More stories

  • in

    Drivers of piscivory in a globally distributed aquatic predator (brown trout): a meta-analysis

    1.
    Post, D. M. et al. Seasonal effects of variable recruitment of a dominant piscivore on pelagic food web structure. Limnol. Oceanogr. 42, 722–729 (1997).
    ADS  Google Scholar 
    2.
    Skov, C., Perrow, M. R., Berg, S. & Skovgaard, H. Changes in the fish community and water quality during seven years of stocking piscivorous fish in a shallow lake. Freshw. Biol. 47, 2388–2400 (2002).
    Google Scholar 

    3.
    Östman, Ö et al. Top-down control as important as nutrient enrichment for eutrophication effects in North Atlantic coastal ecosystems. J. Appl. Ecol. 53, 1138–1147 (2016).
    Google Scholar 

    4.
    Sánchez-Hernández, J., Nunn, A. D., Adams, C. & Amundsen, P.-A. Causes and consequences of ontogenetic dietary shifts: A global synthesis using fish models. Biol. Rev. 94, 539–554 (2019).
    PubMed  Google Scholar 

    5.
    Sánchez-Hernández, J., Eloranta, A. P., Finstad, A. G. & Amundsen, P.-A. Community structure affects trophic ontogeny in a predatory fish. Ecol. Evol. 7, 358–367 (2017).
    PubMed  Google Scholar 

    6.
    Amundsen, P.-A., Svenning, M.-A. & Siikavuopio, S. I. An experimental comparison of cannibalistic response in different Arctic charr (Salvelinus alpinus (L.)). Ecol. Freshw. Fish. 8, 43–48 (1999).
    Google Scholar 

    7.
    Pereira, L. S., Keppeler, F. W., Agostinho, A. A. & Winemiller, K. O. Is there a relationship between fish cannibalism and latitude or species richness?. PLoS ONE 12, e0169813 (2017).
    PubMed  PubMed Central  Google Scholar 

    8.
    Eloranta, A. P. et al. Lake size and fish diversity determine resource use and trophic position of a top predator in high-latitude lakes. Ecol. Evol. 5, 1664–1675 (2015).
    PubMed  PubMed Central  Google Scholar 

    9.
    Jacobson, P., Bergström, U. & Eklöf, J. Size-dependent diet composition and feeding of Eurasian perch (Perca fluviatilis) and northern pike (Esox lucius) in the Baltic Sea. Boreal Environ. Res. 24, 137–153 (2019).
    Google Scholar 

    10.
    Mehner, T. et al. Intraguild predation and cannibalism in age-0 perch (Perca fluviatilis) and age-0 zander (Stizostedion lucioperca): Interactions with zooplankton succession, prey fish availability and temperature. Ann. Zool. Fenn. 33, 353–361 (1996).
    Google Scholar 

    11.
    Jensen, H., Kiljunen, M. & Amundsen, P.-A. Dietary ontogeny and niche shift to piscivory in lacustrine brown trout Salmo trutta revealed by stomach content and stable isotope analyses. J. Fish Biol. 80, 2448–2462 (2012).
    CAS  PubMed  Google Scholar 

    12.
    L’Abée-Lund, J. H., Langeland, A. & Sægrov, H. Long-term variation in piscivory in a brown trout population: Effect of changes in available prey organisms. Ecol. Freshw. Fish 11, 260–269 (2002).
    Google Scholar 

    13.
    Hesthagen, T., Jonsson, B., Ugedal, O. & Forseth, T. Habitat use and life history of brown trout (Salmo trutta) and Arctic charr (Salvelinus alpinus) in some low acidity lakes in central Norway. Hydrobiologia 348, 113–126 (1997).
    Google Scholar 

    14.
    Browne, D. R. & Rasmussen, J. B. Shift in the trophic ecology of brook trout resulting from interactions with yellow perch: An intraguild predator–prey interaction. Trans. Am. Fish. Soc. 138, 1109–1122 (2009).
    Google Scholar 

    15.
    Winemiller, K. O. & Leslie, M. A. Fish assemblages across a complex freshwater-marine ecotone. Environ. Biol. Fish. 34, 29–50 (1992).
    Google Scholar 

    16.
    Clavero, M., Prenda, J. & Delibes, M. Trophic diversity of the otter (Lutra lutra L.) in temperate and Mediterranean freshwater habitats. J. Biogeogr. 30, 761–769 (2003).
    Google Scholar 

    17.
    Griffiths, D. The size structure of lacustrine Arctic charr (Pisces: Salmonidae) populations. Biol. J. Linn. Soc. 51, 337–357 (1994).
    Google Scholar 

    18.
    Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227 (2000).
    CAS  PubMed  Google Scholar 

    19.
    Remonti, L., Balestrieri, A. & Prigioni, C. Altitudinal gradient of otter (Lutra lutra) food niche in Mediterranean habitats. Can. J. Zool. 87, 285–291 (2009).
    Google Scholar 

    20.
    Sánchez-Hernández, J. & Amundsen, P.-A. Trophic ecology of brown trout in subarctic lakes. Ecol. Freshw. Fish. 24, 148–161 (2015).
    Google Scholar 

    21.
    Lobón-Cerviá, J. & Sanz, N. Brown Trout: Biology, Ecology and Management (Wiley, Hoboken, 2017).
    Google Scholar 

    22.
    Butler, J. R. A., Radford, A., Riddington, G. & Laughton, R. Evaluating an ecosystem service provided by Atlantic salmon, sea trout and other fish species in the River Spey, Scotland: The economic impact of recreational rod fisheries. Fish. Res. 96, 259–266 (2009).
    Google Scholar 

    23.
    Elliott, J. M. The food of brown trout (Salmo trutta) in a Dartmor stream. J. Appl. Ecol. 4, 59–71 (1967).
    Google Scholar 

    24.
    Sánchez-Hernández, J., Finstad, A. G., Arnekleiv, J. V., Kjærstad, G. & Amundsen, P.-A. Drivers of diet patterns in a globally distributed freshwater fish species. Can. J. Fish. Aquat. Sci. 76, 1263–1274 (2019).
    Google Scholar 

    25.
    Bhatt, J. P., Manish, K. & Pandit, M. K. Elevational gradients in fish diversity in the Himalaya: Water discharge is the key driver of distribution patterns. PLoS ONE 7, e46237 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    26.
    Narayanaswamy, B. E. et al. Synthesis of knowledge on marine biodiversity in European seas: From census to sustainable management. PLoS ONE 8, e58909 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Arechavala-Lopez, P., Berg, M., Uglem, I., Bjørn, P. A. & Finstad, B. Variations in coastal fish species composition captured by traps in Romsdalsfjord, Western Norway. Int. Aquat. Res. 8, 109–119 (2016).
    Google Scholar 

    28.
    Mustamäki, N., Cederberg, J. & Matilla, J. Diet, stable isotopes and morphology of Eurasian perch (Perca fluviatilis) in littoral and pelagic habitats in the northern Baltic Proper. Environ. Biol. Fish. 97, 675–689 (2014).
    Google Scholar 

    29.
    Pereira, L. S., Agostinho, A. A. & Winemiller, K. O. Revisiting cannibalism in fishes. Rev. Fish. Biol. Fish. 27, 499–513 (2017).
    Google Scholar 

    30.
    German, D. P. & Horn, M. H. Gut length and mass in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): Ontogenetic, dietary, and phylogenetic effects. Mar. Biol 148, 1123–1134 (2006).
    Google Scholar 

    31.
    Sánchez-Hernández, J. & Amundsen, P.-A. Ecosystem type shapes trophic position and omnivory in fishes. Fish Fish. 19, 1003–1015 (2018).
    Google Scholar 

    32.
    Sánchez-Hernández, J. Taxonomy-based differences in feeding guilds of fish. Curr. Zool. 66, 51–56 (2020).
    PubMed  Google Scholar 

    33.
    Persson, L. et al. Culling prey promotes predator recovery-alternative states in a whole-lake experiment. Science 316, 1743–1745 (2007).
    ADS  CAS  PubMed  Google Scholar 

    34.
    Horká, P. et al. Feeding habits of the alien brook trout Salvelinus fontinalis and the native brown trout Salmo trutta in Czech mountain streams. Knowl. Manag. Aquat. Ecosyst. 418, 1–11 (2017).
    Google Scholar 

    35.
    Wetzel, R. G. Limnology: Lake and River Ecosystems 3rd edn. (Elsevier Academic Press, Amsterdam, 2001).
    Google Scholar 

    36.
    L’Abée-Lund, J. H., Langeland, A. & Sægrov, H. Piscivory by brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.) in Norwegian lakes. J. Fish. Biol. 41, 91–101 (1992).
    Google Scholar 

    37.
    Vik, J., Borgstrom, R. & Skaala, O. Cannibalism governing mortality of juvenile brown trout, Salmo trutta, in a regulated stream. Regul. Rivers Res. Manag. 17, 583–594 (2001).
    Google Scholar 

    38.
    Montori, A., Tierno de Figueroa, J. M. & Santos, X. The diet of the brown trout Salmo trutta (L.) during the reproductive period: Size-related and sexual effects. Int. Rev. Hydrobiol. 91, 438–450 (2006).
    Google Scholar 

    39.
    García-Berthou, E. Ontogenetic diet shifts and interrupted piscivory in introduced largemouth bass (Micropterus salmoides). Int. Rev. Hydrobiol. 87, 353–363 (2002).
    Google Scholar 

    40.
    Sánchez-Hernández, J., Vieira-Lanero, R., Servia, M. J. & Cobo, F. Feeding habits of four sympatric fish species in the Iberian Peninsula: Keys to understanding coexistence using prey traits. Hydrobiologia 667, 119–132 (2011).
    Google Scholar 

    41.
    Bergmann, C. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Gött Studien 3, 595–708 (1847).
    Google Scholar 

    42.
    Belk, M. C. & Houston, D. D. Bergmann’s rule in ectotherms: A test using freshwater fishes. Am. Nat. 160, 803–808 (2002).
    PubMed  Google Scholar 

    43.
    Millien, V. et al. Ecotypic variation in the context of global climate change: Revisiting the rules. Ecol. Lett. 9, 853–869 (2006).
    PubMed  Google Scholar 

    44.
    Parra, I., Almodóvar, A., Nicola, G. G. & Elvira, B. Latitudinal and altitudinal growth patterns of brown trout Salmo trutta at different spatial scales. J. Fish. Biol. 74, 2355–2373 (2009).
    CAS  PubMed  Google Scholar 

    45.
    Jonsson, B. et al. Longevity, body size, and growth in anadromous brown trout (Salmo trutta). Can. J. Fish. Aquat. Sci. 48, 1838–1845 (1991).
    Google Scholar 

    46.
    Marsh, G. A. & Fairbridge R. W. Lentic and lotic ecosystems. In Environmental Geology. Encyclopedia of Earth Science. (Springer, Dordrecht, 1999).

