More stories

  • in

    A watershed moment for healthy watersheds

    Patterson, J. et al. Nat. Sustain. 4, 841–850 (2021).Article 

    Google Scholar 
    Reid, A. J. et al. Biol. Rev. 94, 849–873 (2019).Article 

    Google Scholar 
    Vollmer, D. & Harrison, I. J. Environ. Res. Lett. 16, 011005 (2021).Article 

    Google Scholar 
    Zeitoun, M. et al. Glob. Environ. Change 39, 143–154 (2016).Article 

    Google Scholar 
    Bezerra, M. O. et al. Environ. Manage. 69, 815–834 (2022).Article 

    Google Scholar 
    Souter, N. J. et al. Water 12, 788 (2020).Article 
    CAS 

    Google Scholar 
    Akhmouch, A., Clavreul, D. & Glas, P. Water Int. 43, 5–12 (2018).Article 

    Google Scholar 
    Andersson, E. Ambio 51, 1–8 (2022).Article 

    Google Scholar 
    Huntington, H. P. et al. Nat. Sustain. 4, 672–679 (2021).Article 

    Google Scholar 
    Soames Job, R. F. Am. J. Public Health 78, 163–167 (1988).Article 
    CAS 

    Google Scholar 
    Poff, N. L. et al. Nat. Clim. Change 6, 25–34 (2016).Article 

    Google Scholar 
    Diaz-Kope, L. & Miller-Stevens, K. Public Works Management and Policy 20, 29–48 (2015).Article 

    Google Scholar 
    OECD Financing a Water Secure Future (OECD Publishing, 2022).Cardascia, S. Financing Water Infrastructure and Landscape Approaches in Asia and the Pacific. Background Paper for 5th Roundtable on Financing Water (OECD Publishing, 2019).Schlager, E. & Blomquist, W. Embracing Watershed Politics (University Press of Colorado, 2008).Wehn, U., Collins, K., Anema, K., Basco-Carrera, L. & Lerebours, A. Water Int. 43, 34–59 (2018).Article 

    Google Scholar 
    Shaad, K., Souter, N. J., Vollmer, D., Regan, H. M. & Bezerra, M. O. Environ. Manage. 69, 752–767 (2022).Article 

    Google Scholar  More

  • in

    Bee species perform distinct foraging behaviors that are best described by different movement models

    Plant species and pollinatorsMedicago sativa L. (Fabaceae), also called alfalfa or lucerne, is a perennial legume with flowers arranged in a cluster or raceme. It is a self-compatible plant with fairly high outcrossing rate (5.3–30%)46, and it requires insect visits for seed production47. No plant material was collected for this study. Honey bees, Apis mellifera, and alfalfa leafcutting bees, Megachile rotundata, are used as managed pollinators in alfalfa seed-production fields in the USA while bumble bees are commonly used in alfalfa breeding47.Experimental design and pollinator observationsFive 11 m × 11 m patches of M. sativa plants were set up in an east–west linear arrangement at the West Madison Agricultural Research Station in Madison, Wisconsin, USA. Within each patch, we transplanted 169 young plants grown from seeds in the greenhouse, each placed 90 cm apart. These plants grew and, at flowering, a plant had an average of 30.65 ± 16.4 stems per plant, with 4.93 ± 3.41 racemes per stem, and 7.53 ± 2.44 open flowers per raceme.A honey bee hive was placed approximately 100 m from the patches and a bumble bee hive was set up at the center of the southern edge of the patches. For leafcutting bees, a 60 × 30 × 7.6 cm bee board was set up in each of two boxes placed 1/3 and 2/3 along the southern edge of the patches and a half gallon of bees was released at periodic intervals throughout the alfalfa flowering season.Over two consecutive summers, observers followed bees foraging in the alfalfa patches, marked each raceme visited in succession within a foraging bout with a numbered clip, and recorded the number of flowers visited per raceme. After a bee had left a patch, observers went back to the marked racemes and measured the distance and direction traveled between consecutive racemes. Directions were recorded as one of the cardinal directions: North (N), South (S), East (E) or West (W), or inter-cardinal directions: Northeast (NE), Southeast (SE), Northwest (NW) and Southwest (SW). The frequency distributions of distances and directions traveled between two successive racemes are presented for each bee species each year in Figs. 1 (distances) and 2 (directions). The low pollinator abundance permitted observers to follow individual bees foraging in a patch. Little interference among bee species was observed in the patches.Figure 1Frequency distributions for distances traveled between consecutive racemes (cm) for each bee species each year.Full size imageFigure 2Frequency distributions of directions traveled between consecutive racemes for each bee species each year.Full size imageModel for the distance traveled between consecutive racemesWe first determined whether a statistical model best described the distance traveled between consecutive racemes (Modeled Distance), and examined whether the model differed among bee species. We used mixed effect linear models (proc Mixed in SAS 9.3)48 to identify the model that best described the distance traveled by pollinators between consecutive racemes. The model included loge distance as a linear function of loge flower number and bee species as fixed effects. The distance traveled between consecutive racemes and the number of flowers visited per raceme were log transformed prior to analyses in order to improve the models’ residuals. In addition, we included patch and foraging bout as random effects in the model. A foraging bout includes the racemes visited in succession from the time a bee is spotted in a patch to the time it leaves that patch. We used foraging bout instead of individual bee as the random effect because bees were not individually marked in this study. Moreover, to take into consideration the potential correlation between successive observations within a foraging bout, we added clip to the model. Clip 1 represents the first and second racemes visited in the foraging bout; clip 2, the second and third, and so on. Clip was added to the model either as a random effect or as a repeated measure with an AR(1) structure. The combination of random clip and random foraging bout creates a model that is sometimes called the “compound symmetry” model. The AR(1) structure represents correlations that decline exponentially as the gap between measurements increases such that measurements closer together in time are more strongly correlated than measurements further apart. Because we expected bees to visit flowers at close proximity when resources are abundant, we chose this correlation structure as a good potential descriptor of the way distances might be correlated within foraging bouts. We started with a full model which included loge flower number, bee species, patch, foraging bout, and clip either as a random effect or as a repeated measure with an AR(1) structure. We then removed variables and compared models by inspecting AIC values and the p values for each term in the model. We considered both low AIC and statistically significant (p  More

  • in

    Prediction of tide level based on variable weight combination of LightGBM and CNN-BiGRU model

    LightGBMBefore explaining LightGBM23, it is necessary to introduce XGBoost24, which is also based on the gradient boosting decision tree (GBDT) algorithm30. XGBoost integrates multiple classification and regression trees (CART) to compensate for the lack of prediction accuracy of a single CART. It is an improved boosting algorithm based on GBDT, which is popular due to its high processing speed, high regression accuracy and ability to process large-scale data31. However, XGBoost uses a presorted algorithm to find data segmentation points, which takes up considerable memory in the calculation and seriously affects cache optimization.LightGBM is improved based on XGBoost. It uses a histogram algorithm to find the best data segmentation point, which occupies less memory and has a lower complexity of data segmentation. The flow of the histogram algorithm to find the optimal segmentation point is shown in Fig. 3.Figure 3Histogram algorithm.Full size imageMoreover, LightGBM abandons the levelwise decision tree growth strategy used by most GBDT tools and uses the leafwise algorithm with depth limitations. This leaf-by-leaf growth strategy can reduce more errors and obtain better accuracy. Decision trees in boosting algorithms may grow too deep while training, leading to model overfitting. Therefore, LightGBM adds a maximum depth limit to the leafwise growth strategy to prevent this from happening and maintains its high computational efficiency. To summarize, LightGBM can be better and faster used in industrial practice and is also very suitable as the base model in our tide level prediction task. The layer-by-layer growth strategy and leaf-by-leaf growth strategy are shown in Fig. 4.Figure 4Two GBDT growth strategies.Full size imageCNN-BiGRUConvolutional neural networkA convolutional neural network (CNN) is a deep feedforward neural network with the characteristics of local connection and weight sharing. It was first used in the field of computer vision and achieved great success32,33. In recent years, CNNs have also been widely used in time series processing. For example, Bai et al.34 proposed a temporal convolutional network (TCN) based on a convolutional neural network and residual connections, which is not worse than recurrent neural networks such as LSTM in some time series analysis tasks. At present, a convolutional neural network is generally composed of convolution layers, pooling layers and a fully connected layer. Its network structure is shown in Fig. 5. The pooling layer is usually added after the convolution layers. The maximum pooling layer can retain the strong features in the data after the convolution operation, eliminate the weak features to reduce the number of parameters in a network and avoid overfitting of the model.Figure 5Schematic diagram of a convolutional neural network.Full size imageBidirectional GRUIn previous attempts at tide level prediction by scholars, bidirectional long short-term memory networks35 have achieved good prediction results. However, in our subsequent experiments, the bidirectional gated recurrent unit achieved higher prediction accuracy than BiLSTM, so we used the BiGRU network for subsequent prediction tasks.The GRU network36 adds a gating mechanism to control information updating in a recurrent neural network. Different from the mechanism in LSTM, GRU consists of only two gates called the update gate ({z}_{t}) and the reset door ({r}_{t}).The recurrent unit structure of the GRU network is shown in Fig. 6.Figure 6Recurrent unit structure of the GRU network.Full size imageEach unit of GRU is calculated as follows:$${z}_{t}= sigma ({W}_{z}{x}_{t}+{U}_{z}{h}_{t-1}+{b}_{z})$$
    (7)
    $${r}_{t}= sigma ({W}_{r}{x}_{t}+{U}_{r}{h}_{t-1}+{b}_{r})$$
    (8)
    $${widetilde{h}}_{t}=tanh({W}_{h}{x}_{t}+{U}_{h}left({r}_{t}odot {h}_{t-1}right)+{b}_{h})$$
    (9)
    $${h}_{t}={z}_{t}odot {h}_{t-1}+left(1-{z}_{t}right)odot {widetilde{h}}_{t}$$
    (10)
    In the above formula, ({z}_{t}) represents the update gate, which controls how much information is retained from the previous state ({h}_{t-1}) (without nonlinear transformation) when calculating the current state ({h}_{t}). Meanwhile, it also controls how much information will be accepted by ({h}_{t}) from the candidate states ({widetilde{h}}_{t}). ({r}_{t}) represents the reset gate, which is used to ensure whether the calculation of the candidate state ({widetilde{h}}_{t}) depends on the previous state ({h}_{t-1}). (upsigma ) is the standard sigmoid activation function; (tanh(cdot )) is the hyperbolic tangent activation function; and (odot ) indicates the Hadamard product. The weight matrices of the update gate, reset gate, and ({widetilde{h}}_{t}) calculation layer are expressed as ({W}_{z},{W}_{r},{W}_{h}); the coefficient matrices of the update gate, reset gate, and ({widetilde{h}}_{t}) calculation layer are expressed as ({U}_{z},{U}_{r},{U}_{h}); and the offset vectors of the update gate, reset gate, and ({widetilde{h}}_{t}) calculation layer are expressed as ({b}_{z},{b}_{r},{b}_{h}).A bidirectional gated recurrent unit network37 is a combination of two GRUs whose information propagating directions are reversed, and it has independent parameters in each, which makes it able to fit both forward and backward data at first and then join up the results from two directions. BiGRU can capture sequence patterns that may be ignored by unidirectional GRU. The structure of BiGRU is shown in Fig. 7.Figure 7The structure of BiGRU.Full size imageTaking the BiGRU’s forward hidden state vector at time (t) as ({h}_{t}^{(1)}) and taking the BiGRU’s backward hidden state vector at time (t) as ({h}_{t}^{(2)}), (upsigma ) indicates the standard sigmoid activation function, and (oplus ) indicates a vector splicing operation. We can calculate the output ({y}_{t}) of a BiGRU network as follows:$${h}_{t}={h}_{t}^{(1)}oplus {h}_{t}^{(2)}$$
    (11)
    $${y}_{t}=sigma ({h}_{t} )$$
    (12)
    CNN-BiGRU prediction modelBecause CNN has significant advantages in extracting useful features from a picture or a sequence and BiGRU is good at processing time series, we combine CNN and BiGRU to build the CNN-BiGRU model. The model can be mainly divided into an input layer, a convolution layer, a BiGRU network layer, a dropout layer, a fully connected layer and an output layer. The CNN layer and BiGRU layer are the core structures of the model. The function of the dropout layer is to avoid model overfitting. The CNN layer consists of two one-dimensional convolution (Conv1D) layers and a one-dimensional maximum pooling (MaxPooling1D) layer. The input of BiGRU is the output sequence of the CNN layer, and the BiGRU network is set as a one-hidden-layer structure. The structure of the CNN-BiGRU combination model is shown in Fig. 8.Figure 8The structure of CNN-BiGRU.Full size imageVariable weight combination modelWhen we analyze and predict relatively stationary tide level time series, LightGBM can perform well. However, due to environmental factors such as air pressure, wind force and terrain in reality, most tide level observation sequences are sometimes not relatively stationary, which requires that our tide level prediction model be reasonably able to “extrapolate” based on the sample observations, that is, be capable of generating values that are not in the sample. LightGBM is a tree-based model, which leads to our prediction results being between the maximum and minimum values of sequences. Therefore, LightGBM will not be able to accurately predict the situation or tidal change trend that did not appear in previous observations. However, the CNN-BiGRU model, which is a kind of neural network, has no such problem in theory and will be able to find the trend information that may be hidden in the tide level series. Therefore, we consider providing an appropriate weight for a single base model to build a combination model to improve the accuracy of the tide level prediction task.Principle of the residual weight combination model and improved variable weight combination modelTo improve the prediction accuracy of the combination model, a simple and effective idea is to determine the base models’ weights in the combination model according to the error between the prediction value and the real value. This method is also called the residual weight method, and its calculation formulas for determining the weights are:$$gleft({x}_{t}right)= sum_{i=1}^{m}{omega }_{i}left(t-1right){f}_{i}({x}_{t})$$
    (13)
    $${omega }_{i}left(t-1right)=frac{frac{1}{overline{{varphi }_{i}}left(t-1right)}}{sum_{i=1}^{m}frac{1}{overline{{varphi }_{i}}left(t-1right)}}$$
    (14)
    $$sum_{i=1}^{m}{omega }_{i}left(t-1right)=1,{omega }_{i}left(t-1right)ge 0$$
    (15)

