More stories

  • in

    Validation of SNP markers for thermotolerance adaptation in Ovis aries adapted to different climatic regions using KASP-PCR technique

    IPCC. Summary for Policymakers. In (Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield, eds) Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In Press (2018).Malhi, Y. et al. Climate change and ecosystems: Threats, opportunities and solutions. Philos. Trans. R. Soc. B Biol. Sci. 375(1794), 20190104. https://doi.org/10.1098/rstb.2019.0104 (2020).Article 
    CAS 

    Google Scholar 
    McElwee, P. Climate change and biodiversity loss. Curr. Hist. 120(829), 295–300. https://doi.org/10.1525/curh.2021.120.829.295 (2021).Article 

    Google Scholar 
    Dickinson, M. G., Orme, C. D. L., Suttle, K. B. & Mace, G. M. Separating sensitivity from exposure in assessing extinction risk from climate change. Sci. Rep. 4(1), 6898. https://doi.org/10.1038/srep06898 (2015).Article 
    CAS 

    Google Scholar 
    UNFCCC (United Nations Framework Convention on Climate Change). Global Warming Potentials http://unfccc.int/ghg_data/items/3825.php (2014).BelhadjSlimen, I., Chniter, M., Najar, T. & Ghram, A. Meta-analysis of some physiologic, metabolic and oxidative responses of sheep exposed to environmental heat stress. Livestock Sci. 229, 179–187. https://doi.org/10.1016/j.livsci.2019.09.026 (2019).Article 

    Google Scholar 
    Wojtas, K., Cwynar, P. & Kołacz, R. Effect of thermal stress on physiological and blood parameters in merino sheep. Bull. Vet. Inst. Pulawy 58(2), 283–288. https://doi.org/10.2478/bvip-2014-0043 (2014).Article 

    Google Scholar 
    Gavojdian, D., Cziszter, L. T., Budai, C. & Kusza, S. Effects of behavioral reactivity on production and reproduction traits in Dorper sheep breed. J. Vet. Behav. 10(4), 365–368. https://doi.org/10.1016/j.jveb.2015.03.012 (2015).Article 

    Google Scholar 
    Mehaba, N., Coloma-Garcia, W., Such, X., Caja, G. & Salama, A. A. K. Heat stress affects some physiological and productive variables and alters metabolism in dairy ewes. J. Dairy Sci. 104(1), 1099–1110. https://doi.org/10.3168/jds.2020-18943 (2021).Article 
    CAS 

    Google Scholar 
    Ramón, M., Díaz, C., Pérez-Guzman, M. D. & Carabaño, M. J. Effect of exposure to adverse climatic conditions on production in Manchega dairy sheep. J. Dairy Sci. 99(7), 5764–6577. https://doi.org/10.3168/jds.2016-10909 (2016).Article 
    CAS 

    Google Scholar 
    Mahjoubi, E. et al. The effect of cyclical and severe heat stress on growth performance and metabolism in Afshari lambs1. J. Anim. Sci. 93(4), 1632–1640. https://doi.org/10.2527/jas.2014-8641 (2015).Article 
    CAS 

    Google Scholar 
    dos Hamilton, T. R. S. et al. Evaluation of lasting effects of heat stress on sperm profile and oxidative status of ram semen and epididymal sperm. Oxid. Med. Cell. Longev. 1–12, 2016. https://doi.org/10.1155/2016/1687657 (2016).Article 
    CAS 

    Google Scholar 
    Romo-Barron, C. B. et al. Impact of heat stress on the reproductive performance and physiology of ewes: A systematic review and meta-analyses. Int. J. Biometeorol. 63(7), 949–962. https://doi.org/10.1007/s00484-019-01707-z (2019).Article 
    ADS 

    Google Scholar 
    Caroprese, M. et al. Glucocorticoid effects on sheep peripheral blood mononuclear cell proliferation and cytokine production under in vitro hyperthermia. J. Dairy Sci. 101(9), 8544–8551. https://doi.org/10.3168/jds.2018-14471 (2018).Article 
    CAS 

    Google Scholar 
    Marcone, G., Kaart, T., Piirsalu, P. & Arney, D. R. Panting scores as a measure of heat stress evaluation in sheep with access and with no access to shade. Appl. Anim. Behav. Sci. 240, 105350. https://doi.org/10.1016/j.applanim.2021.105350 (2021).Article 

    Google Scholar 
    Van Wettere, W. H. E. J. et al. Review of the impact of heat stress on reproductive performance of sheep. J. Anim. Sci. Biotechnol. 12(1), 26. https://doi.org/10.1186/s40104-020-00537-z (2021).Article 

    Google Scholar 
    Belhadj Slimen, I., Najar, T., Ghram, A. & Abdrrabba, M. Heat stress effects on livestock: Molecular, cellular and metabolic aspects, a review. J. Anim. Physiol. Anim. Nutr. 100(3), 401–412. https://doi.org/10.1111/jpn.12379 (2016).Article 
    CAS 

    Google Scholar 
    Guo, Z., Gao, S., Ouyang, J., Ma, L. & Bu, D. Impacts of heat stress-induced oxidative stress on the milk protein biosynthesis of dairy cows. Animals 11(3), 726. https://doi.org/10.3390/ani11030726 (2021).Article 

    Google Scholar 
    Liu, Z. et al. Heat stress in dairy cattle alters lipid composition of milk. Sci. Rep. 7(1), 961. https://doi.org/10.1038/s41598-017-01120-9 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Krishnan, G. et al. Mitigation of the heat stress impact in Livestock reproduction. In Theriogenology (InTech, 2017).
    Google Scholar 
    Robertson, S. & Friend, M. Strategies to ameliorate heat stress effects on sheep reproduction. In Climate Change and Livestock Production: Recent Advances and Future Perspectives 175–183 (Springer, 2021). https://doi.org/10.1007/978-981-16-9836-1_15.Chapter 

    Google Scholar 
    Sawyer, G. & Narayan, E. J. A review on the influence of climate change on sheep reproduction. In Comparative Endocrinology of Animals (Intech Open, 2019). https://doi.org/10.5772/intechopen.86799.Chapter 

    Google Scholar 
    Maurya, V. P., Sejian, V., Kumar, D. & Naqvi, S. M. K. Biological ability of Malpura rams to counter heat stress challenges and its consequences on production performance in a semi-arid tropical environment. Biol. Rhythm. Res. 49(3), 479–493. https://doi.org/10.1080/09291016.2017.1381451 (2018).Article 

    Google Scholar 
    Shahat, A. M., Rizzoto, G. & Kastelic, J. P. Amelioration of heat stress-induced damage to testes and sperm quality. Theriogenology 158, 84–96. https://doi.org/10.1016/j.theriogenology.2020.08.034 (2020).Article 
    CAS 

    Google Scholar 
    Singh, K. M. et al. Association of heat stress protein 90 and 70 gene polymorphism with adaptability traits in Indian sheep (Ovis aries). Cell Stress Chaperones 22(5), 675–684. https://doi.org/10.1007/s12192-017-0770-4 (2017).Article 
    CAS 

