More stories

  • in

    A sensitive soil biological indicator to changes in land-use in regions with Mediterranean climate

    Takoutsing, B. et al. Assessment of soil health indicators for sustainable production of maize in smallholder farming systems in the highlands of Cameroon. Geoderma 276, 64–73 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Wenzel, W. W. et al. Soil and land use factors control organic caron status and accumulation in agricultural soils of Lower Austria. Geoderma 409, 115595. https://doi.org/10.1016/j.geoderma.2021.115595 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Rinot, O., Levy, G. J., Steinberger, Y., Svoray, T. & Eshel, G. Soil health assessment: A critical review of current methodologies and a proposed new approach. Sci. Total. Environ. 648, 1484–1491 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Veum, K. S., Sudduth, K. A., Kremer, R. J. & Kitchen, R. (2017) Sensor data fusion for soil health assessment. Geoderma 305, 53–61 (2017).Article 
    ADS 

    Google Scholar 
    Nunes, M. R., Van Es, H. M., Schindelbeck, R., Ristow, A. J. & Ryan, M. No-till and cropping system diversification improve soil health and crop yield. Geoderma 328, 30–43 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Chhipaa, V., Stein, A., Shankar, H., George, K. J. & Alidoost, F. Assessing and transferring soil health information in a hilly terrain. Geoderma 343, 130–138 (2019).Article 
    ADS 

    Google Scholar 
    Oliver, D. P., Bramley, R. G. V., Riches, D., Porter, I. & Edwards, J. A review of soil physical and chemical properties as indicators of soil quality in Australian viticulture. Aust. J. Grape Wine Res. 19, 129–139 (2013).Article 
    CAS 

    Google Scholar 
    Riches, D. et al. Review: soil biological properties as indicators of soil quality in Australian viticulture. Aust. J. Grape Wine Res. 19, 311–323 (2013).CAS 

    Google Scholar 
    Ritz, K., Black, H. I. J., Campbell, C. D., Harris, J. A. & Wood, C. Selecting biological indicators for monitoring soils: a framework for balancing scientific opinion to assist policy development. Ecol. Ind. 9, 1212–1221 (2009).Article 
    CAS 

    Google Scholar 
    Zhuo, Z., Kirchner, I., Pfahl, S. & Cubasch, U. Climate impact of volcanic eruptions: the sensitivity to eruption season and latitude in MPI-ESM ensemble experiments. Atmos. Chem. Phys. 21, 13425–13442 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Griffiths, B. S., Bonkowski, M., Roy, J. & Ritz, K. Functional stability, substrate utilisation and biological indicators of soils following environmental impacts. Appl. Soil Ecol. 16(1), 49–61 (2001).Article 

    Google Scholar 
    Avidano, L., Gamalero, E., Cossa, G. P. & Carraro, E. Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Appl. Soil Ecol. 30(1), 21–33 (2005).Article 

    Google Scholar 
    Pattison, A. B. et al. Development of key soil health indicators for the Australian banana industry. Appl. Soil Ecol. 40(1), 155–164 (2008).Article 

    Google Scholar 
    Damsma, K. M., Rose, M. T. & Cavagnaro, T. R. Landscape scale survey of indicators of soil health in grazing systems. Soil Res. 53(2), 154–167 (2015).Article 

    Google Scholar 
    Fine, A. K., van Es, H. M. & Schindelbeck, R. R. Statistics, scoring functions, and regional analysis of a comprehensive soil health database. Soil Sci. Soc. Am. J. 81(3), 589–601 (2016).Article 

    Google Scholar 
    Roper, W. R., Osmond, D. L., Heitman, J. L., Wagger, M. G. & Reberg-Horton, S. C. Soil Health indicators do not differentiate among agronomic management systems in North Carolina soils. Soil Sci. Soc. Am. J. 81(4), 828–843 (2016).Article 

    Google Scholar 
    Li, Z. et al. Rapid diagnosis of agricultural soil health: A novel soil health index based on natural soil productivity and human management. J. Environ. Manage. 277, 111402. https://doi.org/10.1016/j.jenvman.2020.111402 (2021).Article 

    Google Scholar 
    Oren, A. & Steinberger, Y. Catabolic profiles of soil fungal communities along a geographic climatic gradient in Israel. Soil Biol. Biochem. 40, 2578–2587 (2008).Article 
    CAS 

    Google Scholar 
    Yu, J., Glazer, N. & Steinberger, Y. Carbon utilization, microbial biomass, and respiration in biological soil crusts in the Negev Desert. Biol. Fert. Soils 50, 285–293 (2014).Article 
    CAS 

    Google Scholar 
    Van der Putten, W. H. et al. Plant–soil feedbacks: the past, the present and future challenges. J. Ecol. 101, 265–276 (2013).Article 

    Google Scholar 
    Sherman, C. & Steinberger, Y. Microbial functional diversity associated with plant litter decomposition along a climatic gradient. Microb. Ecol. 64, 399–415 (2012).Article 
    CAS 

    Google Scholar 
    Dwivedi, V. & Soni, P. A review on the role of soil microbial biomass in eco-restoration of degraded ecosystem with special reference to mining areas. J. Appl. Nat. Sci. 3(1), 151–158 (2011).Article 

    Google Scholar 
    Barreiro, A., Martín, A., Carballas, T. & Díaz-Raviña, M. Long-term response of soil microbial communities to fire and fire-fighting chemicals. Biol. Fertil. Soils 52, 963–975 (2016).Article 
    CAS 

    Google Scholar 
    Soil Science Division Staff. Soil survey manual. In USDA Handbook 18 (ed. Ditzler, C., Scheffe, K. & Monger, H.C.). (Washington, G. P. O., 2017).Campbell, C. D., Chapman, S. J., Cameron, C. M., Davidson, M. S. & Potts, J. M. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69, 3593–3599 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Anderson, J. P. E. & Domsch, K. H. Physiological method for quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10, 215–221 (1978).Article 
    CAS 

    Google Scholar 
    Creamer, R. E., Stone, D., Berry, P. & Kuiper, I. Measuring respiration profiles of soil microbial communities across Europe using MicroResp™ method. Appl. Soil Ecol. 97, 36–43 (2016).Article 

    Google Scholar 
    Oren, A. & Steinberger, Y. Coping with artifacts induced by CaCO3–CO2–H2O equilibria in substrate utilization profiling of calcareous soils. Soil Biol. Biochem. 40, 2569–2577 (2008).Article 
    CAS 

    Google Scholar 
    Zak, J. C., Willig, M. R., Howard, D. L. & Wildman, G. Functional diversity of microbial communities: A quantitative approach. Soil Biol. Biochem. 26(9), 1101–1108 (1994).Article 

    Google Scholar 
    Hotelling, H. The most predictable criterion. J. Educ. Psychol. 26, 139–142 (1935).Article 

    Google Scholar 
    Morrison, D. F. Multivariate Statistical Methods 2nd edn. (McGraw-Hill, 1976).MATH 

    Google Scholar 
    Rencher, A. C. Methods of Multivariate Analysis (Wiley, Uk, 1995).MATH 

    Google Scholar 
    IBM Corp. Released 2020. IBM SPSS Statistics for Windows, Version 27.0. (Armonk, NY: IBM Corp., 2020)R Core Team. A language and environment for statistical computing (R Foundation for Statistical Computing, 2021).
    Google Scholar 
    Bartoń K. MuMIn: Multi-Model Inference. R package version 1.46.0, https://CRAN.R-project.org/package=MuMIn, 2022.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Book 
    MATH 

    Google Scholar 
    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).Article 

    Google Scholar 
    Kiryushin, V. I. The management of soil fertility and productivity of agrocenoses in adaptive-landscape farming systems. Eurasian Soil Sci. 52, 1137–1145 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Hermans, S. M. et al. Using soil bacterial communities to predict physic-chemical variables and soil quality. Microbiome 8, 79 (2020).Article 
    CAS 

    Google Scholar 
    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U. S. A. 103, 626–631 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Frey, S. D., Drijber, R., Smith, H. & Melillo, J. M. Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol. Biochem. 40, 2904–2907 (2008).Article 
    CAS 

    Google Scholar 
    Powlson, D. S., Brookes, P. C. & Christensen, B. T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem. 19, 159–164 (1987).Article 
    CAS 

    Google Scholar 
    Brookes, P. C. The use of microbial parameters in monitoring soil pollution by heavy metals. Biol. Fertil. Soils. 19, 269–279 (1995).Article 
    CAS 

    Google Scholar 
    Hermans, S. M. et al. Bacteria as emerging indicators of soil condition. Appl. Environ. Microbiol. 83, e02826-e2916. https://doi.org/10.1128/AEM.02826-16 (2016).Article 

    Google Scholar 
    Liddicoat, C. et al. Can bacterial indicators of a grassy woodland restoration inform ecosystem assessment and microbiota-mediated human health?. Environ. Int. 129, 105–117 (2019).Article 

    Google Scholar 
    Jeanne, T., Parent, S. -É. & Hogue, R. Using a soil bacterial species balance index to estimate potato crop productivity. PLoS ONE 14, e0214089. https://doi.org/10.1371/journal.pone.0214089 (2019).Article 
    CAS 

    Google Scholar 
    Taylor, B. R. & Parkinson, D. Respiration and mass loss rates of aspen and pine leaf litter decomposing in laboratory microcosms. Can. J. Bot. 66, 1948–1959 (1988).Article 

    Google Scholar 
    Wardle, D. A. & Parkinson, D. Response of the soil microbial biomass to glucose, and selective inhibitors, across a soil moisture gradient. Soil Biol. Biochem. 22, 825–834 (1990).Article 
    CAS 

    Google Scholar 
    Baldrian, P., Merhautová, V., Petránková, M., Cajthaml, T. & Snajdr, J. Distribution of microbial biomass and activity of extracellular enzymes in a hardwood forest soil reflect soil moisture content. Appl. Soil Ecol. 46, 177–182 (2010).Article 

    Google Scholar 
    Holland, T. C. et al. The response of soil biota to water availability in vineyards. Pedobiol. Int. J. Soil Biol. 56, 9–14 (2013).
    Google Scholar 
    Yu, J. & Steinberger, Y. Vertical distribution of microbial-community functionality under the canopies of Zygophyllum dumosum and Hammada scoparia in the Negev Desert. Microb. Ecol. 62, 218–227 (2011).Article 

    Google Scholar 
    Wardle, D. A. & Parkinson, D. Interaction between microclimatic variables and the soil microbial biomass. Biol. Fertil. Soils. 9, 273–280 (1990).Article 

    Google Scholar  More

  • in

    Ocean acidification causes fundamental changes in the cellular metabolism of the Arctic copepod Calanus glacialis as detected by metabolomic analysis

