More stories

  • in

    Development of InDel markers for interspecific hybridization between hill pigeons and feral pigeons based on whole-genome re-sequencing

    Darwin, C. On the Origin of Species by Means of Natural Selection (Murray, 1859).
    Google Scholar 
    Mallet, J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20(5), 229–237. https://doi.org/10.1016/j.tree.2005.02.010 (2005).Article 

    Google Scholar 
    Ottenburghs, J. Multispecies hybridization in birds. Avian Res. 10(1), 20. https://doi.org/10.1186/s40657-019-0159-4 (2019).Article 

    Google Scholar 
    Grant, P. R. & Grant, B. R. Hybridization of bird species. Science 256(5054), 193–197. https://doi.org/10.1126/science.256.5054.193 (1992).Article 
    ADS 

    Google Scholar 
    Ottenburghs, J. Exploring the hybrid speciation continuum in birds. Ecol. Evol. 8(24), 13027–13034. https://doi.org/10.1002/ece3.4558 (2018).Article 

    Google Scholar 
    Stebbins, G. L. Variation and Evolution in Plants in Variation and Evolution in Plants (Columbia University Press, 1950).Book 

    Google Scholar 
    Justyn, N. M., Callaghan, C. T. & Hill, G. E. Birds rarely hybridize: A citizen science approach to estimating rates of hybridization in the wild. Evolution 74(6), 1216–1223. https://doi.org/10.1111/evo.13943 (2020).Article 

    Google Scholar 
    Mayr, E. Systematics and the Origin of Species, from the Viewpoint of a Zoologist (Harvard University Press, 1999).
    Google Scholar 
    Uy, J. A. C., Irwin, D. E. & Webster, M. S. Behavioral isolation and incipient speciation in birds. Annu. Rev. Ecol. Evol. Syst. 49(1), 1–24. https://doi.org/10.1146/annurev-ecolsys-110617-062646 (2018).Article 

    Google Scholar 
    Leighton, G. M., Lu, L. J., Holop, E., Dobler, J. & Ligon, R. A. Sociality and migration predict hybridization across birds. Proc. Biol. Sci. 288(1947), 20201946. https://doi.org/10.1098/rspb.2020.1946 (2021).Article 

    Google Scholar 
    Chunco, A. J. Hybridization in a warmer world. Ecol. Evol. 4(10), 2019–2031. https://doi.org/10.1002/ece3.1052 (2014).Article 

    Google Scholar 
    Grabenstein, K. C. & Taylor, S. A. Breaking barriers: Causes, consequences, and experimental utility of human-mediated hybridization. Trends Ecol. Evol. 33(3), 198–212. https://doi.org/10.1016/j.tree.2017.12.008 (2018).Article 

    Google Scholar 
    Quilodrán, C. S., Montoya-Burgos, J. I. & Currat, M. Harmonizing hybridization dissonance in conservation. Commun. Biol. 3(1), 391. https://doi.org/10.1038/s42003-020-1116-9 (2020).Article 

    Google Scholar 
    Rhymer, J. M. & Simberloff, D. Extinction by hybridization and introgression. Annu. Rev. Ecol. Syst. 27(1), 83–109. https://doi.org/10.1146/annurev.ecolsys.27.1.83 (1996).Article 

    Google Scholar 
    Chan, C. et al. Genetic analysis of interspecific hybridisation in the world’s only Forbes’ parakeet (Cyanoramphus forbesi) natural population. Conserv. Genet. 7(4), 493–506. https://doi.org/10.1007/s10592-005-9060-2 (2006).Article 

    Google Scholar 
    Huang, L. et al. Molecular evidence of introgressive hybridization between related species Jankowski’s Bunting (Emberiza jankowskii) and Meadow Bunting (Emberiza cioides) (Aves: Passeriformes). Avian Res. 13, 100035. https://doi.org/10.1016/j.avrs.2022.100035 (2022).Article 

    Google Scholar 
    Reudink, M. W., Mech, S. G., Mullen, S. P. & Curry, R. L. Structure and dynamics of the hybrid zone between Black-capped chickadee (Poecile atricapillus) and Carolina chickadee (P. carolinensis) in southeastern Pennsylvania. Auk 124(2), 463–478. https://doi.org/10.1093/auk/124.2.463 (2007).Article 

    Google Scholar 
    Negro, J. J., Torres, M. J. & Godoy, J. A. RAPD analysis for detection and eradication of hybrid partridges (Alectoris rufa × A. graeca) in Spain. Biol. Conserv. 98(1), 19–24. https://doi.org/10.1016/S0006-3207(00)00129-4 (2001).Article 

    Google Scholar 
    Bensch, S., Helbig, A. J., Salomon, M. & Seibold, I. Amplified fragment length polymorphism analysis identifies hybrids between two subspecies of warblers. Mol. Ecol. 11(3), 473–481. https://doi.org/10.1046/j.0962-1083.2001.01455.x (2002).Article 

    Google Scholar 
    Caballero-López, V., Lundberg, M., Sokolovskis, K. & Bensch, S. Transposable elements mark a repeat-rich region associated with migratory phenotypes of willow warblers (Phylloscopus trochilus). Mol. Ecol. 31(4), 1128–1141. https://doi.org/10.1111/mec.16292 (2022).Article 

    Google Scholar 
    Haig, S. M., Mullins, T. D., Forsman, E. D., Trail, P. W. & Wennerberg, L. Genetic identification of spotted owls, barred owls, and their hybrids: Legal implications of hybrid identity. Conserv. Biol. 18(5), 1347–1357. https://doi.org/10.1111/j.1523-1739.2004.00206.x (2004).Article 

    Google Scholar 
    Michalczuk, J. et al. Tests of multiple molecular markers for the identification of Great Spotted and Syrian woodpeckers and their hybrids. J. Ornithol. 155(3), 591–600. https://doi.org/10.1007/s10336-014-1040-1 (2014).Article 

    Google Scholar 
    Väli, Ü. et al. Microsatellites and single nucleotide polymorphisms in avian hybrid identification: A comparative case study. J. Avian Biol. 41(1), 34–49. https://doi.org/10.1111/j.1600-048X.2009.04730.x (2010).Article 

    Google Scholar 
    Wiley, C., Qvarnström, A., Andersson, G., Borge, T. & Saetre, G. P. Postzygotic isolation over multiple generations of hybrid descendents in a natural hybrid zone: How well do single-generation estimates reflect reproductive isolation?. Evolution 63(7), 1731–1739. https://doi.org/10.1111/j.1558-5646.2009.00674.x (2009).Article 

    Google Scholar 
    Adedze, Y. M. N. et al. Agarose-resolvable InDel markers based on whole genome re-sequencing in cucumber. Sci. Rep. 11(1), 3872. https://doi.org/10.1038/s41598-021-83313-x (2021).Article 
    ADS 

    Google Scholar 
    Weinman, L. R., Solomon, J. W. & Rubenstein, D. R. A comparison of single nucleotide polymorphism and microsatellite markers for analysis of parentage and kinship in a cooperatively breeding bird. Mol. Ecol. Resour. 15(3), 502–511. https://doi.org/10.1111/1755-0998.12330 (2015).Article 

    Google Scholar 
    Noda, T., Daiou, K., Mihara, T. & Nagano, Y. Development of indel markers for the selection of Satsuma mandarin (Citrus unshiu Marc.) hybrids that can be used for low-cost genotyping with agarose gels. Euphytica 216(7), 115. https://doi.org/10.1007/s10681-020-02654-2 (2020).Article 

    Google Scholar 
    Väli, U., Brandström, M., Johansson, M. & Ellegren, H. Insertion-deletion polymorphisms (indels) as genetic markers in natural populations. BMC Genet. 9(1), 8. https://doi.org/10.1186/1471-2156-9-8 (2008).Article 

    Google Scholar 
    Shapiro, M. D. et al. Genomic diversity and evolution of the head crest in the rock pigeon. Science 339(6123), 1063–1067. https://doi.org/10.1126/science.1230422 (2013).Article 
    ADS 

    Google Scholar 
    Schwenk, K., Brede, N. & Streit, B. Introduction. Extent, processes and evolutionary impact of interspecific hybridization in animals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363(1505), 2805–2811. https://doi.org/10.1098/rstb.2008.0055 (2008).Article 

    Google Scholar 
    Darwin, C. The Variation of Animals and Plants under Domestication 2 (Murray, USA, 1868).
    Google Scholar 
    Long, J. L. Introduced Birds of the World: The Worlwide History, Distribution and Influence of Birds Introduced to New Environments (David and Abbott, 1981).
    Google Scholar 
    Shapiro, M. D. & Domyan, E. T. Domestic pigeons. Curr. Biol. 23(8), R302–R303. https://doi.org/10.1016/j.cub.2013.01.063 (2013).Article 

    Google Scholar 
    Gholamhosseini, A., Vardakis, M., Aliabadian, M., Nijman, V. & Vonk, R. Hybridization between sister taxa versus non-sister taxa: A case study in birds. Bird Study 60(2), 195–201. https://doi.org/10.1080/00063657.2013.770815 (2013).Article 

    Google Scholar 
    Johnston, R. F., Siegel-Causey, D. & Johnson, S. G. European populations of the rock dove Columba livia and genotypic extinction. Am. Midl. Nat. 120(1), 1–10. https://doi.org/10.2307/2425881 (1988).Article 

    Google Scholar 
    Kim, J. Y. et al. Population genetic structure and conservation management of hill pigeons (Columba rupestris) recently endangered in South Korea. Genes Genom. https://doi.org/10.1007/s13258-021-01212-x (2022).Article 

    Google Scholar 
    Baptista, L. F., Trail, P. W., Horblit, H. M. & Kirwan, G. M. In Hill Pigeon (Columba rupestris). version 1.0 in Birds of the World (eds del Hoyo, J. et al.) (Cornell Laboratory of Ornithology, 2020). https://doi.org/10.2173/bow.hilpig1.01.Chapter 

    Google Scholar 
    McCarthy, E. M. Handbook of Avian Hybrids of the World (Oxford University Press, 2006).
    Google Scholar 
    Lijtmaer, D. A., Mahler, B. & Tubaro, P. L. Hybridization and postzygotic isolation patterns in pigeons and doves. Evolution 57(6), 1411–1418. https://doi.org/10.1111/j.0014-3820.2003.tb00348.x (2003).Article 

    Google Scholar 
    Johnston, R. F. & Janiga, M. Feral Pigeons (Oxford University Press, 1995). https://doi.org/10.2307/2425881.Book 

    Google Scholar 
    Stringham, S. A. et al. Divergence, convergence, and the ancestry of feral populations in the domestic rock pigeon. Curr. Biol. 22(4), 302–308. https://doi.org/10.1016/j.cub.2011.12.045 (2012).Article 

    Google Scholar 
    Hernández, F., Brown, J. I., Kaminski, M., Harvey, M. G. & Lavretsky, P. Genomic evidence for rare hybridization and large demographic changes in the evolutionary histories of four North American dove species. Animals (Basel) 11(9), 2677. https://doi.org/10.3390/ani11092677 (2021).Article 

    Google Scholar 
    Séré, M. et al. Null allele, allelic dropouts or rare sex detection in clonal organisms: Simulations and application to real data sets of pathogenic microbes. Parasit. Vectors 7(1), 331. https://doi.org/10.1186/1756-3305-7-331 (2014).Article 

    Google Scholar 
    Chan, W. Y., Hoffmann, A. A. & Oppen, M. J. H. Hybridization as a conservation management tool. Conserv. Lett. 12, 5. https://doi.org/10.1111/conl.12652 (2019).Article 

    Google Scholar 
    Randi, E. Detecting hybridization between wild species and their domesticated relatives. Mol. Ecol. 17(1), 285–293. https://doi.org/10.1111/j.1365-294X.2007.03417.x (2008).Article 

    Google Scholar 
    Wayne, R. K. & Shaffer, H. B. Hybridization and endangered species protection in the molecular era. Mol. Ecol. 25(11), 2680–2689. https://doi.org/10.1111/mec.13642 (2016).Article 

    Google Scholar 
    Pfennig, K. S., Kelly, A. L. & Pierce, A. A. Hybridization as a facilitator of species range expansion. Proc. Biol. Sci. 283(1839), 20161329. https://doi.org/10.1098/rspb.2016.1329 (2016).Article 

    Google Scholar 
    Oliveira, R. et al. Toward a genome-wide approach for detecting hybrids: Informative SNPs to detect introgression between domestic cats and European wildcats (Felis silvestris). Heredity 115(3), 195–205. https://doi.org/10.1038/hdy.2015.25 (2015).Article 

    Google Scholar 
    Austin, O. L. Jr. The Birds of Korea. Bulletin of the Museum of Comparative Zoology (Harvard College, 1948).
    Google Scholar 
    Kim, J. A. et al. Whole-genome sequencing revealed different demographic histories among the Korean endemic hill pigeon (Columba rupestris), rock pigeon (Columba livia var. domestica) and oriental turtle dove (Streptopelia orientalis). Genes Genom. 44(10), 1231–1242. https://doi.org/10.1007/s13258-022-01288-z (2022).Article 

    Google Scholar 
    NIBR. Genetic Diversity of Animal Resources IV_1 (National Institute of Biological Resources, 2018).
    Google Scholar  More

  • in

    Communities' awareness of afforestation and its contribution to the conservation of lizards in Dodoma, Tanzania

