Disturbance history can increase functional stability in the face of both repeated disturbances of the same type and novel disturbances
1.
Nazaries, L. et al. Evidence of microbial regulation of biogeochemical cycles from a study on methane flux and land use change. Appl. Environ. Microbiol. 79, 4031–4040. https://doi.org/10.1128/aem.00095-13 (2013).
CAS Article PubMed PubMed Central Google Scholar
2.
Offre, P., Spang, A. & Schleper, C. Archaea in biogeochemical cycles. Annu. Rev. Microbiol. 67(67), 437–457. https://doi.org/10.1146/annurev-micro-092412-155614 (2013).
CAS Article PubMed Google Scholar
3.
Rousk, J. & Bengtson, P. Microbial regulation of global biogeochemical cycles. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00103 (2014).
Article PubMed PubMed Central Google Scholar
4.
IPCC. Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 1535 pp (Cambridge, United Kingdom and New York, NY, USA, 2013).
5.
Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. https://doi.org/10.3389/fmicb.2012.00417 (2012).
Article PubMed PubMed Central Google Scholar
6.
Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 105, 11512–11519. https://doi.org/10.1073/pnas.0801925105 (2008).
ADS Article PubMed Google Scholar
7.
Griffiths, B. S. & Philippot, L. Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol. Rev. 37, 112–129. https://doi.org/10.1111/j.1574-6976.2012.00343.x (2013).
CAS Article PubMed Google Scholar
8.
Lindh, M. V. & Pinhassi, J. Sensitivity of bacterioplankton to environmental disturbance: a review of Baltic Sea field studies and experiments. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00361 (2018).
Article Google Scholar
9.
Free, A., McDonald, M. A. & Pagaling, E. Diversity-function relationships in natural, applied, and engineered microbial ecosystems. Adv. Appl. Microbiol. 105(105), 131–189. https://doi.org/10.1016/bs.aambs.2018.07.002 (2018).
CAS Article PubMed Google Scholar
10.
Hillebrand, H. et al. Decomposing multiple dimensions of stability in global change experiments. Ecol. Lett. 21, 21–30. https://doi.org/10.1111/ele.12867 (2018).
Article PubMed Google Scholar
11.
Griffiths, B. S. et al. Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship. Oikos 90, 279–294. https://doi.org/10.1034/j.1600-0706.2000.900208.x (2000).
Article Google Scholar
12.
Baho, D. L., Peter, H. & Tranvik, L. J. Resistance and resilience of microbial communities-temporal and spatial insurance against perturbations. Environ. Microbiol. 14, 2283–2292. https://doi.org/10.1111/j.1462-2920.2012.02754.x (2012).
Article PubMed Google Scholar
13.
Berga, M., Székely, A. J. & Langenheder, S. Effects of disturbance intensity and frequency on bacterial community composition and function. PLoS ONE 7, e36959 (2012).
ADS CAS Article Google Scholar
14.
Ager, D., Evans, S., Li, H., Lilley, A. K. & van der Gast, C. J. Anthropogenic disturbance affects the structure of bacterial communities. Environ. Microbiol. 12, 670–678. https://doi.org/10.1111/j.1462-2920.2009.02107.x (2010).
Article PubMed Google Scholar
15.
Sjöstedt, J. et al. Reduced diversity and changed bacterioplankton community composition do not affect utilization of dissolved organic matter in the Adriatic Sea. Aquat. Microb. Ecol. 71, 15–24 (2013).
Article Google Scholar
16.
Vaquer-Sunyer, R. et al. Dissolved organic nitrogen inputs from wastewater treatment plant effluents increase responses of planktonic metabolic rates to warming. Environ. Sci. Technol. 49, 11411–11420. https://doi.org/10.1021/acs.est.5b00674 (2015).
ADS CAS Article PubMed Google Scholar
17.
