More stories

  • in

    Response of woody vegetation to bush thinning on freehold farmlands in north-central Namibia

    MAWF. National Rangeland Management Policy & Strategy. Restoring Namibia’s Rangelands (2012).SAIEA. Strategic environmental assessment of large-scale bush thinning and value-addition activities in Namibia. (2016).de Klerk, J. N. Bush Encroachment in Namibia. Report on Phase 1 of the Bush Encroachment Research, Monitoring and Management Project. (2004).Muntifering, J. R. et al. Managing the matrix for large carnivores: A novel approach and perspective from cheetah (Acinonyx jubatus) habitat suitability modelling. Anim. Conserv. 9, 103–112 (2006).Article 

    Google Scholar 
    Marker, L. L., Dickman, A. J., Mills, M. G. L., Jeo, R. M. & Macdonald, D. W. Spatial ecology of cheetahs on north-central Namibian farmlands. J. Zool. 274, 226–238 (2008).Article 

    Google Scholar 
    Wang, J. et al. Impacts of juniper woody plant encroachment into grasslands on local climate. Agric. For. Meteorol. 307, 108508 (2021).Article 
    ADS 

    Google Scholar 
    Shen, X. et al. Effect of shrub encroachment on land surface temperature in semi-arid areas of temperate regions of the Northern Hemisphere. Agric. For. Meteorol. 320, 108943 (2022).Article 
    ADS 

    Google Scholar 
    Shen, X. et al. Vegetation greening, extended growing seasons, and temperature feedbacks in warming temperate grasslands of China. J. Clim. 35, 5103–5117 (2022).Article 
    ADS 

    Google Scholar 
    Martins, A. R. O. & Shackleton, C. M. Population structure and harvesting selection of two palm species ( Hyphaene coriacea and Phoenix reclinata ) in Zitundo area, southern Mozambique. For. Ecol. Manage. 398, 64–74 (2017).Article 

    Google Scholar 
    Brown, G. W., Murphy, A., Fanson, B. & Tolsma, A. The influence of different restoration thinning treatments on tree growth in a depleted forest system. For. Ecol. Manage. 437, 10–16 (2019).Article 

    Google Scholar 
    Belsky, A. Influences of trees on savanna productivity: Tests of shade, nutrients and grass–tree competition. Ecology 75, 922–932 (1994).Article 

    Google Scholar 
    Hagos, M. G. & Smit, G. N. Soil enrichment by Acacia mellifera subsp. detinens on nutrient poor sandy soil in a semi-arid southern African savanna. J. Arid Environ. 61, 47–59 (2005).Ludwig, F., Kroon, H. D., Berendse, F. & Prins, H. H. T. The influence of savanna trees on nutrient, water and light availability and the understorey vegetation. Plant Ecol. 170, 93–105 (2004).Article 

    Google Scholar 
    Ridolfi, L., Laio, F., D’Odorico, P. & D’Odorico, P. Fertility island formation and evolution in dryland ecosystems. Ecol. Soc. 13, 13 (2008).Article 
    MATH 

    Google Scholar 
    Wiegand, K., Ward, D. & Saltz, D. Multi-scale patterns and bush encroachment in an arid savanna with a shallow soil layer. J. Veg. Sci. 16, 311–320 (2005).Article 

    Google Scholar 
    Burke, A. Savanna trees in Namibia – Factors controlling their distribution at the arid end of the spectrum. Flora Morphol. Distrib. Funct. Ecol. Plants 201, 181–201 (2006).
    Google Scholar 
    Buyer, J. S., Schmidt-Küntzel, A., Nghikembua, M., Maul, J. E. & Marker, L. Soil microbial communities following bush removal in a Namibian savanna. Soil 2, 101–110 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Dwivedi, V. & Soni, P. A review on the role of soil microbial biomass in eco-restoration of degraded ecosystem with special reference to mining areas. J. Appl. Nat. Sci. 151–158 (2011). https://doi.org/10.31018/jans.v3i1.173.Smit, G. N. An approach to tree thinning to structure southern African savannas’ for long-term restoration from bush encroachment. J. Environ. Manage. 71, 179–191 (2004).Article 
    CAS 

    Google Scholar 
    MAWF. Forestry and environmental authorisation process for bush harvesting projects. 34 (2017).Smit, G. N., de Klerk, J. N., Schneider, M. B. & van Eck, J. Detailed assessment of the biomass resource and potential yield in a selected bush encroached area of Namibia. 141 (2015).Marker, L. et al. and Distribution. in Cheetahs: Biology and Conservation: Biodiversity of the World: Conservation from Genes to Landscapes (eds. Marker, L., Boast, L. k. & Schmidt-Küntzel, A.) 9–20 (John Fedor, 2018). https://doi.org/10.1016/B978-0-12-804088-1.00004-6.NAPHA. Namibia Professional Hunting Association. http://www.napha-namibia.com/conservation/huntable-species/carnivora/ (2015).SWA. Nature Conservation Ordinance, 1975 (No. 4 of 1975). vol. 1975 (1975).Marker, L. et al. The status of Key pre species and the Consequences of Prey Loss for Cheetah Conservation in North and West Africa. in Cheetahs: Biology and Conservation: Biodiversity of the World: Conservation from Genes to Landscapes. (eds. Marker, L., Boast, L. k. & Schmidt-Küntzel, A.) 151–161 (John Fedor, 2018). https://doi.org/10.1016/B978-0-12-804088-1.00004-6.Kiruki, H. M., van der Zanden, E. H., Gikuma-Njuru, P. & Verburg, P. H. The effect of charcoal production and other land uses on diversity, structure and regeneration of woodlands in a semi-arid area in Kenya. For. Ecol. Manage. 391, 282–295 (2017).Article 

    Google Scholar 
    Harmse, C. J., Kellner, K. & Dreber, N. Restoring productive rangelands: A comparative assessment of selective and non-selective chemical bush control in a semi-arid Kalahari savanna. J. Arid Environ. 135, 39–49 (2016).Article 
    ADS 

    Google Scholar 
    Nghikembua, M. T. et al. Response of wildlife to bush thinning on the north central freehold farmlands of Namibia. For. Ecol. Manage. 473, 118330 (2020).Article 

    Google Scholar 
    Soto-Shoender, J. R., McCleery, R. A., Monadjem, A. & Gwinn, D. C. The importance of grass cover for mammalian diversity and habitat associations in a bush encroached savanna. Biol. Conserv. 221, 127–136 (2018).Article 

    Google Scholar 
    Strohbach, B. J. Environmental information service, Namibia for the Ministry of Environment and Tourism, the Namibian Chamber of Environment and the Namibia University of Contribution to the knowledge of southern African Lepismatidae. Namibian J. Environ. 8327, 14–33 (2017).
    Google Scholar 
    Smit, N. BECVOL 3: An expansion of the aboveground biomass quantification model for trees and shrubs to include the wood component. Afr. J. Range Forage Sci. 31, 179–186 (2014).Article 

    Google Scholar 
    Zimmerman, I. Causes and Consequences of Fenceline Contrasts in Namibia. (Free State, Bloemfontein, South Africa, 2009).Dwyer, J. M. & Mason, R. Plant community responses to thinning in densely regenerating Acacia harpophylla forest. Restor. Ecol. 26, 97–105 (2018).Article 

    Google Scholar 
    Thomas, S. C. & Martin, A. R. Carbon content of tree tissues: A synthesis. Forests 3, 332–352 (2012).Article 

    Google Scholar 
    Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 20, 3177–3190 (2014).Article 
    ADS 

    Google Scholar 
    Djomo, A. N. & Chimi, C. D. Tree allometric equations for estimation of above, below and total biomass in a tropical moist forest: Case study with application to remote sensing. For. Ecol. Manage. 391, 184–193 (2017).Article 

    Google Scholar 
    Ganamé, M., Bayen, P., Dimobe, K., Ouédraogo, I. & Thiombiano, A. Aboveground biomass allocation, additive biomass and carbon sequestration models for Pterocarpus erinaceus Poir. in Burkina Faso. Heliyon 6, (2020).Picard, N., Saint-André, L. & Henry, M. Manual for building tree volume and biomass allometric equations: From field measurement to prediction. Food and Agricultural Organization of the United Nations, Rome, and Centre de Coopération Internationale en Recherche Agronomique pour le Développement. (2012).Feyisa, K. et al. Allometric equations for predicting above-ground biomass of selected woody species to estimate carbon in East African rangelands. Agrofor. Syst. 92, 599–621 (2018).Article 

    Google Scholar 
    Boys, J. M. & Smit, N. G. Development of an Excel Based Bush Biomass Quantification Tool. (2020).Ngomanda, A. et al. Site-specific versus pantropical allometric equations: Which option to estimate the biomass of a moist central African forest?. For. Ecol. Manage. 312, 1–9 (2014).Article 