    where ({omega }_{i}left(t-1right)) denotes the weight of the (i) th model at the moment (t-1), ({f}_{i}left({x}_{t}right)) denotes the prediction value of the (i) th model at the moment (t), (gleft({x}_{t}right)) denotes the prediction value of the combination model at the moment (t), and (overline{{varphi }_{i}}left(t-1right)) is the square sum of the predictive errors of the (i) th model at the moment (t-1).Our LightGBM-CNN-BiGRU (combination model) is based on the improved residual weight method. We call it the variable weight combination model. We use the weights calculated by formula (9) and formula (11) to calculate a series of new weights. The new weights from formula (11) will take the residual weight changes in (d) time steps into consideration by averaging the old weights in (d) time steps to improve the stability of the residual weight method.$${omega }_{j}left(tright)=frac{1}{d}sum_{k=1}^{d}{omega }_{i}left(t-kright)left(d=4right)$$
    (16)
    After obtaining a series of weights through formula (9) and formula (11), we take the absolute value of the error between the prediction value and the true value of each combination model at the moment of (t) as ({delta }_{i,t}) and ({delta }_{j,t}), respectively:$${delta }_{i,t}=mid sum_{i=1}^{m}{omega }_{i}left(tright){f}_{i}left({x}_{t}right)-{y}_{t}mid $$
    (17)
    $${delta }_{j,t}=mid sum_{i=1}^{m}{omega }_{j}left(tright){f}_{i}left({x}_{t}right)-{y}_{t}mid $$
    (18)
    Comparing ({delta }_{i,t}) and ({delta }_{j,t}), if ({delta }_{i,t} >{delta }_{j,t}), the combination model uses the new weight ({omega }_{j}left(tright)) in place of the original weight ({omega }_{i}left(tright)). Otherwise, the weight of the combination model remains unchanged.Parameter optimization of the combination modelBecause the LightGBM-CNN-BiGRU (combination model) is a variable weight combination of the prediction results from two base models, the performance of the combination model can be directly improved by separately optimizing the super parameters of the two base models. We mainly use the grid search algorithm and K-fold cross validation method to optimize the parameters. The grid search algorithm is a method to improve the performance of a certain model by iterating over a given set of parameters. With the help of the K-fold cross validation method, we can calculate the performance score of the LightGBM model on the training set and easily optimize its superparameters. The final parameters of the LightGBM model are set to num_leaves = 26, learning_rate = 0.05, and n_estimators = 46.For the CNN-BiGRU network, we mainly improve the prediction accuracy of the model by adjusting the size and number of hidden layers in the BiGRU structure and prevent the model from overfitting by changing the dropout ratio and tracking the validation loss of the network while training.The LightGBM and CNN-BiGRU variable weight combination modelThe workflow of our tide level prediction model is shown in Fig. 9. It mainly includes data preprocessing; training, optimization and prediction of the base models; construction of a variable weight combination prediction model; and evaluation and analysis of the combination model’s performance.

    (1)

    Data preprocessing: The quality of the data directly determines the upper limit of the prediction and generalization ability of a certain machine learning model. Standard, clean and continuous data are conducive to model training. The data used in this study are from the Irish National Tide Gauge Network, and all of them are subject to quality control. We filled in a small number of missing values and normalized the data to speed up the model training.

    (2)

    Construction and optimization of base models: We divide the dataset into a training set, a validation set and a test set according to the proportion of 7:1:2 and train the LightGBM model and CNN-BiGRU model with data on the training set. We optimize the parameters and monitor whether the model has been overfitted by tracking the validation loss of the network while training. Finally, we put the data into two base models for training and then obtain the prediction results of a single base model.

    (3)

    Construction of the variable weight combination model. Based on the prediction results of two single base models obtained in step (2), we calculate the weight of each base model according to the principle of the improved variable weight combination method and then obtain the prediction results of the variable weight combination model.

    (4)

    Model evaluation and analysis: According to the indexes of the model evaluation, the variable weight combination model is compared with other basic models to analyze its prediction performance after being improved.

    Figure 9Prediction flow of the LightGBM-CNN-BiGRU variable weight combination model.Full size image More

  • in

    Sulfoquinovose is a widespread organosulfur substrate for Roseobacter clade bacteria in the ocean

    Snow AJD, Burchill L, Sharma M, Davies GJ, Williams SJ. Sulfoglycolysis: Catabolic pathways for metabolism of sulfoquinovose. Chem Soc Rev. 2021;50:13628–45.Article 
    CAS 

    Google Scholar 
    Van Mooy BAS, Rocap G, Fredricks HF, Evans CT, Devol AH. Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. Proc Natl Acad Sci USA 2006;103:8607–12.Article 

    Google Scholar 
    Wu J, Sunda W, Boyle EA, Karl DM. Phosphate depletion in the western North Atlantic. Ocean Sci 2000;289:759–62.CAS 

    Google Scholar 
    Goddard-Borger ED, Williams SJ. Sulfoquinovose in the biosphere: occurrence, metabolism and functions. Biochem J. 2017;474:827–49.Article 
    CAS 

    Google Scholar 
    Harwood JL, Nicholls RG. The plant sulpholipid- a major component of the sulphur cycle. Biochem Soc Trans. 1979;7:440–7.Article 
    CAS 

    Google Scholar 
    Moran MA, Durham BP. Sulfur metabolites in the pelagic ocean. Nat Rev Microbiol. 2019;17:665–78.Article 
    CAS 

    Google Scholar 
    Tang K. Chemical diversity and biochemical transformation of biogenic organic sulfur in the ocean. Front Mar Sci. 2020;7:68.Article 

    Google Scholar 
    Denger K, Weiss M, Felux AK, Schneider A, Mayer C, Spiteller D, et al. Sulphoglycolysis in Escherichia coli K-12 closes a gap in the biogeochemical sulphur cycle. Nature 2014;507:114–7.Article 
    CAS 

    Google Scholar 
    Hanson BT, Kits KD, Loffler J, Burrichter AG, Fiedler A, Denger K, et al. Sulfoquinovose is a select nutrient of prominent bacteria and a source of hydrogen sulfide in the human gut. ISME J. 2021;15:2779–91.Article 
    CAS 

    Google Scholar 
    Strickland TC, Fitzgerald JW. Mineralization of sulfur in sulfoquinovose by forest soils. Soil Biol Biochem. 1983;15:347–9.Article 
    CAS 

    Google Scholar 
    Felux AK, Spiteller D, Klebensberger J, Schleheck D. Entner-Doudoroff pathway for sulfoquinovose degradation in Pseudomonas putida SQ1. Proc Natl Acad Sci USA 2015;112:E4298–E305.Article 
    CAS 

    Google Scholar 
    Frommeyer B, Fiedler AW, Oehler SR, Hanson BT, Loy A, Franchini P, et al. Environmental and intestinal phylum Firmicutes bacteria metabolize the plant sugar sulfoquinovose via a 6-deoxy-6-sulfofructose transaldolase pathway. Iscience. 2020;23:101510.Article 
    CAS 

    Google Scholar 
    Roy AB, Hewlins MJE, Ellis AJ, Harwood JL, White GF. Glycolytic breakdown of sulfoquinovose in bacteria: A missing link in the sulfur cycle. Appl Environ Microbiol. 2003;69:6434–41.Article 
    CAS 

    Google Scholar 
    Liu J, Wei Y, Ma K, An J, Liu X, Liu Y, et al. Mechanistically diverse pathways for sulfoquinovose degradation in bacteria. ACS Catal. 2021;11:14740–50.Article 
    CAS 

    Google Scholar 
    Zhang S, Li Z, Yan Y, Zhang C, Li J, Zhao B. Bacillus urumqiensis sp. nov., a moderately haloalkaliphilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol. 2016;66:2305–12.Article 
    CAS 

    Google Scholar 
    Durham BP, Sharma S, Luo H, Smith CB, Amin SA, Bender SJ, et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Natl Acad Sci USA 2015;112:453–7.Article 
    CAS 

    Google Scholar 
    Chen X, Liu L, Gao X, Dai X, Han Y, Chen Q, et al. Metabolism of chiral sulfonate compound 2,3-dihydroxypropane-1-sulfo-nate (DHPS) by Roseobacter bacteria in marine environment. Environ Int. 2021;157:106829.Article 
    CAS 

    Google Scholar 
    Liu J, Wei Y, Lin L, Teng L, Yin J, Lu Q, et al. Two Radical-dependent mechanisms for anaerobic degradation of the globally abundant Organosulfur Compound Dihydroxypropanesulfonate. Proc Natl Acad Sci USA 2020;117:15599.Article 
    CAS 

    Google Scholar 
    Xing M, Wei Y, Zhou Y, Zhang J, Lin L, Hu Y, et al. Radical-mediated C-S bond cleavage in C2 sulfonate degradation by anaerobic bacteria. Nat Commun. 2019;10:1609.Article 

    Google Scholar 
    Sharma M, Lingford JP, Petricevic M, Snow AJD, Zhang Y, Jarva MA, et al. Oxidative desulfurization pathway for complete catabolism of sulfoquinovose by bacteria. Proc Natl Acad Sci USA 2022;119:e2116022119.Article 
    CAS 

    Google Scholar 
    Scholz SS, Serif M, Schleheck D, Sayer MDJ, Cook AM, Kupper FC. Sulfoquinovose metabolism in marine algae. Bot Mar. 2021;64:301–12.Article 
    CAS 

    Google Scholar 
    Abayakoon P, Epa R, Petricevic M, Bengt C, Mui JWY, van der Peet PL, et al. Comprehensive synthesis of substrates, intermediates, and products of the sulfoglycolytic Embden-Meyerhoff-Parnas pathway. J Org Chem. 2019;84:2901–10.Article 
    CAS 

    Google Scholar 
    Denger K, Smits THM, Cook AM. L-Cysteate sulpho-lyase, a widespread pyridoxal 5 ‘-phosphate-coupled desulphonative enzyme purified from Silicibacter pomeroyi DSS-3. Biochem J. 2006;394:657–64.Article 
    CAS 

    Google Scholar 
    Guillard RRL. Culture of Phytoplankton for Feeding Marine Invertebrates. Smith WL, Chanley MH, (eds): Springer US; 1975. Boston, MA. pp 29–60.Moore LR, Coe A, Zinser ER, Saito MA, Sullivan MB, Lindell D, et al. Culturing the marine cyanobacterium Prochlorococcus. Limnol Oceanogr Methods. 2007;5:353–62.Article 
    CAS 

    Google Scholar 
    Waterbury J, Watson S, Valois F, Franks D. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Platt T, Li WKW, (eds). Department of Fisheries and Oceans, Ottawa 1986. pp 71–120.Olenina I, Hajdu S, Edler L, Andersson A, Wasmund N, Busch S, et al. Biovolumes and size-classes of phytoplankton in the Baltic Sea. HELCOM Balt Sea Environ Proc. 2006;106:144.
    Google Scholar 
    Zheng Q, Wang Y, Lu J, Lin W, Chen F, Jiao N. Metagenomic and metaproteomic insights into photoautotrophic and heterotrophic interactions in a Synechococcus culture. mbio 2020;11:e03261–19.Article 
    CAS 

    Google Scholar 
    Partensky F, Hess WR, Vaulot D. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev. 1999;63:106–27.Article 
    CAS 

    Google Scholar 
    Han Y, Zhang M, Chen X, Zhai W, Tan E, Tang K. Transcriptomic evidences for microbial carbon and nitrogen cycles in the deoxygenated seawaters of Bohai Sea. Environ Int. 2022;158:106889.Article 
    CAS 