    47.
    Davis, A. M., Unmack, P. J., Pusey, B. J., Johnson, J. B. & Pearson, R. G. Marine-freshwater transitions are associated with the evolution of dietary diversification in terapontid grunters (Teleostei: terapontidae). J. Evol. Biol. 25, 1163–1179 (2012).
    CAS  PubMed  Google Scholar 

    48.
    McHugh, P. A., McIntosh, A. R. & Jellyman, P. G. Dual influences of ecosystem size and disturbance on food chain length in streams. Ecol. Lett. 13, 881–890 (2010).
    PubMed  Google Scholar 

    49.
    Beauchamp, D. A. Spatial and temporal dynamics of piscivory: Implications for food web Stability and the transparency of Lake Washington. Lake Reserv. Manag. 9, 151–154 (1994).
    ADS  Google Scholar 

    50.
    Marczak, L. B. et al. Latitudinal variation in top-down and bottom-up control of a salt marsh food web. Ecology 92, 276–281 (2011).
    CAS  PubMed  Google Scholar 

    51.
    Moher, D. et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 6, e1000097 (2009).
    PubMed  PubMed Central  Google Scholar 

    52.
    Nakagawa, S., Noble, D. W., Senior, A. M. & Lagisz, M. Meta-evaluation of meta-analysis: Ten appraisal questions for biologists. BMC Biol. 15, 18 (2017).
    PubMed  PubMed Central  Google Scholar 

    53.
    Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).
    ADS  CAS  PubMed  Google Scholar 

    54.
    Haddaway, N. R., Collins, A. M., Coughlin, D. & Kirk, S. The role of google scholar in evidence reviews and its applicability to grey literature searching. PLoS ONE 10, e0138237 (2015).
    PubMed  PubMed Central  Google Scholar 

    55.
    Cooper, H. M. Research Synthesis and Meta-analysis: A Step-by-Step Approach (Sage Publications, New York, 2009).
    Google Scholar 

    56.
    Amundsen, P.-A. & Sánchez-Hernández, J. Feeding studies take guts—critical review and recommendations of methods for stomach contents analysis in fish. J. Fish. Biol. 95, 1364–1373 (2019).
    PubMed  Google Scholar 

    57.
    Knudsen, R., Klemetsen, A. & Staldvik, F. Parasites as indicators of individual feeding specialization in Arctic charr during winter in northern Norway. J. Fish. Biol. 48, 1256–1265 (1996).
    Google Scholar 

    58.
    Budy, P. et al. Limitation and facilitation of one of the world’s most invasive fish: An intercontinental comparison. Ecology 94, 356–367 (2013).
    PubMed  Google Scholar 

    59.
    Kahilainen, K. & Lehtonen, H. Piscivory and prey selection of four predator species in a whitefish dominated subarctic lake. J. Fish. Biol. 63, 659–672 (2003).
    Google Scholar 

    60.
    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
    Google Scholar 

    61.
    Del Re, A. C. A practical tutorial on conducting meta-analysis in R. Quant. Methods Psychol. 11, 37–50 (2015).
    Google Scholar 

    62.
    Duval, S. J. & Tweedie, R. L. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56, 455–463 (2000).
    CAS  PubMed  MATH  Google Scholar 

    63.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Google Scholar 

    64.
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
    Google Scholar 

    65.
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, New York, 2009).
    Google Scholar 

    66.
    Wood, S. N. Generalized Additive Models: An Introduction with R wnd. (CRC Press, Boca Raton, 2017).
    Google Scholar 

    67.
    Garvey, J. E., Marschall, E. A. & Wright, R. A. Detecting relationships in continuous bivariate data. Ecology 79, 442–447 (1998).
    Google Scholar 

    68.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretical Approach 2nd edn. (Springer, New York, 2002).
    Google Scholar 

    69.
    Bartoń, K. MuMIn: Multi-Model Inference. R package version 1.15.6 (2016). More

  • in

    Anthropogenic dissolved organic carbon and marine microbiomes

    1.
    Wang Z, Walker GW, Muir DCG, Nagatani-Yoshida K. Toward a global understanding of chemical pollution: a first comprehensive analysis of national and regional chemical inventorie. Environ Sci Technol. 2020;54:2575–84.
    CAS  Article  Google Scholar 
    2.
    Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3:e1700782.
    Article  Google Scholar 

    3.
    González-Gaya B, Fernández-Pinos MC, Morales L, Méjanelle L, Abad E, Piña B, et al. High atmosphere–ocean exchange of semivolatile aromatic hydrocarbons. Nat Geosci. 2016;9:438–42.
    Article  Google Scholar 

    4.
    Cerro-Gálvez E, Casal P, Lundin D, Piña B, Pinhassi J, Dachs J, et al. Microbial responses to anthropogenic dissolved organic carbon in the Arctic and Antarctic coastal seawaters. Environ Microbiol. 2019;21:1466–81.
    Article  Google Scholar 

    5.
    Carlson CA, Hansell DA. DOM sources, sinks, reactivity, and budgets. In: Carlson CA, Hansell DA. editors. Biogeochemistry of marine dissolved organic matter. San Diego (USA): Academic press; 2015. p. 65–126

    6.
    Romera-Castillo C, Pinto M, Langer TM, Álvarez-Salgado XA, Herndl GJ. Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nat Commun. 2018;9:1430.
    Article  Google Scholar 

    7.
    Cerro-Gálvez E, Sala MM, Marrasé C, Gasol JM, Dachs J, Vila-Costa M. Modulation of microbial growth and enzymatic activities in the marine environment due to exposure to organic contaminants of emerging concern and hydrocarbons. Sci Total Environ. 2019;678:486–98.
    Article  Google Scholar 

    8.
    González-Gaya B, Martínez-Varela A, Vila-Costa M, Casal P, Cerro-Gálvez E, Berrojalbiz N, et al. Biodegradation as an important sink of aromatic hydrocarbons in the oceans. Nat Geosci. 2019;12:119–25.
    Article  Google Scholar 

    9.
    Vila-Costa M, Sebastián M, Pizarro M, Cerro-Gálvez E, Lundin D, Gasol JM, et al. Microbial consumption of organophosphate esters in seawater under phosphorus limited conditions. Sci Rep. 2019;9:1–11.
    CAS  Article  Google Scholar 

    10.
    Cerro-Galvez E, Roscales JL, Jiménez B, Sala MM, Dachs J, Vila-Costa M. Microbial responses to perfluoroalkyl substances and perfluorooctanesulfonate (PFOS) desulfurization in the Antarctic marine environment. Water Res. 2020;171:115434. 
    CAS  Article  Google Scholar 

    11.
    Fernández-Pinos MC, Vila-Costa M, Arrieta JM, Morales L, González-Gaya B, Piña B, et al. Dysregulation of photosynthetic genes in oceanic Prochlorococcus populations exposed to organic pollutants. Sci Rep. 2017;7:8029.
    Article  Google Scholar 

    12.
    Tetu SG, Sarker I, Schrameyer V, Pickford R, Elbourne LD, Moore LR, et al. Plastic leachates impair growth and oxygen production in Prochlorococcus, the ocean’s most abundant photosynthetic bacteria. Commun Biol. 2019;2:1–9.
    Article  Google Scholar 

    13.
    Buttigieg PL, Fadeev E, Bienhold C, Hehemann L, Offre P, Boetius A. Marine microbes in 4D – using time series observation to assess the dynamics of the ocean microbiome and its links to ocean health. Curr Opin Microbiol. 2018;43:169–85.
    Article  Google Scholar  More

  • in

    Fossils reshape the Sternorrhyncha evolutionary tree (Insecta, Hemiptera)

    Phylogenetic analysis
    We conducted Bayesian Inference (BI) and Maximum Parsimony (MP) analyses using morphological data to place the fossil taxa and resolve the relationships within Sternorrhyncha. Therefore, we mainly included those morphological characters that were also discernible in the fossils that were selected. The data matrix used for the analysis consisted of 10 taxa (Fulgoromorpha taken as an outgroup, and 9 Sternorrhyncha ingroups, including extinct groups, see Supplementary information 1 Table S1) and 42 characters (see Supplementary information 1 Table S2). The characters were treated as non-additive and unordered. The list of characters and the nexus file containing the character matrix is available in Appendix (Tables S1 and S2).
    The detailed results of phylogenetic analyses are presented in the Appendix. Both phylogenetic methods (MP and BI) were highly congruent in their resultant topologies (Supplementary information 1 Figs S1, S2a–c). According to the resulting phylogenies, the fossil described below forms a group of its own (Fig. 1), included in a clade of Psylliformes, related to Psyllodea and Aleyrodomorpha, but deserving of recognition as a different infraorder.
    Figure 1

    Phylogenetic position of Dingla shagria gen. sp. nov. on most parsimonius tree. Numbers at nodes represent posterior probabilities and bootstrap values. Image of planthopper Pyrops candelaria: Max Pixel Public Domain CC0 (modified); pincombeid Pincombea sp. redrawn from46; male scale insect: Pavel Kirillov CC-BY-SA2.0 (modified); Coccavus supercubitus redrawn from46; aphid Macrosiphum rosae: Karl 432 CC-BY-SA4.0 (modified); protopsyllidiid Poljanka hirsuta redrawn from47; liadopsyllid Liadopsylla apedetica redrawn from48; whitefly Aleyrodes proletella: Amada44 CC-BY-SA4.0 (modified); psyllid Trioza urticae photo by Jowita Drohojowska.

    Full size image

    Systematic palaeontology
    Order Hemiptera Linnaeus, 1758.
    Suborder Sternorrhyncha Amyot et Audinet-Serville, 1843.
    Clade Psylliformes sensu Schlee, 1969.
    Dinglomorpha Szwedo & Drohojowska infraord. nov
    Diagnosis
    Fore wing with costal veins complex carinate (Pc carinate as in Psylliformes), ScP present as separate fold at base of common stem R + MP + CuA (unique character); common stem R + MP + CuA weakened at base (unique character); areola postica reduced (homoplasy with Aleyrodoidea); clavus present, with single claval vein A1. Hypandrium present as small plate (as in Psylliformes).
    Dingloidea Szwedo & Drohojowska superfam. nov
    Diagnosis
    Fore wing membranous with modified venation—veins thickened, areola postica reduced; antennae 10-segmented; 3 ocelli present; stem MP present, connected with RP and CuA; abdomen widely fused with thorax; no wax glands on sternites.
    Dinglidae Szwedo & Drohojowska fam. nov
    urn:lsid:zoobank.org:act:D0A1C785-62D3-4E07-9A3B-FFAE3C13B704.
    Type genus Dingla
    Szwedo et Drohojowska gen. nov.; by present designation.
    Diagnosis
    Imago. Head with compound eyes narrower than thorax. Eyes entirely rounded, postocular tumosity present; lateral ocelli placed dorsolaterally, near anterior angle of compound eye in dorsal view, median ocellus present. Antennae 10-segmented, with bases in frons to compound eyes, rhinaria scarce (?). Pronotum in mid line longer than mesopraescutum. Fore wing with thickened costal margin, basal portion of stem R + MP + CuA weak, distal portion of stem R + MP + CuA convex, forked at about half of fore wing length, branch RA short; pterostigmal area thickened. Common stem MP + CuA short, branches RP, MP and CuA parallel on membrane. Rostrum reaching metacoxae. Metacoxa without meracanthus. Metadistitarsomere longer than metabasitarsomere, claws distinct, long and narrow, no distinct additional tarsal structures. Male anal tube long. Hypandrium in form of small plate, styli long, narrow and acutely hooked at apex.
    Dingla Szwedo & Drohojowska gen. nov
    LSID urn:lsid:zoobank.org:act:5053D386-4A13-445C-8036-9C69D885561F.
    Type species Dingla shagria
    Szwedo et Drohojowska sp. nov.; by present designation and monotypy.
    Etymology
    The generic name is derived from the adjective ‘dingla’ meaning ‘old’ in Jingpho language, which is spoken in Kachin state where the amber originates from. Gender: feminine.
    Diagnosis
    Vertex in mid line about as long as wide between compound eyes. Frons flat, widely triangularly incised at base. Antenna with 10th antennomere longer than penultimate one, widened, membranous apically, with terminal concavity. Pronotum about twice as wide as long. Mesopraescutum narrow, about as wide as pronotum; mesoscutum wide, with scutellar sutures not reaching anterior margin; mesoscutellum widely pentagonal. Fore wing with branch R forked anteriad of branch MP + CuA forking. Tip of clavus at level of MP + CuA forking. Hind wing with terminals RP and M subparallel and weakened in apical portion. Metafemur not thickened, metatibia without apical spines.
    Dingla shagria Szwedo & Drohojowska sp. nov
    LSID urn:lsid:zoobank.org:act:3EA05FB0-B783-4D7A-98EA-10B02F50B83D (Figures 2, 3).
    Figure 2