    Google Scholar 
    CCF. Cheetah Conservation Fund Bush PTY (Ltd). https://bushblok.com/management-plan (2019).Wykstra, M. et al. Improved and Alternative Livelihoods: Links Between Poverty Alleviation, Biodiversity, and Cheetah Conservation. in Cheetahs: Biology and Conservation: Biodiversity of the World: Conservation from Genes to Landscapes (eds. Marker, L., Boast, L. k. & Schmidt-Küntzel, A.) 223–237 (John Fedor, 2018).Zimmermann, I. et al. The influence of two levels of debushing in Namibia’s Thornbush Savanna on overall soil fertility, measured through bioassays. Namibian J. Environ. 1, 52–59 (2017).
    Google Scholar 
    Nghikembua, M. T. et al. Restoration thinning reduces bush encroachment on freehold farmlands in north-central Namibia. For. An Int. J. For. Res. 1–14 (2021). https://doi.org/10.1093/forestry/cpab009.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Mendelsohn, J., Jarvis, A., Roberts, C. & Robertson, T. Atlas of Namibia: A portrait of the land and its people. (2003).Curtis, B. A. & Mannheimer, C. A. Tree Atlas of Namibia; National Botanical Research Institute (NBRI). (National Botanical Research Institute, 2005).Mannheimer, C. & Curtis, B. Le Roux and Muller’s Field Guide to the Trees & Shrubs of Namibia. (Macmillan Education Namibia (PTY) LTD, 2009).Honsbein, D., Shiningavamwe, K., Iikela, J. & de la Puerta Fernandez, Maria, L. Animal Feed from Namibian Encroacher Bush. (2017).Coates Palgrave, K. Trees of Southern Africa. (Struik publishers, 1993).Nghikembua, M., Harris, J., Tregenza, T. & Marker, L. Spatial and temporal habitat use by GPS collared male cheetahs in modified bushland habitat. Open J. For. 06, 269–280 (2016).
    Google Scholar 
    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Mehtatalo, L. & Lappi, J. Forest biometrics with examples in R. (Taylor & Francis Inc, 2020).R Core Team. R: A language and environment for statistical computing (2021).Birch, C. & Middleton, A. Economics of Land Degradation Related To Bush Encroachment in Namibia. (2017).Neke, K. S., Owen-Smith, N. & Witkowski, E. T. F. Comparative resprouting response of Savanna woody plant species following harvesting: the value of persistence. For. Ecol. Manage. 232, 114–123 (2006).Article 

    Google Scholar 
    Smit, N. Response of Colophospermum mopane to different intensities of tree thinning in the Mopane Bushveld of southern Africa. Afr. J. Range Forage Sci. 31, 173–177 (2014).Article 

    Google Scholar 
    DAS. Bush Control Manual. (John Meinert Printing, 2017).Leinonen, A. Wood chip production technology and costs for fuel in Namibia. VTT Tiedotteita – Valtion Teknillinen Tutkimuskeskus (2007).Chakanga, M. A preliminary analysis of the Economic Plots Research Data of the CCF Bush Project. (2003).West, P. W. Thinning. in Growing Plantation Forests vol. 9783319018 115–129 (Springer International Publishing, 2014).Dwyer, J. M., Fensham, R. & Buckley, Y. M. Restoration thinning accelerates structural development and carbon sequestration in an endangered Australian ecosystem. J. Appl. Ecol. 47, 681–691 (2010).Article 

    Google Scholar 
    Groengroeft, A., de Blécourt, M., Classen, N., Landschreiber, L. & Eschenbach, A. Acacia trees modify soil water dynamics and the potential groundwater recharge in savanna ecosystems. in Climate change and adaptive land management in southern Africa – assessments, changes, challenges, and solutions (ed. (eds. Revermann, R. et al.) 177–186 (Klaus Hess Publishers, 2018).Richter, C. G. F., Snyman, H. A. & Smit, G. N. The influence of tree density on the grass layer of three semi-arid savanna types of southern africa. Afr. J. Range Forage Sci. 18, 103–109 (2001).Article 

    Google Scholar 
    Stafford, W. et al. The economics of landscape restoration: Benefits of controlling bush encroachment and invasive plant species in South Africa and Namibia. Ecosyst. Serv. 27, 193–202 (2017).Article 

    Google Scholar 
    Joubert, D. F., Smit, G. N. & Hoffman, M. T. The influence of rainfall, competition and predation on seed production, germination and establishment of an encroaching Acacia in an arid Namibian savanna. J. Arid Environ. 91, 7–13 (2013).Article 
    ADS 

    Google Scholar  More

  • in

    Amazon windthrow disturbances are likely to increase with storm frequency under global warming

    Identification of windthrow eventsLandsat images from January 1st 2018 to December 31st 2019 were filtered on 20% or less of cloud coverage, and only the least cloudy image at each location was selected to make an image composite covering the entire Amazon region. In total, 395 least cloudy Landsat 8 images within the Amazon boundary during 2018–2019 were selected and displayed in false color (red: shortwave infrared band, green: near-infrared band, blue: red band) on Google Earth Engine for windthrow events identification (Supplementary Fig. 6). Hollow regions on Supplementary Fig. 6 (2.8% of the total area of the Amazon region) indicated that no clear images with 1 year before the identification were displayed in bright green colors (due to reflectance in near-infrared band from the pioneer species). “Old” windthrows account for ~80% of total identified windthrows, and they were verified using historical Landsat images that can go as far as 1984 (when Landsat 5 was launched). “Old” windthrows were validated once they were found with clear shape and more distinguish color on the historical Landsat images (Supplementary Fig. 7c). 10–15% of “old” windthrows without fan-shape were eliminated from this study because it was hard to identify if they were windthrows or other types of forest disturbance. The minimum size of windthrows identified in this study was 25,000 m2. This process generated the location and rough size of 1012 visible (both “old” and “new”) windthrow scars with fan-shaped patch, scattered small disturbance pixels tails, and an area of over 25,000 m2 (Supplementary Fig. 8). Based on a gap-size probability distribution function that simulates the entire disturbance gradient from all sizes of windthrows19, the proportion of total tree mortality represented by large windthrows ( >25,000 m2) identified in this study is 0.5–1.1%.Among 1012 visual identified windthrows, the occurrence year of 125 windthrows were identified using Landsat 5,7,8, MODIS, and TRMM dataset (Supplementary Table 2), and 38 windthrows from these 125 windthrows had clear remote sensing evidence to validate their occurring date (Supplementary Table 3). It is difficult to get the accurate year and date of occurrence of all identified windthrows. Previous studies showed that windthrows in the northwestern Amazon took ~20 years to recover to 90% of “pre-disturbance” biomass from all damage classes while forests in the central Amazon took ~40 years to recover40. The biomass recovery depends on the windthrow severity and time since disturbance33. Based on the recovery time (20–40 years) and the time of windthrow identification (2018–2019), we estimated that these 1012 windthrows most likely occurred within 30 years (between 1990 and 2019), and the estimated occurrence period was validated using the range of the occurrence year (1986–2019) of 125 windthrow cases.Windthrow density dataThe windthrow density shown in Fig. 1b was generated using 1012 windthrow points in QGIS45. We created a 2.5° by 2.5° grid map, and the windthrow density was calculated by counting the number of windthrows in each grid. These values were then converted to a density with units of counts of windthrows per 10,000 km2. We chose 2.5 degrees to aggregate the data to make sure that over 50% of grids have at least 1 windthrow event while still preserving the spatial distribution of mean afternoon CAPE over the Amazon. The contour lines displayed in Fig. 1c were generated using the “Contour” function on the windthrow density map in QGIS.Meteorological dataTo derive the correlation between windthrow density and meteorological variables, we used ERA 5 global reanalysis hourly CAPE on single levels from 1979 to present at 0.25° × 0.25° resolution provided by the European Center for Medium-Range Weather Forecasts. ERA 5 CAPE was computed by considering parcels of air departing at different pressure levels below the 35 kPa level, with maximum–unstable algorithm under a pseudo-adiabatic assumption46. Afternoon mean CAPE map was calculated as the average of hourly CAPE data from 17:00–23:00 UTC (13:00–19:00 local time in Amazon) over all the months between 1990 and 2019. We chose to average CAPE over 30 years because these windthrow events occurred in these 30 years and calculating the average can help capture the overall spatial pattern of CAPE and minimize the influence of interannual climate variability on windthrow events.To project future windthrow density in the Amazon for the end of the 21st century, we analyzed meteorological output from 10 ESMs that participated in CMIP6 (https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6). The models used in this research were listed in Supplementary Table 1. We extracted daily surface temperature (tas), specific humidity (huss), surface pressure (ps), temperature (ta) from these models to calculate daily nondilute, near-surface-based, adiabatic CAPE. CMIP6 CAPE was calculated by considering the buoyancy of a near-surface parcel lifted adiabatically to a series of discrete pressure levels (100 kPa to 10 kPa in increments of 10 kPa). CMIP6 CAPE is calculated as follows:$${CAPE}=mathop{sum }limits_{i=1}^{10}{{{{{rm{d}}}}}}p{{{{{rm{H}}}}}}({b}_{i}){b}_{i}$$
    (1)
    Where ({{{{{rm{d}}}}}}p) = 10 kPa, H is the Heaviside unit step function, and ({b}_{i}=frac{1}{{rho }_{i}}-frac{1}{{rho }_{e,i}}), with ({rho }_{i}) being the parcel density at pressure level i and ({rho }_{e,i}) being the environmental density at pressure level i.The future projections in our analysis were based on SSP585, a high-emission scenario with high radiative forcing by the end of the century. We calculated mean daily CAPE over 1990–2015 as current CMIP6 CAPE and mean daily CAPE over 2070–2099 as future CMIP6 CAPE. Since different approaches were used to calculate ERA 5 CAPE and CMIP6 CAPE47, the absolute CAPE values of the two datasets are not comparable. Therefore, for each ESM model, we scaled future CMIP6 CAPE by multiplying, grid-wise, the delta CAPE generated from an individual model in CMIP6 with the ERA 5 current mean afternoon CAPE (Fig. 1c) as follows:$${delta},{CAPE}=(CAPE_{CMIP6_{,future}},-CAPE_{CMIP6_current})/CAPE_{CMIP6_current}$$
    (2)
    $$CAP{E}_{scaled_CMIP6_,future}=(1+delta,CAPE)times CAP{E}_{ERA5}{_}_{current}$$
    (3)
    The delta CAPE indicated the projected increase in CAPE from 1990–2015 to the end of the 21st century. In this way, a scaled CMIP6 future CAPE map was generated for each model, and an ensemble-mean scaled CMIP6 CAPE map over 10 ESM models can be found in Supplementary Fig. 5b. The scaled CMIP6 future CAPE values were within plausible range compared to the ERA 5 current mean afternoon CAPE values, and both current and future CAPE maps were used to produce the increase in area with high CAPE values ( >1023 J kg−1) in Table 1. However, it is worth noting that the scaling with relative changes in delta CAPE (%) is more sensitive to CMIP historical baseline conditions than absolute changes of CAPE (J kg−1), which will likely introduce a larger scaled spread (min/max CAPE changes).The increase in area with storm-favorable environments was calculated as follows:$$Increase=(are{a}_{future}-area_{current})/are{a}_{current}$$
    (4)
    Where areacurrent is the area of CAPE  > 1023 J kg−1 for current ERA 5 CAPE, and areafuture is the area of CAPE  > 1023 J kg−1 for the scaled CMIP6 future CAPE.A model of windthrow densityWe developed a model based on the relationship between satellite-derived windthrow density and mean afternoon CAPE from the ERA 5 reanalysis over 1990–2019. The non-parametric model provides a look-up table of windthrow density as a function of CAPE within the range of observations. Counts of observed windthrow events and Amazon’s area were separately binned by CAPE using the same bins, producing two histograms of CAPE. The ratio of the former to the latter gives the density of windthrow events (windthrow events per area) as a function of CAPE. To avoid noise at the tails of the histograms, the six CAPE bins were chosen such that each bin would have about the same number of windthrow events (either 168 or 169). The total number of windthrow events is given by the sum over bins of the product of windthrow density and area. The minimum and maximum of current ERA 5 mean afternoon CAPE was 42 and 1549. The minimum CAPE value of the first bin was extended to 0 and the maximum CAPE value of the last bin was extended to infinity under the assumption that the windthrow density is similar for neighboring values. Based on the windthrow density and CAPE relationship used in the model, it is the increase in the area with high CAPE that then leads to an increase in the number of windthrow events.It is worth noting that the future windthrow density produced by models may be underestimated because the windthrow observations within regions with high CAPE were incomplete due to high cloud coverage. Moreover, the non-parametric model makes the conservative assumption that the windthrow density does not increase at higher, as-yet unobserved values of mean afternoon CAPE.Future projections of windthrow densityWe combined the non-parametric relationship (Fig. 2a) with the future CAPE map generated from the ten CMIP6 ESMs (adjusted by ERA 5 mean CAPE values) to estimate the changes in windthrow density at the end of the 21st century. We estimated uncertainties for windthrow density projections by combining information about model-to-model differences. The analysis yielded a set of 10 estimates. The overall windthrow density increase and uncertainty were estimated using the mean increase and one standard deviation from the ensemble of the 10 models. More