    Google Scholar 
    Kim, E.-S. et al. Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity 116(3), 255–264. https://doi.org/10.1038/hdy.2015.94 (2016).Article 
    CAS 

    Google Scholar 
    do Paim, T. P., Alves dos Santos, C., de Faria, D. A., Paiva, S. R. & McManus, C. Genomic selection signatures in Brazilian sheep breeds reared in a tropical environment. Livestock Sci. 258, 104865. https://doi.org/10.1016/j.livsci.2022.104865 (2022).Article 

    Google Scholar 
    Kusza, S. et al. Kompetitive Allele Specific PCR (KASPTM) genotyping of 48 polymorphisms at different caprine loci in French Alpine and Saanen goat breeds and their association with milk composition. PeerJ 6, e4416. https://doi.org/10.7717/peerj.4416 (2018).Article 
    CAS 

    Google Scholar 
    Zhang, Y. et al. Technical note: Development and application of KASP assays for rapid screening of 8 genetic defects in Holstein cattle. J. Dairy Sci. 103(1), 619–624. https://doi.org/10.3168/jds.2019-16345 (2020).Article 
    CAS 

    Google Scholar 
    Chaari, A. Molecular chaperones biochemistry and role in neurodegenerative diseases. Int. J. Biol. Macromol. 131, 396–411. https://doi.org/10.1016/j.ijbiomac.2019.02.148 (2019).Article 
    CAS 

    Google Scholar 
    Tripathy, K., Sodhi, M., Kataria, R. S., Chopra, M. & Mukesh, M. In silico analysis of HSP70 gene family in bovine genome. Biochem. Genet. 59(1), 134–158. https://doi.org/10.1007/s10528-020-09994-7 (2021).Article 
    CAS 

    Google Scholar 
    Rehman, S. et al. Genomic identification, evolution and sequence analysis of the heat-shock protein gene family in buffalo. Genes 11(11), 1388. https://doi.org/10.3390/genes11111388 (2020).Article 
    CAS 

    Google Scholar 
    Huo, C. et al. Chronic heat stress negatively affects the immune functions of both spleens and intestinal mucosal system in pigs through the inhibition of apoptosis. Microbial Pathog. 136, 103672. https://doi.org/10.1016/j.micpath.2019.103672 (2019).Article 
    CAS 

    Google Scholar 
    Morange, M. HSFs in development. In Molecular Chaperones in Health and Disease 153–169 (Springer, 2006). https://doi.org/10.1007/3-540-29717-0_7.Chapter 

    Google Scholar 
    Hoter, A., El-Sabban, M. & Naim, H. The HSP90 family: Structure, regulation, function, and implications in health and disease. Int. J. Mol. Sci. 19(9), 2560. https://doi.org/10.3390/ijms19092560 (2018).Article 
    CAS 

    Google Scholar 
    Vanselow, J., Vernunft, A., Koczan, D., Spitschak, M. & Kuhla, B. Exposure of lactating dairy cows to acute pre-ovulatory heat stress affects granulosa cell-specific gene expression profiles in dominant follicles. PLoS One 11(8), e0160600. https://doi.org/10.1371/journal.pone.0160600 (2016).Article 
    CAS 

    Google Scholar 
    Joy, A. et al. Resilience of small ruminants to climate change and increased environmental temperature: A review. Animals 10(5), 86. https://doi.org/10.3390/ani10050867 (2020).Article 

    Google Scholar 
    Saravanan, K. A. et al. Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics 113(3), 955–963. https://doi.org/10.1016/j.ygeno.2021.02.009 (2021).Article 
    CAS 

    Google Scholar 
    Singh, A. K., Upadhyay, R. C., Malakar, D., Kumar, S. & Singh, S. V. Effect of thermal stress on HSP70 expression in dermal fibroblast of zebu (Tharparkar) and crossbred (Karan-Fries) cattle. J. Therm. Biol 43, 46–53. https://doi.org/10.1016/j.jtherbio.2014.04.006 (2014).Article 
    CAS 

    Google Scholar 
    Verma, N., Gupta, I. D., Verma, A., Kumar, R. & Das, R. Novel SNPs in HSPB8 gene and their association with heat tolerance traits in Sahiwal indigenous cattle. Trop. Anim. Health Prod. 48(1), 175–180. https://doi.org/10.1007/s11250-015-0938-9 (2016).Article 

    Google Scholar 
    Al-Thuwaini, T. M., Al-Shuhaib, M. B. S. & Hussein, Z. M. A novel T177P missense variant in the HSPA8 gene associated with the low tolerance of Awassi sheep to heat stress. Trop. Anim. Health Prod. 52(5), 2405–2416. https://doi.org/10.1007/s11250-020-02267-w (2020).Article 

    Google Scholar 
    Onasanya, G. O. et al. Heterozygous single-nucleotide polymorphism genotypes at heat shock protein 70 gene potentially influence thermo-tolerance among four Zebu breeds of Nigeria. Front. Genet. https://doi.org/10.3389/fgene.2021.642213 (2021).Article 

    Google Scholar 
    Pascal, C. Researches regarding quality of sheep skins obtained from Karakul from Botosani sheep. Biotechnol. Anim. Husband. 27(3), 1123–1130. https://doi.org/10.2298/BAH1103123P (2011).Article 

    Google Scholar 
    Kevorkian, S. E. M., Zǎuleţ, M., Manea, M. A., Georgescu, S. E. & Costache, M. Analysis of the ORF region of the prion protein gene in the Botosani Karakul sheep breed from Romania. Turk. J. Vet. Anim. Sci. 35(2), 105–109. https://doi.org/10.3906/vet-0909-124 (2011).Article 
    CAS 

    Google Scholar 
    Kusza, S. et al. Mitochondrial DNA variability in Gyimesi Racka and Turcana sheep breeds. Acta Biochim. Pol. 62(2), 273–280. https://doi.org/10.18388/abp.2015_978 (2015).Article 
    CAS 

    Google Scholar 
    Gavojdian, D. et al. Effects of using indigenous heritage sheep breeds in organic and low-input production systems on production efficiency and animal welfare in Romania. Landbauforschung Volkenrode 66(4), 290–297. https://doi.org/10.3220/LBF1483607712000 (2016).Article 

    Google Scholar 
    Gavojdian, D. et al. Reproduction efficiency and health traits in Dorper, White Dorper, and Tsigai sheep breeds under temperate European conditions. Asian Australas. J. Anim. Sci. 28(4), 599–603. https://doi.org/10.5713/ajas.14.0659 (2015).Article 
    CAS 

    Google Scholar 
    Kusza, S. et al. The genetic variability of Hungarian Tsigai sheep. Archiv Tierzuch 53(3), 309–317 (2010).
    Google Scholar 
    Kusza, S. et al. Study of genetic differences among Slovak Tsigai populations using microsatellite markers. Czeh J. Anim. Sci. 54(10), 468–474. https://doi.org/10.17221/1670-CJAS (2009).Article 
    CAS 