    Using a targeted metabolomics approach, we showed that late copepodite stages of the keystone Arctic copepod Calanus glacialis experience important changes in several central energetic pathways following exposure to decreasing pH. These findings shed light on the physiological changes underpinning the effects of OA on fitness related traits such as ingestion rate and metabolic rate previously observed in this species17,18,20.Cellular energy metabolismCellular energy production was altered consistently in both stage CIV and CV, with concentrations of higher energy adenosine phosphates (ATP and ADP) increasing, and concentrations of the lower energy, less-phosphorylated AMP decreasing, with decreasing seawater pH. Moreover, Phospho-L-arginine, which in crustaceans functions as phosphagen in the replenishment of ATP from ADP during transient energy demands32, increased significantly in stage CV. These changes strongly suggest that exposure to low pH affects energy production and expenditure in both developmental stages, although with nuanced differences.NAD+ increased significantly in stage CIV. NAD+ is an essential redox carrier receiving electrons from oxidative processes in the glycolysis, the TCA cycle, and fatty acid oxidation to form NADH. A high NAD+/NADH ratio facilitates higher rates of these reactions and thus potentially higher rates of ATP production (unfortunately, the LC-HRMS could not detect NADH). But most importantly, the produced NADH serves as electron donors to ATP synthesis in the oxidative phosphorylation. For every ATP produced in the oxidative phosphorylation one NADH is oxidised back to NAD+. High rates of ATP production in the oxidative phosphorylation would therefore amass NAD+, as observed in stage CIV. Conversely, ATP production in the glycolysis and TCA cycle consumes NAD+ (9 NAD+ per 4 ATP) and glycolytic ATP production would decrease the NAD+ concentration with decreasing pH.Heterotrophic organisms generally face a trade-off between rate and yield of ATP production. The efficient low rate/high yield production in the TCA cycle/oxidative phosphorylation may prevail under certain circumstances, whereas under other circumstances, the less efficient high rate/low yield production in the glycolysis may predominate33. Because glycolysis and oxidative phosphorylation compete for ADP, the one dominate over the other in terms of rates depending on the substrate being metabolised. In stage CIV copepodites, the TCA cycle pathway was enriched in the MetPA, and metabolites associated with glycolysis and the TCA cycle showed significant changes in their concentrations at decreasing seawater pH. Glucose, the entry point to glycolysis, increased significantly with decreasing pH. High levels of blood glucose (hyperglycemia) have been observed as a general stress response in decapod crustaceans34. Copepods have no circulatory system (although they have a dorsal heart) but might nevertheless react similarly on the cellular level. Along with the significant increase in glucose, lactate decreased significantly with pH in stage CIV. Lactate is an inevitable end product of glycolysis, because lactate dehydrogenase has the highest Vmax of any enzymes in the glycolytic pathway and the Keq for pyruvate to lactate is far in the direction of lactate35. Accordingly, although the glycolysis was not enriched in the MetPA, conceivably because none of its intermediate metabolites were included in the analyses (the protocol did not allow for it), we hypothesise that stage CIV copepodites experience a general down-regulation of glycolysis under decreasing pH. Alternatively, the amassing of glucose and depletion of lactate could also indicate increased gluconeogenesis. Gluconeogenesis occurs during starvation to replenish glycogen stores and ingestion rates did decrease in stage CIV20. But again, we did not target any intermediates in our analyses, and thus cannot firmly conclude on this.Phosphofructokinase-1 is a key regulatory enzyme of glycolysis36. This enzyme is allosterically inhibited by ATP and activated by AMP, and interestingly this regulation is augmented by low pH37,38. Thus, phosphofructokinase-1 could be key to the down-regulation of glycolysis we hypothesise. The fact that we found increasing oxygen consumption with decreasing pH in stage CIV copepodites from the same experiment adds further momentum to this line of thought20. It seems that stage CIV copepodites might experience the so-called Pasteur effect—a decrease in glycolysis at increased levels of oxygen uptake—when exposed to decreasing pH39. Although ATP and AMP were significantly affected also in stage CV, glucose, pyruvate and lactate did not change with decreasing pH, which perhaps indicate absence of the down-regulation of glycolysis we hypothesise for stage CIV. There is, nevertheless, one indication that down-regulation may in fact occur also in this developmental stage. Alpha-glycerophosphate decreased significantly with decreasing pH in stage CV. This molecule is an intermediate in the transfer of electrons from NADH produced by glycolysis in the cytosol to the oxidative phosphorylation in the mitochondria, and decreased concentrations could result from down-regulation of the glycolysis also in stage CV copepodites.The TCA cycle was enriched for stage CIV and most of the measured TCA cycle metabolites (alpha-ketoglutarate, succinate, fumarate, and malate) showed increasing concentrations at decreasing pH. Trigg et al.40 observed a similar increase in concentrations of TCA cycle-related metabolites in the Dungeness crab, Cancer magister (Dana, 1852), at decreased pH and concluded that TCA cycle activity is upregulated under OA. Since NAD+ is the product of the transport of electrons from the TCA cycle to the oxidative phosphorylation in the mitochondria,  the increase in NAD+ concentration we observed in stage CIV could reflect an increase in the flow of electrons from the TCA cycle to the oxidative phosphorylation, and by extension an increase in the energy production by the TCA cycle and the oxidative phosphorylation. There is negative feedback from the TCA cycle to glycolysis through inhibition of phosphofructokinase-1 by citrate, a metabolite of the TCA cycle38. Unfortunately, we did not target citrate in our targeted approach to specifically test this hypothesis, but the amassing of NAD+ do provide additional support to the idea that glycolysis is down-regulated at decreasing pH. Again, there is a less clear picture of how cellular energy metabolism is affected by decreasing pH in stage CV when compared to stage CIV. There was no clear pattern of regulation of TCA metabolites, and the TCA cycle was not enriched in the MetPA. Nevertheless, alpha-ketoglutarate concentrations did increase with decreasing pH in CVs.The glyoxylate/dicarboxylate cycle was also enriched in the pathway analysis, but this is probably also a result of the increases in concentrations of alpha-ketoglutarate, succinate, fumarate, and malate, and we are unable to distinguish it from the TCA cycle based on the set of metabolites analysed.Conclusively, lowered glycolysis due to inhibition of phosphofructokinase-1 and upregulation of the TCA cycle and oxidative phosphorylation at low pH in stage CIV appear plausible causes for the changes in ATP, ADP and AMP concentrations we observed. Alongside these effects, down-regulation of transcription of genes involved in the glycolysis were also present in nauplii of C. glacialis exposed to 35–38 days of low pH conditions16. On the other hand, studies on the acclimatisation and adaptation to OA in another calanoid copepod species, Pseudocalanus acuspes (Giesbrecht, 1881), showed no increase in expression of mitochondrial genes at pHT 7.54, which would have been expected if the TCA cycle or oxidative phosphorylation is upregulated41. Interestingly, De Wit et al.41 also showed natural selection in a large fraction of mitochondrial genes under OA conditions. Even evolutionarily conserved sequences, such as cytochrome oxidase subunit I, were under selection and it was hypothesised that the mitochondrial function of oxidative phosphorylation is a target for natural selection in copepods at low pH41.Besides its role in the transfer of energy from the mitochondria to the cell, ATP is also used to fuel cell homeostasis and active cellular acid–base regulation by activation of ATP-dependent enzymes involved in osmo-ionic- and acid–base regulation. In crustaceans, acid–base status is linked to ion regulation, and is maintained primarily through ion transport mechanisms moving acid and/or base equivalents between the extracellular fluid and the ambient water42. One prominent process in this respect is regulation by Na+/K+-ATPase42,43. While this regulation takes place in the gills of decapod crustaceans43, it is located in the maxillary glands and other specialised organs on the swimming legs of copepods44. Any extensive ATPase mediated pH regulation could have manifested itself by decreasing ATP concentrations, but this is contrary to what we report here. Interestingly, while the pCO2-sensitive isopod Cymodoce truncata (Leach, 1814) is able to maintain its cellular ATP concentration at the expense of the concentration of carbonate anhydrase (an enzyme involved in the cellular transformation of water and CO2 to bicarbonate ions and H+ prior to the ATPase mediated transport of H+ across the cell membrane), the pCO2-tolerant isopod Dynamene bifida (Torelli, 1930) upregulates ATP with no functional compromise to CA concentrations45. Finally, C. glacialis nauplii have shown upregulation of Na+/H+-antiporters independent of ATPase as a response to OA16, which one could hypothesise also may be the case in the copepodites. Arctic populations of the amphipod Gammarus setosus also do not experience increased ATPase activity during OA conditions46. It seems that C. glacialis faces OA without any ATP dependent acid/base regulation activity.Glycolysis is the first step of catabolism of carbohydrates for the production of energy. When down-regulating glycolysis the copepods may be increasingly dedicated to catabolism of amino acids e.g. through oxidative deamination of glutamate and/or catabolism of fatty acids through beta-oxidation to produce the energy they require21. Both lead to the production of molecules entering the TCA cycle and ultimately the oxidative phosphorylation for energy production in the mitochondria.Amino acid metabolismOf the free amino acids which were significantly affected by decreasing pH, the majority decreased in concentration, for both stage CIV and CV copepodites. This could be an indication of changes in protein synthesis at decreasing pH. Supporting this idea, biosynthesis of aminoacyl-tRNA was indicated as significantly enriched in the MetPA in both stage CIV and CV. Aminoacyl-tRNA partakes in the elongation of the protein amino acid chain during protein synthesis and the enrichment was most likely due to the changes in concentration of the many amino acids tested. One probable cause of protein synthesis is the increased demands of enzymes needed to handle stress at low pH, including for example enzymes involved in acid–base- and osmo-regulation or regulation of energy production. Increased protein synthesis caused by OA conditions has been observed in larvae of the purple sea urchin Strongylocentrotus purpuratus (O.F. Müller, 1776), where in vivo rates of protein synthesis and ion transport increased ∼50%47. Costs of protein synthesis are high and have shown to constitute a major part of copepod metabolic demand48 and we did observe significant increases in metabolic rate in copepodite stage CIV from the same experiment20 giving further credit to the idea that protein synthesis was upregulated.An alternate but not mutually exclusive explanation is that the copepods experience increased amino acid catabolism under OA. Glutamate increased in stage CIV accompanied by a significant increase in alpha-ketoglutarate in both stage CIV and CV. Alpha-ketoglutarate is part of the metabolic pathway of glutamine, glutamate and arginine in which glutamate acts as an intermediate in catabolism of these amino acids when it is deaminated to alpha-ketoglutarate to enter the TCA cycle49. Glutamate metabolism (in conjunction with alanine and aspartate metabolism) was significantly enriched in the MetPA in both stage CIV and CV, and these changes could be taken as an indication of a shift towards amino acid catabolism with decreasing pH. The key enzyme catalysing the oxidative deamination of glutamate is glutamate dehydrogenase (GDH), which functions in both directions: deamination of glutamate to form alpha-ketoglutarate or formation of glutamate from alpha-ketoglutarate. Studies on the ribbed mussel, Modiolus dernissus (Dillwyn, 1817), have shown that the balance of this action is strongly pushed towards deamination when pH decreases from 8.0 to 7.550. GDH is activated by ADP, and one could argue that the increase in ADP we observed would work against this shift, but ADP activates GDH mainly in the glutamate forming direction51. The other measured amino acids enter the TCA cycle at different positions we unfortunately could not target in our analyses. Glutamate also partakes in the arginine biosynthesis pathway in which it is transformed to ornithine to enter the urea cycle. Arginine biosynthesis was enriched in the MetPA and it is therefore possible that decreasing pH also changes amino acid catabolism to increase urea excretion. Decreasing pH has a similar depressing effect on amino acid concentration in the gills of the shore crab Carcinus maenas (Linnaeus, 1758) which also has been interpreted as a sign of increased protein catabolism52. Hammer and colleagues52 argued that this increase in catabolism served to buffer H+ by supplying nitrogen to NH4 formation in the cells. All in all, we hypothesise that increased amino acid catabolism, possibly driven by changes in GDH activity, and the down-regulation of glycolysis by inhibition of phosphofructokinase-1 may be major drivers of a shift from carbohydrate metabolism towards catabolism of amino acids.D-glutamine/D-glutamate metabolism was highly enriched in the MetPA in both developmental stages. Several studies show enriched D-glutamine/D-glutamate metabolism in crustaceans [e.g. 53], but they offer no explanation of its function or the reason why it is enriched. While D-glutamate act in neurotransmission, this action is evolutionarily restricted to ctenophores, and biochemical measurements of D-amino acid concentrations have shown absence of D-glutamate in crustaceans54,55.We observed no changes in concentrations of 8-oxy-2-deoxyguanosine, a product of DNA oxidation. Furthermore, regulation of cellular response to oxidative stress is down-regulated in C. glacialis nauplii16, and OA may not induce oxidative stress in C. glacialis.Fatty acid metabolismBesides their importance in energy storage as wax esters, fatty acids are involved in many central processes in cells, most prominently through their function as cell membrane building blocks. Many fatty acids are obtained from the diet but some longer chain fatty acids, such as 20:1n-9 are synthesised de novo in copepods56. Stage CV copepodites experienced increases in most of the targeted free fatty acids (18 of 21) with decreasing pH. Only one of those 18 increased significantly, but since the direction of change were the same in all, we argue that the pattern of change does merit consideration. Conspicuous exceptions were eicosapentaenoic acid (EPA) 20:5n-3 and docosahexaenoic acid (DHA) 22:6n-3, which both decreased significantly. The only other study (to our knowledge) of metabolomic effects of environmental changes in copepods showed the exact same response to starvation in a mix of C. finmarchicus and C. helgolandicus stage CV copepodites, with most fatty acids increasing while EPA and DHA decreased in concentration57. EPA and DHA are key marine polyunsaturated fatty acids (PUFAs) exclusively produced by marine algae. They contribute a major fraction of the fatty acids of cell membrane phospholipids58, and zooplankton reproductive production is highly dependent on especially EPA59. EPA and DHA are key for cell membrane fluidity, which for calanoid copepods is especially important during diapause in the deep during copepodite stage CV60. They have also been linked to diapause buoyancy control, and are selectively metabolized in diapausing copepodites61. The importance of EPA and DHA for cell membrane integrity may be central for the changes we observed. Glycerol-3-phosphate, the precursor for the glycerol backbone of cell membrane phospholipids also decreased significantly and it seems decreasing pH could affect cell membrane turnover.Changing fatty acid concentration could be due to either a change in lipid intake from feeding or increased fatty acid catabolism. While ingestion rates decreased in stage CIV, they were unchanged in stage CV with decreasing pH20. Also, Thalassiosira weissflogii (Grunow) G.Fryxell & Hasle, 1977, the diatom we fed to the copepods, is rich in 16:0, 16:1n-7 and EPA59. The concentrations of 16:0 and 16:1n-7 increased, whereas EPA concentration decreased. If fatty acid concentrations reflected feeding, we would have seen increased concentrations of all three. We therefore believe that the general increases in concentrations of free fatty acids were caused by increasing catabolism of the wax esters stored in stage CV. It may be that due to the metabolic reconfiguration to enter hibernation, stage CV copepodites are already committed to the catabolism of fatty acids through beta-oxidation, and stored wax esters are being hydrolysed to increase the availability of free fatty acids for energy production. Mayor and colleagues57 arrived at the same conclusion. We hypothesise that stress due to low pH increases the organism’s energetic demands, but carbohydrates are not used to accommodate these demands due to the down-regulation of the glycolysis, rather demands are met by hydrolysing and metabolising wax esters in stage CV. The further ramifications of future OA could therefore be a less efficient build-up of wax esters so important for hibernation in this species.Finally, besides their importance for cell membrane fluidity, EPA and DHA are important precursors for eicosanoid endocrine hormones. These hormones are important regulators of, among other processes, ion flux62. As mentioned above, acid base regulation is coupled to osmoregulation in crustaceans42, and the decrease in concentrations of these two specific fatty acids, when all other fatty acid concentrations increased might represent an indication for changing endocrine hormone production to counter adverse whole-organism effects of OA.Changes in metabolite concentrations cannot be directly translated into changes in the rate of the processes they are involved in. However, they do pin-point processes which are affected by the imposed environmental changes. Also, in our analyses we targeted a limited range of molecules. In that respect OA could inflict changes in other important metabolic pathways we did not investigate. The absence of specific biochemical pathways in our analyses and discussion should therefore not be taken as indication that these are not implicated in this species responses to OA.From our previously published study on copepodites from the same incubations, we know that high pCO2/low pH conditions have detrimental effects on the balance between energy input (ingestion) and energy expenditure (metabolism) in stage CIV copepodites but not in stage CV copepodites20. The effects we report here help in this sense to shed light on the metabolic origin of the rather severe effects on energy balance we observed in stage CIV copepodites and the difference in response between stage CIV and CV20. Copepods develop through six nauplii and five copepodite stages before maturation, and while previous studies show negligible effects in stage CV and adults17,18,20, any effects in any developmental stage along the way will affect the fitness of the individual and the recruitment to the population as a whole. In addition, the enhanced fatty acid metabolism observed in stage CV needs further investigation, to determine the magnitude of the fitness implications of the energy diverted away from energy storage for hibernation. More

  • in

    Effects of phytoplankton, viral communities, and warming on free-living and particle-associated marine prokaryotic community structure

    Azam, F. et al. The ecological role of water-column microbes in the sea. Marine Ecol. Prog. Ser. 10, 257–263 (1983).Fuhrman, J. A. & Caron D. A. in Manual of Environmental Microbiology (eds Yates, M. V. et al.) 4.2.2–4.2.2.-34 (ASM Press, 2016).Gasol, J. M. & Kirchman, D. L. Microbial Ecology of the Oceans (John Wiley & Sons, 2018).Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl Acad. Sci. 105, 7774–7778 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Gilbert, J. A. et al. The seasonal structure of microbial communities in the Western English Channel. Environ. Microbiol. 11, 3132–3139 (2009).Article 
    CAS 

    Google Scholar 
    Gilbert, J. A. et al. Defining seasonal marine microbial community dynamics. ISME J. 6, 298–308 (2012).Article 
    CAS 

    Google Scholar 
    Hatosy, S. M. et al. Beta diversity of marine bacteria depends on temporal scale. Ecology 94, 1898–1904 (2013).Article 

    Google Scholar 
    Ward, C. S. et al. Annual community patterns are driven by seasonal switching between closely related marine bacteria. ISME J. 11, 1412–1422 (2017).Article 

    Google Scholar 
    Fuhrman, J. A. et al. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Natl Acad. Sci. 103, 13104–13109 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Gonzalez, J. M., Sherr, E. B. & Sherr, B. F. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl. Environ. Microbiol. 56, 583–589 (1990).Article 
    ADS 
    CAS 

    Google Scholar 
    Guixa-Boixereu, N., Vaque, D., Gasol, J. M. & Pedros-Alio, C. Distribution of viruses and their potential effect on bacterioplankton in an oligotrophic marine system. Aquat. Microb. Ecol. 19, 205–213 (1999).Article 

    Google Scholar 
    Šimek, K. et al. Shifts in bacterial community composition associated with different microzooplankton size fractions in a eutrophic reservoir. Limnol. Oceanogr. 44, 1634–1644 (1999).Article 
    ADS 

    Google Scholar 
    Hewson, I., Vargo, G. & Fuhrman, J. Bacterial diversity in shallow oligotrophic marine benthos and overlying waters: effects of virus infection, containment, and nutrient enrichment. Microb. Ecol. 46, 322–336 (2003).Article 
    CAS 

    Google Scholar 
    Schwalbach, M. S., Hewson, I. & Fuhrman, J. A. Viral effects on bacterial community composition in marine plankton microcosms. Aquat. Microb. Ecol. 34, 117–127 (2004).Article 

    Google Scholar 
    Winter, C., Smit, A., Herndl, G. J. & Weinbauer, M. G. Linking bacterial richness with viral abundance and prokaryotic activity. Limnol. Oceanogr. 50, 968–977 (2005).Article 
    ADS 

    Google Scholar 
    Chow, C.-E. T., Kim, D. Y., Sachdeva, R., Caron, D. A. & Fuhrman, J. A. Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists. ISME J. 8, 816–829 (2014).Article 
    CAS 

    Google Scholar 
    Suzuki, S. et al. Comparison of community structures between particle-associated and free-living prokaryotes in tropical and subtropical Pacific Ocean surface waters. J. Oceanogr. 73, 383–395 (2017).Article 
    CAS 

    Google Scholar 
    Milici, M. et al. Diversity and community composition of particle‐associated and free‐living bacteria in mesopelagic and bathypelagic Southern Ocean water masses: evidence of dispersal limitation in the Bransfield Strait. Limnol. Oceanogr. 62, 1080–1095 (2017).Article 
    ADS 

    Google Scholar 
    D’ambrosio, L., Ziervogel, K., MacGregor, B., Teske, A. & Arnosti, C. Composition and enzymatic function of particle-associated and free-living bacteria: a coastal/offshore comparison. ISME J. 8, 2167–2179 (2014).Article 

    Google Scholar 
    Rieck, A., Herlemann, D. P., Jürgens, K. & Grossart, H.-P. Particle-associated differ from free-living bacteria in surface waters of the Baltic Sea. Front. Microbiol. 6, 1297 (2015).Article 

    Google Scholar 
    Yung, C.-M., Ward, C. S., Davis, K. M., Johnson, Z. I. & Hunt, D. E. Insensitivity of diverse and temporally variable particle-associated microbial communities to bulk seawater environmental parameters. Appl. Environ. Microbiol. 82, 3431–3437 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014).Article 
    CAS 