    Study areaThe study was carried out at the University of Dodoma (UDOM) and specifically at College of Natural and Mathematical Sciences (CNMS) and College of Education (COED) (Fig. 1). These two sites were considered because they have both afforested and non-afforested areas. Furthermore, unlike other places where afforestation is uncoordinated, the selected study area has proper management and records for the afforestation program that is taking place. The study area is located at latitude of 6° 57´ and 3° 82´ and longitudinal of 36° 26´ and 35° 26´. Its elevation is estimated to be 1120 m above the sea level. The site is semi-arid area dominated by sandy loam soil classified as Oxisol. The average annual rainfall of the areas is 447 mm. Temperatures vary depending on the season, with average minimum and maximum of (18^circ{rm C}) and 32 (^circ{rm C}) respectively.Figure 1Map showing the study area within the University of Dodoma (Created using QGIS 3.28.0 Firenze version, 2022). Note: CNMS-College of natural and mathematical science, CHS-College of humanities and social science, CIVE- College of informatic and virtual education, COED-College of Education.Full size imageThe bush is leafless and dry during the dry season, but comes to life during the rainy season, when the entire countryside turns a vibrant green19,20 The remaining land is covered in woodlands, with the highest concentrations in hills (URT 2014). The vegetation consists of dry savanna shrub-thicket areas with scattered trees and grassland patches interrupted by trees and shrubs.Study design on abundance and diversity of lizardsData on lizard abundance and diversity were collected at two sites, namely the CNMS and another site located at COED. These areas were purposely selected because the afforestation program is taking place. In the selected areas, trees have been planted for the past three years, which are 2019–2021. More effort is being made to plant more trees. Also, the areas have natural vegetation characterized by thickets, shrubs, and nature trees with species as described above in the study area. This makes the areas ideal for making comparisons between the afforested and un-afforested areas. In each site, two blocks were established, in which one block consisted of an afforested area while the other block was a non-afforested area.Data collectionDocumentation of planted tree speciesThe plants observed in the study areas were recorded. In addition to that, we worked with the restoration team, which provided the list of tree species that are grown in those study areas. Secondary data was collected from the restoration team regarding the tree species and how much has been planted in the last 5 years in the study areas.Sampling of lizard for abundance and diversity determinationPitfall trapsEach block had a size of 60 m by 60 m (2600 m2). In each block, two transects were established, each with a length of 60 m and a spacing of 20 m. In each transect, 4 points were identified, whereby 10 pitfall traps of 5 L each were set at an interval of 12 m. This makes 40 pitfall traps and eight walking transects. Emptying was performed every morning for 10 consecutive days in each pitfall. Thus, a total of 800 samples were collected from pitfall traps, with 400 samples being collected at each site.Direct searchingGeneral direct searching involving time-constrained observation was also used to collect data on the lizards found in the study area. Time constrained searches were conducted as an opportunistic means of finding animals hiding under cover and flushing them as the observer approached. Searching was conducted in an area of 20 m × 20 m at each sampling point where pitfalls were set. Searching was performed by an individual who is an ecologist and is an expert in reptiles for 10 min, 3 times a day for 10 days (n = 240). To ensure consistency, the same individual was employed in searching for each sampling point.At each site, the observed lizards were identified by their numbers and habitats. Photographs of captured or observed animals were taken to aid in identification. In addition, human activities such as cultivation, roads, tree cutting, building, and distance from roads and buildings, were recorded. Furthermore, more physical structures like rocks and distances from rocks were recorded. Identification of species of lizards was performed using a guide book for east African reptiles21.Sampling and interview for the assessment of awareness of the importance of afforestationA cross-sectional survey using a semi-structured questionnaire was used to collect data from undergraduate students in four colleges, which are CNMS, COED, CHSS, and CIVE. The respondents were selected randomly from each college. These students were selected based on their familiarity with the areas that are anticipated to see what is taking place within the University of Dodoma. It was anticipated that awareness would vary by college because the programs offered differed. For example, it was predicted that students from CNMS would be more aware than others because they have programs and courses that teach conservation, restoration, and afforestation knowledge. Both genders were included in the survey. A total of 394 interviewees were recruited; 100 participants were from CHSS, 103 from CIVE, 101 from CNMS, and 90 from COED. The questionnaire consisted of both closed and open-ended questions. The questions consisted of information on the demographic structure of students and their awareness of the afforestation program. Concerning awareness, the questions focused on their understanding of afforestation, their participation, and other stakeholders involved in the program.Some questions had to be ranked from 1 to 5, with the answers classified as very high, high, moderate, low, and very low if they scored 5, 4, 3, 2, and 1, respectively. The questions were designed to elicit responses from respondents regarding their knowledge of the ongoing afforestation program. In addition, information on the program’s participants and their level of involvement was requested.Human ethical guideline statementAll methods were carried out in accordance with relevant guidelines and regulations.Ethical approval and consent to participateThe ethics committee of University of Dodoma granted ethical approval for this study, with reference number MA.84/261/02.Informed consentInformed consent was obtained from all participants included in the study. More

  • in

    Identification of potential light deficiency response regulators in endangered species Magnolia sinostellata

    Baranova, M. Systematic anatomy of the leaf epidermis in the Magnoliaceae and some related families. Int. Assoc. Plant Taxon. (IAPT) 21, 447–469 (1972).
    Google Scholar 
    Suzuki, S., Kiyoshi, I., Saneyoshi, U., Yoshihiko, T. & Nobuhiro, T. Population differentiation and gene flow within ametapopulation of a threatened tree, Magnolia stellata (magnoliaceae). Am. J. Bot. 94, 128–136 (2007).Article 

    Google Scholar 
    Tan, M. et al. Study on seed germination and seedling growth of Magnolia officinalis in different habitats. J. Ecol. Rural Environ. 34, 910–916 (2018).
    Google Scholar 
    Zezhi, Y. et al. Study on population distribution and community structure of Magnolia sinostellata. Zhejiang For. Sci. Technol. 35, 47–52 (2015).
    Google Scholar 
    Yu, Q. et al. Light deficiency and waterlogging affect chlorophyll metabolism and photosynthesis in Magnolia sinostellata. Trees 33, 11–22. https://doi.org/10.1007/s00468-018-1753-5 (2018).Article 

    Google Scholar 
    Promis, A. & Allen, R. B. Tree seedlings respond to both light and soil nutrients in a Patagonian evergreen-deciduous forest. PLoS ONE 12, e0188686. https://doi.org/10.1371/journal.pone.0188686 (2017).Article 

    Google Scholar 
    Qin, Y. Effect of Light intensity and waterlogging on the physiology characteristic and the relative expression of genes in Magnolia sinostellata. 33, 11–22 (2018).
    Chen, T. et al. Shade effects on peanut yield associate with physiological and expressional regulation on photosynthesis and sucrose metabolism. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21155284 (2020).Article 

    Google Scholar 
    Yao, X. et al. Effect of shade on leaf photosynthetic capacity, light-intercepting, electron transfer and energy distribution of soybeans. Plant Growth Regul. 83, 409–416. https://doi.org/10.1007/s10725-017-0307-y (2017).Article 

    Google Scholar 
    Wu, Y., Gong, W. & Yang, W. Shade inhibits leaf size by controlling cell proliferation and enlargement in soybean. Sci. Rep. 7, 9259. https://doi.org/10.1038/s41598-017-10026-5 (2017).Article 
    ADS 

    Google Scholar 
    Zhao, D., Hao, Z. & Tao, J. Effects of shade on plant growth and flower quality in the herbaceous peony (Paeonia lactiflora Pall.). Plant Physiol. Biochem. 61, 187–196. https://doi.org/10.1016/j.plaphy.2012.10.005 (2012).Article 

    Google Scholar 
    Tamaki, I. et al. Evaluation of a field experiment for the conservation of a Magnolia stellata stand using clear-cutting. Landscape Ecol. Eng. 14, 269–276. https://doi.org/10.1007/s11355-018-0348-z (2018).Article 

    Google Scholar 
    Jian, W. et al. Photosynthesis and chlorophyll fluorescence reaction to different shade stresses of weak light sensitive maize. Pak. J. Bot. 49, 1681–1688 (2017).
    Google Scholar 
    Quail, P. H. The phytochrome family dissection of functional roles and signalling pathways among family members. Philos. Trans. R. Soc. B 353, 1399–1403 (1998).Article 

    Google Scholar 
    Yang, F. et al. Effect of interactions between light intensity and red-to- far-red ratio on the photosynthesis of soybean leaves under shade condition. Environ. Exp. Bot. 150, 79–87. https://doi.org/10.1016/j.envexpbot.2018.03.008 (2018).Article 

    Google Scholar 
    Luesse, D. R., DeBlasio, S. L. & Hangarter, R. P. Integration of Phot1, Phot2, and PhyB signalling in light-induced chloroplast movements. J. Exp. Bot. 61, 4387–4397. https://doi.org/10.1093/jxb/erq242 (2010).Article 

    Google Scholar 
    Dinakar, C., Vishwakarma, A., Raghavendra, A. S. & Padmasree, K. Alternative oxidase pathway optimizes photosynthesis during osmotic and temperature stress by regulating cellular ROS, malate valve and antioxidative systems. Front. Plant Sci. 7, 68. https://doi.org/10.3389/fpls.2016.00068 (2016).Article 

    Google Scholar 
    Ruban, A. V. Light harvesting control in plants. FEBS Lett. 592, 3030–3039. https://doi.org/10.1002/1873-3468.13111 (2018).Article 

    Google Scholar 
    Wang, J. et al. Photosynthesis and chlorophyll fluorescence reaction to different shade stresses of weak light sensitive maize. Pak. J. Bo. 49, 1681–1688 (2017).
    Google Scholar 
    Yamori, W., Shikanai, T. & Makino, A. Photosystem I cyclic electron flow via chloroplast NADH dehydrogenase-like complex performs a physiological role for photosynthesis at low light. Sci. Rep. 5, 13908. https://doi.org/10.1038/srep13908 (2015).Article 
    ADS 

    Google Scholar 
    Ng, J. & Mueller-Cajar, O. Rubisco activase remodels plant Rubisco via the large subunit N-terminus. bioRxiv https://doi.org/10.1101/2020.06.14.151407 (2020).Article 

    Google Scholar 
    Zhang, Y., Liu, N., Wang, W., Sun, J. & Zhu, L. Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles. Front. Environ. Sci. Eng. https://doi.org/10.1007/s11783-020-1282-5 (2020).Article 

    Google Scholar 
    Suzuki, Y. & Makino, A. Translational downregulation of RBCL is operative in the coordinated expression of Rubisco genes in senescent leaves in rice. J. Exp. Bot. 64, 1145–1152. https://doi.org/10.1093/jxb/ers398 (2013).Article 

    Google Scholar 
    Sun, J. et al. Low light stress down-regulated rubisco gene expression and photosynthetic capacity during cucumber (Cucumis sativus L.) leaf development. J. Integr. Agric. 13, 997–1007. https://doi.org/10.1016/s2095-3119(13)60670-x (2014).Article 

    Google Scholar 
    Wu, H. Y., Liu, L. A., Shi, L., Zhang, W. F. & Jiang, C. D. Photosynthetic acclimation during low-light-induced leaf senescence in post-anthesis maize plants. Photosynth. Res. 150, 313–326. https://doi.org/10.1007/s11120-021-00851-1 (2021).Article 

    Google Scholar 
    Zou, D., Gao, K. & Chen, W. Photosynthetic carbon acquisition in Sargassum henslowianum (Fucales, Phaeophyta), with special reference to the comparison between the vegetative and reproductive tissues. Photosynth. Res. 107, 159–168. https://doi.org/10.1007/s11120-010-9612-2 (2011).Article 

    Google Scholar 
    Wu, Z.-F. et al. Effects of low light stress on rubisco activity and the ultrastructure of chloroplast in functional leaves of peanut. Chin. J. Plant Ecol. 38, 740–748. https://doi.org/10.3724/SP.J.1258.2014.00069 (2014).Article 

    Google Scholar 
    Valladares, F. et al. The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. Trees 16, 395–403. https://doi.org/10.1007/s00468-002-0184-4 (2002).Article 

    Google Scholar 
    Rojas-Gonzalez, J. A. et al. Disruption of both chloroplastic and cytosolic FBPase genes results in a dwarf phenotype and important starch and metabolite changes in Arabidopsis thaliana. J. Exp. Bot. 66, 2673–2689. https://doi.org/10.1093/jxb/erv062 (2015).Article 

    Google Scholar 
    Lowe, H., Hobmeier, K., Moos, M., Kremling, A. & Pfluger-Grau, K. Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture of Synechococcus elongatus cscB and Pseudomonas putida cscAB. Biotechnol. Biofuels 10, 190. https://doi.org/10.1186/s13068-017-0875-0 (2017).Article 

    Google Scholar 
    Wang, B. et al. Photosynthesis, sucrose metabolism, and starch accumulation in two NILs of winter wheat. Photosynth. Res. 126, 363–373. https://doi.org/10.1007/s11120-015-0126-9 (2015).Article 

    Google Scholar 
    Myers, J. A. & Kitajima, K. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. J. Ecol. 95, 383–395. https://doi.org/10.1111/j.1365-2745.2006.01207.x (2007).Article 

    Google Scholar 
    Lestari, D. P. & Nichols, J. D. Seedlings of subtropical rainforest species from similar successional guild show different photosynthetic and morphological responses to varying light levels. Tree Physiol. 37, 186–198. https://doi.org/10.1093/treephys/tpw088 (2017).Article 

    Google Scholar 
    Wu, M., Li, Z. & Wang, J. Transcriptional analyses reveal the molecular mechanism governing shade tolerance in the invasive plant Solidago canadensis. Ecol. Evol. 10, 4391–4406. https://doi.org/10.1002/ece3.6206 (2020).Article 

    Google Scholar 
    Miao, Z. Q. et al. HOMEOBOX PROTEIN52 mediates the crosstalk between ethylene and auxin signaling during primary root elongation by modulating auxin transport-related gene expression. Plant Cell 30, 2761–2778. https://doi.org/10.1105/tpc.18.00584 (2018).Article 

    Google Scholar 
    Liu, B. et al. A domestication-associated gene, CsLH, encodes a phytochrome B protein that regulates hypocotyl elongation in cucumber. Mol. Hortic. https://doi.org/10.1186/s43897-021-00005-w (2021).Article 

    Google Scholar 
    Sun, W. et al. Mediator subunit MED25 physically interacts with phytochrome interacting factor4 to regulate shade-induced hypocotyl elongation in tomato. Plant Physiol. 184, 1549–1562. https://doi.org/10.1104/pp.20.00587 (2020).Article 

    Google Scholar 
    Bawa, G. et al. Gibberellins and auxin regulate soybean hypocotyl elongation under low light and high-temperature interaction. Physiol. Plant 170, 345–356. https://doi.org/10.1111/ppl.13158 (2020).Article 

    Google Scholar 
    Potter, T. I., Rood, S. B. & Zanewich, K. P. Light intensity, gibberellin content and the resolution of shoot growth in Brassica. Planta 207, 505–511 (1999).Article 

    Google Scholar 
    Ballare, C. L., Scopel, A. L. & San, R. A. Foraging for light photosensory ecology and agricultural implications. Plant Cell Environ. 20, 820–825 (1997).Article 

