More stories

  • in

    Commerson’s dolphin population structure: evidence for female phylopatry and male dispersal

    Waples, R. S. & Gaggiotti, O. INVITED REVIEW: What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol. Ecol. 15, 1419–1439 (2006).Article 
    CAS 

    Google Scholar 
    Mendez, M., Rosenbaum, H. C., Subramaniam, A., Yackulic, C. & Bordino, P. Isolation by environmental distance in mobile marine species: Molecular ecology of franciscana dolphins at their southern range. Mol. Ecol. 19, 2212–2228 (2010).Article 
    CAS 

    Google Scholar 
    De Meeûs, T. et al. Population genetics and molecular epidemiology or how to “débusquer la bête”. Infect. Genet. Evol. 7, 308–332 (2007).Article 

    Google Scholar 
    Durigan, M. et al. Population genetic analysis of Giardia duodenalis: Genetic diversity and haplotype sharing between clinical and environmental sources. MicrobiologyOpen 6, e00424 (2017).Article 

    Google Scholar 
    Amaral, A. R. et al. Seascape genetics of a globally distributed, highly mobile marine mammal: The short-beaked common dolphin (genus Delphinus). PLoS ONE 7, e31482 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Mendez, M. et al. Molecular ecology meets remote sensing: Environmental drivers to population structure of humpback dolphins in the Western Indian Ocean. Heredity 107, 349–361 (2011).Article 
    CAS 

    Google Scholar 
    de los Angeles Bayas-Rea, R., Félix, F. & Montufar, R. Genetic divergence and fine scale population structure of the common bottlenose dolphin (Tursiops truncatus, Montagu) found in the Gulf of Guayaquil. Ecuador. PeerJ 6, e4589 (2018).Article 

    Google Scholar 
    Natoli, A., Peddemors, V. M. & Rus Hoelzel, A. Population structure and speciation in the genus Tursiops based on microsatellite and mitochondrial DNA analyses. J. Evol. Biol. 17, 363–375 (2004).Article 
    CAS 

    Google Scholar 
    Oliveira, L. R., Loizaga De Castro, R., Cárdenas-Alayza, S. & Bonatto, S. L. Conservation genetics of South American aquatic mammals: An overview of gene diversity, population structure, phylogeography, non-invasive methods and forensics. Mammal Rev. 42, 275–303 (2012).Article 

    Google Scholar 
    Vollmer, N. L. & Rosel, P. E. Fine-scale population structure of common bottlenose dolphins (Tursiops truncatus) in offshore and coastal waters of the US Gulf of Mexico. Mar. Biol. 164, 1–15 (2017).Article 

    Google Scholar 
    MacLeod, C. D. Global climate change, range changes and potential implications for the conservation of marine cetaceans: A review and synthesis. Endanger. Species Res. 7, 125–136 (2009).Article 

    Google Scholar 
    Hartl, D. L., Clark, A. G. & Clark, A. G. Principles of Population Genetics, Vol. 116 (Sinauer associates Sunderland, 1997).Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Reeves, R. R., Smith, B. D., Crespo, E. A. & Notarbartolo di Sciara, G. Dolphins, whales and porpoises: 2002–2010 conservation action plan for the world’s cetaceans, Vol. 58 (IUCN, 2003).Crespo, E. A. & Hall, M. A. In Marine Mammals, 463–490 (Springer, 2002).Crespo, E. A. et al. Direct and indirect effects of highseas fisheries on the marine mammal populations in the northern and central Patagonian coast. J. Northwest Atl. Fish. Sci. 22, 189–207 (1997).Article 

    Google Scholar 
    Harlin-Cognato, A. D., Markowitz, T., Würsig, B. & Honeycutt, R. L. Multi-locus phylogeography of the dusky dolphin (Lagenorhynchus obscurus): Passive dispersal via the west-wind drift or response to prey species and climate change?. BMC Evol. Biol. 7, 1–17 (2007).Article 

    Google Scholar 
    Hoelzel, A. Evolution of population genetic structure in marine mammal species. In Population genetics for animal conservation, 294–318 (Cambridge University Press, Cambridge, 2009).Fraser, C. I., Nikula, R., Ruzzante, D. E. & Waters, J. M. Poleward bound: Biological impacts of Southern Hemisphere glaciation. Trends Ecol. Evol. 27, 462–471 (2012).Article 

    Google Scholar 
    Louis, M. et al. Influence of past climate change on phylogeography and demographic history of narwhals, Monodon monoceros. Proc. R. Soc. B 287, 20192964 (2020).Article 
    CAS 

    Google Scholar 
    Skovrind, M. et al. Circumpolar phylogeography and demographic history of beluga whales reflect past climatic fluctuations. Mol. Ecol. 30, 2543–2559 (2021).Article 

    Google Scholar 
    Foote, A. D. et al. Ancient DNA reveals that bowhead whale lineages survived Late Pleistocene climate change and habitat shifts. Nat. Commun. 4, 1–7 (2013).Article 

    Google Scholar 
    Crespo, E. A. et al. Status, population trend and genetic structure of South American fur seals, Arctocephalus australis, in southwestern Atlantic waters. Mar. Mamm. Sci. 31, 866–890 (2015).Article 

    Google Scholar 
    Feijoo, M., Lessa, E. P., De Castro, R. L. & Crespo, E. A. Mitochondrial and microsatellite assessment of population structure of South American sea lion (Otaria flavescens) in the Southwestern Atlantic Ocean. Mar. Biol. 158, 1857–1867 (2011).Article 

    Google Scholar 
    Túnez, J. I., Cappozzo, H. L., Nardelli, M. & Cassini, M. H. Population genetic structure and historical population dynamics of the South American sea lion, Otaria flavescens, in north-central Patagonia. Genetica 138, 831–841 (2010).Article 

    Google Scholar 
    Oliveira, L., Ott, P. H., Grazziotin, F. G., White, B. & Bonatto, S. In Paper (SC/S11/RW26) presented to the Southern Right Whale Assessment Workshop (Commission International Whaling).Loizaga de Castro, R., Dans, S. L. & Crespo, E. A. Spatial genetic structure of dusky dolphin, Lagenorhynchus obscurus, along the argentine coast: Preserve what scale?. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 173–183 (2016).Article 

    Google Scholar 
    Pimper, L. E., Goodall, R. N. P. & Remis, M. I. First mitochondrial DNA analysis of the spectacled porpoise (Phocoena dioptrica) from Tierra del Fuego, Argentina. Mamm. Biol. 77, 459–462 (2012).Article 

    Google Scholar 
    Pichler, F. B. et al. Origin and radiation of Southern Hemisphere coastal dolphins (genus Cephalorhynchus). Mol. Ecol. 10, 2215–2223 (2001).Article 
    CAS 

    Google Scholar 
    Dawson, S. M. In Encyclopedia of Marine Mammals, 166–172 (Elsevier, 2018).Robineau, D., Goodall, R. N. P., Pichler, F. & Baker, C. S. Description of a new subspecies of Commerson’s dolphin, Cephalorhynchus commersonii (Lacépède, 1804), inhabiting the coastal waters of the Kerguelen Islands. Mammalia 71, 172–180 (2007).Article 

    Google Scholar 
    Crespo, E. A. et al. Cephalorhynchus commersonii, Commerson’s Dolphin. IUCN; The IUCN Red List of Threatened Species; 10-2017; 1-14 (2017).Goodall, R. Commerson’s dolphin Cephalorhynchus commersonii (Lacépède 1804). Handb. Mar. Mamm. 5, 241–267 (1994).
    Google Scholar 
    Coscarella, M. A. Ecologıa, comportamiento y evaluación del impacto de embarcaciones sobre manadas de tonina overa Cephalorhynchus commersonii en Bahıa Engano, Chubut (Universidad de Buenos Aires, Buenos Aires, 2005).Dellabianca, N. A. et al. Spatial models of abundance and habitat preferences of commerson’s and peale’s dolphin in southern patagonian waters. PLoS ONE 11, e0163441 (2016).Article 

    Google Scholar 
    Goodall, R. et al. Studies of Commerson’s dolphins, Cephalorhynchus commersonii, off Tierra del Fuego, 1976–1984. Report of the International Whaling Commission (Special Issue 9), 143–160 (1988).White, R. The Distribution of Seabirds and Marine Mammals in Falkland Islands Waters (Joint Nature Conservation Committee, 2002).Loizaga de Castro, R., Dans, S. L., Coscarella, M. A. & Crespo, E. A. Living in an estuary: Commerson’s dolphin (Cephalorhynchus commersonii (Lacépède, 1804)), habitat use and behavioural pattern at the Santa Cruz River, Patagonia, Argentina. Latin Am. J. Aquat. Res. 41, 985–991 (2013).Article 

    Google Scholar 
    Pedraza, S. Ecología poblacional de la tonina overa, Cephalorhynchus commersonii, (Lacépède, 1804) en el litoral patagónico. Unpublished PhD thesis, Universidad de Buenos Aires, Buenos Aires, Argentina (2008).Garaffo, G. V. et al. Modeling habitat use for dusky dolphin and Commerson’s dolphin in Patagonia. Mar. Ecol. Prog. Ser. 421, 217–227 (2011).Article 
    ADS 

    Google Scholar 
    Cipriano, F., Hevia, M. & Iñíguez, M. Genetic divergence over small geographic scales and conservation implications for Commerson’s dolphins (Cephalorhynchus commersonii) in southern Argentina. Mar. Mamm. Sci. 27, 701–718 (2011).Article 
    CAS 

    Google Scholar 
    Pimper, L. E., Baker, C. S., Goodall, R. N. P., Olavarría, C. & Remis, M. I. Mitochondrial DNA variation and population structure of Commerson’s dolphins (Cephalorhynchus commersonii) in their southernmost distribution. Conserv. Genet. 11, 2157–2168 (2010).Article 

    Google Scholar 
    O’Brien, S. J. A role for molecular genetics in biological conservation. Proc. Natl. Acad. Sci. 91, 5748–5755 (1994).Article 
    ADS 
    CAS 

    Google Scholar 
    Loizaga de Castro, R., Hoelzel, A. & Crespo, E. Behavioural responses of Argentine coastal dusky dolphins (Lagenorhynchus obscurus) to a biopsy pole system. Anim. Welf. 22, 13–23 (2013).Article 
    CAS 

    Google Scholar 
    Elphinstone, M. S., Hinten, G. N., Anderson, M. J. & Nock, C. J. An inexpensive and high-throughput procedure to extract and purify total genomic DNA for population studies. Mol. Ecol. Notes 3, 317–320 (2003).Article 
    CAS 

    Google Scholar 
    Bérubé, M. & Palsbøll, P. Identification of sex in cetaceans by multiplexing with three ZFX and ZFY specific primers. Mol. Ecol. 5, 283–287 (1996).Article 

    Google Scholar 
    Hoelzel, A., Hancock, J. & Dover, G. Evolution of the cetacean mitochondrial D-loop region. Mol. Biol. Evol. 8, 475–493 (1991).CAS 

    Google Scholar 
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).Article 
    CAS 

    Google Scholar 
    Ruzzante, D. E. et al. Validation of close-kin mark–recapture (CKMR) methods for estimating population abundance. Methods Ecol. Evol. 10, 1445–1453 (2019).Article 

    Google Scholar 
    Faircloth, B. C., Branstetter, M. G., White, N. D. & Brady, S. G. Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among H ymenoptera. Mol. Ecol. Resour. 15, 489–501 (2015).Article 
    CAS 

    Google Scholar 
    Faircloth, B. C. MSATCOMMANDER: Detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol. Ecol. Resour. 8, 92–94 (2008).Article 
    CAS 

    Google Scholar 
    Zhan, L. et al. MEGASAT: Automated inference of microsatellite genotypes from sequence data. Mol. Ecol. Resour. 17, 247–256 (2017).Article 
    CAS 

    Google Scholar 
    Nei, M. Molecular Evolutionary Genetics (Columbia University Press, 1987).Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).Article 
    CAS 

    Google Scholar 
    Schneider, S., Roessli, D. & Excoffier, L. Arlequin: A software for population genetics data analysis, version 2.000. Genetics Biometry Laboratory, Department of Anthropology, University of Geneva, Switzerland (2000).Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).Article 
    CAS 

    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).Article 
    CAS 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour 10, 564–567 (2010).Article 

    Google Scholar 
    Bandelt, H.-J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).Article 
    CAS 

    Google Scholar 
    Fu, Y.-X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).Article 
    CAS 

    Google Scholar 
    Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992).CAS 

    Google Scholar 
    Peakall, R. & Smouse, P. E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).Article 

    Google Scholar 
    Mantel, N. The detection of disease clustering and a generalized regression approach. Can. Res. 27, 209–220 (1967).CAS 

    Google Scholar 
    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).Article 

    Google Scholar 
    Harlin, A. D., Markowitz, T., Baker, C. S., Würsig, B. & Honeycutt, R. L. Genetic structure, diversity, and historical demography of New Zealand’s dusky dolphin (Lagenorhynchus obscurus). J. Mammal. 84, 702–717 (2003).Article 

    Google Scholar 
    Rambaut, A., Suchard, M., Xie, D. & Drummond, A. Tracer v1. 6. http://beast.bio.ed.ac.uk/Tracer (2014).Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).Article 

    Google Scholar 
    Rice, W. R. Analyzing tables of statistical tests. Evolution 43, 223–225 (1989).
    Google Scholar 
    Goudet, J. FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9. 3. http://www2.unil.ch/popgen/softwares/fstat.htm (2001).Waples, R. S. & Do, C. LDNE: A program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Resour. 8, 753–756 (2008).Article 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).Article 
    CAS 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).Article 
    CAS 

    Google Scholar 
    Earl, D. A. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).Article 

    Google Scholar 
    Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 43, 258–275 (1989).
    Google Scholar 
    Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).Article 

    Google Scholar 
    Milinkovitch, M. C., Leduc, R., Tiedemann, R. & Dizon, A. In Marine Mammals: Biology and Conservation (ed Evans, P. G. H. & Raga, J. A.) 325–359 (Springer, 2002).Pichler, F. Population structure and genetic variation in Hector’s dolphin (Cephalorhynchus hectori), ResearchSpace@ Auckland (2001).Pichler, F. & Baker, C. Loss of genetic diversity in the endemic Hector’s dolphin due to fisheries-related mortality. Proc. R. Soc. Lond. Ser. B Biol. Sci. 267, 97–102 (2000).Article 
    CAS 