  • in

    Terrestrial invasive species alter marine vertebrate behaviour

    Polis, G. A., Anderson, W. B. & Holt, R. D. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu. Rev. Ecol. Evol. Syst. 28, 289–316 (1997).Article 

    Google Scholar 
    Doughty, C. E. et al. Global nutrient transport in a world of giants. Proc. Natl Acad. Sci. USA 113, 868–873 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Burpee, B. T. & Saros, J. E. Cross-ecosystem nutrient subsidies in Arctic and alpine lakes: implications of global change for remote lakes. Environ. Sci. 22, 1166–1189 (2020).CAS 

    Google Scholar 
    Gallardo, B., Clavero, M., Sánchez, M. I. & Vilà, M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Change Biol. 22, 151–163 (2016).Article 

    Google Scholar 
    Justino, D. G., Maruyama, P. K. & Oliveira, P. E. Floral resource availability and hummingbird territorial behaviour on a Neotropical savanna shrub. J. Ornithol. 153, 189–197 (2012).Article 

    Google Scholar 
    Van Overveld, T. et al. Food predictability and social status drive individual resource specializations in a territorial vulture. Sci. Rep. 8, 15155 (2018).Gunn, R. L., Hartley, I. R., Algar, A. C., Nadiarti, N. & Keith, S. A. Variation in the behaviour of an obligate corallivore is influenced by resource availability. Behav. Ecol. Sociobiol. https://doi.org/10.1007/s00265-022-03132-6 (2022).Keith, S. A. et al. Synchronous behavioural shifts in reef fishes linked to mass coral bleaching. Nat. Clim. Change 8, 986–991 (2018).Article 

    Google Scholar 
    Davies, N. B. & Hartley, I. R. Food patchiness, territory overlap and social systems: an experiment with dunnocks Prunella modularis. J. Anim. Ecol. 65, 837–846 (1996).Article 

    Google Scholar 
    Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. B 280, 20121890 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Delarue, P. E. M., Kerr, S. E. & Rymer, T. L. Habitat complexity, environmental change and personality: a tropical perspective. Behav. Process. 120, 101–110 (2015).Stimson, J. The role of the territory in the ecology of the intertidal limpet Lottia gigantea (Gray). Ecology 54, 1020–1030 (1973).Article 

    Google Scholar 
    Sells, S. N. & Mitchell, M. S. The economics of territory selection. Ecol. Modell. 438, 109329 (2020).Article 

    Google Scholar 
    Graf, P. M., Mayer, M., Zedrosser, A., Hackländer, K. & Rosell, F. Territory size and age explain movement patterns in the Eurasian beaver. Mamm. Biol. 81, 587–594 (2016).Article 

    Google Scholar 
    Simon, C. The influence of food abundance on territory size in the Iguanid lizard Sceloporus jarrovi. Ecology 56, 993–998 (1975).Article 

    Google Scholar 
    Ippi, S., Cerón, G., Alvarez, L. M., Aráoz, R. & Blendinger, P. G. Relationships among territory size, body size, and food availability in a specialist river duck. Emu 118, 293–303 (2018).Article 

    Google Scholar 
    Berumen, M. L. & Pratchett, M. S. Effects of resource availability on the competitive behaviour of butterflyfishes (Chaetodontidae). In Proc. 10th International Coral Reef Symposium 644–650 (ReefBase, 2006); http://reefbase.org/resource_center/publication/icrs.aspx?icrs=ICRS10Brown, J. L. The evolution of diversity in avian territorial systems. Wilson Bull. 76, 160–169 (1964).
    Google Scholar 
    Peiman, K. S. & Robinson, B. W. Ecology and evolution of resource-related heterospecific aggression. Q. Rev. Biol. 85, 133–158 (2010).Article 
    PubMed 

    Google Scholar 
    Grant, J. W. A., Girard, I. L., Breau, C. & Weir, L. K. Influence of food abundance on competitive aggression in juvenile convict cichlids. Anim. Behav. 63, 323–330 (2002).Article 

    Google Scholar 
    Duda, M. P. et al. Long-term changes in terrestrial vegetation linked to shifts in a colonial seabird population. Ecosystems 23, 1643–1656 (2020).Article 
    CAS 

    Google Scholar 
    Graham, N. A. J. et al. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559, 250–253 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jones, H. P. et al. Severity of the effects of invasive rats on seabirds: a global review. Conserv. Biol. 22, 16–26 (2008).Article 
    PubMed 

    Google Scholar 
    Honig, S. E. & Mahoney, B. Evidence of seabird guano enrichment on a coral reef in Oahu, Hawaii. Mar. Biol. 163, 22 (2016).Benkwitt, C. E., Gunn, R. L., Le Corre, M., Carr, P. & Graham, N. A. J. Rat eradication restores nutrient subsidies from seabirds across terrestrial and marine ecosystems. Curr. Biol. 31, 2704–2711.e4 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Savage, C. Seabird nutrients are assimilated by corals and enhance coral growth rates. Sci. Rep. 9, 4284 (2019).Benkwitt, C. E., Wilson, S. K. & Graham, N. A. J. Seabird nutrient subsidies alter patterns of algal abundance and fish biomass on coral reefs following a bleaching event. Glob. Change Biol. 25, 2619–2632 (2019).Article 

    Google Scholar 
    Benkwitt, C. E., Taylor, B. M., Meekan, M. G. & Graham, N. A. J. Natural nutrient subsidies alter demographic rates in a functionally important coral-reef fish. Sci. Rep. 11, 12575 (2021).Benkwitt, C. E., Wilson, S. K. & Graham, N. A. J. Biodiversity increases ecosystem functions despite multiple stressors on coral reefs. Nat. Ecol. Evol. 4, 919–926 (2020).Article 
    PubMed 

    Google Scholar 
    Robles, H. & Martin, K. Resource quantity and quality determine the inter-specific associations between ecosystem engineers and resource users in a cavity-nest web. PLoS ONE 8, e74694 (2013).Catano, L. B., Gunn, B. K., Kelley, M. C. & Burkepile, D. E. Predation risk, resource quality, and reef structural complexity shape territoriality in a coral reef herbivore. PLoS ONE 10, e0118764 (2015).Wilcox, K. A., Wagner, M. A. & Reynolds, J. D. Salmon subsidies predict territory size and habitat selection of an avian insectivore. PLoS ONE 16, e0254314 (2021).Frost, S. K. & Frost, P. G. H. Territoriality and changes in resource use by sunbirds at Leonotis leonurus (Labiatae). Oecologia 45, 109–116 (1980).Maynard Smith, J. Evolution and the Theory of Games (Cambridge Univ. Press, 1982).Book 