    Google Scholar 
    Duret, M. T., Lampitt, R. S. & Lam, P. Prokaryotic niche partitioning between suspended and sinking marine particles. Environ. Microbiol. Rep. 11, 386–400 (2019).Article 
    CAS 

    Google Scholar 
    Crespo, B. G., Pommier, T., Fernández‐Gómez, B. & Pedrós‐Alió, C. Taxonomic composition of the particle‐attached and free‐living bacterial assemblages in the Northwest Mediterranean Sea analyzed by pyrosequencing of the 16S rRNA. Microbiologyopen 2, 541–552 (2013).Article 
    CAS 

    Google Scholar 
    Mestre, M., Borrull, E., Sala, M. & Gasol, J. M. Patterns of bacterial diversity in the marine planktonic particulate matter continuum. ISME J. 11, 999–1010 (2017).Yeh, Y. C. et al. Comprehensive single‐PCR 16S and 18S rRNA community analysis validated with mock communities, and estimation of sequencing bias against 18S. Environ. Microbiol. 23, 3240–3250 (2021).Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).Article 
    CAS 

    Google Scholar 
    Needham, D. M. et al. Dynamics and interactions of highly resolved marine plankton via automated high-frequency sampling. ISME J. 12, 2417 (2018).Article 
    CAS 

    Google Scholar 
    McNichol, J., Berube, P. M., Biller, S. J. & Fuhrman, J. A. Evaluating and improving small subunit rRNA PCR primer coverage for bacteria, archaea, and eukaryotes using metagenomes from global ocean surveys. Msystems 6, e00565–00521 (2021).Article 
    CAS 

    Google Scholar 
    Chow, C. E. T. & Fuhrman, J. A. Seasonality and monthly dynamics of marine myovirus communities. Environ. Microbiol. 14, 2171–2183 (2012).Article 

    Google Scholar 
    Filée, J., Tétart, F., Suttle, C. A. & Krisch, H. Marine T4-type bacteriophages, a ubiquitous component of the dark matter of the biosphere. Proc. Natl Acad. Sci. 102, 12471–12476 (2005).Article 
    ADS 

    Google Scholar 
    Pagarete, A. et al. Strong seasonality and interannual recurrence in marine myovirus communities. Appl. Environ. Microbiol. 79, 6253–6259 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Comeau, A. M. & Krisch, H. M. The capsid of the T4 phage superfamily: the evolution, diversity, and structure of some of the most prevalent proteins in the biosphere. Mol. Biol. Evolution 25, 1321–1332 (2008).Article 
    CAS 

    Google Scholar 
    Needham, D. M. et al. Short-term observations of marine bacterial and viral communities: patterns, connections and resilience. ISME J. 7, 1274–1285 (2013).Article 
    CAS 

    Google Scholar 
    Needham, D. M., Sachdeva, R. & Fuhrman, J. A. Ecological dynamics and co-occurrence among marine phytoplankton, bacteria and myoviruses shows microdiversity matters. ISME J. 11, 1614–1629 (2017).Article 

    Google Scholar 
    Ahlgren, N. A., Perelman, J. N., Yeh, Y. C. & Fuhrman, J. A. Multi‐year dynamics of fine‐scale marine cyanobacterial populations are more strongly explained by phage interactions than abiotic, bottom‐up factors. Environ. Microbiol. 21, 2948–2963 (2019).Article 
    CAS 

    Google Scholar 
    Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A. & Sun, F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome 5, 1–20 (2017).Article 

    Google Scholar 
    Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).Article 

    Google Scholar 
    Ignacio-Espinoza, J. C., Ahlgren, N. A. & Fuhrman, J. A. Long-term stability and Red Queen-like strain dynamics in marine viruses. Nat. Microbiol. 5, 265–271 (2020).Article 
    CAS 

    Google Scholar 
    Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, (2015).Brown, M. V. et al. Global biogeography of SAR11 marine bacteria. Mol. Syst. Biol. 8, 595 (2012).Article 
    ADS 

    Google Scholar 
    Johnson, Z. I. et al. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Zwirglmaier, K. et al. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ. Microbiol. 10, 147–161 (2008).
    Google Scholar 
    Martiny, A. C., Tai, A. P., Veneziano, D., Primeau, F. & Chisholm, S. W. Taxonomic resolution, ecotypes and the biogeography of Prochlorococcus. Environ. Microbiol. 11, 823–832 (2009).Article 

    Google Scholar 
    Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).Article 
    ADS 

    Google Scholar 
    Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047 (2016).Article 
    ADS 

    Google Scholar 
    Traving, S. J. et al. Prokaryotic responses to a warm temperature anomaly in northeast subarctic Pacific waters. Commun. Biol. 4, 1–12 (2021).Article 

    Google Scholar 
    Peña, M. A., Nemcek, N. & Robert, M. Phytoplankton responses to the 2014–2016 warming anomaly in the northeast subarctic Pacific Ocean. Limnol. Oceanogr. 64, 515–525 (2019).Article 
    ADS 

    Google Scholar 
    Yang, B., Emerson, S. R. & Peña, M. A. The effect of the 2013–2016 high temperature anomaly in the subarctic Northeast Pacific (the “Blob”) on net community production. Biogeosciences 15, 6747–6759 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Cavole, L. M. et al. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 

    Google Scholar 
    Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. 1, 16005 (2016).Article 
    CAS 

    Google Scholar 
    Grossart, H. P., Levold, F., Allgaier, M., Simon, M. & Brinkhoff, T. Marine diatom species harbour distinct bacterial communities. Environ. Microbiol. 7, 860–873 (2005).Article 
    CAS 

    Google Scholar 
    Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336, 608–611 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Chafee, M. et al. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J. 12, 237–252 (2018).Article 

    Google Scholar 
    Teeling, H. et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. elife 5, e11888 (2016).Article 

    Google Scholar 
    Unfried, F. et al. Adaptive mechanisms that provide competitive advantages to marine bacteroidetes during microalgal blooms. ISME J. 12, 2894–2906 (2018).Article 
    CAS 

    Google Scholar 
    Francis, T. B. et al. Changing expression patterns of TonB-dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom. ISME J. 15, 2336–2350 (2021).Thingstad, T. F. & Lignell, R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol. 13, 19–27 (1997).Article 

    Google Scholar 
    Thingstad, T. F., Våge, S., Storesund, J. E., Sandaa, R.-A. & Giske, J. A theoretical analysis of how strain-specific viruses can control microbial species diversity. Proc. Natl Acad. Sci. 111, 7813–7818 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Thingstad, T. F., Pree, B., Giske, J. & Våge, S. What difference does it make if viruses are strain-, rather than species-specific? Front. Microbiol. 6, 320 (2015).Article 

    Google Scholar 
    Prokopowich, C. D., Gregory, T. R. & Crease, T. J. The correlation between rDNA copy number and genome size in eukaryotes. Genome 46, 48–50 (2003).Article 
    CAS 

    Google Scholar 
    Zhu, F., Massana, R., Not, F., Marie, D. & Vaulot, D. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol. Ecol. 52, 79–92 (2005).Article 
    CAS 

    Google Scholar 
    Sintes, E. & Del Giorgio, P. A. Feedbacks between protistan single-cell activity and bacterial physiological structure reinforce the predator/prey link in microbial foodwebs. Front. Microbiol. 5, 453 (2014).Article 

    Google Scholar 
    Del Giorgio, P. A. et al. Bacterioplankton community structure: protists control net production and the proportion of active bacteria in a coastal marine community. Limnol. Oceanogr. 41, 1169–1179 (1996).Article 
    ADS 

    Google Scholar 
    Andersson, A., Larsson, U. & Hagström, Å. Size-selective grazing by a microflagellate on pelagic bacteria. Marine Ecol. Prog. Ser. 33, 51–57 (1986).Pernthaler, J. Predation on prokaryotes in the water column and its ecological implications. Nat. Rev. Microbiol. 3, 537–546 (2005).Article 
    CAS 

    Google Scholar 
    Baltar, F. et al. Marine bacterial community structure resilience to changes in protist predation under phytoplankton bloom conditions. ISME J. 10, 568–581 (2016).Article 

    Google Scholar 
    Suzuki, M. T. Effect of protistan bacterivory on coastal bacterioplankton diversity. Aquat. Microb. Ecol. 20, 261–272 (1999).Article 

    Google Scholar 
    Yokokawa, T. & Nagata, T. Growth and grazing mortality rates of phylogenetic groups of bacterioplankton in coastal marine environments. Appl. Environ. Microbiol. 71, 6799–6807 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Eren, A. M. et al. Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol. Evolution 4, 1111–1119 (2013).Article 

    Google Scholar 
    Coleman, M. L. & Chisholm, S. W. Code and context: Prochlorococcus as a model for cross-scale biology. Trends Microbiol. 15, 398–407 (2007).Article 
    CAS 

    Google Scholar 
    Scanlan, D. J. et al. Ecological genomics of marine picocyanobacteria. Microbiol. Mol. Biol. Rev. 73, 249–299 (2009).Article 
    CAS 

    Google Scholar 
    Moore, L. R., Rocap, G. & Chisholm, S. W. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393, 464–467 (1998).Article 
    ADS 
    CAS 

    Google Scholar 
    Rusch, D. B., Martiny, A. C., Dupont, C. L., Halpern, A. L. & Venter, J. C. Characterization of Prochlorococcus clades from iron-depleted oceanic regions. Proc. Natl Acad. Sci. 107, 16184–16189 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Larkin, A. A. et al. Persistent El Niño driven shifts in marine cyanobacteria populations. PloS ONE 15, e0238405 (2020).Article 
    CAS 

    Google Scholar 
    Arandia‐Gorostidi, N. et al. Warming the phycosphere: differential effect of temperature on the use of diatom‐derived carbon by two copiotrophic bacterial taxa. Environ. Microbiol. 22, 1381–1396 (2020).Article 

    Google Scholar 
    Arandia‐Gorostidi, N., Huete‐Stauffer, T. M., Alonso‐Sáez L, G. & Morán, X. A. Testing the metabolic theory of ecology with marine bacteria: different temperature sensitivity of major phylogenetic groups during the spring phytoplankton bloom. Environ. Microbiol. 19, 4493–4505 (2017).Article 

    Google Scholar 
    Fagan, A. J., Moreno, A. R. & Martiny, A. C. Role of ENSO conditions on particulate organic matter concentrations and elemental ratios in the Southern California Bight. Front. Mar. Sci. 6, 386 (2019).Article 

    Google Scholar 
    Chang, C. W. et al. Reconstructing large interaction networks from empirical time series data. Ecol. Lett. 24, 2763–2774 (2021).Article 

    Google Scholar 
    Lie, A. A., Kim, D. Y., Schnetzer, A. & Caron, D. A. Small-scale temporal and spatial variations in protistan community composition at the San Pedro Ocean Time-series station off the coast of southern California. Aquat. Microb. Ecol. 70, 93–110 (2013).Article 

    Google Scholar 
    Yeh, Y.-C., Needham, D. M., Sieradzki, E. T. & Fuhrman, J. A. Taxon disappearance from microbiome analysis reinforces the value of mock communities as a standard in every sequencing run. MSystems 3, e00023–00018 (2018).Article 

    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).Article 
    CAS 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).Article 
    CAS 

    Google Scholar 
    Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D579–D604 (2013).
    Google Scholar 
    Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. MSystems 2, (2017).Decelle, J. et al. Phyto REF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol. Ecol. Resour. 15, 1435–1445 (2015).Article 
    CAS 

    Google Scholar 
    Amin, S. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98–101 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).Article 
    ADS 

    Google Scholar 
    Hill, M. O. & Gauch, H. G. J. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42, 47–58 (1980).Ter Braak, C. J. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179 (1986).Article 

    Google Scholar 
    Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).Article 

    Google Scholar  More

  • in

    A regulatory hydrogenase gene cluster observed in the thioautotrophic symbiont of Bathymodiolus mussel in the East Pacific Rise

    Sogin, E. M., Leisch, N. & Dubilier, N. Chemosynthetic symbioses. Curr. Biol. 30, R1137–R1142 (2020).Article 
    CAS 

    Google Scholar 
    Dubilier, N., Bergin, C. & Lott, C. Symbiotic diversity in marine animals: The art of harnessing chemosynthesis. Nat. Rev. Microbiol. 6, 725–740 (2008).Article 
    CAS 

    Google Scholar 
    Barry, J. P. et al. Methane-based symbiosis in a mussel, Bathymodiolus platifrons, from cold seeps in Sagami Bay Japan. Invertebr. Biol. 121, 47–54 (2002).Article 

    Google Scholar 
    Le Pennec, M., Donval, A. & Herry, A. Nutritional strategies of the hydrothermal ecosystem bivalves. Prog. Oceanogr. 24, 71–80 (1990).Article 
    ADS 

    Google Scholar 
    Rau, G. H. & Hedges, J. I. Carbon-13 depletion in a hydrothermal vent mussel: Suggestion of a chemosynthetic food source. Science 203, 648–649 (1979).Article 
    ADS 
    CAS 

    Google Scholar 
    Wentrup, C., Wendeberg, A., Schimak, M., Borowski, C. & Dubilier, N. Forever competent: Deep-sea bivalves are colonized by their chemosynthetic symbionts throughout their lifetime. Environ. Microbiol. 16, 3699–3713 (2014).Article 

    Google Scholar 
    Dattagupta, S., Bergquist, D., Szalai, E., Macko, S. & Fisher, C. Tissue carbon, nitrogen, and sulfur stable isotope turnover in transplanted Bathymodiolus childressi mussels: Relation to growth and physiological condition. Limnol. Oceanogr. 49, 1144–1151 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Ikuta, T. et al. Heterogeneous composition of key metabolic gene clusters in a vent mussel symbiont population. ISME J. 10, 990–1001 (2016).Article 

    Google Scholar 
    Takishita, K. et al. Genomic evidence that methanotrophic endosymbionts likely provide deep-sea Bathymodiolus mussels with a sterol intermediate in cholesterol biosynthesis. Genome Biol. Evol. 9, 1148–1160 (2017).Article 

    Google Scholar 
    Sayavedra, L. et al. Horizontal acquisition followed by expansion and diversification of toxin-related genes in deep-sea bivalve symbionts. BioRxiv 110, 330 (2019).
    Google Scholar 
    Ponnudurai, R. et al. Metabolic and physiological interdependencies in the Bathymodiolus azoricus symbiosis. ISME J. 11, 463–477 (2017).Article 
    CAS 

    Google Scholar 
    Ponnudurai, R. et al. Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont. Stand Genom. Sci. 12, 1–9 (2017).
    Google Scholar 
    Kiel, S. The Vent and Seep Biota: Aspects from Microbes to Ecosystems Vol. 33 (Springer Science & Business Media, 2010).
    Google Scholar 
    Lorion, J. et al. Adaptive radiation of chemosymbiotic deep-sea mussels. Proc. R. Soc. B 280, 20131243 (2013).Article 

    Google Scholar 
    Nussbaumer, A. D., Fisher, C. R. & Bright, M. Horizontal endosymbiont transmission in hydrothermal vent tubeworms. Nature 441, 345–348 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Gros, O., Liberge, M., Heddi, A., Khatchadourian, C. & Felbeck, H. Detection of the free-living forms of sulfide-oxidizing gill endosymbionts in the lucinid habitat (Thalassia testudinum environment). Appl. Environ. Microbiol. 69, 6264–6267 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Won, Y.-J. et al. Environmental acquisition of thiotrophic endosymbionts by deep-sea mussels of the genus Bathymodiolus. Appl. Environ. Microbiol. 69, 6785–6792 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Laming, S. R., Gaudron, S. M. & Duperron, S. Lifecycle ecology of deep-sea chemosymbiotic mussels: A review. Front. Mar. Sci. 5, 282 (2018).Article 

    Google Scholar 
    Laming, S. R., Duperron, S., Cunha, M. R. & Gaudron, S. M. Settled, symbiotic, then sexually mature: Adaptive developmental anatomy in the deep-sea, chemosymbiotic mussel Idas modiolaeformis. Mar. Biol. 161, 1319–1333 (2014).Article 