    Google Scholar 
    Li WKW. Primary production of prochlorophytes, cyanobacteria, and eukaryotic ultraphytoplankton – measurements from flow cytometric sorting. Limnol Oceanogr. 1994;39:169–75.Article 
    CAS 

    Google Scholar 
    Denger K, Ruff A, Rein U, Cook AM. Sulphoacetaldehyde sulpho-lyase (EC 4.4.1.12) from Desulfonispora thiosulfatigenes: purification, properties and primary sequence. Biochem J. 2001;357:581–6.Article 
    CAS 

    Google Scholar 
    Ismail R, Lee HY, Mahyudin NA, Abu, Bakar F. Linearity study on detection and quantification limits for the determination of avermectins using linear regression. J Food Drug Anal. 2014;22:407–12.Article 
    CAS 

    Google Scholar 
    Klemetsen T, Raknes IA, Fu J, Agafonov A, Balasundaram SV, Tartari G, et al. The MAR databases: development and implementation of databases specific for marine metagenomics. Nucleic Acids Res. 2018;46:D692–D9.Article 
    CAS 

    Google Scholar 
    Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 2007;23:1282–8.Article 
    CAS 

    Google Scholar 
    Rozewicki J, Li S, Amada KM, Standley DM, Katoh K. MAFFT-DASH: Integrated protein sequence and structural alignment. Nucleic Acids Res. 2019;47:W5–W10.CAS 

    Google Scholar 
    Schuller DJ, Reisch CR, Moran MA, Whitman WB, Lanzilotta WN. Structures of dimethylsulfoniopropionate-dependent demethylase from the marine organism Pelagabacter ubique. Protein Sci. 2012;21:289–98.Article 
    CAS 

    Google Scholar 
    Bharath SR, Bisht S, Harijan RK, Savithri HS, Murthy MR. Structural and mutational studies on substrate specificity and catalysis of Salmonella typhimurium D-cysteine desulfhydrase. PLoS One. 2012;7:e36267.Article 
    CAS 

    Google Scholar 
    Chartron J, Carroll KS, Shiau C, Gao H, Leary JA, Bertozzi CR, et al. Substrate Recognition, Protein Dynamics, and Iron-Sulfur Cluster in Pseudomonas aeruginosa Adenosine 5′-Phosphosulfate Reductase. J Mol Biol. 2006;364:152–69.Article 
    CAS 

    Google Scholar 
    Davis KM, Altmyer M, Martinie RJ, Schaperdoth I, Krebs C, Bollinger JM Jr, et al. Structure of a Ferryl Mimic in the Archetypal Iron(II)- and 2-(Oxo)-glutarate-Dependent Dioxygenase, TauD. Biochemistry 2019;58:4218–23.Article 
    CAS 

    Google Scholar 
    Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: Making protein folding accessible to all. Nat Methods. 2022;19:679–82.Article 
    CAS 

    Google Scholar 
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596:583–9.Article 
    CAS 

    Google Scholar 
    Zhang C, Shine M, Pyle AM, Zhang Y. US-align: universal structure alignments of proteins, nucleic acids, and macromolecular complexes. Nat Methods. 2022;19:1109–15.Article 
    CAS 

    Google Scholar 
    Xu J, Zhang Y. How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics 2010;26:889–95.Article 
    CAS 

    Google Scholar 
    Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2014;32:268–74.Article 

    Google Scholar 
    Villar E, Vannier T, Vernette C, Lescot M, Cuenca M, Alexandre A, et al. The Ocean Gene Atlas: exploring the biogeography of plankton genes online. Nucleic Acids Res. 2018;46:W289–W95.Article 
    CAS 

    Google Scholar 
    Vernette C, Henry N, Lecubin J, de Vargas C, Hingamp P, Lescot M. The Ocean barcode atlas: A web service to explore the biodiversity and biogeography of marine organisms. Mol Ecol Resour. 2021;21:1347–58.Article 
    CAS 

    Google Scholar 
    Paoli L, Ruscheweyh H-J, Forneris CC, Hubrich F, Kautsar S, Bhushan A, et al. Biosynthetic potential of the global ocean microbiome. Nature 2022;607:111–8.Article 
    CAS 

    Google Scholar 
    Sunagawa S, Acinas SG, Bork P, Bowler C, Acinas SG, Babin M, et al. Tara Oceans: towards global ocean ecosystems biology. Nat Rev Microbiol. 2020;18:428–45.Article 
    CAS 

    Google Scholar 
    Acinas SG, Sánchez P, Salazar G, Cornejo-Castillo FM, Sebastián M, Logares R, et al. Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Commun Biol. 2021;4:604.Article 
    CAS 

    Google Scholar 
    Biller SJ, Berube PM, Dooley K, Williams M, Satinsky BM, Hackl T, et al. Marine microbial metagenomes sampled across space and time. Sci Data. 2018;5:180176.Article 
    CAS 

    Google Scholar 
    Pachiadaki MG, Brown JM, Brown J, Bezuidt O, Berube PM, Biller SJ, et al. Charting the Complexity of the Marine Microbiome through Single-Cell Genomics. Cell 2019;179:1623–35.Article 
    CAS 

    Google Scholar 
    Delmont TO, Quince C, Shaiber A, Esen ÖC, Lee STM, Rappé MS, et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat Microbiol. 2018;3:804–13.Article 
    CAS 

    Google Scholar 
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.Article 
    CAS 

    Google Scholar 
    Subramanian B, Gao S, Lercher MJ, Hu S, Chen W-H. Evolview v3: A webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res. 2019;47:W270–W5.Article 
    CAS 

    Google Scholar 
    Xing M, Wei Y, Zhou Y, Zhang J, Lin L, Hu Y, et al. Radical-mediated C-S bond cleavage in C2 sulfonate degradation by anaerobic bacteria. Nat Commun. 2019;10:1609.Article 

    Google Scholar 
    Biebl H, Allgaier M, Tindall BJ, Koblizek M, Lunsdorf H, Pukall R, et al. Dinoroseobacter shibae gen. nov., sp nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol. 2005;55:1089–96.Article 
    CAS 

    Google Scholar 
    Fu H, Uchimiya M, Gore J, Moran MA. Ecological drivers of bacterial community assembly in synthetic phycospheres. Proc Natl Acad Sci USA 2020;117:3656–62.Article 
    CAS 

    Google Scholar 
    Chen I-MA, Chu K, Palaniappan K, Ratner A, Huang J, Huntemann M, et al. The IMG/M data management and analysis system v.7: content updates and new features. Nucleic Acids Res. 2022. https://doi.org/10.1093/nar/gkac976.Shiba T. Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. Syst Appl Microbiol. 1991;14:140–5.Article 

    Google Scholar 
    Kopriva S, Calderwood A, Weckopp SC, Koprivova A. Plant sulfur and big data. Plant Sci. 2015;241:1–10.Article 
    CAS 

    Google Scholar 
    Simon J, Kroneck PMH. Microbial sulfite respiration. Adv Micro Physiol. 2013;62:45–117.Article 
    CAS 

    Google Scholar 
    Gonzalez JM, Covert JS, Whitman WB, Henriksen JR, Mayer F, Scharf B, et al. Silicibacter pomeroyi sp nov and Roseovarius nubinhibens sp nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol. 2003;53:1261–9.Article 
    CAS 

    Google Scholar 
    Liang KYH, Orata FD, Boucher YF, Case RJ. Roseobacters in a sea of poly- and paraphyly: whole genome-based taxonomy of the family Rhodobacteraceae and the proposal for the split of the “Roseobacter clade” into a novel family, Roseobacteraceae fam. nov. Front Microbiol. 2021;12:683109.Article 

    Google Scholar 
    Howard EC, Sun S, Biers EJ, Moran MA. Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. Environ Microbiol. 2008;10:2397–410.Article 
    CAS 

    Google Scholar 
    Howard EC, Henriksen JR, Buchan A, Reisch CR, Buergmann H, Welsh R, et al. Bacterial taxa that limit sulfur flux from the ocean. Science. 2006;314:649–52.Article 
    CAS 

    Google Scholar 
    Durham BP, Boysen AK, Carlson LT, Groussman RD, Heal KR, Cain KR, et al. Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean. Nat Microbiol. 2019;4:1706–15.Article 
    CAS 

    Google Scholar 
    Smetacek V. Diatoms and the ocean carbon cycle. Protist 1999;150:25–32.Article 
    CAS 

    Google Scholar 
    Stoecker DK, Lavrentyev PJ. Mixotrophic plankton in the polar seas: A pan-Arctic review. Front Mar Sci. 2018;5:292.Article 

    Google Scholar 
    Turner SM, Malin G, Liss PS, Harbour DS, Holligan PM. The seasonal-variation of dimethyl sulfide and dimethylsulfoniopropionate concentrations in nearshore waters. Limnol Oceanogr. 1988;33:364–75.Article 
    CAS 

    Google Scholar 
    Belviso S, Kim S-K, Rassoulzadegan F, Krajka B, Nguyen BC, Mihalopoulos N, et al. Production of dimethylsulfonium propionate (DMSP) and dimethylsulfide (DMS) by a microbial food web. Limnol Oceanogr. 1990;35:1810–21.Article 
    CAS 

    Google Scholar 
    Simo R, Pedros-Alio C, Malin G, Grimalt JO. Biological turnover of DMS, DMSP and DMSO in contrasting open-sea waters. Mar Ecol Prog Ser. 2000;203:1–11.Article 
    CAS 

    Google Scholar 
    Flombaum P, Gallegos JL, Gordillo RA, Rincon J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA 2013;110:9824–9.Article 
    CAS 

    Google Scholar 
    Gasparovic B, Penezic A, Frka S, Kazazic S, Lampitt RS, Holguin FO, et al. Particulate sulfur-containing lipids: Production and cycling from the epipelagic to the abyssopelagic zone. Deep Sea Res Part I Oceanogr Res Pap. 2018;134:12–22.Article 
    CAS 

    Google Scholar 
    Zhan P, Tang K, Chen X, Yu L. Complete genome sequence of Maribacter sp T28, a polysaccharide-degrading marine flavobacteria. J Biotechnol. 2017;259:1–5.Article 
    CAS 

    Google Scholar 
    Van Mooy BAS, Fredricks HF. Bacterial and eukaryotic intact polar lipids in the eastern subtropical South Pacific: Water-column distribution, planktonic sources, and fatty acid composition. Geochim Cosmochim Acta. 2010;74:6499–516.Article 

    Google Scholar 
    Popendorf KJ, Tanaka T, Pujo-Pay M, Lagaria A, Courties C, Conan P, et al. Gradients in intact polar diacylglycerolipids across the Mediterranean Sea are related to phosphate availability. Biogeosciences 2011;8:3733–45.Article 
    CAS 

    Google Scholar  More

  • in

    Protistan epibionts affect prey selectivity patterns and vulnerability to predation in a cyclopoid copepod

    Wahl, M., Hay, M. E. & Enderlein, P. Effects of epibiosis on consumer–prey interactions. Hydrobiologia 355, 49–59 (1997).Article 

    Google Scholar 
    Fernandez-Leborans, G., Zitzler, K. & Gabilondo, R. Protozoan ciliate epibionts on the freshwater shrimp Caridina (Crustacea, Decapoda, Atyidae) from the Malili lake system on Sulawesi (Indonesia). J. Nat. Hist. 40, 1983–2000 (2006).Article 

    Google Scholar 
    Puckett, G. L. & Carman, K. R. Ciliate epibiont effects on feeding, energy reserves, and sensitivity to hydrocarbon contaminants in an estuarine harpactacoid copepod. Estuaries 25, 372–381 (2002).Article 

    Google Scholar 
    Fernandez-Leborans, G. Epibiosis in Crustacea: an overview. Crustaceana 83, 549–640 (2010).Article 

    Google Scholar 
    Regali-Seleghim, M. H. & Godinho, M. J. Peritrich epibiont protozoans in the zooplankton of a subtropical shallow aquatic ecosystem (Monjolinho Reservoir, São Carlos, Brazil). J Plankton Res. 26, 501–508 (2004).Article 

    Google Scholar 
    Bickel, S. L., Tang, K. W. & Grossart, H. P. Ciliate epibionts associated with crustacean zooplankton in German lakes: distribution, motility, and bacterivory. Front. Microbiol. 3, 1–11 (2012).Article 

    Google Scholar 
    Souissi, A., Souissi, S. & Hwang, J. S. The effect of epibiont ciliates on the behavior and mating success of the copepod Eurytemora affinis. J. Exp. Mar. Biol. Ecol. 445, 38–43. https://doi.org/10.1016/j.jembe.2013.04.002 (2013).Article 

    Google Scholar 
    Willey, R. L., Cantrell, P. A. & Threlkeld, S. T. Epibiotic euglenoid flagellates increase the susceptibility of some zooplankton to fish predation. Limnol. Oceanogr. 35, 952–959 (1990).Article 
    ADS 