    Google Scholar 
    Dochtermann, N. A., Schwab, T., Anderson Berdal, M., Dalos, J. & Royauté, R. The heritability of behavior: a meta-analysis. J. Hered. 110, 403–410 (2019).Article 
    PubMed 

    Google Scholar 
    Sheppard, C. R. C. et al. Reefs and islands of the Chagos Archipelago, Indian Ocean: why it is the world’s largest no-take marine protected area. Aquat. Conserv. 22, 232–261 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Soeparno, Y. N., Shibuno, T. & Yamaoka, K. Relationship between pelagic larval duration and abundance of tropical fishes on temperate coasts of Japan. J. Fish. Biol. 80, 346–357 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Green, A. L. et al. Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biol. Rev. 90, 1215–1247 (2015).Article 
    PubMed 

    Google Scholar 
    Dall, S. R. X., Houston, A. I. & McNamara, J. M. The behavioural ecology of personality: consistent individual differences from an adaptive perspective. Ecol. Lett. 7, 734–739 (2004).Article 

    Google Scholar 
    Klumpp, D., McKinnon, D. & Daniel, P. Damselfish territories: zones of high productivity on coral reefs. Mar. Ecol. Prog. Ser. 40, 41–51 (1987).Article 

    Google Scholar 
    Carr, P. et al. Status and phenology of breeding seabirds and a review of important bird and biodiversity areas in the British Indian Ocean Territory. Bird Conserv. Int. 31, 14–34 (2020).Article 

    Google Scholar 
    Hoey, A. S. & Bellwood, D. R. Damselfish territories as a refuge for macroalgae on coral reefs. Coral Reefs 29, 107–118 (2010).Article 

    Google Scholar 
    Samways, M. J. Breakdown of butterflyfish (Chaetodontidae) territories associated with the onset of a mass coral bleaching event. Aquat. Conserv. 15, 101–107 (2005).Article 

    Google Scholar 
    Morgan, I. E. & Kramer, D. L. Determinants of social organization in a coral reef fish, the blue tang, Acanthurus coeruleus. Environ. Biol. Fishes 72, 443–453 (2005).Article 

    Google Scholar 
    Ceccarelli, D. M. Modification of benthic communities by territorial damselfish: a multi-species comparison. Coral Reefs 26, 853–866 (2007).Article 

    Google Scholar 
    Gochfeld, D. J. Territorial damselfishes facilitate survival of corals by providing an associational defense against predators. Mar. Ecol. Prog. Ser. 398, 137–148 (2010).Article 

    Google Scholar 
    Gordon, T. A. C., Cowburn, B. & Sluka, R. D. Defended territories of an aggressive damselfish contain lower juvenile coral density than adjacent non-defended areas on Kenyan lagoon patch reefs. Coral Reefs 34, 13–16 (2015).Article 

    Google Scholar 
    Hays, G. C. et al. A review of a decade of lessons from one of the world’s largest MPAs: conservation gains and key challenges. Mar. Biol. 167, 159–167 (2020).Article 

    Google Scholar 
    Nanninga, G. B., Côté, I. M., Beldade, R. & Mills, S. C. Behavioural acclimation to cameras and observers in coral reef fishes. Ethology 123, 705–711 (2017).Article 

    Google Scholar 
    Polunin, N. V. C. & Klumpp, D. W. Ecological correlates of foraging periodicity in herbivorous reef fishes of the Coral Sea. J. Exp. Mar. Biol. Ecol. 126, 1–20 (1989).Article 

    Google Scholar 
    Friard, O. & Gamba, M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).Article 

    Google Scholar 
    Paola, V. D., Vullioud, P., Demarta, L., Alwany, M. A. & Ros, A. F. H. Factors affecting interspecific aggression in a year-round territorial species, the jewel damselfish. Ethology 118, 721–732 (2012).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).Bürkner, P. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Soft. 80, 1–28 (2017).Article 

    Google Scholar 
    RStan: the R interface to Stan. R package version 2.21.5 (Stan Development Team, 2022).Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Soft. 33, 1–22 (2010).Article 

    Google Scholar 
    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).Article 

    Google Scholar 
    Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. & Burkner, P. C. Rank-normalization, folding, and localization: an improved (formula presented) for assessing convergence of MCMC (with Discussion). Bayesian Anal. 16, 667–718 (2021).Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).Article 

    Google Scholar  More

  • in

    Measuring the world’s cropland area

    Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2022).Article 

    Google Scholar 
    Land Use Statistics and Indicators. Global, Regional and Country Trends 2000–2020 FAOSTAT Analytical Brief Series No 48 https://www.fao.org/food-agriculture-statistics/data-release/data-release-detail/en/c/1599856/ (FAO, 2022).FAO. Land Statistics. Global, Regional and Country Trends, 1990–2018 FAOSTAT Analytical Brief Series No. 15 https://www.fao.org/3/cb2860en/cb2860en.pdf (FAO, 2021).Summary for policymakers in: Special Report on Climate Change and Land (eds Shukla, P. R. et al.) https://www.ipcc.ch/site/assets/uploads/sites/4/2020/02/SPM_Updated-Jan20.pdf (WMO, in the press).Sustainable Development Goals Indicator 2.4.1 (FAO, accessed); https://www.fao.org/sustainable-development-goals/indicators/241/en/Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IGES, 2006).Grassi, G. et al. Carbon fluxes from land 2000–2020: bringing clarity on countries’ reporting. Earth Syst. Sci. Data 14, 4643–4666 (2022).Article 
    ADS 

    Google Scholar 
    Tubiello, F. N. et al. Measuring Progress Towards Sustainable Agriculture FAO Statistical Working Papers Series No. 21–24 https://www.fao.org/3/cb4549en/cb4549en.pdf (FAO, 2021).Conchedda, G. & Tubiello, F. N. Drainage of organic soils and GHG emissions: validation with country data. Earth Syst. Sci. Data 12, 3113–3137 (2020).Article 
    ADS 

    Google Scholar 
    Hanson, C., Mazur, E., Stolle, F., Davis, C. & Searchinger, T. 5 takeaways on cropland expansion and what it means for people and the planet. WRI Insights https://www.wri.org/insights/cropland-expansion-impacts-people-planet (2022).Potapov, P. et al. The Global 2000–-2020 land cover and land use change dataset derived from the Landsat archive: first results. Front. Remote Sens. 3, 856903 (2022).Article 

    Google Scholar 
    Hansen, M. C. et al. Global land use extent and dispersion within natural land cover using Landsat data. Environ. Res. Lett. 17, 034050 (2022).Article 
    ADS 

    Google Scholar 
    Tubiello, F. N. et al. Carbon emissions and removals from forests: new estimates, 1990–2020. Earth Syst. Sci. Data. 13, 1681–1691 (2021).Article 
    ADS 

    Google Scholar  More

  • in

    Carbohydrate complexity limits microbial growth and reduces the sensitivity of human gut communities to perturbations

    Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schmidt, T. S. B., Raes, J. & Bork, P. The human gut microbiome: from association to modulation. Cell 172, 1198–1215 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tap, J. et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ. Microbiol. 17, 4954–4964 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357, 802–806 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morrison, K. E., Jašarević, E., Howard, C. D. & Bale, T. L. It’s the fiber, not the fat: significant effects of dietary challenge on the gut microbiome. Microbiome 8, 15 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maslowski, K. M. & Mackay, C. R. Diet, gut microbiota and immune responses. Nat. Immunol. 12, 5–9 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Reynolds, A. et al. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet 393, 434–445 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Slavin, J. Fiber and prebiotics: mechanisms and health benefits. Nutrients 5, 1417–1435 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353.e21 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Makki, K., Deehan, E. C., Walter, J. & Bäckhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23, 705–715 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cantu-Jungles, T. M. et al. Dietary fiber hierarchical specificity: the missing link for predictable and strong shifts in gut bacterial communities. mBio 12, e01028-21 (2022).
    Google Scholar 
    Murga-Garrido, S. M. et al. Gut microbiome variation modulates the effects of dietary fiber on host metabolism. Microbiome 9, 117 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cantu-Jungles, T. M. & Hamaker, B. R. New view on dietary fiber selection for predictable shifts in gut microbiota. mBio 11, e02179-19 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Singh, V. et al. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell 175, 679–694.e22 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Terrapon, N., Lombard, V., Gilbert, H. J. & Henrissat, B. Automatic prediction of polysaccharide utilization loci in Bacteroidetes species. Bioinformatics 31, 647–655 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Terrapon, N. et al. PULDB: the expanded database of Polysaccharide Utilization Loci. Nucleic Acids Res. 46, D677–D683 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kouzuma, A., Kato, S. & Watanabe, K. Microbial interspecies interactions: recent findings in syntrophic consortia. Front. Microbiol. 6, 477 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rakoff-Nahoum, S., Coyne, M. J. & Comstock, L. E. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr. Biol. 24, 40–49 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Luis, A. S. et al. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat. Microbiol. 3, 210–219 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cartmell, A. et al. A surface endogalactanase in Bacteroides thetaiotaomicron confers keystone status for arabinogalactan degradation. Nat. Microbiol. 3, 1314–1326 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rakoff-Nahoum, S., Foster, K. R. & Comstock, L. E. The evolution of cooperation within the gut microbiota. Nature 533, 255–259 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pichler, M. J. et al. Butyrate producing colonic Clostridiales metabolise human milk oligosaccharides and cross feed on mucin via conserved pathways. Nat. Commun. 11, 3285 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rogowski, A. et al. Glycan complexity dictates microbial resource allocation in the large intestine. Nat. Commun. 6, 7481 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Feng, J. et al. Polysaccharide utilization loci in Bacteroides determine population fitness and community-level interactions. Cell Host Microbe https://doi.org/10.1016/j.chom.2021.12.006 (2022).Pollak, S. et al. Public good exploitation in natural bacterioplankton communities. Sci. Adv. 7, eabi4717 (2022).Article 