    Google Scholar 
    Hope, E., Gracie, A., Carins-Murphy, M. R., Hudson, C. & Baxter, L. Opium poppy capsule growth and alkaloid production is constrained by shade during early floral development. Ann. Appl. Biol. 176, 296–307 (2020).Article 

    Google Scholar 
    Lu, D. et al. Light deficiency inhibits growth by affecting photosynthesis efficiency as well as JA and ethylene signaling in endangered plant Magnolia sinostellata. Plants https://doi.org/10.3390/plants10112261 (2021).Article 

    Google Scholar 
    Lin, W., Guo, X., Pan, X. & Li, Z. Chlorophyll composition, chlorophyll fluorescence, and grain yield change in esl mutant rice. Int. J. Mol. Sci. https://doi.org/10.3390/ijms19102945 (2018).Article 

    Google Scholar 
    Sano, S. et al. Stress responses of shade-treated tea leaves to high light exposure after removal of shading. Plants (Basel) https://doi.org/10.3390/plants9030302 (2020).Article 

    Google Scholar 
    Liu, D. L. et al. Genetic map construction and QTL analysis of leaf-related traits in soybean under monoculture and relay intercropping. Sci. Rep. 9, 2716. https://doi.org/10.1038/s41598-019-39110-8 (2019).Article 
    ADS 

    Google Scholar 
    Sekhar, S. et al. Comparative transcriptome profiling of low light tolerant and sensitive rice varieties induced by low light stress at active tillering stage. Sci. Rep. 9, 5753. https://doi.org/10.1038/s41598-019-42170-5 (2019).Article 
    ADS 

    Google Scholar 
    Wegener, F., Beyschlag, W. & Werner, C. High intraspecific ability to adjust both carbon uptake and allocation under light and nutrient reduction in Halimium halimifolium L. Front. Plant Sci. 6, 609. https://doi.org/10.3389/fpls.2015.00609 (2015).Article 

    Google Scholar 
    Liu, B. et al. A HY5-COL3-COL13 regulatory chain for controlling hypocotyl elongation in Arabidopsis. Plant Cell Environ. 44, 130–142. https://doi.org/10.1111/pce.13899 (2021).Article 

    Google Scholar 
    Cookson, S. J. & Granier, C. A dynamic analysis of the shade-induced plasticity in Arabidopsis thaliana rosette leaf development reveals new components of the shade-adaptative response. Ann. Bot. 97, 443–452. https://doi.org/10.1093/aob/mcj047 (2006).Article 

    Google Scholar 
    Zhong, X. M., Shi, Z. S., Li, F. H. & Huang, H. J. Photosynthesis and chlorophyll fluorescence of infertile and fertile stalks of paired near-isogenic lines in maize (Zea mays L.) under shade conditions. Photosynthetica 52, 597–603. https://doi.org/10.1007/s11099-014-0071-4 (2014).Article 

    Google Scholar 
    Kittiwongwattana, C. Differential effects of synthetic media on long-term growth, starch accumulation and transcription of ADP-glucosepyrophosphorylase subunit genes in Landoltia punctata. Sci. Rep. 9, 15310. https://doi.org/10.1038/s41598-019-51677-w (2019).Article 
    ADS 

    Google Scholar 
    Sagadevan, G. M. et al. Physiological and molecular insights into drought tolerance. Afr. J. Biotechnol. 1, 28–38 (2002).Article 

    Google Scholar 
    Xiaotao, D. et al. Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters, antioxidative system and carbohydrate accumulation in cucumber (Cucumis sativus L.) under low light. Acta Physiologiae Plant. 35, 1427–1438. https://doi.org/10.1007/s11738-012-1182-9 (2012).Article 

    Google Scholar 
    Sofo, A., Dichio, B., Montanaro, G. & Xiloyannis, C. Photosynthetic performance and light response of two olive cultivars under different water and light regimes. Photosynthetica 47, 602–608 (2009).Article 

    Google Scholar 
    Zhou, Y., Zhu, J., Shao, L. & Guo, M. Current advances in acteoside biosynthesis pathway elucidation and biosynthesis. Fitoterapia 142, 104495. https://doi.org/10.1016/j.fitote.2020.104495 (2020).Article 

    Google Scholar 
    Huang, P. et al. Overexpression of L-type lectin-like protein kinase 1 confers pathogen resistance and regulates salinity response in Arabidopsis thaliana. Plant Sci. 203–204, 98–106. https://doi.org/10.1016/j.plantsci.2012.12.019 (2013).Article 

    Google Scholar 
    Vorontsov, I. I. et al. Crystal structure of an apo form of Shigella flexneri ArsH protein with an NADPH-dependent FMN reductase activity. Protein Sci. 16, 2483–2490. https://doi.org/10.1110/ps.073029607 (2007).Article 

    Google Scholar 
    Guo, M. et al. Proteomic and phosphoproteomic analyses of NaCl stress-responsive proteins in Arabidopsis roots. J. Plant Interact. 9, 396–401. https://doi.org/10.1080/17429145.2013.845262 (2013).Article 

    Google Scholar 
    Smith, C. et al. Alterations in the mitochondrial alternative NAD(P)H Dehydrogenase NDB4 lead to changes in mitochondrial electron transport chain composition, plant growth and response to oxidative stress. Plant Cell Physiol. 52, 1222–1237. https://doi.org/10.1093/pcp/pcr073 (2011).Article 

    Google Scholar 
    Johnson, K. L., Jones, B. J., Bacic, A. & Schultz, C. J. The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiol. 133, 1911–1925. https://doi.org/10.1104/pp.103.031237 (2003).Article 

    Google Scholar 
    Merz, D. et al. T-DNA alleles of the receptor kinase THESEUS1 with opposing effects on cell wall integrity signaling. J. Exp. Bot. 68, 4583–4593. https://doi.org/10.1093/jxb/erx263 (2017).Article 

    Google Scholar 
    Figueiredo, J., Silva, M. S. & Figueiredo, A. Subtilisin-like proteases in plant defence: The past, the present and beyond. Mol. Plant Pathol. 19, 1017–1028. https://doi.org/10.1111/mpp.12567 (2018).Article 

    Google Scholar 
    Sintupachee, S., Promden, W., Ngamrojanavanich, N., Sitthithaworn, W. & De-Eknamkul, W. Functional expression of a putative geraniol 8-hydroxylase by reconstitution of bacterially expressed plant CYP76F45 and NADPH-cytochrome P450 reductase CPR I from Croton stellatopilosus Ohba. Phytochemistry 118, 204–215. https://doi.org/10.1016/j.phytochem.2015.08.005 (2015).Article 

    Google Scholar 
    Chen, Y. et al. Enzymatic reaction-related protein degradation and proteinaceous amino acid metabolism during the black tea (Camellia sinensis) manufacturing process. Foods https://doi.org/10.3390/foods9010066 (2020).Smidansky, E. D. et al. Expression of a modified ADP-glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism. Planta 225, 965–976. https://doi.org/10.1007/s00425-006-0400-3 (2007).Article 

    Google Scholar 
    Mathur, S., Jain, L. & Jajoo, A. Photosynthetic efficiency in sun and shade plants. Photosynthetica https://doi.org/10.1007/s11099-018-0767-y (2018).Article 

    Google Scholar 
    Huang, W., Zhang, S. B. & Liu, T. Moderate photoinhibition of photosystem II significantly affects linear electron flow in the shade-demanding plant panax notoginseng. Front. Plant Sci. 9, 637. https://doi.org/10.3389/fpls.2018.00637 (2018).Article 

    Google Scholar 
    Li, Q. et al. Quantitative trait locus (QTLs) mapping for quality traits of wheat based on high density genetic map combined with bulked segregant analysis RNA-seq (BSR-Seq) indicates that the basic 7S globulin gene is related to falling number. Front. Plant Sci. 11, 600788. https://doi.org/10.3389/fpls.2020.600788 (2020).Article 

    Google Scholar 
    Hashempour, A., Ghasemnezhad, M., Sohani, M. M., Ghazvini, R. F. & Abedi, A. Effects of freezing stress on the expression of fatty acid desaturase (FAD2, FAD6 and FAD7) and beta-glucosidase (BGLC) genes in tolerant and sensitive olive cultivars. Russ. J. Plant Physiol. 66, 214–222. https://doi.org/10.1134/s1021443719020079 (2019).Article 

    Google Scholar 
    Limami, M. A., Sun, L.-Y., Douat, C., Helgeson, J. & Tepfer, D. Natural genetic transformation by__Agrobacterium rhizogenes. Plant Physiol. 118, 543–550 (1998).Article 

    Google Scholar 
    Devlin, P. F., Yanovsky, M. J. & Kay, S. A. A genomic analysis of the shade avoidance response in Arabidopsis. Plant Physiol. 133, 1617–1629. https://doi.org/10.1104/pp.103.034397 (2003).Article 

    Google Scholar 
    Lorenzo, C. D. et al. Shade delays flowering in Medicago sativa. Plant J. 99, 7–22. https://doi.org/10.1111/tpj.14333 (2019).Article 

    Google Scholar 
    Rezazadeh, A., Harkess, R. & Telmadarrehei, T. The effect of light intensity and temperature on flowering and morphology of potted red firespike. Horticulturae https://doi.org/10.3390/horticulturae4040036 (2018).Article 

    Google Scholar 
    Guo, C. et al. OsSIDP366, a DUF1644 gene, positively regulates responses to drought and salt stresses in rice. J. Integr. Plant Biol. 58, 492–502. https://doi.org/10.1111/jipb.12376 (2016).Article 

    Google Scholar 
    Kapolas, G. et al. APRF1 promotes flowering under long days in Arabidopsis thaliana. Plant Sci. 253, 141–153. https://doi.org/10.1016/j.plantsci.2016.09.015 (2016).Article 

    Google Scholar 
    Walla, A. et al. An Acyl-CoA N-Acyltransferase regulates meristem phase change and plant architecture in barley. Plant Physiol. 183, 1088–1109. https://doi.org/10.1104/pp.20.00087 (2020).Article 
    ADS 

    Google Scholar 
    Goto, M. K. A. S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).Article 

    Google Scholar  More

  • in

    Optimizing nutrient inputs by balancing spring wheat yield and environmental effects in the Hetao Irrigation District of China