    Google Scholar 
    Salerno, J. L. et al. Characterization of symbiont populations in life-history stages of mussels from chemosynthetic environments. Biol. Bull. 208, 145–155 (2005).Article 

    Google Scholar 
    Wentrup, C., Wendeberg, A., Huang, J. Y., Borowski, C. & Dubilier, N. Shift from widespread symbiont infection of host tissues to specific colonization of gills in juvenile deep-sea mussels. ISME J. 7, 1244–1247 (2013).Article 
    CAS 

    Google Scholar 
    Pennec, M. L. & Beninger, P. G. Ultrastructural characteristics of spermatogenesis in three species of deep-sea hydrothermal vent mytilids. Can. J. Zool. 75, 308–316 (1997).Article 

    Google Scholar 
    Eckelbarger, K. & Young, C. Ultrastructure of gametogenesis in a chemosynthetic mytilid bivalve (Bathymodiolus childressi) from a bathyal, methane seep environment (northern Gulf of Mexico). Mar. Biol. 135, 635–646 (1999).Article 

    Google Scholar 
    Ansorge, R. et al. Diversity matters: Deep-sea mussels harbor multiple symbiont strains. bioRxiv 99, 1039 (2019).
    Google Scholar 
    Petersen, J. M., Wentrup, C., Verna, C., Knittel, K. & Dubilier, N. Origins and evolutionary flexibility of chemosynthetic symbionts from deep-sea animals. Biol. Bull. 223, 123–137 (2012).Article 
    CAS 

    Google Scholar 
    Sayavedra, L. et al. Abundant toxin-related genes in the genomes of beneficial symbionts from deep-sea hydrothermal vent mussels. Elife 4, e07966 (2015).Article 

    Google Scholar 
    Ansorge, R. et al. Functional diversity enables multiple symbiont strains to coexist in deep-sea mussels. Nat. Microbiol. 4, 2487–2497 (2019).Article 

    Google Scholar 
    Petersen, J. M. et al. Hydrogen is an energy source for hydrothermal vent symbioses. Nature 476, 176–180 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Nakamura, K. & Takai, K. Theoretical constraints of physical and chemical properties of hydrothermal fluids on variations in chemolithotrophic microbial communities in seafloor hydrothermal systems. Prog. Earth Planet Sci. 1, 1–24 (2014).Article 
    ADS 

    Google Scholar 
    Perez, M. & Juniper, S. K. Insights into symbiont population structure among three vestimentiferan tubeworm host species at eastern Pacific spreading centers. Appl. Environ. Microbiol. 82, 5197–5205 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Wilbanks, E. G. et al. Metagenomic methylation patterns resolve bacterial genomes of unusual size and structural complexity. ISME J. https://doi.org/10.1038/s41396-022-01242-7 (2022).Article 

    Google Scholar 
    Rodriguez-Casariego, J. A., Cunning, R., Baker, A. C. & Eirin-Lopez, J. M. Symbiont shuffling induces differential DNA methylation responses to thermal stress in the coral Montastraea cavernosa. Mol. Ecol. 31, 588–602 (2022).Article 
    CAS 

    Google Scholar 
    Triant, D. A. & Whitehead, A. Simultaneous extraction of high-quality RNA and DNA from small tissue samples. J. Hered. 100, 246–250 (2009).Article 
    CAS 

    Google Scholar 
    Chin, C.-S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).Article 
    CAS 

    Google Scholar 
    Wick, R. R. et al. Trycycler: Consensus long-read assemblies for bacterial genomes. Genome Biol. 22, 1–17 (2021).Article 

    Google Scholar 
    Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).Article 
    CAS 

    Google Scholar 
    Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, e1005595 (2017).Article 
    ADS 

    Google Scholar 
    Krawczyk, P. S., Lipinski, L. & Dziembowski, A. PlasFlow: Predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res. 46, e35–e35 (2018).Article 

    Google Scholar 
    Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D. & Gurevich, A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 34, i142–i150 (2018).Article 
    CAS 

    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).Article 
    CAS 

    Google Scholar 
    Couvin, D. et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 46, W246–W251 (2018).Article 
    CAS 

    Google Scholar 
    Perez, M., Angers, B., Young, C. R. & Juniper, S. K. Shining light on a deep-sea bacterial symbiont population structure with CRISPR. Microbial. Genom. https://doi.org/10.1099/mgen.0.000625 (2021).Article 

    Google Scholar 
    Hyatt, D. et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 1–11 (2010).Article 

    Google Scholar 
    Nielsen, H. Protein Function Prediction 59–73 (Springer, 2017).Book 

    Google Scholar 
    Krogh, A., Larsson, B., Von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).Article 
    CAS 

    Google Scholar 
    Lagesen, K. et al. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100-31C08 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Chan, P. P. & Lowe, T. M. Gene Prediction 1–14 (Springer, 2019).
    Google Scholar 
    Griffiths-Jones, S. et al. Rfam: Annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121–D124 (2005).Article 
    CAS 

    Google Scholar 
    Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).Article 
    CAS 

    Google Scholar 
    Siguier, P., Pérochon, J., Lestrade, L., Mahillon, J. & Chandler, M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 34, D32–D36 (2006).Article 
    CAS 

    Google Scholar 
    Bertelli, C. et al. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 45, W30–W35 (2017).Article 
    CAS 

    Google Scholar 
    Arndt, D. et al. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16–W21 (2016).Article 
    CAS 

    Google Scholar 
    Roeselers, G. et al. Complete genome sequence of Candidatus Ruthia magnifica. Stand Genomic Sci. 3, 163–173 (2010).Article 

    Google Scholar 
    Emms, D. M. & Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 1–14 (2019).Article 

    Google Scholar 
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).Article 

    Google Scholar 
    Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).Article 
    CAS 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547 (2018).Article 
    CAS 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).Article 
    CAS 

    Google Scholar 
    Eren, A. M. et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat. Microbiol. 6, 3–6 (2021).Article 
    CAS 

    Google Scholar 
    Darling, A. E., Mau, B. & Perna, N. T. progressiveMauve: Multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5, e11147 (2010).Article 
    ADS 

    Google Scholar 
    Tesler, G. GRIMM: Genome rearrangements web server. Bioinformatics 18, 492–493 (2002).Article 
    CAS 

    Google Scholar 
    Cabanettes, F. & Klopp, C. D-GENIES: Dot plot large genomes in an interactive, efficient and simple way. PeerJ 6, e4958 (2018).Article 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).Article 
    CAS 

    Google Scholar 
    Gilchrist, C. L. & Chooi, Y.-H. Clinker & clustermap. js: Automatic generation of gene cluster comparison figures. Bioinformatics 37, 2473–2475 (2021).Article 
    CAS 

    Google Scholar 
    Taboada, B., Estrada, K., Ciria, R. & Merino, E. Operon-mapper: A web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics 34, 4118–4120 (2018).Article 
    CAS 

    Google Scholar 
    Søndergaard, D., Pedersen, C. N. & Greening, C. HydDB: A web tool for hydrogenase classification and analysis. Sci. Rep. 6, 1–8 (2016).Article 

    Google Scholar 
    NCBI Genome Browser. https://www.ncbi.nlm.nih.gov/genome/browse/#!/prokaryotes/. Accessed 12 March 2022.Mcmullin, E. R., Hourdez, S., Schaeffer, S. W. & Fisher, C. R. Review article phylogeny and biogeography of deep sea vestimentiferan tubeworms and their bacterial symbionts. Symbiosis. 34, 1–41 (2003).
    Google Scholar 
    Won, Y.-J., Jones, W. J. & Vrijenhoek, R. C. Absence of cospeciation between deep-sea mytilids and their thiotrophic endosymbionts. J. Shellfish Res. 27, 129–138 (2008).Article 

    Google Scholar 
    Miyazaki, J.-I., Martins, Ld. O., Fujita, Y., Matsumoto, H. & Fujiwara, Y. Evolutionary process of deep-sea Bathymodiolus mussels. PLoS ONE 5, e10363 (2010).Article 
    ADS 

    Google Scholar 
    Bright, M. & Bulgheresi, S. A complex journey: Transmission of microbial symbionts. Nat. Rev. Microbiol. 8, 218–230 (2010).Article 
    CAS 

    Google Scholar 
    Raggi, L., Schubotz, F., Hinrichs, K. U., Dubilier, N. & Petersen, J. M. Bacterial symbionts of Bathymodiolus mussels and Escarpia tubeworms from Chapopote, an asphalt seep in the southern Gulf of Mexico. Environ. Microbiol. 15, 1969–1987 (2013).Article 
    CAS 

    Google Scholar 
    Goris, J. et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57, 81–91 (2007).Article 
    CAS 

    Google Scholar 
    Meier-Kolthoff, J. P., Auch, A. F., Klenk, H.-P. & Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 14, 1–14 (2013).Article 

    Google Scholar 
    Konstantinidis, K. T. & Tiedje, J. M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. 102, 2567–2572 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Ho, P.-T. et al. Geographical structure of endosymbiotic bacteria hosted by Bathymodiolus mussels at eastern Pacific hydrothermal vents. BMC Evol. Biol. 17, 1–16 (2017).Article 

    Google Scholar 
    Romero Picazo, D. et al. Horizontally transmitted symbiont populations in deep-sea mussels are genetically isolated. ISME J. 13, 2954–2968 (2019).Article 

    Google Scholar 
    Perez, M. & Juniper, S. K. Is the trophosome of Ridgeia piscesae monoclonal?. Symbiosis 74, 55–65 (2018).Article 
    CAS 

    Google Scholar 
    Polzin, J., Arevalo, P., Nussbaumer, T., Polz, M. F. & Bright, M. Polyclonal symbiont populations in hydrothermal vent tubeworms and the environment. Proc. R. Soc. B 286, 20181281 (2019).Article 
    CAS 

    Google Scholar 
    Russell, S. L. & Cavanaugh, C. M. Intrahost genetic diversity of bacterial symbionts exhibits evidence of mixed infections and recombinant haplotypes. Mol. Biol. Evol. 34, 2747–2761 (2017).Article 
    CAS 

    Google Scholar 
    Breusing, C., Genetti, M., Russell, S. L., Corbett-Detig, R. B. & Beinart, R. A. Horizontal transmission enables flexible associations with locally adapted symbiont strains in deep-sea hydrothermal vent symbioses. Proc. Natl. Acad. Sci. 119, e2115608119 (2022).Article 
    CAS 

    Google Scholar 
    Lan, Y. et al. Endosymbiont population genomics sheds light on transmission mode, partner specificity, and stability of the scaly-foot snail holobiont. ISME J. https://doi.org/10.1038/s41396-022-01261-4 (2022).Article 

    Google Scholar 
    Anantharaman, K., Breier, J. A., Sheik, C. S. & Dick, G. J. Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria. Proc. Natl. Acad. Sci. 110, 330–335 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Fritsch, J. et al. Rubredoxin-related maturation factor guarantees metal cofactor integrity during aerobic biosynthesis of membrane-bound [NiFe] hydrogenase. J. Biol. Chem. 289, 7982–7993 (2014).Article 
    CAS 

    Google Scholar 
    Petersen, J. M. et al. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat. Microbiol. 2, 1–11 (2016).Article 

    Google Scholar 
    Nakagawa, S. et al. Allying with armored snails: The complete genome of gammaproteobacterial endosymbiont. ISME J. 8, 40–51 (2014).Article 
    CAS 

    Google Scholar 
    Vignais, P. M., Billoud, B. & Meyer, J. Classification and phylogeny of hydrogenases. FEMS Microbiol. Rev. 25, 455–501 (2001).Article 
    CAS 

    Google Scholar 
    Perez, M. et al. Divergent paths in the evolutionary history of maternally transmitted clam symbionts. Proc. R. Soc. B 289, 20212137 (2022).Article 
    CAS 

    Google Scholar 
    Li, S. et al. N 4-cytosine DNA methylation is involved in the maintenance of genomic stability in Deinococcus radiodurans. Front. Microbiol. 10, 1905 (2019).Article 

    Google Scholar 
    Casadesús, J. & Low, D. Epigenetic gene regulation in the bacterial world. Microbiol. Mol. Biol. Rev. 70, 830–856 (2006).Article 

    Google Scholar 
    De Oliveira, A. L., Srivastava, A., Espada-Hinojosa, S. & Bright, M. The complete and closed genome of the facultative generalist Candidatus Endoriftia persephone from deep-sea hydrothermal vents. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13668 (2022).Article 

    Google Scholar 
    Ponnudurai, R. et al. Comparative proteomics of related symbiotic mussel species reveals high variability of host–symbiont interactions. ISME J. 14, 649–656 (2020).Article 
    CAS 

    Google Scholar 
    Yu, N. Y. et al. PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26, 1608–1615 (2010).Article 
    CAS 

    Google Scholar  More

  • in

    Multiscale responses and recovery of soils to wildfire in a sagebrush steppe ecosystem

    Odum, E. P. The strategy of ecosystem development. Science 164, 262–270 (1969).Article 
    ADS 
    CAS 

    Google Scholar 
    Gorham, E., Vitousek, P. M. & Reiners, W. A. The regulation of element budgets over the course of terrestrial ecosystem succession. Annu. Rev. Ecol. Syst. 10, 53–84 (1979).Article 
    CAS 

    Google Scholar 
    Corman, J. R. et al. Foundations and frontiers of ecosystem science: Legacy of a classic paper (Odum 1969). Ecosystems 22, 1160–1172. https://doi.org/10.1007/s10021-018-0316-3 (2019).Article 

    Google Scholar 
    Santín, C. et al. Towards a global assessment of pyrogenic carbon from vegetation fires. Glob. Change Biol. 22, 76–91. https://doi.org/10.1111/gcb.12985 (2016).Article 
    ADS 

    Google Scholar 
    Kominoski, J. S., Gaiser, E. E. & Baer, S. G. Advancing theories of ecosystem development through long-term ecological research. Bioscience 68, 554–562. https://doi.org/10.1093/biosci/biy070 (2018).Article 

    Google Scholar 
    Balch, J. K., Bradley, B. A., D’Antonio, C. M. & Gómez-Dans, J. Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Glob. Change Biol. 19, 173–183. https://doi.org/10.1111/gcb.12046 (2013).Article 
    ADS 

    Google Scholar 
    Abatzoglou, J. T. & Kolden, C. A. Climate change in Western US deserts: Potential for increased wildfire and invasive annual grasses. Rangeland Ecol. Manag. 64(5), 471–478 (2011).Article 

    Google Scholar 
    Shi, H. et al. Historical cover trends in a sagebrush steppe ecosystem from 1985 to 2013: Links with climate, disturbance, and management. Ecosystems 21, 913–929. https://doi.org/10.1007/s10021-017-0191-3 (2018).Article 

    Google Scholar 
    Seyfried, M. S. & Wilcox, B. P. Scale and the nature of spatial variability: Field examples having implications for hydrologic modeling. Water Resour. Res. 31, 173–184. https://doi.org/10.1029/94WR02025 (1995).Article 
    ADS 

    Google Scholar 
    Gasch, C. K., Huzurbazar, S. V. & Stahl, P. D. Description of vegetation and soil properties in sagebrush steppe following pipeline burial, reclamation, and recovery time. Geoderma 265, 19–26. https://doi.org/10.1016/j.geoderma.2015.11.013 (2016).Article 
    ADS 

    Google Scholar 
    Huber, D. P. et al. Vegetation and precipitation shifts interact to alter organic and inorganic carbon storage in desert soils. Ecosphere 10, e02655. https://doi.org/10.1002/ecs2.2655 (2019).Article 

    Google Scholar 
    Knight, D. H., Jones, G. P., Reiners, W. A. & Romme, W. H. Mountains and Plains: The Ecology of Wyoming Landscapes (Yale University Press, 2014).
    Google Scholar 
    Patton, N. R., Lohse, K. A., Seyfried, M. S., Godsey, S. E. & Parsons, S. Topographic controls on soil organic carbon on soil mantled landscapes. Sci. Rep. 9, 6390. https://doi.org/10.1038/s41598-019-42556-5 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Schwabedissen, S. G., Lohse, K. A., Reed, S. C., Aho, K. A. & Magnuson, T. S. Nitrogenase activity by biological soil crusts in cold sagebrush steppe ecosystems. Biogeochemistry 134, 57–76. https://doi.org/10.1007/s10533-017-0342-9 (2017).Article 
    CAS 