    Google Scholar 
    Cuskin, F. et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517, 165–169 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patnode, M. L. et al. Interspecies competition impacts targeted manipulation of human gut bacteria by fiber-derived glycans. Cell 179, 59–73.e13 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walter, J., Maldonado-Gómez, M. X. & Martínez, I. To engraft or not to engraft: an ecological framework for gut microbiome modulation with live microbes. Curr. Opin. Biotechnol. 49, 129–139 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jernberg, C., Löfmark, S., Edlund, C. & Jansson, J. K. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 1, 56–66 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6, e280 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Becattini, S., Taur, Y. & Pamer, E. G. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol. Med. 22, 458–478 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3, 417 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stone, L. The stability of mutualism. Nat. Commun. 11, 2648 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ratzke, C., Barrere, J. & Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol. 4, 376–383 (2020).Article 
    PubMed 

    Google Scholar 
    Butler, S. & O’Dwyer, J. P. Stability criteria for complex microbial communities. Nat. Commun. 9, 2970 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, W. & Stevens, M. H. H. Fluctuating resource availability increases invasibility in microbial microcosms. Oikos 121, 435–441 (2012).Article 

    Google Scholar 
    Nobuhiko, K. et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336, 1325–1329 (2012).Article 

    Google Scholar 
    Maltby, R., Leatham-Jensen, M. P., Gibson, T., Cohen, P. S. & Conway, T. Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157:H7 in the mouse intestine. PLoS ONE 8, e53957 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leatham, M. P. et al. Precolonized human commensal Escherichia coli strains serve as a barrier to E. coli O157:H7 growth in the streptomycin-treated mouse intestine. Infect. Immun. 77, 2876–2886 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Venturelli, O. S. et al. Deciphering microbial interactions in synthetic human gut microbiome communities. Mol. Syst. Biol. 14, e8157 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark, R. L. et al. Design of synthetic human gut microbiome assembly and butyrate production. Nat. Commun. 12, 3254 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hromada, S. et al. Negative interactions determine Clostridioides difficile growth in synthetic human gut communities. Mol. Syst. Biol. 17, e10355 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    MacArthur, R. Species packing and competitive equilibrium for many species. Theor. Popul. Biol. 1, 1–11 (1970).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ndeh, D. et al. Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature 544, 65–70 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grondin, J. M., Tamura, K., Déjean, G., Abbott, D. W. & Brumer, H. Polysaccharide utilization loci: fueling microbial communities. J. Bacteriol. 199, e00860-16 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haiser, H. J. et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341, 295–298 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Devendran, S. et al. Clostridium scindens ATCC 35704: integration of nutritional requirements, the complete genome sequence, and global transcriptional responses to bile acids. Appl. Environ. Microbiol. 85, e00052-19 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rey, F. E. et al. Metabolic niche of a prominent sulfate-reducing human gut bacterium. Proc. Natl Acad. Sci. USA 110, 13582–13587 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaoutari, A. E., Armougom, F., Gordon, J. I., Raoult, D. & Henrissat, B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat. Rev. Microbiol. 11, 497–504 (2013).Article 
    PubMed 

    Google Scholar 
    Pereira, F. C. & Berry, D. Microbial nutrient niches in the gut. Environ. Microbiol. 19, 1366–1378 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Despres, J. et al. Xylan degradation by the human gut Bacteroides xylanisolvens XB1A(T) involves two distinct gene clusters that are linked at the transcriptional level. BMC Genomics 17, 326 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Déjean, G. et al. Synergy between cell surface glycosidases and glycan-binding proteins dictates the utilization of specific beta(1,3)-glucans by human gut bacteroides. mBio 11, e00095-20 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hamaker, B. R. & Tuncil, Y. E. A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J. Mol. Biol. 426, 3838–3850 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bishop, C. M. Pattern Recognition and Machine Learning (Information Science and Statistics) (Springer, 2006).Wasserman, L. All of Statistics: A Concise Course in Statistical Inference (Springer Texts in Statistics) (Springer, 2003).Willing, B. P., Russell, S. L. & Finlay, B. B. Shifting the balance: antibiotic effects on host–microbiota mutualism. Nat. Rev. Microbiol. 9, 233–243 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Panda, S. et al. Short-term effect of antibiotics on human gut microbiota. PLoS ONE 9, e95476 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ng, K. M. et al. Recovery of the gut microbiota after antibiotics depends on host diet, community context, and environmental reservoirs. Cell Host Microbe 26, 650–665.e4 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van der Waaij, D., Berghuis-de Vries, J. M. & Lekkerkerk-van der Wees, J. E. C. Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J. Hygiene 69, 405–411 (1971).Article 

    Google Scholar 
    Freter, R. In vivo and in vitro antagonism of intestinal bacteria against Shigella flexneri. II. The inhibitory mechanism. J. Infect. Dis. 110, 38–46 (1962).Article 
    CAS 
    PubMed 

    Google Scholar 
    Maldonado-Gómez, M. X. et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe 20, 515–526 (2016).Article 
    PubMed 

    Google Scholar 
    Sorbara, M. T. & Pamer, E. G. Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them. Mucosal Immunol. 12, 1–9 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Litvak, Y. & Bäumler, A. J. The founder hypothesis: a basis for microbiota resistance, diversity in taxa carriage, and colonization resistance against pathogens. PLoS Pathog. 15, e1007563 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jenior, M. L., Leslie, J. L., Young, V. B. & Schloss, P. D. Clostridium difficile colonizes alternative nutrient niches during infection across distinct murine gut microbiomes. mSystems 2, e00063-17 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Momose, Y., Hirayama, K. & Itoh, K. Competition for proline between indigenous Escherichia coli and E. coli O157:H7 in gnotobiotic mice associated with infant intestinal microbiota and its contribution to the colonization resistance against E. coli O157:H7. Antonie van Leeuwenhoek 94, 165–171 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fabich, A. J. et al. Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect. Immun. 76, 1143–1152 (2008).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shepherd, E. S., DeLoache, W. C., Pruss, K. M., Whitaker, W. R. & Sonnenburg, J. L. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 557, 434–438 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jenior, M. L., Leslie, J. L., Young, V. B. & Schloss, P. D. Clostridium difficilealters the structure and metabolism of distinct cecal microbiomes during initial infection to promote sustained colonization. mSphere 3, e00261-18 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, S., Tan, J., Yang, X., Ma, C. & Jiang, L. Niche and fitness differences determine invasion success and impact in laboratory bacterial communities. ISME J. 13, 402–412 (2019).Article 
    PubMed 

    Google Scholar 
    Deng, Y.-J. & Wang, S. Y. Synergistic growth in bacteria depends on substrate complexity. J. Microbiol. 54, 23–30 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Deng, Y.-J. & Wang, S. Y. Complex carbohydrates reduce the frequency of antagonistic interactions among bacteria degrading cellulose and xylan. FEMS Microbiol. Lett. 364, fnx019 (2017).Article 
    PubMed Central 

    Google Scholar 
    Wu, F. et al. Modulation of microbial community dynamics by spatial partitioning. Nat. Chem. Biol. 18, 394–402 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Åström, K. J. & Murray, R. Feedback Systems. An Introduction for Scientists and Engineers (Princeton Univ. Press, 2008).Hammarlund, S. P. & Harcombe, W. R. Refining the stress gradient hypothesis in a microbial community. Proc. Natl Acad. Sci. USA 116, 15760–15762 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pacheco, A. R., Osborne, M. L. & Segrè, D. Non-additive microbial community responses to environmental complexity. Nat. Commun. 12, 2365 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dal Bello, M., Lee, H., Goyal, A. & Gore, J. Resource–diversity relationships in bacterial communities reflect the network structure of microbial metabolism. Nat. Ecol. Evol. 5, 1424–1434 (2021).Article 
    PubMed 

    Google Scholar 
    Magnúsdóttir, S. et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 35, 81–89 (2017).Article 
    PubMed 