    Google Scholar 
    Greenwood, P. J. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28, 1140–1162 (1980).Article 

    Google Scholar 
    Chilvers, B. L. & Wilkinson, I. S. Philopatry and site fidelity of New Zealand sea lions (Phocarctos hookeri). Wildl. Res. 35, 463–470 (2008).Article 

    Google Scholar 
    Engelhaupt, D. et al. Female philopatry in coastal basins and male dispersion across the North Atlantic in a highly mobile marine species, the sperm whale (Physeter macrocephalus). Mol. Ecol. 18, 4193–4205 (2009).Article 
    CAS 

    Google Scholar 
    Möller, L. M. & Beheregaray, L. B. Genetic evidence for sex-biased dispersal in resident bottlenose dolphins (Tursiops aduncus). Mol. Ecol. 13, 1607–1612 (2004).Article 

    Google Scholar 
    Jansen van Vuuren, B., Best, P., Roux, J. P. & Robinson, T. Phylogeographic population structure in the Heaviside’s dolphin (Cephalorhynchus heavisidii): Conservation implications. Anim. Conserv. 5, 303–307 (2002).Article 

    Google Scholar 
    Pérez-Alvarez, M. J. et al. Microsatellite markers reveal strong genetic structure in the endemic Chilean dolphin. PLoS ONE 10, e0123956 (2015).Article 

    Google Scholar 
    Hamner, R. M., Pichler, F. B., Heimeier, D., Constantine, R. & Baker, C. S. Genetic differentiation and limited gene flow among fragmented populations of New Zealand endemic Hector’s and Maui’s dolphins. Conserv. Genet. 13, 987–1002 (2012).Article 

    Google Scholar 
    Pichler, F., Dawson, S., Slooten, E. & Baker, C. Geographic isolation of Hector’s dolphin populations described by mitochondrial DNA sequences. Conserv. Biol. 12, 676–682 (1998).Article 

    Google Scholar 
    Kraft, S. et al. From settlers to subspecies: Genetic differentiation in commerson’s Dolphins between South America and the Kerguelen Islands. Front. Mar. Sci. 8, 782512 (2021).Article 

    Google Scholar 
    Grant, W. & Bowen, B. W. Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation. J. Hered. 89, 415–426 (1998).Article 

    Google Scholar 
    Ponce, J. F., Rabassa, J., Coronato, A. & Borromei, A. M. Palaeogeographical evolution of the Atlantic coast of Pampa and Patagonia from the last glacial maximum to the Middle Holocene. Biol. J. Lin. Soc. 103, 363–379 (2011).Article 

    Google Scholar 
    Wright, S. Isolation by distance. Genetics 28, 114 (1943).Article 
    CAS 

    Google Scholar 
    Meirmans, P. G. Nonconvergence in B ayesian estimation of migration rates. Mol. Ecol. Resour. 14, 726–733 (2014).Article 

    Google Scholar  More

  • in

    Seasonal range fidelity of a megaherbivore in response to environmental change

    Richard, E., Said, S., Hamann, J. L. & Gaillard, J. M. Daily, seasonal and annual variations in individual home range overlap of two sympatric spacies of deer. Can. J. Zool. 92, 853–859 (2014).Article 

    Google Scholar 
    Sorensen, A. A., Stenhouse, G. B., Bourbonnais, M. L. & Nelson, T. A. Effects of habitat quality and anthropogenic disturbance on grizzly bear (Ursus arctos horribilis) home-range fidelity. Can. J. Zool. 93, 857–865 (2015).Article 

    Google Scholar 
    van Beest, F. M., Rivrud, I. M., Loe, L. E., Milner, J. M. & Mysterud, A. What determines variation in home range size across spatiotemporal scales in a large browsing herbivore?. J. Anim. Ecol. 80, 771–785 (2011).Article 

    Google Scholar 
    Naidoo, R., Du, P., Weaver, G. S. L. C., Jago, M. & Wegmann, M. Factors affecting intraspecific variation in home range size of a large African herbivore. Landsc. Ecol. 27, 1523–1534 (2012).Article 

    Google Scholar 
    Bose, S. et al. Implications of fidelity and philopatry for the population structure of female black-tailed deer. Behav. Ecol. 28, 983–990 (2017).Article 

    Google Scholar 
    Northrup, J. M., Anderson, C. R. Jr. & Wittemyer, G. Environmental dynamics and anthropogenic development alter philopatry and space-use in a North American cervid. Divers. Distrib. 22, 547–557 (2016).Article 

    Google Scholar 
    Passadore, C., Möller, L., Diaz-aguirre, F. & Parra, G. J. High site fidelity and restricted ranging patterns in southern Australian bottlenose dolphins. Ecol. Evol. 8, 242–256 (2018).Article 

    Google Scholar 
    Morales, J. M. et al. Building the bridge between animal movement and population dynamics. Philos. Trans. R. Soc. B Biol. Sci. 365, 2289–2301 (2010).Article 

    Google Scholar 
    Shaw, A. K. Causes and consequences of individual variation in animal movement. Mov. Ecol. 8, 1–12 (2020).Article 

    Google Scholar 
    Morrison, T. A. et al. Drivers of site fidelity in ungulates. J. Anim. Ecol. 00, 1–12 (2021).
    Google Scholar 
    Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2021).Article 

    Google Scholar 
    Barraquand, F. & Benhamou, S. Animal movements in heterogeneous landscapes: Identifying profitable places and homogeneous movement bouts. Ecology 89, 3336–3348 (2008).Article 

    Google Scholar 
    Mueller, T. & Fagan, W. F. Search and navigation in dynamic environments: From individual behaviors to population distributions. Oikos 117, 654–664 (2008).Article 

    Google Scholar 
    Sawyer, H., Merkle, J. A., Middleton, A. D., Dwinnell, S. P. H. & Monteith, K. L. Migratory plasticity is not ubiquitous among large herbivores. J. Anim. Ecol. 88, 450–460 (2019).
    Google Scholar 
    Shakeri, Y. N., White, K. S. & Waite, J. N. Staying close to home: Ecological constraints on space use and range fidelity in a mountain ungulate. Ecol. Evol. 11, 11051–11064 (2021).Article 

    Google Scholar 
    Damuth, J. Home range, home range overlap, and species energy use among herbivorous mammals. Biol. J. Linn. Soc. 15, 185–193 (1981).Article 

    Google Scholar 
    Lindstedt, S. L., Miller, B. J. & Buskirk, S. W. Home range, time, and body size in mammals. Ecol. Soc. Am. 67, 413–418 (1986).
    Google Scholar 
    Ofstad, E. G., Herfindal, I., Solberg, E. J. & Sæther, B. E. Home ranges, habitat and body mass: Simple correlates of home range size in ungulates. Proc. R. Soc. B Biol. Sci. 283, 20161234 (2016).Article 

    Google Scholar 
    Gehr, B. et al. Stay home, stay safe—Site familiarity reduces predation risk in a large herbivore in two contrasting study sites. J. Anim. Ecol. 89, 1329–1339 (2020).Article 

    Google Scholar 
    Sach, F., Dierenfeld, E. S., Langley-Evans, S. C., Watts, M. J. & Yon, L. African savanna elephants (Loxodonta africana) as an example of a herbivore making movement choices based on nutritional needs. PeerJ 7, 1–27 (2019).Article 

    Google Scholar 
    Pretorius, Y. et al. Diet selection of African elephant over time shows changing optimization currency. Oikos 121, 2110–2120 (2012).Article 

    Google Scholar 
    Chamaillé-Jammes, S., Valeix, M. & Fritz, H. Managing heterogeneity in elephant distribution: Interactions between elephant population density and surface-water availability. J. Appl. Ecol. 44, 625–633 (2007).Article 

    Google Scholar 
    Purdon, A. & van Aarde, R. J. Water provisioning in Kruger National Park alters elephant spatial utilisation patterns. J. Arid Environ. 141, 45–51 (2017).Article 
    ADS 

    Google Scholar 
    Shannon, G., Matthews, W. S., Page, B. R., Parker, G. E. & Smith, R. J. The affects of artificial water availability on large herbivore ranging patterns in savanna habitats: A new approach based on modelling elephant path distributions. Divers. Distrib. 15, 776–783 (2009).Article 

    Google Scholar 
    Kos, M. et al. Seasonal diet changes in elephant and impala in mopane woodland. Eur. J. Wildl. Res. 58, 279–287 (2012).Article 

    Google Scholar 
    Shannon, G., Mackey, R. L. & Slotow, R. Diet selection and seasonal dietary switch of a large sexually dimorphic herbivore. Acta Oecologica 46, 48–55 (2013).Article 
    ADS 

    Google Scholar 
    Loarie, S. R., van Aarde, R. J. & Pimm, S. L. Elephant seasonal vegetation preferences across dry and wet savannas. Biol. Conserv. 142, 3099–3107 (2009).Article 

    Google Scholar 
    Scogings, P. F. et al. Seasonal variations in nutrients and secondary metabolites in semi-arid savannas depend on year and species. J. Arid Environ. 114, 54–61 (2015).Article 
    ADS 

    Google Scholar 
    Birkett, P. J., Vanak, A. T., Muggeo, V. M. R., Ferreira, S. M. & Slotow, R. Animal perception of seasonal thresholds: Changes in elephant movement in relation to rainfall patterns. PLoS ONE 7, 1–8 (2012).Article 

    Google Scholar 
    Cushman, S. A., Chase, M. & Griffin, C. Elephants in space and time. Oikos 109, 331–341 (2005).Article 

    Google Scholar 
    Bohrer, G., Beck, P. S., Ngene, S. M., Skidmore, A. K. & Douglas-Hamilton, I. Elephant movement closely tracks precipitation-driven vegetation dynamics in a Kenyan forest-savanna landscape. Mov. Ecol. 2, 1–12 (2014).Article 

    Google Scholar 
    Purdon, A., Mole, M. A., Chase, M. J. & van Aarde, R. J. Partial migration in savanna elephant populations distributed across southern Africa. Sci. Rep. 8, 1–11 (2018).Article 
    CAS 

    Google Scholar 
    Shannon, G., Page, B. R., Duffy, K. J. & Slotow, R. The ranging behaviour of a large sexually dimorphic herbivore in response to seasonal and annual environmental variation. Austral Ecol. 35, 731–742 (2010).Article 

    Google Scholar 
    Tsalyuk, M., Kilian, W., Reineking, B. & Getz, W. M. Temporal variation in resource selection of African elephants follows long-term variability in resource availability. Ecol. Monogr. 89, 1–19 (2019).Article 

    Google Scholar 
    Thaker, M., Prins, H. H. T., Slotow, R., Vanak, A. T. & Gupte, P. R. Fine-scale tracking of ambient temperature and movement reveals shuttling behavior of elephants to water. Front. Ecol. Evol. 7, 1–12 (2019).Article 

    Google Scholar 
    Govender, N., Trollope, W. S. W. & Van Wilgen, B. W. The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. J. Appl. Ecol. 43, 748–758 (2006).Article 

    Google Scholar 
    MacFadyen, S., Hui, C., Verburg, P. H. & Van Teeffelen, A. J. A. Spatiotemporal distribution dynamics of elephants in response to density, rainfall, rivers and fire in Kruger National Park, South Africa. Divers. Distrib. 25, 880–894 (2019).Article 

    Google Scholar 
    Edwards, M. A., Nagy, J. A. & Derocher, A. E. Low site fidelity and home range drift in a wide-ranging, large Arctic omnivore. Anim. Behav. 77, 23–28 (2009).Article 

    Google Scholar 
    Switzer, P. Site fidelity in predictable and unpredictable habitats. Evol. Ecol. 7, 533–555 (1993).Article 

    Google Scholar 
    Kranstauber, B., Kays, R., Lapoint, S. D., Wikelski, M. & Safi, K. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. J. Anim. Ecol. 81, 738–746 (2012).Article 

    Google Scholar 
    Kranstauber, B., Smolla, M. & Safi, K. Similarity in spatial utilization distributions measured by the earth mover’s distance. Methods Ecol. Evol. 8, 155–160 (2017).Article 

    Google Scholar 
    Wartmann, F., Juarez, C. & Fernandez-duque, E. Size, site fidelity, and overlap of home ranges and core areas in the socially monogamous owl monkey (Aotus azarae) of Northern Argentina. Int. J. Primatol. 35, 919–939 (2014).Article 

    Google Scholar 
    Pringle, R. M. Elephants as agents of habitat creation for small vertebrates at the patch scale. Ecology 89, 26–33 (2008).Article 

    Google Scholar 
    Valeix, M. et al. Elephant-induced structural changes in the vegetation and habitat selection by large herbivores in an African savanna. Biol. Conserv. 144, 902–912 (2011).Article 

    Google Scholar 
    Coverdale, T. C. et al. Elephants in the understory: opposing direct and indirect effects of consumption and ecosystem engineering by megaherbivores. Ecology 97, 3219–3230 (2016).Article 

    Google Scholar 
    Gertenbach, W. Rainfall patterns in the Kruger National Park. Koedoe 23, 35–43 (1980).Article 

    Google Scholar 
    Venter, F. J., Scholes, R. J. & Eckhardt, H. C. The abiotic template and its associated vegetation pattern. In The Kruger Experience (eds du Toit, J. T. et al.) 83–129 (Island Press, 2003).
    Google Scholar 
    Young, K. D., Ferreira, S. M. & van Aarde, R. J. The influence of increasing population size and vegetation productivity on elephant distribution in the Kruger National Park. Austral Ecol. 34, 329–342 (2009).Article 

    Google Scholar 
    Ferreira, S. M., Greaver, C. & Simms, C. Elephant population growth in Kruger National Park, South Africa, under a landscape management approach. Koedoe 59, 1–6 (2017).Article 

    Google Scholar 
    Brownrigg, R. Package ‘Maps’: Draw Geographical Maps (2022).Kranstauber, B. & Smolla, M. Move: Visualizing and analyzing animal track data. R package version 2.1.0 (2013).R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. URL https://www.R-project.org/ (2017).Horne, J. S., Garton, E. O., Krone, S. M. & Lewis, J. S. Analyzing animal movement using Brownian bridges. Ecology 88, 2354–2363 (2007).Article 

    Google Scholar 
    Wato, Y. A. et al. Movement patterns of African elephants (Loxodonta africana) in a semi-arid savanna suggest that they have information on the location of dispersed water sources. Front. Ecol. Evol. 6, 1–8 (2018).Article 