    Dingla shagria gen. sp. nov., holotype male, No. MAIG 5,979: body in dorsal view (a); body in ventral view (b); drawing of body in dorsal view (c); drawing of head in ventral view with clypeus (d); fore wing (e); apical antennomere (f); antennomeres 6th—10th (g); head in dorsal view (h); head in ventral view (i); head in lateral view (j); male genitalia in dorsal view (k); male genitalia in ventral view (l); male genitalia in lateral view (m); scale bars: 0.5 mm a, b, c, e; 0.1 mm f, g, k, l, m; 0.2 mm j, h, i; 0.25 mm d.

    Full size image

    Figure 3

    Dingla shagria gen. sp. nov., paratype male, No. MAIG 5,980: body in dorsal view (a); body in ventral view (b); head in ventral view with median ocellus (c); paratype male, No. NIGP172398, body in dorsal view (d); body in ventral view (e); fore tibia (f); paratype male, No. NIGP172399 body in dorsal view (g); body in ventral view (h); mid leg (i); hind leg (j); scale bars: 0.5 mm a, b, g, h, j; 0.4 mm d, e, f; 0.2 mm c; 0.25 mm i.

    Full size image

    Etymology
    The specific epithet is derived from the noun ‘shagri’ meaning ‘insect’ in Jingpho language spoken in the Kachin State, when the amber was collected.
    Material
    Holotype male. MAIG 5979, Paratype male, MAIG 5980, deposited in Museum of Amber Inclusions, Laboratory of Evolutionary Entomology and Museum of amber Inclusions, Department of Invertebrate Zoology and Parasitology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland; paratype male NIGP172398, paratype male NIGP172399, deposited in Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China.
    Locality and horizon
    Kachin amber, Noije Bum hill, Hukawng Valley, Kachin State, northern Myanmar. Terminal Aptian/earliest Cenomanian.
    Diagnosis
    Pedicel (2nd antennomere) elongate, slightly thickened, 3rd antennomere longer than second and 4th; antennomeres 4th to 8th subequal in length. Protibia with row of thin setae in apicad half. Probasitarsomere about half as long as prodistitarsomere. Subgenital plate small, subquadrate, parameres long and narrow, parallel; about 3 times as long as wide at base, with hooked acute apex. Male anal tube tubular, slightly widening apicad, merely shorter than parameres.
    Description
    Male. Measurements (in mm): Total length 1.76 to 2.13; Body length total (including claspers) 1.76–2.13; Head including compound eyes width 0.37–0.52; head length along mid line 0.18–0.24; vertex width 0.2–0.26; Forewing length 1.32–1.79; forewing width 0.62–0.74; Claspers length 0.2–032; Antennomere 1st 0.04–0.08; antennomere 2nd 0.8–0.13; antennomere 3rd 0.08–0.16; antennomere 4th 0.06–0.12; antennomere 5th 0.06–0.09; antennomere 6th 0.06–0.1; antennomere 7th 0.06–0.09; antennomere 8th 0.0–0.09; antennomere 9th 0.06–0.09; antennomere 10th 0.0.8–0.01; Profemur + protrochanter cumulative length 0.26–0.46; protibia length 0.29–0.34; probasitarsomere length 0.06–0.09; prodistitarsomere length 0.08–0.13; mesofemur + mesotrochanter cumulative length 0.3–0.4; mesotibia length 0.36–0.4; mesobasitarsomere length 0.05–0.1; mesodistitarsomere length 0.13–015; metafemur + metatrochanter cumulative length 0.39–0.56; metatibia length 0.5–0.68; metabasitarsomere length 0.1–0.15; metadistitarsomere length 0.1–0.18.
    Vertex about half as long as width of head with compound eyes; slightly narrower than wide at base; disc of vertex slightly concave; sutura coronalis absent. Scapus cyllindrical, longer than wide, pedicel slightly longer than scapus, barrel-shaped, wider than 3rd antennomere. Antennomere 3rd longer than 2nd antennomere (pedicel) antennomeres 5th to 9th subequal in length; antennomere 9th with subapical rhinarium; antennomere 10th (apical) longer then penultimate one, spoon-like widened apically, with rhinarium placed subapically. Median and lateral ocelli visible from above. Compound eyes large, not divided, with distinct, non-differentiated ommatidia; postocular protuberances narrow. Frons convex, with distinct triangular, concave median portion; median ocellus at margin with vertex; postclypeus and apical portion of loral plates distinctly incised to frons; postclypeus about twice as long as wide; anteclypeus tapering ventrad; lora semicircular, long, with upper angles slightly below upper margin of postclypeus, lower angles not exceeding half of anteclypeus length. Rostrum with apex reaching metacoxae; scapus short, wide, placed in distinct anterolateral concavity.
    Pronotum large, as long lateral as in midline; about 2.6 times as wide as long in mid line; disc of pronotum convex; anterior margin convex, slightly protruding between compound eyes; posterior margins converging posteriad; posterior margin slightly concave. Mesopraescutum with anterior margin covered by pronotum, with anterior margin convex, lateral margins expanded posterolaterad, with posterior margin convex posteriomediad, slightly concave posterolaterad. Mesoscutum distinctly wider than long in mid line; anterior margin merely concave medially, lateral margins distinctly diverging posteriad, posterolateral angles acute, distinct, posterior margin W-shaped, with distinct median concavity; disc of mesoscutum convex with indistinct longitudinal concavities (apodemes? sutures?). Mesoscutellum narrow, with anterior margin acutely convex, lateral margins subparallel, posterior margin straight, disc of mesoscutellum concave, with posteromedian furrow. Metascutum and metascutellum not visible.
    Fore wing about 2.5 times as long as wide; narrower at base, widening posteriad, rounded in apical margin; widest at ¾ of its length. Costal margin thickened, veins thick, distinctly elevated; basal portion of stem R + MP + CuA weak, distal portion of stem R + MP + CuA convex, forked at about half of forewing length, branch RA short; pterostigmal area thickened; common stem MP + CuA short, branches RP, MP and CuA parallel on membrane; areola postica absent; clavus present, with apex exceeding half of forewing, with single claval vein A1.
    Hind wing about 0.8 times as long as forewing, with costal margin with two groups of regularly dispersed setae, basal group with seven longer and stiff setae and median group with 10 shorter, stout setae; terminals RP and M subparallel and weakened in apical portion.
    Profemur and mesofemur subequal in length; protibia slightly shorter than mesotibia; pro- and metadistitarsomeres slightly longer than pro- and mesobasitarsomeres. Metacoxa without meracanthus; metafemur longer than pro- and mesofemur; metatibia distinctly longer than pro- and mesotibia; metadistitarsomere distinctly longer than metabasitarsomere; tarsal claws long, narrow, without arolium or empodium.
    Abdomen with segments III to VIII almost homonomic in length, widely connected to thorax, subgenital portion narrowing. Subgenital plate small, subquadrate, parameres long and narrow, parallel; about 3 times as long as wide at base, with hooked acute apex. Male anal tube tubular, slightly widening apicad, merely shorter than parameres. More

  • in

    A widely distributed hydrogenase oxidises atmospheric H2 during bacterial growth

    1.
    Greening C, Constant P, Hards K, Morales SE, Oakeshott JG, Russell RJ, et al. Atmospheric hydrogen scavenging: from enzymes to ecosystems. Appl Environ Microbiol. 2015;81:1190–9.
    PubMed  PubMed Central  Google Scholar 
    2.
    Ehhalt DH, Rohrer F. The tropospheric cycle of H2: a critical review. Tellus B. 2009;61:500–35.
    Google Scholar 

    3.
    Constant P, Poissant L, Villemur R. Tropospheric H2 budget and the response of its soil uptake under the changing environment. Sci Total Environ. 2009;407:1809–23.
    CAS  PubMed  Google Scholar 

    4.
    Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–77.
    CAS  PubMed  Google Scholar 

    5.
    Kanno M, Constant P, Tamaki H, Kamagata Y. Detection and isolation of plant-associated bacteria scavenging atmospheric molecular hydrogen. Environ Microbiol. 2015;18:2495–506.
    Google Scholar 

    6.
    Kessler AJ, Chen Y-J, Waite DW, Hutchinson T, Koh S, Popa ME, et al. Bacterial fermentation and respiration processes are uncoupled in permeable sediments. Nat Microbiol. 2019;4:1014–23.
    CAS  PubMed  Google Scholar 

    7.
    Khdhiri M, Hesse L, Popa ME, Quiza L, Lalonde I, Meredith LK, et al. Soil carbon content and relative abundance of high affinity H2-oxidizing bacteria predict atmospheric H2 soil uptake activity better than soil microbial community composition. Soil Biol Biochem. 2015;85:1–9.
    CAS  Google Scholar 

    8.
    Lynch RC, Darcy JL, Kane NC, Nemergut DR, Schmidt SK. Metagenomic evidence for metabolism of trace atmospheric gases by high-elevation desert actinobacteria. Front Microbiol. 2014;5:698.
    PubMed  PubMed Central  Google Scholar 

    9.
    Ji M, Greening C, Vanwonterghem I, Carere CR, Bay SK, Steen JA, et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature. 2017;552:400–3.
    CAS  PubMed  Google Scholar 

    10.
    Constant P, Chowdhury SP, Pratscher J, Conrad R. Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high-affinity [NiFe]-hydrogenase. Environ Microbiol. 2010;12:821–9.
    CAS  PubMed  Google Scholar 

    11.
    Constant P, Chowdhury SP, Hesse L, Pratscher J, Conrad R. Genome data mining and soil survey for the novel Group 5 [NiFe]-hydrogenase to explore the diversity and ecological importance of presumptive high-affinity H2-oxidizing bacteria. Appl Environ Microbiol. 2011;77:6027–35.
    CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Greening C, Berney M, Hards K, Cook GM, Conrad R. A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proc Natl Acad Sci USA. 2014;111:4257–61.
    CAS  PubMed  Google Scholar 

    13.
    Schäfer C, Friedrich B, Lenz O. Novel, oxygen-insensitive group 5 [NiFe]-hydrogenase in Ralstonia eutropha. Appl Environ Microbiol. 2013;79:5137–45.
    PubMed  PubMed Central  Google Scholar 