Bergen, B. et al. Acidification and warming affect prominent bacteria in two seasonal phytoplankton bloom mesocosms. Environ. Microbiol. 18, 4579–4595. https://doi.org/10.1111/1462-2920.13549 (2016).
CAS Article PubMed Google Scholar
18.
Salis, R. K., Bruder, A., Piggott, J. J., Summerfield, T. C. & Matthaei, C. D. High-throughput amplicon sequencing and stream benthic bacteria: identifying the best taxonomic level for multiplestressor research. Sci. Rep. 7, 12. https://doi.org/10.1038/srep44657 (2017).
CAS Article Google Scholar
19.
Sjöstedt, J., Langenheder, S., Kritzberg, E., Karlsson, C. M. G. & Lindstrom, E. S. Repeated disturbances affect functional but not compositional resistance and resilience in an aquatic bacterioplankton community. Environ. Microbiol. Rep. 10, 493–500. https://doi.org/10.1111/1758-2229.12656 (2018).
CAS Article PubMed Google Scholar
20.
Odum, E. P. in Stress effects on natural ecosystems (eds G. W. Barrett & R. Rosenberg) 43–47 (Wiley, London 1981).
21.
Herren, C. M., Webert, K. C. & McMahon, K. D. Environmental disturbances decrease the variability of microbial populations within periphyton. mSystems 1, 14. https://doi.org/10.1128/mSystems.00013-16 (2016).
Article Google Scholar
22.
Tobor-Kaplon, M. A., Bloem, J. & de Ruiter, P. C. Functional stability of microbial communites from long-term stressed soils to additional disturbances. Environ. Toxicol. Chem. 25, 1993–1999 (2006).
CAS Article Google Scholar
23.
Tolkkinen, M. et al. Multi-stressor impacts on fungal diversity and ecosystem functions in streams: natural vs. anthropogenic stress. Ecology 96, 672–683. https://doi.org/10.1890/14-0743.1 (2015).
CAS Article PubMed Google Scholar
24.
Müller, A. K., Westergaard, K., Christensen, S. & Sørensen, S. J. The diversity and function of soil microbial communities exposed to different disturbances. Microb. Ecol. 44, 49–58 (2002).
Article Google Scholar
25.
Leyer, G. J. & Johnson, E. A. Acid adaptation induces cross-protection against environmental stresses in salmonella-typhimurium. Appl. Environ. Microbiol. 59, 1842–1847. https://doi.org/10.1128/aem.59.6.1842-1847.1993 (1993).
CAS Article PubMed PubMed Central Google Scholar
26.
Rillig, M. C., Rolff, J., Tietjen, B., Wehner, J. & Andrade-Linares, D. R. Community priming-effects of sequential stressors on microbial assemblages. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiv040 (2015).
Article PubMed Google Scholar
27.
Andrade-Linares, D. R., Lehmann, A. & Rillig, M. C. Microbial stress priming—a meta-analysis. Environ. Microbiol. https://doi.org/10.1111/1462-2920.13223 (2016).
Article PubMed Google Scholar
28.
Cebrian, G., Sagarzazu, N., Pagan, R., Condon, S. & Manas, P. Development of stress resistance in Staphylococcus aureus after exposure to sublethal environmental conditions. Int. J. Food Microbiol. 140, 26–33. https://doi.org/10.1016/j.ijfoodmicro.2010.02.017 (2010).
CAS Article PubMed Google Scholar
29.
Vinebrooke, R. D. et al. Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos 104, 451–457 (2004).
Article Google Scholar
30.
Mills, A. L. & Mallory, L. M. The community structure of sessile heterotrophic bacteria stressed by acid mine drainage. Microb. Ecol. 14, 219–232 (1987).
CAS Article Google Scholar
31.
Atlas, R. M., Horowitz, A., Krichevsky, M. & Bej, A. K. Response of microbial populations to environmental disturbance. Microb. Ecol. 22, 249–256 (1991).
CAS Article Google Scholar
32.