    Google Scholar 
    Polansky, L., Kilian, W. & Wittemyer, G. Elucidating the significance of spatial memory on movement decisions by African savannah elephants using state-space models. Proc. R. Soc. B Biol. Sci. 282, 1–7 (2015).
    Google Scholar 
    Archibald, S. & Scholes, R. J. Leaf green-up in a semi-arid African savanna–separating tree and grass responses to environmental cues. J. Veg. Sci. 18, 583–594 (2007).
    Google Scholar 
    Majozi, N. P. et al. Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa. Hydrol. Earth Syst. Sci. 21, 3401–3415 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Dodge, S. et al. The environmental-data automated track annotation (Env-DATA) system: Linking animal tracks with environmental data. Mov. Ecol. 1, 1–14 (2013).Article 

    Google Scholar 
    Didan, K. MOD13Q1 MODIS/terra vegetation indices 16-day L3 global 250m SIN Grid V006. NASA EOSDIS Land Process. DAAC https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).Redfern, J. V., Grant, C. C., Gaylard, A. & Getz, W. M. Surface water availability and the management of herbivore distributions in an African savanna ecosystem. J. Arid Environ. 63, 406–424 (2005).Article 
    ADS 

    Google Scholar 
    Young, K. D., Ferreira, S. M. & van Aarde, R. J. Elephant spatial use in wet and dry savannas of southern Africa. J. Zool. 278, 189–205 (2009).Article 

    Google Scholar 
    Goldenberg, S. Z., Douglas-Hamilton, I. & Wittemyer, G. Inter-generational change in African elephant range use is associated with poaching risk, primary productivity and adult mortality. Proc. R. Soc. B Biol. Sci. 285, 1–8 (2018).
    Google Scholar 
    Woolley, L.-A. et al. Population and individual elephant response to a catastrophic fire in Pilanesberg National Park. PLoS ONE 3, 1–10 (2008).Article 

    Google Scholar 
    Eby, S. L., Anderson, T. M., Mayemba, E. P. & Ritchie, M. E. The effect of fire on habitat selection of mammalian herbivores: The role of body size and vegetation characteristics. J. Anim. Ecol. 83, 1196–1205 (2014).Article 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodal Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    Mazerolle, M. J. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c) (2020).van Moorter, B. et al. Memory keeps you at home: A mechanistic model for home range emergence. Oikos 118, 641–652 (2009).Article 

    Google Scholar 
    Guldemond, R. A. R., Purdon, A. & van Aarde, R. J. A systematic review of elephant impact across Africa. PLoS ONE 12, 1–12 (2017).Article 

    Google Scholar 
    Abraham, J. O., Goldberg, E. R., Botha, J. & Staver, A. C. Heterogeneity in African savanna elephant distributions and their impacts on trees in Kruger National Park, South Africa. Ecol. Evol. 11, 5624–5634 (2021).Article 

    Google Scholar 
    Wall, J., Douglas-Hamilton, I. & Vollrath, F. Elephants avoid costly mountaineering. Curr. Biol. 16, 527–529 (2006).Article 

    Google Scholar 
    Presotto, A., Fayrer-Hosken, R., Curry, C. & Madden, M. Spatial mapping shows that some African elephants use cognitive maps to navigate the core but not the periphery of their home ranges. Anim. Cogn. 22, 251–263 (2019).Article 

    Google Scholar 
    Landman, M., Schoeman, D. S., Hall-Martin, A. J. & Kerley, G. I. H. Understanding long-term variations in an elephant piosphere effect to manage impacts. PLoS ONE 7, 1–11 (2012).Article 

    Google Scholar 
    Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).Article 

    Google Scholar 
    Hamm, M. & Drossel, B. Habitat heterogeneity hypothesis and edge effects in model metacommunities. J. Theor. Biol. 426, 40–48 (2017).Article 
    ADS 

    Google Scholar 
    Katayama, N. et al. Landscape heterogeneity-biodiversity relationship: Effect of range size. PLoS ONE 9, 1–8 (2014).Article 

    Google Scholar 
    Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).Article 

    Google Scholar 
    O’Connor, T. G., Goodman, P. S. & Clegg, B. A functional hypothesis of the threat of local extirpation of woody plant species by elephant in Africa. Biol. Conserv. 136, 329–345 (2007).Article 

    Google Scholar 
    Codron, J. et al. Elephant (Loxodonta africana) diets in Kruger National Park, South Africa: Spatial and landscape differences. J. Mammal. 87, 27–34 (2006).Article 

    Google Scholar 
    Mduma, S. A. R., Sinclair, A. R. E. & Hilborn, R. Food regulates the Serengeti wildebeest: A 40-year record. J. Anim. Ecol. 68, 1101–1122 (1999).Article 

    Google Scholar 
    Ogutu, J. O. & Owen-Smith, N. ENSO, rainfall and temperature influences on extreme population declines among African savanna ungulates. Ecol. Lett. 6, 412–419 (2003).Article 

    Google Scholar 
    Codron, J. et al. Landscape-scale feeding patterns of African elephant inferred from carbon isotope analysis of feces. Oecologia 165, 89–99 (2011).Article 
    ADS 

    Google Scholar 
    Woolley, L.-A., Millspaugh, J. J., Woods, R. J., Page, B. R. & Slotow, R. Intraspecific strategic responses of African elephants to temporal variation in forage quality. J. Wildl. Manag. 73, 827–835 (2009).Article 

    Google Scholar 
    Dube, K. & Nhamo, G. Evidence and impact of climate change on South African national parks. Potential implications for tourism in the Kruger National Park. Environ. Dev. 33, 1–11 (2020).Article 

    Google Scholar 
    Tshipa, A. et al. Partial migration links local surface-water management to large-scale elephant conservation in the world’s largest transfrontier conservation area. Biol. Conserv. 215, 46–50 (2017).Article 

    Google Scholar 
    Nathan, R. et al. Big-data approaches lead to an increased understanding of the ecology of animal movement. Science (80-.) 375, 1–12 (2022).Article 

    Google Scholar 
    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science (80-.) 348, 1222–1232 (2015).Article 
    CAS 

    Google Scholar 
    Mpakairi, K. S., Ndaimani, H., Tagwireyi, P., Zvidzai, M. & Madiri, T. H. Futuristic climate change scenario predicts a shrinking habitat for the African elephant (Loxodonta africana): Evidence from Hwange National Park, Zimbabwe. Eur. J. Wildl. Res. 66, 1–10 (2020).Article 

    Google Scholar 
    Staver, A. C., Wigley-Coetsee, C. & Botha, J. Grazer movements exacerbate grass declines during drought in an African savanna. J. Ecol. 107, 1482–1491 (2019).Article 

    Google Scholar 
    Asner, G. P., Vaughn, N., Smit, I. P. J. & Levick, S. Ecosystem-scale effects of megafauna in African savannas. Ecography (Cop.) 39, 240–252 (2016).Article 

    Google Scholar 
    Shannon, G. et al. Relative impacts of elephant and fire on large trees in a savanna ecosystem. Ecosystems 14, 1372–1381 (2011).Article 

    Google Scholar 
    Mole, M. A., DÁraujo, S. R., van Aarde, R. J., Mitchell, D. & Fuller, A. Coping with heat: Behavioural and physiological responses of savanna elephants in their natural habitat. Conserv. Physiol. 4, 1–11 (2016).Article 

    Google Scholar 
    Ncongwane, K. P., Botai, J. O., Sivakumar, V., Botai, C. M. & Adeola, A. M. Characteristics and long-term trends of heat stress for South Africa. Sustainability 13, 1–20 (2021).Article 

    Google Scholar 
    Lagendijk, G., Mackey, R. L., Page, B. R. & Slotow, R. The effects of herbivory by a mega- and mesoherbivore on tree recruitment in sand forest, South Africa. PLoS ONE 6, 1–9 (2011).Article 

    Google Scholar 
    Wells, H. B. M. et al. Experimental evidence that effects of megaherbivores on mesoherbivore space use are influenced by species’ traits. J. Anim. Ecol. 90, 2510–2522 (2021).Article 

    Google Scholar 
    Thaker, M. et al. Minimizing predation risk in a landscape of multiple predators: Effects on the spatial distribution of African ungulates. Ecology 92, 398–407 (2011).Article 

    Google Scholar 
    Fležar, U. et al. Simulated elephant-induced habitat changes can create dynamic landscapes of fear. Biol. Conserv. 237, 267–279 (2019).Article 

    Google Scholar 
    Brennan, A. et al. Characterizing multispecies connectivity across a transfrontier conservation landscape. J. Appl. Ecol. 57, 1700–1710 (2020).Article 

    Google Scholar 
    Roever, C. L., van Aarde, R. J. & Leggett, K. Functional connectivity within conservation networks: Delineating corridors for African elephants. Biol. Conserv. 157, 128–135 (2013).Article 

    Google Scholar 
    Green, S. E., Davidson, Z., Kaaria, T. & Doncaster, C. P. Do wildlife corridors link or extend habitat? Insights from elephant use of a Kenyan wildlife corridor. Afr. J. Ecol. 56, 860–871 (2018).Article 

    Google Scholar  More

  • in

    Phylogenetic relationships of sleeper gobies (Eleotridae: Gobiiformes: Gobioidei), with comments on the position of the miniature genus Microphilypnus

    Jordan, D. S. A classification of fishes including families and genera as far as know. Stanford University Publications. Bio. Sci. 3, 79–243. https://doi.org/10.5962/bhl.title.161386 (1923).Article 

    Google Scholar 
    Akihito, et al. Evolutionary aspects of gobioid fishes based on an analysis of mitochondrial cytochrome b genes. Gene 259, 5–15 (2000).Article 
    CAS 

    Google Scholar 
    Wang, H.-Y., Tsai, M.-P., Dean, J. & Lee, S.-C. Molecular phylogeny of gobioid Wshes (Perciformes: Gobioidei) based on mitochondrial 12S rRNA sequences. Mol. Phylogenet. Evol. 20, 390–408. https://doi.org/10.1016/j.ympev.2005.05.004 (2001).Article 
    CAS 

    Google Scholar 
    Nelson, J. S., Grande, T. C. & Wilson, M. V. Fishes of the World (Wiley, 2016).Book 

    Google Scholar 
    Fricke, R., Eschmeyer, W. N. & Van der Laan, R. Eschmeyer’s Catalog of fishes: Genera, Species, references. (http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp) (Accessed 15 June 2022).Guimarães-Costa, A. et al. Molecular evidence of two new species of Eleotris (Gobiiformes: Eleotridae) in the western Atlantic. Mol. Phylogenet. Evol. 98, 52–56. https://doi.org/10.1016/j.ympev.2016.01.014 (2016).Article 

    Google Scholar 
    Thacker, C. E. & Hardman, M. A. Molecular phylogeny of basal gobioid fishes: Rhyacichthyidae, Odontobutidae, Xenisthmidae, Eleotridae (Teleostei: Perciformes: Gobioidei). Mol. Phylogenet. Evol. 37, 858–887. https://doi.org/10.1016/j.ympev.2005.05.004 (2005).Article 
    CAS 

    Google Scholar 
    Nordlie, F. G. Life-history characteristics of eleotrid fishes of the western hemisphere, and perils of life in a vanishing environment. Rev. Fish Biol. Fisher. 22(1), 189–224. https://doi.org/10.1007/s11160-011-9229-3 (2012).Article 

    Google Scholar 
    Berra, T. M. Freshwater Fish Distribution (Academic Press, 2001).
    Google Scholar 
    Graham, J. B. Air-Breathing Fishes: Evolution, Diversity, and Adaptation (Academic Press, 1997).Book 

    Google Scholar 
    Thacker, C. E. Phylogeny of Gobioidea and its placement within Acanthomorpha, with a new classification and investigation of diversification and character evolution. Copeia 1, 93–104. https://doi.org/10.1643/CI-08-004 (2009).Article 

    Google Scholar 
    Chakrabarty, P., Davis, M. P. & Sparks, J. S. The first record of a trans-oceanic sister-group relationship between obligate vertebrate troglobites. PLoS One 7, e44083. https://doi.org/10.1371/journal.pone.0044083 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Agorreta, A. et al. Molecular phylogenetics of Gobioidei and phylogenetic placement of European gobies. Mol. Phylogenet. Evol. 69, 619–633. https://doi.org/10.1016/j.ympev.2013.07.017 (2013).Article 

    Google Scholar 
    McCraney, W. T., Thacker, C. E. & Alfaro, M. E. Supermatrix phylogeny resolves goby lineages and reveals unstable root of Gobiaria. Mol. Phylogenet. Evol. 151, 106862. https://doi.org/10.1016/j.ympev.2020.106862 (2020).Article 

    Google Scholar 
    Karl, S. A. & Avise, J. C. Balancing selection at allozyme loci in oysters: Implications from nuclear RFLPs. Science 256, 100. https://doi.org/10.1126/science.1348870 (1992).Article 
    ADS 
    CAS 

    Google Scholar 
    Hey, J. & Machado, C. A. The study of structured populations—New hope for a difficult and divided science. Nat. Rev. Genet. 4, 535–543. https://doi.org/10.1038/nrg1112 (2003).Article 
    CAS 

    Google Scholar 
    Castroviejo-Fisher, S., Guayasamin, J. M., Gonzalez-Voyer, A. & Vilà, C. Neotropical diversification seen through glassfrogs. J. Biogeogr. 41, 66–80. https://doi.org/10.1111/jbi.12208 (2014).Article 

    Google Scholar 
    Dornburg, A., Townsend, J. P., Friedman, M. & Near, T. J. Phylogenetic informativeness reconciles ray-finned fish molecular divergence times. BMC Evol. Biol. 14, 169. https://doi.org/10.1186/s12862-014-0169-0 (2014).Article 

    Google Scholar 
    Hundt, P. J., Iglésias, S. P., Hoey, A. S. & Simons, A. M. A multilocus molecular phylogeny of combtooth blennies (Percomorpha: Blennioidei: Blenniidae): Multiple invasions of intertidal habitats. Mol. Phylogenet. Evol. 70, 47–56. https://doi.org/10.1016/j.ympev.2013.09.001 (2014).Article 

    Google Scholar 
    Olave, M., Avila, L. J., Sites, J. W. & Morando, M. Multilocus phylogeny of the widely distributed South American lizard clade Eulaemus (Liolaemini, Liolaemus). Zool. Scr. 43, 323–337. https://doi.org/10.1111/zsc.12053 (2014).Article 