    Google Scholar 
    You, Y. et al. Biological soil crust bacterial communities vary along climatic and shrub cover gradients within a sagebrush steppe ecosystem. Front. Microbiol. 12, 2365. https://doi.org/10.3389/fmicb.2021.569791 (2021).Article 

    Google Scholar 
    Burke, I. C., Reiners, W. A. & Olson, R. K. Topographic control of vegetation in a mountain big sagebrush steppe. Vegetation 84, 77–86 (1989).Article 

    Google Scholar 
    Poulos, M. J., Pierce, J. L., Flores, A. N. & Benner, S. G. Hillslope asymmetry maps reveal widespread, multi-scale organization. Geophys. Res. Lett. 39, 6. https://doi.org/10.1029/2012GL051283 (2012).Article 

    Google Scholar 
    Smith, T. & Bookhagen, B. Climatic and biotic controls on topographic asymmetry at the global scale. J. Geophys. Res.: Earth Surf. 126, e2020JF005692. https://doi.org/10.1029/2020JF005692Received22 (2021).Article 
    ADS 

    Google Scholar 
    Seyfried, M., Link, T., Marks, D. & Murdock, M. Soil temperature variability in complex terrain measured using fiber-optic distributed temperature sensing. Vadose Zone J. 15, 6. https://doi.org/10.2136/vzj2015.09.0128 (2016).Article 

    Google Scholar 
    Chambers, J. C. et al. Resilience and resistance of sagebrush ecosystems: Implications for state and transition models and management treatments. Rangel. Ecol. Manage. 67, 440–454. https://doi.org/10.2111/REM-D-13-00074.1 (2014).Article 

    Google Scholar 
    Chambers, J. C. et al. Operationalizing resilience and resistance concepts to address invasive grass-fire cycles. Front. Ecol. Evol. 7, 2369. https://doi.org/10.3389/fevo.2019.00185 (2019).Article 

    Google Scholar 
    Boehm, A. R. et al. Slope and aspect effects on seedbed microclimate and germination timing of fall-planted seeds. Rangel. Ecol. Manage. 75, 58–67. https://doi.org/10.1016/j.rama.2020.12.003 (2021).Article 

    Google Scholar 
    Sankey, J. B., Germino, M. J., Sankey, T. T. & Hoover, A. N. Fire effects on the spatial patterning of soil properties in sagebrush steppe, USA: A meta-analysis. Int. J. Wildl. Fire 21, 545–556. https://doi.org/10.1071/WF11092 (2012).Article 

    Google Scholar 
    Fellows, A., Flerchinger, G., Seyfried, M. S. & Lohse, K. A. Rapid recovery of mesic mountain big sagebrush gross production and respiration following prescribed fire. Ecosystems 21, 1283–1294. https://doi.org/10.1007/s10021-017-0218-9 (2018).Article 

    Google Scholar 
    Vega, S. P. et al. Interaction of wind and cold-season hydrologic processes on erosion from complex topography following wildfire in sagebrush steppe. Earth Surf. Process. Landforms https://doi.org/10.1002/esp.4778 (2019).Article 

    Google Scholar 
    Xie, J., Li, Y., Zhai, C., Li, C. & Lan, Z. CO2 absorption by alkaline soils and its implication to the global carbon cycle. Environ. Geol. 56, 953–961 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Stanbery, C., Pierce, J. L., Benner, S. G. & Lohse, K. On the rocks: Quantifying storage of inorganic soil carbon on gravels and determining pedon-scale variability. CATENA 157, 436–442. https://doi.org/10.1016/j.catena.2017.06.011 (2017).Article 
    CAS 

    Google Scholar 
    Stanbery, C. et al. Controls on the presence and concentration of soil inorganic carbon in a semi-arid watershed. CATENA https://doi.org/10.2139/ssrn.4267018 (2023).Article 

    Google Scholar 
    Cerling, T. E. & Quade, J. Stable carbon and oxygen isotopes in soil carbonates. Geophys. Monogr. 78, 217–231 (1993).ADS 

    Google Scholar 
    Tappa, D. J., Kohn, M. J., McNamara, J. P., Benner, S. G. & Flores, A. N. Isotopic composition of precipitation in a topographically steep, seasonally snow-dominated watershed and implications of variations from the global meteoric water line. Hydrol. Process. 30, 4582–4592. https://doi.org/10.1002/hyp.10940 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Salomons, W., Goudie, A. & Mook, W. G. Isotopic composition of calcrete deposits from Europe, Africa and India. Earth Surf. Process. 3, 43–57. https://doi.org/10.1002/esp.3290030105 (1978).Article 
    CAS 

    Google Scholar 
    Salomons, W. & Mook, W. G. In Handbook of Environmental Isotope Geochemistry (eds P. Fritz & J. Fontes) Ch. 6, 241–269 (Elsevier, 1986).Bodí, M. B. et al. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects. Earth Sci. Rev. 130, 103–127. https://doi.org/10.1016/j.earscirev.2013.12.007 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Kéraval, B. et al. Soil carbon dioxide emissions controlled by an extracellular oxidative metabolism identifiable by its isotope signature. Biogeosciences 13, 6353–6362. https://doi.org/10.5194/bg-13-6353-2016 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Goforth, B. R., Graham, R. C., Hubbert, K. R., Zanner, C. W. & Minnich, R. A. Spatial distribution and properties of ash and thermally altered soils after high-severity forest fire, southern California. Int. J. Wildland Fire 14, 343–354 (2005).Article 

    Google Scholar 
    Glossner, K. L. et al. Long-term suspended sediment and particulate organic carbon yields from the Reynolds Creek Experimental Watershed and Critical Zone Observatory. Hydrol. Process. 36, e14484. https://doi.org/10.1002/hyp.14484 (2022).Article 
    CAS 

    Google Scholar 
    Seyfried, M. S. et al. Reynolds creek experimental watershed and critical zone observatory. Vadoze Zone J. 17, 180129. https://doi.org/10.2136/vzj2018.07.0129 (2018).Article 
    CAS 

    Google Scholar 
    McIntyre, D. H. Cenozoic geology of the Reynolds Creek Experimental Watershed, Owyhee County, Idaho (Idaho Bureau of Mines and Geology, 1972).Earth Resources Observation and Science (EROS) Center, U. Image of the week: Burned Area Analysis for the Soda Fire, Idaho, https://eros.usgs.gov/media-gallery/image-of-the-week/burned-area-analysis-the-soda-fire-idaho (2015).Jenny, H. Factors of Soil Formation (McGraw-Hill, 1941).Book 

    Google Scholar 
    Kormos, P. R. et al. 31 years of hourly spatially distributed air temperature, humidity, and precipitation amount and phase from Reynolds Critical Zone Observatory. Earth Syst. Sci. Data 10, 1197–1205. https://doi.org/10.5194/essd-10-1197-2018 (2018).Article 
    ADS 

    Google Scholar 
    Thomas, G. W. In Methods in Soil Analysis. Part 3. Chemical Methods (ed Sparks, D. L. ) (Soil Science Society of America and American Society of Agronomy, 1996).Brodie, C. R. et al. Evidence for bias in C and N concentrations and δ13C composition of terrestrial and aquatic organic materials due to pre-analysis acid preparation methods. Chem. Geol. 282, 67–83. https://doi.org/10.1016/j.chemgeo.2011.01.007 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Patton, N. P., Lohse, K. A., Seyfried, M. S., Will, R. & Benner, S. G. Lithology and coarse fraction adjusted bulk density estimates for determining total organic carbon stocks in dryland soils. Geoderma 337, 844–852. https://doi.org/10.1016/j.geoderma.2018.10.036 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    McGuire, L. A., Rasmussen, C., Youberg, A. M., Sanderman, J. & Fenerty, B. Controls on the Spatial distribution of near-surface pyrogenic carbon on hillslopes 1 year following wildfire. J. Geophys. Res.: Earth Surf. 126, e2020JF005996. https://doi.org/10.1029/2020JF005996 (2021).Article 
    ADS 

    Google Scholar 
    Jiménez-González, M. A. et al. Spatial distribution of pyrogenic carbon in Iberian topsoils estimated by chemometric analysis of infrared spectra. Sci. Total Env. 790, 148170. https://doi.org/10.1016/j.scitotenv.2021.148170 (2021).Article 
    CAS 

    Google Scholar 
    Baldock, J. A. et al. Quantifying the allocation of soil organic carbon to biologically significant fractions. Soil Res. 51, 561–576. https://doi.org/10.1071/SR12374 (2013).Article 
    CAS 

    Google Scholar 
    Sanderman, J. et al. Soil organic carbon fractions in the Great Plains of the United States: An application of mid-infrared spectroscopy. Biogeochemistry 156, 97–114. https://doi.org/10.1007/s10533-021-00755-1 (2021).Article 
    CAS 

    Google Scholar 
    Sherrod, L. A., Dunn, G., Peterson, G. A. & Kolberg, R. L. Inorganic carbon analysis by modified pressure-calcimeter method. Soil Sci. Soc. Am. J. 66, 299–305 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Mikutta, R., Kleber, M., Kaiser, K. & Jahn, R. Review. Soil Sci. Soc. Am. J. 69, 120–135. https://doi.org/10.2136/sssaj2005.0120 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Risk, D., Nickerson, N., Creelman, C., McArthur, G. & Owens, J. Forced Diffusion soil flux: A new technique for continuous monitoring of soil gas efflux. Agric. For. Meteorol. 151, 1622–1631. https://doi.org/10.1016/j.agrformet.2011.06.020 (2011).Article 
    ADS 

    Google Scholar 
    Fierer, N. & Schimel, J. P. Effects of drying–rewetting frequency on soil carbon and nitrogen transformations. Soil Biol. Biochem. 34, 777–787. https://doi.org/10.1016/S0038-0717(02)00007-X (2002).Article 
    CAS 

    Google Scholar 
    Dane, J. H., Topp, G. C. & Campbell, G. S. In Methods of Soil Analysis: Physical Methods. Vol. 4 (ed SSSA) 721–738 (2002). More

  • in

    Variations in home range and core area of red-backed voles (Myodes regulus) in response to various ecological factors

    Gorosito, I., Benitez, A. & Busch, M. Home range variability, spatial aggregation, and excursions of Akodon azarae and Oligoryzomys flavescens in Pampean agroecosystems. Integr. Zool. 15, 401–415 (2020).Article 

    Google Scholar 
    Christy, M. T., Savidge, J. A., Adams, A. A. Y., Gragg, J. E. & Rodda, G. H. Experimental landscape reduction of wild rodents increases movements in the invasive brown treesnake (Boiga irregularis). Manag. Biol. Invasion. 8, 455–467 (2017).Article 

    Google Scholar 
    Cutrera, A. P., Antinuchi, C. D., Mora, M. S. & Vassallo, A. I. Home-range and activity patterns of the south American subterranean rodent Ctenomys talarum. J. Mammal. 87, 1183–1191 (2006).Article 

    Google Scholar 
    Tisell, H. B., Degrassi, A. L., Stephens, R. B. & Rowe, R. J. Influence of field technique, density, and sex on home range and overlap of the southern red-backed vole (Myodes gapperi). Can. J. Zool. 97, 1101–1108 (2019).Article 

    Google Scholar 
    Vieira, E. M., Baumgarten, L. C., Paise, G. & Becker, R. G. Seasonal patterns and influence of temperature on the daily activity of the diurnal neotropical rodent Necromys lasiurus. Can. J. Zool. 88, 259–265 (2010).Article 

    Google Scholar 
    Burt, W. H. Territoriality and home range concepts as applied to mammals. J. Mammal. 24, 346–352 (1943).Article 

    Google Scholar 
    Samuel, M. D., Pierce, D. & Garton, E. O. Identifying areas of concentrated use within the home range. J. Anim. Ecol. 54, 711–719 (1985).Article 

    Google Scholar 
    Worton, B. Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70, 164–168 (1989).Article 

    Google Scholar 
    Powell, R. A. & Mitchell, M. S. What is a home range?. J. Mammal. 93, 948–958 (2012).Article 

    Google Scholar 
    White, G. C. & Garrott, R. A. Analysis of Wildlife Radio-tracking Data (Academic Press, 1990).
    Google Scholar 
    Lee, E. J., Rhim, S. J. & Lee, W. S. Seasonal movements and home range sizes of Korean field mouse Apodemus peninsulae in unburned and post-fire pine planted stands within a pine forest. J. Anim. Vet. Adv. 11, 3834–3839 (2012).
    Google Scholar 
    Thompson, R. L., Chambers, C. L. & McComb, B. C. Home range and habitat of western red-backed voles in the Oregon Cascades. Northwest Sci. 83, 46–56 (2009).Article 

    Google Scholar 
    Tu, C. L., He, T. B., Lu, X. H., Luo, Y. & Smith, P. Extent to which pH and topographic factors control soil organic carbon level in dry farming cropland soils of the mountainous region of Southwest China. CATENA 163, 204–209 (2018).Article 
    CAS 

    Google Scholar 
    Khandelwal, S., Goyal, R., Kaul, N. & Mathew, A. Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India. Egypt. J. Remote Sens. 21, 87–94 (2018).
    Google Scholar 
    Hatfield, J. L. & Prueger, J. H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 10, 4–10 (2015).Article 

    Google Scholar 
    Fang, J. Y. et al. Precipitation patterns alter growth of temperate vegetation. Geophys. Res. Lett. 32, L21411 (2005).Article 
    ADS 

    Google Scholar 
    Palmer, M. S., Fieberg, J., Swanson, A., Kosmala, M. & Packer, C. A “dynamic” landscape of fear: Prey responses to spatiotemporal variations in predation risk across the lunar cycle. Ecol. Lett. 20, 1364–1373 (2017).Article 
    CAS 

    Google Scholar 
    Lee, J. K., Hwang, H. S., Eom, T. K. & Rhim, S. J. Influence of tree thinning on abundance and survival probability of small rodents in a natural deciduous forest. Turk. J. Zool. 42, 323–329 (2018).
    Google Scholar 
    Navarro-Castilla, A. & Barja, I. Stressful living in lower-quality habitats? Body mass, feeding behavior and physiological stress levels in wild wood mouse populations. Integr. Zool. 14, 114–126 (2019).Article 

    Google Scholar 
    Casula, P., Luiselli, L. & Amori, G. Which population density affects home ranges of co-occurring rodents?. Basic Appl. Ecol. 34, 46–54 (2019).Article 

    Google Scholar 
    D’Elia, G., Fabre, P. H. & Lessa, E. P. Rodent systematics in an age of discovery: Recent advances and prospects. J. Mammal. 100, 852–871 (2019).Article 

    Google Scholar 
    Lee, J. K., Eom, T. K., Bae, H. K., Lee, D. H. & Rhim, S. J. Responsive strategies of three sympatric small rodents to the altitudinal effects on microhabitats. Anim. Biol. 72, 63–77 (2022).Article 

    Google Scholar 
    Lee, J. K., Hwang, H. S., Eum, T. K., Bae, H. K. & Rhim, S. J. Cascade effects of slope gradient on ground vegetation and small-rodent populations in a forest ecosystem. Anim. Biol. 70, 203–213 (2020).Article 

    Google Scholar 
    Orrock, J. L. & Connolly, B. M. Changes in trap temperature as a method to determine timing of capture of small mammals. PLoS ONE 11, e0165710 (2016).Article 

    Google Scholar 
    Endries, M. J. & Adler, G. H. Spacing patterns of a tropical forest rodent, the spiny rat (Proechimys semispinosus), in Panama. J. Zool. 265, 147–155 (2005).Article 

    Google Scholar 
    Kawata, M. & Saitoh, T. The effect of introduced males on spatial patterns of initially introduced red-backed voles. Acta Theriol. 33, 585–588 (1988).Article 