    Google Scholar 
    Ólafsdóttir, S. H. & Svavarsson, J. Ciliate (Protozoa) epibionts of deep-water asellote isopods (Crustacea): pattern and diversity. J. Crust. Biol. 22, 607–618 (2002).Article 

    Google Scholar 
    Kumari, S., Kumar, R., Sarkar, U. K. & Das, B. S. Record of epibiont ciliates (Ciliophora: Peritrichia) living on freshwater invertebrates in a floodplain wetland. J. Inland Fish. Soc. India. 53, 210–214. https://doi.org/10.47780/jifsi.52.3.2021 (2021).Article 

    Google Scholar 
    Utz, L. R. P. & Coats, D. W. Spatial and temporal patterns in the occurrence of peritrich ciliates as epibionts on calanoid copepods in the Chesapeake Bay, USA. J. Eukaryot. Microbiol. 52, 236–244 (2005).Article 

    Google Scholar 
    Utz, L. R. P. & Coats, D. W. Telotroch formation, survival and attachment in the epibiotic peritrich Zoothamnium intermedium (Ciliophora, Oligohymenophorea). Invert. Biol. 127, 237–248 (2008).Article 

    Google Scholar 
    Ohtsuka, S., et al. Symbiosis of planktonic copepods and mysids with epibionts and parasites in the Northpacific: diversity and interactions. In New Frontiers in Crustacean Biology, 1–14, Brill (2011).Sługocki, Ł et al. Passenger for millenniums: association between stenothermic microcrustacean and suctorian epibiont – the case of Eurytemora lacustris and Tokophyra sp. Sci. Rep. 10, 1–10. https://doi.org/10.1038/s41598-020-66730-2 (2020).Article 

    Google Scholar 
    Fernandez-Leborans, G. A review of the species of protozoan epibionts on crustaceans. III. Chonotrich ciliates. Crustaceana 74, 581–607. https://doi.org/10.1163/156854001300228852 (2001).Article 

    Google Scholar 
    Fernandez-Leborans, G. & Tato- Porto, M. L. A review of the species of the protozoan epibionts on crustaceans. I. Peritrich ciliates. Crustaceana 73, 643–683. https://doi.org/10.1163/156854000504705 (2000).Article 

    Google Scholar 
    Utz, L. R. P. & Coats, D. W. The role of motion in the formation of free living stages and attachment of the peritrich epibiont Zoothamnium intermedium (Ciliophora, Peritrichia). Biosciências 13, 69–74 (2005).
    Google Scholar 
    Pan, Y. et al. Effects of epibiotic diatoms on the productivity of the Calanoid Copepod Acartia tonsa (Dana) in intensive aquaculture systems. Front. Mar. Sci. 8, 2296–7745. https://doi.org/10.3389/fmars.2021.728779 (2021).Article 

    Google Scholar 
    Bickel, S. L., Tang, K. W. & Grossart, H. P. Ciliate epibionts associated with crustacean zooplankton in German lakes: distribution, motility, and bacterivory. Front. Microbiol. 3, 243. https://doi.org/10.3389/fmicb.2012.00243 (2012).Article 

    Google Scholar 
    De Domitrovic, Y. Z. et al. Epibiont algae on planktic micro-crustaceans from a subtropical shallow lake (Argentina). Algol. Stud. 127, 29–38 (2008).Article 

    Google Scholar 
    Ohman, M. D. Behavioral responses of zooplankton to predation. Bull. Mar. Sci. 43(3), 530–550 (1988).
    Google Scholar 
    Acevedo-Trejos, E., Marañón, E. & Merico, A. Phytoplankton size diversity and ecosystem function relationships across oceanic regions. Proc. Roy. Soc. B Biol. Sci. 285, 2180621. https://doi.org/10.1098/rspb.2018.0621 (2018).Article 

    Google Scholar 
    Francesco, P. et al. Interacting temperature, nutrients and Zooplankton Grazing Control Phytoplankton size-abundance relationships in eight Swiss Lakes. Front. Microbiol. 10, 1664–2302. https://doi.org/10.3389/fmicb.2019.03155 (2020).Article 

    Google Scholar 
    Carman, K. & Dobbs, F. C. Epibiotic microorganisms on copepods and other marine crustaceans. Microsci. Res. Tech. 37, 116–135 (1997).Article 

    Google Scholar 
    Cabral, A. F. et al. Spatial and temporal occurrence of Rhabdostyla cf. chronomi Kahl, 1933 (Ciliophora, Peritrichia) as an epibiont on chironomid larvae in a lotic system in the neotropics. Hydrobiologia 644, 351–359 (2010).Article 

    Google Scholar 
    Burris, Z. & Dam, H. G. Deleterious effects of the ciliate epibiont Zoothamnium sp. On fitness of the copepod Acartia tonsa. J. Plankton Res. 36, 788–799. https://doi.org/10.1093/plankt/fbt137 (2014).Article 

    Google Scholar 
    Yin, Y. et al. Hidden defensive morphology in rotifers: benefits, costs, and fitness consequences. Sci. Rep. 7, 4488. https://doi.org/10.1038/s41598-017-04809-z (2017).Article 
    ADS 

    Google Scholar 
    Gilbert, J. J. & Shröder, T. The ciliate epibiont Epistylis Pygmaeum: selection for zooplankton hosts, reproduction and effect on two rotifers. Freshw. Biol. 48, 878–893 (2003).Article 

    Google Scholar 
    Gilbert, J. J. Morphological and behavioural responses of a rotifer to the predator Asplanchna. J. Plankton Res. 36, 1576–1584. https://doi.org/10.1093/plankt/fbu075 (2014).Article 

    Google Scholar 
    Fernandez-Leborans, G. Epibiosis in crustacea: an overview. Crustaceana 83(5), 549–640. https://doi.org/10.1163/001121610X491059 (2010).Article 

    Google Scholar 
    Iyer, N. & Rao, T. R. Epizoic mode of life in Brachionus rubens Ehrenberg as a deterrent against predation by Asplanchna intermedia Hudson. Hydrobiologia 313, 377–380 (1995).Article 

    Google Scholar 
    Boyan, B. D., Lotz, E. M. & Schwartz, Z. Roughness and hydrophilicity as osteogenic biomimetic surface properties. Tissue Eng. 23, 1479–1489. https://doi.org/10.1089/ten.TEA.2017.0048 (2017).Article 

    Google Scholar 
    Ubuo, E. E. et al. the direct cause of amplified wettability: roughness or surface chemistry?. J. Compos. Sci. 5, 213. https://doi.org/10.3390/jcs5080213 (2021).Article 

    Google Scholar 
    Gilbert, J. J. Attachment behavior in the rotifer Brachionus rubens: induction by Asplanchna and effect on sexual reproduction. Hydrobiologia 844, 9–20. https://doi.org/10.1007/s10750-018-3805-7 (2019).Article 

    Google Scholar 
    Kumar, R. Effect of Mesocyclops thermocyclopoides (Copepoda, Cyclopoida) predation on population dynamics of different prey: a laboratory study. J. Freshwater Ecol. 18, 383–393. https://doi.org/10.1080/02705060.2003.966397 (2003).Article 

    Google Scholar 
    Bulut, H. & Saler, S. Presence of an epibiont Epistylis sp. (Protozoa, Ciliophora) on some zooplankton. Fresenius Environ. Bull. 26(11), 6334–6339 (2017).
    Google Scholar 
    Threlkeld, S. T., Chiavelli, D. A. & Willey, R. L. The organization of zooplankton epibiont communities. Trends Ecol Evol. 8, 317–321 (1993).Article 

    Google Scholar 
    Iyer, N. & Rao, T. R. Effect of epizoic rotifer Brachionus rubens on the population growth of three cladoceran species. Hydrobiologia 255(256), 325–332 (1993).Article 

    Google Scholar 
    Ramírez-Ballesteros, M., Fernandez-Leborans, G., Mayén-Estrada, R. New record of Epistylis hentscheli (Ciliophora, Peritrichia) as an epibiont of Procambarus (Austrocambarus) sp. (Crustacea, Decapoda) in Chiapas, Mexico. ZooKeys. 782, 1–9. https://doi.org/10.3897/zookeys.782.26417 (2018).Wu, H.X., Feng, M.G. Mass mortality of larval Eriocheir sinensis (Decapoda: Grapsidae) population bred under facility conditions: possible role of Zoothamnium sp. (Peritrichida: Vorticellidae) epiphyte. J. Invertebr. Pathol. 86, 59–60 (2004).Kumar, R. et al. Potential of three aquatic predators to control mosquitoes in the presence of alternative prey: a comparative experimental assessment. Mar. Freshw. Res. 59, 817–835 (2008).Article 

    Google Scholar 
    Kumar, R., Sami Souissi, S. & Hwang, J. S. Vulnerability of carp larvae to copepod predation as a function of larval age and body length. Aquaculture. 338, 274–283 (2012).Rao, T. R. & Kumar, R. Patterns of prey selectivity in the cyclopoid copepod Mesocyclops thermocyclopoides. Aquat. Ecol. 36, 411–424 (2002).Article 

    Google Scholar 
    Kumar, R. & Rao, T. R. Predation on Mosquito Larvae by Mesocyclops thermocyclopoides (Copepoda: Cyclopoida) in the Presence of Alternate Prey. Int Rev Hydrobiol. 88, 570–581 (2003).Article 

    Google Scholar 
    Baldrighi, E. et al. The cost for biodiversity: records of ciliate-nematode epibiosis with the description of three new Suctorian species. Diversity 12, 224. https://doi.org/10.3390/d12060224 (2020).Article 

    Google Scholar 
    Morado, J. F. & Small, E. B. Ciliate parasites and related diseases of Crustacea: a review. Rev. Fish. Sci. 3, 275–354 (1995).Article 

    Google Scholar 
    Lúcia, S. L., Safi Kam, W., Tang, Ryan, B. Carnegie. Investigating the epibiotic peritrich Zoothamnium intermedium Precht, 1935: Seasonality and distribution of its relationships with copepods in Chesapeake Bay (USA), Eur. J. Protistol. 84, 125880, https://doi.org/10.1016/j.ejop.2022.125880 (2022).Coats, D. W. & Heinbokel, J. F. A study of reproduction and other life cycle phenomena in planktonic protists using an acridine orange fluorescence technique. Mar. Biol. 67, 71–79. https://doi.org/10.1007/BF00397096 (1982).Article 

    Google Scholar 
    Montagnes, D. J. S. A Quantitative Protargol Stain (QPS) for Ciliates: method description and test of its quantitative nature. Mar. Microb. Food Webs. 2, 83–93 (1987).
    Google Scholar 
    Montagnes, D. J. S. & Lynn, D. H. A Quantitative Protargol stain (QPS) for ciliates and other protists. In Handbook of methods in aquatic microbial ecology (eds Kemp, P. et al.) 229–240 (Lewis Publishers, 1993).
    Google Scholar 
    Warren, A. Revision of the genus Vorticella (Ciliophora: Peritrichida). Bull. Br. Museum Nat. History 50, 48–52 (1986).
    Google Scholar 
    Foissner, W. et al. Intraclass evolution and classification of the Colpodea (Ciliophora). J. Eukaryot. Microbiol. 58, 397–415 (2011).Article 

    Google Scholar 
    Foissner, W., Berger, H. & Kohmann, F. Taxonomische und oekologische Revision der Ciliaten des Saprobiensystems—Band II: Peritrichia, Heterotrichida, Odontostomatida – Informationsberichte des Bayr. Landesamtes fuer Wasserwirtschaft. Heft 5(92), 1–502 (1992).
    Google Scholar 
    Santoferrara, L. F., Alder, V. V. & McManus, G. B. Phylogeny, classification and diversity of Choreotrichia and Oligotrichia (Ciliophora, Spirotrichea). Mol. Phylogenet. Evol. 112, 12–22 (2017).Article 

    Google Scholar 
    Hudson, P. L. et al. Cyclopoid and Harpacticoid Copepods of the Laurentian Great Lakes. Ohio Biol. Survey Bull. New Series. 12, 50 (1998).
    Google Scholar 
    Hudson, P. L et al. Cyclopoid copepods of the Laurentian Great Lakes US Geological Survey, Great Lakes Science Center, Ann Arbor, Michigan. Available: www.glsc.usgs.gov/greatlakescopepods/Key.asp (2003).Kumar, R., Muhid, P., Dahms, H. U., Sharma, J. & Hwang, J.-S. Biological mosquito control is affected by alternative prey. Zool. Stud. 54, 55. https://doi.org/10.1186/s40555-015-0132-9 (2015).Article 

    Google Scholar 
    Chesson, J. The estimation and analysis of preference and its relationship to foraging models. Ecology 64, 1297–1304 (1983).Article 