    Google Scholar 
    Meyer, B. S., Matschiner, M. & Salzburger, W. A tribal level phylogeny of Lake Tanganyika cichlid fishes based on a genomic multi-marker approach. Mol. Phylogenet. Evol. 83, 56–71. https://doi.org/10.1016/j.ympev.2014.10.009 (2015).Article 

    Google Scholar 
    Jønsson, K. A. et al. A supermatrix phylogeny of corvoid passerine birds (Aves: Corvides). Mol. Phylogenet. Evol. 94, 87–94. https://doi.org/10.1016/j.ympev.2015.08.020 (2016).Article 

    Google Scholar 
    Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475(7357), 493–496. https://doi.org/10.1038/nature10231 (2011).Article 
    CAS 

    Google Scholar 
    Frantz, R. S. X-efficiency: Theory, Evidence and Applications Vol. 2 (Springer Science & Business Media, 2013).
    Google Scholar 
    Bessa-Silva, A. et al. The roles of vicariance and dispersal in the differentiation of two species of the Rhinella marina species complex. Mol. Phylogenet. Evol. 145, 106723. https://doi.org/10.1016/j.ympev.2019.106723 (2020).Article 

    Google Scholar 
    Leutenegger, W. Maternal-fetal weight relationships in primates. Folia Primatol. 20(4), 280–293. https://doi.org/10.1159/000155580 (1973).Article 
    CAS 

    Google Scholar 
    Yeh, J. The effect of miniaturized body size on skeletal morphology in frogs. Evolution 56(3), 628–641. https://doi.org/10.1111/j.0014-3820.2002.tb01372.x (2002).Article 

    Google Scholar 
    Daza, J. D. et al. An enigmatic miniaturized and attenuate whole lizard from the Mid-Cretaceous amber of Myanmar. Breviora 563(1), 1–18. https://doi.org/10.3099/MCZ49.1 (2018).Article 

    Google Scholar 
    Hanken, J. & Wake, D. B. Miniaturization of body size: Organismal consequences and evolutionary significance. Annu. Rev. Ecol. Evol. Syst. 24(1), 501–519. https://doi.org/10.1146/annurev.es.24.110193.002441 (1993).Article 

    Google Scholar 
    Britz, R. & Conway, K. W. Osteology of Paedocypris, a miniature and highly developmentally truncated fish (Teleostei: Ostariophysi: Cyprinidae). J. Morphol. 270(4), 389–412. https://doi.org/10.1002/jmor.10698 (2009).Article 
    CAS 

    Google Scholar 
    Britz, R., Conway, K. W. & Ruber, L. Spectacular morphological novelty in a miniature cyprinid fish, Danionella dracula n. sp.. Proc. R. Soc. Lond. 276(1665), 2179–2186. https://doi.org/10.1098/rspb.2009.0141 (2009).Article 

    Google Scholar 
    Weitzman, S. H. & Vari, R. P. Miniaturization in South American freshwater fishes; an overview and discussion. Proc. Biol. Soc. Wash. 101(2), 444–465 (1988).
    Google Scholar 
    Toledo-Piza, M., Mattox, G. M. & Britz, R. Priocharax nanus, a new miniature characid from the rio Negro, Amazon basin (Ostariophysi: Characiformes), with an updated list of miniature Neotropical freshwater fishes. Neotrop. Ichthyol. 12(2), 229–246. https://doi.org/10.1590/1982-0224-20130171 (2014).Article 

    Google Scholar 
    Caires, R. A. & Figueiredo, J. L. Review of the genus Microphilypnus Myers, 1927 (Teleostei: Gobioidei: Eleotridae) from the lower Amazon basin, with description of one new species. Zootaxa 3036, 39–57. https://doi.org/10.11646/zootaxa.3036.1.3 (2011).Article 

    Google Scholar 
    Caires, R. A. Microphilypnus tapajosensis, a new species of eleotridid from the Tapajós basin, Brazil (Gobioidei: Eleotrididae). Ichthyol. Explor. Freshw. 23, 155–160 (2013).
    Google Scholar 
    Caires, R. A. & Guimarães-Costa, A. Family Eleotridae. In Field Guide to Amazonian Fishes (eds van Sleen, P. & Albert, J.) 388–391 (Princeton University Press, 2017).
    Google Scholar 
    Caires, R. A. & Toledo-Piza, M. A New species of miniature fish of the genus Microphilypnus (Gobioidei: Eleotridae) from the upper Rio Negro Basin, Amazonas Brazil. Copeia 106(1), 49–55. https://doi.org/10.1643/CI-17-634 (2018).Article 

    Google Scholar 
    Roberts, T.R. Leptophilypnion, a new genus with two new species of tiny central Amazonian gobioid fishes (Teleostei, Eleotridae). Aqua (2013).Gould, R. E. & Delevoryas, T. The biology of Glossopteris: Evidence from petrified seed-bearing and pollen-bearing organs. Alcheringa 1(4), 387–399 (1977).Article 

    Google Scholar 
    Rüber, L., Kottelat, M., Tan, H. H., Ng, P. K. & Britz, R. Evolution of miniaturization and the phylogenetic position of Paedocypris, comprising the world’s smallest vertebrate. BMC Evol. Biol. 7(1), 1–10. https://doi.org/10.1186/1471-2148-7-38 (2007).Article 
    CAS 

    Google Scholar 
    Britz, R., Conway, K. W. & Rüber, L. Miniatures, morphology and molecules: Paedocypris and its phylogenetic position (Teleostei, Cypriniformes). Zool. J. Linn. Soc. 172(3), 556–615. https://doi.org/10.1111/zoj.12184 (2014).Article 

    Google Scholar 
    Bloom, D. D., Kolmann, M., Foster, K. & Watrous, H. Mode of miniaturisation influences body shape evolution in New World anchovies (Engraulidae). J. Fish Biol. 96(1), 194–201 (2019).Article 

    Google Scholar 
    Thacker, C. E. Molecular phylogeny of the gobioid fishes (Teleostei: Perciformes: Gobioidei). Mol. Phylogenet. Evol. 26, 354–368. https://doi.org/10.1016/S1055-7903(02)00361-5 (2003).Article 
    CAS 

    Google Scholar 
    Birdsong, R. S., Murdy, E. O. & Pezold, F. L. A study of the vertebral column and median fin osteology in gobioid fishes with comments on gobioid relationships. Bull. Mar. Sci. 42(2), 174–214 (1988).
    Google Scholar 
    Thacker, C. E. Patterns of divergence in fish species separated by the Isthmus of Panama. BMC Evol. Biol. 17(1), 1–14. https://doi.org/10.1186/s12862-017-0957-4 (2017).Article 

    Google Scholar 
    Galván-Quesada, S. et al. Molecular phylogeny and biogeography of the amphidromous fish genus Dormitator Gill 1861 (Teleostei: Eleotridae). PLoS One 11(4), e0153538. https://doi.org/10.1371/journal.pone.0153538 (2016).Article 
    CAS 

    Google Scholar 
    Lessios, H. A. The great American schism: Divergence of marine organisms after therise of the central American isthmus. Annu. Rev. Ecol. Evol. Syst. 2008(39), 63–92. https://doi.org/10.1146/annurev.ecolsys.38.091206.095815 (2008).Article 

    Google Scholar 
    Lovejoy, N. R., Albert, J. S. & Crampton, W. G. Miocene marine incursions and marine/freshwater transitions: Evidence from Neotropical fishes. J. S. Am. Earth Sci. 21, 5–13. https://doi.org/10.1016/j.jsames.2005.07.009 (2006).Article 

    Google Scholar 
    Cooke, G. M., Chao, N. L. & Beheregaray, L. B. Marine incursions, cryptic species and ecological diversification in Amazonia: The biogeographic history of the croaker genus Plagioscion (Sciaenidae). J. Biogeogr. 39, 724–738. https://doi.org/10.1111/j.1365-2699.2011.02635.x (2012).Article 

    Google Scholar 
    Bloom, D. D. & Lovejoy, N. R. On the origins of marine-derived freshwater fishes in South America. J. Biogeogr. 44(9), 1927–1938. https://doi.org/10.1111/jbi.12954 (2017).Article 

    Google Scholar 
    Monsch, K. A. Miocene fish faunas from the northwestern Amazonia basin (Colombia, Peru, Brazil) with evidence of marine incursions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 143, 31–50. https://doi.org/10.1016/S0031-0182(98)00064-9 (1998).Article 

    Google Scholar 
    Hoorn, C. Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: Results of a palynostratigraphic study. Palaeogeogr. Palaeoclimatol. Palaeoecol. 105, 267–309. https://doi.org/10.1016/0031-0182(93)90087-Y (1993).Article 

    Google Scholar 
    Hoorn, C., Guerrero, J., Sarmiento, G. A. & Lorente, M. A. Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology 23, 237–240. https://doi.org/10.1130/0091-7613(1995)023%3C0237:ATAACF%3E2.3.CO;2 (1995).Article 
    ADS 

    Google Scholar 
    Gingras, M. K., Rasanen, M. E., Pemberton, S. G. & Romero, L. P. Ichnology and sedimentology reveal depositional characteristics of bay-margin parasequences in the Miocene Amazonian foreland basin. J. Sediment. Res. 72, 871–883. https://doi.org/10.1306/052002720871 (2002).Article 
    ADS 

    Google Scholar 
    Wesselingh, F. P. et al. Lake Pebas: A palaeoecological reconstruction of a Miocene, long-lived lake complex in western Amazonia. Cainoz. Res. 1, 35–81 (2002).
    Google Scholar 
    Bloom, D. D. & Lovejoy, N. R. Molecular phylogenetics reveals a pattern of biome conservatism in New World anchovies (family Engraulidae). J. Evol. Biol. 25(4), 701–715 (2012).Article 

    Google Scholar 
    Ward, A. B. & Azizi, E. Convergent evolution of the head retraction escape response in elongate fishes and amphibians. Zoology 107(3), 205–217. https://doi.org/10.1016/j.zool.2004.04.003 (2004).Article 

    Google Scholar 
    Palumbi, S. R. & Benzie, J. Large mitochondrial DNA differences between morphologically similar penaeid shrimp. Mol. Mar. Biol. Biotechnol. 1, 27–34 (1991).CAS 

    Google Scholar 
    Chen, W. J., Bonillo, C. & Lecointre, G. Repeatability of clades as criterion of reliability: A case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Mol. Phylogenet. Evol. 26, 262–288. https://doi.org/10.1016/j.gene.2008.07.016 (2003).Article 
    CAS 

    Google Scholar 
    Chen, W. J., Miya, M., Saitoh, K. & Mayden, R. L. Phylogenetic utility of two existing and four novel nuclear gene loci in reconstructing Tree of Life of ray-finned fishes: The order Cypriniformes (Ostariophysi) as a case study. Gene 423, 125–134. https://doi.org/10.1016/j.gene.2008.07.016 (2008).Article 
    CAS 

    Google Scholar 
    Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. PNAS 74(12), 5463–5467. https://doi.org/10.1073/pnas.74.12.5463 (1977).Article 
    ADS 
    CAS 

    Google Scholar 
    Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340 (2004).Article 
    CAS 

    Google Scholar 
    Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180 (2011).Article 

    Google Scholar 
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msw260 (2016).Article 

    Google Scholar 
    Heled, J. & Drummond, A. J. Bayesian inference of population size history from multiple loci. BMC Evol. Biol. 8(1), 1–15. https://doi.org/10.1186/1471-2148-8-289 (2008).Article 
    CAS 

    Google Scholar 
    Bouckaert, R. et al. BEAST 2: A software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10(4), e1003537. https://doi.org/10.1371/journal.pcbi.1003537 (2014).Article 
    CAS 

    Google Scholar 
    Drummond, A. J., Ho, S. Y., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4(5), e88. https://doi.org/10.1371/journal.pbio.0040088 (2006).Article 
    CAS 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67(5), 901. https://doi.org/10.1093/sysbio/syy032 (2018).Article 
    CAS 

    Google Scholar 
    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214. https://doi.org/10.1186/1471-2148-7-214 (2007).Article 
    CAS 

    Google Scholar 
    Rambaut, A. FigTree, a graphical viewer of phylogenetic trees (Version 1.4.3) (2017).Betancur-R, R. et al. Phylogenetic classification of bony fishes. BMC Evol. Biol. 17(1), 1–40. https://doi.org/10.1186/s12862-017-0958-3 (2017).Article 

    Google Scholar 
    Jones, G. Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. J. Math. Biol. 74, 447–467 (2017).Article 
    MathSciNet 
    MATH 

    Google Scholar  More

  • in

    Divergent roles of herbivory in eutrophying forests

    FAO. Global forest resources assessment. www.fao.org/publications (2015).Finlayson, M. et al. A Report of the Millennium Ecosystem Assessment. (The Cropper Foundation, 2005).Lal, R., & Lorenz, K. In Recarbonization of the Biosphere: Ecosystems and the Global Carbon Cycle (eds Lal, R., Lorenz, K., Hüttl, R. F., Schneider, B. U. & von Braun, J.) Ch. 9 (Springer, 2012).Gilliam, F. S. Forest ecosystems of temperate climatic regions: from ancient use to climate change. N. Phytologist 212, 871–887 (2016).Article 

    Google Scholar 
    de Gouvenain, R. C. & Silander, J. A. Temperate forests in Reference Module in Life Sciences (Elsevier, 2017).Keith, S. A., Newton, A. C., Morecroft, M. D., Bealey, C. E. & Bullock, J. M. Taxonomic homogenization of woodland plant communities over 70 years. Proc. R. Soc. B: Biol. Sci. 276, 3539–3544 (2009).Article 

    Google Scholar 
    Rackham, O. Ancient woodlands: modern threats. N. Phytologist 180, 571–586 (2008).Article 

    Google Scholar 
    Bernhardt-Römermann, M. et al. Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Glob. Chang. Biol. 21, 3726–3737 (2015).Article 
    ADS 

    Google Scholar 
    Waller, D. M. & Alverson, W. S. The white-tailed deer: a keystone herbivore. Wildl. Soc. Bull. 25, 217–226 (1997).
    Google Scholar 
    Ramirez, J. I. Uncovering the different scales in deer–forest interactions. Ecol. Evol. 11, 5017–5024 (2021).Article 