    Google Scholar 
    Baranwal, M. et al. Recurrent neural networks enable design of multifunctional synthetic human gut microbiome dynamics. eLife 11, e73870 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Palleja, A. et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol. 3, 1255–1265 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108, 4554–4561 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ramirez, J. et al. Antibiotics as major disruptors of gut microbiota. Front. Cell. Infect. Microbiol. 10, 572912 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raue, A. et al. Lessons learned from quantitative dynamical modeling in systems biology. PLoS ONE 8, e74335 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Babtie, A. C., Kirk, P. & Stumpf, M. P. H. Topological sensitivity analysis for systems biology. Proc. Natl Acad. Sci. USA 111, 18507–18512 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Munsky, B., Hlavacek, W. S. & Tsimring, L. S. Quantitative Biology. Theory, Computational Methods, and Models (MIT Press, 2018).Ashyraliyev, M., Fomekong-Nanfack, Y., Kaandorp, J. A. & Blom, J. G. Systems biology: parameter estimation for biochemical models. FEBS J. 276, 886–902 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ravcheev, D. A., Godzik, A., Osterman, A. L. & Rodionov, D. A. Polysaccharides utilization in human gut bacterium Bacteroides thetaiotaomicron: comparative genomics reconstruction of metabolic and regulatory networks. BMC Genomics 14, 873 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salyers, A. A., Vercelloitti, J. R., West, S. E. & Wilkins, T. D. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl. Environ. Microbiol. 33, 319–322 (1977).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sun, X., Liu, Y., Jiang, P., Song, S. & Ai, C. Interaction of sulfated polysaccharides with intestinal Bacteroidales plays an important role in its biological activities. Int. J. Biol. Macromol. 168, 496–506 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Respondek, F. et al. Short-chain fructo-oligosaccharides modulate intestinal microbiota and metabolic parameters of humanized gnotobiotic diet induced obesity mice. PLoS ONE 8, e71026 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schwiertz, A. et al. Anaerostipes caccae gen. nov., sp. nov., a new saccharolytic, acetate-utilising, butyrate-producing bacterium from human faeces. Syst. Appl. Microbiol. 25, 46–51 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Benítez-Páez, A., Moreno, F. J., Sanz, M. L. & Sanz, Y. Genome structure of the symbiont Bifidobacterium pseudocatenulatum CECT 7765 and gene expression profiling in response to lactulose-derived oligosaccharides. Front. Microbiol. 7, 624 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bernalier, A., Willems, A., Leclerc, M., Rochet, V. & Collins, M. D. Ruminococcus hydrogenotrophicus sp. nov., a new H2/CO2-utilizing acetogenic bacterium isolated from human feces. Arch. Microbiol. 166, 176–183 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Moshfegh, A. J., Friday, J. E., Goldman, J. P. & Ahuja, J. K. C. Presence of inulin and oligofructose in the diets of Americans. J. Nutr. 129, 1407S–1411S (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sonnenburg, E. D. et al. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell 141, 1241–1252 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Devillé, C., Damas, J., Forget, P., Dandrifosse, G. & Peulen, O. Laminarin in the dietary fibre concept. J. Sci. Food Agric. 84, 1030–1038 (2004).Article 

    Google Scholar 
    Selvendran, R. R. The plant cell wall as a source of dietary fiber: chemistry and structure. Am. J. Clin. Nutr. 39, 320–337 (1984).Article 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Plant traits and marsh fate

    Coleman, D. J. et al. Limnol. Oceanogr. Lett. 7, 140–149 (2022).Article 

    Google Scholar 
    Noyce, G. L. et al. https://doi.org/10.1038/s41561-022-01070-6 (2022).Kirwan, M. L. & Megonigal, J. P. Nature 504, 53–60 (2013).Article 

    Google Scholar 
    Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerve, B. & Cahoon, D. R. Ecology 83, 2869–2877 (2002).Article 

    Google Scholar 
    Noyce, G. L., Kirwan, M. L., Rich, R. L. & Megonigal, J. P. Proc. Natl Acad. Sci. 116, 21623–21628 (2019).Article 

    Google Scholar 
    Langley, J. A., McKee, K. L., Cahoon, D. R., Cherry, J. A. & Megonigal, J. P. Proc. Natl Acad. Sci. 106, 182–6186 (2009).Article 

    Google Scholar 
    Dean, J. F. et al. Rev. Geophys. 56, 207–250 (2018).Article 

    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge University Press, 2021).Lin, Y. et al. Water Res. 205, 117682 (2021).Article 

    Google Scholar 
    Zakharova, L., Meyer, K. M. & Seifan, M. Ecol. Modell. 407, 108703 (2019).Article 

    Google Scholar  More

  • in

    Solar radiation, temperature and the reproductive biology of the coral Lobactis scutaria in a changing climate

    Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).Article 

    Google Scholar 
    Plaisance, L., Caley, M. J., Brainard, R. E. & Knowlton, N. The diversity of coral reefs: What are we missing?. PLoS ONE 6, e25026 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Frieler, K. et al. Limiting global warming to 2 °C is unlikely to save most coral reefs. Nat. Clim. Change 3, 165–170 (2013).Article 
    ADS 

    Google Scholar 
    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321, 560–563 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl. Acad. Sci. 116, 12907–12912 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).Article 
    ADS 

    Google Scholar 
    Van Oppen, M. J., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl. Acad. Sci. 112, 2307–2313 (2015).Article 
    ADS 

    Google Scholar 
    Parrett, J. M. & Knell, R. J. The effect of sexual selection on adaptation and extinction under increasing temperatures. Proc. R. Soc. B. 285, 20180303 (2018).Article 

    Google Scholar 
    Hagedorn, M. et al. Assisted gene flow using cryopreserved sperm in critically endangered coral. Proc. Natl. Acad. Sci. 118, e2110559118 (2021).Article 
    CAS 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Epstein, N., Bak, R. & Rinkevich, B. Applying forest restoration principles to coral reef rehabilitation. Aquat. Conserv. Mar. Freshw. Ecosyst. 13, 387–395 (2003).Article 

    Google Scholar 
    West, J. M. & Salm, R. V. Resistance and resilience to coral bleaching: Implications for coral reef conservation and management. Conserv. Biol. 17, 956–967 (2003).Article 

    Google Scholar 
    Yeemin, T., Sutthacheep, M. & Pettongma, R. Coral reef restoration projects in Thailand. Ocean Coast. Manag. 49, 562–575 (2006).Article 

    Google Scholar 
    Anthony, K. et al. Operationalizing resilience for adaptive coral reef management under global environmental change. Glob. Chang. Biol. 21, 48–61 (2015).Article 
    ADS 

    Google Scholar 
    Randall, C. J. et al. Sexual production of corals for reef restoration in the Anthropocene. Mar. Ecol. Prog. Ser. 635, 203–232 (2020).Article 
    ADS 

    Google Scholar 
    Porter, J. W., Fitt, W. K., Spero, H. J., Rogers, C. S. & White, M. W. Bleaching in reef corals: Physiological and stable isotopic responses. Proc. Natl. Acad. Sci. 86, 9342–9346 (1989).Article 
    ADS 
    CAS 

    Google Scholar 
    Mendes, J. M. & Woodley, J. D. Effect of the 1995–1996 bleaching event on polyp tissue depth, growth, reproduction and skeletal band formation in Montastraea annularis. Mar. Ecol. Prog. Ser. 235, 93–102 (2002).Article 
    ADS 

    Google Scholar 
    Grottoli, A., Rodrigues, L. & Juarez, C. Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Mar. Biol. 145, 621–631 (2004).Article 
    CAS 

    Google Scholar 
    Rodrigues, L. J. & Grottoli, A. G. Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol. Oceanogr. 52, 1874–1882 (2007).Article 
    ADS 

    Google Scholar 
    Levas, S. J., Grottoli, A. G., Hughes, A., Osburn, C. L. & Matsui, Y. Physiological and biogeochemical traits of bleaching and recovery in the mounding species of coral Porites lobata: Implications for resilience in mounding corals. PLoS ONE 8, e63267 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Schoepf, V. et al. Annual coral bleaching and the long-term recovery capacity of coral. Proc. R. Soc. B. 282, 20151887 (2015).Article 

    Google Scholar 
    Dai, C., Fan, T. & Yu, J. Reproductive isolation and genetic differentiation of a scleractinian coral Mycedium elephantotus. Mar. Ecol. Prog. Ser. 201, 179–187 (2000).Article 
    ADS 

    Google Scholar 
    Vargas-Ángel, B., Colley, S. B., Hoke, S. M. & Thomas, J. D. The reproductive seasonality and gametogenic cycle of Acropora cervicornis off Broward County, Florida, USA. Coral Reefs 25, 110–122 (2006).Article 
    ADS 

    Google Scholar 
    Rosser, N. & Gilmour, J. New insights into patterns of coral spawning on Western Australian reefs. Coral Reefs 27, 345–349 (2008).Article 
    ADS 

    Google Scholar 
    Szmant, A. M. & Gassman, N. J. The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8, 217–224 (1990).Article 
    ADS 

    Google Scholar 
    Baird, A. H. & Marshall, P. A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133–141 (2002).Article 
    ADS 

    Google Scholar 
    Levitan, D. R., Boudreau, W., Jara, J. & Knowlton, N. Long-term reduced spawning in Orbicella coral species due to temperature stress. Mar. Ecol. Prog. Ser. 515, 1–10 (2014).Article 
    ADS 

    Google Scholar 
    Ward, S., Harrison, P. & Hoegh-Guldberg, O. Coral bleaching reduces reproduction of scleractinian corals and increases susceptibility to future stress. In Proc. 9th Int. Coral Reef Symp. 1123–1128 (2002).Johnston, E. C., Counsell, C. W., Sale, T. L., Burgess, S. C. & Toonen, R. J. The legacy of stress: Coral bleaching impacts reproduction years later. Funct. Ecol. 34, 2315–2325 (2020).Article 

    Google Scholar 
    Hirose, M. & Hidaka, M. Reduced reproductive success in scleractinian corals that survived the 1998 bleaching in Okinawa. Galaxea 2000, 17–21 (2000).Article 

    Google Scholar 
    Omori, M., Fukami, H., Kobinata, H. & Hatta, M. Significant drop of fertilization of Acropora corals in 1999: An after-effect of heavy coral bleaching?. Limnol. Oceanogr. 46, 704–706 (2001).Article 
    ADS 

    Google Scholar 
    Hagedorn, M. et al. Potential bleaching effects on coral reproduction. Reprod. Fertil. Dev. 28, 1061–1071 (2016).Article 
    CAS 

    Google Scholar 
    Bassim, K., Sammarco, P. & Snell, T. Effects of temperature on success of (self and non-self) fertilization and embryogenesis in Diploria strigosa (Cnidaria, Scleractinia). Mar. Biol. 140, 479–488 (2002).Article 