Berga, M., Zha, Y. H., Szekely, A. J. & Langenheder, S. Functional and compositional stability of bacterial metacommunities in response to salinity changes. Front. Microbiol. 8, 11. https://doi.org/10.3389/fmicb.2017.00948 (2017).
Article Google Scholar
33.
Allison, G. The influence of species diversity and stress intensity on community resistance and resilience. Ecol. Monogr. 74, 117–134. https://doi.org/10.1890/02-0681 (2004).
Article Google Scholar
34.
Downing, A. L. & Leibold, M. A. Species richness facilitates ecosystem resilience in aquatic food webs. Freshwat. Biol. 55, 2123–2137. https://doi.org/10.1111/j.1365-2427.2010.02472.x (2010).
Article Google Scholar
35.
Kim, M., Heo, E., Kang, H. & Adams, J. Changes in soil bacterial community structure with increasing disturbance frequency. Microb. Ecol. 66, 171–181. https://doi.org/10.1007/s00248-013-0237-9 (2013).
Article PubMed Google Scholar
36.
Gibbons, S. M. et al. Disturbance regimes predictably alter diversity in an ecologically complex bacterial system. mBio https://doi.org/10.1128/mBio.01372-16 (2016).
Article PubMed PubMed Central Google Scholar
37.
Devictor, V., Julliard, R. & Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514. https://doi.org/10.1111/j.2008.0030-1299.16215.x (2008).
Article Google Scholar
38.
Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233. https://doi.org/10.1146/annurev.es.19.110188.001231 (1988).
Article Google Scholar
39.
Pandit, S. N., Kolasa, J. & Cottenie, K. Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90, 2253–2262. https://doi.org/10.1890/08-0851.1 (2009).
Article PubMed Google Scholar
40.
Blanck, H. A critical review of procedures and approaches used for assessing pollution-induced community tolerance (PICT) in biotic communities. Hum. Ecol. Risk Assess. 8, 1003–1034. https://doi.org/10.1080/1080-700291905792 (2002).
Article Google Scholar
41.
Li, J. et al. Initial copper stress strengthens the resistance of soil microorganisms to a subsequent copper stress. Microb. Ecol. 67, 931–941. https://doi.org/10.1007/s00248-014-0391-8 (2014).
CAS Article PubMed Google Scholar
42.
Girvan, M. S., Campbell, C. D., Killham, K., Prosser, J. I. & Glover, L. A. Bacterial diversity promotes community stability and functional resilience after perturbation. Environ. Microbiol. 7, 301–313 (2005).
CAS Article Google Scholar
43.
Azarbad, H. et al. Resilience of soil microbial communities to metals and additional stressors: DNA-based approaches for assessing “stress-on-stress” responses. Int. J. Mol. Sci. 17, 1–21 (2016).
Article Google Scholar
44.
Calow, P. Physiological costs of combating chemical toxicants: ecological implications. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 100, 3–6 (1991).
CAS Article Google Scholar
45.
Kuperman, R. G. & Carreiro, M. M. Soil heavy metal concentrations, microbial biomass and enzyme activities in contaminated grassland ecosytem. Soil Biol. Biochem. 29, 179–190 (1997).
CAS Article Google Scholar
46.
Mulder, C. P. H., Uliassi, D. D. & Doak, D. F. Physical stress and diversity-productivity relationships: the role of positive interactions. Proc. Natl. Acad. Sci. USA 98, 6704–6708. https://doi.org/10.1073/pnas.111055298 (2001).
ADS CAS Article PubMed Google Scholar
47.
Grman, E., Lau, J. A., Schoolmaster, D. R. & Gross, K. L. Mechanisms contributing to stability in ecosystem function depend on the environmental context. Ecol. Lett. 13, 1400–1410. https://doi.org/10.1111/j.1461-0248.2010.01533.x (2010).
Article PubMed Google Scholar
48.
Philippot, L. et al. Effect of primary mild stress on resilience and resistance of the nitrate reducer community to a subsequent severe stress. FEMS Microbiol. Lett. 285, 51–57 (2008).