    Google Scholar  More

  • in

    On the role of tail in stability and energetic cost of bird flapping flight

    In this section, we introduce flapping flight dynamics and describe the bird model used in our computational framework. Furthermore, we describe how such a dynamical model is used in order to identify steady and level flapping flight regimes, study their stability, and assess their energetic performance.Equations of motion modelling flapping flightFlight dynamics is restricted to the longitudinal plane and thus the bird main body is captured as a rigid-body with three degrees of freedom, i.e. two in translation and one in rotation. This model preserves symmetry with respect to this plane, without any lateral force and moment. The aerodynamic model of the wing relies on the theory of quasi-steady lifting line23. Additionally, the present work does not account for the inertial forces due to the acceleration of the wing, and thus also neglecting the so-called inertial power. This inertial power was shown to be negligible in fast forward flight conditions, in comparison to the other contributions to actuation power24, and is thus systematically neglected in similar work10,11,25 since wing inertia is neglected.The body is thus modelled with a mass (m_b) and a rotational inertia (I_{yy}) about its center of mass. The equations of motion are expressed in the body frame (G(x’, y’, z’)) with unit vectors ((hat{textbf{e}}_{x’}, hat{textbf{e}}_{y’}, hat{textbf{e}}_{z’})), and an origin located at the center of mass, as pictured in Fig. 1a. The state space vector is thus$$begin{aligned} textbf{x} = {u, w, q, theta } end{aligned}$$where u and w are the body velocities along the (x’-) and (z’-)axis and (theta) and q are the pitch angle and its time derivative about the (y’-)axis, respectively. Consequently, the equations of motion read11,13,26$$begin{aligned} begin{aligned} dot{u}&= -qw – gsin theta + frac{1}{m_b}big ( {F_{x’}(textbf{x}(t), t)} \&quad + {F_{x’, t}(textbf{x}(t), t)} + D (textbf{x}(t), t) big )\ dot{w}&= qu + gcos theta +frac{1}{m_b} big ( F_{z’}(textbf{x}(t), t) + F_{z’, t}(textbf{x}(t), t) big ) \ dot{q}&=frac{1}{I_{yy}} big ( M_{y’}(textbf{x}(t), t) + M_{y’, t}(textbf{x}(t), t) big )\ dot{theta }&= q end{aligned} end{aligned}$$
    (1)
    Figure 1(a) Bird model for describing the flight dynamics in the longitudinal plane. The state variables are expressed with respect to the moving body-frame located at the flier’s center of mass (G(x’,z’)). These state variables are the component of forward flight velocity, u, the velocity component of local vertical velocity, w, the orientation of this body-centered moving frame with respect to the fixed frame, (theta) and its angular velocity, q. A second frame (O(x’_{w}, z’_{w})) is used to compute the position of the wing, relative to the body. The wings (dark gray) and the tail (red) are the surfaces of application of aerodynamic forces. (b) Top view of the bird model. The left wing emphasizes a cartoon model of the skeleton. The shoulder joint s connects the wing to the body via three rotational degrees of freedom (RDoF), the elbow joint e connects the arm with the forearm via one RDoF and the wrist joint w connects the forearm to the hand via two RDoF. Each feather is attached to a bone via two additional RDoF, except the most distal one ”1” which is rigidly aligned with the hand. The right wing further emphasizes the lifting line (red) which is computed as a function of the wing morphing. The aerodynamic forces generated on the wing are computed on the discretized elements (P_{i}). The tail is modelled as a triangular shape with fixed chord (c_{t}) and maximum width (b_{t}) that can be morphed as a function of its opening angle (beta). (c) Wing element i between two wing profiles, identifying a plane (Sigma) containing the lifting line (red). (d) Cross section of the wing element, containing the chord point (mathbf {P_i}) where the velocities are computed (Color figure online).Full size imageThe forcing terms in Eq. (1) are the aerodynamic forces and moments applied to the wing (namely (F_{x’}), (F_{z’}), and (M_{y’}) ) and to the tail ((F_{x’, t}), (F_{z’, t}), and (M_{y’, t})). The whole drag is captured by an extra force D that sums contributions due to the body (D_{b}), the skin friction of the wing (wing profile) (D_{p,w}), and the skin friction of the tail (tail profile) (D_{p,t}). These terms are described in detail in the next sections. Importantly, we accounted for the drag acting purely along (x’) direction, after proving that the projection of the drag forces along (z’)-axis is between two and three orders of magnitude smaller with respect to the aerodynamic forces produced by two other main lifting surfaces. This assumptions holds for the fast forward flight regime that are subject of our study, but such components of drag along (z’) axis should be accounted for other flight situations.Wing modelThe bird has two wings. Each wing is a rigid poly-articulated body, comprising the bird arm, forearm and hand, as pictured in Fig. 1b. Each segment is actuated by a joint to induce wing morphing. We refer to13,15 for a complete description of this wing kinematic model.Each joint is kinematically driven to follow a sinusoidal trajectory specified as:$$begin{aligned} q_{i}(t) = q_{0,i}(t) + A_{i} sin (omega t + phi _{0,i}) end{aligned}$$
    (2)
    with (omega = 2 pi f) and f being the flapping frequency which is identical for each joint, (q_{0,i}) being the mean angle over a period (or offset), (A_i) the amplitude, and (phi _{0,i}) the relative phase of joint i. A complete wingbeat cycle is therefore described through a set of 19 kinematic parameters, including the frequency f.We assume that the wing trajectory is rigidly constrained, and therefore we do not need to explicitly solve the wing dynamics. Under this assumption, the motion generation does not require the computation of joint torques. The model further embeds seven feathers of length (l_{ki}) in each wing. The feathers in the model have to be considered a representative sample of the real wing feathers. They thus have a limited biological relevance; their number is chosen so as to interpolate the planform satisfactorily and to smoothly capture the morphing generated by the bone movements. These feathers are attached to their respective wing bones via two rotational degrees of freedom allowing them to pitch and spread in the spanwise direction. These two degrees of freedom are again kinematically driven by relationships that depend on the angle between the wing segments13. This makes the feathers spreading and folding smoothly through the wingbeat cycle. In sum, the kinematic model of the wing yields the position of its bones and feathers at every time step. This provides a certain wing morphing from which the wing envelope (leading edge and trailing edge) can be computed (see Fig. 1b). From the wing envelope, the aerodynamic chord and the lifting line are computed. The lifting line is the line passing through the quarter of chord, which is itself defined as the segment connecting the leading edge to the trailing edge and orthogonal to the lifting line (Fig. 1b). This extraction algorithm is explained in detail in15.In order to calculate the aerodynamic forces, the angle of attack of the wing profile has to be evaluated. Each wing element defines a plane containing the lifting line and the aerodynamic chord as pictured in Fig. 1c. The orientation of the plane is identified by the orthogonal unit vectors ((hat{textbf{e}}_n, hat{textbf{e}}_t, hat{textbf{e}}_b)), where (hat{textbf{e}}_n) is the vector perpendicular to the plane and (hat{textbf{e}}_t) is the tangent to the lifting line. To compute the effective angle of attack, the velocity perceived by the wing profile is computed as the sum of the velocities due to the body and wing motion, and the velocity induced by the wake. The first contribution, (textbf{U}), accounts for$$begin{aligned} textbf{U} = textbf{U}_{infty } – textbf{v}_{kin} – textbf{v}_{q}end{aligned}$$where (textbf{U}_{infty } = u hat{textbf{e}}_{x’} + w hat{textbf{e}}_{z’}) is the actual flight velocity, (textbf{v}_{kin}) is the relative velocity of the wing due to its motion, and (textbf{v}_{q}) is the component induced by the angular velocity of the body q and calculated as$$begin{aligned} textbf{v}_{q} = qhat{textbf{e}}_{y’} wedge (textbf{P}_{i} – textbf{G})end{aligned}$$This velocity vector (textbf{U}) defines the angle (alpha), as pictured in Fig. 1d.The second contribution is due to the induced velocity field by the wake, i.e. the downwash velocity (w_{d}), and acting along the normal unit vector (-w_{d}hat{textbf{e}}_n). The resulting effective angle of attack, (alpha _{r}), is thus$$begin{aligned} alpha _{r} = alpha – frac{w_{d}}{|textbf{U}|}end{aligned}$$The downwash velocity (w_d) is computed according to the Biot-Savart law23, assuming the wake being shed backwards in the form of straight and infinitely long vortex filaments at each time step of the simulation13,15. This quasi-steady approximation is justified a posteriori by ensuring that our reduced frequency, inversely proportional to the unknown airspeed, never exceeds the value of 0.2, below which the effects of time-dependent wake shapes on wing circulation are negligible (e.g. see discussion in27). Once the downwash is evaluated, it is possible to evaluate the circulation, and consequently the aerodynamic force and moment acting at the element (P_i), i.e. (F_{x’, i}(textbf{x}(t), t), F_{z’, i}(textbf{x}(t), t), M_{y’, i}(textbf{x}(t), t)), as explained in detail in13. We use the thin airfoil theory for the estimation of the lift coefficient, with a slope of (2pi) that saturates at an effective angle of attack (alpha _{r}) of (pm 15^{circ }).Drag production by body and wingThe main body and the wings induce drag that should be accounted for in a model aiming at characterizing energetic performance. Body-induced drag is named parasitic because the body itself does not contribute to lift generation, and only induces skin friction and pressure drag around its envelope28. The total body drag is$$begin{aligned} D_{b} = frac{1}{2}rho C_{d, b} S_{b}|textbf{U}_{infty }|^{2} end{aligned}$$
    (3)
    where (rho) is the air density. We implemented the model described by Maybury28 to compute the body drag coefficient (C_{d, b}). This depends on the morphology of the bird and the Reynolds number Re according to$$begin{aligned} C_{d,b} = 66.6m_{b}^{-0.511}FR_{t}^{0.9015}S_{b}^{1.063}Re^{-0.197} end{aligned}$$
    (4)
    with (S_{b}) and (FR_{t}) are respectively the frontal area of the body and the fitness ratio of the bird, and both of them can be estimated from other allometric formulas i.e.28,29.$$begin{aligned} S_{b}= & {} 0.00813m_{b}^{2/3} end{aligned}$$
    (5)
    $$begin{aligned} FR_{t}= & {} 6.0799m_{b}^{0.1523} end{aligned}$$
    (6)
    The Reynolds number (Re = rho |textbf{U}_{infty }| overline{c} / mu) is calculated with the reference length of the mean aerodynamic chord (overline{c}), with (mu) being the dynamic viscosity. This model is found to be suitable for Reynolds number in the range (10^{4}-10^{5})28. Another source of drag is the profile drag due to friction between the air and the feathers on the wings. It is the sum of the profile drag at each section along the wingspan, i.e.$$begin{aligned} D_{p,w} = frac{1}{2} rho C_{d, pro} sum _{i=1}^{n} c_{i}|textbf{U}_{r,i}|^{2} ds_{i} end{aligned}$$
    (7)
    with (c_{i}) the chord length, (ds_{i}) the length of the lifting line element along the wingspan, and (textbf{U}_{r,i}) the velocity at the wing section i accounting for the body velocity, the kinematics velocity of the wing and the downwash velocity (Fig. 1c,d). We used a value of profile drag of (C_{d, pro} = 0.02) and this is assumed to be constant over the wingspan and throughout the flapping cycle30. In reality, due to the wing motion, this value should be gait dependent. However, the aforementioned assumption has been largely used in previous works31,32.Tail modelSince the span of the tail is of the same magnitude as its aerodynamic chord, here the lifting line approach cannot be used23. Therefore, the tail is modelled according to the slender delta wing theory, as a triangular planform33. Its morphology is illustrated in Fig. 1b and characterized by the opening angle (beta) and the chord (c_t). This latter parameter is kept constant, thus the tail span is controlled via (beta) from the trigonometrical relationship$$begin{aligned} b_{t} = 2c_{t}tan frac{beta }{2}end{aligned}$$The main limitation of this framework is the low range of angles of attack ((alpha _{tail} More

  • in

    The ground beetle Pseudoophonus rufipes gut microbiome is influenced by the farm management system

    Engel, P. & Moran, N. A. Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut Microb. 4, 60–65. https://doi.org/10.4161/gmic.22517 (2013).Article 

    Google Scholar 
    Shi, W., Syrenne, R., Sun, J. & Yuan, J. S. Molecular approaches to study the insect gut symbiotic microbiota at the ‘omics’ age. Insect Sci. 17, 199–219. https://doi.org/10.1111/j.1744-7917.2010.01340.x (2010).Article 

    Google Scholar 
    Cini, A. et al. Gut microbial composition in different castes and developmental stages of the invasive hornet Vespa velutina nigrithorax. Sci. Total Environ. 745, 140873. https://doi.org/10.1016/j.scitotenv.2020.140873 (2020).Article 
    ADS 

    Google Scholar 
    Jones, J. C. et al. Gut microbiota composition is associated with environmental landscape in honey bees. Ecol. Evol. 8, 441–451. https://doi.org/10.1002/ece3.3597 (2018).Article 

    Google Scholar 
    Schmidt, K. & Engel, P. Mechanisms underlying gut microbiota–host interactions in insects. J. Exp. Biol 224(jeb207696), 2021. https://doi.org/10.1242/jeb.207696 (2021).Article 