    14.
    Constant P, Poissant L, Villemur R. Isolation of Streptomyces sp. PCB7, the first microorganism demonstrating high-affinity uptake of tropospheric H2. ISME J. 2008;2:1066–76.
    CAS  PubMed  Google Scholar 

    15.
    Meredith LK, Rao D, Bosak T, Klepac-Ceraj V, Tada KR, Hansel CM, et al. Consumption of atmospheric hydrogen during the life cycle of soil-dwelling actinobacteria. Environ Microbiol Rep. 2014;6:226–38.
    CAS  PubMed  Google Scholar 

    16.
    Greening C, Carere CR, Rushton-Green R, Harold LK, Hards K, Taylor MC, et al. Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging. Proc Natl Acad Sci USA. 2015;112:10497–502.
    CAS  PubMed  Google Scholar 

    17.
    Myers MR, King GM. Isolation and characterization of Acidobacterium ailaaui sp. nov., a novel member of Acidobacteria subdivision 1, from a geothermally heated Hawaiian microbial mat. Int J Syst Evol Microbiol. 2016;66:5328–35.
    CAS  PubMed  Google Scholar 

    18.
    Islam ZF, Cordero PRF, Feng J, Chen Y-J, Bay S, Gleadow RM, et al. Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. ISME J. 2019;13:1801–13.
    CAS  PubMed  PubMed Central  Google Scholar 

    19.
    Schmitz RA, Pol A, Mohammadi SS, Hogendoorn C, van Gelder AH, Jetten MSM, et al. The thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV oxidizes subatmospheric H2 with a high-affinity, membrane-associated [NiFe] hydrogenase. ISME J 2020;14:1223–32.
    CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Berney M, Cook GM. Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia. PLoS One. 2010;5:e8614.
    PubMed  PubMed Central  Google Scholar 

    21.
    Berney M, Greening C, Conrad R, Jacobs WR, Cook GM. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia. Proc Natl Acad Sci USA. 2014;111:11479–84.
    CAS  PubMed  Google Scholar 

    22.
    Cordero PRF, Grinter R, Hards K, Cryle MJ, Warr CG, Cook GM, et al. Two uptake hydrogenases differentially interact with the aerobic respiratory chain during mycobacterial growth and persistence. J Biol Chem. 2019;294:18980–91.
    CAS  PubMed  Google Scholar 

    23.
    Greening C, Villas-Bôas SG, Robson JR, Berney M, Cook GM. The growth and survival of Mycobacterium smegmatis is enhanced by co-metabolism of atmospheric H2. PLoS One. 2014;9:e103034.
    PubMed  PubMed Central  Google Scholar 

    24.
    Liot Q, Constant P. Breathing air to save energy – new insights into the ecophysiological role of high-affinity [NiFe]-hydrogenase in Streptomyces avermitilis. Microbiologyopen. 2016;5:47–59.
    CAS  PubMed  Google Scholar 

    25.
    Søndergaard D, Pedersen CNS, Greening C. HydDB: a web tool for hydrogenase classification and analysis. Sci Rep. 2016;6:34212.
    PubMed  PubMed Central  Google Scholar 

    26.
    Papen H, Kentemich T, Schmülling T, Bothe H. Hydrogenase activities in cyanobacteria. Biochimie. 1986;68:121–32.
    CAS  PubMed  Google Scholar 

    27.
    Houchins JP, Burris RH. Occurrence and localization of two distinct hydrogenases in the heterocystous cyanobacterium Anabaena sp. Strain 7120. J Bacteriol. 1981;146:209–14.
    CAS  PubMed  PubMed Central  Google Scholar 

    28.
    Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P. Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev. 2002;66:1–20.
    CAS  PubMed  PubMed Central  Google Scholar 

    29.
    Bothe H, Schmitz O, Yates MG, Newton WE. Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev. 2010;74:529–51.
    CAS  PubMed  PubMed Central  Google Scholar 

    30.
    Koch H, Galushko A, Albertsen M, Schintlmeister A, Gruber-Dorninger C, Lucker S, et al. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science. 2014;345:1052–4.
    CAS  PubMed  Google Scholar 

    31.
    Drobner E, Huber H, Stetter KO. Thiobacillus ferrooxidans, a facultative hydrogen oxidizer. Appl Environ Microbiol. 1990;56:2922–3.
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Berney M, Greening C, Hards K, Collins D, Cook GM. Three different [NiFe] hydrogenases confer metabolic flexibility in the obligate aerobe Mycobacterium smegmatis. Environ Microbiol. 2014;16:318–30.
    CAS  PubMed  Google Scholar 

    33.
    Islam ZF, Cordero PRF, Greening C. Putative iron-sulfur proteins are required for hydrogen consumption and enhance survival of mycobacteria. Front Microbiol. 2019;10:2749.
    PubMed  PubMed Central  Google Scholar 

    34.
    Taylor SW, Fahy E, Zhang B, Glenn GM, Warnock DE, Wiley S, et al. Characterization of the human heart mitochondrial proteome. Nat Biotechnol. 2003;21:281–6.
    CAS  PubMed  Google Scholar 

    35.
    Park D, Kim H, Yoon S. Nitrous oxide reduction by an obligate aerobic bacterium, Gemmatimonas aurantiaca strain T-27. Appl Environ Microbiol. 2017;83:e00502–17.
    PubMed  PubMed Central  Google Scholar 

    36.
    Razzell WE, Trussell PC. Isolation and properties of an iron-oxidizing Thiobacillus. J Bacteriol. 1963;85:595–603.
    CAS  PubMed  PubMed Central  Google Scholar 

    37.
    Valdés J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake R, et al. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics. 2008;9:597.
    PubMed  PubMed Central  Google Scholar 

    38.
    Hanada S, Hiraishi A, Shimada K, Matsuura K. Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement. Int J Syst Evol Microbiol. 1995;45:676–81.
    CAS  Google Scholar 

    39.
    Otaki H, Everroad RC, Matsuura K, Haruta S. Production and consumption of hydrogen in hot spring microbial mats dominated by a filamentous anoxygenic photosynthetic bacterium. Microbes Environ. 2009;27:293–9.
    Google Scholar 

    40.
    Kawai S, Nishihara A, Matsuura K, Haruta S. Hydrogen-dependent autotrophic growth in phototrophic and chemolithotrophic cultures of thermophilic bacteria, Chloroflexus aggregans and Chloroflexus aurantiacus, isolated from Nakabusa hot springs. FEMS Microbiol Lett. 2019;366:fnz122.
    CAS  PubMed  Google Scholar 

    41.
    Heinhorst S, Baker SH, Johnson DR, Davies PS, Cannon GC, Shively JM. Two copies of form I RuBisCO genes in Acidithiobacillus ferrooxidans ATCC 23270. Curr Microbiol. 2002;45:115–17.
    CAS  PubMed  Google Scholar 

    42.
    Klatt CG, Bryant DA, Ward DM. Comparative genomics provides evidence for the 3-hydroxypropionate autotrophic pathway in filamentous anoxygenic phototrophic bacteria and in hot spring microbial mats. Environ Microbiol. 2007;9:2067–78.
    CAS  PubMed  Google Scholar 

    43.
    Zhang H, Sekiguchi Y, Hanada S, Hugenholtz P, Kim H, Kamagata Y, et al. Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol. 2003;53:1155–63.
    CAS  PubMed  Google Scholar 

    44.
    Zammit CM, Mutch LA, Watling HR, Watkin ELJ. The recovery of nucleic acid from biomining and acid mine drainage microorganisms. Hydrometallurgy. 2011;108:87–92.
    CAS  Google Scholar 

    45.
    Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115.
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.
    CAS  PubMed  PubMed Central  Google Scholar 

    47.
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
    CAS  PubMed  PubMed Central  Google Scholar 

    48.
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;6:1925–7.
    Google Scholar 

    49.
    Kawasumi T, Igarashi Y, Kodama T, Minoda Y. Hydrogenobacter thermophilus gen. nov., sp. nov., an extremely thermophilic, aerobic, hydrogen-oxidizing bacterium. Int J Syst Evol Microbiol. 1984;34:5–10.
    CAS  Google Scholar 

    50.
    Klenk H-P, Lapidus A, Chertkov O, Copeland A, Del Rio TG, Nolan M, et al. Complete genome sequence of the thermophilic, hydrogen-oxidizing Bacillus tusciae type strain (T2 T) and reclassification in the new genus, Kyrpidia gen. nov. as Kyrpidia tusciae comb. nov. and emendation of the family Alicyclobacilla. Stand Genom Sci. 2011;5:121.
    CAS  Google Scholar 

    51.
    Hogendoorn C, Pol A, Picone N, Cremers G, van Alen TA, Gagliano AL, et al. Hydrogen and carbon monoxide-utilizing Kyrpidia spormannii species from Pantelleria Island, Italy. Front Microbiol. 2020;11:951.
    PubMed  PubMed Central  Google Scholar 

    52.
    Hedrich S, Johnson DB. Aerobic and anaerobic oxidation of hydrogen by acidophilic bacteria. FEMS Microbiol Lett. 2013;349:40–45.
    CAS  PubMed  Google Scholar 

    53.
    Grostern A, Alvarez-Cohen L. RubisCO-based CO2 fixation and C1 metabolism in the actinobacterium Pseudonocardia dioxanivorans CB1190. Environ Microbiol. 2013;15:3040–53.
    CAS  PubMed  Google Scholar 

    54.
    Auernik KS, Kelly RM. Physiological versatility of the extremely thermoacidophilic archaeon Metallosphaera sedula supported by transcriptomic analysis of heterotrophic, autotrophic, and mixotrophic growth. Appl Environ Microbiol. 2010;76:931–5.
    CAS  PubMed  Google Scholar 

    55.
    Mohammadi S, Pol A, van Alen TA, Jetten MSM, Op den Camp HJM. Methylacidiphilum fumariolicum SolV, a thermoacidophilic ‘Knallgas’ methanotroph with both an oxygen-sensitive and -insensitive hydrogenase. ISME J. 2017;11:945–58.
    CAS  PubMed  Google Scholar 

    56.
    Tveit AT, Hestnes AG, Robinson SL, Schintlmeister A, Dedysh SN, Jehmlich N, et al. Widespread soil bacterium that oxidizes atmospheric methane. Proc Natl Acad Sci USA. 2019;116:8515–24.
    CAS  PubMed  Google Scholar 

    57.
    Conrad R. Soil microorganisms oxidizing atmospheric trace gases (CH4, CO, H2, NO). Indian J Microbiol. 1999;39:193–203.
    Google Scholar 

    58.
    Spear JR, Walker JJ, McCollom TM, Pace NR. Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc Natl Acad Sci USA. 2005;102:2555–60.
    CAS  PubMed  Google Scholar 

    59.
    Ferrera I, Sanchez O. Insights into microbial diversity in wastewater treatment systems: How far have we come? Biotechnol Adv. 2016;34:790–802.
    CAS  PubMed  Google Scholar 

    60.
    Mielke RE, Pace DL, Porter T, Southam G. A critical stage in the formation of acid mine drainage: Colonization of pyrite by Acidithiobacillus ferrooxidans under pH‐neutral conditions. Geobiology. 2003;1:81–90.
    CAS  Google Scholar 