    Google Scholar 
    Desy, E., Batzli, G. & Liu, J. Effects of food and predation on behaviour of prairie voles: A field experiment. Oikos 58, 159–168 (1990).Article 

    Google Scholar 
    Attuquayefio, D., Gorman, M. & Wolton, R. Home range sizes in the wood mouse Apodemus sylvaticus: Habitat, sex and seasonal differences. J. Zool. 210, 45–53 (1986).Article 

    Google Scholar 
    Lovari, S., Sforzi, A. & Mori, E. Habitat richness affects home range size in a monogamous large rodent. Behav. Process. 99, 42–46 (2013).Article 

    Google Scholar 
    Puckey, H., Lewis, M., Hooper, D. & Michell, C. Home range, movement and habitat utilisation of the Carpentarian rock-rat (Zyzomys palatalis) in an isolated habitat patch. Wildlife Res. 31, 327–337 (2004).Article 

    Google Scholar 
    Jones, E. N. Effects of forage availability on home range and population density of Microtus pennsylvanicus. J. Mammal. 71, 382–389 (1990).Article 

    Google Scholar 
    Chun, J. H., Ali, A. & Lee, C. B. Topography and forest diversity facets regulate overstory and understory aboveground biomass in a temperate forest of South Korea. Sci. Total. Environ. 744, 140783 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Koskela, E., Mappes, T. & Ylonen, H. Territorial behaviour and reproductive success of bank vole Clethrionomys glareolus females. J. Anim. Ecol. 66, 341–349 (1997).Article 

    Google Scholar 
    Vlasata, T. et al. Daily activity patterns in the giant root rat (Tachyoryctes macrocephalus), a fossorial rodent from the Afro-alpine zone of the Bale Mountains, Ethiopia. J. Zool. 302, 157–163 (2017).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).
    Google Scholar 
    Calenge, C. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).Article 

    Google Scholar 
    Rhim, S. J., Kim, K. J., Son, S. H. & Hwang, H. S. Effect of forest road on stand structure and small mammals in temperate forests. J. Anim. Vet. Adv. 11, 2540–2547 (2012).Article 

    Google Scholar 
    Carrilho, M., Teixeira, D., Santos-Reis, M. & Rosalino, L. M. Small mammal abundance in Mediterranean Eucalyptus plantations: How shrub cover can really make a difference. For. Ecol. Manag. 391, 256–263 (2017).Article 

    Google Scholar 
    Emsens, W. J. et al. Effects of food availability on space and refuge use by a beotropical scatterhoarding rodent. Biotropica 45, 88–93 (2013).Article 

    Google Scholar 
    Malo, A. F. et al. Positive effects of an invasive shrub on aggregation and abundance of a native small rodent. Behav. Ecol. 24, 759–767 (2013).Article 

    Google Scholar 
    Johnson, M. D. & De Leon, Y. L. Effect of an invasive plant and moonlight on rodent foraging behavior in a coastal dune ecosystem. PLoS ONE 10, e0117903 (2015).Article 

    Google Scholar 
    Mori, E., Sangiovanni, G. & Corlatti, L. Gimme shelter: The effect of rocks and moonlight on occupancy and activity pattern of an endangered rodent, the garden dormouse Eliomys quercinus. Behav. Process. 170, 103999 (2020).Article 

    Google Scholar 
    Prugh, L. R. & Golden, C. D. Does moonlight increase predation risk? Meta-analysis reveals divergent responses of nocturnal mammals to lunar cycles. J. Anim. Ecol. 83, 504–514 (2014).Article 

    Google Scholar 
    Orrock, J. L., Danielson, B. J. & Brinkerhoff, R. J. Rodent foraging is affected by indirect, but not by direct, cues of predation risk. Behav. Ecol. 15, 433–437 (2004).Article 

    Google Scholar 
    Penteriani, V., Delgado, M. D. M., Campioni, L. & Lourenco, R. Moonlight makes owls more chatty. PLoS ONE 5, e8696 (2010).Article 
    ADS 

    Google Scholar 
    Penteriani, V., Kuparinen, A., del Mar Delgado, M., Lourenço, R. & Campioni, L. Individual status, foraging effort and need for conspicuousness shape behavioural responses of a predator to moon phases. Anim. Behav. 82, 413–420 (2011).Article 

    Google Scholar 
    Reher, S., Dausmann, K. H., Warnecke, L. & Turner, J. M. Food availability affects habitat use of Eurasian red squirrels (Sciurus vulgaris) in a semi-urban environment. J. Mammal. 97, 1543–1554 (2016).Article 

    Google Scholar 
    Lee, J. K., Hwang, H. S., Eom, T. K., Lee, D. H. & Rhim, S. J. Slope gradient effect on microhabitat and small rodents in a tree thinned Japanese larch plantation. Pak. J. Zool. 54, 2213–2220 (2022).Article 

    Google Scholar 
    Heroldova, M., Bryja, J., Janova, E., Suchomel, J. & Homolka, M. Rodent damage to natural and replanted mountain forest regeneration. Sci. World J. 2012, 872536 (2012).Article 

    Google Scholar 
    Jo, Y. S., Baccus, J. T. & Koprowski, J. L. Mammals of Korea (National Institute of Biological Resources, 2018).
    Google Scholar 
    Bondrup-Nielsen, S. Investigation of spacing behavior of Clethrionomys gapperi by experimentation. J. Anim. Ecol. 55, 269–279 (1986).Article 

    Google Scholar 
    Ylonen, H., Kojola, T. & Viitala, J. Changing female spacing behavior and demography in an enclosed breeding population of Clethrionomys glareolus. Holarctic Ecol. 11, 286–292 (1988).
    Google Scholar 
    Vander Wall, S. B. Seed harvest by scatter-hoarding yellow pine chipmunks (Tamias amoenus). J. Mammal. 100, 531–536 (2019).Article 

    Google Scholar 
    Lee, E. J. & Rhim, S. J. Seasonal home ranges and activity of three rodent species in a post-fire planted stand. Folia Zool. 65, 101–106 (2016).Article 

    Google Scholar 
    Bondrup-Nielsen, S. & Ims, R. A. Reproduction and spacing behavior of females in a peak density population of Clethrionomys glareolus. Holarctic Ecol. 9, 109–112 (1986).
    Google Scholar 
    Bujalska, G. & Grum, L. Social organization of the bank vole (Clethrionomys glareolus, Schreber 1780) and its demographic consequences: A model. Oecologia 80, 70–81 (1989).Article 
    ADS 
    CAS 

    Google Scholar 
    Henttonen, H. Importance of demography in understanding disease ecology in small mammals. Therya 13, 33–38 (2022).Article 

    Google Scholar 
    Rezende, E. L., Cortes, A., Bacigalupe, L. D., Nespolo, R. F. & Bozinovic, F. Ambient temperature limits above-ground activity of the subterranean rodent Spalacopus cyanus. J. Arid Environ. 55, 63–74 (2003).Article 
    ADS 

    Google Scholar 
    Guiden, P. W. & Orrock, J. L. Seasonal shifts in activity timing reduce heat loss of small mammals during winter. Anim. Behav. 164, 181–192 (2020).Article 

    Google Scholar  More

  • in

    Galápagos tortoise stable isotope ecology and the 1850s Floreana Island Chelonoidis niger niger extinction

    Sample procurement and data analysisTo establish a diachronic dataset of Galápagos tortoise dietary stable isotope ecology, we selected samples from five sources (see Supplemental Text): the American Museum of Natural History, New York, New York, (2) the California Academy of Sciences, San Francisco, California, (3) the Natural History Museum, London, England, (4) the National Museum of Natural History, Smithsonian Institution, Washington, D.C., and (5) the Thompson’s Cove (CA-SFR-186H) archaeological site in San Francisco, California. We provide details regarding sample provenience information and date-of-death as supplemental information. From these collections, we obtained single or multiple isotope samples from a total of 57 individual tortoises representing the following subspecies (n = 10) and islands: five C. n. abingdonii (Pinta Island), one C. n. becki (Volcán Wolf, Isabela Island), five C. n. chathamensis (San Cristóbal Island), four C. n. darwini (Santiago Island), thirteen C. n. duncanensis (Pinzón Island), four C. n. guentheri (Sierra Nega, Isabela Island), six C. n. hoodensis (Española Island), one C. n. microphyes (Volcán Darwin, Isabela Island), four C. n. niger (Floreana Island), nine C. n. porteri (Western Santa Cruz Island), one C. n. vicina (Cerro Azul, Isabela Island), one unknown Isabela Island tortoise, two C. n. vicina tortoises which were transported, lived and collected on Rabida Island, and one unknown tortoise (Chelonoidis niger ssp.; unknown Island—the San Francisco Gold Rush sample). The two earliest collected tortoises in our sample date to1833 and the latest tortoise is from 1967, representing a period of 134 years.To understand tissue-specific isotopic variation and fractionation for the purposes of reconstructing long-term dietary ecology, we sampled tortoise bone collagen (n = 57), bone apatite (n = 23), scute keratin (n = 8) and skin (n = 2) for carbon (δ13Ccollagen and δ13Capatite), nitrogen (δ15N), hydrogen (δD) and oxygen (δ18Oapatite) stable isotopes. All samples were drilled or cut using a Dremel rotary tool with either a blade or diamond spherical bit attachment and were transported to the University of New Mexico, Center for Stable Isotopes (UNM-CSI), Albuquerque, NM, for preparation and analysis. All statistical and metric data analysis and visualization occurred in R (4.0.4) and RStudio (2022.02.4). We provide reproducible source code supplemental to the text35.Bone collagen δ13C, δ15N and δDAnalysis of bone collagen, skin and scute keratin for carbon, nitrogen and hydrogen stable isotopes followed standardized protocols (e.g., see36). For bone collagen, we cut and demineralized a small portion of bulk bone in 0.5 N hydrochloric acid (HCl) at 5 °C for 24 h prior to rinsing all samples to neutrality using deionized water. For lipid extraction, we immersed the samples in a solution of 2:1 chloroform:methanol (C2H5Cl3) for 24 h (repeated three times) while also sonicating samples for 15 min to ensure complete chemical saturation. Preparation of skin and scute keratin samples was only included this during the later lipid extraction step (i.e., no demineralization required). After 72 h we rinsed all samples to neutrality and lyophilized the tortoise samples for another 24 h. We then measured approximately 0.5–0.6 mg of bone collagen/skin/scute tissue into tin capsules for carbon (δ13Ccollagen) and nitrogen (δ15N) stable isotope analysis. We also measured approximately 0.2–0.3 mg of bone collagen/skin/scute tissue into silver capsules for hydrogen (δD) isotope analysis. We report isotope values in delta (δ) notation, calculated as: ((Rsample/Rstandard) − 1) × 1000, where Rsample and Rstandard are the ratios (e.g., 13C/12C, 15N/14N) of the unknown and standard material, respectively. Delta values are reported as parts per thousand (‰).Carbon and nitrogen samples were measured on a Costech 4010 elemental analyzer (Valencia, California, USA) coupled to a Scientific Delta V Plus isotope ratio mass spectrometer by a Conflo IV, and hydrogen samples were measured on a Finnigan high-temperature conversion elemental analyzer (TC/EA) coupled to a Thermo Scientific Delta V Plus mass spectrometer by a Conflo IV at UNM-CSI (see37 for details on the high temperature conversion method for hydrogen analysis). All nitrogen and carbon isotope data are reported relative to atmospheric N2 and V-PDB, respectively. The data were corrected using lab standards with values of δ15 N = 6.4‰ and δ13C =  − 26.5‰ (casein protein), and of δ15N = 13.3‰ and δ13C =  − 16.7‰ (tuna muscle) that have been calibrated relative to the universally accepted standards: IAEA-N1, USGS 24, IAEA 600, USGS 63, and USGS 40.To ensure equilibrium between the exchangeable hydrogen in tissue samples and local atmosphere38, we weighed hydrogen standards and samples into silver capsules and allowed both to sit in the laboratory for at least 2 weeks before analysis. Hydrogen data were corrected using three UNM-CSI laboratory keratin standards (δDnon-ex =  − 174‰, − 93‰, and − 54‰) of which the δDnon-ex values were previously determined through a series of atmospheric exchange experiments. These standards were also calibrated to USGS standards CBS and KHS values of − 178.8‰ and − 47.5‰, respectively (see39,40 for details and updated values). To quantitate any error imparted to our collagen data through correction with keratin standards, a UNM-CSI cow (Bos taurus) bone collagen standard was analyzed in every run over a 6-month period (July 2017–January 2018) and gave an inter-run standard deviation of 3.9‰, suggesting the difference in percent exchangeable hydrogen between collagen and keratin tissues did not significantly impact our results. All hydrogen isotope data are reported relative to Vienna-Standard Mean Ocean Water (V-SMOW). The H3 factor was between 8 and 8.5 for all runs.Collagen precision (standard deviation; SD) for within-run analyses is  More

  • in

    Epibiotic fauna of the Antarctic minke whale as a reliable indicator of seasonal movements

    Rice, D. W. Marine mammals of the world: systematics and distribution. In The Society for Marine Mammalogy (ed. Rice, D. W.) 231 (Allen Press, 1998).
    Google Scholar 
    Best, P. B. External characters of southern minke whales and the existence of a diminutive form. Sci. Rep. Whales Res. Inst. 36, 1–33 (1985).
    Google Scholar 
    Acevedo, J. et al. Occurrence of dwarf minke whales (Balaenoptera acutorostrata subsp.) around the Antarctic Peninsula. Polar Biol. 34, 313–318 (2011).Article 

    Google Scholar 
    Risch, D., Norris, T., Curnock, M. & Friedlaender, A. Common and Antarctic minke whales: Conservation status and future research directions. Front. Mar. Sci. 6, 247. https://doi.org/10.3389/fmars.2019.00247 (2019).Article 

    Google Scholar 
    International Whaling Commission (IWC). Report of the scientific committee. J. Cetacean Res. Manag. 14, 102 (2013).
    Google Scholar 
    Matsuoka, K. et al. Overview of minke whale sightings surveys conducted on IWC/IDCR and SOWER Antarctic cruises from 1978/79 to 2000/01. J. Cetacean Res. Manag. 5, 173–201 (2003).
    Google Scholar 
    Glover, K. A. et al. Migration of Antarctic minke whales to the Arctic. PLoS One 5, e15197. https://doi.org/10.1371/journal.pone.0015197 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Williams, R., Brierley, A., Friedlaender, A. & Scheidat, M. Densitiy of Antarctic minke whales in Weddell Sea from helicopter survey data. Ecology 63, IA14 (2011).
    Google Scholar 
    Williams, R. et al. Counting whales in a challenging, changing environment. Sci. Rep. 4, 4170. https://doi.org/10.1038/srep04170 (2014).Article 
    CAS 

    Google Scholar 
    Shabangu, F. W., Findlay, K. & Stafford, K. M. Seasonal acoustic occurrence, diel vocalizing patterns and bioduck call-type composition of Antarctic minke whales off the west coast of South Africa and the Maud Rise Antarctica. Mar. Mamm. Sci. 36, 658–675 (2019).Article 

    Google Scholar 
    Kasamatsu, F., Nishiwaki, S. & Ishikawa, H. Breeding areas and southbound migrations of southern minke whales Balaenoptera acutorostrata. Mar. Ecol. Prog. Ser. 119, 1–10 (1995).Article 
    ADS 

    Google Scholar 
    Tamura, T. & Konishi, K. Food habit and prey consumption of Antarctic minke whale Balaenoptera bonaerensis in the JARPA research area. J. Northwest Atl. Fish. Sci. 42, 13–25 (2009).Article 

    Google Scholar 
    Perrin, W. F., Mallette, S. D. & Brownell, R. L. Minke whales. In Encyclopedia of Marine Mammals (eds Perrin, W. F. et al.) 608–613 (Academic Press, 2018).Chapter 

    Google Scholar 
    Taylor, R. J. F. An unusual record of three species of whale being restricted to pools in Antarctic sea-ice. Proc. R. Soc. Lond. 129, 325–331 (1957).
    Google Scholar 
    Ensor, P. H. Minke whales in the pack ice zone, East Antarctica, during the period of maximum annual ice extent. Rep. Int. Whal. Commn 39, 219–225 (1989).
    Google Scholar 
    Scheidat, M. et al. Cetacean surveys in the Southern Ocean using icebreaker-supported helicopters. Polar Biol. 34, 1513–1522 (2011).Article 