    Google Scholar 
    Douglas, A. E. The microbial dimension in insect nutritional ecology. Funct. Ecol. 23, 38–47. https://doi.org/10.1371/journal.pone.0170332 (2009).Article 

    Google Scholar 
    Zheng, H., Steele, M. I., Leonard, S. P., Motta, E. V. & Moran, N. A. Honey bees as models for gut microbiota research. Lab. Anim. 47, 317–325. https://doi.org/10.1038/s41684-018-0173-x (2018).Article 

    Google Scholar 
    Engel, P., Martinson, V. G. & Moran, N. A. Functional diversity within the simple gut microbiota of the honey bee. PNAS 109, 11002–11007. https://doi.org/10.1073/pnas.1202970109 (2012).Article 
    ADS 

    Google Scholar 
    Alberoni, D., Baffoni, L., Braglia, C., Gaggìa, F. & Di Gioia, D. Honeybees exposure to natural feed additives: How is the gut microbiota affected?. Microorganisms 9, 1009. https://doi.org/10.3390/microorganisms9051009 (2021).Article 

    Google Scholar 
    Baffoni, L. et al. Honeybee exposure to veterinary drugs: How is the gut microbiota affected?. Microbiol. Spectr. 9, e00176-e221. https://doi.org/10.1128/Spectrum.00176-21 (2021).Article 

    Google Scholar 
    Ellegaard, K. M. & Engel, P. Genomic diversity landscape of the honey bee gut microbiota. Nat. Commun. 10, 1–13. https://doi.org/10.1038/s41467-019-08303-0 (2019).Article 

    Google Scholar 
    Raymann, K. & Moran, N. A. The role of the gut microbiome in health and disease of adult honey bee workers. Curr. Opin. Insect Sci. 26, 97–104. https://doi.org/10.1016/j.cois.2018.02.012 (2018).Article 

    Google Scholar 
    Kudo, R., Masuya, H., Endoh, R., Kikuchi, T. & Ikeda, H. Gut bacterial and fungal communities in ground-dwelling beetles are associated with host food habit and habitat. ISME 13, 676–685. https://doi.org/10.1038/s41396-018-0298-3 (2019).Article 

    Google Scholar 
    Lehman, R. M., Lundgren, J. G. & Petzke, L. M. Bacterial communities associated with the digestive tract of the predatory ground beetle, Poecilus chalcites, and their modification by laboratory rearing and antibiotic treatment. Microb. Ecol. 57, 349–358. https://doi.org/10.1007/s00248-008-9415-6 (2009).Article 

    Google Scholar 
    Pernice, M., Simpson, S. J. & Ponton, F. Towards an integrated understanding of gut microbiota using insects as model systems. J. Insect Physiol. 69, 12–18. https://doi.org/10.1016/j.jinsphys.2014.05.016 (2014).Article 

    Google Scholar 
    Schmid, R. B., Lehman, R. M., Brözel, V. S. & Lundgren, J. G. An indigenous gut bacterium, Enterococcus faecalis (Lactobacillales: Enterococcaceae), increases seed consumption by Harpalus pensylvanicus (Coleoptera: Carabidae). Fla. Entomol. 97, 575–584. https://doi.org/10.1653/024.097.0232 (2014).Article 

    Google Scholar 
    Syromyatnikov, M. Y., Isuwa, M. M., Savinkova, O. V., Derevshchikova, M. I. & Popov, V. N. The effect of pesticides on the microbiome of animals. Agriculture 10, 79. https://doi.org/10.3390/agriculture10030079 (2020).Article 

    Google Scholar 
    Kakumanu, M. L., Reeves, A. M., Anderson, T. D., Rodrigues, R. R. & Williams, M. A. Honey bee gut microbiome is altered by in-hive pesticide exposures. Front. Microbiol. 7, 1255. https://doi.org/10.1371/journal.pone.0061218 (2016).Article 

    Google Scholar 
    Motta, E. V., Raymann, K. & Moran, N. A. Glyphosate perturbs the gut microbiota of honey bees. PNAS 115, 10305–10310. https://doi.org/10.1073/pnas.1803880115 (2018).Article 
    ADS 

    Google Scholar 
    Alberoni, D., Favaro, R., Baffoni, L., Angeli, S. & Di Gioia, D. Neonicotinoids in the agroecosystem: In-field long-term assessment on honeybee colony strength and microbiome. Sci. Total Environ. 762, 144116. https://doi.org/10.1016/j.scitotenv.2020.144116 (2021).Article 
    ADS 

    Google Scholar 
    Giglio, A., Vommaro, M. L., Gionechetti, F. & Pallavicini, A. Gut microbial community response to herbicide exposure in a ground beetle. J. Appl. Entomol. 145, 986–1000. https://doi.org/10.1111/jen.12919 (2021).Article 

    Google Scholar 
    Mondelaers, K., Aertsens, J. & Van Huylenbroeck, G. A meta-analysis of the differences in environmental impacts between organic and conventional farming. Br. Food J. https://doi.org/10.1108/00070700910992925 (2009) (ISSN: 0007-070X).Article 

    Google Scholar 
    Tuck, S. L. et al. Land-use intensity and the effects of organic farming on biodiversity: A hierarchical meta-analysis. J. Appl. Ecol. 51, 746–755. https://doi.org/10.1111/1365-2664.12219 (2014).Article 

    Google Scholar 
    Tuomisto, H. L., Hodge, I., Riordan, P. & Macdonald, D. W. Does organic farming reduce environmental impacts?–A meta-analysis of European research. J. Environ. Manag. 112, 309–320. https://doi.org/10.1016/j.jenvman.2012.08.018 (2012).Article 

    Google Scholar 
    Noe, E., Halberg, N. & Reddersen, J. Indicators of biodiversity and conservational wildlife quality on Danish organic farms for use in farm management: A multidisciplinary approach to indicator development and testing. J. Agric. Environ. Ethics. 18, 383–414. https://doi.org/10.1007/s10806-005-7044-3 (2005).Article 

    Google Scholar 
    Rahman, S. A., Sunderland, T., Roshetko, J. M., Basuki, I. & Healey, J. R. Tree culture of smallholder farmers practicing agroforestry in Gunung Salak Valley, West Java, Indonesia. Small-Scale For. 15, 433–442. https://doi.org/10.1007/s11842-016-9331-4 (2016).Article 

    Google Scholar 
    Mazzon, M. et al. Conventional versus organic management: Application of simple and complex indexes to assess soil quality. Agric. Ecosyst. Environ. 322, 107673. https://doi.org/10.1016/j.agee.2021.107673 (2021).Article 

    Google Scholar 
    Zhang, J., Drummond, F. A., Liebman, M. & Hartke, A. Phenology and dispersal of Harpalus rufipes DeGeer (Coleoptera: Carabidae) in agroecosystems in Maine. J. Agric. Entomol. 14, 171–186 (1997).
    Google Scholar 
    Rainio, J. & Niemelä, J. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers. Conserv. 12, 487–506. https://doi.org/10.7717/peerj.9815 (2003).Article 

    Google Scholar 
    Kulkarni, S. S., Dosdall, L. M. & Willenborg, C. J. The role of ground beetles (Coleoptera: Carabidae) in weed seed consumption: A review. Weed Sci. 63, 355–376. https://doi.org/10.1614/WS-D-14-00067.1 (2015).Article 

    Google Scholar 
    Lovei, G. L. & Sunderland, K. D. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu. Rev. Entomol. 41, 231–256. https://doi.org/10.1146/annurev.en.41.010196.001311 (1996).Article 

    Google Scholar 
    Campanelli, G. & Canali, S. Crop production and environmental effects in conventional and organic vegetable farming systems: The case of a long-term experiment in Mediterranean conditions (Central Italy). J. Sustain. Agric. 36, 599–619. https://doi.org/10.1080/10440046.2011.646351 (2012).Article 

    Google Scholar 
    Canali, S. et al. Conservation tillage strategy based on the roller crimper technology for weed control in Mediterranean vegetable organic cropping systems. Eur. J. Agron. 50, 11–18. https://doi.org/10.1016/j.eja.2013.05.001 (2013).Article 

    Google Scholar 
    Burgio, G. et al. Ecological sustainability of an organic four-year vegetable rotation system: Carabids and other soil arthropods as bioindicators. Agroecol. Sustain. Food Syst. 39, 295–316. https://doi.org/10.1080/21683565.2014.981910 (2015).Article 

    Google Scholar 
    Magagnoli, S. et al. Cover crop termination techniques affect ground predation within an organic vegetable rotation system: A test with artificial caterpillars. Biol. Control 117, 109–114. https://doi.org/10.1016/j.biocontrol.2017.10.013 (2018).Article 

    Google Scholar 
    Alberoni, D., Gioia, D. D. & Baffoni, L. Alterations in the microbiota of caged honeybees in the presence of Nosema ceranae infection and related changes in functionality. Microb. Ecol. https://doi.org/10.1007/s00248-022-02050-4 (2022).Article 

    Google Scholar 
    Jones, R. T., Sanchez, L. G. & Fierer, N. A cross-taxon analysis of insect-associated bacterial diversity. PLoS ONE 8, e61218. https://doi.org/10.1371/journal.pone.0061218 (2013).Article 
    ADS 

    Google Scholar 
    Silver, A. et al. Persistence of the ground beetle (Coleoptera: Carabidae) microbiome to diet manipulation. PLoS ONE 16, e0241529. https://doi.org/10.1371/journal.pone.0241529 (2021).Article 

    Google Scholar 
    McManus, R., Ravenscraft, A. & Moore, W. Bacterial associates of a gregarious riparian beetle with explosive defensive chemistry. Front. Microbiol. 9, 2361. https://doi.org/10.3389/fmicb.2018.02361 (2018).Article 

    Google Scholar 
    Tiede, J., Scherber, C., Mutschler, J., McMahon, K. D. & Gratton, C. Gut microbiomes of mobile predators vary with landscape context and species identity. Ecol. Evol. 7, 8545–8557. https://doi.org/10.1002/ece3.3390 (2017).Article 

    Google Scholar 
    Theodorou, P. et al. Pollination services enhanced with urbanization despite increasing pollinator parasitism. Proc. R. Soc. B-Biol. Sci. 283(1833), 20160561. https://doi.org/10.1098/rspb.2016.0561 (2016).Article 

    Google Scholar 
    Wang, Y. et al. Phylogenomics of expanding uncultured environmental Tenericutes provides insights into their pathogenicity and evolutionary relationship with Bacilli. BMC Genomics 21, 408. https://doi.org/10.1186/s12864-020-06807-4 (2020).Article 

    Google Scholar 
    Ballinger, M. J. & Perlman, S. J. The defensive spiroplasma. Curr. Opin. Insect Sci. 32, 36–41. https://doi.org/10.1016/j.cois.2018.10.004 (2019).Article 

    Google Scholar 
    Kolesnikov, F. N. & Karamyan, A. N. Parental care and offspring survival in Pterostichus anthracinus (Coleoptera: Carabidae): An experimental study. Eur. J. Entomol. 116, 33–41. https://doi.org/10.14411/eje.2019.004 (2019).Article 

    Google Scholar 
    Olofsson, J. & Hickler, T. Effects of human land-use on the global carbon cycle during the last 6000 years. Veg. Hist. Archaeobot. 17, 605–615. https://doi.org/10.1007/s00334-007-0126-6 (2008).Article 

    Google Scholar 
    Killer, J. et al. Bifidobacterium bombi sp. nov., from the bumblebee digestive tract. Int. J. Syst. Evol. Micrbiol. 59, 2020–2024. https://doi.org/10.1099/ijs.0.002915-0 (2009).Article 

    Google Scholar 
    Killer, J. et al. Bifidobacteria in the digestive tract of bumblebees. Anaerobe 16, 165–170. https://doi.org/10.1016/j.anaerobe.2009.07.007 (2010).Article 

    Google Scholar 
    Alberoni, D. et al. Bifidobacterium xylocopae sp. nov. and Bifidobacterium aemilianum sp. Nov., from the carpenter bee (Xylocopa violacea) digestive tract. Syst. Appl. Microbiol. 42, 205–216. https://doi.org/10.1016/j.syapm.2018.11.005 (2019).Article 

    Google Scholar 
    Islam, S. M. A. et al. Organophosphorus hydrolase (OpdB) of Lactobacillus brevis WCP902 from kimchi is able to degrade organophosphorus pesticides. J. Agric. Food Chem. 58, 5380–5386. https://doi.org/10.1021/jf903878e (2010).Article 

    Google Scholar 
    Castelli, L. et al. Impact of nutritional stress on honeybee gut microbiota, immunity, and Nosema ceranae infection. Microb. Ecol. 80, 908–919. https://doi.org/10.1007/s00248-020-01538-1 (2020).Article 