    Google Scholar 
    Marcos-Carcavilla, A. et al. Polymorphisms in the HSP90AA1 5′ flanking region are associated with scrapie incubation period in sheep. Cell Stress Chaperones 15(4), 343–349. https://doi.org/10.1007/s12192-009-0149-2 (2010).Article 
    CAS 

    Google Scholar 
    Salces-Ortiz, J. et al. Looking for adaptive footprints in the HSP90AA1 ovine gene. BMC Evol. Biol. 15(1), 7. https://doi.org/10.1186/s12862-015-0280-x (2015).Article 
    CAS 

    Google Scholar 
    Toscano, J. H. B. et al. Innate immune responses associated with resistance against Haemonchus contortus in Morada Nova Sheep. J. Immunol. Res. 2019, 1–10. https://doi.org/10.1155/2019/3562672 (2019).Article 
    CAS 

    Google Scholar 
    Estrada-Reyes, Z. M. et al. Signatures of selection for resistance to Haemonchus contortus in sheep and goats. BMC Genom. 20(1), 735. https://doi.org/10.1186/s12864-019-6150-y (2019).Article 
    CAS 

    Google Scholar 
    Caroprese, M., Bradford, B. J. & Rhoads, R. P. Editorial: Impact of climate change on immune responses in agricultural animals. Front. Vet. Sci. https://doi.org/10.3389/fvets.2021.732203 (2021).Article 

    Google Scholar 
    FAO/IAEA. Agriculture biotechnology laboratory—handbook of laboratory exercises. Seibersdorf: IAEA Laboratories, 18 (2004).Zsolnai, A. & Orbán, L. Accelerated separation of random complex DNA patterns in gels: Comparing the performance of discontinuous and continuous buffers. Electrophoresis 20(7), 1462–1468. https://doi.org/10.1002/(SICI)1522-2683(19990601)20:7%3c1462::AID-ELPS1462%3e3.0.CO;2-0 (1999).Article 
    CAS 

    Google Scholar 
    Cavalcanti, L. C. G. et al. Genetic characterization of coat color genes in Brazilian Crioula sheep from a conservation nucleus. Pesq. Agrop. Brasil. 52(8), 615–622. https://doi.org/10.1590/s0100-204×2017000800007 (2017).Article 

    Google Scholar 
    Li, Y. et al. Heat stress-responsive transcriptome analysis in the liver tissue of Hu sheep. Genes 10(5), 395. https://doi.org/10.3390/genes10050395 (2019).Article 
    CAS 

    Google Scholar 
    Younis, F. Expression pattern of heat shock protein genes in sheep. Mansoura Vet. Med. J. 21(1), 1–5. https://doi.org/10.35943/mvmj.2020.21.001 (2020).Article 

    Google Scholar 
    Yeh F. C., Boyle R., Yang R. C., Ye Z., Mao J. X. & Yeh D. POPGENE version 1.32. Computer program and documentation distributed by the author. http://www.ualberta.ca/∼fyeh/popgene.html (1999).Lê, S., Josse, J. & Husson, F. FactoMineR: A package for multivariate analysis. J. Stat. Softw. 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01 (2008).Article 

    Google Scholar 
    Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer. https://ggplot2.tidyverse.org (2016) (ISBN 978-3-319-24277-4).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020). More

  • in

    Responses to salinity in the littoral earthworm genus Pontodrilus

    Lavelle, P., Blanchart, E., Martin, A., Spain, A. V. & Martin, S. Impact of soil fauna on the properties of soils in the humid tropics. In Myths and Science of Soils of the Tropics (eds Lal, R. & Sanchez, P.) 157–185 (Soil Science Society of America, 1992).
    Google Scholar 
    Eisenhauer, N. The action of an animal ecosystem engineer: Identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia 53, 343–352 (2010).Article 

    Google Scholar 
    Eisenhauer, N. & Eisenhauer, E. The “intestines of the soil”: The taxonomic and functional diversity of earthworms—A review for young ecologists. Preprint at https://doi.org/10.32942/osf.io/tfm5y (2020).Gates, G. E. Burmese earthworms, an introduction to the systematics and biology of megadrile oligochaetes with special reference to South-east Asia. Trans. Amer. Phil. Soc. 62, 1–326. https://doi.org/10.2307/1006214 (1972).Article 

    Google Scholar 
    Blakemore, R. J. Origin and means of dispersal of cosmopolitan Pontodrilus litoralis (Oligocaheta: Megascolecidae). Eur. J. Soil Biol. 443, S3–S8. https://doi.org/10.1016/j.ejsobi.2007.08.041 (2007).Article 

    Google Scholar 
    Seesamut, T., Sutcharit, C., Jirapatrasilp, P., Chanabun, R. & Panha, S. Morphological and molecular evidence reveal a new species of the earthworm genus Pontodrilus Perrier, 1874 (Clitellata, Megascolecidae) from Thailand and Peninsular Malaysia. Zootaxa 4496, 218–237. https://doi.org/10.11646/zootaxa.4496.1.18 (2018).Article 

    Google Scholar 
    Seesamut, T., Jirapatrasilp, P., Chanabun, R., Oba, Y. & Panha, S. Size variation and geographical distribution of the luminous earthworm Pontodrilus litoralis (Grube, 1855) (Clitellata, Megascolecidae) in Southeast Asia and Japan. Zookeys 862, 23–43. https://doi.org/10.3897/zookeys.862.35727 (2019).Article 

    Google Scholar 
    Seesamut, T., Jirapatrasilp, P., Sutcharit, C., Tongkerd, P. & Panha, S. Mitochondrial genetic population structure and variation of the littoral earthworm Pontodrilus longissimus Seesamut and Panha, 2018 along the coast of Thailand. Eur. J. Soil Biol. 93, 103091. https://doi.org/10.1016/j.ejsobi.2019.103091 (2019).Article 

    Google Scholar 
    Attrill, M. J. A testable linear model for diversity trends in estuaries. J. Anim. Ecol. 71, 262–269. https://doi.org/10.1046/j.1365-2656.2002.00593.x (2002).Article 

    Google Scholar 
    McLusky, D. S. & Elliott, M. The Estuarine Ecosystem: Ecology, Threats and Management 3rd edn. (Oxford University Press, 2004).Book 

    Google Scholar 
    Telesh, I. V. & Khlebovich, V. V. Principal processes within the estuarine salinity gradient: A review. Mar. Pollut. Bull. 61, 149–155. https://doi.org/10.1016/j.marpolbul.2010.02.008 (2010).Article 
    CAS 

    Google Scholar 
    Owojori, O. J. & Reinecke, A. J. Effects of natural (flooding and drought) and anthropogenic (copper and salinity) stressors on the earthworm Aporrectodea caliginosa under field conditions. Appl. Soil Ecol. 44, 156–163. https://doi.org/10.1016/j.apsoil.2009.11.006 (2010).Article 