    Google Scholar 
    Rooney, T. P., Wiegmann, S. M., Rogers, D. A. & Waller, D. M. Biotic impoverishment and homogenization in unfragmented forest understory communities. Conserv. Biol. 18, 787–798 (2004).Stockton, S. A., Allombert, S., Gaston, A. J. & Martin, J. L. A natural experiment on the effects of high deer densities on the native flora of coastal temperate rain forests. Biol. Conserv 126, 118–128 (2005).Article 

    Google Scholar 
    Hegland, S. J., Lilleeng, M. S. & Moe, S. R. Old-growth forest floor richness increases with red deer herbivory intensity. Ecol. Manag. 310, 267–274 (2013).Article 

    Google Scholar 
    Simončič, T., Bončina, A., Jarni, K. & Klopčič, M. Assessment of the long-term impact of deer on understory vegetation in mixed temperate forests. J. Veg. Sci. 30, 108–120 (2019).Article 

    Google Scholar 
    Vild, O. et al. The paradox of long-term ungulate impact: increase of plant species richness in a temperate forest. Appl. Veg. Sci. 20, 282–292 (2017).Article 

    Google Scholar 
    Russell, F. L., Zippin, D. B. & Fowler, N. L. Effects of white-tailed deer (Odocoileus virginianus) on plants, plant populations and communities: a review. Am. Midl. Nat. 146, 1–26 (2001).Article 

    Google Scholar 
    Öllerer, K. et al. Beyond the obvious impact of domestic livestock grazing on temperate forest vegetation–A global review. Biol. Conserv. 237, 209–219 (2019).Article 

    Google Scholar 
    Borer, E. T. et al. Nutrients cause grassland biomass to outpace herbivory. Nat. Commun. 11, 1–8 (2020).Article 
    ADS 

    Google Scholar 
    Kaarlejärvi, E., Eskelinen, A. & Olofsson, J. Herbivores rescue diversity in warming tundra by modulating trait-dependent species losses and gains. Nat. Commun. 8, 1–8 (2017).
    Google Scholar 
    Simkin, S. M. et al. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proc. Natl Acad. Sci. USA 113, 4086–4091 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecol. Appl. 20, 30–59 (2010).Article 
    CAS 

    Google Scholar 
    Reinecke, J., Klemm, G. & Heinken, T. Vegetation change and homogenization of species composition in temperate nutrient deficient Scots pine forests after 45 yr. J. Veg. Sci. 25, 113–121 (2014).Article 

    Google Scholar 
    Speed, J. D. M., Austrheim, G., Kolstad, A. L. & Solberg, E. J. Long-term changes in northern large-herbivore communities reveal differential rewilding rates in space and time. PLoS ONE 14, e0217166 (2019).Article 
    CAS 

    Google Scholar 
    Valente, A. M., Acevedo, P., Figueiredo, A. M., Fonseca, C. & Torres, R. T. Overabundant wild ungulate populations in Europe: management with consideration of socio-ecological consequences. Mamm. Rev. 50, 353–366 (2020).Article 

    Google Scholar 
    Linnell, J. D. C. et al. The challenges and opportunities of coexisting with wild ungulates in the human-dominated landscapes of Europe’s Anthropocene. Biol. Conserv. 244, 108500 (2020).Waller, D. M. The Herbaceous Layer in Forests of Eastern North America (ed. Gilliam, F.) Ch. 16 (Oxford Univ. Press, 2014).Kerley, G. I. H., Kowalczyk, R. & Cromsigt, J. P. G. M. Conservation implications of the refugee species concept and the European bison: king of the forest or refugee in a marginal habitat? Ecography 35, 519–529 (2011).Svenning, J. C. A review of natural vegetation openness in north-western Europe. Biol. Conserv 104, 133–148 (2002).Article 

    Google Scholar 
    Sandom, C. J., Ejrnaes, R., Hansen, M. D. D. & Svenning, J. C. High herbivore density associated with vegetation diversity in interglacial ecosystems. Proc. Natl Acad. Sci. USA 111, 4162–4167 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Ramirez, J. I., Jansen, P. A., den Ouden, J., Goudzwaard, L. & Poorter, L. Long-term effects of wild ungulates on the structure, composition and succession of temperate forests. Ecol. Manag. 432, 478–488 (2019).Article 

    Google Scholar 
    Ramirez, J. I., Jansen, P. A. & Poorter, L. Effects of wild ungulates on the regeneration, structure and functioning of temperate forests: A semi-quantitative review. Ecol. Manag. 424, 406–419 (2018).Article 

    Google Scholar 
    Albert, A. et al. Seed dispersal by ungulates as an ecological filter: a trait-based meta-analysis. Oikos 124, 1109–1120 (2015).Article 

    Google Scholar 
    McNaughton, S. J. Grazing lawns: on domesticated and wild grazers. Am. Nat. 128, 937–939 (1986).Article 

    Google Scholar 
    Cromsigt, J. P. G. M. & Kuijper, D. P. J. Revisiting the browsing lawn concept: evolutionary Interactions or pruning herbivores? Perspect. Plant Ecol. 13, 207–215 (2011).Article 

    Google Scholar 
    Ramirez, J. I. et al. Temperate forests respond in a non-linear way to a population gradient of wild deer. Forestry 94, 502–511 (2021).Article 

    Google Scholar 
    Boulanger, V. et al. Ungulates increase forest plant species richness to the benefit of non‐forest specialists. Glob. Chang. Biol. 24, e485–e495 (2018).Article 

    Google Scholar 
    Kirby, K. J. The impact of deer on the ground flora of British broadleaved woodland. Forestry 74, 219–229 (2001).Article 

    Google Scholar 
    Royo, A. A., Collins, R., Adams, M. B., Kirschbaum, C. & Carson, W. P. Pervasive interactions between ungulate browsers and disturbance regimes promote temperate forest herbaceous diversity. Ecology 91, 93–105 (2010).Happonen, K. et al. Trait-based responses to land use and canopy dynamics modify long-term diversity changes in forest understories. Glob. Ecol. Biogeogr. 30, 1863–1875 (2021).Article 

    Google Scholar 
    Peñuelas, J. & Sardans, J. The global nitrogen-phosphorus imbalance. Science 375, 266–267 (2022).Article 
    ADS 

    Google Scholar 
    Staude, I. R. et al. Replacements of small- by large-ranged species scale up to diversity loss in Europe’s temperate forest biome. Nat. Ecol. Evol. 4, 802–808 (2020).Article 

    Google Scholar 
    Newbold, T. et al. Widespread winners and narrow-ranged losers: Land use homogenizes biodiversity in local assemblages worldwide. PLoS Biol. 16, e2006841 (2018).Article 

    Google Scholar 
    Verheyen, K. et al. Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. Br. Ecol. Soc. J. Ecol. 100, 352–365 (2012).
    Google Scholar 
    Gilliam, F. S. Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. J. Ecol. 94, 1176–1191 (2006).Article 
    CAS 

    Google Scholar 
    de Schrijver, A. et al. Cumulative nitrogen input drives species loss in terrestrial ecosystems. Glob. Ecol. Biogeogr. 652, 803–816 (2011).Article 

    Google Scholar 
    de Frenne, P. et al. Light accelerates plant responses to warming. Nat. Plants 1, 15110 (2015).Article 

    Google Scholar 
    Baeten, L. et al. Herb layer changes (1954-2000) related to the conversion of coppice-with-standards forest and soil acidification. Appl. Veg. Sci. 12, 187–197 (2009).Article 

    Google Scholar 
    Becker, T., Spanka, J., Schröder, L. & Leuschner, C. Forty years of vegetation change in former coppice-with-standards woodlands as a result of management change and N deposition. Appl. Veg. Sci. 20, 304–313 (2017).Article 

    Google Scholar 
    van Calster, H. et al. Diverging effects of overstorey conversion scenarios on the understorey vegetation in a former coppice-with-standards forest. Ecol. Manag. 256, 519–528 (2008).Article 

    Google Scholar 
    Luyssaert, S. et al. The European carbon balance. Part 3: forests. Glob. Chang. Biol. 16, 1429–1450 (2010).Article 
    ADS 

    Google Scholar 
    Kirby, K. J. et al. Five decades of ground flora changes in a temperate forest: the good, the bad and the ambiguous in biodiversity terms. Ecol. Manag. 505, 119896 (2022).Article 

    Google Scholar 
    Hautier, Y., Niklaus, P. A. & Hector, A. Competition for light causes plant biodiversity loss after eutrophication. Science 324, 636–638 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Kowalczyk, R., Kamiński, T. & Borowik, T. Do large herbivores maintain open habitats in temperate forests? For. Ecol. Manag. 494, 119310 (2021).Dormann, C. F. et al. Plant species richness increases with light availability, but not variability, in temperate forests understorey. BMC Ecol. 20, 1–9 (2020).Article 

    Google Scholar 
    Dirnböck, T. et al. Forest floor vegetation response to nitrogen deposition in Europe. Glob. Chang. Biol. 20, 429–440 (2014).Article 
    ADS 

    Google Scholar 
    Perring, M. P. et al. Understanding context dependency in the response of forest understorey plant communities to nitrogen deposition. Environ. Pollut. 242, 1787–1799 (2018).Article 
    CAS 

    Google Scholar 
    Anderson, T. M. et al. Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecology 99, 822–831 (2018).Article 

    Google Scholar 
    Gough, L. & Grace, J. B. Herbivore effects on plant species density at varying productivity levels. Ecology 79, 1586–1594 (1998).Article 

    Google Scholar 
    Eskelinen, A., Harpole, W. S., Jessen, M.-T., Virtanen, R. & Hautier, Y. Light competition drives herbivore and nutrient effects on plant diversity. Nature 611, 301–305 (2022).Knight, T. M., Dunn, J. L., Smith, L. A., Davis, J. A. & Kalisz, S. Deer facilitate invasive plant success in a Pennsylvania forest understory. Nat. Areas 29, 110–116 (2009).Article 

    Google Scholar 
    Beguin, J., Pothier, D. & Côté, S. D. Deer browsing and soil disturbance induce cascading effects on plant communities: a multilevel path analysis. Ecol. Appl. 21, 439–451 (2011).Gilliam, F. S. et al. Twenty-five-year response of the herbaceous layer of a temperate hardwood forest to elevated nitrogen deposition. Ecosphere 7, e01250 (2016).Article 

    Google Scholar 
    de Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. USA 110, 18561–18565 (2013).Article 
    ADS 

    Google Scholar 
    Hedwall, P. O. et al. Half a century of multiple anthropogenic stressors has altered northern forest understory plant communities. Ecol. Appl. 29, e01874 (2019).Perring, M. P. et al. Global environmental change effects on plant community composition trajectories depend upon management legacies. Glob. Chang. Biol. 24, 1722–1740 (2018).Article 
    ADS 

    Google Scholar 
    Boulanger, V. et al. Decreasing deer browsing pressure influenced understory vegetation dynamics over 30 years. Ann. Sci. 72, 367–378 (2015).Article 

    Google Scholar 
    Bernes, C. et al. Manipulating ungulate herbivory in temperate and boreal forests: effects on vegetation and invertebrates. A systematic review. Environ. Evid. 7, 1–32 (2018).Article 

    Google Scholar 
    Reimoser, F. Steering the impacts of ungulates on temperate forests. J. Nat. Conserv. 10, 243–252 (2003).Article 

    Google Scholar 
    Vavra, M., Parks, C. G. & Wisdom, M. J. Biodiversity, exotic plant species, and herbivory: the good, the bad, and the ungulate. Ecol. Manag. 246, 66–72 (2007).Article 

    Google Scholar 
    Depauw, L. et al. Light availability and land-use history drive biodiversity and functional changes in forest herb layer communities. J. Ecol. 108, 1411–1425 (2020).Article 
    CAS 

    Google Scholar 
    Chevaux, L. et al. Effects of stand structure and ungulates on understory vegetation in managed and unmanaged forests. Ecol. Appl. 32, e01874 (2022).Gordon, I. J. Browsing and grazing ruminants: are they different beasts? Ecol. Manag. 181, 13–21 (2003).Article 

    Google Scholar 
    Brasseur, B. et al. What deep‐soil profiles can teach us on deep‐time pH dynamics after land use change? Land Degrad. Dev. 29, 2951–2961 (2018).Article 

    Google Scholar 
    Schmitz, A. et al. Responses of forest ecosystems in Europe to decreasing nitrogen deposition. Environ. Pollut. 244, 980–994 (2019).Article 
    CAS 

    Google Scholar 
    Dirnböck, T. et al. Currently legislated decreases in nitrogen deposition will yield only limited plant species recovery in European forests. Environ. Res. Lett. 13, 125010 (2018).Article 

    Google Scholar 
    Peterken, G. F. Natural Woodland: Ecology and Conservation in Northern Temperate Regions (Cambridge Univ. Press, 1996).Chamberlain, S. A. & Boettiger, C. R Python, and Ruby clients for GBIF species occurrence data. preprint. PeerJ Preprints 5, e3304v1 (2017).Chamberlain, S. A. & Szöcs, E. taxize: taxonomic search and retrieval in R. F1000Res 2, 191 (2013).Article 

    Google Scholar 
    Hédl, R., Kopecký, M. & Komárek, J. Half a century of succession in a temperate oakwood: from species-rich community to mesic forest. Divers Distrib. 16, 267–276 (2010).Article 

    Google Scholar 
    Giménez-Anaya, A., Herrero, J., Rosell, C., Couto, S. & García-Serrano, A. Food habits of wild boars (Sus scrofa) in a Mediterranean coastal wetland. Wetlands 28, 197–203 (2008).Article 

    Google Scholar 
    Barrios-Garcia, M. N. & Ballari, S. A. Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biol. Invasions 14, 2283–2300 (2012).Article 

    Google Scholar 
    Andersen, R. et al. An overview of the progress and challenges of peatland restoration in Western Europe. Restor. Ecol. 25, 271–282 (2017).Article 

    Google Scholar 
    Faurby, S. et al. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99, 2626 (2018).Article 

    Google Scholar 
    van den Berg, L. J. L. et al. Evidence for differential effects of reduced and oxidised nitrogen deposition on vegetation independent of nitrogen load. Environ. Pollut. 208, 890–897 (2016).Article 

    Google Scholar 
    McNaughton, S. J., Oesterheld, M., Frank, D. A. & Williams, K. J. Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341, 142–144 (1989).Article 
    ADS 
    CAS 

