Challenges and opportunities for achieving Sustainable Development Goals through restoration of Indonesia’s mangroves
Restoration opportunity area and costsMangrove restoration programmes have a greater chance of being successful when implemented in areas where mangroves have previously grown15. These areas have either been subject to deforestation or degradation and may be under government management or private ownership. They are locations that have undergone forest conversion into other land uses, including aquaculture, crops or plantations and urban settlements. Land ownership status is an important factor to consider for determining the availability of land for mangrove restoration7. For example, a higher opportunity and priority would be given to unproductive aquaculture ponds located in the protected and production forest areas which are under government management or leasehold, rather than in areas with other land uses that may be under private ownership (Methods gives detailed forest land tenure classifications in Indonesia). Therefore, managing mangrove rehabilitation should consider factors that include land tenure status and land-cover type as well as biogeomorphology (for example, ensuring that the correct mangrove species are used in hydrologically suitable locations) across landscape scales.We calculated that ~193,367 ha of land may be feasible for implementation of mangrove rehabilitation programmes (Fig. 4). This conservative assessment suggests that the potential for restoration may be only 30% of the current mangrove rehabilitation area target (600,000 ha). Depending on the challenges and opportunities for each of the biogeomorphological categories of land use and the forest land status we considered (see Methods for detailed mapping methodology), we identified that 9% of the potential restorable area was categorized as being within the high opportunity scenario, 33% as medium and 58% as areas falling within the low opportunity scenario. Among these scenarios, ~75% of identified areas have non-protected forest status, implying a greater tenurial challenge to establishing a rehabilitation programme. We identified the five provinces that are among the top ranked of high potential for mangrove restoration in Indonesia, namely East Kalimantan (20% of national restoration potential area), North Kalimantan (20%), South Sumatra (12%), West Kalimantan (5%) and Riau provinces (5%) (Fig. 1c). All of these provinces, except South Sumatra, are among the areas already identified in the current mangrove rehabilitation programme by the BRGM as having high opportunity for rehabilitation4. At the subprovincial scale, we identified the top six regencies with restoration area opportunity >10,000 ha, namely Banyuasin, Bulungan, Tana Tidung, Paser, Berau and Nunukan (Supplementary Table 1). Mangroves across these regions were commonly deforested after 2010 and converted into aquaculture ponds despite being designated as protected forest areas (Supplementary Table 1).Fig. 4: The distribution of mangrove loss area (in hectares) between 2001 and 2020 in Indonesia.Also shown are mangrove loss proportions within different biogeomorphological typology, loss drivers (land-use types), forest land status and identified scenarios of restoration opportunity (low, medium and high).Full size imageConsidering that previous successful (85% survival rates) mangrove rehabilitation around the world has been achieved only at small landscape scales (10–400 ha) with costs varying between US$1,500 ha−1 and US$9,000 ha−1 (refs. 8,16), the large-scale mangrove rehabilitation ambition of Indonesia must be carefully planned. Rehabilitating ~200,000 ha of degraded mangroves will require between US$0.29 billion and US$1.74 billion. The 2021 annual government budget allocation for mangrove rehabilitation under BRGM alone is ~US$0.10 billion17, which is 66–94% lower than the estimated total required budget but with additional international investment18 there is potential for scalable mangrove rehabilitation success.Lessons learned from the past failuresIn Indonesia, unproductive aquaculture ponds have become targets for mangrove rehabilitation programmes (Supplementary Fig. 1). However, metrics of rehabilitation success in these settings reveal low survival rates of planted seedlings, highlighting an urgency to develop new strategies for mangrove rehabilitation and strategies to assess the effectiveness of ecosystem rehabilitation6. For example, a silviculture approach—nursery-based mangrove planting using Rhizophora species—has been adopted for mangrove restoration and management for a long time in Indonesia19. When seedlings are directly planted in unused ponds (Supplementary Fig. 1), dense monoculture plantations often form, which despite providing some ecosystem services (for example, carbon sequestration20) have limited biodiversity value21 and may be less resilient to stressors compared to a diverse assemblages of tree species22.Mangrove restoration projects have often suffered low success rates due to inadequate hydrological site assessments before revegetation23. For example, mangrove planting programmes initiated after the 2004 tsunami were focused on mono-species planting and on reporting the number of seedlings being planted in a given area24. These planting projects most often occurred on undisputed land, such as mudflats, which are inappropriate locations for long-term mangrove growth because of high inundation frequency, high water flow rates and hypersaline conditions that limit seedling establishment and survival24. Planting has also focused in mangrove areas where low canopy cover is observed. While some mangrove areas with low canopy cover may respond to plantings because they are degraded, many sites naturally support low canopy cover, reflecting suboptimal environmental conditions for growth of Rhizophora species, instead favouring growth of highly salt tolerant species such as Avicennia spp.24. Such failures in mangrove rehabilitation efforts, however, have been under-reported with more than 50% of rehabilitation studies not monitored over time (Supplementary Fig. 1).Alternative restoration approaches through repairing hydrology, including excavation and removal of pond walls and tidal gates, have also been introduced15, although this approach has been only practiced in Indonesia at limited scales, mostly in unused aquaculture ponds25. A comprehensive understanding of the opportunity for mangrove rehabilitation in Indonesia is largely unquantified. Additionally, with limited monitoring of mangrove rehabilitation projects, the effectiveness and functionality of mangrove rehabilitation in Indonesia remains largely unknown and therefore it remains challenging to assess rehabilitation effectiveness between approaches and locations in Indonesia. Yet such assessments provide important data to achieve the ambitious mangrove rehabilitation