    Google Scholar 
    Meirelles, A. C. O. & Furtado-Neto, M. A. A. Stranding of an Antarctic minke whale, Balaenoptera bonaerensis Burmeister, 1867, on the northern coast of South America. Lat. Am. J. Aquat. Mamm. 3, 81–82 (2004).Article 

    Google Scholar 
    Juri, E., Valdivia, M., Simoes-Lopes, P. C. & Le Bas, A. A note on minke whales (Cetacea: Balaenopteridae) in Uruguay: Strandings review. JCRM 21, 135–140 (2020).Article 

    Google Scholar 
    Williamson, G. R. Minke whales off Brazil. Sci. Rep. Whales Res. Inst. 27, 37–59 (1975).
    Google Scholar 
    Pastene, L. A. & Goto, M. Genetic characterization and population genetic structure of the Antarctic minke whale Balaenoptera bonaerensis in the Indo-Pacific region of the Southern Ocean. Fish Sci. 82, 873–886 (2016).Article 
    CAS 

    Google Scholar 
    Balbuena, J. A., Aznar, F. J., Fernández, M. & Raga, J. A. Parasites as indicators of social structure and stock identity of marine mammals. Dev. Mar. Biol. 4, 133–139 (1995).
    Google Scholar 
    Kuramochi, T., Araki, J., Uchida, Moriyama, N., Takeda, Y., Hayashi, N., Wakao, H., Machida, M. & Nagasawa, K. Summary of parasite and epizoit investigations during JARPN surveys 1994–1999, with reference to stock structure analysis for the western North Pacific minke whales. IWC Scientific Committee Workshop to Review the Japanese Whaling Programme under Special Permit for North Pacific Minke Whales (JARPN) SC/F2K/J19 (2000).Kaliszewska, Z. A. et al. Population histories of right whales (Cetacea: Eubalaena) inferred from mitochondrial sequence diversities and divergences of their whale lice (Amphipoda: Cyamus). Mol. Ecol. 14, 3439–3456 (2005).Article 
    CAS 

    Google Scholar 
    Ólafsdóttir, D. & Shinn, A. P. Epibiotic macrofauna on common minke whales, Balaenoptera acutorostrata Lacépède, 1804 Icelandic waters. Parasit. Vectors 6, 1–10 (2013).Article 

    Google Scholar 
    Matthews, C. J., Ghazal, M., Lefort, K. J. & Inuarak, E. Epizoic barnacles on Arctic killer whales indicate residency in warm waters. Mar. Mamm. Sci. 36, 1010–1014 (2020).Article 

    Google Scholar 
    Flach, L., Van Bressem, M. F., Pitombo, F. & Aznar, F. J. Emergence of the epibiotic barnacle Xenobalanus globicipitis in Guiana dolphins after a morbillivirus outbreak in Sepetiba Bay Brazil. Estuar. Coast. Shelf Sci. 263, 107632. https://doi.org/10.1016/j.ecss.2021.107632 (2021).Article 

    Google Scholar 
    Ten, S., Raga, J. A. & Aznar, F. J. Epibiotic fauna on cetaceans worldwide: A systematic review of records and indicator potential. Front. Mar. Sci. 9, 846558. https://doi.org/10.3389/fmars.2022.846558 (2022).Article 

    Google Scholar 
    Liouville, J. Cétacés de l’Antarctique. Paris: Deuxième Expédition Antarctique Française (1908–1910) (1913).Ohsumi, S., Masaki, Y. & Kawamura, A. Stock of the Antarctic minke whale. Sci. Rep. Whales Res. Inst. 22, 75–125 (1970).
    Google Scholar 
    Ohsumi, S. Find of marlin spear from the Antarctic minke whales. Sci. Rep. Whales Res. Inst. 25, 237–239 (1973).
    Google Scholar 
    Ivashin, M. V. External Parasites on Lesser Rorquals in the Antarctic 125–127 (Naukova Dumka, 1975).
    Google Scholar 
    Berzin, A. A. & Vlasova, L. P. Fauna of the Cetacea Cyamidae (Amphipoda) of the world ocean. Investig. Cet. 13, 149–164 (1982).
    Google Scholar 
    Best, P. B. Seasonal abundance, feeding, reproduction, age and growth in minke whales off Durban (with incidental observations from the Antarctic). Rep. Int. Whal. Commn 32, 759–786 (1982).
    Google Scholar 
    Avdeev, V. V. Parasitic amphipods of the family Cyamidae and the problem of Cetacea origin. Biol. Morja 4, 27–33 (1989).
    Google Scholar 
    Bushuev, S. G. A study of the population structure of the southern minke whale (Balaenoptera acutorostrata Lacepede) based on morphological and ecological variability. Rep. Int. Whal. Commn 40, 317–324 (1990).
    Google Scholar 
    Sedlak-Weinstein, E. Preliminary report of parasitic infestation of the minke whale Balaenoptera acutorostrata taken during the 1988/89 Antarctic expedition. Unpublished paper (1990).Dailey, M. D. & Vogelbein, W. Parasite fauna of 3 species of Antarctic whales with reference to their use as potential stock indicators. Fish. Bull. 89, 355–365 (1991).
    Google Scholar 
    Nemoto, T., Best, P. B., Ishimaru, K. & Takano, H. Diatom films on whales in South African waters. Sci. Rep. Whales Res. Inst. 32, 97–103 (1980).
    Google Scholar 
    Donovan, G. A review of IWC stock boundaries. Rep. Int. Whal. Commn 13, 39–68 (1991).
    Google Scholar 
    Lester, R. J. G. & MacKenzie, K. The use and abuse of parasites as stock markers for fish. Fish. Res. 97, 1–2 (2009).Article 

    Google Scholar 
    Ten, S. et al. Epibiotic barnacles of sea turtles as indicators of habitat use and fishery interactions: an analysis of juvenile loggerhead sea turtles, Caretta caretta, in the western Mediterranean. Ecol. Indic. 107, 105672. https://doi.org/10.1016/j.ecolind.2019.105672 (2019).Article 

    Google Scholar 
    Calman, W. T. A whale-barnacle of the genus Xenobalanus from Antarctic Seas. Ann. Mag. Nat. Hist. 6, 165–166 (1920).Article 

    Google Scholar 
    Kato, H., Hiroyama, H., Fujise, Y. & Ono, K. Preliminary report of the 1987/88 Japanese feasibility study of the special permit proposal for Southern Hemisphere Minke Whales. Rep. int. Whal. Commn 39, 235–248 (1989).
    Google Scholar 
    International Whaling Commission (IWC). Report of the Intersessional Workshop to review data and results from special permit research on minke whales in the Antarctic, Tokyo, 7–8 December 2006. J. Cetacean Res. Manag. 10, 411–445 (2008).
    Google Scholar 
    Bush, A. O., Lafferty, K. D., Lotz, J. M. & Shostak, A. W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83, 575–583 (1997).Article 
    CAS 

    Google Scholar 
    Kim, H., Chan, B., Kang, C., Kim, H. & Kim, W. How do whale barnacles live on their hosts? Functional morphology and mating-group sizes of Coronula diadema (Linnaeus, 1767) and Conchoderma auritum (Linnaeus, 1767) (Cirripedia: Thoracicalcarea). J. Crustac. Biol. 40, 808–824 (2020).Article 

    Google Scholar 
    Reiczigel, J. Confidence intervals for the binomial parameter: Some new considerations. Stat. Med. 22, 611–621 (2003).Article 

    Google Scholar 
    Kato, H. Migration strategy of southern minke whales to maintain high reproductive rate. Dev. Mar. Biol. 4, 465–480 (1995).
    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. In Statistics for Biology and Health (ed. Gail, M.) (Springer, 2009).MATH 

    Google Scholar 
    Fransen, C. H. J. M. & Smeenk, C. Whale-lice (Amphipoda: Cyamidae) recorded from The Netherlands. Zool. Meded. 65, 393–405 (1991).
    Google Scholar 
    Barton, N. A., Farewell, T. S. & Hallett, S. H. Using generalized additive models to investigate the environmental effects on pipe failure in clean water networks. NPJ Clean Water 3, 31. https://doi.org/10.1038/s41545-020-0077-3 (2020).Article 

    Google Scholar 
    Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).Article 
    CAS 

    Google Scholar 
    Kane, E. A., Olson, P. A., Gerrodette, T. & Fiedler, P. Prevalence of the commensal barnacle Xenobalanus globicipitis on cetacean species in the eastern tropical Pacific Ocean, and a review of global occurrence. Fish. Bull. 106, 395–404 (2008).
    Google Scholar 
    Aznar, F. J., Balbuena, J. A. & Raga, J. A. Are epizoites biological indicators of a western Mediterranean striped dolphin die-off?. Dis. Aquat. Organ. 18, 159–163 (1994).Article 

    Google Scholar 
    Carrillo, J. M., Overstreet, R. M., Raga, J. A. & Aznar, F. J. Living on the edge: Settlement patterns by the symbiotic barnacle Xenobalanus globicipitis on small cetaceans. PLoS One 10, e0127367. https://doi.org/10.1371/journal.pone.0127367 (2015).Article 
    CAS 

    Google Scholar 
    Moreno-Colom, P., Ten, S., Raga, J. A. & Aznar, F. J. Spatial distribution and aggregation of Xenobalanus globicipitis on the flukes of striped dolphins, Stenella coeruleoalba: An indicator of host hydrodynamics?. Mar. Mamm. Sci. 36, 897–914 (2020).Article 

    Google Scholar 
    Aznar, F. J. et al. Changes in epizoic crustacean infestations during cetacean die-offs: The mass mortality of Mediterranean striped dolphins Stenella coeruleoalba revisited. Dis. Aquat. Org. 67, 239–247 (2005).Article 
    CAS 

    Google Scholar 
    Wood, S. N. & Augustin, N. H. GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol. Modell. 157, 157–177 (2002).Article 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2017).Book 
    MATH 

    Google Scholar 
    Bloch, D. et al. Short-term movements of long-finned pilot whales Globicephala melas around the Faroe Islands. Wildl. Biol. 9, 47–58 (2003).Article 

    Google Scholar 
    Beasley, I. et al. Stomach contents of long-finned pilot whales, Globicephala melas mass-stranded in Tasmania. PLoS One 14, e0206747. https://doi.org/10.1371/journal.pone.0206747 (2019).Article 
    CAS 

    Google Scholar 
    Ohno, M. & Fujino, K. Biological investigation on the whales caught by the Japanese Antarctic whaling fleets, season 1950/51. Sci. Rep. Whales Res. Inst. 7, 125–188 (1952).
    Google Scholar 
    Clarke, R. The stalked barnacle Conchoderma, ectoparasitic on whales. Norsk Hvalfangst-Tidende 55, 153–168 (1966).
    Google Scholar 
    Christensen, I. First record of gooseneck barnacles (Conchoderma auritum) on a minke whale (Balaenoptera acutorostrata). ICES C. M. 1985/N:9 (1985).Bertulli, C. G., Cecchetti, A., Van Bressem, M. F. & Van Waerebeek, K. Skin disorders in common minke whales and white-beaked dolphins off Iceland, a photographic assessment. J. Mar. Anim. Ecol. 5, 29–40 (2012).
    Google Scholar 
    Knowlton, N. Sibling species in the sea. Annu. Rev. Ecol. Evol. Syst. 24, 189–216 (1993).Article 

    Google Scholar 
    Trontelj, P. & Fišer, C. Perspectives: Cryptic species diversity should not be trivialised. Syst. Biodivers. 7, 1–3 (2009).Article 

    Google Scholar 
    Norris, R. & Hull, P. The temporal dimension of marine speciation. Evol. Ecol. 26, 393–415 (2011).Article 

    Google Scholar 
    Rawson, P., Macnamee, R., Frick, M. & Williams, K. Phylogeography of the coronulid barnacle, Chelonibia testudinaria, from loggerhead sea turtles Caretta caretta. Mol. Ecol. 12, 2697–2706 (2003).Article 
    CAS 

    Google Scholar 
    Cabezas, M. P., Cabezas, P., Machordom, A. & Guerra-García, J. M. Hidden diversity and cryptic speciation refute cosmopolitan distribution in Caprella penantis (Crustacea: Amphipoda: Caprellidae). J. Zool. Syst. Evol. 51, 85–99 (2013).Article 

    Google Scholar 
    Boyd, L. L., Zardus, J. D., Knauer, C. M. & Wood, L. D. Evidence for host selectivity and specialization by epizoic Chelonibia barnacles between hawksbill and green sea turtles. Front. Ecol. Evol. 9, 807237. https://doi.org/10.3389/fevo.2021.807237 (2021).Article 

    Google Scholar 
    Schell, D., Rowntree, V. & Pfeiffer, C. Stable-isotope and electron-microscopic evidence that cyamids (Crustacea: Amphipoda) feed on whale skin. Can. J. Zool. 78, 721–727 (2000).Article 

    Google Scholar 
    Iwasa-Arai, T. & Serejo, C. S. Phylogenetic analysis of the family Cyamidae (Crustacea: Amphipoda): A review based on morphological characters. Zool. J. Linn. Soc. 184, 66–94 (2018).Article 

    Google Scholar 
    Fraija-Fernández, N. et al. Living in a harsh habitat: Epidemiology of the whale louse, Syncyamus aequus (Cyamidae), infecting striped dolphins in the Western Mediterranean. J. Zool. 303, 199–206 (2017).Article 

    Google Scholar 
    Angot, M. Rapport scientifique sur les expeditions baleinieres autour de Madagascar (saisons 1949 et 1950). Mem. Inst. Sci. Madag. Ser. A 6, 439–486 (1951).
    Google Scholar 
    Newman, W. A. & Abbott, D. P. Cirripedia: The barnacles. In Intertidal Invertebrates of California (eds Morris, R. H. et al.) 504–535 (Stanford University Press, 1980).
    Google Scholar 
    Nogata, Y. & Matsumura, K. Larval development and settlement of a whale barnacle. Biol Lett. 2, 92–93 (2006).Article 

    Google Scholar 
    Hiro, F. The fauna of Akkeshi Bay. II. Cirripedia. J. Fac. Sci. Hokkaido Univ. 4, 213–229 (1935).
    Google Scholar 
    Rice, D. W. Progress report on biological studies of the larger Cetacea in the waters off California. Norsk Hvalfangst-Tid 52, 181–187 (1963).
    Google Scholar 
    Klinkhart, E. G. The beluga whale in Alaska. State Alsk. Dep. Fish 7, 11 (1966).
    Google Scholar 
    Nilsson-Cantell, C. A. Cirripedia Thoracica and Acrothoracica. MIOS 5, 1–133 (1978).
    Google Scholar 
    Scarff, J. E. Occurrence of the barnacles Coronula diadema, C. reginae and Cetopirus complanatus (Cirripedia) on right whales. Sci. Rep. Whales Res. Inst. 37, 129–153 (1986).
    Google Scholar 
    Kakuwa, Z., Kawakami, T. & Iguchi, K. Biological investigation on the whales caught by the Japanese Antarctic whaling fleets in the 1951–52 season. Sci. Rep. Whales Res. Inst. 8, 147–213 (1953).
    Google Scholar 
    Nishiwaki, M. Humpback whales in Ryukyuan waters. Sci. Rep. Whales Res. Inst. 14, 49–87 (1959).
    Google Scholar 
    Best, P. B. The presence of coronuline barnacles on a southern right whale Eubalaena australis. S. Afr. J. Mar. Sci. 11, 585–587 (1991).Article 