    Research site descriptionA 3-year stationary field experiment was conducted at the Yuanziqu experimental station of the Bayannur Academy of Agricultural and Animal Husbandry Sciences (40° 90′ N, 107° 17′ E), Linhe, Inner Mongolia, China, from 2019 to 2021. The site has a continental monsoon climate typical of the northern mid-temperate zone, with a mean annual temperature from 3.7  to  7.6 °C, and the potential evaporation is 2200–2400 mm15. The total precipitation during the wheat growth period (March–July) was 66 mm, 110 mm and 47 mm in 2019, 2020, and 2021, respectively. Daily air temperature and precipitation during the field trial period are presented in Fig. 1.Figure 1Daily maximum temperature, daily minimum temperature and precipitation during the growth period (March–July) of spring wheat from 2019 to 2021 in the field experiment at Linhe, Inner Mongolia, China.Full size imageThe soil at the experimental site is a silt loam. The major physical and chemical properties of the 0–20 cm soil layer at the experimental site in 2019 were as follows: a bulk density of 1.48 g cm−3, pH 8.3, organic matter content of 15.49 g kg−1, total N concentration of 1.20 g kg−1, nitrate (NO3− N) concentration of 3.98 mg N kg−1, Olsen-P concentration of 32.3 mg P kg−1 and available K concentration of 180.0 mg K kg−1.Experimental design and field managementA local popular spring wheat (Triticum aestivum L.) cultivar, Yongliang No. 4, was used in the trials. The sowing dates were 20 March, 16 March and 13 March in 2019, 2020 and 2021, respectively; the harvest dates were 15 July, 15 July and 5 July in 2019, 2020 and 2021, respectively. A total of 375 kg ha−1 wheat seeds were sown at a depth of 5 cm.Five fertilization treatments were set in the three consecutive experimental years, including the control (CK), farmer practice (FP) and three balanced fertilization treatments (BF1, BF2 and BF3), as presented in Table 1. The P and K fertilizers as single superphosphate and K2SO4 were basal dressed, respectively. Both basal- and top-dressing of N fertilizer as urea were applied as shown in the research program. The basal applications occurred during sowing, and the remaining N fertilizer was top-dressed at the tillering stage (Table 1). The experimental plot was 10 m × 7 m with 13 cm row spacing and a buffer zone of 1 m between plots. The plots were laid out in a completely randomized block design with three replications.Table 1 Fertilization regimes of the different treatments in the 2019–2021 field trial.Full size tableEvery plot was ridged around its border to ensure the uniformity of irrigation. Flood irrigation from Yellow River water was performed according to the local policy and farmer practices. Irrigation water (30 mm) was applied at the tillering, jointing, heading and grain filling stages of spring wheat in 2019–2021. Disease, weed, and pest control, as well as other management, were performed according to local standard methods.Sampling and sample analysisThree 50 cm-long rows of spring wheat plants were selected randomly and pulled from each plot, from which 10 large, middle and small seedlings were picked out during each sampling effort. Then, the roots were cut off from the junction between the root and the stem, two plant parts (leaves and stems) before the heading stage, three plant parts (leaves, stems and spikes) at the heading stage, and four plant parts (leaves, stems, glumes and grains) at the grain filling stages and maturity were separated and pooled. The samples were dried for 30 min at 105 °C and then at 80 °C in an oven (DHG-9070A, China) until they reached a constant weight; the dry weight was then measured.The N concentrations in leaves, stems, spikes and grains of spring wheat were measured with three replications depending on the crop stage, following the Kjeldahl procedure using an element analyzer (Vario El cube, Elementar, Germany).Three soil cores containing 0–100 cm of soil were taken from each plot using an auger at the harvest of spring wheat each year. The soil samples of each 20 cm layer were collected separately and sealed immediately in a marked plastic bag. The extracts were immediately measured for nitrate-N concentration as described by Dai et al. (2015) with a continuous flow analyzer (SKALAR SAN++, Netherlands)16. The soil nitrate-N concentration was expressed on the basis of the oven-dried soil.Grain yield was evaluated at maturity by selecting two 2 m2 (avoiding border rows) randomly and harvested. A fresh weight of ∼ 1 kg of grain from each plot was weighed in the field, and the water content from each plot was oven dried for the calculation. The actual yield was adjusted by a grain water content of 13%17. Grains per spike, 1000-grain weight and spike number were determined at three 50-cm sites sampled randomly from each plot.Calculation methodsTo clarify the effect of nitrate residue in the soil under balanced fertilization, the amount of soil nitrate-N (AN, kg N ha−1) in each layer was expressed as:$${text{AN}} = left( {{text{Ti}};*;{text{Di}};*;{text{Ci}}} right)/10$$
    where Ti is the soil layer thickness (cm), Di is the soil bulk density (g cm−3), Ci is the soil nitrate concentration (mg N kg−1) of the corresponding layer, and 10 is the conversion coefficient16. The AN of 0–20, 20–40, 40–60, 60–80 and 80–100 cm soil layers were recorded and measured, respectively.Nitrogen accumulation in the vegetative organs and their distribution into the grain were investigated. Based on the dry weight and corresponding measured N concentration in the different organs, apparent N translocation (TA, kg ha−1) and apparent N translocation efficiency (TR, %) were calculated as proposed by Cox et al.18 as follows:$$begin{aligned} {text{TA}} & {text{ = H}}_{{text{N}}} – {text{M}}_{{text{N}}} \ {text{TR}} & = {text{TA/H}}_{{text{N}}} *100 \ end{aligned}$$
    where HN is the N assimilation in leaves or stems prior to anthesis (kg ha−1), MN is the N assimilation in leaves or stems at maturity (kg ha−1).Two parameters of nitrogen use efficiency of spring wheat, nitrogen fertilizer partial productivity (PFPN, kg/kg) and agronomic nitrogen efficiency (NAEN, kg kg−1) were determined using the following formulas:$$begin{aligned} {text{PFP}}_{{text{N}}} & = {text{ Y}}_{N; , fertilizer} /{text{N}}_{rate} \ {text{NAE}}_{{text{N}}} & = , left( {{text{Y}}_{{N;fertilizer , {-}}} {text{Y}}_{blank} } right)/{text{N}}_{rate} \ end{aligned}$$
    where YN fertilizer is the grain yield of the plot with dressed N fertilizer (kg ha−1), Yblank is the grain yield of the plot without dressed N fertilizer (kg ha−1), and Nrate is the N rate of the dressed fertilizer plot (kg ha−1). Three measurements for each treatment was recorded and calculated.Two key indicators were chosen to evaluate the risk of N losses as described by Li et al. (2020)7, including N surplus (kg N per hectare per year, Nsur) and N input (kg N per hectare per year, Ninput). The N surplus was used to evaluate the risk of N losses and the N input to guide farmers’ fertilization practices directly. The detailed calculation is as follows:$$begin{aligned} {text{N}}_{{{text{sur}}}} & = {text{ N}}_{{{text{fer}}}} + {text{ N}}_{{{text{dep}}}} + {text{ N}}_{{{text{fix}}}} – {text{ N}}_{{{text{har}}}} \ {text{N}}_{{{text{input}}}} & = {text{ N}}_{{{text{har}}}} + {text{ N}}_{{{text{sur}}}} + {text{ soil N change in stock }};;;( approx 0{text{ in long run}}) \ end{aligned}$$
    where Nfer, Ndep and Nfix represent N from fertilizer, atmospheric deposition and biological fixed N, respectively. Seed N was negligible as it was present in a very small amount compared to the fertilization input19. The total N deposition of spring wheat field and biological N fixation were adopted according to Li et al. (2020). Nhar refers to the harvested N in spring wheat.Economic analysisThe inputs into local spring wheat production included chemical fertilizer, irrigated water, agricultural chemicals, seed, mechanical effort and labor costs, while income was obtained from the grain and wheat straw. The net income was determined from the difference between the total output and total input. The irrigated water, agricultural chemicals, seed, mechanical effort and labor costs were the same for the different treatments. The prices of the input and output materials were determined according to the average local market prices, and fluctuations were not considered among years.Statistical analysesThe results were analyzed using SPSS software (version 19.0; SPSS Inc., Chicago, IL, USA). Analysis of variance (ANOVA) and the least significant difference (LSD) test were used, and a P value of 0.05 was considered significant. More

  • in

    The occurrence and molecular identification of Thelazia spp. in European bison (Bison bonasus) in the Bieszczady Mountains

    Smith, K. F., Sax, D. F. & Lafferty, K. D. Evidence for the role of infectious disease in species extinction and endangerment. Conserv. Biol. 20, 1349–1357 (2006).Article 

    Google Scholar 
    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife—Threats to biodiversity and human health. Science 287, 443–449 (2000).Article 
    ADS 

    Google Scholar 
    Pedersen, A. B., Jones, K. E., Nunn, C. L. & Altizer, S. Infectious diseases and extinction risk in wild mammals. Conserv. Biol. 21, 1269–1279 (2007).Article 

    Google Scholar 
    Kołodziej-Sobocińska, M. Factors affecting the spread of parasites in populations of wild European terrestrial mammals. Mamm. Res. 64, 301–318 (2019).Article 

    Google Scholar 
    Borowik, T., Ratkiewicz, M., Maślanko, W., Duda, N. & Kowalczyk, R. Too hot to handle: Summer space use shift in a cold-adapted ungulate at the edge of its range. Landsc. Ecol. 35, 1341–1351 (2020).Article 

    Google Scholar 
    Demiaszkiewicz, A. W. et al. The Nematodes Thelazia gulosa Railiet and Henry, 1910 and Thelazia skrjabini Erschov, 1928 as a cause of blindness in European Bison (Bison bonasus) in Poland. Acta Parasitol. 65, 963–968 (2020).Article 

    Google Scholar 
    Anderson, R. C. (ed.) Nematode Parasites of Vertebrates. Their Development and Transmission (CAB International, 1992).
    Google Scholar 
    Otranto, D. & Traversa, D. Thelazia eyeworm: An original endo- and ecto-parasitic nematode. Trends Parasitol. 21, 1–4 (2005).Article 

    Google Scholar 
    Bradbury, R. S. et al. A second case of human conjunctival infestation with Thelazia gulosa and a review of T. gulosa in North America. Clin. Infect. Dis. 70, 518–520 (2020).
    Google Scholar 
    Lyons, E. T., Drudge, J. H. & Tolliver, S. C. Thelazia lacrymalis in horses in Kentucky and observations on the face fly (Musca autumnalis) as a probable intermediate host. J. Parasitol. 62, 877–880 (1976).Article 

    Google Scholar 
    Giangaspero, A., Traversa, D. & Otranto, D. Ecology of Thelazia spp. in cattle and their vectors in Italy. Parasitologia 46, 257–259 (2004).
    Google Scholar 
    Kostyra, J. The clinical picture and treatment of bovine thelaziosis (Przebieg i leczenie telazjozy u bydła, in Polish). Med. Weter. 16, 584–587 (1960).
    Google Scholar 
    Rosłan, J. Badania nad telazjozą bydła w Polsce. Wiad. Parazyt. 11, 73–79 (1965).
    Google Scholar 
    Kozakiewicz, B. Bovine thelaziosis in Żuławy (Telazjoza bydła na Żuławach, in Polish). Med. Weter. 27, 241–243 (1971).
    Google Scholar 
    Samojlik, T. (ed.) European Bison. The Nature Monograph (Springer, 2013).
    Google Scholar 
    Raczyński, J. (ed.) European Bison Pedigree Book (Księga rodowodowa żubrów, in Polish) 1–82 (Białowieski Park Narodowy, 2019).
    Google Scholar 
    Pucek, Z. et al. (eds) European Bison. Status Survey and Conservation Action Plan (IUCN/SSC Action Plans for the Conservation of Biological Diversity, 2004).
    Google Scholar 
    Buchmann, K., Christiansen, L.-L., Kania, P. W. & Thamsborg, S. M. Introduced European bison (Bison bonasus) in a confined forest district: A ten year parasitological survey. Int. J. Parasitol. Parasites Wildl. 18, 292–299 (2022).Article 

    Google Scholar 
    Giangaspero, A., Otranto, D., Vovlas, N. & Puccini, V. Thelazia gulosa Railliet & Henry, 1910 and T. skrjabini Erschow, 1928 infection in southern Europe (Italy). Parasite 7, 327–329 (2000).Article 

    Google Scholar 
    Klësov, M. D. Contribution to the question of the biology of two nematodes of the genus Thelazia Bosc, 1819, parasites of the eyes of cattle. Dokl. Akad. Nauk SSSR 75, 591–594 (1950).
    Google Scholar 
    Arbuckle, J. B. & Khalil, L. F. A survey of Thelazia worms in the eyelids of British cattle. Vet. Rec. 102, 207–210 (1978).Article 

    Google Scholar 
    Tweedle, D. M., Fox, M. T., Gibbons, L. M. & Tennant, K. V. Change in the prevalence of Thelazia species in bovine eyes in England. Vet. Rec. 157, 555–556 (2005).Article 

    Google Scholar 
    Kolstrup, N. Thelazia skrjabini in Danish cattle. Nord. Vet. Med. 26, 459–462 (1974).
    Google Scholar 
    Deak, G., Ionică, A. M., Oros, N. V., Gherman, C. M. & Mihalca, A. D. Thelazia rhodesi in a dairy farm in Romania and successful treatment using eprinomectin. Parasitol. Int. 80, 102183 (2021).Article 

    Google Scholar 
    Dróżdż, J. A study on helminth and helminthiases in bison, Bison bonasus (L.) in Poland. Acta Parasitol. Pol. 9, 55–96 (1961).
    Google Scholar 
    Dróżdż, J., Demiaszkiewicz, A. W. & Lachowicz, J. The helminth fauna of free-ranging European bison, Bison bonasus (L.). Acta Parasitol. Pol. 34, 117–124 (1989).
    Google Scholar 
    Otranto, D., Tarsitano, E., Traversa, D., De Luca, F. & Giangaspero, A. Molecular epidemiological survey on the vectors of Thelazia gulosa, Thelazia rhodesi and Thelazia skrjabini (Spirurida: Thelaziidae). Parasitology 127, 365–373 (2003).Article 

    Google Scholar 
    Viney, M. E. & Graham, A. L. Patterns and processes in parasite co-infection. Adv. Parasitol. 82, 321–369 (2013).Article 

    Google Scholar 
    Demiaszkiewicz, A. W. & Kaczor, S. Thelaziasis in European bison in Bieszczady—A case report. Życie Weter. 90, 108–110 (2015).
    Google Scholar 
    Thompson, R. C. Parasite zoonoses and wildlife: One health, spillover and human activity. Int. J. Parasitol. 43, 1079–1088 (2013).Article 

    Google Scholar 
    Naem, S. Thelazia rhodesi (Spirurida, Thelaziidae), bovine eyeworm: Morphological study by scanning electron microscopy. Parasitol. Res. 100, 855–860 (2007).Article 

    Google Scholar 
    Krasińska, M. & Krasiński, Z. A. Composition, group size, and spatial distribution of European bison bulls in Białowieża Forest. Acta Theriol. 40, 1–21 (1995).Article 

    Google Scholar 
    Krasińska, M., Krasiński, Z. A. & Bunevich, A. N. Factors affecting the variability in home range size and distribution in European bison in the Polish and Belarussian parts of the Białowieża Forest. Acta Theriol. 45, 321–334 (2000).Article 

    Google Scholar 
    Lloyd, S. Effect of pregnancy and lactation upon infection. Vet. Immunol. Immunopathol. 4, 153–176 (1983).Article 

    Google Scholar 
    Martin, L. B., Weil, Z. M. & Nelson, R. J. Seasonal changes in vertebrate immune activity: Mediation by physiological trade-offs. Philos. Trans. R. Soc. Lond. B Biol Sci. 363, 321–339 (2008).Article 

    Google Scholar 
    Muturi, K. N. et al. The effect of dietary polyunsaturated fatty acids (PUFA) on infection with the nematodes Ostertagia ostertagi and Cooperia oncophora in calves. Vet. Parasitol. 129, 273–283 (2005).Article 

    Google Scholar 
    Krasnov, B. R. & Matthee, S. Spatial variation in gender-biased parasitism: Host-related, parasite-related and environment-related effects. Parasitology 137, 1527–1536 (2010).Article 

    Google Scholar 
    Dunn, A. M. (ed.) Veterinary Helminthology (William Heinemann Medical Books, 1978).
    Google Scholar 
    Khedri, J., Radfar, M. H., Borji, H. & Azizzadeh, M. Epidemiological survey of bovine thelaziosis in southeastern of Iran. Iran. J. Parasitol. 11, 221–225 (2016).
    Google Scholar 
    Draber-Mońko, A. Synanthropic Calyptrata in selected habitats in Poland. Wiad. Parazytol. 32, 411–418 (1986).
    Google Scholar 
    Draber-Mońko, A. Dipterans of the families Muscidae (Muscinae) and Scathophagidae (Diptera, Calyptrata) of the Świętokrzyski Region. Fragmenta Faunistica 36, 205–233 (1993).Article 

    Google Scholar 
    Nosal, P., Kowal, J., Węglarz, A. & Wyrobisz-Papiewska, A. The occurrence and diversity of flies (Diptera) related to ruminant farming in southern Poland. Ann. Parasitol. 65, 357–363 (2019).
    Google Scholar 
    Cotuțiu, V. D. et al. Thelazia lacrymalis in horses from Romania: Epidemiology, morphology and phylogenetic analysis. Parasites Vectors 15, 425 (2022).Article 

    Google Scholar 
    Nowosad, M. Outlines of climate of the Bieszczady National Park and its buffer zone in the light of previous studies. Roczniki Bieszczadzkie 4, 163–183 (1995).
    Google Scholar 
    Guindon, S. & Gascuel, O. A. Simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).Article 

    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 77 (2012).Article 

    Google Scholar 
    Altman, D. G. et al. (eds) Statistics with Confidence 2nd edn, 46–47 (BMJ Books, 2000).
    Google Scholar  More

  • in

    The rhizospheric bacterial diversity of Fritillaria taipaiensis under single planting pattern over five years