    61.
    Constant P, Chowdhury SP, Hesse L, Conrad R. Co-localization of atmospheric H2 oxidation activity and high affinity H2-oxidizing bacteria in non-axenic soil and sterile soil amended with Streptomyces sp. PCB7. Soil Biol Biochem. 2011;43:1888–93.
    CAS  Google Scholar 

    62.
    Cordero PRF, Bayly K, Leung PM, Huang C, Islam ZF, Schittenhelm RB, et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J. 2019;13:2868–81.
    CAS  PubMed  PubMed Central  Google Scholar 

    63.
    Eichner MJ, Basu S, Gledhill M, de Beer D, Shaked Y. Hydrogen dynamics in Trichodesmium colonies and their potential role in mineral iron acquisition. Front Microbiol. 2019;10:1565.
    PubMed  PubMed Central  Google Scholar 

    64.
    Houchins JP, Burris RH. Comparative characterization of two distinct hydrogenases from Anabaena sp. strain 7120. J Bacteriol. 1981;146:215–21.
    CAS  PubMed  PubMed Central  Google Scholar 

    65.
    Greening C, Grinter R, Chiri E. Uncovering the metabolic strategies of the dormant microbial majority: towards integrative approaches. mSystems. 2019;4:e00107–19.
    CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    Global patterns of parasite diversity in cephalopods

    1.
    Boyle, P. & Rodhouse, P. Cephalopods: ecology and fisheries (Wiley, Hoboken, 2008).
    Google Scholar 
    2.
    Iglesias, J., Fuentes, L. & Villanueva, R. Cephalopod culture (Springer, Dordrecht, 2014).
    Google Scholar 

    3.
    Huffard, C. L. Cephalopod neurobiology: an introduction for biologists working in other model systems. Invertebr. Neurosci. 13, 11–18 (2013).
    Google Scholar 

    4.
    Marini, G., De Sio, F., Ponte, G. & Fiorito, G. Behavioral analysis of learning and memory in cephalopods. In Learning and memory: a comprehensive reference 2nd edn (ed. Byrne, J. H.) 441–462 (Academic Press, Amsterdam, 2017).
    Google Scholar 

    5.
    Moltschaniwskyj, N. A. et al. Ethical and welfare considerations when using cephalopods as experimental animals. Rev. Fish Biol. Fish. 17, 455–476 (2007).
    Google Scholar 

    6.
    Xavier, J. C. et al. Future challenges in cephalopod research. J. Mar. Biol. Assoc. UK 95, 999–1015 (2015).
    Google Scholar 

    7.
    Clarke, M. R. The role of cephalopods in the world’s oceans: an introduction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351, 979–983 (1996).
    ADS  Google Scholar 

    8.
    Gestal, C., Abollo, E. & Pascual, S. Observations on associated histopathology with Aggregata octopiana infection (Protista: Apicomplexa) in Octopus vulgaris. Dis. Aquat. Org. 50, 45–49 (2002).
    CAS  PubMed  Google Scholar 

    9.
    Tedesco, P. et al. Morphological and molecular characterization of Aggregata spp. Frenzel 1885 (Apicomplexa: Aggregatidae) in Octopus vulgaris Cuvier 1797 (Mollusca: Cephalopoda) from Central Mediterranean. Protist 168, 636–648 (2017).
    PubMed  Google Scholar 

    10.
    Giribet, G. & Edgecombe, G. D. The invertebrate tree of life (Princeton University Press, Princeton, 2020).
    Google Scholar 

    11.
    Hochberg, F. G. Diseases of Mollusca Cephalopoda—diseases caused by protistans and metazoans. In Diseases of marine animals Vol. III (ed. Kinne, O.) 47–202 (Biologische Anstalt Helgoland, Hamburg, 1990).
    Google Scholar 

    12.
    Humes, A. G. & Voight, J. R. Cholidya polypi (Copepoda: Harpacticoida: Tisbidae), a parasite of deep sea octopuses in the north Atlantic and northeastern Pacific. Ophelia 46, 65–81 (1997).
    Google Scholar 

    13.
    Combes, C. Parasitism: the ecology and evolution of intimate interactions (University of Chicago Press, Chicago, 2001).
    Google Scholar 

    14.
    Lindenfors, P. et al. Parasite species richness in carnivores: effects of host body mass, latitude, geographical range and population density. Glob. Ecol. Biogeogr. 1, 1–14 (2007).
    Google Scholar 

    15.
    Kuhn, T., Cunze, S., Kochmann, J. & Klimpel, S. Environmental variables and definitive host distribution: a habitat suitability modelling for endohelminth parasites in the marine realm. Sci. Rep. 6, 30246. https://doi.org/10.1038/srep30246 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Pascual, S., González, A. F. & Guerra, A. The recruitment of gill-infesting copepods as a categorical predictor of size-at-age data in squid populations. ICES J. Mar. Sci. 62, 629–633 (2005).
    Google Scholar 

    17.
    González, A. F., Pascual, S., Gestal, C., Abollo, E. & Guerra, A. What makes a cephalopod a suitable host for parasite? The case of Galician waters. Fish. Res. 60, 177–183 (2003).
    Google Scholar 

    18.
    Bower, J. R. & Miyahara, K. The diamond squid (Thysanoteuthis rhombus): a review of the fishery and recent research in Japan. Fish. Res. 73, 1–11 (2005).
    Google Scholar 

    19.
    Klimpel, S. & Palm, H. W. Anisakid nematode (Ascaridoidea) life cycles and distribution: increasing zoonotic potential in the time of climate change? In Progress in parasitology (ed. Mehlhorn, H.) 201–222 (Springer, Berlin, 2011).
    Google Scholar 

    20.
    Lafferty, K. D. & Kuris, A. M. How environmental stress affects the impact of parasites. Limnol. Oceanogr. 44, 925–931 (1999).
    ADS  Google Scholar 

    21.
    Mattiucci, S., Cipriani, P., Levsen, A., Paoletti, M. & Nascetti, G. Molecular epidemiology of Anisakis and anisakiasis: an ecological and evolutionary road map. Adv. Parasitol. 99, 93–263 (2018).
    PubMed  Google Scholar 

    22.
    Poulin, R. & Leung, T. L. F. Taxonomic resolution in parasite community studies: are things getting worse?. Parasitology 137, 1967–1973 (2010).
    CAS  PubMed  Google Scholar 

    23.
    Bartoli, P., Jousson, O. & Russell-Pinto, F. The life cycle of Monorchis parvus (Digenea: Monorchiidae) demonstrated by developmental and molecular data. J. Parasitol. 86, 479–489 (2000).
    CAS  PubMed  Google Scholar 

    24.
    Caira, J. N. Synergy advances parasite taxonomy and systematics: an example from elasmobranch tapeworms. Parasitology 138, 1675–1687 (2011).
    PubMed  Google Scholar 

    25.
    Mattiucci, S. et al. Genetic and morphological approaches distinguish the three sibling species of the Anisakis simplex species complex, with a species designation as Anisakis berlandi n. sp. for A. simplex sp. C (Nematoda: Anisakidae). J. Parasitol. 100, 199–215 (2014).
    CAS  PubMed  Google Scholar 

    26.
    Roumbedakis, K., Drábková, M., Tyml, T. & di Cristo, C. A perspective around cephalopods and their parasites, and suggestions on how to increase knowledge in the field. Front. Physiol. 9, 1573. https://doi.org/10.3389/fphys.2018.01573 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    27.
    Redi, F. Osservazioni di Francesco Redi academico della Crusca intorno agli animali viventi che si trovano negli animali viventi (Firenze, 1684).

    28.
    Lopez-Gonzalez, P. J. et al. Description of Genesis vulcanoctopusi gen. et sp. nov. (Copepoda: Tisbidae) parasitic on a hydrothermal vent octopod and a reinterpretation of the life cycle of cholidyinid harpacticoids. Cah. Biol. Mar. 41, 241–253 (2000).
    Google Scholar 

    29.
    Avdeev, G. V. Amplipedicola pectinatus gen. et sp. n. (Copepoda, Harpacticoida, Tisbidae), a parasite of octopuses in the Bering Sea. Crustaceana 83, 1363–1370 (2010).
    Google Scholar 

    30.
    Ho, J. S. & Kim, I. H. New species of Doridicola (Copepoda, Rhynchomolgidae) from Thailand, with a cladistic analysis of the genus. J. Crustacean Biol. 21, 78–89 (2001).
    Google Scholar 

    31.
    Mehrdana, F. et al. Occurrence of zoonotic nematodes Pseudoterranova decipiens, Contracaecum osculatum and Anisakis simplex in cod (Gadus morhua) from the Baltic Sea. Vet. Parasitol. 205, 581–587 (2014).
    PubMed  Google Scholar 

    32.
    Ghadam, M., Banaii, M., Mohammed, E. T., Suthar, J. & Shamsi, S. Morphological and molecular characterization of selected species of Hysterothylacium (Nematoda: Raphidascarididae) from marine fish in Iraqi waters. J. Helminthol. 92, 116–124 (2018).
    CAS  PubMed  Google Scholar 

    33.
    Rosa, R. et al. Global patterns of species richness in coastal cephalopods. Front. Mar. Sci. 6, 469 (2019).
    Google Scholar 

    34.
    Furuya, H. & Tsuneki, K. Biology of dicyemid mesozoans. Zool. Sci. 20, 519–533 (2003).
    PubMed  Google Scholar 

    35.
    Catalano, S. R., Whittington, I. D., Donnellan, S. C. & Gillanders, B. M. Dicyemid fauna composition and infection patterns in relation to cephalopod host biology and ecology. Folia Parasitol. 61, 301–310 (2014).
    PubMed  Google Scholar 

    36.
    Bender, M. G. et al. Isolation drives taxonomic and functional nestedness in tropical reef fish faunas. Ecography 40, 425–435 (2017).
    Google Scholar 

    37.
    Bevilacqua, S. & Terlizzi, A. Nestedness and turnover unveil inverse spatial patterns of compositional and functional β-diversity at varying depth in marine benthos. Divers. Distrib. https://doi.org/10.1111/ddi.13025 (2020) ((in press)).
    Article  Google Scholar 

    38.
    Poulin, R., Besson, A., Bélanger Morin, M. & Randhawa, H. S. Missing links: testing the completeness of host-parasite checklists. Parasitology 143, 114–122 (2016).
    PubMed  Google Scholar 

    39.
    Poulin, R. How many parasite species are there: are we close to answers?. Int. J. Parasitol. 26, 1127–1129 (1996).
    CAS  PubMed  Google Scholar 

    40.
    Smith, J. A. et al. Cephalopod research and EU Directive 2010/63/EU: requirements, impacts and ethical review. J. Exp. Mar. Biol. Ecol. 447, 31–45 (2013).
    Google Scholar 

    41.
    Walther, B. A., Cotgreave, P., Price, R. D., Gregory, R. D. & Clayton, D. H. Sampling effort and parasite species richness. Parasitol. Today 11, 306–310 (1995).
    CAS  PubMed  Google Scholar 