    Google Scholar 
    Guzyte, G., Sujetoviene, G. & Zaltauskaite, J. Effects of salinity on earthworm (Eisenia fetida). Environ. Eng. 8, 111 (2011).
    Google Scholar 
    Ganapati, P. N. & Subba Rao, B. V. S. S. R. Salinity tolerance of a littoral oligochaete, Pontodrilus bermudensis Beddard. Proc. Ind. Nat. Sci. Acad. 38, 350–354 (1972).
    Google Scholar 
    Subba Rao, B. V. S. S. R. Volume regulation in a euryhaline oligochaete, Pontodrilus bermudensis Beddard. Proc. Indian Acad. Sci. 87, 339–347 (1978).Article 

    Google Scholar 
    Owojori, O. J., Reinecke, A. J. & Rozanov, A. B. Effects of salinity on partitioning, uptake and toxicity of zinc in the earthworm Eisenia fetida. Soil Biol. Biochem. 40, 2385–2393. https://doi.org/10.1016/j.soilbio.2008.05.019 (2008).Article 
    CAS 

    Google Scholar 
    Seesamut, T. et al. Occurrence of bioluminescent and nonbioluminescent species in the littoral earthworm genus Pontodrilus. Sci. Rep. 11, 8407 (2021).Article 
    CAS 

    Google Scholar 
    Sivinski, J. & Forrest, T. Luminous defense in an earthworm. Fla. Entomol. 66, 517 (1983).Article 

    Google Scholar 
    Verdes, A. & Gruber, D. F. Glowing worms: Biological, chemical, and functional diversity of bioluminescent annelids. Integr. Comp. Biol. 57, 18–32. https://doi.org/10.1093/icb/icx017 (2017).Article 
    CAS 

    Google Scholar 
    Shimomura, O. & Yampolsky, I. Bioluminescence: Chemical Principles and Methods 3rd edn. (World Scientific, 2019).Book 

    Google Scholar 
    Easton, E. G. Earthworms (Oligochaeta) from islands of the south-western Pacific, and a note on two species from Papua New Guinea. N. Z. J. Zool. 11, 111–128. https://doi.org/10.1080/03014223.1984.10423750 (1984).Article 

    Google Scholar 
    Shen, H.-P., Tsai, S.-C. & Tsai, C.-F. Occurrence of the earthworms Pontodrilus litoralis (Grube, 1855), Metaphire houlleti (Perrier, 1872), and Eiseniella tetraedra (Savigny, 1826) from Taiwan. Taiwania 50, 11–21 (2005).
    Google Scholar 
    Satheeshkumar, P., Khan, A. B. & Senthilkumar, D. Annelida, Oligochaeta, Megascolecidae, Pontodrilus litoralis (Grupe, 1985): First record from Pondicherry mangroves, southeast coast of India. Int. J. Zool. Res. 7, 406–409. https://doi.org/10.3923/ijzr.2011.406.409 (2011).Article 

    Google Scholar 
    Nguyen, T. T., Nguyen, D. A., Tran, T. T. B. & Blakemore, R. J. A comprehensive checklist of earthworm species and subspecies from Vietnam (Annelida: Clitellata: Oligochaeta: Almidae, Eudrilidae, Glossoscolecidae, Lumbricidae, Megascolecidae, Moniligastridae, Ocnerodrilidae, Octochaetidae). Zootaxa 4140, 1–92. https://doi.org/10.11646/zootaxa.4140.1.1 (2016).Article 

    Google Scholar 
    Chen, S.-Y., Hsu, C.-H. & Soong, K. How to cross the sea: Testing the dispersal mechanisms of the cosmopolitan earthworm Pontodrilus litoralis. R. Soc. Open Sci. 8, 202297. https://doi.org/10.1098/rsos.202297 (2021).Article 
    ADS 

    Google Scholar 
    Smyth, K. & Elliott, M. Effects of changing salinity on the ecology of the marine environment. In Stressors in the Marine Environment (eds Solan, M. & Whiteley, N. M.) 161–175 (Oxford University Press, 2016).Chapter 

    Google Scholar 
    Veiga, M. P. T., Gutierre, S. M. M., Castellano, G. C. & Freire, C. A. Tolerance of high and low salinity in the intertidal gastropod Stramonita brasiliensis (Muricidae): Behaviour and maintenance of tissue water content. J. Molluscan Stud. 82, 154–160. https://doi.org/10.1093/mollus/eyv044 (2016).Article 

    Google Scholar 
    Carley, W. W., Caracciolo, E. A. & Mason, R. T. Cell and coelomic fluid volume regulation in the earthworm Lumbricus terrestris. Comp. Biochem. Physiol. 74, 569–575 (1983).Article 

    Google Scholar 
    Sharif, F. et al. Salinity tolerance of earthworms and effects of salinity and vermi amendments on growth of Sorghum bicolor. Arch. Agron. Soil Sci. 62, 1169–1181. https://doi.org/10.1080/03650340.2015.1132838 (2016).Article 
    CAS 

    Google Scholar 
    Wu, Z. et al. Effects of salinity on earthworms and the product during vermicomposting of kitchen wastes. Int. J. Environ. Res. Public Health 16, 4737. https://doi.org/10.3390/ijerph16234737 (2019).Article 
    CAS 

    Google Scholar 
    Oglesby, L. C. Volume regulation in aquatic invertebrates. J. Exp. Zool. 215, 289–301 (1981).Article 
    CAS 

    Google Scholar 
    Generlich, O. & Giere, O. Osmoregulation in two aquatic oligochaetes from habitats with different salinity and comparison to other annelids. Hydrobiologia 334, 251–261. https://doi.org/10.1007/BF00017375 (1996).Article 

    Google Scholar 
    Carregosa, V. et al. Tolerance of Venerupis philippinarum to salinity: Osmotic and metabolic aspects. Comp. Biochem. Physiol. A 171, 36–43. https://doi.org/10.1016/j.cbpa.2014.02.009 (2014).Article 
    CAS 

    Google Scholar 
    Freitas, R. et al. The effects of salinity changes on the polychaete Diopatra neapolitana: Impacts on regenerative capacity and biochemical markers. Aquat. Toxicol. 163, 167–176. https://doi.org/10.1016/j.aquatox.2015.04.006 (2015).Article 
    CAS 

    Google Scholar 
    Rivera-Ingraham, G. A. & Lignot, J. H. Osmoregulation, bioenergetics and oxidative stress in coastal marine invertebrates: Raising the questions for future research. J. Exp. Biol. 220, 1749–1760. https://doi.org/10.1242/jeb.135624 (2017).Article 

    Google Scholar 
    Munnoli, P. M. & Bhosle, S. Effect of soil cow dung proportion of vermicomposting. J. Sci. Ind. Res. 68, 57–60 (2009).
    Google Scholar  More

  • in

    Using high-throughput sequencing to investigate the dietary composition of the Korean water deer (Hydropotes inermis argyropus): a spatiotemporal comparison