    Yu, X. L., Ji, H., Wang, C. L. & Li, P. A survey of pharmacological effects of Fritillaria. Chin. Tradit. Herb. Drugs. 31, 313–315 (2000).
    Google Scholar 
    Wang, D. D. et al. Antitussive, expectorant and anti-inflammatory activities of four alkaloids isolated from bulbus of Fritillaria wabuensis. J. Ethnopharmacol. 139, 189 (2012).Article 
    CAS 

    Google Scholar 
    Tan, S. F. et al. Evaluation on the effect of analgesia and expectorant of aconiti radix cocta in coordination with Fritillaria cirrhosa and Fritillaria thunbergii based on the uniform design method. China J. Chin. Mater. Med. 38, 2706–2713 (2013).
    Google Scholar 
    Chen, T. Z. & Zhang, M. Suitable technology for production and processing of Fritillaria cirrhosa (ed. Chen, T. Z. & Zhang, M.) 8 (China Medical Science Press, 2018).Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China (ed. Zhao, Y. Y. et al.) (China Medical Science Press, 2015).Duan, B. Z. et al. A survey of resource science of Fritillaria taipaiensis. Mod. Chin. Med. 12, 12–14 (2010).
    Google Scholar 
    Duan, B. Z. et al. Regionalization for growing Fritillaria taipaiensis P Y Li by TCMGIS-II. World Sci. Technol/Modern Tradit. Chin. Med. Mater Med. 12, 486–488 (2012).
    Google Scholar 
    Jiang, S. Y., Sun, H. B., Qin, J. H., Zhu, W. T. & Sun, H. Functional production regionalization for Fritillariae Cirrhosae Bulbus based on growth and quality suitability assessment. China J. Chin. Mater. Med. 17, 3194–3201 (2016).
    Google Scholar 
    Gu, W. C., Mu, M. J., Yang, M., Guo, D. Q. & Zhou, N. Correlation analysis between bulb quality and rhizosphere soil factors of Fritillaria taibaiensis. Chin. J. Exp. Tradit. Med. Formulae. 26, 165–177 (2020).
    Google Scholar 
    Mu, M. J. et al. Correlation between rhizospheric microorganisms distribution and alkaloid content of Fritillaria taipaiensis. China J. Chin. Mater. Med. 11, 2231–2235 (2019).
    Google Scholar 
    Peng, R., Ma, P., Mo, R. Y. & Sun, N. X. Analysis of the bioactive components from different growth stages of Fritillaria taipaiensis PY Li. Acta Pharm. Sin. B. 3, 167–173 (2013).Article 

    Google Scholar 
    Zhou, X. J., Yang, Y. X., Hu, P., Zhang, M. & Xia, Y. L. Investigation on the resources of Fritillaria taipaiensis. J. Anhui Agric. Sci. 17, 84–85 (2015).CAS 

    Google Scholar 
    Wu, Z. Z. & Wu, C. S. Effects of different fertilization modes on the growth of Fritillaria taipaiensis. Agric. Eng. 6, 153–154 (2016).
    Google Scholar 
    Nannipieri, P., Kandeler, E., Ruggiero, P., Burns, R. G. & Dick, R. P. Enzymes in the environment: activity, ecology and applications (ed. Nannipieri, P.) (Marcel Dekker, 2002).Sparling, G. P. Biological indicators of soil health (ed. Sparling, G. P.) (CAB International, 1997).Alkorta, I. et al. Soil enzyme activities as biological indicators of soil health. Rev. Environ. Health. 18, 65–73 (2003).Article 

    Google Scholar 
    Lu, L. H. et al. Fungal networks in yield-invigorating and debilitating soils induced by prolonged potato monoculture. Soil. Biol. Biochem. 65, 186–194 (2013).Article 
    CAS 

    Google Scholar 
    Sun, J., Zhang, Q., Zhou, J. & Wei, Q. P. Illumina amplicon sequencing of 16S rRNA Tag reveals bacterial community development in the rhizosphere of apple nurseries at a replant disease site and a new planting site. PLoS ONE 9, e111744 (2014).Article 
    ADS 

    Google Scholar 
    Yao, H. Y., Jiao, X. D. & Wu, F. Z. Effects of continuous cucumber cropping and alternative rotations under protected cultivation on soil microbial community diversity. Plant. Soil. 284, 195–203 (2006).Article 
    CAS 

    Google Scholar 
    Lee, S. A. et al. Diferent types of agricultural land use drive distinct soil bacterial communities. Sci. Rep. 10, 1–12 (2020).ADS 

    Google Scholar 
    Chen, M. et al. Soil eukaryotic microorganism succession as affected by continuous cropping of peanut-pathogenic and beneficial fungi were selected. PLoS ONE 7, e40659 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Xiong, W. et al. The effect of long-term continuous cropping of black pepper on soil bacterial communities as determined by 454 pyrosequencing. PLoS ONE 10, e0136946 (2015).Article 

    Google Scholar 
    Zhang, Z. Y., Yang, W. X., Chen, Y. H. & Chen, X. J. Effects of consecutively monocultured Rehmannia glutinosa L. on diversity of fungal community in rhizospheric soil. J. Integr. Agric. 10, 1374–1384 (2011).
    Google Scholar 
    Zhou, X. & Wu, F. Dynamics of the diversity of fungal and Fusarium communities during continuous cropping of cucumber in the greenhouse. FEMS Microbiol. Ecol. 80, 469–478 (2012).Article 
    CAS 

    Google Scholar 
    Mu, M. J. et al. Effect of growth years to the soil enzyme activities and heavy metal residue of Fritillaria taipaiensis P.Y. Li. Environ. Chem. 38, 1966–1972 (2019).CAS 

    Google Scholar 
    Zhou, N. et al. Rhizospheric Fungal diversities and soil biochemical factors of Fritillaria taipaiensis over five cultivation years. Horticulturae. 7(12), 560–574 (2021).Article 

    Google Scholar 
    Cai, L. T., Hu, Z. Y. & Luo, Z. Y. Extraction of total DNA of microbes from tobacco diseased-field soil by SDS-CTAB method. Acta Agric. Jiangxi. 23, 119–121 (2011).
    Google Scholar 
    Liang, Y. T. et al. Century long fertilization reduces stochasticity controlling grassland microbial community succession. Soil Biol. Biochem. 151, 128–142 (2020).Article 

    Google Scholar 
    Fudou, R. et al. Haliangicin, a novel antifungal metabolite produced by a marine myxobacterium. 2. Isolation and structural elucidation. J. Antibiot. 54(2), 153–156 (2001).Article 
    CAS 

    Google Scholar 
    Lewin, G. R. et al. Cellulose-enriched microbial communities from leaf-cutter ant (Atta colombica) refuse dumps vary in taxonomic composition and degradation ability. PLoS ONE. 11(3), e0151840 (2016).Article 

    Google Scholar 
    Brewer, T. E., Handley, K. M., Carini, P., Gilbert, J. A. & Fierer, N. Genome reduction in an abundant and ubiquitous soil bacterium Candidatus Udaeobacter copiosus. Nat. Microbiol. 2, 16198 (2016).Article 
    CAS 

    Google Scholar 
    Kalyuzhnaya, M. G., Hristova, K. R., Lidstrom, M. E. & Chistoserdova, L. Characterization of a novel methanol dehydrogenase in representatives of the Burkholderiales: Implication for environmental detection of methylotrophy and evidence for convergent evolution. J. Bacterial. 190, 3817–3823 (2008).Article 
    CAS 

    Google Scholar 
    Banerjee, S. et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil. Biol. Biochem. 97, 188–198 (2016).Article 
    CAS 

    Google Scholar 
    Yi, X. et al. Microbial community structures and important associations between soil nutrients and the responses of specific taxa to rice-frog cultivation. Front. Microbiol. 6(10), 1752 (2019).Article 

    Google Scholar 
    Makk, J. et al. Arenimonas subflava sp nov., isolated from a drinking water network, and emended description of the genus Arenimonas. Int. J. Syst. Evol. Microbiol. 65, 1915–1921 (2015).Article 
    CAS 

    Google Scholar 
    Maki, K., Mitsuo, S., Masako, I., Shinji, S. & Yoshimi, B. Bacteroides plebeius sp. nov. and Bacteroides coprocola sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 55(5), 2143–2147 (2005).Article 

    Google Scholar 
    Zhao, Y. C. et al. Variation of rhizosphere microbial community in continuous mono-maize seed production. Sci. Rep. 11, 1544 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Liu, J. J. et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil. Biol. Biochem. 70, 113–122 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Yin, C. T. et al. Rhizosphere community selection reveals bacteria associated with reduced root disease. Microbiome. 9, 86–103 (2021).Article 
    CAS 

    Google Scholar 
    Ren, H. Y. et al. Effect of two kinds of fertilizers on growth and rhizosphere soil properties of bayberry with decline disease. Plants. 10, 2386–2409 (2021).Article 
    CAS 

    Google Scholar 
    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U. S. A. 103(3), 626–631 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75(15), 5111–5120 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhang, B., Liang, C., He, H. B. & Zhang, X. D. Variations in soil microbial communities and residues along an altitude gradient on the northern slope of changbai mountain, China. PLoS ONE. 8(6), e66184 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Liu, Z. X. et al. Effects of continuous cropping years of soybean on the bacterial community structure in black soil. Acta Ecol. Sin. 39(12), 4337–4345 (2019).CAS 

    Google Scholar 
    Jekins, S. N. et al. Actinobacterial community dynamics in long term managed grasslands. Antonie Van Leeuwenhoek 95(4), 319–334 (2009).Article 

    Google Scholar 
    Lauber, C. L., Strickland, M. S., Bradford, M. & Fierer, N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 40(9), 2407–2415 (2008).Article 
    CAS 

    Google Scholar 
    Lu, K. H., Hu, Z. Y., Liang, J. J. & Zhu, J. Y. Characteristics of rhizosphere microbial community structure of two aquatic plants in eutrophic waters. China Environ. Sci. 30, 1508–1515 (2010).CAS 

    Google Scholar 
    Wang, J. J., Cao, B., Bai, C. C., Zhang, L. L. & Che, L. Potential distribution prediction and suitability evaluation of Fritillaria cirrhosa D. Don based on maxent modeling and GIS. Bull. Bot. Res. 34, 642–649 (2014).
    Google Scholar 
    Montazer, Z., Najafi, M. B. H. & Levin, B. D. Microbial degradation of low-density polyethylene and synthesis of polyhydroxyalkanoate polymers. Can. J. Microbiol. 65, 224–234 (2019).Article 
    CAS 

    Google Scholar 
    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classifification of soil bacteria. Ecology 88, 1354–1364 (2007).Article 

    Google Scholar 
    Lin, S., Zhuang, J. Q., Chen, T., Zhang, A. J. & Lin, W. X. Microbial diversity in rhizosphere soils of different planting year tea trees: An analysis with phospholipid fatty acid biomarkers. Chin. J. Ecol. 32, 64–71 (2013).CAS 

    Google Scholar 
    Bardgett, R. D., Lovell, R. D., Hobbs, P. J. & Jarvis, C. C. Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands. Soil Biol. Biochem. 31, 1021–1030 (1999).Article 
    CAS 

    Google Scholar 
    Haynes, K. M., Preston, M. D., McLaughlin, J. W., Webster, K. & Basiliko, N. Dissimilar bacterial and fungal decomposer communities across rich to poor fen peatlands exhibit functional redundancy. Can. J. Soil Sci. 95, 219–230 (2015).Article 
    CAS 

    Google Scholar 
    Ye, W., Li, Y. C., Ye, M., Qian, Y. T. & Dai, W. S. Microbial biodiversity in rhizospheric soil of Torreya grandis ‘Merrillii’relative to cultivation history. Chin. J. Appl. Ecol. 29, 3783–3792 (2018).
    Google Scholar 
    Shen, Z. Z. et al. Induced soil microbial suppression of banana fusarium wilt disease using compost and biofertilizers to improve yield and quality. Eur. J. Soil Biol. 57, 1–8 (2013).Article 

    Google Scholar 
    Liu, C. et al. Soil bacterial communities of three types of plants from ecological restoration areas and plant-growth promotional benefits of Microbacterium invictum (strain X-18). Front. Microbiol. 13, 926037 (2022).Article 

    Google Scholar 
    Wang, L. X., Pang, X. Y., Li, N., Qi, K. & Yin, C. Effects of vegetation type, fine and coarse roots on soil microbial communities and enzyme activities in eastern tibetan plateau. Catena 194, 104694 (2020).Article 
    CAS 

    Google Scholar 
    Su, Y. Z., Li, Y. L., Cui, J. Y. & Zhao, W. Z. Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, Northern China. Catena 59(3), 267–278 (2005).Article 

    Google Scholar 
    Wallenstein, M. D., Mcmahon, S. K. & Schimel, J. P. Seasonal variation in enzyme activities and temperature sensitivities in arctic tundra soils. Glob. Chang. Biol. 15(7), 1631–1639 (2009).Article 
    ADS 

    Google Scholar 
    Chang, W. H., Ma, W. W., Li, G., Xu, G. R. & Song, L. C. Temporal and spatial distribution characteristics of soil urease and protease activities in different degraded gradients of Gahai wetland. Soils. 54(3), 524–531 (2022).
    Google Scholar 
    Zhang, Y., Liu, C., Song, A., Jin, Z. J. & Li, Q. Relationship between soil physicochemical properties and soil enzyme activities in huixian karst wetland system based on canonica correspondence analysis. Carsol. Sin. 35(1), 11–18 (2016).
    Google Scholar 
    Zhang, Y., Ke, X., Zhang, G. C. & Guan, L. Z. Effects of acetochlor on soil urease kinetic characteristics. Plant Nutr. Fert. Sci. 18(4), 915–921 (2012).CAS 

    Google Scholar 
    Wang, H. Y., Ma, P. & Peng, R. Quantitative determination of peimisin and total alkaloids in Fritillaria taipaiensis of different growing stage. J. Chin. Med. Mater. 34, 1034–1037 (2011).
    Google Scholar 
    Gershenzon, J. Metabolic costs of terpenoid accumulation in high plants. J. Chem. Ecol. 20, 1281–1328 (1994).Article 
    CAS 

    Google Scholar 
    Pramanik, M. H. R., Nagai, M., Asao, T. & Matsui, Y. Effect of temperature and hotoperiod on the phytotoxic root exudate of cucumber (Cucumis sativus) in hydroponic culture. J. Chem. Ecol. 28, 1953–1967 (2000).Article 