    Google Scholar 
    Kenkel, C. D. et al. Development of gene expression markers of acute heat-light stress in reef-building corals of the genus Porites. PLoS ONE 6, e26914 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Louis, Y. D., Bhagooli, R., Kenkel, C. D., Baker, A. C. & Dyall, S. D. Gene expression biomarkers of heat stress in scleractinian corals: Promises and limitations. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 191, 63–77 (2017).Article 
    CAS 

    Google Scholar 
    Bonesso, J. L., Leggat, W. & Ainsworth, T. D. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury. PeerJ 5, e3719 (2017).Article 

    Google Scholar 
    Gierz, S., Ainsworth, T. D. & Leggat, W. Diverse symbiont bleaching responses are evident from 2-degree heating week bleaching conditions as thermal stress intensifies in coral. Mar. Freshw. Res. 71, 1149–1160 (2020).Article 

    Google Scholar 
    Baker, D. M., Freeman, C. J., Wong, J. C., Fogel, M. L. & Knowlton, N. Climate change promotes parasitism in a coral symbiosis. ISME J. 12, 921–930 (2018).Article 
    CAS 

    Google Scholar 
    Yee, S. H. & Barron, M. G. Predicting coral bleaching in response to environmental stressors using 8 years of global-scale data. Environ. Monit. Assess. 161, 423–438 (2010).Article 

    Google Scholar 
    Lesser, M. P. Coral bleaching: causes and mechanisms. In Coral Reefs: An Ecosystem in Transition (eds Riegl, B. M. & Purkis, S. J.) 405–419 (Springer, 2011).Chapter 

    Google Scholar 
    Barber, J. & Andersson, B. Too much of a good thing: Light can be bad for photosynthesis. Trends Biochem. Sci. 17, 61–66 (1992).Article 
    CAS 

    Google Scholar 
    Aro, E.-M., Virgin, I. & Andersson, B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta Bioenergy 1143, 113–134 (1993).Article 
    CAS 

    Google Scholar 
    Lesser, M. P. & Farrell, J. H. Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs 23, 367–377 (2004).Article 

    Google Scholar 
    Salih, A., Hoegh-Guldberg, O. & Cox, G. Bleaching responses of symbiotic dinoflagellates in corals: the effects of light and elevated temperature on their morphology and physiology. In Proceedings of the Australian Coral Reef Society 75th Anniversary Conference (eds Greenwood, J. G. & Hall, N. R.) 199–216 (1998).Smith, D. J., Suggett, D. J. & Baker, N. R. Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals?. Glob. Chang. Biol. 11, 1–11 (2005).Article 
    ADS 

    Google Scholar 
    Downs, C. et al. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching. PLoS ONE 8, e77173 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Banaszak, A. T. & Lesser, M. P. Effects of solar ultraviolet radiation on coral reef organisms. Photochem. Photobiol. Sci. 8, 1276–1294 (2009).Article 
    CAS 

    Google Scholar 
    Jokiel, P. L. & York, R. H. Jr. Solar ultraviolet photobiology of the reef coral Pocillopora damicornis and symbiotic zooxanthellae. Bull. Mar. Sci. 32, 301–315 (1982).
    Google Scholar 
    Vareschi, E. & Fricke, H. Light responses of a scleractinian coral (Plerogyra sinuosa). Mar. Biol. 90, 395–402 (1986).Article 

    Google Scholar 
    Henley, E. M. et al. Reproductive plasticity of Hawaiian Montipora corals following thermal stress. Sci. Rep. 11, 12525 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Wellington, G. & Fitt, W. Influence of UV radiation on the survival of larvae from broadcast-spawning reef corals. Mar. Biol. 143, 1185–1192 (2003).Article 
    CAS 

    Google Scholar 
    Gleason, D. F. & Wellington, G. M. Ultraviolet radiation and coral bleaching. Nature 365, 836–838 (1993).Article 
    ADS 

    Google Scholar 
    Courtial, L., Roberty, S., Shick, J. M., Houlbrèque, F. & Ferrier-Pagès, C. Interactive effects of ultraviolet radiation and thermal stress on two reef-building corals. Limnol. Oceanogr. 62, 1000–1013 (2017).Article 
    ADS 

    Google Scholar 
    Bahr, K. D., Jokiel, P. L. & Rodgers, K. S. The 2014 coral bleaching and freshwater flood events in Kāneʻohe Bay. Hawaiʻi. PeerJ 3, e1136 (2015).Article 

    Google Scholar 
    Rodgers, K. S., Bahr, K. D., Jokiel, P. L. & Richards Donà, A. Patterns of bleaching and mortality following widespread warming events in 2014 and 2015 at the Hanauma Bay Nature Preserve, Hawai‘i. PeerJ 5, e3355 (2017).Article 

    Google Scholar 
    Ritson-Williams, R. & Gates, R. D. Coral community resilience to successive years of bleaching in Kāne‘ohe Bay, Hawai‘i. Coral Reefs 39, 757–769 (2020).Article 

    Google Scholar 
    Krupp, D. A. Sexual reproduction and early development of the solitary coral Fungia scutaria (Anthozoa: Scleractinia). Coral Reefs 2, 159–164 (1983).Article 
    ADS 

    Google Scholar 
    Kramarsky-Winter, E. & Loya, Y. Reproductive strategies of two fungiid corals from the northern Red Sea: Environmental constraints?. Mar. Ecol. Prog. Ser. 174, 175–182 (1998).Article 
    ADS 

    Google Scholar 
    Loya, Y. & Sakai, K. Bidirectional sex change in mushroom stony corals. Proc. R. Soc. B. 275, 2335–2343 (2008).Article 

    Google Scholar 
    Hagedorn, M. et al. Coral larvae conservation: Physiology and reproduction. Cryobiology 52, 33–47 (2006).Article 
    CAS 

    Google Scholar 
    Jokiel, P. L. & Brown, E. K. Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii. Glob. Chang. Biol. 10, 1627–1641 (2004).Article 
    ADS 

    Google Scholar 
    Tanaka, K., Guidry, M. W. & Gruber, N. Ecosystem responses of the subtropical Kaneohe Bay, Hawaii, to climate change: A nitrogen cycle modeling approach. Aquat. Geochem. 19, 569–590 (2013).Article 
    CAS 

    Google Scholar 
    Couch, C. S. et al. Mass coral bleaching due to unprecedented marine heatwave in Papahānaumokuākea Marine National Monument (Northwestern Hawaiian Islands). PLoS ONE 12, e0185121 (2017).Article 

    Google Scholar 
    Coles, S. L. et al. Evidence of acclimatization or adaptation in Hawaiian corals to higher ocean temperatures. PeerJ 6, e5347 (2018).Article 

    Google Scholar 
    Barnhill, K. A. & Bahr, K. D. Coral resilience at Malaukaa fringing reef, Kāneʻohe Bay, Oʻahu after 18 years. J. Mar. Sci. Eng. 7, 311 (2019).Article 

    Google Scholar 
    Lesser, M., Stochaj, W., Tapley, D. & Shick, J. Bleaching in coral reef anthozoans: Effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 8, 225–232 (1990).Article 
    ADS 

    Google Scholar 
    Brown, B., Dunne, R., Scoffin, T. & Le Tissier, M. Solar damage in intertidal corals. Mar. Ecol. Prog. Ser. 219–230 (1994).Le Tissier, M. D. A. & Brown, B. E. Dynamics of solar bleaching in the intertidal reef coral Goniastrea aspera at Ko Phuket, Thailand. Mar. Ecol. Prog. Ser. 136, 235–244 (1996).Article 
    ADS 

    Google Scholar 
    Lesser, M. P. Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol. Oceanogr. 41, 271–283 (1996).Article 
    ADS 
    CAS 

    Google Scholar 
    Takahashi, S., Nakamura, T., Sakamizu, M., Woesik, R. V. & Yamasaki, H. Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol. 45, 251–255 (2004).Article 
    CAS 

    Google Scholar 
    Coelho, V. et al. Shading as a mitigation tool for coral bleaching in three common Indo-Pacific species. J. Exp. Mar. Biol. Ecol. 497, 152–163 (2017).Article 

    Google Scholar 
    Marquis, R. J. Phenological variation in the neotropical understory shrub Piper arielanum: Causes and consequences. Ecology 69, 1552–1565 (1988).Article 

    Google Scholar 
    Bouwmeester, J. et al. Latitudinal variation in monthly-scale reproductive synchrony among Acropora coral assemblages in the Indo-Pacific. Coral Reefs 40, 1411–1418 (2021).Article 

    Google Scholar 
    Hagedorn, M. et al. Preserving and using germplasm and dissociated embryonic cells for conserving Caribbean and Pacific coral. PLoS ONE 7, e33354 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Zuchowicz, N. et al. Assessing coral sperm motility. Sci. Rep. 11, 61 (2021).Article 
    CAS 

    Google Scholar 
    Binet, M., Doyle, C., Williamson, J. & Schlegel, P. Use of JC-1 to assess mitochondrial membrane potential in sea urchin sperm. J. Exp. Mar. Biol. Ecol. 452, 91–100 (2014).Article 
    CAS 

    Google Scholar 
    Jokiel, P., Maragos, J. & Franzisket, L. Coral growth: buoyant weight technique. In Coral Reefs: Research Methods Vol. 5 (eds Stoddart, D. R. & Johannes, R. E.) 529–542 (UNESCO, 1978).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org (R Foundation for Statistical Computing, 2019).Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage Publications, 2019).
    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Book 
    MATH 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Lenth, R. V. Least-squares means: The R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).Article 

    Google Scholar 
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. J. Math. Methods Biosci. 50, 346–363 (2008).MathSciNet 
    MATH 