    Schilling, A.-M. & Rössner, G. E. The (sleeping) beauty in the beast—a review on the water deer, Hydropotes inermis. Hystrix Ital. J. Mammal. 28, 121–133 (2017).
    Google Scholar 
    Geist, V. Deer of the World: Their Evolution, Behaviour and Ecology (Stackpole Books, Pennsylvania, 1998).
    Google Scholar 
    Cooke, A. Muntjac and Water Deer: Natural History, Environmental Impact and Management (Pelagic Publishing Ltd, UK, 2019).Book 

    Google Scholar 
    Kim, B. J., Lee, B. K. & Kim, Y. J. Korean water deer (National Institute of Ecology, South Korea, 2016).
    Google Scholar 
    Belyaev, D. A. & Jo, Y.-S. Northernmost finding and further information on water deer Hydropotes inermis in Primorskiy Krai, Russia. Mammalia 85, 71–73 (2021).Article 

    Google Scholar 
    Harris, R. B. & Duckworth, J. W. Hydropotes inermis. The IUCN Red List of Threatened Species, e.T10329A22163569 (2015).National Institute of Biological Resources. Harmful wildlife. https://species.nibr.go.kr/home/mainHome.do?cont_link=011&subMenu=011016&contCd=011016001 (2015).Hofmann, R. R. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78, 443–457 (1989).Article 
    ADS 
    CAS 

    Google Scholar 
    Guo, G. & Zhang, E. Diet of the Chinese water deer (Hydropotes inermis) in Zhoushan Archipelago, China. Acta Theriol. Sin. 25, 122–130 (2005).
    Google Scholar 
    Kim, B. J., Lee, N. S. & Lee, S. D. Feeding diets of the Korean water deer (Hydropotes inermis argyropus) based on a 202 bp rbcL sequence analysis. Conserv. Genet. 12, 851–856 (2011).Article 

    Google Scholar 
    Park, J.-E., Kim, B.-J., Oh, D.-H., Lee, H. & Lee, S.-D. Feeding habit analysis of the Korean water deer. Korean J. Environ. Ecol. 25, 836–845 (2011).
    Google Scholar 
    Kim, J., Joo, S. & Park, S. Diet composition of Korean water deer (Hydropotes inermis argyropus) from the Han River Estuary Wetland in Korea using fecal DNA. Mammalia 85, 487–493 (2021).Article 

    Google Scholar 
    Hofmann, R., Kock, R. A., Ludwig, J. & Axmacher, H. Seasonal changes in rumen papillary development and body condition in free ranging Chinese water deer (Hydropotes inermis). J. Zool. 216, 103–117 (1988).Article 

    Google Scholar 
    Nielsen, J. M., Clare, E. L., Hayden, B., Brett, M. T. & Kratina, P. Diet tracing in ecology: Method comparison and selection. Methods Ecol. Evol. 9, 278–291 (2018).Article 

    Google Scholar 
    Birnie-Gauvin, K., Peiman, K. S., Raubenheimer, D. & Cooke, S. J. Nutritional physiology and ecology of wildlife in a changing world. Conserv. Physiol. 5, cox030 (2017).Article 

    Google Scholar 
    Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).Article 
    CAS 

    Google Scholar 
    Glenn, T. C. Field guide to next-generation DNA sequencers. Mol. Ecol. Resour. 11, 759–769 (2011).Article 
    CAS 

    Google Scholar 
    Nichols, R. V., Åkesson, M. & Kjellander, P. Diet assessment based on rumen contents: A comparison between DNA metabarcoding and macroscopy. PLoS ONE 11, e0157977 (2016).Article 

    Google Scholar 
    Pompanon, F. et al. Who is eating what: diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).Article 
    CAS 

    Google Scholar 
    Kumari, P. et al. DNA metabarcoding-based diet survey for the Eurasian otter (Lutra lutra): Development of a Eurasian otter-specific blocking oligonucleotide for 12S rRNA gene sequencing for vertebrates. PLoS ONE 14, e0226253 (2019).Article 
    CAS 

    Google Scholar 
    Iwanowicz, D. D. et al. Metabarcoding of fecal samples to determine herbivore diets: A case study of the endangered Pacific pocket mouse. PLoS ONE 11, e0165366 (2016).Article 

    Google Scholar 
    Berry, T. E. et al. DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea). Ecol. Evol. 7, 5435–5453 (2017).Article 

    Google Scholar 
    Ford, M. J. et al. Estimation of a killer whale (Orcinus orca) population’s diet using sequencing analysis of DNA from feces. PLoS ONE 11, e0144956 (2016).Article 

    Google Scholar 
    Ando, H. et al. Diet analysis by next-generation sequencing indicates the frequent consumption of introduced plants by the critically endangered red-headed wood pigeon (Columba janthina nitens) in oceanic island habitats. Ecol. Evol. 3, 4057–4069 (2013).Article 

    Google Scholar 
    Kim, E.-K. Behavioral ecology, habitat evaluation and genetic characteristics of water deer (Hydropotes inermis) in Korea. Ph.D. thesis. Kangwon National University (2011).Park, J.-E., Kim, B.-J. & Lee, S.-D. A study of potential of diet analysis in the Korean water deer (Hydropotes inermis argyropus) using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Korean J. Environ. Ecol. 24, 318–324 (2010).
    Google Scholar 
    Hollingsworth, P. M. Refining the DNA barcode for land plants. Proc. Natl. Acad. Sci. USA 108, 19451–19452 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, D.-Z. et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. USA 108, 19641–19646 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Park, E. & Nam, M. Changes in land cover and the cultivation area of ginseng in the Civilian Control Zone -Paju City and Yeoncheon County-. Korean J. Environ. Ecol. 27, 507–515 (2013).
    Google Scholar 
    Cheng, T. et al. Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Mol. Ecol. Resour. 16, 138–149 (2016).Article 
    CAS 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).Article 
    CAS 

    Google Scholar 
    Ankenbrand, M. J., Keller, A., Wolf, M., Schultz, J. & Förster, F. ITS2 database V: Twice as much. Mol. Biol. Evol. 32, 3030–3032 (2015).Article 
    CAS 

    Google Scholar 
    Sickel, W. et al. Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach. BMC Ecol. 15, 20 (2015).Article 

    Google Scholar 
    Edgar, R. C. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences. PeerJ 6, e4652 (2018).Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community ecology package v 2.5–7 (R Foundation, Vienna, Austria, 2020).
    Google Scholar 
    Hsieh, T., Ma, K. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).Article 

    Google Scholar 
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    De Cáceres, M. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574 (2009).Article 

    Google Scholar 
    Yan, L. ggvenn: Draw venn diagram by ‘ggplot2’ v. 0.1.8 (R Foundation, Vienna, Austria, 2021).Choi, D.-Y. et al. Flora of province Gyonggi-do. Bull. Seoul Nat’l Univ. Arbor. 21, 25–76 (2001).
    Google Scholar 
    Ko, S. & Shin, Y. Flora of middle part in Gyeonggi Province. Korean J. Plant Res. 22, 49–70 (2009).
    Google Scholar 
    Lee, S.-K., Ryu, Y. & Lee, E. J. Endozoochorous seed dispersal by Korean water deer (Hydropotes inermis argyropus) in Taehwa Research Forest, South Korea. Glob. Ecol. Conserv. 40, e02325 (2022).Article 