    Google Scholar 
    Bertin, C., Yang, X. & Weston, L. A. The role of root exudates and allelochemicals in rhizosphere. Plant Soil. 256, 67–83 (2003).Article 
    CAS 

    Google Scholar 
    Zhang, Z. Y. & Lin, W. X. Continuous cropping obstacle and allelopathic autotoxicity of medicinal plants. Chin. J. Eco-Agric. 17, 189–196 (2019).Article 

    Google Scholar 
    Huang, Y. Q. et al. Effects of vanillic acid on seed germination, seedling growth and rhizosphere microflora of peanut. Sci. Agric. Sin. 9, 1735–1745 (2018).
    Google Scholar  More

  • in

    Insights from the Niger Delta Region, Nigeria on the impacts of urban pollution on the functional organisation of Afrotropical macroinvertebrates

    De Jesús-Crespo, R. & Ramírez, A. Effects of urbanisation on stream physicochemistry and macroinvertebrate assemblages in a tropical urban watershed in Puerto Rico. J. N. Am. Benthol. Soc. 30, 739. https://doi.org/10.1899/10-081.1 (2011).Article 

    Google Scholar 
    Start, D., Barbour, M. A. & Bonner, C. Urbanisation reshapes a food web. J. Anim. Ecol. 89(3), 808–816. https://doi.org/10.1111/1365-2656.131366 (2020).Article 

    Google Scholar 
    Liu, Y. et al. Analysis of the influence paths of land use and landscape pattern on organic matter decomposition in river ecosystems: Focusing on microbial groups. Sci. Total Environ. 95(14), 106408. https://doi.org/10.1016/j.scitotenv.2022.152999 (2022).Article 
    CAS 

    Google Scholar 
    Vörösmarty, C. J., Mcintyre, P. B., Gessner, M. O., Dudgeon, D. & Prusevich, A. Global threats to human water security and river biodiversity. Nature 467(7315), 555–561. https://doi.org/10.1038/nature09440 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Weideman, E. A., Perold, V., Arnold, G. & Ryan, P. G. Quantifying changes in litter loads in urban stormwater runoff from Cape Town, South Africa, over the last two decades. Sci. Total Environ. 724, 138310. https://doi.org/10.1016/j.scitotenv.2020.138310 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Charters, F. J., Cochrane, T. A. & O’Sullivan, A. D. The influence of urban surface type and characteristics on runoff water quality. Sci. Total Environ. 755, 142470. https://doi.org/10.1016/j.scitotenv.2020.142470 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Espinoza-Toledo, A., Mendoza-Carranza, M., Castillo, M. M., Barba-Macías, E. & Capps, K. A. Taxonomic and functional responses of macroinvertebrates to riparian forest conversion in tropical streams. Sci. Total Environ. 757, 143972. https://doi.org/10.1016/j.scitotenv.2020.143972 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Akamagwuna, C. F., Ntloko, P., Edegbene, A. O. & Odume, O. N. Are Ephemeroptera, Plecoptera and Trichoptera traits reliable indicators of semi- urban pollution in the Tsitsa River, Eastern Cape Province of South Africa ? Environ. Monit. Assess. 193, 1–15. https://doi.org/10.1007/s10661-021-09093-z (2021).Article 
    CAS 

    Google Scholar 
    Edegbene, A. O., Odume, O. N., Arimoro, F. O. & Keke, U. N. Identifying and classifying macroinvertebrate indicator signature traits and ecological preferences along urban pollution gradient in the Niger Delta. Environ. Pollut. 281, 117076. https://doi.org/10.1016/j.envpol.2021.117076 (2021).Article 
    CAS 

    Google Scholar 
    Odume, O. N. Searching for urban pollution signature and sensitive macroinvertebrate traits and ecological preferences in a river in the Eastern Cape of South Africa. Ecol. Indic. 108, 105759. https://doi.org/10.1016/j.ecolind.2019.105759 (2020).Article 
    CAS 

    Google Scholar 
    World Bank Group. e-Conomy Africa 2020 Africa’s $180 billion Internet economy future. In E-Conomy Africa 2020 (2020).Petersen, C. R., Jovanovic, N. Z., Grenfell, M. C., Oberholster, P. J. & Cheng, P. Responses of aquatic communities to physical and chemical parameters in agriculturally impacted coastal river systems. Hydrobiologia 813(1), 157–175. https://doi.org/10.1007/s10750-018-3518-y (2018).Article 
    CAS 

    Google Scholar 
    Zhao, Q., Guo, F., Zhang, Y., Yang, Z. & Ma, S. Effects of secondary salinisation on macroinvertebrate functional traits in surface mining-contaminated streams, and recovery potential. Sci. Total Environ. 640–641, 1088–1097. https://doi.org/10.1016/j.scitotenv.2018.05.347 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Wang, Y. et al. Trophic structure in response to land use in subtropical streams. Ecol. Indic. 127, 107746. https://doi.org/10.1016/j.ecolind.2021.107746 (2021).Article 
    CAS 

    Google Scholar 
    David, A. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 35, 257–284. https://doi.org/10.1146/annurev.ecolsys.35.120202.110122 (2004).Article 

    Google Scholar 
    Monk, W. A., Wood, P. J., Hannah, D. M. & Wilson, D. A. Macroinvertebrate community response to inter-annual and regional river flow regime dynamics. River Res. Appl. 24(70), 988–1001 (2008).Article 

    Google Scholar 
    Fitzgerald, D. B., Winemiller, K. O., SabajPerez, M. H. & Sousa, L. M. Seasonal changes in the assembly mechanisms structuring tropical fish communities. Ecology 98, 21–31. https://doi.org/10.1002/ecy.1616 (2017).Article 

    Google Scholar 
    Rosenberg, D. M. & Resh, V. H. Freshwater Biomonitoring and Benthic Macroinvertebrates (Chapman and Hall, 1993).
    Google Scholar 
    Jiang, X., Xiong, J., Xie, Z. & Chen, Y. Longitudinal patterns of macroinvertebrate functional feeding groups in a Chinese river system: A test for river continuum concept (RCC). Quatern. Int. 244(2), 289–295. https://doi.org/10.1016/j.quaint.2010.08.015 (2011).Article 

    Google Scholar 
    Sun, L. Q. et al. Food web structure and ecosystem attributes of integrated multi-trophic aquaculture waters in Sanggou Bay. Aquac. Rep. 16, 100279. https://doi.org/10.1016/j.aqrep.2020.100279 (2020).Article 

    Google Scholar 
    Covich, A. P., Palmer, M. A. & Crowl, T. A. The role of benthic invertebrate species in freshwater ecosystems. Bioscience 49, 119–127 (1999).Article 

    Google Scholar 
    Hladyz, S., Kajsa, Å., Paul, S. G. & Guy, W. Impacts of an aggressive riparian invader on community structure and ecosystem functioning in stream food webs. J. Appl. Ecol. 48(2), 443–452. https://doi.org/10.1111/j.1365-2664.2010.01924.x (2011).Article 

    Google Scholar 
    Crowl, T. A. & Covich, A. P. Predator-induced life history shifts in a freshwater snail. Science 247, 949–951 (1990).Article 
    ADS 
    CAS 

    Google Scholar 
    Fierro, P. et al. Effects of local land-use on riparian vegetation, water quality, and the functional organisation of macroinvertebrate assemblages. Sci. Total Environ. 609, 724–734. https://doi.org/10.1016/j.scitotenv.2017.07.197 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Lenat, D. R. & Barbour, M. T. Using benthic macroinvertebrate community structure for rapid, cost-effective, water quality monitoring: Rapid bioassessment. Biol. Monit. Aquat. Syst. 1, 187–215 (1994).
    Google Scholar 
    Edegbene, A., Arimoro, F. O. & Odume, O. N. How does urban pollution influence macroinvertebrate traits in forested riverine systems? Water 1, 2–17. https://doi.org/10.3390/w12113111 (2020).Article 

    Google Scholar 
    Walsh, C. J. et al. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Renthol. Soc. 24(3), 706–723. https://doi.org/10.1899/04-028.1 (2005).Article 

    Google Scholar 
    Bêche, L. A., Eric, P. M. & Vincent, H. R. Long-term seasonal variation in the biological traits of benthic-macroinvertebrates in two mediterranean-climate streams in California, USA. Freshw. Biol. 51(1), 56–75. https://doi.org/10.1111/j.1365-2427.2005.01473.x (2006).Article 

    Google Scholar 
    Sitati, A., Raburu, P. O., Yegon, M. J. & Masese, F. O. Land-use influence on the functional organization of Afrotropical macroinvertebrate assemblages. Limnologica 88, 125875. https://doi.org/10.1016/j.limno.2021.125875 (2021).Article 
    CAS 

    Google Scholar 
    Álvarez-Cabria, M. J. & José, A. J. Spatial and seasonal variability of macroinvertebrate metrics: Do macroinvertebrate communities track river health? Ecol. Indic. 10(2), 370–379. https://doi.org/10.1016/j.ecolind.2009.06.018 (2010).Article 
    CAS 

    Google Scholar 
    Masese, F. O. et al. Litter processing and shredder distribution as indicators of riparian and catchment influences on ecological health of tropical streams. Ecol. Indic. 46, 23–37. https://doi.org/10.1016/j.ecolind.2014.05.032 (2014).Article 

    Google Scholar 
    Merritt, R. & Cummins, K. An Introduction to the Aquatic Insects of North America 1996–862 (Kendall Hunt Publishing Co, 1995).
    Google Scholar 
    Merritt, R. W., Fenoglio, S. & Cummins, K. W. Promoting a functional macroinvertebrate approach in the biomonitoring of Italian lotic systems. J. Limnol. https://doi.org/10.4081/jlimnol.2016.1502 (2016).Article 

    Google Scholar 
    Edegbene, A.O., Akamagwuna, F.C., Arimoro, F.O., Akumabor, E.C. & Kaine, E.A. Effects of urban-agricultural land-use on Afrotropical macroinvertebrate functional feeding groups in selected rivers in the Niger Delta Region, Nigeria. Hydrobiologia 849, 4857–4869. https://doi.org/10.1007/s10750-022-05034-0 (2022).Article 
    CAS 

    Google Scholar 
    Masese, F. O. et al. Macroinvertebrate functional feeding groups in Kenyan highland streams: Evidence for a diverse shredder guild. Freshw. Sci. 33(2), 435–450. https://doi.org/10.1086/675681 (2014).Article 

    Google Scholar 
    Moyo, S. & Richoux, N. B. Macroinvertebrate functional organisation along the longitudinal Gradient of an austral temperate river. Afr. Zool. 52(3), 125–136. https://doi.org/10.1080/15627020.2017.1354721 (2017).Article 

    Google Scholar 
    Vannote, R. L. et al. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).Article 

    Google Scholar 
    Ding, J. et al. Impacts of land use on surface water quality in a subtropical river basin: A case study of the Dongjiang River Basin, Southeastern China. Water 7(8), 4427–4445. https://doi.org/10.3390/w7084427 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Miserendino, M. L. & Masi, C. I. The effects of land use on environmental features and functional organisation of macroinvertebrate communities in Patagonian low order streams. Ecol. Indic. 10(2), 311–319. https://doi.org/10.1016/j.ecolind.2009.06.008 (2010).Article 
    CAS 

    Google Scholar 
    Solis, M., Arias, M., Fanelli, S., Bonetto, C. & Mugni, H. Agrochemicals’ effects on functional feeding groups of macroinvertebrates in Pampas streams. Ecol. Indic. 101, 373–379. https://doi.org/10.1016/j.ecolind.2019.01.036 (2019).Article 
    CAS 

    Google Scholar 
    Mangadze, T., Wasserman, R., Froneman, W. & Dalu, T. Macroinvertebrate functional feeding group alterations in response to habitat degradation of headwater Austral streams. Sci. Total Environ. 695, 133910. https://doi.org/10.1016/j.scitotenv.2019.133910 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Akamagwuna, F. C. & Odume, O. N. Ephemeroptera, Plecoptera and Trichoptera (EPT) functional feeding group responses to fine grain sediment stress in a river in the Eastern Cape, South Africa. Environ. Monit. Assess. 2, 1–11 (2020).
    Google Scholar 
    Iwegbue, C. M. A. et al. Polycyclic aromatic hydrocarbons (PAHs) in surficial sediments from selected rivers in the western Niger Delta of Nigeria: Spatial distribution, sources, and ecological and human health risks. Mar. Pollut. Bull. 167, 112351. https://doi.org/10.1016/j.marpolbul.2021.112351 (2021).Article 
    CAS 

    Google Scholar 
    Arimoro, F. O., Abubakar, M. D., Obi-iyeke, G. E. & Keke, U. N. Environmental and sustainability indicators achieving sustainable river water quality for rural dwellers by prioritising the conservation of macroinvertebrates biodiversity in two Afrotropical streams. Environ. Sustain. Indic. 10, 100103. https://doi.org/10.1016/j.indic.2021.100103 (2021).Article 

    Google Scholar 
    Zabbey, N., Erondu, E. S. & Hart, A. I. Nigeria and the prospect of shrimp farming: Critical issues. Livestock Res. Rural Dev. 22, 11 (2010).
    Google Scholar 
    Edegbene, A. O., Arimoro, F. O. & Odume, O. N. Developing and applying a macroinvertebrate-based multimetric index for urban rivers in the Niger Delta, Nigeria. Ecol. Evol. 9(22), 12869–12885. https://doi.org/10.1002/ece3.5769 (2019).Article 

    Google Scholar 
    Iwegbue, C. M. A. et al. Distribution, sources and ecological risks of metals in surficial sediments of the Forcados River and its Estuary, Niger Delta, Nigeria. Environ. Earth Sci. 77(6), 1–18. https://doi.org/10.1007/s12665-018-7344-3 (2018).Article 
    CAS 

    Google Scholar 
    Stoddard, J. L., Larsen, D. P., Hawkins, C. P., Johnson, R. K. & Norris, R. H. Setting expectations for the ecological condition of running waters: The concept of reference condition. Ecol. Appl. 16, 1267–1276 (2006).Article 

    Google Scholar 
    Whittier, T. R. et al. A structured approach for developing indices of biotic integrity: Three examples from streams and rivers in the western USA. Trans. Am. Fish. Soc. 136, 718–735 (2007).Article 