    42.
    Drábková, M. et al. Population co-divergence in common cuttlefish (Sepia officinalis) and its dicyemid parasite in the Mediterranean Sea. Sci. Rep. 9, 14300. https://doi.org/10.1038/s41598-019-50555-92019 (2019).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Jereb, P., Vecchione, M. & Roper, C. F. E. Family Loliginidae. In Cephalopods of the world. An annotated and illustrated catalogue of species known to date. Myopsid and Oegopsid squids, no. 4 Vol. 2 (eds Jereb, P. & Roper, C. F. E.) 38–117 (FAO Species Catalogue for Fishery Purposes, FAO, Rome, 2010).
    Google Scholar 

    44.
    Roper, C. F. E., Nigmatullin, C. & Jereb, P. Family Ommastrephidae. In Cephalopods of the world. An annotated and illustrated catalogue of species known to date. Myopsid and Oegopsid squids, no. 4 Vol. 2 (eds Jereb, P. & Roper, C. F. E.) 269–347 (FAO Species Catalogue for Fishery Purposes, FAO, Rome, 2010).
    Google Scholar 

    45.
    Bordes, F., Morand, S., Kelt, D. A. & Van Vuren, D. H. Home range and parasite diversity in mammals. Am. Nat. 173, 467–474 (2009).
    PubMed  Google Scholar 

    46.
    Feliu, C. et al. A comparative analysis of parasite species richness of Iberian rodents. Parasitology 115, 453–466 (1997).
    PubMed  Google Scholar 

    47.
    Nunn, C. L., Altizer, S., Jones, K. E. & Sechrest, W. Comparative tests of parasite species richness in primates. Am. Nat. 162, 597–614 (2003).
    PubMed  Google Scholar 

    48.
    Ambrose, R. F. & Nelson, B. V. Predation by Octopus vulgaris in the Mediterranean. Mar. Ecol. 4, 251–261 (1983).
    ADS  Google Scholar 

    49.
    Catalano, S. R., Whittington, I. D., Donnellan, S. C. & Gillanders, B. M. Using the giant Australian cuttlefish (Sepia apama) mass breeding aggregation to explore the life cycle of dicyemid parasites. Acta Parasitol. 58, 599–602 (2013).
    PubMed  Google Scholar 

    50.
    Furuya, H. & Souidenne, D. Dicyemids. In Handbook of pathogens and diseases in cephalopods (eds Gestal, C. et al.) 159–168 (Springer, Cham, 2019).
    Google Scholar 

    51.
    Ruhnke, T. R. Tapeworms of Elasmobranchs (Part III). A monograph on the Phyllobothriidae (Platyhelminthes, Cestoda). Bull. Univ. Nebr. State Mus. 25, 1–208 (2011).
    Google Scholar 

    52.
    Randhawa, H. S. & Poulin, R. Tapeworm discovery in elasmobranch fishes: quantifying patterns and identifying their correlates. Mar. Freshw. Res. 71, 78–88 (2020).
    Google Scholar 

    53.
    Cake, E. W. A key to larval cestodes of shallow-water, benthic mollusks of the northern Gulf of Mexico. Proc. Helminthol. Soc. Wash. 43, 160–171 (1976).
    Google Scholar 

    54.
    Agusti, C. et al. Morphological and molecular characterization of tetraphyllidean merocercoids (Platyhelminthes: Cestoda) of striped dolphins (Stenella coeruleoalba) from the western Mediterranean. Parasitology 130, 461–474 (2005).
    CAS  PubMed  Google Scholar 

    55.
    Jensen, K. & Bullard, S. A. Characterization of a diversity of tetraphyllidean and rhinebothriidean cestode larval types, with comments on host associations and life cycles. Int. J. Parasitol. 40, 889–910 (2010).
    CAS  PubMed  Google Scholar 

    56.
    Mills, K. E. & Bever, J. D. Maintenance of diversity within plant communities: soil pathogens as agents of negative feedback. Ecology 79, 1595–1601 (1998).
    Google Scholar 

    57.
    Lafferty, K. D. et al. Parasites in food webs: the ultimate missing links. Ecol. Lett. 11, 533–546 (2008).
    PubMed  PubMed Central  Google Scholar 

    58.
    Johnson, P. T. et al. When parasites become prey: ecological and epidemiological significance of eating parasites. Trends Ecol. Evol. 25, 362–371 (2010).
    PubMed  Google Scholar 

    59.
    Clarke, K. R. & Warwick, R. M. A taxonomic distinctness index and its statistical properties. J. Appl. Ecol. 35, 523–531 (1998).
    Google Scholar 

    60.
    Clarke, K. R. & Warwick, R. M. A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Mar. Ecol. Prog. Ser. 216, 265–278 (2001).
    ADS  Google Scholar 

    61.
    Anu, A. & Sabu, T. K. Biodiversity analysis of forest litter ant assemblages in the Wayanad region of Western Ghats using taxonomic and conventional diversity measures. J. Insect Sci. 7, 06. https://doi.org/10.1673/031.007.0601 (2007).
    Article  Google Scholar 

    62.
    Bevilacqua, S., Fraschetti, S., Musco, L., Guarnieri, G. & Terlizzi, A. Low sensitiveness of taxonomic distinctness indices to human impacts: evidences across marine benthic organisms and habitat types. Ecol. Indic. 11, 448–455 (2011).
    Google Scholar 

    63.
    Guo, C. & Xu, H. Use of functional distinctness of periphytic ciliates for monitoring water quality in coastal ecosystems. Ecol. Indic. 96, 213–218 (2019).
    CAS  Google Scholar 

    64.
    Luque, J. L., Mouillot, D. & Poulin, R. Parasite biodiversity and its determinants in coastal marine teleost fishes of Brazil. Parasitology 128, 671–682 (2004).
    CAS  PubMed  Google Scholar 

    65.
    Quiroz-Martínez, B. & Salgado-Maldonado, G. Taxonomic distinctness and richness of helminth parasite assemblages of freshwater fishes in Mexican hydrological basins. PLoS ONE 8, e74419. https://doi.org/10.1371/journal.pone.0074419 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    66.
    Leonard, D. R. P., Clarke, K. R., Somerfield, P. J. & Warwick, R. M. The application of an indicator based on taxonomic distinctness for UK marine biodiversity assessments. J. Environ. Manag. 78, 52–62 (2006).
    CAS  Google Scholar 

    67.
    Bevilacqua, S., Sandulli, R., Plicanti, A. & Terlizzi, A. Taxonomic distinctness in Mediterranean marine nematodes and its relevance for environmental impact assessment. Mar. Pollut. Bull. 64, 1409–1416 (2012).
    CAS  PubMed  Google Scholar 

    68.
    Price, A. R. G., Vincent, L. P. A., Venkatachalam, A. J., Bolton, J. J. & Basson, P. W. Concordance between different measures of biodiversity in Indian Ocean macroalgae. Mar. Ecol. Prog. Ser. 319, 85–91 (2006).
    ADS  Google Scholar 

    69.
    Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).
    Google Scholar 

    70.
    Clarke, K. R. & Warwick, R. M. The taxonomic distinctness measure of biodiversity: weighting of step lengths between hierarchical levels. Mar. Ecol. Prog. Ser. 184, 21–29 (1999).
    ADS  Google Scholar 

    71.
    Baselga, A. The relationship between species replacement, dissimilarity derived from turnover, and nestedness. Glob. Ecol. Biogeogr. 21, 1223–1232 (2012).
    Google Scholar 

    72.
    Jereb, P. & Roper, C. F. E. Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 1. Chambered Nautiluses and Sepioids (Nautilidae, Sepiidae, Sepiadariidae, Idiosepiidae and Spirulidae) (FAO Species Catalogue for Fishery Purposes, No. 4, Vol. 1, Rome, FAO, 2005).

    73.
    Jereb, P. & Roper, C. F. E. Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 2. Myopsid and Oegopsid Squids (FAO Species Catalogue for Fishery Purposes, No. 4, Vol. 2, Rome, FAO, 2010).

    74.
    Jereb, P., Roper, C. F. E., Norman, M.D. & Julian, K. F. Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 3. Octopods and Vampire Squids (FAO Species Catalogue for Fishery Purposes, No. 4, Vol. 3, Rome, FAO 2014).

    75.
    Cephbase (2018). https://cephbase.eol.org/. Accessed December 2018.

    76.
    Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation, and comparison of assemblages. J. Plant Ecol. 5, 3–21 (2012).
    Google Scholar 

    77.
    Clarke, K. R. & Gorley, R. N. PRIMER v6: user manual/tutorial (PRIMER-E, Plymouth, 2006).
    Google Scholar 

    78.
    R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2018).

    79.
    Baselga, A. & Orme, C. D. L. betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).
    Google Scholar 

    80.
    Colwell R. K. EstimateS: Statistical estimation of species richness and shared species from samples. Version 9 and earlier. User’s guide and application. https://viceroy.colorado.edu/estimates (2013). More

  • in

    The lockdown walk that inspired an experiment

    CAREER COLUMN
    09 July 2020

    Why do garden plants suddenly become invasive? One scientist couple turned their balcony into a lab to find out.

    Florencia A. Yannelli &

    Florencia A. Yannelli is a researcher in the Ecological Novelty Group at the Freie Universität Berlin in Germany.

    Search for this author in:

    Wolf-Christian Saul

    Wolf-Christian Saul is a researcher in the Ecological Novelty Group at the Freie Universität Berlin in Germany.

    Search for this author in:

    No lab? Don’t let that stop you — you can still do science in unexpected places, such as your balcony.Credit: Florencia A. Yannelli

    We are a researcher couple who work in invasion ecology. The coronavirus outbreak and lockdown have been a challenge for us not only as a family (we have an eight-month-old baby), but also as scientists. Even as containment measures are slowly relaxed where we live in Berlin, the lingering pandemic continues to have an impact. Running experiments or doing fieldwork when the use of laboratories and university facilities still remains limited is very difficult, just as is staying on track with project milestones while keeping a child (or children) happy in a home-office situation. However, we have realized that this crisis could be a great opportunity to find new inspiration for research in our surroundings, away from what used to be our normal work routines.
    And we are not alone: alongside great pictures of homemade bread and other delicacies that have been posted by academics on Twitter, we’ve seen many colleagues and non-academics taking the time to carefully observe and document, for instance, the bird, insect and plant species they find around them (check out the Twitter hashtags #backyardbiodiversity and #urbanecology). Amazing species, which we might know are there but never take the time to properly examine, are now being recorded, photographed and shared over social media.
    We’ve found ourselves doing something similar: during our daily, socially distanced walks around our neighbourhood with our baby, we started discussing what might be the reason why certain plants commonly grown in gardens become invasive. Your Canadian goldenrod (Solidago canadensis) or garden lupin (Lupinus polyphyllus), for instance, can often spread, without further human help, far beyond your garden — and could even displace other plant species. Given our experience with invasive plants, we wondered whether they might change the soil conditions where they grow, and whether this could help them to outcompete other species, eventually dominating our gardens or escaping into adjacent areas.

    We sat down in our kitchen and planned an experiment to test this, and worked out whether we could actually do it on our balcony. We used plastic cups and jar labels found in some neglected cupboard, bought commercial ornamental seeds and then collected soil and seeds of invasive plant species in the area surrounding our home. Now, the experiment is running on our balcony, which is keeping us both entertained and engaged, as well as brightening our home’s exterior. In a few weeks’ time, when the seedlings have grown high enough, we hope to be able to collect several measurements to compare the soils we collected from different parts of the city. And it’s all in the comfort of our home — with no commuting and no extra risk.