    Google Scholar 
    Kim, K.-H. & Kang, S.-H. Flora of western civilian control zone (CCZ) in Korea. Korean J. Plant Res. 32, 565–588 (2019).
    Google Scholar 
    Gyeonggi Tourism Organization. Pyeonghwa-Nuri Trail ecological resource survey. (Paju City, Gyeonggi Province, Korea, 2018).Wickham, H. ggplot2: Elegant Graphics for Data Analysis 2nd edn. (Springer, New York, 2016).Book 
    MATH 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing (R Foundation, Vienna, Austria, 2020).Pertoldi, C. et al. Comparing DNA metabarcoding with faecal analysis for diet determination of the Eurasian otter (Lutra lutra) in Vejlerne. Denmark. Mammal. Res. 66, 115–122 (2021).Article 

    Google Scholar 
    Lee, B. Morphological, ecological and DNA taxonomic characteristics of Chinese water deer (Hydropotes inermis Swinhoe). Ph.D. thesis. Chungbuk National University (2003).Wilmshurst, J. F., Fryxell, J. M. & Hudsonb, R. J. Forage quality and patch choice by wapiti (Cervus elaphus). Behav. Ecol. 6, 209–217 (1995).Article 

    Google Scholar 
    Langvatn, R. & Hanley, T. A. Feeding-patch choice by red deer in relation to foraging efficiency. Oecologia 95, 164–170 (1993).Article 
    ADS 

    Google Scholar 
    Gray, P. B. & Servello, F. A. Energy intake relationships for white-tailed deer on winter browse diets. J. Wildl. Manag. 59, 147–152 (1995).Article 

    Google Scholar 
    Brown, D. T. & Doucet, G. J. Temporal changes in winter diet selection by white-tailed deer in a northern deer yard. J. Wildl. Manag. 55, 361–376 (1991).Article 

    Google Scholar 
    Takahashi, H. & Kaji, K. Fallen leaves and unpalatable plants as alternative foods for sika deer under food limitation. Ecol. Res. 16, 257–262 (2001).Article 

    Google Scholar 
    Bee, J. N. et al. Spatio-temporal feeding selection of red deer in a mountainous landscape. Austral Ecol. 35, 752–764 (2010).Article 

    Google Scholar 
    Gebert, C. & Verheyden-Tixier, H. Variations of diet composition of red deer (Cervus elaphus L.) in Europe. Mammal. Rev. 31, 189–201 (2001).Article 

    Google Scholar 
    Cornelis, J., Casaer, J. & Hermy, M. Impact of season, habitat and research techniques on diet composition of roe deer (Capreolus capreolus): a review. J. Zool. 248, 195–207 (1999).Article 

    Google Scholar 
    Kim, B. J. & Lee, S.-D. Home range study of the Korean water deer (Hydropotes inermis agyropus) using radio and GPS tracking in South Korea: Comparison of daily and seasonal habitat use pattern. J. Ecol. Field Biol. 34, 365–370 (2011).
    Google Scholar 
    Beier, P. Sex differences in quality of white-tailed deer diets. J. Mammal. 68, 323–329 (1987).Article 

    Google Scholar 
    Staines, B. W., Crisp, J. M. & Parish, T. Differences in the quality of food eaten by red deer (Cervus elaphus) stags and hinds in winter. J. Appl. Ecol. 19, 65–77 (1982).Article 

    Google Scholar 
    Koga, T. & Ono, Y. Sexual differences in foraging behavior of sika deer, Cervus nippon. J. Mammal. 75, 129–135 (1994).Article 

    Google Scholar 
    Han, S.-H., Lee, S.-S., Cho, I.-C., Oh, M.-Y. & Oh, H.-S. Species identification and sex determination of Korean water deer (Hydropotes inermis argyropus) by duplex PCR. J. Appl. Anim. Res. 35, 61–66 (2009).Article 
    CAS 

    Google Scholar 
    You, Z. et al. Seasonal variations in the composition and diversity of gut microbiota in white-lipped deer (Cervus albirostris). PeerJ 10, e13753 (2022).Article 

    Google Scholar 
    Zhao, W. et al. Metagenomics analysis of the gut microbiome in healthy and bacterial pneumonia forest musk deer. Gene Genom. 43, 43–53 (2021).Article 
    CAS 

    Google Scholar 
    Amato, K. R. et al. Gut microbiome, diet, and conservation of endangered langurs in Sri Lanka. Biotropica 52, 981–990 (2020).Article 

    Google Scholar 
    Stumpf, R. M. et al. Microbiomes, metagenomics, and primate conservation: New strategies, tools, and applications. Biol. Conserv. 199, 56–66 (2016).Article 

    Google Scholar 
    Redford, K. H., Segre, J. A., Salafsky, N., del Rio, C. M. & McAloose, D. Conservation and the microbiome. Conserv. Biol. 26, 195–197 (2012).Article 

    Google Scholar 
    Deagle, B. E. et al. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?. Mol. Ecol. 28, 391–406 (2019).Article 

    Google Scholar 
    Corse, E. et al. A from-benchtop-to-desktop workflow for validating HTS data and for taxonomic identification in diet metabarcoding studies. Mol. Ecol. Resour. 17, e146–e159 (2017).Article 
    CAS 

    Google Scholar 
    Alberdi, A. et al. Promises and pitfalls of using high-throughput sequencing for diet analysis. Mol. Ecol. Resour. 19, 327–348 (2019).Article 

    Google Scholar 
    Nakahara, F. et al. The applicability of DNA barcoding for dietary analysis of sika deer. DNA Barcodes 3, 200–206 (2015).Article 

    Google Scholar 
    Thomas, A. C., Jarman, S. N., Haman, K. H., Trites, A. W. & Deagle, B. E. Improving accuracy of DNA diet estimates using food tissue control materials and an evaluation of proxies for digestion bias. Mol. Ecol. 23, 3706–3718 (2014).Article 
    CAS 

    Google Scholar 
    Deagle, B. E., Eveson, J. P. & Jarman, S. N. Quantification of damage in DNA recovered from highly degraded samples–a case study on DNA in faeces. Front. Zool. 3, 11 (2006).Article 

    Google Scholar 
    Coissac, E., Riaz, T. & Puillandre, N. Bioinformatic challenges for DNA metabarcoding of plants and animals. Mol. Ecol. 21, 1834–1847 (2012).Article 
    CAS 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Clare, E. L. Molecular detection of trophic interactions: emerging trends, distinct advantages, significant considerations and conservation applications. Evol. Appl. 7, 1144–1157 (2014).Article 

    Google Scholar 
    Ramirez, R., Quintanilla, J. & Aranda, J. White-tailed deer food habits in northeastern Mexico. Small Rumin. Res. 25, 141–146 (1997).Article 