    Google Scholar 
    Raymann, K., Bobay, L. & Moran, N. A. Antibiotics reduce genetic diversity of core species in the honeybee gut microbiome. Mol. Ecol. 27, 2057–2066. https://doi.org/10.1111/mec.14434 (2018).Article 

    Google Scholar 
    USDA Soil Taxonomy—https://www.nrcs.usda.gov/sites/default/files/2022-06/Soil%20Taxonomy.pdf [last accessed November 2022].Albertini, A. et al. Bactrocera oleae pupae predation by Ocypus olens detected by molecular gut content analysis. Biocontrol 63, 227–239. https://doi.org/10.1007/s10526-017-9860-6 (2018).Article 

    Google Scholar 
    Takahashi, S., Tomita, J., Nishioka, K., Hisada, T. & Nishijima, M. Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS ONE 9, e105592. https://doi.org/10.1371/journal.pone.0105592 (2014).Article 
    ADS 

    Google Scholar 
    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963. https://doi.org/10.1093/bioinformatics/btr507 (2011).Article 

    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. https://doi.org/10.1038/nmeth.f.303 (2010).Article 

    Google Scholar 
    Haas, B. J. et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21, 494–504. https://doi.org/10.1101/gr.112730.110 (2011).Article 

    Google Scholar 
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200. https://doi.org/10.1093/bioinformatics/btr381 (2011).Article 

    Google Scholar 
    Caporaso, J. G. et al. PyNAST: A flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267. https://doi.org/10.1093/bioinformatics/btp636 (2010).Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1016/j.jinsphys.2014.05.016 (2012).Article 

    Google Scholar 
    Yilmaz, P. et al. The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–D648. https://doi.org/10.1093/nar/gkt1209 (2014).Article 

    Google Scholar 
    Lozupone, C. A., Hamady, M., Kelley, S. T. & Knight, R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 73, 1576–1585. https://doi.org/10.1128/AEM.01996-06 (2007).Article 
    ADS 

    Google Scholar 
    Raymann, K., Shaffer, Z. & Moran, N. A. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol. 15(3), e2001861. https://doi.org/10.1371/journal.pbio.2001861 (2017).Article 

    Google Scholar 
    Roberts, D. W. & Roberts, M. D. W. Package ‘labdsv’. Ordination and Multivariate 775 (2016). More

  • in

    Variation in heat shock protein 40 kDa relates to divergence in thermotolerance among cryptic rotifer species

    Mayr, E. Systematics and the Origin of Species, from the Viewpoint of a Zoologist (Harvard University Press, 1942).
    Google Scholar 
    Ostevik, K. L., Andrew, R. L., Otto, S. P. & Rieseberg, L. H. Multiple reproductive barriers separate recently diverged sunflower ecotypes. Evolution 70, 2322–2335 (2016).Article 

    Google Scholar 
    Seehausen, O. et al. Genomics and the origin of species. Nat. Rev. Genet. 15, 176–192 (2014).Article 

    Google Scholar 
    Cheng, J. & Sha, Z.-L. Cryptic diversity in the Japanese mantis shrimp (Crustacea: Squillidae): Allopatric diversification, secondary contact and hybridization. Sci. Rep. 7, 1972 (2017).Article 
    ADS 

    Google Scholar 
    Michaloudi, E. et al. Reverse taxonomy applied to the Brachionus calyciflorus cryptic species complex: Morphometric analysis confirms species delimitations revealed by molecular phylogenetic analysis and allows the (re)description of four species. PLoS ONE 13, e0203168 (2018).Article 

    Google Scholar 
    Zhang, W. & Declerck, S. A. J. Intrinsic postzygotic barriers constrain cross-fertilisation between two hybridising sibling rotifer species of the Brachionus calyciflorus species complex. Freshw. Biol. 67, 240–249 (2022).Article 

    Google Scholar 
    Zhang, W. & Declerck, S. A. J. Reduced fertilization constitutes an important prezygotic reproductive barrier between two sibling species of the hybridizing Brachionus calyciflorus species complex. Hydrobiologia 849, 1701–1711 (2022).Article 

    Google Scholar 
    Seehausen, O., van Alphen, J. J. M. & Witte, F. Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277, 1808–1811 (1997).Article 

    Google Scholar 
    Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155 (2007).Article 

    Google Scholar 
    Gill, B. A. et al. Cryptic species diversity reveals biogeographic support for the ’mountain passes are higher in the tropics’ hypothesis. Proc. R. Soc. B. 283, 20160553 (2016).Article 

    Google Scholar 
    Sáez, A. G. & Lozano, E. Body doubles. Nature 433, 111 (2005).Article 
    ADS 

    Google Scholar 
    Fišer, C., Robinson, C. T. & Malard, F. Cryptic species as a window into the paradigm shift of the species concept. Mol. Ecol. 27, 613–635 (2018).Article 

    Google Scholar 
    Mills, S. et al. Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy. Hydrobiologia 796, 39–58 (2017).Article 

    Google Scholar 
    Struck, T. H. et al. Finding evolutionary processes hidden in cryptic species. Trends Ecol. Evol. 33, 153–163 (2018).Article 

    Google Scholar 
    Leibold, M. A. & McPeek, M. A. Coexistence of the niche and neutral perspectives in community ecology. Ecology 87, 1399–1410 (2006).Article 

    Google Scholar 
    Gabaldón, C., Fontaneto, D., Carmona, M. J., Montero-Pau, J. & Serra, M. Ecological differentiation in cryptic rotifer species: What we can learn from the Brachionus plicatilis complex. Hydrobiologia 796, 7–18 (2017).Article 

    Google Scholar 
    Nicholls, B. & Racey, P. A. Contrasting home-range size and spatial partitioning in cryptic and sympatric pipistrelle bats. Behav. Ecol. Sociobiol. 61, 131–142 (2006).Article 

    Google Scholar 
    Ortells, R., Gómez, A. & Serra, M. Coexistence of cryptic rotifer species: Ecological and genetic characterisation of Brachionus plicatilis. Freshw. Biol. 48, 2194–2202 (2003).Article 

    Google Scholar 
    Wellborn, G. A. & Cothran, R. D. Niche diversity in crustacean cryptic species: Complementarity in spatial distribution and predation risk. Oecologia 154, 175–183 (2007).Article 
    ADS 

    Google Scholar 
    Gause, G. F. The struggle for existence (Williams and Wilkins, 1934).Book 
    MATH 

    Google Scholar 
    Segers, H. Global diversity of rotifers (Rotifera) in freshwater. Hydrobiologia 595, 49–59 (2008).Article 

    Google Scholar 
    Fontaneto, D. Molecular phylogenies as a tool to understand diversity in rotifers. Int. Rev. Hydrobiol. 99, 178–187 (2014).Article 

    Google Scholar 
    Papakostas, S. et al. Integrative taxonomy recognizes evolutionary units despite widespread mitonuclear discordance: Evidence from a rotifer cryptic species complex. Syst. Biol. 65, 508–524 (2016).Article 

    Google Scholar 
    García-Morales, A. E. & Elías-Gutiérrez, M. DNA barcoding of freshwater rotifera in Mexico: Evidence of cryptic speciation in common rotifers. Mol. Ecol. Resour. 13, 1097–1107 (2013).
    Google Scholar 
    Wang, X. L. et al. Differences in life history characteristics between two sibling species in Brachionus calyciflorus complex from tropical shallow lakes. Ann. Limnol. Int. J. Lim. 50, 289–298 (2014).Article 

    Google Scholar 
    Wen, X., Xi, Y., Zhang, G., Xue, Y. & Xiang, X. Coexistence of cryptic Brachionus calyciflorus (Rotifera) species: Roles of environmental variables. J. Plankton Res. 38, 478–489 (2016).Article 

    Google Scholar 
    Xiang, X.-L., Chen, Y.-Y., Han, Y., Wang, X.-L. & Xi, Y.-L. Comparative studies on the life history characteristics of two Brachionus calyciflorus strains belonging to the same cryptic species. Biochem. Syst. Ecol. 69, 138–144 (2016).Article 

    Google Scholar 
    Xiang, X.-L. et al. Patterns and processes in the genetic differentiation of the Brachionus calyciflorus complex, a passively dispersing freshwater zooplankton. Mol. Phylogenet. Evol. 59, 386–398 (2011).Article 

    Google Scholar 
    Xiang, X.-L. et al. Genetic differentiation and phylogeographical structure of the Brachionus calyciflorus complex in eastern China. Mol. Ecol. 20, 3027–3044 (2011).Article 

    Google Scholar 
    Gilbert, J. J. & Walsh, E. J. Brachionus calyciflorus is a species complex: Mating behavior and genetic differentiation among four geographically isolated strains. Hydrobiologia 546, 257–265 (2005).Article 

    Google Scholar 
    Zhang, Y. et al. Temporal patterns and processes of genetic differentiation of the Brachionus calyciflorus (Rotifera) complex in a subtropical shallow lake. Hydrobiologia 807, 313–331 (2018).Article 

    Google Scholar 
    Zhang, W., Lemmen, K. D., Zhou, L., Papakostas, S. & Declerck, S. A. J. Patterns of differentiation in the life history and demography of four recently described species of the Brachionus calyciflorus cryptic species complex. Freshw. Biol. 64, 1994–2005 (2019).Article 

    Google Scholar 
    Lemmen, K. D., Verhoeven, K. J. F. & Declerck, S. A. J. Experimental evidence of rapid heritable adaptation in the absence of initial standing genetic variation. Funct. Ecol. 36, 226–238 (2022).Article 

    Google Scholar 
    Paraskevopoulou, S., Dennis, A. B., Weithoff, G., Hartmann, S. & Tiedemann, R. Within species expressed genetic variability and gene expression response to different temperatures in the rotifer Brachionus calyciflorus sensu stricto. PLoS ONE 14, e0223134 (2019).Article 

    Google Scholar 
    Paraskevopoulou, S., Dennis, A. B., Weithoff, G. & Tiedemann, R. Temperature-dependent life history and transcriptomic responses in heat-tolerant versus heat-sensitive Brachionus rotifers. Sci. Rep. 10, 13281 (2020).Article 
    ADS 

    Google Scholar 
    Paraskevopoulou, S., Tiedemann, R. & Weithoff, G. Differential response to heat stress among evolutionary lineages of an aquatic invertebrate species complex. Biol. Lett. 14, 20180498 (2018).Article 

    Google Scholar 
    Takemoto, K. & Akutsu, T. Origin of structural difference in metabolic networks with respect to temperature. BMC Syst. Biol. 2, 82 (2008).Article 

    Google Scholar 
    Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).Book 

    Google Scholar 
    Atkinson, D. Temperature and organism size: A biological law for ectotherms?. Adv. Ecol. Res. 25, 1–58 (1994).Article 

    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).Article 
    ADS 

    Google Scholar 
    Walczyńska, A., Franch-Gras, L. & Serra, M. Empirical evidence for fast temperature-dependent body size evolution in rotifers. Hydrobiologia 796, 191–200 (2017).Article 

    Google Scholar 
    Brown, W. L. & Wilson, E. O. Character displacement. Syst. Zool. 5, 49–64 (1956).Article 

    Google Scholar 
    Marrone, F., Fontaneto, D. & Naselli-Flores, L. Cryptic diversity, niche displacement and our poor understanding of taxonomy and ecology of aquatic microorganisms. Hydrobiologia https://doi.org/10.1007/s10750-022-04904-x (2022).Article 

    Google Scholar 
    Pekkonen, M., Ketola, T. & Laakso, J. T. Resource availability and competition shape the evolution of survival and growth ability in a bacterial community. PLoS ONE 8, e76471 (2013).Article 
    ADS 

    Google Scholar 
    Brawand, D. et al. The evolution of gene expression levels in mammalian organs. Nature 478, 343–348 (2011).Article 
    ADS 

    Google Scholar 
    Drummond, D. A. & Wilke, C. O. The evolutionary consequences of erroneous protein synthesis. Nat. Rev. Genet. 10, 715–724 (2009).Article 

    Google Scholar 
    Fraser, H. B. Genome-wide approaches to the study of adaptive gene expression evolution: Systematic studies of evolutionary adaptations involving gene expression will allow many fundamental questions in evolutionary biology to be addressed. BioEssays 33, 469–477 (2011).Article 

    Google Scholar 
    Fraser, H. B. Gene expression drives local adaptation in humans. Genome Res. 23, 1089–1096 (2013).Article 

    Google Scholar 
    Franch-Gras, L. et al. Rotifer adaptation to the unpredictability of the growing season. Hydrobiologia 844, 257–273 (2019).Article 

    Google Scholar 
    Tarazona, E., Lucas-Lledó, J. I., Carmona, M. J. & García-Roger, E. M. Gene expression in diapausing rotifer eggs in response to divergent environmental predictability regimes. Sci. Rep. 10, 21366 (2020).Article 
    ADS 

    Google Scholar 
    Smith, H. A., Burns, A. R., Shearer, T. L. & Snell, T. W. Three heat shock proteins are essential for rotifer thermotolerance. J. Exp. Mar. Biol. Ecol. 413, 1–6 (2012).Article 