CAS Article Google Scholar
49.
Kassen, B. & Bell, G. Experimental evolution in Chlamydomonas. IV. Selection in environments that vary through time at different scales. Heredity 80, 732–741 (1998).
Article Google Scholar
50.
Venail, P. A., Kaltz, O., Olivieri, I., Pommier, T. & Mouquet, N. Diversification in temporally heterogeneous environments: effect of the grain in experimental bacterial populations. J. Evol. Biol. 24, 2485–2495. https://doi.org/10.1111/j.1420-9101.2011.02376.x (2011).
CAS Article PubMed Google Scholar
51.
Nezhad, M. H., Hussain, M. A. & Britz, M. L. Stress responses in probiotic Lactobacillus casei. Crit. Rev. Food Sci. Nutr. 55, 740–749. https://doi.org/10.1080/10408398.2012.675601 (2015).
CAS Article Google Scholar
52.
Zhai, Z. Y. et al. Proteomic characterization of the acid tolerance response in Lactobacillus delbrueckii subsp bulgaricusCAUH1 and functional identification of a novel acid stress-related transcriptional regulator Ldb0677. Environ. Microbiol. 16, 1524–1537. https://doi.org/10.1111/1462-2920.12280 (2014).
CAS Article PubMed Google Scholar
53.
Morita, R. Y. Psychrophilic bacteria. Bacteriol. Rev. 39, 144–167 (1975).
CAS Article Google Scholar
54.
Persson, I., Pirard, J., Larsson, A., Holm, C. & Lousa-Alvin, A. Kväveafskiljningens effekt på Ekoln. Report No. 2012-12, 72 (Svenskt Vatten Utveckling, 2012).
55.
Baath, E. & Kritzberg, E. pH tolerance in freshwater bacterioplankton: trait variation of the community as measured by leucine incorporation. Appl. Environ. Microbiol. 81, 7411–7419. https://doi.org/10.1128/aem.02236-15 (2015).
Article PubMed PubMed Central Google Scholar
56.
Sinclair, L., Osman, O. A., Bertilsson, S. & Eiler, A. Microbial community composition and diversity via 16S rRNA gene amplicons: evaluating the illumina platform. PLoS ONE https://doi.org/10.1371/journal.pone.0116955 (2015).
Article PubMed PubMed Central Google Scholar
57.
Edgar, R. C. UPARSE highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996+ (2013).
CAS Article Google Scholar
58.
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
CAS Article Google Scholar
59.
Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137. https://doi.org/10.3354/ame01753 (2015).
Article Google Scholar
60.
Oksanen, J. et al. vegan: Community Ecology Package. https://CRAN.R-project.org/package=vegan (2015).
61.
del Giorgio, P., Bird, D. F., Prairie, Y. T. & Planas, D. Flow cytometric determination of bacterial abundance in lake plankton with the green nucleic acid stain SYTO 13. Limnol. Oceanogr. 41, 783–789 (1996).
ADS Article Google Scholar
62.
Smith, D. C. & Azam, F. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-Leucine. Mar. Microbial. Food Webs 6, 107–114 (1992).
Google Scholar
63.
Kirchman, D. L. in Handbook of methods in aquatic microbial ecology (eds P. F. Kemp, E. B. Sherr, B. F. Sherr, & J. J. Cole) (Lewis Publishers, London, 1993).
64.
Ylla, I., Peter, H., Romani, A. M. & Tranvik, L. J. Different diversity-functioning relationship in lake and stream bacterial communities. FEMS Microbiol. Ecol. 85, 95–103. https://doi.org/10.1111/1574-6941.12101 (2013).
Article PubMed Google Scholar
65.
Maxwell, S. E., Delaney, H. D. & Kelly, K. Designing Experiments and Analyzing Data: A Model Comparison Perspective (3, Routledge, London, 2018).
Google Scholar More