    Google Scholar 
    Koerner, S. E. et al. Change in dominance determines herbivore effects on plant biodiversity. Nat. Ecol. Evol. 2, 1925–1932 (2018).Article 

    Google Scholar 
    Fréjaville, T. & Garzón, M. B. The EuMedClim database: yearly climate data (1901-2014) of 1 km resolution grids for Europe and the Mediterranean Basin. Front. Ecol. Evol. 6, 1–5 (2018).Article 

    Google Scholar 
    Al‐Yaari, A. et al. Asymmetric responses of ecosystem productivity to rainfall anomalies vary inversely with mean annual rainfall over the conterminous United States. Glob. Chang. Biol. 26, 6959–6973 (2020).Article 
    ADS 

    Google Scholar 
    Szabó, P. & Hédl, R. Advancing the integration of history and ecology for conservation. Conserv. Biol. 25, 680–687 (2011).Article 

    Google Scholar 
    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Spec. Feature Ecol. 80, 1150–1156 (1999).
    Google Scholar 
    Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).Article 

    Google Scholar 
    Holz, H., Segar, J., Valdez, J. & Staude, I. R. Assessing extinction risk across the geographic ranges of plant species in Europe. Plants People Planet 4, 303–311 (2022).Article 

    Google Scholar 
    Staude, I. R. et al. Directional turnover towards larger‐ranged plants over time and across habitats. Ecol. Lett. 25, 466–482 (2021).Article 

    Google Scholar 
    Ellenberg, H., Weber, H. E., Düll, R., Wirth, V. & Werner, W. Zeigerwerte von Pflanzen in Mitteleuropa (Verlag Wrich Goltze, 2001).Chytrý, M., Tichý, L., Dřevojan, P., Sádlo, J. & Zelený, D. Ellenbergtype indicator values for the Czech flora. Preslia 90, 83–103 (2018).Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).Article 

    Google Scholar 
    Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).MathSciNet 

    Google Scholar 
    Dushoff, J., Kain, M. P. & Bolker, B. M. I can see clearly now: reinterpreting statistical significance. Methods Ecol. Evol. 10, 756–759 (2019).Article 

    Google Scholar 
    Bradshaw, L. & Waller, D. M. Impacts of white-tailed deer on regional patterns of forest tree recruitment. Ecol. Manag. 375, 1–11 (2016).Article 

    Google Scholar 
    McGarvey, J. C., Bourg, N. A., Thompson, J. R., McShea, W. J. & Shen, X. Effects of twenty years of deer exclusion on woody vegetation at three life-history stages in a mid-atlantic temperate deciduous forest. Northeast. Nat. 20, 451–468 (2013).Nuttle, T., Ristau, T. E. & Royo, A. A. Long-term biological legacies of herbivore density in a landscape-scale experiment: forest understoreys reflect past deer density treatments for at least 20 years. J. Ecol. 102, 221–228 (2013). More

  • in

    Author Correction: The hidden land use cost of upscaling cover crops

    Correction to: Communications Biology https://doi.org/10.1038/s42003-020-1022-1, published online 11 June 2020.In the original version of the Perspective, a unit conversion error affected calculations for cereal rye, triticale, barley, and oats. Further, berseem clover yield estimates were mistranscribed from the original source. These mistakes led to errors in Supplementary Data 1, Figure 2 and in the presentation of the data in the text.Supplementary Data 1 has now been replaced with a file containing the correct numbers.Figure 2 has been corrected:Original figure 2New figure 2The Abstract stated: “In this Perspective, we estimate land use requirements to supply the United States maize production area with cover crop seed, finding that across 18 cover crops, on average 3.8% (median 2.0%) of current production area would be required, with the popular cover crops rye and hairy vetch requiring as much as 4.5% and 11.9%, respectively”.The text should read: “In this Perspective, we estimate land use requirements to supply the United States maize production area with cover crop seed, finding that across 18 cover crops, on average 2.4% (median 2.1%) of current production area would be required, with the popular cover crops rye and hairy vetch requiring as much as 4.8% and 11.9%, respectively”.In the 1st paragraph of the right hand column on page 2, the text said: “(…), we find that the land requirements for production of cover crop seed would be on average 1.4 million hectares (median 746,000 ha), which is equivalent to 3.8% (median 2.0%) of the U.S. maize farmland. Rye (Secale cereale L.) – a midrange seed yielding cover crop and one of the most commonly used in the corn belt, would require as much as 1,661,000 hectares (4.5% of maize farmland), (…)”The text should read: “(…) we find that the land requirements for production of cover crop seed would be on average 892,526 hectares (median 774,417 ha), which is equivalent to 2.4% (median 2.1%) of the U.S. maize farmland. Rye (Secale cereale L.) – a midrange seed yielding cover crop and one of the most commonly used in the corn belt, would require as much as 1,779,770 hectares (4.8% of maize farmland), (…)”On page 3, second paragraph the text said: “Cover cropping the entire U.S. maize area would require the equivalent of as much as 18% (rye) to 49% (hairy vetch) (…)”The text should read: “Cover cropping the entire U.S. maize area would require the equivalent of as much as 19% (rye) to 49% (hairy vetch) (…)”This errors have now been corrected in the Perspective Article. More

  • in

    Simultaneous invasion decouples zebra mussels and water clarity

    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).Article 
    CAS 

    Google Scholar 
    Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52, 273–288 (2005).Article 

    Google Scholar 
    Simberloff, D. & Von Holle, B. Positive interactions of nonindigenous species: invadsional meltdown? Biol. Invasions 1, 21–32 (1999).Article 

    Google Scholar 
    Montgomery, W. I., Lundy, M. G. & Reid, N. ‘Invasional meltdown’: evidence for unexpected conseuences and cumulative impacts of multispecies invasions. Biol. Invasions 14, 1111–1115 (2012).Article 

    Google Scholar 
    Jackson, M. C. Interactions among multiple invasive animals. Ecology 96, 2035–2041 (2015).Article 
    CAS 

    Google Scholar 
    Braga, R. R. et al. Invasional meltdown: an experimental test and a framework to distinguish synergistic, additive, and antagonistic effects. Hydrobiologia 847, 1603–1618 (2020).Article 

    Google Scholar 
    Crooks, K. R. & Soulé, M. E. Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400, 563–566 (1999).Article 
    CAS 

    Google Scholar 
    Klemmer, A. J., Wissinger, S. A., Greig, H. S. & Ostrofsky, M. L. Nonlinear effects of consumer density on multiple ecosystem processes. J. Anim. Ecol. 81, 779–780 (2012).Article 

    Google Scholar 
    De Meester, L., Vanoverbeke, J., Kilsdonk, L. J. & Urban, M. C. Evolving perspectives on monopolization and priority effects. Trends Ecol. Evol. 31, 136–146 (2016).Article 

    Google Scholar 
    Vitousek, P. M., D’Antonio, C. M., Loope, L. L. & Westbrooks, R. Biological invasions as global environmental change. Am. Sci. 84, 468–478 (1996).
    Google Scholar 
    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).Article 
    CAS 

    Google Scholar 
    Liebig, J. et al. Bythotrephes longimanus: U.S. Geological Survey, Nonindigenous Aquatic Species Database (2021). Available at: https://nas.er.usgs.gov/queries/factsheet.aspx?SpeciesID=162.Benson, A.J. et al. Dreissena polymorpha (Pallas, 1771): U.S. Geological Survey, Nonindigenous Aquatic Species Database (2021). Available at: https://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=5Stewart, T. J., Johannsson, O. E., Holeck, K., Sprules, W. G. & O’Gorman, R. The Lake Ontario zooplankton community before (1987-1991) and after (2001-2005) invasion-induced ecosystem change. J. Gt. Lakes Res. 36, 596–605 (2010).Article 

    Google Scholar 
    Strecker, A. L. et al. Direct and indirect effects of an invasive planktonic predator on pelagic food webs. Limnol. Oceanogr. 56, 179–192 (2011).Article 

    Google Scholar 
    Karatayev, A. Y., Burlakova, L. E. & Padilla, D. K. Zebra versus quagga mussels: a review of their spread, population dynamics, and ecosystem impacts. Hydrobiologia 746, 97–112 (2015).Article 
    CAS 

    Google Scholar 
    Kerfoot, W. C. et al. A plague of waterfleas (Bythotrephes): impacts on microcrustacean community structure, seasonal biomass, and secondary production in a large inland-lake complex. Biol. Invasions 18, 1121–1145 (2016).Article 

    Google Scholar 
    Strayer, D. et al. Long-term variability and density dependence in Hudson River Dreissena populations. Freshw. Biol. 65, 474–489 (2019).Article 

    Google Scholar 
    Fang, X., Stefan, H. G., Jiang, L., Jacobson, P. C. & Pereira D. L. Projected impacts of climatic changes on cisco oxythermal habitat in Minnesota lakes and management strategies in Handbook of Climate Change mitigation and Adaptation (eds. Chen, W.-Y., Suzuki, T. & Lackner, M.) 657-722 (Springer, 2015).Stefan, H. G., Hondzo, M., Fang, X., Eaton, J. G. & McCormick, J. H. Simulated long-term temperature and dissolved oxygen characteristics of lakes in the north-central United States and associated fish habitat limits. Limnol. Oceanogr. 41, 1124–1135 (1996).Article 

    Google Scholar 
    Jacobson, P. C., Jones, T. S., Rivers, P. & Pereira, D. L. Field estimation of a lethal oxythermal niche boundary for adult ciscoes in Minnesota lakes. T. Am. Fish. Soc. 137, 1464–1474 (2008).Article 

    Google Scholar 
    Hecky, R. E. et al. The nearshore phosphorus shunt: a consequence of ecosystem engineering by dreissenids in the Laurentian Great Lakes. Can. J. Fish. Aquat. Sci. 61, 1285–1293 (2004).Article 
    CAS 

    Google Scholar 
    Sousa, R., Gutiérrez, J. L. & Aldridge, D. C. Non-indigenous invasive bivalves as ecosystem engineers. Biol. Invasions 11, 2367–2385 (2009).Article 

    Google Scholar 
    Higgins, S. N. & Vander Zanden, M. J. What a difference a species makes: a meta-analysis of dreissenid mussel impacts on freshwater ecosystems. Ecol. Monogr. 80, 179–196 (2010).Article 

    Google Scholar 
    Mayer, C. M. et al. Benthification of Freshwater Lakes: Exotic Mussels Turning Ecosystems Upside Down in Quagga and Zebra Mussels: Biology, Impacts, and Control, 2nd ed. (eds. Nalepa, T. F. & Schloesser D. W.) 575-586 (CRC Press, 2014).Lehman, J. T. & Cárcres, C. E. Food-web responses to species invasion by a predatory invertebrate: Bythotrephes in Lake Michigan. Limnol. Oceanogr. 38, 879–891 (1993).Article 

    Google Scholar 
    Bunnell, D. B., Keeler, K. M., Puchala, E. A., Davis, B. M. & Pothoven, S. A. Comparing seasonal dynamics of the Lake Huron zooplankton community between 1983-1984 and 2007 and revisiting the impact of Bythotrephes planktivory. J. Gt. Lakes Res. 38, 451–462 (2012).Article 

    Google Scholar 
    Pawlowski, M. B., Branstrator, D. K., Hrabik, T. R. & Sterner, R. W. Changes in the cladoceran community of Lake Superior and thee role of Bythotrephes longimanus. J. Gt. Lakes Res. 43, 1101–1110 (2017).Article 

    Google Scholar 
    Hoffman, J. C., Smith, M. E. & Lehman, J. T. Perch or plankton: top-down control of Daphnia by yellow perch (Perca flavescens) or Bythotrephes cederstroemi in an inland lake? Freshw. Biol. 46, 759–775 (2001).Article 

    Google Scholar 
    Bunnell, D. B., Davis, B. M., Warner, D. M., Chriscinske, M. A. & Roseman, E. F. Planktivory in the changing Lake Huron zooplankton community: Bythotrephes consumption exceeds that of Mysis and fish. Freshw. Biol. 56, 1281–1296 (2011).Article 

    Google Scholar 
    Merkle, C. & De Stasio, B. Bythotrephes longimanus in shallow, nearshore waters: interactions with Leptodora kindtii, impacts on zooplankton, and implications for secondary dispersal from southern Green Bay, Lake Michigan. J. Gt. Lakes Res. 44, 934–942 (2018).Article 

    Google Scholar 
    Walsh, J. R., Carpenter, S. R. & Vander Zanden, M. J. Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proc. Natl. Acad. Sci. USA 113, 4081–4085 (2016).Article 
    CAS 

    Google Scholar 
    Lehman, J. T. Algal biomass unaltered by food-web changes in Lake Michigan. Nature 332, 537–538 (1988).Article 

    Google Scholar 
    Wahlström, E. & Westman, E. Planktivory by the predacious cladoceran Bythotrephes longimanus: effects on zooplankton size structure and density. Can. J. Fish. Aquat. Sci. 56, 1865–1872 (1999).Article 

    Google Scholar 
    Strecker, A. L. & Arnott, S. E. Invasive predator, Bythotrephes, has varied effects on ecosystem function in freshwater lakes. Ecosystems 11, 490–503 (2008).Article 

    Google Scholar 
    Benke, A. C. Concepts and patterns of invertebrate production in running waters. Verh. Int. Theor. Angew. Limnol. 25, 15–38 (1993).
    Google Scholar 
    Jones, T. & Montz, G. Population increase and associated effects of zebra mussels Dreissena polymorpha in Lake Mille Lacs, Minnesota, U.S.A. Bioinvasion Rec. 9, 772–792 (2020).Article 

    Google Scholar 
    Strayer, D. L. & Malcom, H. M. Long-term demography of a zebra mussel (Dreissena polymorpha) population. Freshw. Biol. 51, 117–130 (2006).Article 

    Google Scholar 
    Geisler, M. E., Rennie, M. D., Gillis, D. M. & Higgins, S. N. A predictive model for water clarity following dreissenid invasion. Biol. Invasions 18, 1989–2006 (2016).Article 

    Google Scholar 
    Barbiero, R. P. & Tuchman, M. L. Long-term dreissenid impacts on water clarity in Lake Erie. J. Gt. Lakes Res. 30, 557–565 (2004).Article 