    Google Scholar 
    APHA. Standard Methods for the Examination of Water and Wastewater (American Public Health Association, 1995).
    Google Scholar 
    Dickens, C. W. & Graham, P. M. The South African scoring system (SASS) Version 5 rapid bioassessment method for Rivers. Afr. J. Aquat. Sci. 27(1), 1–10. https://doi.org/10.2989/16085914.2002.9626569 (2002).Article 

    Google Scholar 
    Day, J. A., & de Moor, I. J. Guides to the freshwater invertebrates of southern Africa. In Volume 6: Arachnida and Mollusca (Araneae, Water Mites and Mollusca). Water Research Commision, 6. WRC Report No. TT 182/02 (2002).De Moor, I. J., Day, J. A. & De Moor, F. C. Guides to the freshwater invertebrates of southern Africa. In Volume 8: Insecta II: Hemiptera, Megaloptera, Neuroptera, Trichoptera and Lepidoptera. Water Research Commision, 8 (2003).Merrit, R. W. et al. An Introduction to the Aquatic Insects of North America 4th edn. (Kendall Hunt Publishing Company, 2008).
    Google Scholar 
    Cummins, K. W., Merritt, R. W. & Andrade, P. C. N. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in South Brazil. Stud. Neotrop. Fauna Environ. 40(1), 69–89. https://doi.org/10.1080/01650520400025720 (2005).Article 

    Google Scholar 
    Palmer, C. G. Benthic Assemblage Structure, and the Feeding Biology of Sixteen Macro Invertebrate Taxa from the Buffalo River, Eastern Cape, South Africa. Rhodes University, Ph.D. thesis (1991).Palmer, C. G., Maart, B., Palmer, A. R. & O’keeffe, J. H. An assessment of macroinvertebrate functional feeding groups as water quality indicators in the Buffalo River, eastern Cape Province, South Africa. Hydrobiologia 318, 153–164 (1996).Article 

    Google Scholar 
    Palmer, C. G. & O’Keeffe, J. H. O. Feeding patterns of four macroinvertebrate taxa in the headwaters of the Buffalo River, Eastern Cape. Hydrobiologia 228, 157–173 (1992).Article 

    Google Scholar 
    Gayraud, S. & Michel, P. Influence of bed-sediment features on the interstitial habitat available for macroinvertebrates in 15 French streams. Int. Rev. Hydrobiol. 88(1), 77–93. https://doi.org/10.1002/iroh.200390007 (2003).Article 

    Google Scholar 
    Beketov, M. A. et al. SPEAR indicates pesticide effects in streams—Comparative use of species- and family-level biomonitoring data. Environ. Pollut. 157, 1841–1848. https://doi.org/10.1016/j.envpol.2009.01.021 (2009).Article 
    CAS 

    Google Scholar 
    Anderson, M., Gorley, R. N. & Clarke, K. R. PERMANOVA + for PRIMER user manual. Primer-E Ltd 1(1), 218 (2008).
    Google Scholar 
    Dolédec, S., Chessel, D., ter Braak, C. J. F. & Champely, S. Matching species traits to environmental variables: A new three-table ordination method. Environ. Ecol. Stat. 3(2), 143–166. https://doi.org/10.1007/BF02427859 (1996).Article 

    Google Scholar 
    Juvigny-Khenafou, N. P. D. et al. Impacts of multiple anthropogenic stressors on stream macroinvertebrate community composition and functional diversity. Ecol. Evol. 11(1), 133–152. https://doi.org/10.1002/ece3.6979 (2021).Article 

    Google Scholar 
    Dray, P. S. et al. Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology 95(1), 14–21 (2014).Article 

    Google Scholar 
    R Core Team, E. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Lubanga, H. L., Manyala, J. O., Sitati, A., Yegon, M. J. & Masese, F. O. Spatial variability in water quality and macroinvertebrate assemblages across a disturbance gradient in the Mara River. Ecohydrol. Hydrobiol. https://doi.org/10.1016/j.ecohyd.2021.03.001 (2021).Article 

    Google Scholar 
    Arimoro, F. O. & Ikomi, R. B. Ecological integrity of upper Warri River, Niger Delta using aquatic insects as bioindicators. Ecol. Indic. 9(3), 455–461. https://doi.org/10.1016/j.ecolind.2008.06.006 (2009).Article 
    CAS 

    Google Scholar 
    Arimoro, F. O., Odume, O. N., Uhunoma, S. I. & Edegbene, A. O. Anthropogenic impact on water chemistry and benthic macroinvertebrate associated changes in a southern Nigeria stream. Environ. Monit. Assess. 187(2), 1–14 (2015).Article 
    CAS 

    Google Scholar 
    Keke, U. N. et al. Macroinvertebrate communities and physicochemical characteristics along an anthropogenic stress gradient in a southern Nigeria stream: Implications for ecological restoration. Environ. Sustain. Indic. https://doi.org/10.1016/j.indic.2021.100157 (2021).Article 

    Google Scholar 
    Edegbene, A. O. et al. A macroinvertebrate-based multimetric index for assessing ecological condition of forested stream sites draining Nigerian urbanizing landscapes. Sustainability 14, 11289. https://doi.org/10.3390/su141811289 (2022).Article 

    Google Scholar 
    Matemilola, S., Adedeji, O. H. & Enoguanbhor, E. C. Land use/land cover change in petroleum-producing regions of Nigeria. In The Political Ecology of Oil and Gas Activities in the Nigerian Aquatic Ecosystem (eds Matemilola, S. et al.) (Elsevier Inc., 2018).
    Google Scholar 
    Ukhurebor, K. E. et al. Environmental implications of petroleum spillages in the Niger Delta region of Nigeria: A review. J. Environ. Manag. 293, 112872. https://doi.org/10.1016/j.jenvman.2021.112872 (2021).Article 
    CAS 

    Google Scholar 
    Masese, F. O. & Raburu, P. O. Improving the performance of the EPT Index to accommodate multiple stressors in Afrotropical streams. Afr. J. Aquat. Sci. 42(3), 219–233. https://doi.org/10.2989/16085914.2017.1392282 (2017).Article 

    Google Scholar 
    Akamagwuna, F. C. Application of Macroinvertebrate-Based Biomonitoring and Stable Isotopes for Assessing the Effects of Agricultural Land-Use on River Ecosystem Structure and Function in the Kat River, Eastern Cape, South Africa, 4 (Rhodes University, 2021).
    Google Scholar 
    Yang, F. et al. Application of stable isotopes to the bioaccumulation and trophic transfer of arsenic in aquatic organisms around a closed realgar mine. Sci. Total Environ. 726, 138550. https://doi.org/10.1016/j.scitotenv.2020.138550 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Minaya, V., Mcclain, M. E., Moog, O., Omengo, F. & Singer, G. A. Scale-dependent effects of rural activities on benthic macroinvertebrates and physico-chemical characteristics in headwater streams of the Mara River, Kenya. Ecol. Indic. 32, 116–122. https://doi.org/10.1016/j.ecolind.2013.03.011 (2013).Article 
    CAS 

    Google Scholar 
    Nelson Mwaijengo, G., Msigwa, A., Njau, K. N., Brendonck, L. & Vanschoenwinkel, B. Where does land use matter most? Contrasting land use effects on river quality at different spatial scales. Sci. Total Environ. 715, 134825. https://doi.org/10.1016/j.scitotenv.2019.134825 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Moyo, S. & Richoux, N. B. The relative importance of autochthony along the longitudinal gradient of a small South African river influenced by agricultural activities. Food Webs 15, 1–12. https://doi.org/10.1016/j.fooweb.2018.e00082 (2018).Article 

    Google Scholar 
    Jones, I., Growns, I., Arnold, A., McCall, S. & Bowes, M. The effects of increased flow and fine sediment on hyporheic invertebrates and nutrients in stream mesocosms. Freshw. Biol. 60(4), 813–826. https://doi.org/10.1111/fwb.1253664 (2015).Article 
    CAS 

    Google Scholar 
    Krynak, E. M. & Yates, A. G. Benthic invertebrates taxonomic and trait associations with land use intensively managed watershed: Implications for indicator identification. Ecol. Ind. 93, 1050–1059 (2018).Article 

    Google Scholar 
    Kuzmanovic, M. et al. Environmental stressors as driver of the trait composition of benthic macroinvertebrates assemblages in polluted Iberian rivers. Environ. Res. 156, 485–493 (2017).Article 
    CAS 

    Google Scholar 
    Dalu, T. et al. Benthic diatom-based indices and isotopic biomonitoring of nitrogen pollution in a warm temperate Austral river system. Sci. Total Environ. 748, 142452. https://doi.org/10.1016/j.scitotenv.2020.142452 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Tomanova, S., Goitia, E. & Helesˇic, J. H. Trophic levels and functional feeding groups of macroinvertebrates in neotropical streams. Hydrobiologia 556(3), 251–264. https://doi.org/10.1007/s10750-005-1255-5 (2006).Article 

    Google Scholar 
    da Conceição, A. A., Albertoni, E. F., Milesi, S. V. & Hepp, L. U. Influence of anthropic impacts on the functional structure of aquatic invertebrates in subtropical wetlands. Wetlands. https://doi.org/10.1007/s13157-020-01317-1 (2020).Article 

    Google Scholar 
    De, R. B. Effects of forest conversion on the assemblages’ structure of aquatic insects in subtropical regions. Rev. Bras. Entomol. 59(1), 43–49. https://doi.org/10.1016/j.rbe.2015.02.005 (2015).Article 
    ADS 

    Google Scholar 
    Cheshire, K., Boyero, L. & Pearson, R. G. Food webs in tropical Austrian streams: Shredders are not scarce. Freshw. Biol. https://doi.org/10.1111/j.1365-2427.2005.01355-x (2005).Article 

    Google Scholar 
    Camacho, R., Boyero, L., Cornejo, A., Ibáñez, A. & Pearson, R. G. Local variation in shredder distribution can explain their oversight in tropical streams. Biotropica 41, 625–632 (2009).Article 

    Google Scholar 
    Boyero, L., Ramírez, A., Dudgeon, D. & Pearson, R. G. Are tropical streams really different? J. N. Am. Benthol. Soc. 28, 397–403 (2009).Article 

    Google Scholar 
    Ferreira, V. & Chauvet, E. Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Glob. Change Biol. 17(1), 551–564. https://doi.org/10.1111/j.1365-2486.2010.02185.x (2011).Article 
    ADS 

    Google Scholar 
    Whiles, M. R. & Wallace, J. B. Leaf litter decomposition and macroinvertebrate communities in headwater streams draining pine and hardwood catchments. Hydrobiologia 353, 107–119 (1997).Article 

    Google Scholar 
    Foucreau, N., Piscart, C., Puijalon, S. & Hervant, F. Effects of rising temperature on a functional process: Consumption and digestion of leaf litter by a freshwater shredder. Fundam. Appl. Limnol. 187(4), 295–306. https://doi.org/10.1127/fal/2016/0841 (2016).Article 

    Google Scholar 
    Poff, N. L. et al. Functional trait niches of North American lotic insects: Traits-based ecological applications in light of phylogenetic relationships. J. N. Am. Benthol. Soc. 25(4), 730–755 (2006).Article 

    Google Scholar 
    Menezes, S., Baird, D. J. & Soares, A. M. V. M. Beyond taxonomy: A review of macroinvertebrate trait-based community descriptors as tools for freshwater biomonitoring. J. Appl. Ecol. 47(4), 711–719. https://doi.org/10.1111/j.1365-2664.2010.01819.x (2010).Article 

    Google Scholar 
    Verberk, W. C. E. P., van Noordwijk, C. G. E. & Hildrew, A. G. Delivering on a promise: integrating species traits to transform descriptive community ecology into a predictive science. Freshw. Sci. 32(2), 531–547. https://doi.org/10.1899/12-092.1 (2013).Article 

    Google Scholar 
    Usseglio-Polatera, P., Bournaud, M., Richoux, P. & Tachet, H. Biomonitoring through biological traits of benthic macroinvertebrates: How to use species trait databases? Hydrobiologia 423, 153–162 (2000).Article 

    Google Scholar 
    Kneitel, J. & Chase, J. Trade-offs in community ecology: Linking spatial scales and species coexistence. Ecol. Lett. 7, 69–80 (2004).Article 

    Google Scholar 
    Pilière, A. F. H. et al. On the importance of trait interrelationships for understanding environmental responses of stream macroinvertebrates. Freshw. Biol. 61, 181–194. https://doi.org/10.1111/fwb.12690 (2016).Article 

    Google Scholar  More

  • in

    Investigation of anticoagulant rodenticide resistance induced by Vkorc1 mutations in rodents in Lebanon

    Gentry, A. Mammal Species of the World. A Taxonomic and Geographic Reference. 2005. Don E. Wilson & DeeAnn M. Reeder (Eds.). Ed. 3, 2 Vols., 2142 Pp. Johns Hopkins University Press, Baltimore. ISBN 0-8018-8221-4. A Nomenclatural Review. The Bulletin of zoological nomenclature. 2006, 63, 215–219.Dickman, C. R. Rodent-ecosystem relationships: A review. Ecologically-based management of rodent pests. ACIAR Monogr. 59, 113–133 (1999).
    Google Scholar 
    Tobin, M., Fall, M. W. Pest control: Rodents. In Pest Control: Rodents, Encyclopedia of Life Support Systems (EOLSS) (2005).Meerburg, B. G., Singleton, G. R. & Kijlstra, A. Rodent-borne diseases and their risks for public health. Crit. Rev. Microbiol. 35, 221–270. https://doi.org/10.1080/10408410902989837 (2009).Article 

    Google Scholar 
    Kalfayan, B. H. Leptospira Icterohaemorrhagiae in rats of Beirut. Trans. R. Soc. Trop. Med. Hyg. 40, 895–900. https://doi.org/10.1016/0035-9203(47)90045-X (1947).Article 

    Google Scholar 
    Jackson, W. B. Evaluation of rodent depredations to crops and stored products1. EPPO Bull. 7, 439–458. https://doi.org/10.1111/j.1365-2338.1977.tb02743.x (1977).Article 

    Google Scholar 
    Stejskal, V., Hubert, J., Aulicky, R. & Kucerova, Z. Overview of present and past and pest-associated risks in stored food and feed products: European perspective. J. Stored Prod. Res. 64, 122–132. https://doi.org/10.1016/j.jspr.2014.12.006 (2015).Article 