    Florencia and Wolf-Christian bring their baby on their walks.Credit: Florencia A. Yannelli

    There’s more: we are using our experiment as one example in a project we have named ‘alien escapists’ (@alienscapists on Twitter and Facebook). It has two main aims. First, we hope to bring together a community of international researchers interested in performing studies that, like ours, strive to explain the success of invasive plants in urban environments. Second, we want to communicate invasion science and our experimental approach to the wider public by sharing information on invasive plants we find in Berlin, as well as the progress of our experiment, on the project’s social-media pages, translated into our family’s languages — English, German and Spanish — for wider dissemination. Ours is only one of many possible ideas for experiments and hypothesis testing that could be done during lockdown within the limits of our balconies, gardens or even kitchens. We hope that people will share their own ideas on our social-media spaces and motivate others to join in.
    These are undoubtedly challenging times. Although there might be value in being forced to take a step back, slow down and re-evaluate working plans, scientists are interested in the natural world. Our experiment, and connections with other colleagues on social media, has helped us to get through lockdown by keeping us engaged with science while creating opportunities for research collaborations and engagement with the public. We have learnt that, despite the limitations and difficulties that come with lockdown, we can still ask interesting questions and explore our — sometimes overlooked — immediate surroundings. This has been an encouraging experience for us, especially considering that similar lockdown circumstances could arise again if the current situation worsens, or during other pandemics that we might confront in the future.

    doi: 10.1038/d41586-020-02074-1

    This is an article from the Nature Careers Community, a place for Nature readers to share their professional experiences and advice. Guest posts are encouraged.

    Latest on:

    SARS-CoV-2

    Jobs from Nature Careers

    Data Analyst / Bioinformatics Specialist – Translational Informatics
    Oklahoma Medical Research Foundation (OMRF)
    Oklahoma City, United States

    Animal Support Technician
    Oklahoma Medical Research Foundation (OMRF)
    Oklahoma City, United States

    PhD student in Engineering feedback regulation for recombinant protein production
    Technical University of Denmark (DTU)
    2800 Kgs. Lyngby, Denmark

    PhD student in Intracellular Metabolites as Fermentation Indicators (IMFI)
    Technical University of Denmark (DTU)
    2800 Kgs. Lyngby, Denmark

    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Related Articles More

  • in

    More severe disturbance regimes drive the shift of a kelp forest to a sea urchin barren in south-eastern Australia

    1.
    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).
    CAS  Google Scholar 
    2.
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).
    ADS  CAS  PubMed  Google Scholar 

    3.
    Jentsch, A., Kreyling, J. & Beierkuhnlein, C. A new generation of climate change experiments: events, not trends. Front. Ecol. Environ. 5, 365–374 (2007).
    Google Scholar 

    4.
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).
    ADS  CAS  PubMed  Google Scholar 

    5.
    Fisher, E. M. & Knutti, R. Robust projections of combined humidity and temperature extremes. Nat. Clim. Change 3, 126–130 (2013).
    ADS  Google Scholar 

    6.
    Bertocci, I., Maggi, E., Vaselli, S. & Benedetti-Cecchi, L. Contrasting effects of mean intensity and temporal variation of disturbance on a rocky seashore. Ecology 86, 2061–2067 (2005).
    Google Scholar 

    7.
    Byrnes, J. E. et al. Climate-driven increases in storm frequency simplify kelp forest food webs. Glob. Change Biol. 17, 2513–2524. https://doi.org/10.1111/j.1365-2486.2011.02409.x (2011).
    ADS  Article  Google Scholar 

    8.
    Pulsford, S. A., Lindenmayer, D. B. & Driscoll, D. A. A succession of theories: purging redundancy from disturbance theory. Biol. Rev. 91, 148–167 (2016).
    PubMed  Google Scholar 

    9.
    Watt, A. S. Pattern and process in the plant community. J. Ecol. 35, 1–22 (1947).
    Google Scholar 

    10.
    Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    11.
    Sousa, W. P. The role of disturbance in natural communities. Annu. Rev. Ecol. Syst. 15, 353–391 (1984).
    Google Scholar 

    12.
    Cardinale, B. J. & Palmer, M. A. Disturbance moderates biodiversity ecosystem function relationships: evidence from suspension feeding caddisflies in stream mesocosms. Ecology 83, 1915–1927 (2002).
    Google Scholar 

    13.
    Dayton, P. K. Competition, disturbance and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol. Monogr. 41, 351–389 (1971).
    Google Scholar 

    14.
    Paine, R. T. & Levin, S. A. Intertidal landscapes: disturbance and the dynamics of pattern. Ecol. Monogr. 51, 145–178 (1981).
    Google Scholar 

    15.
    Connell, J. H., Hughes, T. P. & Wallace, C. C. A 30-year study of coral abundance recruitment and disturbance at several scales in space and time. Ecol. Monogr. 67, 461–488 (1997).
    Google Scholar 

    16.
    Sousa, W. P. In Marine Community Ecology (eds Bertness, M. D. et al.) 85–130 (Sinauer Assoc, Sunderland, 1984).
    Google Scholar 

    17.
    Mackey, R. L. & Currie, D. J. The diversity–disturbance relationship: is it generally strong and peaked?. Ecology 82, 3479–3492 (2001).
    Google Scholar 

    18.
    Hughes, A. R., Byrnes, J. E., Kimbro, D. L. & Stachowicz, J. J. Reciprocal relationships and potential feedbacks between biodiversity and disturbance. Ecol. Lett. 10, 849–864 (2007).
    PubMed  Google Scholar 

    19.
    Fox, J. W. The intermediate disturbance hypothesis should be abandoned. Trends Ecol. Evol. 28, 86–92 (2013).
    PubMed  Google Scholar 

    20.
    Coffin, D. P. & Lauenroth, W. K. The effects of disturbance size and frequency on a shortgrass plant community. Ecology 69, 1609–1617 (1988).
    Google Scholar 

    21.
    Keough, M. J. & Quinn, G. P. Effects of periodic disturbances from trampling on rocky intertidal algal beds. Ecol. Appl. 8, 141–161 (1998).
    Google Scholar 

    22.
    Reed, D. C., Raimondi, P. T., Carr, M. H. & Goldwasser, L. The role of dispersal and disturbance in determining spatial heterogeneity in sedentary organisms. Ecology 81, 2011–2026 (2000).
    Google Scholar 

    23.
    Clark, G. F. & Johnston, E. L. Temporal change in the diversity–invasibility relationship in the presence of a disturbance regime. Ecol. Lett. 14, 52–57 (2011).
    PubMed  Google Scholar 

    24.
    Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organisation. Am. Nat. 111, 1119–1144 (1977).
    Google Scholar 

    25.
    Barry, J. P. Reproductive response of a marine annelid to winter storms: an analog to fire adaptation in plants?. Mar. Ecol. Prog. Ser. 54, 99–107 (1989).
    ADS  Google Scholar 

    26.
    Rydgren, K., Økland, R. H. & Hestmark, G. Disturbance severity and community resilience in a boreal forest. Ecology 85, 1906–1915 (2004).
    Google Scholar 

    27.
    Caplat, P. & Anand, M. Effects of disturbance frequency, species traits and resprouting on directional succession in an individual-based model of forest dynamics. J. Ecol. 97, 1028–1036 (2009).
    Google Scholar 

    28.
    Casanova, M. T. & Brock, M. A. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities?. Plant Ecol. 147, 237–250 (2000).
    Google Scholar 

    29.
    Villnäs, A. et al. The role of recurrent disturbances for ecosystem multifunctionality. Ecology 94, 2275–2287 (2013).
    PubMed  Google Scholar 

    30.
    Lenz, M., Molis, M. & Wahl, M. Experimental test of the intermediate disturbance hypothesis: frequency effects of emersion on fouling communities. J. Exp. Mar. Biol. Ecol. 305, 247–266 (2004).
    Google Scholar 

    31.
    Johnston, E. L. & Keough, M. J. Field assessment of the effects of timing and frequency of copper pulses on settlement of sessile marine invertebrates. Mar. Biol. 137, 1017–1029 (2000).
    Google Scholar 

    32.
    Johnston, E. L. & Keough, M. J. Direct and indirect effects of repeated pollution events of marine hard-substrate assemblages. Ecol. Appl. 12, 1212–1228 (2002).
    Google Scholar 

    33.
    Woods, K. D. Intermediate disturbance in a late-successional hemlock northern hardwood forest. J. Ecol. 92, 464–476 (2004).
    Google Scholar 

    34.
    Peterson, C. J., Krueger, L. M., Royo, A. A., Stark, S. & Carson, W. P. Disturbance size and severity covary in small and mid-size wind disturbances in Pennsylvania northern hardwoods forests. For. Ecol. Manag. 302, 273–279 (2013).
    Google Scholar 

    35.
    Ebeling, A. W., Laur, D. R. & Rowley, R. J. Severe storm disturbances and reversal of community structure in a southern California kelp forest. Mar. Biol. 84, 287–294 (1985).
    Google Scholar 

    36.
    Foster, D. R. Disturbance history, community organization and vegetation dynamics of the old-growth Pisgah forest, south-western New Hampshire, USA. J. Ecol. 76, 105–134 (1988).
    Google Scholar 

    37.
    Romme, W. H., Everham, E. H., Frelich, L. E., Moritz, M. A. & Sparks, R. E. Are large infrequent disturbances qualitatively different from small frequent disturbances?. Ecosystems 1, 524–534 (1998).
    Google Scholar 

    38.
    Turner, M. G., Baker, W. L., Peterson, C. J. & Peet, R. K. Factors influencing succession: lessons from large, infrequent natural disturbances. Ecosystems 1, 511–523 (1998).
    Google Scholar 

    39.
    Reed, D. C. et al. Wave disturbance overwhelms top-down and bottom-up control of primary production in California kelp forests. Ecology 92, 2108–2116 (2011).
    PubMed  Google Scholar 

    40.
    Irving, A. D., Connell, S. D. & Elsdon, T. S. Effects of kelp canopies on bleaching and photosynthetic activity of encrusting coralline algae. J. Exp. Mar. Biol. Ecol. 310, 1–12 (2004).
    Google Scholar 

    41.
    Carnell, P. E. & Keough, M. J. The influence of herbivores on primary producers can vary spatially and interact with disturbance. Oikos https://doi.org/10.1111/oik.02502 (2016).
    Article  Google Scholar 

    42.
    Drake, J. A. Community assembly mechanics and the structure of an experimental species assemblage. Am. Nat. 137, 1–26 (1991).
    Google Scholar 

    43.
    Petraitis, P. S. & Latham, R. E. The importance of scale in testing the origins of alternative community states. Ecology 80, 429–442 (1999).
    Google Scholar 

    44.
    Petraitis, P. Multiple Stable States in Natural Ecosystems (Oxford University Press, Oxford, 2013).
    Google Scholar 

    45.
    Kennelly, S. J. Physical disturbances in an Australian kelp community I. Temporal effects. Mar. Ecol. Prog. Ser. 40, 145–153. https://doi.org/10.3354/meps040145 (1987).
    ADS  Article  Google Scholar 

    46.
    Dayton, P. K. The structure and regulation of some south american kelp communities. Ecol. Monogr. 55, 447–468 (1985).
    Google Scholar 