    Google Scholar 
    Fishman, D. B., Adlerstein, S. A., Vanderploeg, H. A., Fahnenstiel, G. L. & Scavia, D. Causes of phytoplankton changes in Saginaw Bay, Lake Huron, during the zebra mussel invasion. J. Gt. Lakes Res. 35, 482–495 (2009).Article 

    Google Scholar 
    Zhang, H., Culver, D. A. & Boegman, L. Dreissenids in Lake Erie: an algal filter or a fertilizer? Aquat. Invasions 6, 175–194 (2011).Article 

    Google Scholar 
    Higgins, S. N., Vander Zanden, M. J., Joppa, L. N. & Vadeboncoeur, Y. The effect of dreissenid invasions on chlorophyll and the chlorophyll: total phosphorus ration in north-temperate lakes. Can. J. Fish. Aquat. Sci. 68, 319–329 (2011).Article 
    CAS 

    Google Scholar 
    Lehman, J. T. & Branstrator, D. K. A model for growth, development, and diet selection by the invertebrate predator Bythotrephes cederstroemi. J. Gt. Lakes Res. 21, 610–619 (1995).Article 

    Google Scholar 
    Azan, S. S. E., Arnott, S. E. & Yan, N. D. A review of the effects of Bythotrephes longimanus and calcium decline on zooplankton communities – can interactive effects be predicted? Environ. Rev. 23, 395–413 (2015).Article 
    CAS 

    Google Scholar 
    Pangle, K. L., Peacor, S. D. & Johannsson, O. E. Large nonlethal effects of an invasive invertebrate predator on zooplankton population growth rate. Ecology 88, 402–412 (2007).Article 

    Google Scholar 
    Cross, T. K. & Jacobson, P. C. Landscape factors influencing lake phosphorus concentrations across Minnesota. Lake Reserv Manag 29, 1–12 (2013).Article 
    CAS 

    Google Scholar 
    McQueen, D. J., Johannes, M. R. S., Post, J. R., Stewart, T. J. & Lean, D. R. S. Bottom-up and top-down impacts on freshwater pelagic community structure. Ecol. Monogr. 59, 289–309 (1989).Article 

    Google Scholar 
    Mills, E. L. et al. Lake Ontario: food web dynamics in a changing ecosystem (1970-2000). Can. J. Fish. Aquat. Sci. 60, 471–490 (2003).Article 

    Google Scholar 
    Lehman, J. T. Causes and consequences of cladoceran dynamics in Lake Michigan: implications of species invasion by. Bythotrephes. J. Gt. Lakes Res. 17, 437–445 (1991).Article 

    Google Scholar 
    Yan, N. D. et al. Long-term trends in zooplankton of Dorset, Ontario, lakes: the probable interactive effects of changes in pH, total phosphorus, dissolved organic carbon, and predators. Can. J. Fish. Aquat. Sci. 65, 862–877 (2008).Article 
    CAS 

    Google Scholar 
    Brooks, J. L. & Dodson, S. I. Predation, body size, and composition of plankton. Science 150, 28–35 (1965).Article 
    CAS 

    Google Scholar 
    Rennie, M. D., Evans, D. O. & Young, J. D. Increased dependence on nearshore benthic resources in the Lake Simcoe ecosystem after dreissenid invasion. Inland Waters 3, 297–310 (2013).Article 

    Google Scholar 
    Goto, D., Dunlop, E. S., Young, J. D. & Jackson, D. A. Shifting trophic control of fishery-ecosystem dynamics following biological invasions. Ecol. Appl. 30, e02190 (2020).Article 

    Google Scholar 
    Hansen, G. J. A. et al. Walleye growth declines following zebra mussel and Bythotrephes invasion. Biol. Invasions 22, 1481–1495 (2020).Article 

    Google Scholar 
    Yan, N. & Pawson, T. Changes in the crustacean zooplankton community of Harp Lake, Canada, following invasion by. Bythotrephes cederstrœmi. Freshw. Biol. 37, 409–425 (1997).Article 

    Google Scholar 
    Bourdeau, P. E., Bach, M. T. & Peacor, S. D. Predator presence dramatically reduces copepod abundance through condition-mediated non-consumptive effects. Freshw. Biol. 61, 1020–1031 (2016).Article 
    CAS 

    Google Scholar 
    Lehman, J. R. Ecological principles affecting community structure and secondary production by zooplankton in marine and freshwater environments. Limnol. Oceanogr. 33, 931–945 (1988).
    Google Scholar 
    Walsh, J. R., Lathrop, R. C., & Vander Zanden, M.J.Invasive invertebrate predator, Bythotrephes longimanus, reverses trophic cascade in a north-temperate lake. Limnol. Oceanogr. 62, 2498–2509 (2017).Article 

    Google Scholar 
    Underwood, A. J. On beyond BACI: sampling designs that might reliably detect environmental disturbances. Ecol. Appl. 4, 3–15 (1994).Article 

    Google Scholar 
    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).Article 
    CAS 

    Google Scholar 
    Strayer, D. L., Eviner, V. T., Jeschke, J. M. & Pace, M. L. Understanding the long-term effects of species invasions. Trends Ecol. Evol. 21, 645–651 (2006).Article 

    Google Scholar 
    Magnuson, J. J. Long-term ecological research and the invisible present. BioScience 40, 495–501 (1990).Article 

    Google Scholar 
    Doak, D. F. et al. Understanding and predicting ecological dynamics: are major surprises inevitable? Ecology 89, 952–961 (2008).Article 

    Google Scholar 
    Hansen, G. J. A., Gaeta, J. W., Hansen, J. F. & Carpenter, S. R. Learning to manage and managing to learn: sustaining freshwater recreational fisheries in a changing environment. Fisheries 40, 56–64 (2015).Article 

    Google Scholar 
    Dumont, H. J., Van De Velde, I. & Dumont, S. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19, 75–97 (1975).Article 

    Google Scholar 
    Culver, D. A., Boucherle, M. M., Bean, D. J. & Fletcher, J. W. Biomass of freshwater crustacean zooplankton from length-weight regressions. Can. J. Fish. Aquat. Sci. 42, 1380–1390 (1985).Article 

    Google Scholar 
    Manly, B. F. J. Randomization, bootstrap and Monet Carlo methods in biology, 3rd ed. (Chapman and Hall/CRC, 2007).Arar, E. J. Method 446.0. In vitro determination of chlorophylls a, b, c1 + c2 and pheopigments in marine and freshwater algae by visible spectrophotometry, revision 1.2. (U.S. Environmental Protection Agency, 1997).O’Dell, J. W. Method 365.1 Determination of phosphorus by semi-automated colorimetry, revision 2.0. (U.S. Environmental Agency, 1993).Helsel, D. R. & Hirsch, R. M. Statistical methods in water resources (U. S. Geological Survey, 2002).Minnesota Pollution Control Agency (MPCA). Surface water data. https://webapp.pca.state.mn.us/wqd/surface-water (MPCA, 2021).Read, J. S. et al. Data release: Process-based predictions of lake water temperature in the Midwest US: U.S. Geological Survey data release, https://doi.org/10.5066/P9CA6XP8 (USGS, 2021).Hothorn, T., Hornik, K., van de Wiel, M. A. & Zeileis, A. Lego system for conditional inference. Am. Stat. 60, 257–263 (2006).Article 

    Google Scholar 
    Dewitz, J. National Land Cover Database (NLCD) 2016 Products: U.S. Geological Survey data release, https://doi.org/10.5066/P96HHBIE (USGS, 2019).Use of Fishes in Research Committee. Guidelines for the use of fishes in research. (American Fisheries Society, 2014)Pedersen, E. J., Miller, D. L., Simpson, G. L. & Ross, N. Hierarchical generalized additive models in ecology: an introduction with mgcv. PeerJ 7, e6876 (2019).Article 

    Google Scholar 
    Minnesota Geospatial Commons. DNR Hydrology Dataset. (2022). Available at: https://gisdata.mn.gov/dataset/water-dnr-hydrography.Minnesota Geospatial Commons. Lake Bathymetric Outlines, Contours, and DEM. (2021). Available at: https://gisdata.mn.gov/dataset/water-lake-bathymetry.ESRI ArcGIS Desktop: Release 10.6. Redlands, CA: Environmental Systems Research Institute (2018).Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. 73, 3–36 (2011).Article 

    Google Scholar 
    Guerrero, F. & Rodríguez, V. Secondary production of a congeneric species assemblage of Acartia (Copepoda: Calanoida): a calculation based on the size-frequency distribution. Sci. Mar. 58, 161–167 (1994).
    Google Scholar 
    Cross, W. F. et al. Ecosystem ecology meets adaptive management: food web response to a controlled flood on the Colorado River, Glen Canyon. Ecol. Appl. 21, 2016–2033 (2011).Article 

    Google Scholar 
    Gillooly, J. F. Effect of body size and temperature on generation time in zooplankton. J. Plankton Res. 22, 241–251 (2000).Article 

    Google Scholar 
    Benke, A. C. & Huryn, A. D. Secondary production and quantitative food webs in Methods in Stream Ecology, Volume 2: ecosystem function (eds. Lamberti, G.A. & Hauer, F. R.) 235-254 (Academic Press, 2017).Wu, L. & Culver, D. A. Zooplankton grazing and phytoplankton abundance: an assessment before and after invasion of Dreissena polymorpha. J. Gt. Lakes Res. 17, 425–436 (1991).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (Vienna, Austria, 2020). Accessible at: https://www.R-project.org/Minnesota Geospatial Commons. State Boundary. (2013). Available at: https://gisdata.mn.gov/dataset/bdry-state-of-minnesota.United States Geological Survey. North America Political Boundaries. (2006). Available at: https://www.sciencebase.gov/catalog/item/4fb555ebe4b04cb937751db9. More

  • in

    Arrested diversification? The phylogenetic distribution of poorly-diversifying lineages

    Zhang, Z.-Q. Phylum Athropoda. Zootaxa 3703, 17 (2013).Article 

    Google Scholar 
    Christenhusz, M. J. M. & Byng, J. W. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201 (2016).Article 

    Google Scholar 
    Forbes, A. A., Bagley, R. K., Beer, M. A., Hippee, A. C. & Widmayer, H. A. Quantifying the unquantifiable: why Hymenoptera, not Coleoptera, is the most speciose animal order. BMC Ecol 18, 21 (2018).Article 

    Google Scholar 
    Glor, R. E. Phylogenetic Insights on Adaptive Radiation. Annu. Rev. Ecol. Evol. Syst. 41, 251–270 (2010).Article 

    Google Scholar 
    Schluter, D. The ecology of adaptive radiation. (Oxford Univ Press, 2000).Simpson, G. G. Tempo and mode in evolution. (Columbia Univ Press, 1944).Gavrilets, S. & Losos, J. B. Adaptive Radiation: Contrasting Theory with Data. Science 323, 732–737 (2009).Article 
    CAS 

    Google Scholar 
    Losos, J. B. Adaptive Radiation, Ecological Opportunity, and Evolutionary Determinism: American Society of Naturalists E. O. Wilson Award Address. Am. Nat. 175, 623–639 (2010).Article 

    Google Scholar 
    Hodges, S. A. & Arnold, M. L. Spurring plant diversification: are floral nectar spurs a key innovation? Proc. R Soc. B: Biol. Sci. 262, 343–348 (1995).Article 

    Google Scholar 
    Hunter, J. P. & Jernvall, J. The hypocone as a key innovation in mammalian evolution. Proc. Natl. Acad. Sci. U.S.A. 92, 10718–10722 (1995).Article 
    CAS 

    Google Scholar 
    Grant, P. R. Ecology and Evolution of Darwin’s Finches. (Princeton Univ Press, 1986).Erwin, D. H. The end and the beginning: recoveries from mass extinctions. Trend. Ecol. Evol. 13, 344–349 (1998).Article 
    CAS 

    Google Scholar 
    Jablonski, D. Lessons from the past: Evolutionary impacts of mass extinctions. Proc. Natl. Acad. Sci. U.S.A. 98, 5393–5398 (2001).Article 
    CAS 

    Google Scholar 
    Donoghue, M. J. & Sanderson, M. J. Confluence, synnovation, and depauperons in plant diversification. New Phytol. 207, 260–274 (2015).Article 

    Google Scholar 
    Pie, M. R. & Feitosa, R. S. M. Relictual ant lineages and their evolutionary implications. Myrmecol News 22, 55–58 (2016).
    Google Scholar 
    Eldredge, N. & Stanley, S. M. Living Fossils (Casebooks in Earth Sciences). (Springer, 1984).Alfaro, M. E. et al. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc. Natl. Acad. Sci. 106, 13410–13414 (2009).Article 
    CAS 

    Google Scholar 
    Magallón, S., Sánchez-Reyes, L. L. & Gómez-Acevedo, S. L. Thirty clues to the exceptional diversification of flowering plants. Ann. Botany 123, 491–503 (2019).Article 

    Google Scholar 
    Hunter, J. P. Key innovations and the ecology of macroevolution. Trend. Ecol. Evol. 13, 31–36 (1998).Article 
    CAS 

    Google Scholar 
    Wellborn, G. A. & Langerhans, R. B. Ecological opportunity and the adaptive diversification of lineages. Ecol. Evol. 5, 176–195 (2015).Article 

    Google Scholar 
    Gould, S. J. & Vrba, E. S. Exaptation—a Missing Term in the Science of Form. Paleobiology 8, 4–15 (1982).Article 

    Google Scholar 
    Eldredge, N. Simpson’s Inverse: Bradytely and the Phenomenon of Living Fossils. in Living Fossils (eds. Eldredge, N. & Stanley, S. M.) 272–277 (Springer New York, 1984). https://doi.org/10.1007/978-1-4613-8271-3_34.Nagalingum, N. S. et al. Recent Synchronous Radiation of a Living Fossil. Science 334, 796–799 (2011).Article 
    CAS 

    Google Scholar 
    Schopf, T. J. M. Rates of Evolution and the Notion of ‘Living Fossils’. Annu. Rev. Earth Planet. Sci. 12, 245–292 (1984).Article 

    Google Scholar 
    Czekanski-Moir, J. E. & Rundell, R. J. The Ecology of Nonecological Speciation and Nonadaptive Radiations. Trend. Ecol. Evol. 34, 400–415 (2019).Article 

    Google Scholar 
    Olson, M. E. & Arroyo-Santos, A. Thinking in continua: beyond the “adaptive radiation” metaphor. BioEssays 31, 1337–1346 (2009).Article 