    Google Scholar 
    Alonso, C. R. & Wilkins, A. S. The molecular elements that underlie developmental evolution. Nat. Rev. Genet. 6, 709–715 (2005).Article 

    Google Scholar 
    Romero, I. G., Ruvinsky, I. & Gilad, Y. Comparative studies of gene expression and the evolution of gene regulation. Nat. Rev. Genet. 13, 505–516 (2012).Article 

    Google Scholar 
    Franch-Gras, L. et al. Genomic signatures of local adaptation to the degree of environmental predictability in rotifers. Sci. Rep. 8, 16051 (2018).Article 
    ADS 

    Google Scholar 
    Nowell, R. W. et al. Comparative genomics of bdelloid rotifers: Insights from desiccating and nondesiccating species. PLoS Biol. 16, e2004830 (2018).Article 

    Google Scholar 
    Feugeas, J.-P. et al. Links between transcription, environmental adaptation and gene variability in Escherichia coli: Correlations between gene expression and gene variability reflect growth efficiencies. Mol. Biol. Evol. 33, 2515–2529 (2016).Article 

    Google Scholar 
    Pai, A. A., Pritchard, J. K. & Gilad, Y. The genetic and mechanistic basis for variation in gene regulation. PLoS Genet. 11, e1004857 (2015).Article 

    Google Scholar 
    Gribble, K. E. & Mark Welch, D. B. The mate recognition protein gene mediates reproductive isolation and speciation in the Brachionus plicatilis cryptic species complex. BMC Evol. Biol. 12, 134 (2012).Article 

    Google Scholar 
    Via, S. Natural selection in action during speciation. Proc. Natl. Acad. Sci. USA. 106, 9939–9946 (2009).Article 
    ADS 

    Google Scholar 
    Ho, S. Y. W. & Duchêne, S. Molecular-clock methods for estimating evolutionary rates and timescales. Mol. Ecol. 23, 5947–5965 (2014).Article 

    Google Scholar 
    Yang, J., Mu, Y., Dong, S., Jiang, Q. & Yang, J. Changes in the expression of four heat shock proteins during the aging process in Brachionus calyciflorus (Rotifera). Cell Stress Chaperones 19, 33–52 (2014).Article 

    Google Scholar 
    Mahmood, K., Jadoon, S., Mahmood, Q., Irshad, M. & Hussain, J. Synergistic effects of toxic elements on heat shock proteins. Biomed. Res. Int. 2014, 564136 (2014).Article 

    Google Scholar 
    Park, J. C. et al. Genome-wide identification and structural analysis of heat shock protein gene families in the marine rotifer Brachionus spp.: Potential application in molecular ecotoxicology. Comp. Biochem. Physiol. D 36, 100749 (2020).
    Google Scholar 
    Santoro, M. Heat shock factors and the control of the stress response. Biochem. Pharmacol. 59, 55–63 (2000).Article 

    Google Scholar 
    Birky, C. W. & Gilbert, J. J. Parthenogenesis in rotifers: The control of sexual and asexual reproduction. Am. Zool. 11, 245–266 (1971).Article 

    Google Scholar 
    Snell, T. W. Rotifers as models for the biology of aging. Int. Rev. Hydrobiol. 99, 84–95 (2014).Article 

    Google Scholar 
    Felsenstein, J. The evolutionary advantage of recombination. Genetics 78, 737–756 (1974).Article 

    Google Scholar 
    Muller, H. J. Some genetic aspects of sex. Am. Nat. 66, 118–138 (1932).Article 

    Google Scholar 
    Muller, H. J. The relation of recombination to mutational advance. Mut. Res. 1, 2–9 (1964).Article 

    Google Scholar 
    Ballard, J. W. O. & Whitlock, M. C. The incomplete natural history of mitochondria. Mol. Ecol. 13, 729–744 (2004).Article 

    Google Scholar 
    Zhang, Y., Xu, S., Sun, C., Dumont, H. & Han, B.-P. A new set of highly efficient primers for COI amplification in rotifers. Mitochondrial DNA B 6, 636–640 (2021).Article 

    Google Scholar 
    Turner, C. B., Marshall, C. W. & Cooper, V. S. Parallel genetic adaptation across environments differing in mode of growth or resource availability. Evol. Lett. 2, 355–367 (2018).Article 

    Google Scholar 
    Lan, B. et al. Tempo-spatial variations of zooplankton communities in relation to environmental factors and the ecological implications: A case study in the hinterland of the Three Gorges Reservoir area. China. PLoS ONE 16, e0256313 (2021).Article 

    Google Scholar 
    Pellecchia, M., Szyperski, T., Wall, D., Georgopoulos, C. & Wüthrich, K. NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone. Mol. Biol. 260, 236–250 (1996).Article 

    Google Scholar 
    Greene, M. K., Maskos, K. & Landry, S. J. Role of the J-domain in the cooperation of Hsp40 with Hsp70. Proc. Natl. Acad. Sci. USA 95, 6108–6113 (1998).Article 
    ADS 

    Google Scholar 
    Wittung-Stafshede, P., Guidry, J., Horne, B. E. & Landry, S. J. The J-domain of Hsp40 couples ATP hydrolysis to substrate capture in Hsp70. Biochemistry 42, 4937–4944 (2003).Article 

    Google Scholar 
    Cintron, N. S. & Toft, D. Defining the requirements for Hsp40 and Hsp70 in the Hsp90 chaperone pathway. J. Biol. Chem. 281, 26235–26244 (2006).Article 

    Google Scholar 
    Li, J., Qian, X. & Sha, B. The crystal structure of the yeast Hsp40 Ydj1 complexed with its peptide substrate. Structure 11, 1475–1483 (2003).Article 

    Google Scholar 
    Sha, B., Lee, S. & Cyr, D. M. The crystal structure of the peptide-binding fragment from the yeast Hsp40 protein Sis1. Structure 8, 799–807 (2000).Article 

    Google Scholar 
    Brender, J. R. & Zhang, Y. Predicting the effect of mutations on protein-protein binding interactions through structure-based interface profiles. PLoS Comput. Biol. 11, e1004494 (2015).Article 
    ADS 

    Google Scholar 
    Shortle, D. One sequence plus one mutation equals two folds. Proc. Natl. Acad. Sci. USA 106, 21011–21012 (2009).Article 
    ADS 

    Google Scholar 
    Charlesworth, B. The effects of deleterious mutations on evolution at linked sites. Genetics 190, 5–22 (2012).Article 

    Google Scholar 
    Cutter, A. D. A Primer of Molecular Population Genetics (Oxford University Press, 2019).Book 

    Google Scholar 
    Barraclough, T. G., Fontaneto, D., Ricci, C. & Herniou, E. A. Evidence for inefficient selection against deleterious mutations in cytochrome oxidase I of asexual bdelloid rotifers. Mol. Biol. Evol. 24, 1952–1962 (2007).Article 

    Google Scholar 
    Tang, C. Q., Obertegger, U., Fontaneto, D. & Barraclough, T. G. Sexual species are separated by larger genetic gaps than asexual species in rotifers. Evol. Int. J. Org. Evol. 68, 2901–2916 (2014).Article 

    Google Scholar 
    Brower, A. V. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc. Natl. Acad. Sci. U.S.A. 91, 6491–6495 (1994).Article 
    ADS 

    Google Scholar 
    Yang, W., Deng, Z., Blair, D., Hu, W. & Yin, M. Phylogeography of the freshwater rotifer Brachionus calyciflorus species complex in China. Hydrobiologia 849, 2813–2829 (2022).Article 

    Google Scholar 
    Chin, T. A. & Cristescu, M. E. Speciation in Daphnia. Mol. Ecol. 30, 1398–1418 (2021).Article 

    Google Scholar 
    Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).Article 

    Google Scholar 
    Davidson, N. M., Hawkins, A. D. K. & Oshlack, A. SuperTranscripts: A data driven reference for analysis and visualisation of transcriptomes. Genome Biol. 18, 148 (2017).Article 

    Google Scholar 
    Altschul, S. F., Gish, W. P., Miller, W., Myers, E. W. & Lipman, D. L. Basic local alignment search tool. Mol. Biol. 215, 403–410 (1990).Article 

    Google Scholar 
    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).Article 

    Google Scholar 
    Cock, P. J. A. et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).Article 

    Google Scholar 
    Suyama, M., Torrents, D. & Bork, P. PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–W612 (2006).Article 

    Google Scholar 
    Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).Article 

    Google Scholar 
    Ashburner, M. et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).Article 

    Google Scholar 
    Lavezzo, E., Falda, M., Fontana, P., Bianco, L. & Toppo, S. Enhancing protein function prediction with taxonomic constraints: The Argot2.5 web server. Methods 93, 15–23 (2016).Article 

    Google Scholar 
    The UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).Article 

    Google Scholar 
    Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 39, W29-37 (2011).Article 

    Google Scholar 
    Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).Article 

    Google Scholar 
    Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).Article 

    Google Scholar 
    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).Article 

    Google Scholar 
    Untergasser, A. et al. Primer3-new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).Article 

    Google Scholar 
    Palumbi, S. R. The polymerase chain reaction. Mol. Syst. 2, 205–247 (1996).
    Google Scholar 
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
    Google Scholar 
    Cornish-Bowden, A. Nomenclature for incompletely specified bases in nucleic acid sequences: Recommendations. Nucleic Acids Res. 39, 3021–3030 (1985).Article 

    Google Scholar 
    Stephens, M., Smith, N. J. & Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978–989 (2001).Article 

    Google Scholar 
    Stephens, M. & Donnelly, P. A Comparison of bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet. 73, 1162–1169 (2003).Article 

    Google Scholar 
    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).Article 

    Google Scholar 
    Kosakovsky Pond, S. L. & Frost, S. D. W. Not so different after all: A comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 22, 1208–1222 (2005).Article 

    Google Scholar 
    Weaver, S. et al. Datamonkey 2.0: A modern web application for characterizing selective and other evolutionary processes. Mol. Biol. Evol. 35, 773–777 (2018).Article 

    Google Scholar 
    Leigh, J. W. & Bryant, D. popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    Krzywinski, M. et al. Circos: An information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).Article 

    Google Scholar 
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).Article 

    Google Scholar 
    Galili, T. dendextend: An R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 31, 3718–3720 (2015).Article 

    Google Scholar 
    Andrew Rambaut Group. FigTree. (2022). http://tree.bio.ed.ac.uk/software/.Inkscape Project. Inkscape. (2020). https://inkscape.org.Wong, W. S. W., Yang, Z., Goldman, N. & Nielsen, R. Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics 168, 1041–1051 (2004).Article 

    Google Scholar 
    Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).Article 

    Google Scholar 
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, 016 (2018).Article 

    Google Scholar 
    Kiemel, K., de Cahsan, B., Paraskevopoulou, S., Weithoff, G. & Tiedemann, R. Mitochondrial genomes of the freshwater monogonont rotifer Brachionus fernandoi and of two additional B. calyciflorus sensu stricto lineages from Germany and the USA (Rotifera, Brachionidae). Mitochondrial DNA B 7, 646–648 (2022).Article 

    Google Scholar 
    Kim, M.-S. et al. Complete mitochondrial genome of the freshwater monogonont rotifer Brachionus angularis (Rotifera, Brachionidae). Mitochondrial DNA B. 5, 3754–3755 (2020).
    Google Scholar 
    Kim, M.-S. et al. Complete mitochondrial genomes of two marine monogonont rotifer Brachionus manjavacas strains. Mitochondrial DNA B. 6, 1921–1923 (2021).Article 

    Google Scholar 
    Suga, K., Mark Welch, D. B., Tanaka, Y., Sakakura, Y. & Hagiwara, A. Two circular chromosomes of unequal copy number make up the mitochondrial genome of the rotifer Brachionus plicatilis. Mol. Biol. Evol. 25, 1129–1137 (2008).Article 

    Google Scholar 
    Hwang, D.-S. et al. Complete mitochondrial genome of the monogonont rotifer, Brachionus koreanus (Rotifera, Brachionidae). Mitochondrial DNA B. 25, 29–30 (2014).Article 

    Google Scholar 
    Kim, H.-S. et al. Complete mitochondrial genome of the monogonont rotifer Brachionus rotundiformis (Rotifera, Brachionidae). Mitochondrial DNA B. 2, 39–40 (2017).Article 

    Google Scholar 
    Choi, B.-S. et al. Complete mitochondrial genome of the freshwater monogonont rotifer Brachionus rubens (Rotifera, Brachionidae). Mitochondrial DNA B. 5, 5–6 (2019).Article 

    Google Scholar 
    Choi, B.-S. et al. Complete mitochondrial genome of the marine monogonont rotifer Proales similis (Rotifera, Proalidae). Mitochondrial DNA B. 5, 1151–1152 (2020).Article 

    Google Scholar 
    Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235 (2016).Article 

    Google Scholar 
    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).Article 

    Google Scholar  More