    Google Scholar 
    Graves, S., Piepho, H.-P. & Selzer, M. L. multcompView: Visualizations of paired comparisons. R package version 0.1-7. https://CRAN.R-project.org/package=multcompView (2015).Christensen, R. H. B. ordinal-Regression models for ordinal data. R package version 2019.4-25. https://cran.r-project.org/package=ordinal/. (2019).Mangiafico, S. rcompanion: functions to support extension education program evaluation. R package version 2.3.7. https://cran.r-project.org/package=rcompanion (2019).Hope, R. M. Rmisc: Ryan Miscellaneous. R package version 1.5. https://cran.r-project.org/package=Rmisc (2013).Hervé, M. RVAideMemoire: Testing and plotting procedures for biostatistics, R package version 0.9-73. https://cran.r-project.org/package=RVAideMemoire (2019).Callaghan, J. A short note on the intensification and extreme rainfall associated with Hurricane Lane. Trop. Cyclone Res. Rev. 8, 103–107 (2019).Article 

    Google Scholar 
    Guest, J. R., Baird, A. H., Goh, B. P. L. & Chou, L. M. Seasonal reproduction in equatorial reef corals. Invertebr. Reprod. Dev. 48, 207–218 (2005).Article 

    Google Scholar 
    Lotterhos, K. E. & Levitan, D. Gamete release and spawning behavior in broadcast spawning marine invertebrates. In The Evolution of Primary Sexual Characters (eds Leonard, J. & Córdoba-Aguilar, A.) 99–120 (Oxford Univ. Press, 2010).
    Google Scholar 
    Ims, R. A. The ecology and evolution of reproductive synchrony. Trends Ecol. Evol. 5, 135–140 (1990).Article 
    CAS 

    Google Scholar 
    Shlesinger, T. & Loya, Y. Breakdown in spawning synchrony: A silent threat to coral persistence. Science 365, 1002–1007 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Guest, J. R., Baird, A. H., Bouwmeester, J. & Edwards, A. J. To assess temporal breakdown in spawning synchrony requires comparable temporal data. https://doi.org/10.1126/comment.737627/full/ (2020).Hartmann, D. L. et al. Observations: atmosphere and surface. In Climate change 2013 The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 159–254 (Cambridge University Press, 2013).Pörtner, H. et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (IPCC Intergovernmental Panel on Climate Change, 2019).
    Google Scholar 
    Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming?. Science 363, 128–129 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Gorbunov, M. Y. & Falkowski, P. G. Photoreceptors in the cnidarian hosts allow symbiotic corals to sense blue moonlight. Limnol. Oceanogr. 47, 309–315 (2002).Article 
    ADS 

    Google Scholar 
    Boch, C. A., Ananthasubramaniam, B., Sweeney, A. M., Doyle Iii, F. J. & Morse, D. E. Effects of light dynamics on coral spawning synchrony. Biol. Bull. 220, 161–173 (2011).Article 

    Google Scholar 
    Sweeney, A. M., Boch, C. A., Johnsen, S. & Morse, D. E. Twilight spectral dynamics and the coral reef invertebrate spawning response. J. Exp. Biol. 214, 770–777 (2011).Article 

    Google Scholar 
    Nozawa, Y. Annual variation in the timing of coral spawning in a high-latitude environment: Influence of temperature. Biol. Bull. 222, 192–202 (2012).Article 

    Google Scholar 
    Babcock, R. C. et al. Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Mar. Biol. 90, 379–394 (1986).Article 

    Google Scholar 
    Hunter, C. Environmental cues controlling spawning in two Hawaiian corals, Montipora verrucosa and M. dilatata. In Proc 6th Int Coral Reef Symp. vol. 2, 727–732.Levitan, D. R. et al. Mechanisms of reproductive isolation among sympatric broadcast spawning corals of the Montastraea annularis species complex. Evolution 58, 308–323 (2004).
    Google Scholar 
    Negri, A. P., Marshall, P. A. & Heyward, A. J. Differing effects of thermal stress on coral fertilization and early embryogenesis in four Indo Pacific species. Coral Reefs 26, 759–763 (2007).Article 
    ADS 

    Google Scholar 
    Humanes, A., Noonan, S. H., Willis, B. L., Fabricius, K. E. & Negri, A. P. Cumulative effects of nutrient enrichment and elevated temperature compromise the early life history stages of the coral Acropora tenuis. PLoS ONE 11, e0161616 (2016).Article 

    Google Scholar 
    Lesser, M. P., Kruse, V. A. & Barry, T. M. Exposure to ultraviolet radiation causes apoptosis in developing sea urchin embryos. J. Exp. Biol. 206, 4097–4103 (2003).Article 

    Google Scholar 
    Häder, D.-P. et al. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochem. Photobiol. Sci. 14, 108–126 (2015).Article 

    Google Scholar 
    Albright, R. & Mason, B. Projected near-future levels of temperature and pCO2 reduce coral fertilization success. PLoS ONE 8, e56468 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Espinoza, J., Schulz, M., Sanchez, R. & Villegas, J. Integrity of mitochondrial membrane potential reflects human sperm quality. Andrologia 41, 51–54 (2009).Article 
    CAS 

    Google Scholar 
    Paoli, D. et al. Mitochondrial membrane potential profile and its correlation with increasing sperm motility. Fertil. Steril. 95, 2315–2319 (2011).Article 
    CAS 

    Google Scholar 
    Gallo, A., Esposito, M. C., Tosti, E. & Boni, R. Sperm motility, oxidative status, and mitochondrial activity: Exploring correlation in different species. Antioxidants 10, 1131 (2021).Article 
    CAS 

    Google Scholar 
    Schlegel, P., Binet, M. T., Havenhand, J. N., Doyle, C. J. & Williamson, J. E. Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point. J. Exp. Biol. 218, 1084–1090 (2015).Article 

    Google Scholar 
    Gulko, D. Effects of ultraviolet radiation on fertilization and production of planula larvae in the Hawaiian coral Fungia scutaria. In Ultraviolet Radiation and Coral Reefs Vol. 41 (eds Gulko, D. & Jokiel, P. L.) 135–147 (University of Hawai’i, 1995).
    Google Scholar 
    Pruski, A. M., Nahon, S., Escande, M.-L. & Charles, F. Ultraviolet radiation induces structural and chromatin damage in Mediterranean sea-urchin spermatozoa. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 673, 67–73 (2009).Article 
    CAS 

    Google Scholar 
    Dahms, H.-U. & Lee, J.-S. UV radiation in marine ectotherms: Molecular effects and responses. Aquat. Toxicol. 97, 3–14 (2010).Article 
    CAS 

    Google Scholar 
    Nesa, B., Baird, A. H., Harii, S., Yakovleva, I. & Hidaka, M. Algal symbionts increase DNA damage in coral planulae exposed to sunlight. Zool. Stud. 51, 12–17 (2012).CAS 

    Google Scholar 
    Paxton, C. W., Baria, M. V. B., Weis, V. M. & Harii, S. Effect of elevated temperature on fecundity and reproductive timing in the coral Acropora digitifera. Zygote 24, 511 (2015).Article 

    Google Scholar 
    Jokiel, P. & Coles, S. Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar. Biol. 43, 201–208 (1977).Article 

    Google Scholar 
    Cantin, N. E., Cohen, A. L., Karnauskas, K. B., Tarrant, A. M. & McCorkle, D. C. Ocean warming slows coral growth in the Central Red Sea. Science 329, 322–325. https://doi.org/10.1126/science.1190182 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Cooper, T. F., De’Ath, G., Fabricius, K. E. & Lough, J. M. Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob. Chang. Biol. 14, 529–538 (2008).Article 
    ADS 

    Google Scholar 
    Tanzil, J., Brown, B., Tudhope, A. & Dunne, R. Decline in skeletal growth of the coral Porites lutea from the Andaman Sea, South Thailand between 1984 and 2005. Coral Reefs 28, 519–528 (2009).Article 
    ADS 

    Google Scholar 
    Tanzil, J. T. I. et al. Regional decline in growth rates of massive Porites corals in Southeast Asia. Glob. Chang. Biol. 19, 3011–3023 (2013).Article 
    ADS 

    Google Scholar 
    Richmond, R. H., Tisthammer, K. H. & Spies, N. P. The effects of anthropogenic stressors on reproduction and recruitment of corals and reef organisms. Front. Mar. Sci. 5, 226 (2018).Article 

    Google Scholar 
    Chen, P.-Y., Chen, C.-C., Chu, L. & McCarl, B. Evaluating the economic damage of climate change on global coral reefs. Glob. Environ. Change 30, 12–20 (2015).Article 

    Google Scholar 
    Kaniewska, P., Alon, S., Karako-Lampert, S., Hoegh-Guldberg, O. & Levy, O. Signaling cascades and the importance of moonlight in coral broadcast mass spawning. Elife 4, e09991 (2015).Article 

    Google Scholar 
    Lin, C.-H., Takahashi, S., Mulla, A. J. & Nozawa, Y. Moonrise timing is key for synchronized spawning in coral Dipsastraea speciosa. Proc. Natl. Acad. Sci. 118, e2101985118 (2021).Article 
    CAS 

    Google Scholar 
    Anthony, K. R. et al. Interventions to help coral reefs under global change—A complex decision challenge. PLoS ONE 15, e0236399 (2020).Article 
    CAS 

    Google Scholar 
    Daly, J. et al. Cryopreservation can assist gene flow on the Great Barrier Reef. Coral Reefs 41, 455–462 (2022).Article 

    Google Scholar  More