    Google Scholar 
    Barnes, B. D., Sclafani, J. A. & Zaffos, A. Dead clades walking are a pervasive macroevolutionary pattern. Proc. Natl. Acad. Sci. USA 118, e2019208118 (2021).Article 
    CAS 

    Google Scholar 
    Quental, T. B. & Marshall, C. R. How the Red Queen Drives Terrestrial Mammals to Extinction. Science 341, 290–292 (2013).Article 
    CAS 

    Google Scholar 
    Strathmann, R. R. & Slatkin, M. The improbability of animal phyla with few species. Paleobiology 9, 97–106 (1983).Article 

    Google Scholar 
    Darwin, C. On the origin of species by means of natural selection. (J. Murray, 1859).Kase, T. & Hayami, I. Unique submarine cave mollusc fauna: composition, origin and adaptation. J. Mollus Stud. 58, 446–449 (1992).Article 

    Google Scholar 
    Tunnicliffe, V. The Nature and Origin of the Modern Hydrothermal Vent Fauna. PALAIOS 7, 338 (1992).Article 

    Google Scholar 
    Oji, T. Is predation intensity reduced with increasing depth? Evidence from the west Atlantic stalked crinoid Endoxocrinus parrae (Gervais) and implications for the Mesozoic marine revolution. Paleobiology 22, 339–351 (1996).Article 

    Google Scholar 
    Oji, T. & Okamoto, T. Arm autotomy and arm branching pattern as anti-predatory adaptations in stalked and stalkless crinoids. Paleobiology 20, 27–39 (1994).Article 

    Google Scholar 
    Rest, J. S. et al. Molecular systematics of primary reptilian lineages and the tuatara mitochondrial genome. Mol. Phyl. Evol. 29, 289–297 (2003).Article 
    CAS 

    Google Scholar 
    Rabosky, D. L. & Benson, R. B. J. Ecological and biogeographic drivers of biodiversity cannot be resolved using clade age-richness data. Nat. Commun. 12, 2945 (2021).Article 
    CAS 

    Google Scholar 
    Louca, S., Henao‐Diaz, L. F. & Pennell, M. The scaling of diversification rates with age is likely explained by sampling bias. Evolution 76, 1625–1637 (2022).Article 

    Google Scholar 
    Qian, H. & Zhang, J. Using an updated time-calibrated family-level phylogeny of seed plants to test for non-random patterns of life forms across the phylogeny: Phylogeny of seed plant families. J. Syst. Evol. 52, 423–430 (2014).Article 

    Google Scholar 
    The Plant List. Version 1.1. http://www.theplantlist.org/.Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).Article 

    Google Scholar 
    Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W. & Pyron, R. A. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conservation 204, 23–31 (2016).Article 

    Google Scholar 
    Faurby, S. et al. PHYLACINE 1.2: The Phylogenetic Atlas of Mammal Macroecology. Ecology 99, 2626–2626 (2018).Article 

    Google Scholar 
    IUCN. IUCN red List of Threatened Species. Version 2017.3. Retrieved from https://www.iucnredlist.org. Downloaded on May 14, 2020. (2017).Magallon, S. & Sanderson, M. J. Absolute diversification rates in angiosperm clades. Evolution 55, 1762–1780 (2001).CAS 

    Google Scholar 
    Raup, D. M. Mathematical models of cladogenesis. Paleobiology 11, 42–52 (1985).Article 

    Google Scholar 
    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).Article 
    CAS 

    Google Scholar 
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    Vilela, B. & Villalobos, F. letsR: a new R package for data handling and analysis in macroecology. Methods Ecol. Evol. 6, 1229–1234 (2015).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/. (2020).Garnier, S. viridis: Default Color Maps from ‘matplotlib’. Version 0.5.1. Available in https://CRAN.R-project.org/package=viridis (2018).Bivand, R. et al. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. Version 1.5.32. Available in https://CRAN.R-project.org/package=rgdal (2020). More

  • in

    2-D sex images elicit mate copying in fruit flies

    Bovet, D. & Vauclair, J. Picture recognition in animals and humans. Behav. Brain. Res. 109, 143–165 (2000).Article 
    CAS 

    Google Scholar 
    Anonymous. Tinder for Orangutans. Dublin Zoo. https://www.dublinzoo.ie/news/tinder-for-orangutans (2020).Henley, J. “Tinder for Orangutans”: Dutch zoo to let female choose mate on a tablet. The Guardian. https://www.theguardian.com/environment/2017/jan/31/tinder-for-orangutans-dutch-zoo-to-let-female-choose-mate-on-a-tablet (2017).Gierszewski, S. et al. The virtual lover: variable and easily guided 3D fish animations as an innovative tool in mate-choice experiments with sailfin mollies-II validation. Curr. Zool. 6, 65–74 (2017).Article 

    Google Scholar 
    Dolins, F. L., Klimowicz, C., Kelley, J. & Menzel, C. R. Using virtual reality to investigate comparative spatial cognitive abilities in chimpanzees and humans. Am. J. Primat. 76, 496–513 (2014).Article 

    Google Scholar 
    Faria, J. J. et al. A novel method for investigating the collective behaviour of fish: Introducing ‘Robofish’. Behav. Ecol. Sociobiol. 64, 1211–1218 (2010).Article 

    Google Scholar 
    Kozak, E. C. & Uetz, G. W. Male courtship signal modality and female mate preference in the wolf spider Schizocosa ocreata: results of digital multimodal playback studies. Curr. Zool. 65, 705–711 (2019).Article 

    Google Scholar 
    Loukola, O. J., Perry, C. J., Coscos, L. & Chittka, L. Bumblebees show cognitive flexibility by improving on an observed complex behavior. Science 355, 833–836 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    MacLaren, R. D. Evidence of an emerging female preference for an artificial male trait and the potential for spread via mate choice copying in Poecilia latipinna. Ethology 125, 575–586 (2019).
    Google Scholar 
    Rönkä, K. et al. Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth. Ecol. Lett. 23, 1654–1663 (2020).Article 

    Google Scholar 
    Rosenthal, G. G., Rand, A. S. & Ryan, M. J. The vocal sac as a visual cue in anuran communication: An experimental analysis using video playback. Anim. Behav. 68, 55–58 (2004).Article 

    Google Scholar 
    Thurley, K. & Ayaz, A. Virtual reality systems for rodents. Curr. Zool. 63, 109–119 (2017).Article 

    Google Scholar 
    Ware, E. L., Saunders, D. R. & Troje, N. F. Social interactivity in pigeon courtship behavior. Curr. Zool. 63, 85–95 (2017).Article 

    Google Scholar 
    Wang, D. et al. The influence of model quality on self-other mate choice copying. Pers. Ind. Diff. 17, 110481 (2021).Article 

    Google Scholar 
    Gray, J. R., Pawlowski, V. & Willis, M. A. A method for recording behavior and multineuronal CNS activity from tethered insects flying in virtual space. J. Neurosci. Meth. 120, 211–223 (2002).Article 

    Google Scholar 
    Strauss, R., Schuster, S. & Götz, K. G. Processing of artificial visual feedback in the walking fruit fly Drosophila melanogaster. J. Exp. Biol. 200, 1281–1296 (1997).Article 
    CAS 

    Google Scholar 
    Kemppainen, J. et al. Binocular mirror-symmetric microsaccadic sampling enables Drosophila hyperacute 3D vision. PNAS 119, e2109717119 (2022).Article 
    CAS 

    Google Scholar 
    Bowers, R. I., Place, S. S., Todd, P. M., Penke, L. & Asendorpf, J. B. Generalization in mate-choice copying in humans. Behav. Ecol. 23, 112–124 (2012).Article 

    Google Scholar 
    Pruett-Jones, S. Independent versus nonindependent mate choice: do females copy each other? Am. Nat. 140, 1000–1006 (1992).Article 
    CAS 

    Google Scholar 
    Dagaeff, A.-C., Pocheville, A., Nöbel, S., Isabel, G. & Danchin, E. Drosophila mate copying correlates with atmospheric pressure in a speed learning situation. Anim. Behav. 121, 163–174 (2016).Article 

    Google Scholar 
    Mery, F. et al. Public versus personal information for mate copying in an invertebrate. Curr. Biol. 19, 730–734 (2009).Article 
    CAS 

    Google Scholar 
    Danchin, E. et al. Cultural flies: Conformist social learning in fruitflies predicts long-lasting mate-choice traditions. Science 362, 1025–1030 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Monier, M., Nöbel, S., Isabel, G. & Danchin, E. Effects of a sex ratio gradient on female mate-copying and choosiness in Drosophila melanogaster. Curr. Zool. 64, 251–258 (2018).Article 

    Google Scholar 
    Monier, M., Nöbel, S., Danchin, E. & Isabel, G. Dopamine and serotonin are both required for mate-copying in Drosophila melanogaster. Front. Behav. Neurosci. 12, 334 (2019).Article 

    Google Scholar 
    Nöbel, S., Allain, M., Isabel, G. & Danchin, E. Mate copying in Drosophila melanogaster males. Anim. Behav. 141, 9–15 (2018).Article 

    Google Scholar 
    Nöbel, S., Danchin, E. & Isabel, G. Mate-copying for a costly variant in Drosophila melanogaster females. Behav. Ecol. 29, 1150–1156 (2018).Article 

    Google Scholar 
    Dukas, R. Natural history of social and sexual behavior in fruit flies. Sci. rep. 10, 1–11 (2020).Article 

    Google Scholar 
    Chouinard-Thuly, L. et al. Technical and conceptual considerations for using animated stimuli in studies of animal behavior. Curr. Zool. 63, 5–19 (2017).Article 

    Google Scholar 
    Nöbel, S. et al. Female fruit flies copy the acceptance, but not the rejection, of a mate. Behav. Ecol. 33, 1018–1024 (2022)Article 

    Google Scholar 
    Bretman, A., Westmancoat, J. D., Gage, M. J. G. & Chapman, T. Males use multiple, redundant cues to detect mating rivals. Curr. Biol. 21, 617–622 (2011).Article 
    CAS 

    Google Scholar 
    Greenspan, R. J. & Ferveur, J. F. Courtship in drosophila. Ann. Rev. Gen. 34, 205 (2000).Article 
    CAS 

    Google Scholar 
    Grillet, M., Dartevelle, L. & Ferveur, J. F. A Drosophila male pheromone affects female sexual receptivity. Proc. Roy. Soc. B. 273, 315–323 (2006).Article 
    CAS 

    Google Scholar 
    Borst, A. Drosophila’s view on insect vision. Curr. Biol. 19, R36–R47 (2009).Article 
    CAS 

    Google Scholar 
    Paulk, A., Millard, S. & van Swinderen, B. Vision in Drosophila: Seeing the world through a model´s eye. Ann. Rev. Entomol. 58, 313–332 (2013).Article 
    CAS 

    Google Scholar 
    Antony, C. & Jallon, J. M. The chemical basis for sex recognition in Drosophila melanogaster. J. Insect. Physiol. 28, 873–880 (1982).Article 
    CAS 

    Google Scholar 
    Keesey, I. W. et al. Adult frass provides a pheromone signature for Drosophila feeding and aggregation. J. Chem. Ecol. 42, 739–747 (2016).Article 
    CAS 

    Google Scholar 
    Talyn, B. C. & Bowse, H. B. The role of courtship song in sexual selection and species recognition by female Drosophila melanogaster. Anim. Behav. 68, 1165–1180 (2004).Article 

    Google Scholar 
    von Schilcher, F. The function of pulse song and sine song in the courtship of Drosophila melanogaster. Anim. Behav. 24, 622–6251976 (1976).Article 

    Google Scholar 
    McGregor, P. K. et al. Design of playback experiments: The Thornbridge hall NATO ARW consensus. In Playback and Studies of Animal Communication (ed. McGregor, P.) 1–9 (Plenum Press, New York, 1992).Chapter 

    Google Scholar 
    Richmond, J. The three Rs. In The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals (eds Hubrecht, R. & Kirkwood, J.) 5–22 (Wiley-Blackwell, Hoboken, 2002).
    Google Scholar 
    Russell, W. M. S. & Burch, R. L. The Principles of Humane Experimental Technique (Methuen & Co Ltd, 1959).
    Google Scholar 
    Schlupp, I., Ryan, M. & Waschulewski, M. Female preferences for naturally-occurring novel male traits. Behaviour 136, 519–527 (1999).Article 

    Google Scholar 
    Witte, K. & Klink, K. No pre-existing bias in sailfin molly females, Poecilia latipinna, for a sword in males. Behaviour 142, 283–303 (2005).Article 

    Google Scholar 
    Gerlai, R. Animated images in the analysis of zebrafish behavior. Curr. Zool. 63, 35–44 (2017).Article 

    Google Scholar 
    Ioannou, C. C., Guttal, V. & Couzin, I. D. Predatory fish select for coordinated collective motion in virtual prey. Science 337, 1212–1215 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Little, A. C., Jones, B. C. & DeBruine, L. M. Preferences for variation in masculinity in real male faces change across the menstrual cycle: Women prefer more masculine faces when they are more fertile. Pers. Ind. Diff. 45, 478–482 (2008).Article 

    Google Scholar 
    Little, A. C., Jones, B. C. & DeBruine, L. M. Facial attractiveness: Evolutionary based research. Phil. Trans. R. Soc. B. 366, 1638–1659 (2011).Article 

    Google Scholar 
    Morrison, E. R., Clark, A. P., Tiddeman, B. P. & Penton-Voak, I. S. Manipulating shape cues in dynamic human faces: Sexual dimorphism is preferred in female but not male faces. Ethology 116, 1234–1243 (2010).Article 

    Google Scholar 
    Kacsoh, B. Z., Bozler, J., Ramaswami, M. & Bosco, G. Social communication of predator-induced changes in Drosophila behavior and germ line physiology. eLife. 4, e07423 (2015).Article 

    Google Scholar 
    Caruana, N. & Seymour, K. Objects that induce face pareidolia are prioritized by the visual system. Brit. J. Psychol. 113, 496–507 (2022).Article 

    Google Scholar 
    Agrawal, S., Safarik, S. & Dickinson, M. The relative roles of vision and chemosensation in mate recognition of Drosophila melanogaster. J. Exp. Biol. 217, 2796–2805 (2014).
    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing (Austria, Vienna, 2021).
    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Fox, J. & Weisberg, S. An {R} Companion to Applied Regression 2nd edn. (Sage Publishing, London, 2001).
    Google Scholar  More