    47.
    Eckman, J. E., Duggins, D. O. & Sewell, A. T. Ecology of understory kelp environments I. Effects of kelps on flow and particle transport near the bottom. J. Exp. Mar. Biol. Ecol. 129, 173–188 (1989).
    Google Scholar 

    48.
    Kennelly, S. J. Effects of kelp canopies on understorey species due to shade and scour. Mar. Ecol. Prog. Ser. 50, 215–224 (1989).
    ADS  Google Scholar 

    49.
    Wernberg, T., Kendrick, G. A. & Toohey, B. D. Modification of physical environment by an Ecklonia radiata (Laminariales) canopy and its implications for associated foliose algae. Aquat. Ecol. 39, 419–430 (2005).
    Google Scholar 

    50.
    Carnell, P. E. & Keough, M. J. Spatially variable synergistic effects of disturbance and additional nutrients on kelp recruitment and recovery. Oecologia 175, 409–416. https://doi.org/10.1007/s00442-014-2907-9 (2014).
    ADS  Article  PubMed  Google Scholar 

    51.
    Kennelly, S. J. Physical disturbances in an Australian kelp community II. Effects on understorey species due to differences in kelp cover. Mar. Ecol. Prog. Ser. 40, 155–165. https://doi.org/10.3354/meps040145 (1987).
    ADS  Article  Google Scholar 

    52.
    Kohler, K. & Gill, S. Coral point count with excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32, 1259–1269 (2006).
    ADS  Google Scholar 

    53.
    Steneck, R. S. & Dethier, M. N. A functional group approach to the structure of algal-dominated communities. Oikos 69, 476–498 (1994).
    Google Scholar 

    54.
    Anderson, M. J. et al. Permanova+ for Primer: Guide to Software and Statistical Methods (PRIMER-E, Plymouth, 2008).
    Google Scholar 

    55.
    Kennelly, S. J. Inhibition of kelp recruitment by turfing algae and consequences for an Australian kelp community. J. Exp. Mar. Biol. Ecol. 112, 49–60. https://doi.org/10.1016/S0022-0981(87)80014-X (1987).
    Article  Google Scholar 

    56.
    Irving, A. D. & Connell, S. D. Sedimentation and light penetration interact to maintain heterogeneity of subtidal habitats: algal versus invertebrate dominated assemblages. Mar. Ecol. Prog. Ser. 245, 83–91 (2002).
    ADS  Google Scholar 

    57.
    Toohey, B. D. et al. The effects of light and thallus scour from Ecklonia radiata canopy on an associated foliose algal assemblage: the importance of photoacclimation. Mar. Biol. 144, 1019–1027 (2004).
    Google Scholar 

    58.
    Toohey, B. D. & Kendrick, G. A. Survival of juvenile Ecklonia radiata sporophytes after canopy loss. J. Exp. Mar. Biol. Ecol. 349, 170–182 (2007).
    Google Scholar 

    59.
    Altamirano, M., Murakami, A. & Kawai, H. High light stress in the kelp Ecklonia cava. Aquat. Bot. 79, 125–135 (2004).
    Google Scholar 

    60.
    Longmore, A., & Nicholson, G. Baywide nutrient cycling (denitrification) monitoring program: milestone report no. 17 (December 2011–March 2012). www.oem.vic.gov.au/NutrientCycling (2012)

    61.
    Crockett, P. F. The Ecology and Ecophysiology of Caulerpa in Port Phillip Bay (School of Botany, The University of Melbourne, Melbourne, 2013).
    Google Scholar 

    62.
    Irving, A. D. & Connell, S. D. Physical disturbance by kelp abrades erect algae from the understorey. Mar. Ecol. Prog. Ser. 324, 127–137 (2006).
    ADS  Google Scholar 

    63.
    Konar, B. & Estes, J. A. The stability of boundary regions between kelp beds and deforested areas. Ecology 84, 174–185 (2003).
    Google Scholar 

    64.
    Konar, B., Edwards, M. S. & Estes, J. A. Biological interactions maintain the boundaries between kelp forests and urchin barrens in the Aleutian Archipelago. Hydrobiologia 724, 91–107 (2014).
    Google Scholar 

    65.
    Pickett, S. T. A. & White, P. S. The Ecology of Natural Disturbance and Patch Dynamics (Academic Press, New York, 1985).
    Google Scholar 

    66.
    Warner, R. R. & Chesson, P. L. Coexistence mediated by environmental variability: a field guide to the storage effect. Am. Nat. 126, 769–787 (1985).
    Google Scholar 

    67.
    Macreadie, P. I., York, P. H. & Sherman, C. D. H. Resilience of Zostera muelleri seagrass to small-scale disturbances: the relative importance of asexual versus sexual recovery. Ecol. Evol. 4, 450–461 (2014).
    PubMed  PubMed Central  Google Scholar 

    68.
    Smith, T. M. et al. Recovery pathways from small-scale disturbance in a temperate Australian seagrass. Mar. Ecol. Prog. Ser. 542, 97–108 (2016).
    ADS  CAS  Google Scholar 

    69.
    Wootton, H. F. & Keough, M. J. Disturbance type and intensity combine to affect resilience of an intertidal community. Mar. Ecol. Prog. Ser. 560, 121–133 (2016).
    ADS  Google Scholar 

    70.
    Coffin, D. P. & Lauenroth, W. K. Spatial and temporal variation in the seed bank of a semiarid grassland. Am. J. Bot. 76, 53–58 (1989).
    Google Scholar 

    71.
    Kalamees, R. & Zobel, M. The role of the seed bank in gap regeneration in a calcareous grassland community. Ecology S3, 1011–1025 (2002).
    Google Scholar 

    72.
    Rasheed, M. A. Recovery and succession in a multi-species tropical seagrass meadow following experimental disturbance: the role of sexual and asexual reproduction. J. Exp. Mar. Biol. Ecol. 310, 13–45 (2004).
    Google Scholar 

    73.
    Dayton, P. K. & Tegner, M. J. Bottoms below troubled waters: benthic impacts of the 1982–84 El Niño in the temperate zone. In Ecological Consequences of the 1982–83 El Niño to Marine Life. Elsevier Oceanography Series No. 52 (ed. Glynn, P. W.) 433–472 (Elsevier, Amsterdam, 1990).
    Google Scholar 

    74.
    Arafeh-Dalmau, N. et al. Extreme marine heatwaves alter kelp forest community near its equatorward distribution limit. Front. Mar. Sci. 6, 499. https://doi.org/10.3389/fmars.2019.00499 (2019).
    Article  Google Scholar 

    75.
    Piola, R. F. & Johnston, E. L. Pollution reduces native diversity and increases invader dominance in marine hard-substrate communities. Div. Dist. 14, 329–342 (2008).
    Google Scholar 

    76.
    Catford, J. A. et al. The intermediate disturbance hypothesis and plant invasions: implications for species richness and management. Perspect. Plant Ecol. Evol. Syst. 14, 231–241 (2012).
    Google Scholar 

    77.
    Jauni, M., Gripenberg, S. & Ramula, S. Non-native plant species benefit from disturbance: a meta-analysis. Oikos 124, 122–129. https://doi.org/10.1111/oik.01416 (2014).
    Article  Google Scholar 

    78.
    Clark, G. F. & Johnston, E. L. Propagule pressure and disturbance interact to overcome biotic resistance of marine invertebrate communities. Oikos 118, 1679–1686 (2009).
    Google Scholar 

    79.
    Symons, C. C. & Arnott, S. E. Timing is everything: priority effects alter community invasibility after disturbance. Ecol. Evol. 4, 397–407 (2014).
    PubMed  PubMed Central  Google Scholar 

    80.
    Klinger, R. & Brooks, M. Alternative pathways to landscape transformation: invasive grasses, burn severity and fire frequency in arid ecosystems. J. Ecol. 105, 1521–1533 (2017).
    Google Scholar 

    81.
    Castorani, M. C. N., Reed, D. C. & Miller, R. J. Loss of foundation species: disturbance frequency outweighs severity in structuring kelp forest communities. Ecology 99, 2442–2454. https://doi.org/10.1002/ecy.2485 (2018).
    Article  PubMed  Google Scholar 

    82.
    Torda, G. et al. Decadal erosion of coral assemblages by multiple disturbances in the Palm Islands, central Great Barrier Reef. Sci. Rep. 8, 11885 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    83.
    Johnstone, J. F. et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).
    Google Scholar 

    84.
    Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402. https://doi.org/10.1038/nclimate3303 (2017).
    ADS  Article  Google Scholar 

    85.
    Ummenhofer, C. C. & Meehl, G. A. Extreme weather and climate events with ecological relevance: a review. Philos. Trans. R. Soc. B 372, 20160135. https://doi.org/10.1098/rstb.2016.0135 (2017).
    Article  Google Scholar 

    86.
    McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 1, 1–9. https://doi.org/10.1111/nph.15027 (2018).
    Article  Google Scholar 

    87.
    Johnston, E. L. & Keough, M. J. Reduction of pollution impacts through the control of toxicant release must be site- and season-specific. J. Exp. Mar. Biol. Ecol. 320, 9–33 (2005).
    Google Scholar 

    88.
    Sheil, D. & Burselem, D. F. R. P. Disturbing hypotheses in tropical forests. Trends Ecol. Evol. 18, 18–26 (2003).
    Google Scholar 

    89.
    Svensson, J. R., Lindegarth, M. & Pavia, H. Equal rates of disturbance cause different patterns of diversity. Ecology 90, 496–505. https://doi.org/10.1890/07-1628.1 (2009).
    Article  PubMed  Google Scholar  More

  • in

    Species richness both impedes and promotes alien plant invasions in the Brazilian Cerrado

    In a field study conducted at 38 sites in two regions, we measured the abundance of alien invasive species, species richness of the plant community, total and soil extractable pools of P and N, soil phosphatase activity and the root phosphatase activity of nine common plant species. An analysis of the data using structural equation modelling (SEM) revealed no significant relationship between soil extractable-P concentrations and the abundance of alien plants (Fig. 1), despite the fact that previous studies in Cerrado have found P fertilization to promote the invasion of alien species31. However, the SEM did find abundance of alien invasive plants to be influenced by native species richness in two contrasting ways. One way was a direct negative relationship between species richness and the abundance of invasive species, which is consistent with the stochastic niche hypothesis and with results of some previous studies14,15,16. This pattern was also observed in a direct regression between the two variables (Suppl. Figure 2). The other way was an indirect and positive effect of species richness that was mediated via phosphatase, suggesting that invasive plants may benefit from organic P released through phosphatase produced by soil microbes and/or plant roots.
    Figure 1

    Structural equation model (SEM) showing direct (blue arrow) and indirect (orange arrow) connections between plant species richness and the abundance of alien plants in the Cerrado. The possible connection between species richness and soil phosphatase activity (PME) follows results obtained in the Jena Biodiversity Experiment29. Also connections between the total soil P and soil extractable P (Mehlich) pools on soil phosphatase activity, as well as a direct connection between soil extractable P and abundance of alien plants are included in the SEM. Plant variables are recorded on 334-m2 plots using the Braun–Blanquet scale, soil parameters are from the top 10-cm soil. Numbers associated with paths between variables are path coefficients presented as standardized values (scaled by the standard deviations of the variables). Solid arrows show significant connections (*p  More