goals of Indonesia.Mangrove governance in IndonesiaMangrove conservation in Indonesia was formally adopted in 1990 (Extended Data Fig. 1 and Supplementary Table 2), when mangroves were designated as protected forests under Law 5/1990 and the Presidential Decree 32/1990. When the Asian tsunami hit Aceh province in 2004, the role of mangroves in wave attenuation and therefore minimizing disaster risks for coastal communities was recognized26. As a result, nearly 30,000 ha of damaged mangroves were rehabilitated to recover coastal resiliency through planting of nearly 24 million seedlings over 60 projects24. However, the success of these programmes was low due to a lack of planning, monitoring and critical supplemental actions24,27. Despite the failure of many mangrove rehabilitation projects post-tsunami, the implementation of the subsequent programmes have not fully adopted best-practice mangrove rehabilitation principles6,7,15,23. In 2007, similar approaches to mangrove rehabilitation and conservation were adopted at a larger, national scale under the Spatial Planning Law (Law 26/2007) and the Coastal Area and Small Islands Management Law (Law 27/2007).In 2012, the National Mangrove Management Strategy (STRANAS Mangrove) was first established and followed by the formalization of the National and Regional Mangrove Working Group whose task was to guide mangrove conservation and rehabilitation. Its main goal was to involve more stakeholders, including civil society organizations and subnational government bodies, in mangrove conservation and rehabilitation28. Until 2017, the technical regulation of strategy and performance indicators for mangrove management was implemented with targets set to rehabilitate 3.49 Mha of mangroves by 204529. In 2020, however, the Mangrove Working Group and its supporting regulations were abolished and the mangrove rehabilitation strategy was subsequently managed by BRGM4. This effectively removed the regional governments (subnational working groups) from decisions related to mangrove management and concentrated development of policy at the level of the national government. The new strategy includes a tenfold increase in the annual rehabilitation target (from 11,250 to ~120,000 ha yr−1) with an overall target of 600,000 ha to be achieved within a shorter timeline (2020–2024). Without clear planning and appropriate strategies, these ambitious targets may not be feasible. For example, the annual mangrove rehabilitation area reached between 2017 and 2020 was only 5,318 ha (50% of the target) despite 2.6 million seedlings being planted (Supplementary Table 3). Given the lessons from the previous mangrove rehabilitation and the emerging processes of mangrove governance, it is timely to set an achievable restoration framework with improved planning, evaluation and monitoring.Implication for international environmental agendasA successful mangrove rehabilitation programme can directly contribute to reducing poverty (SDG 1) and maintaining food security and livelihoods (SDG 2), thereby increasing the health and well-being of 74 million coastal people in Indonesia (see Supplementary Table 1 for total population of regions with restoration potential area >5 ha). Additionally, mangrove rehabilitation will directly contribute to other relevant SDGs, such as improving water quality (SDG 6), providing healthy coastal habitats for fish and other marine biodiversity (SDG 14), contributing to emissions reductions and improving coastal resilience from sea level rise (SDG 13) and sustainably managing and protecting terrestrial ecosystems (SDG 15). Mangrove rehabilitation contributions to SDG 1 and 2 are particularly relevant as the current rehabilitation programme is delivered as cash-for-works activities under the National Economic Recovery strategy (PEN) as part of the social welfare payments to alleviate economic impacts of the COVID-19 pandemic17. With the current annual mangrove rehabilitation budget of US$0.10 billion17, further implementation of scalable community-based mangrove restoration with technical support from subnational and non-government stakeholders could increase the benefits to local communities, if administered properly. Therefore, the large investments planned for coastal communities via a national mangrove restoration programme will not only contribute to the economy of coastal communities, potentially reducing poverty across 199 regencies but will also help in securing nearly 4% of the national greenhouse gas emissions reduction target from the land sector.Restoring 193,367 ha of mangroves in the next 5 years (2021–2025) may contribute to carbon sequestration of 22 ± 10 MtCO2e by 2030 (see Methods for detailed estimate calculation and assumptions). Moreover, stopping the current annual rates of mangrove loss of 7,436 ha yr−1 between 2021 and 2030 will reduce up to 58 ± 37 MtCO2e or 12% of the national land sector emissions reduction targets. Clearly, climate benefits from mangrove rehabilitation and conservation in Indonesia are substantial if rehabilitation and conservation can be implemented appropriately and large annual rehabilitation targets are achieved. Indonesia has submitted its updated Nationally Determined Contributions (NDCs) to the United Nations Framework Convention on Climate Change, within which integrated management and rehabilitation of mangroves is a component of the actions to enhance the resilience of coastal ecosystems30. Further ecological aquaculture practices such as silvofisheries which are commonly applied in Indonesia31,32 may provide promising potential for climate change mitigation through mangrove biomass enhancement. With the increased potential for international investment to support mangrove rehabilitation in Indonesia, there is an opportunity for Indonesia to take the lead and show the world how mangrove conservation and rehabilitation can contribute to multiple international environmental agendas.In the past three decades, the governance of mangrove conservation and rehabilitation in Indonesia has been highly variable in approach (Extended Data Fig. 1). The current approach is top-down4 which has risks and may be ineffective at achieving landscape-scale increases in mangrove extent, as was demonstrated post-tsunami24,29. This top-down approach set by national-level agencies, which are responsible for achieving rehabilitation targets, has limited involvement (or investment) by subnational governments. While we have identified key factors that determine land available for mangrove rehabilitation, the success of mangrove rehabilitation is not necessarily assured because of the limited involvement of subnational mangrove working groups. A current ‘one size fits all’ strategy of the national government may not be appropriate to achieve successful mangrove rehabilitation and thus more flexible, localized approaches may increase the likelihood of success. More