism. J. Biol. Chem. 281, 26693–26701. https://doi.org/10.1074/jbc.M603534200 (2006).
    CAS  Article  PubMed  Google Scholar 

    63.
    Bierhuizen, M. F. A., Mattei, M. G. & Fukuda, M. Expression of the developmental-I antigen by a cloned human cDNA-encoding a member of a beta-1,6-N-acetylglucosaminyltransferase gene family. Gene Dev. 7, 468–478. https://doi.org/10.1101/gad.7.3.468 (1993).
    CAS  Article  PubMed  Google Scholar 

    64.
    Wilson, I. B. H. The never-ending story of peptide O-xylosyltransferase. Cell. Mol. Life Sci. 61, 794–809. https://doi.org/10.1007/s00018-003-3278-2 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    65.
    Bowman, K. G. & Bertozzi, C. R. Carbohydrate sulfotransferases: mediators of extracellular communication. Chem. Biol. 6, R9–R22. https://doi.org/10.1016/S1074-5521(99)80014-3 (1999).
    CAS  Article  PubMed  Google Scholar 

    66.
    Michel, G., Tonon, T., Scornet, D., Cock, J. M. & Kloareg, B. The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytol. 188, 82–97 (2010).
    CAS  Article  Google Scholar 

    67.
    Olsen, J. L. et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530, 331–335. https://doi.org/10.1038/nature16548 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    68.
    Kloareg, B. & Quatrano, R. S. Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr. Mar. Biol. Annu. Rev. 26, 259–315 (1988).
    Google Scholar 

    69.
    Hayes, A. et al. Biodiversity of CS-proteoglycan sulphation motifs: chemical messenger recognition modules with roles in information transfer, control of cellular behaviour and tissue morphogenesis. Biochem. J. 475, 587–620. https://doi.org/10.1042/Bcj20170820 (2018).
    CAS  Article  PubMed  Google Scholar 

    70.
    Esko, J. D. & Selleck, S. B. Order out of chaos: Assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471. https://doi.org/10.1146/annurev.biochem.71.110601.135458 (2002).
    CAS  Article  PubMed  Google Scholar 

    71.
    Ficko-Blean, E. et al. Carrageenan catabolism is encoded by a complex regulon in marine heterotrophic bacteria. Nat. Commun. 8, 1685. https://doi.org/10.1038/s41467-017-01832-6 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    72.
    Prechoux, A., Genicot, S., Rogniaux, H. & Helbert, W. Controlling carrageenan structure using a novel formylglycine-dependent sulfatase, an endo-4S-iota-carrageenan sulfatase. Mar. Biotechnol. (NY) 15, 265–274. https://doi.org/10.1007/s10126-012-9483-y (2013).
    CAS  Article  Google Scholar 

    73.
    Hettle, A. G. et al. Insights into the kappa/iota-carrageenan metabolism pathway of some marine Pseudoalteromonas species. Commun. Biol. 2, 474. https://doi.org/10.1038/s42003-019-0721-y (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    74.
    Genicot, S. et al. Discovery of a novel iota carrageenan sulfatase isolated from the marine bacterium Pseudoalteromonas carrageenovora. Front. Chem. 2, 67. https://doi.org/10.3389/fchem.2014.00067 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar  More