    Google Scholar 
    Mackintosh, N. A. & Wheeler, J. F. G. Southern blue and fin whales. Disc. Rep. 1, 257–540 (1929).
    Google Scholar 
    Nilsson-Cantell, C. A. Thoracic cirripedes collected in 1925–1927. Disc. Rep. 2, 223–260 (1930).
    Google Scholar 
    Nishiwaki, M. & Hayashi, K. Biological survey of fin and blue whales taken in the Antarctic season 1947–48 by the Japanese fleet. Sci. Rep. Whales Res. Inst. 3, 132–190 (1950).
    Google Scholar 
    Mizue, K. & Murata, T. Biological investigation on the whales caught by the Japanese Antarctic whaling fleets season 1949–50. Sci. Rep. Whales Res. Inst. 6, 73–131 (1951).
    Google Scholar 
    Nishiwaki, M. & Oye, T. Biological investigation on blue whales (Balaenoptera musculus) and Fin Whales (Balaenoptera physalus) caught by the Japanese Antarctic Whaling Fleets. Sci. Rep. Whales Res. Inst. 5, 91–167 (1951).
    Google Scholar 
    Tomilin, A. G. Cetacea. In Mammals of the U.S.S.R. and Adjacent Countries Vol. 9 (ed. Tomilin, A. G.) 717 (Akademii Nauk SSSR, 1957).
    Google Scholar 
    Cockrill, W. R. Pathology of the cetacea. A veterinary study on whales. Br. Vet. J. 116, 1–28 (1960).
    Google Scholar 
    Kawamura, A. Some consideration on the stock unit of sei whales by the aspect of ectoparasitic organisms on the body. Bull. Jpn. Soc. Fish. Oceanogr. 14, 38–43 (1969).
    Google Scholar 
    Fraija-Fernández, N., Hernández-Hortelano, A., Ahuir-Baraja, A. E., Raga, J. A. & Aznar, F. J. Taxonomic status and epidemiology of the mesoparasitic copepod Pennella balaenoptera in cetaceans from the western Mediterranean. Dis. Aquat. Org. 128, 249–258 (2018).Article 

    Google Scholar 
    Foster, B. A. & Willan, R. C. Foreign barnacles transported to New Zealand on an oil platform. N. Z. J. Mar. Freshw. Res. 13, 143–149 (1979).Article 

    Google Scholar 
    González, J. et al. Cirripedia of the Canary islands: Distribution and ecological notes. J. Mar. Biol. Assoc. U.K. 92, 129–141 (2012).Article 

    Google Scholar 
    Zettler, M. L. An example for transatlantic hitchhiking by macrozoobenthic organisms with a research vessel. Helgol. Mar. Res. 75, 4. https://doi.org/10.1186/s10152-021-00549-w (2021).Article 

    Google Scholar 
    Matthews, L. H. The humpback whale Megaptera novaeangliae. Disc. Rep. 17, 7–92 (1937).
    Google Scholar 
    Scheffer, V. B. Organisms collected from whales in the Aleutian Islands. Murrelet 20, 67–69 (1939).Article 

    Google Scholar 
    Symons, H. W. & Weston, R. D. Studies on the humpback whale (Megaptera nodosa) in the Bellinghausen Sea. Norsk Hvalfangsttid 47, 53–81 (1958).
    Google Scholar 
    Van Waerebeek, K., Reyes, J. C. & Alfaro, J. Helminth parasites and phoronts of dusky dolphins Lagenorhynchus obscurus (Gray, 1828) from Peru. Aquat. Mamm. 19, 159–169 (1993).
    Google Scholar 
    Fertl, D. Barnacles. In Encyclopedia of Marine Mammals (eds Perrin, W. F. et al.) 75–78 (Academic Press, 2002).
    Google Scholar 
    Cornwall, I. E. The barnacles of british Columbia. Br. Col. Prov. Mus. Dept. 7, 5–69 (1955).
    Google Scholar 
    Abaunza, P., Arroyo, N. L. & Preciado, I. A contribution to the knowledge on the morphometry and the anatomical characters of Pennella balaenopterae (Copepoda, Ciphonostomatoida, Pennellidae), with special reference to the buccal complex. Crustaceana 74, 193–210 (2001).Article 

    Google Scholar 
    Marcer, F. et al. Parasitological and pathological findings in fin whales Balaenoptera physalus stranded along Italian coastlines. Dis. Aquat. Org. 133, 25–37 (2019).Article 
    CAS 

    Google Scholar 
    Turner, W. On Pennella balænopteræ: A crustacean, parasitic on a finner whale, Balaenoptera musculus. Earth. Environ. Sci. Trans. R. Soc. Edinb. 41, 409–434 (1905).Article 

    Google Scholar 
    Walker, W. A. & Hanson, M. B. Biological observations on Stejneger’s beaked whale, Mesoplodon stejnegeri, from strandings on Adak Alaska. Mar. Mamm. Sci. 15, 1314–1329 (1999).Article 

    Google Scholar 
    Delaney, M. A., Ford, J. K. B., Tang, K. & Gaydos, J. K. Mesoparasitic copepod (Pennella balaenopterae) infestation of a stranded offshore orca (Orcinus orca) in Southeast Alaska: Review of significance as a health indicator in cetaceans. In IAAAM 21–26 (2016).Suyama, S., Kakehi, S., Yanagimoto, T. & Chow, S. Infection of the pacific saury Cololabis saira (Brevoort, 1856) (Teleostei: Beloniformes: Scomberesocidae) by Pennella sp. (Copepoda: Siphonostomatoida: Pennellidae) south of the Subarctic Front. J. Crust. Biol. 40, 384–389 (2020).Article 

    Google Scholar 
    Rowntree, V. J. Feeding, distribution and reproductive behavior of cyamids (Crustacea: Amphipoda) living on humpback and right whales. Can. J. Zool. 74, 103–109 (1996).Article 

    Google Scholar 
    Leung, Y. M. Life cycle of Cyamus scammoni (Amphipoda: Cyamidae), ectoparasite of gray whale, with a remark on the associated species. Sci. Rep. Whales Res. Inst. 28, 153–160 (1976).
    Google Scholar 
    MacIntyre, R. J. Rapid growth in stalked barnacles. Nature 212, 637–638 (1966).Article 
    ADS 

    Google Scholar 
    Rasmussen, T. Notes on the biology of the shipfouling gooseneck barnacle Conchoderma auritum Linnaeus, 1776 (Cirripedia; Lepadomorpha). Biol. Mar. 2, 37–44 (1980).
    Google Scholar 
    Dalley, R. & Crisp, D. J. Conchoderma: A fouling hazard to ships underway. Mar. Biol. Lett. 2, 141–152 (1981).
    Google Scholar 
    Dalley, R. The larval stages of the oceanic, pedunculate barnacle Conchoderma auritum (L) (Cirripedia, Thoracica). Crustaceana 46, 39–54 (1984).Article 

    Google Scholar 
    Foskolos, I., Provata, M. T. & Frantzis, A. First record of Conchoderma auritum (Cirripedia: Lepadidae) on Ziphius cavirostris (Cetacea: Ziphiidae) in Greece. Ann. Ser. Hist. 27, 29–34 (2017).
    Google Scholar 
    Lee, J. F., Friedlaender, A. S., Oliver, M. J. & DeLiberty, T. L. Behavior of satellite-tracked Antarctic minke whales (Balaenoptera bonaerensis) in relation to environmental factors around the western Antarctic Peninsula. Anim. Biotelem. 5, 23. https://doi.org/10.1186/s40317-017-0138-7 (2017).Article 

    Google Scholar 
    Darwin, C. A Monograph on the Subclass Cirripedia Vol. 1 (The Ray Society, 1851).
    Google Scholar 
    Tsikhon-Lukanina, V. A., Soldatova, I. N., Kuznetsova, I. A. & Il’in, I. I. Macrofouling community in the Strait of Tunisia (Sicily). Oceanology 16, 519–522 (1977).
    Google Scholar 
    Nilsson-Cantell, C. A. Cirripedien von der Stewart Insel und von Südgeorgien. Senckenbergiana 12, 210–213 (1930).
    Google Scholar 
    Slijper, E. J. Whales (Hutchinson, 1962).
    Google Scholar 
    Kaufman, G. D. & Forestell, P. H. Hawaii’s humpback whales, a complete whalewatching guide (Pacific Whale Foundation Press, 1986).
    Google Scholar 
    Dawbin, W. H. Baleen whales. In Whales, Dolphins and Porpoises (eds Harrison, R. & Bryden, M.) 44–65 (Facts on File, 1988).
    Google Scholar 
    Félix, F., Bearson, B. & Falconí, J. Epizoic barnacles removed from the skin of a humpback whale after a period of intense surface activity. Mar. Mamm. Sci. 22, 979–984 (2006).Article 

    Google Scholar 
    Towers, J. R. et al. Seasonal movements and ecological markers as evidence for migration of common minke whales photo-identified in the eastern North Pacific. J. Cetacean Res. Manag. 13, 221–229 (2013).
    Google Scholar 
    Iwasa-Arai, T. et al. The host-specific whale louse (Cyamus boopis) as a potential tool for interpreting humpback whale (Megaptera novaeangliae) migratory routes. J. Exp. Mar. Biol. Ecol. 505, 45–51 (2018).Article 

    Google Scholar 
    Lehnert, K. et al. Whale lice (Isocyamus deltobranchium & Isocyamus delphinii; Cyamidae) prevalence in odontocetes off the German and Dutch coasts – Morphological and molecular characterization and health implications. Int. J. Parasitol. 15, 22–30 (2021).
    Google Scholar 
    Dreyer, N. et al. How whale and dolphin barnacles attach to their hosts and the paradox of remarkably versatile attachment structures in cypris larvae. Org. Divers. Evol. 20, 233–249 (2020).Article 

    Google Scholar 
    Visser, I. N., Cooper, T. E. & Grimm, H. Duration of pseudo-stalked barnacles (Xenobalanus globicipitis) on a New Zealand Pelagic ecotype orca (Orcinus orca), with comments on cookie cutter shark bite marks (Isistius sp.); can they be used as biological tags?. Biol. Divers. 11, 1067–1086 (2020).
    Google Scholar 
    Van Waerebeek, K. & Reyes, J. C. A note on incidental fishery mortality of southern minke whales off western South America. Rep. Int. Whal. Commn 15, 521–523 (1994).
    Google Scholar 
    Félix, F. & Haase, B. A note on the northernmost record of the Antarctic minke whale (Balaenoptera bonaerensis) in the Eastern Pacific. J. Cetacean Res. Manag. 13, 191–194 (2013).
    Google Scholar 
    Esposito, C., Bichet, O. & Petit, M. First sightings of Antarctic minke whale (Balaenoptera bonaerensis) mother–calf pairs in French Polynesia. Aquat. Mamm. 47, 175–180 (2021).Article 

    Google Scholar 
    Karaa, S., Insacco, G., Bradai, M. N. & Scaravelli, D. Records of Xenobalanus globicipitis on Balaenoptera physalus and Stenella coeruleoalba in Tunisian and Sicilian waters. Nat. Rerum 1, 55–59 (2011).
    Google Scholar 
    Oliveira, J. B., Morales, J. A., González-Barrientos, R. C., Hernández-Gamboa, J. & Hernández-Mora, G. Parasites of cetaceans stranded on the Pacific Coast of Costa Rica. Vet. Parasitol. 182, 319–328. https://doi.org/10.1016/j.vetpar.2011.05.014 (2011).Article 
    CAS 

    Google Scholar 
    Dı́az-Gamboa, R. E. Varamiento de orcas pigmeas (Feresa attenuata Gray 1874) en Yucatán: Reporte de caso. Bioagrociencias 8, 36–43 (2015).
    Google Scholar 
    IJsseldijk, L. L. et al. Beached bachelors: An extensive study on the largest recorded sperm whale Physeter macrocephalus mortality event in the north sea. PloS One 13, e0201221. https://doi.org/10.1371/journal.pone.0201221 (2018).Article 
    CAS 

    Google Scholar 
    Guerrero-Ruiz, M. & Urbán, J. R. First report of remoras on two killer whales (Orcinus orca) in the Gulf of California Mexico. Aquat. Mamm. 26, 148–150 (2000).
    Google Scholar 
    Kautek, G., Van Bressem, M. F. & Ritter, F. External body conditions in cetaceans from La Gomera, Canary Islands Spain. J. Marine Anim. Ecol. 11, 4–17 (2008).
    Google Scholar 
    Bearzi, M. & Patonai, K. Occurrence of the barnacle (Xenobalanus globicipitis) on coastal and offshore common bottlenose dolphins (Tursiops truncatus) in Santa Monica Bay and adjacent areas California. Bull. S. Calif. Acad. Sci. 109, 37–44. https://doi.org/10.3160/0038-3872-109.2.37 (2010).Article 

    Google Scholar 
    Foote, A. D. et al. Genetic differentiation among North Atlantic killer whale populations. Mol. Ecol. 20, 629–641. https://doi.org/10.1111/j.1365-294X.2010.04957.x (2011).Article 

    Google Scholar 
    Toth, J. L., Hohn, A. A., Able, K. W. & Gorgone, A. M. Defining bottlenose dolphin (Tursiops truncatus) stocks based on environmental, physical and behavioral characteristics. Mar. Mamm. Sci. 28, 461–478. https://doi.org/10.1111/j.1748-7692.2011.00497.x (2012).Article 

    Google Scholar 
    Urian, K. W., Kaufmann, R., Waples, D. M. & Read, A. J. The prevalence of ectoparasitic barnacles discriminates stocks of Atlantic common bottlenose dolphins (Tursiops truncatus) at risk of entanglement in coastal gill net fisheries. Mar. Mamm. Sci. 35, 290–299. https://doi.org/10.1111/mms.12522 (2019).Article 

    Google Scholar 
    Siciliano, S. et al. Epizoic barnacle (Xenobalanus globicipitis) infestations in several cetacean species in South-Eastern Brazil. Mar. Biol. Res. 16, 1–13. https://doi.org/10.1080/17451000.2020.1783450 (2020).Article 

    Google Scholar 
    Whitehead, T. O., Rollinson, D. P. & Reisinger, R. R. Pseudostalked barnacles Xenobalanus globicipitis attached to killer whales Orcinus orca in South African waters. Mar. Biodivers. Rec. 45, 873–876. https://doi.org/10.1007/s12526-014-0296-2 (2014).Article 

    Google Scholar 
    Methion, S. & Dı́az López, B. First record of atypical pigmentation pattern in fin whale Balaenoptera physalus in the Atlantic ocean. Dis. Aquat. Org. 135, 121–125. https://doi.org/10.3354/dao03385 (2019).Article 

    Google Scholar 
    Herr, H., Burkhardt-Holm, P., Heyer, K., Siebert, U. & Selling, J. Injuries, malformations and epidermal conditions in cetaceans of the strait of Gibraltar. Aquat. Mamm. 46, 215–235. https://doi.org/10.1578/AM.46.2.2020.215 (2020).Article 

    Google Scholar 
    Herr, H. et al. Return of large fin whale feeding aggregations to historical whaling grounds in the southern ocean. Sci. Rep. 12, 9458. https://doi.org/10.1038/s41598-022-13798-7 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Gruvel, J. A. Cirrhipèdes Provenant Des Campagnes Scientifiques De S.A.S. Le Prince De Monaco, (1885– 1913). In Résultas Des Campagnes Scientifiques Accomplies Sur Son Yacht Par Albert Ler (Monaco: Prince Souverain de Monaco) 1-88 (1920).Annandale, N. The rate of growth in Conchoderma and Lepas. Rec. Indian Mus. 3, 295 (1909).
    Google Scholar 
    Il’in, I. I., Kuznetsova, L. A. & Starostin, I. V. Oceanic fouling in the equatorial Atlantic. Oceanology 18, 597–599 (1978).
    Google Scholar 
    Eckert, K. L. & Eckert, S. A. Growth rate and reproductive condition of the barnacle Conchoderma virgatum on gravid leatherback sea turtles in Caribbean waters. J. Crust. Biol. 7, 682–690. https://doi.org/10.2307/1548651 (1987).Article 

    Google Scholar 
    Arroyo, N. L., Abaunza, P. & Preciado, I. The first naupliar stage of Pennella balaenopterae Koren and Danielssen 1877 (Copepoda: Siphonostomatoida, Pennellidae). Sarsia 87, 333–337. https://doi.org/10.1080/0036482021000155785 (2002).Article 

    Google Scholar  More