    Google Scholar 
    Anouk Simard, M., Côté, S. D., Weladji, R. B. & Huot, J. Feedback effects of chronic browsing on life-history traits of a large herbivore. J. Anim. Ecol. 77, 678–686 (2008).Article 
    CAS 

    Google Scholar 
    Putman, R. J. & Staines, B. W. Supplementary winter feeding of wild red deer Cervus elaphus in Europe and North America: justifications, feeding practice and effectiveness. Mammal Rev. 34, 285–306 (2004).Article 

    Google Scholar 
    Milner, J. M., Van Beest, F. M., Schmidt, K. T., Brook, R. K. & Storaas, T. To feed or not to feed? Evidence of the intended and unintended effects of feeding wild ungulates. J. Wildl. Manag. 78, 1322–1334 (2014).Article 

    Google Scholar 
    Carpio, A. J., Apollonio, M. & Acevedo, P. Wild ungulate overabundance in Europe: contexts, causes, monitoring and management recommendations. Mammal Rev. 51, 95–108 (2021).Article 

    Google Scholar 
    Cappa, F., Lombardini, M. & Meriggi, A. Influence of seasonality, environmental and anthropic factors on crop damage by wild boar Sus scrofa. Folia Zool. 68, 261–268 (2019).Article 

    Google Scholar  More

  • in

    Incorporating dead material in ecosystem assessments and projections

    Stokland, J. N., Siitonen, J. & Jonsson, B. G. Biodiversity in Dead Wood (Cambridge Univ. Press, 2012).Turetsky, M. R. et al. Nat. Geosci. 8, 11–14 (2014).Article 

    Google Scholar 
    Wenger, S. J., Subalusky, A. L. & Freeman, M. C. Food Webs 18, e00106 (2019).Article 

    Google Scholar 
    Tomatsuri, M. & Kon, K. Hydrobiologia 790, 225–232 (2017).Article 

    Google Scholar 
    Henry, L. A. & Roberts, J. M. in Marine Animal Forests (eds Rossi, S. et al.) 235–256 (Springer, 2017).Walton, M. E. M. et al. Sci. Total Environ. 820, 153191 (2022).Article 
    CAS 

    Google Scholar 
    Wolfe, K., Kenyon, T. M. & Mumby, P. J. Coral Reefs 40, 1769–1806 (2021).Article 

    Google Scholar 
    Kim, H. et al. Glob. Change Biol. 28, 6180–6193 (2022).Jackson, R. B. et al. Annu. Rev. Ecol. Evol. Syst. 48, 419–445 (2017).Article 

    Google Scholar 
    Pan, Y. et al. Science 333, 988–993 (2011).Article 
    CAS 

    Google Scholar 
    Hedges, J. I., Keil, R. G. & Benner, R. Org. Geochem. 27, 195–212 (1997).Article 
    CAS 

    Google Scholar 
    Lønborg, C. et al. Front. Mar. Sci. 7, 466 (2020).Article 

    Google Scholar 
    Harden, J. W. et al. Glob. Change Biol. 6, 174–184 (2000).Davidson, E. A. & Janssens, I. A. Nature 440, 165–173 (2006).Article 
    CAS 

    Google Scholar 
    Hugelius, G. et al. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).Article 
    CAS 

    Google Scholar 
    Hennige, S. J. et al. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00668 (2020).Article 

    Google Scholar 
    Wolfram, U. et al. Sci. Rep. 12, 8052 (2022).Article 
    CAS 

    Google Scholar 
    Roberts, J. M., Wheeler, A. J. & Freiwald, A. Science 312, 543–547 (2006).Article 
    CAS 

    Google Scholar 
    Mortensen, P. B. & Fosså, J. H. Species diversity and spatial distribution of invertebrates on deep-water Lophelia reefs in Norway. In Proc. 10th Int. Coral Reef Symp. 1849–1868 (ICRS, 2006).Maier, S. R. et al. Deep Sea Res. I 175, 103574 (2021).. More

  • in

    A metagenomic insight into the microbiomes of geothermal springs in the Subantarctic Kerguelen Islands