    Google Scholar 
    Jacob, J., Buckle, A. Use of anticoagulant rodenticides in different applications around the world. In Anticoagulant Rodenticides and Wildlife 11–43. https://doi.org/10.1007/978-3-319-64377-9_2Puckett, E. E. et al. Global population divergence and admixture of the brown rat (Rattus Norvegicus). Proc. R. Soc. B Biol. Sci. 283, 20161762. https://doi.org/10.1098/rspb.2016.1762 (2016).Article 

    Google Scholar 
    Barzman, M. et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 35, 1199–1215. https://doi.org/10.1007/s13593-015-0327-9 (2015).Article 

    Google Scholar 
    Chellappan, M. Rodents. in Polyphagous Pests of Crops (ed. Omkar) 457–532 (Springer: Singapore, 2021) ISBN 9789811580758.Prakash, I. in Rodent Pest Management (CRC Press, 2018) ISBN 978-1351-08490-1.Hadler, M. R., Buckle, A. P. Forty five years of anticoagulant rodenticides-past, present and future trends. In: Proceedings of the 15th Vertebrate Pest Conference 149–155 (1992).Watt, B. E., Proudfoot, A. T., Bradberry, S. M. & Vale, J. A. Anticoagulant rodenticides. Toxicol. Rev. 24, 259–269. https://doi.org/10.2165/00139709-200524040-00005 (2005).Article 

    Google Scholar 
    Matagrin, B. et al. New insights into the catalytic mechanism of vitamin K epoxide reductase (VKORC1)—The catalytic properties of the major mutations of RVKORC1 explain the biological cost associated to mutations. FEBS Open Bio 3, 144–150. https://doi.org/10.1016/j.fob.2013.02.001 (2013).Article 

    Google Scholar 
    RRAC Rodenticide Resistance Action Group Available online: http://guide.rrac.info/resistancemaps/resistance-maps/. Information correct as off 09. (Accessed on 7 April 2021).McGee, C. F., McGilloway, D. A. & Buckle, A. P. Anticoagulant rodenticides and resistance development in rodent pest species—A comprehensive review. J. Stored Prod. Res. 88, 101688. https://doi.org/10.1016/j.jspr.2020.101688 (2020).Article 

    Google Scholar 
    Tie, J.-K., Nicchitta, C., von Heijne, G. & Stafford, D. W. Membrane topology mapping of vitamin K epoxide reductase by in vitro translation/cotranslocation*. J. Biol. Chem. 280, 16410–16416. https://doi.org/10.1074/jbc.M500765200 (2005).Article 

    Google Scholar 
    Goulois, J., Lambert, V., Legros, L., Benoit, E. & Lattard, V. Adaptative evolution of the Vkorc1 gene in mus musculus domesticus is influenced by the selective pressure of anticoagulant rodenticides. Ecol. Evol. 7, 2767–2776. https://doi.org/10.1002/ece3.2829 (2017).Article 

    Google Scholar 
    Pelz, H.-J. The genetic basis of resistance to anticoagulants in rodents. Genetics 170, 1839–1847. https://doi.org/10.1534/genetics.104.040360 (2005).Article 

    Google Scholar 
    Rost, S. et al. Novel mutations in the VKORC1 gene of wild rats and mice—A response to 50 years of selection pressure by warfarin?. BMC Genet. 10, 4. https://doi.org/10.1186/1471-2156-10-4 (2009).Article 

    Google Scholar 
    Çetintürk, D., Yiğit, N., Çolak, E., Duman, T., Gül, N., Saygılı Yiğit, F. First Report for Anticoagulant Rodenticide Resistance in Turkish Norway Rat. Jan 5 (2018).Gérard, J., Nehmé, C. Lebanon. A geography of contrasts. Méditerranée. Revue géographique des pays méditerranéens/J. Mediterr. Geogra. (2020).Haktanir, K., Karaca, A., Omar, S. M. The prospects of the impact of desertification on Turkey, Lebanon, Syria and Iraq. In Proceedings of the Environmental Challenges in the Mediterranean 2000–2050 (ed. Marquina, A.) 139–154 (Springer Netherlands, Dordrecht, 2004).Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102. https://doi.org/10.1016/j.tree.2006.11.001 (2007).Article 

    Google Scholar 
    Lewis, R., Lewis, J. & Atallah, S. A review of Lebanese Mammals Lagomorpha and Rodentia*. J. Zool. 153, 45–70. https://doi.org/10.1111/j.1469-7998.1967.tb05030.x (1967).Article 

    Google Scholar 
    Bate, D. M. A. XIV—Note on small Mammals from the Lebanon Mountains, Syria. Ann. Mag. Nat. Hist. 12, 141–158. https://doi.org/10.1080/00222934508527500 (1945).Article 

    Google Scholar 
    Sprenger, A., Lebanon, A. R. Small Mammal Survey Report (Dec 2001–Mar 2002). 5.Boukhdoud, L., Saliba, C., Kahale, R. & Kharrat, M. B. D. Tracking Mammals in a Lebanese protected area using environmental DNA-based approach. Environ. DNA https://doi.org/10.1002/edn3.183 (2021).Article 

    Google Scholar 
    Bou Dagher Kharrat, M., Kahale, R., Saliba, C., Boukhdoud, L. Mammals at first sight: Discover lebanese wild mammals (2019).Khater, C., El-Hajj, R. in Terrestrial Biodiversity in Lebanon 141–169 (2012).Nader, M. R., El Indary, S., Abi Salloum, B. & Abou Dagher, M. Combining non-invasive methods for the rapid assessment of Mammalian richness in a transect-quadrat survey scheme—Case study of the Horsh Ehden nature reserve, North Lebanon. Zookeys 119, 63–71. https://doi.org/10.3897/zookeys.119.1040 (2011).Article 

    Google Scholar 
    Kersten, A. M. P. Rodents and insectivores from the palaeolithic Rock Shelter of Ksar ’Akil (Lebanon) and their palaeoecological implications. Paléorient 18, 27–45. https://doi.org/10.3406/paleo.1992.4561 (1992).Article 

    Google Scholar 
    Amr, Z. S., Abi-Said, M. R. & Shehab, A. H. Diet of the Barn Owl (Tyto Alba ) from Chaddra-Akkar Northern Lebanon. JJBS 7, 109–112. https://doi.org/10.12816/0008223 (2014).Article 

    Google Scholar 
    Abi-Said, Mounir R. in A Baseline Survey of the Mammals in Jabal Moussa Nature Reserve (JMNR) (2009).Kryštufek, B., Abi-Said, M. & Hladnik, M. The Iranian vole microtus Irani occurs in Lebanon (Mammalia: Rodentia). Zool. Middle East 59, 101–106. https://doi.org/10.1080/09397140.2013.810863 (2013).Article 

    Google Scholar 
    Inc, G.I., Berger, D.S. in Leptospirosis: Global Status: 2020 Ed (GIDEON Informatics Inc, 2020) ISBN 978-1-4988-2877-2.Iacucci, A. et al. VKORC1 mutation in European populations of Rattus Norvegicus with first data for italy and the report of a new amino acid substitution. Hystrix It. J. Mamm. 29, 95–99. https://doi.org/10.4404/hystrix-00055-2018 (2018).Article 

    Google Scholar 
    Backhans, A. et al. Occurrence of pathogens in wild rodents caught on Swedish pig and chicken farms. Epidemiol. Infect. 141, 1885–1891. https://doi.org/10.1017/S0950268812002609 (2013).Article 

    Google Scholar 
    Franssen, F., Swart, A., van Knapen, F. & van der Giessen, J. Helminth Parasites in black rats (Rattus Rattus) and brown rats (Rattus Norvegicus) from different environments in the Netherlands. Infect. Ecol. Epidemiol. 6, 31413. https://doi.org/10.3402/iee.v6.31413 (2016).Article 

    Google Scholar 
    Umali, D. V., Lapuz, R. R. S. P., Suzuki, T., Shirota, K. & Katoh, H. Transmission and shedding patterns of salmonella in naturally infected captive wild roof rats (Rattus Rattus) from a salmonella-contaminated layer farm. Avian Dis. 56, 288–294. https://doi.org/10.1637/9911-090411-Reg.1 (2012).Article 

    Google Scholar 
    Heiberg, A.-C. Anticoagulant resistance: A relevant issue in sewer rat (Rattus Norvegicus) control?. Pest Manag. Sci. 65, 444–449. https://doi.org/10.1002/ps.1709 (2009).Article 

    Google Scholar 
    Mohammadi, Z., Darvish, J., Ghorbani, F., Mostafavi, E. First Record of the Caucasus Field Mouse Apodemus Ponticus Sviridenko, 1936 (Rodentia Muridae) from Iran. 7.Albaba, I. The terrestrial mammals of palestine: A preliminary checklist. Int. J. Fauna Biol. Stud. 3(4), 28–35 (2016).
    Google Scholar 
    Brooks, J. E. & Jackson, W. B. A review of commensal rodents and their control. CRC Crit. Rev. Environ. Control 3, 405–453. https://doi.org/10.1080/10643387309381607 (1973).Article 

    Google Scholar 
    Abou Zeid, M. I., Jammoul, A. M., Melki, K. C., Jawdah, Y. A. & Awad, M. K. Suggested policy and legislation reforms to reduce deleterious effect of pesticides in Lebanon. Heliyon 6, e05524. https://doi.org/10.1016/j.heliyon.2020.e05524 (2020).Article 

    Google Scholar 
    Buckle, A., Prescott, C. Anticoagulants and risk mitigation. In Anticoagulant Rodenticides and Wildlife (eds. van den Brink, N. W., Elliott, J. E., Shore, R. F., Rattner, B. A.) 319–355 (Springer International Publishing, Cham, 2018) ISBN 978-3-319-64377-9.Berny, P., Esther, A., Jacob, J., Prescott, C. Development of resistance to anticoagulant rodenticides in rodents. In Anticoagulant Rodenticides and Wildlife (eds. van den Brink, N. W., Elliott, J. E., Shore, R. F., Rattner, B. A.) (Springer International Publishing, Cham, 2018) 259–286 ISBN 978-3-319-64377-9.Abil Khalil, R. et al. Seasonal diet-based resistance to anticoagulant rodenticides in the fossorial water vole (Arvicola Amphibius). Environ. Res. 200, 111422 (2021).Article 

    Google Scholar 
    Ma, X. et al. Low warfarin resistance frequency in Norway rats in Two cities in China after 30 years of usage of anticoagulant rodenticides. Pest Manag. Sci. 74, 2555–2560. https://doi.org/10.1002/ps.5040 (2018).Article 

    Google Scholar 
    Prescott, C., Buckle, A., Gibbings, G., Allan, E. & Stuart, A. Anticoagulant resistance in Norway rats (Rattus Norvegicus Berk.) in Kent—A VKORC1 single nucleotide polymorphism, tyrosine139phenylalanine, New to the UK. Int. J. Pest Manag. 57, 61–65. https://doi.org/10.1080/09670874.2010.523124 (2011).Article 

    Google Scholar 
    Cowan, P. E. et al. Vkorc1 sequencing suggests anticoagulant resistance in rats in New Zealand. Pest Manag. Sci. 73, 262–266. https://doi.org/10.1002/ps.4304 (2017).Article 

    Google Scholar 
    Pelz, H.-J. et al. Distribution and Frequency of VKORC1 sequence variants conferring resistance to anticoagulants in mus musculus. Pest. Manag. Sci. 68, 254–259. https://doi.org/10.1002/ps.2254 (2012).Article 

    Google Scholar 
    Mooney, J. et al. VKORC1 sequence variants associated with resistance to anticoagulant rodenticides in irish populations of Rattus Norvegicus and mus musculus domesticus. Sci. Rep. 8, 4535. https://doi.org/10.1038/s41598-018-22815-7 (2018).Article 
    ADS 

    Google Scholar 
    Šćepović, T. et al. VKOR variant and sex are the main influencing factors on bromadiolone tolerance of the house mouse (Mus Musculus L.). Pest Manag. Sci. 72, 574–579. https://doi.org/10.1002/ps.4027 (2016).Article 

    Google Scholar 
    Greaves, J. H., Redfern, R. & Anasuya, B. Inheritance of resistance to warfarin in Rattus Rattus L. J. Stored Prod. Res. 12, 225–228. https://doi.org/10.1016/0022-474X(76)90037-0 (1976).Article 

    Google Scholar 
    Leung, L.K.-P. & Clark, N. M. Bait avoidance and habitat use by the roof rat, Rattus Rattus, in a Piggery. Int. Biodeterior. Biodegrad. 55, 77–84. https://doi.org/10.1016/j.ibiod.2004.07.004 (2005).Article 

    Google Scholar 
    Takeda, K. et al. Novel revelation of warfarin resistant mechanism in roof rats (Rattus Rattus) using pharmacokinetic/pharmacodynamic analysis. Pestic. Biochem. Physiol. 134, 1–7. https://doi.org/10.1016/j.pestbp.2016.04.004 (2016).Article 

    Google Scholar 
    Song, Y. et al. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice., adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr Biol 21, 1296–1301. https://doi.org/10.1016/j.cub.2011.06.043 (2011).Article 

    Google Scholar 
    Aplin, K. P., Brown, P. R., Jacob, J., Krebs, C. J. & Singleton, G. R. Field methods for rodent studies in Asia and the Indo-Pacific (No. 435-2016-33720) (2003).Irwin, D. M., Kocher, T. D. & Wilson, A. C. Evolution of the cytochrome b gene of Mammals. J. Mol. Evol. 32, 128–144. https://doi.org/10.1007/BF02515385 (1991).Article 
    ADS 

    Google Scholar 
    Pagès, M. et al. Revisiting the taxonomy of the rattini tribe: A phylogeny-based delimitation of species boundaries. BMC Evol. Biol. 10, 184. https://doi.org/10.1186/1471-2148-10-184 (2010).Article 

    Google Scholar 
    Bradley, R. D. & Baker, E. J. A test of the genetic species concept: Cytochrome-b sequences and mammals. J. Mammal. 82, 960–973 (2001).Article 

    Google Scholar 
    Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).
    Google Scholar 
    Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 37, D26–D31. https://doi.org/10.1093/nar/gkn723 (2009).Article 

    Google Scholar  More