    MAG binning and general featuresFrom the four hot springs, we assembled four associated metagenomes and then binned a total of 42 MAGs. We recovered 12 MAGs from RB10 hot spring, 13 from RB13, 14 from RB32 and 3 from RB108. Out of these 42 MAGs, 7 were of high-quality, 25 of nearly-high quality, 9 of medium quality and 1 of low quality (Table 1) based on metagenomic standards26. The GC% was quite variable, ranging from 25.76 to 70.35% among all MAGs and between 32.15 and 69.21% only among the high- and near high-quality MAGs. With the exception of RB108 from which we only recovered bacterial MAGs, we retrieved both bacterial and archaeal MAGs in the other hot springs. Two thirds of the MAGs (26/42) were assigned to the domain Bacteria and the rest to the domain Archaea (16/42) (Table 2).Table 1 General characteristics of the 42 MAGs obtained from RB10, RB13, RB32 and RB108 samples.Full size tableTable 2 Classification of the MAGs based on the taxonomic classification of GTDB-Tk software (v2.1.0) and the Genome Taxonomy Database (07-RS207 release).Full size tableTaxonomic and phylogenomic analyses of MAGsThe taxonomic affiliation of the MAGs was investigated in detail through the workflow classify of GTDB-Tk (v 2.1.0; GTDB reference tree 07-RS207) (Table 2) and through de novo phylogenomic analyses (Fig. S1a–i). We also tried to classify MAGs on the basis of overall genome relatedness indices (OGRI), which is detailed in supplementary material (Text S1, Table S2, Fig. S2).De novo phylogenomic analyses globally confirmed the positioning of MAGs provided by GTDB-Tk, with high branching support. For Bacteria, GTDB-Tk analyses allowed us to place the MAGs in the following clades: six in the phylum Aquificota from the four different springs, comprising four MAGs belonging to the genus Hydrogenivirga (family Aquificaceae) (RB10-MAG07, RB13-MAG10, RB32-MAG07, RB108-MAG02), and two belonging to the family ‘Hydrogenobaculaceae’ (RB10-MAG12, RB32-MAG11) (Table 2, Fig. S1a). Their closest cultured relatives originated either from hot springs or from deep-sea hydrothermal vents27. Three MAGs from three geothermal springs belonged to the phylum Armatimonadota (RB10-MAG03, RB13-MAG04, RB32-MAG03) and had no close cultured relatives. Seven MAGs have been classified into the phylum Chloroflexota: three MAGs belonging to the genus Thermoflexus from three different springs (RB10-MAG04, RB13-MAG05, RB32-MAG02), one affiliating with the genus Thermomicrobium (RB32-MAG08), one falling into the family Ktedonobacteraceae (RB108-MAG03), one belonging to the class Dehalococcoidia (RB32-MAG04) and another one whose phylogenetic position is more difficult to assert because it is a MAG of medium quality (RB32-MAG14). Six MAGs from four various hot springs belonged to the phylum Deinococcota, and to the genera Thermus (RB10-MAG08, RB10-MAG11, RB13-MAG09, RB32-MAG10, RB108-MAG01) and Meiothermus (RB13-MAG13). One MAG belonged to the family ‘Sulfurifustaceae’ (RB13-MAG01), in the phylum Proteobacteria (Gamma-class). The MAG referenced as RB32-MAG13 was classified into the phylum ‘Patescibacteria’, in the class ‘Paceibacteria’, and was distantly related to MAGs originating from groundwater and from hot springs. Finally, two MAGs from two different springs belonged to the phylum WOR-3, in the Candidatus genus ‘Caldipriscus’ (RB32-MAG12, RB10-MAG09).For Archaea, almost all the MAGs reconstructed in this study, e.g. 15 of the 16 archaeal MAGs, belonged to the phylum Thermoproteota. Among them, four belonged to the genus Ignisphaera (RB10-MAG05, RB13-MAG08, RB13-MAG11, RB32-MAG05), three to the genus Infirmifilum (RB10-MAG06, RB13-MAG03, RB32-MAG09), two to the genus Zestosphaera (RB10-MAG02, RB13-MAG06), three to the family Acidilobaceae (RB10-MAG01, RB13-MAG02, RB32-MAG01) and two to the order Geoarchaeales (RB10-MAG10, RB32-MAG06). Additionally, one belonged to the family Thermocladiaceae (RB13-MAG07). Lastly, the MAG belonging to another phylum (RB13-MAG12) was affiliated with the ‘Aenigmatarchaeota’, class ‘Aenigmatarchaeia’, and was distantly related to MAGs from hot springs and from deep-sea hydrothermal vent sediments28,29.Out of these 42 MAGs, at least 19 MAGs corresponded to different taxa at the taxonomic rank of species or higher according to GTDB (Table 2). Eighteen of them belonged to lineages with several cultivated representatives including the species Thermus thermophilus. 13 new genomic species within the GTDB genera Hydrogenivirga, HRBIN17, Thermoflexus, SpSt-223, CADDYT01, Zestosphaera, Ignisphaera, Infirmifilum, Thermus, Thermus_A, Meiothermus_B, JAHLMO01 and Caldipriscus, and 6 putative new genomic genera belonging to the GTDB families Hydrogenobaculaceae, Acidilobaceae, WAQG01, Thermocladiaceae, Sulfurifustaceae and HR35 could be identified (Table 2). In addition, 9 MAGs belonged to lineages that are predominantly or exclusively known through environmental DNA sequences. Thus, these 42 MAGs comprised a broad phylogenetic range of Bacteria and Archaea at different levels of taxonomic organization, of which a large majority were not reported before.The approaches implemented here were not intended to describe the microbial diversity present in these sources in an exhaustive way or to compare them in a fine way, and cannot allow it because of a 2-year storage at 4 °C. This long storage has probably led to changes in the microbial communities and to the selective loss or enrichment of some taxa. As a result, no analysis of abundance or absence of taxa can be conducted from these metagenomes and the results are discussed taking this bias into account. However, they do provide an overview of the microbial diversity effectively present. If we compare the phylogenetic diversity of the MAGs found in the four hot springs, we can observe that 3 shared phyla (Deinococcota, Aquificota and Chloroflexota: phyla names according to GTDB), 2 shared families (Thermaceae and Aquificaceae), and one shared genus (Hydrogenivirga) were found among the four sources (Fig. 2). In addition, hot springs RB10, RB13 and RB32, that are geographically close ( More

  • in

    Economic and biophysical limits to seaweed farming for climate change mitigation

    Monte Carlo analysisSeaweed production costs and net costs of climate benefits were estimated on the basis of outputs of the biophysical and technoeconomic models described below. The associated uncertainties and sensitivities were quantified by repeatedly sampling from uniform distributions of plausible values for each cost and economic parameter (n = 5,000 for each nutrient scenario from the biophysical model, for a total of n = 10,000 simulations; see Supplementary Figs. 14 and 15)47,48,49,50,51,52. Parameter importance across Monte Carlo simulations (Fig. 3 and Supplementary Fig. 9) was determined using decision trees in LightGBM, a gradient-boosting machine learning framework.Biophysical modelG-MACMODS is a nutrient-constrained, biophysical macroalgal growth model with inputs of temperature, nitrogen, light, flow, wave conditions and amount of seeded biomass30,53, that we used to estimate annual seaweed yield per area (either in tons of carbon or tons of dry weight biomass per km2 per year)33,34. In the model, seaweed takes up nitrogen from seawater, and that nitrogen is held in a stored pool before being converted to structural biomass via growth54. Seaweed biomass is then lost via mortality, which includes breakage from variable ocean wave intensity. The conversion from stored nitrogen to biomass is based on the minimum internal nitrogen requirements of macroalgae, and the conversion from biomass to units of carbon is based on an average carbon content of macroalgal dry weight (~30%)55. The model accounts for farming intensity (sub-grid-scale crowding) and employs a conditional harvest scheme, where harvest is optimized on the basis of growth rate and standing biomass33.The G-MACMODS model is parameterized for four types of macroalgae: temperate brown, temperate red, tropical brown and tropical red. These types employed biophysical parameters from genera that represent over 99.5% of present-day farmed macroalgae (Eucheuma, Gracilaria, Kappahycus, Sargassum, Porphyra, Saccharina, Laminaria, Macrocystis)39. Environmental inputs were derived from satellite-based and climatological model output mapped to 1/12-degree global resolution, which resolves continental shelf regions. Nutrient distributions were derived from a 1/10-degree resolution biogeochemical simulation led by the National Center for Atmospheric Research (NCAR) and run in the Community Earth System Model (CESM) framework35.Two nutrient scenarios were simulated with G-MACMODS and evaluated using the technoeconomic model analyses described below: the ‘ambient nutrient’ scenario where seaweed growth was computed using surface nutrient concentrations without depletion or competition, and ‘limited nutrient’ simulations where seaweed growth was limited by an estimation of the nutrient supply to surface waters (computed as the flux of deep-water nitrate through a 100 m depth horizon). For each Monte Carlo simulation in the economic analysis, the technoeconomic model randomly selects either the 5th, 25th, 50th, 75th or 95th percentile G-MACMODS seaweed yield map from a normal distribution to use as the yield map for that simulation. Figures and numbers reported in the main text are based on the ambient-nutrient scenario; results based on the limited-nutrient scenario are shown in Supplementary Figures.Technoeconomic modelAn interactive web tool of the technoeconomic model is available at https://carbonplan.org/research/seaweed-farming.We estimated the net cost of seaweed-related climate benefits by first estimating all costs and emissions related to seaweed farming, up to and including the point of harvest at the farm location, then estimating costs and emissions related to the transportation and processing of harvested seaweed, and finally estimating the market value of seaweed products and either carbon sequestered or GHG emissions avoided.Production costs and emissionsSpatially explicit costs of seaweed production ($ tDW−1) and production-related emissions (tCO2 tDW−1) were calculated on the basis of ranges of capital costs ($ km−2), operating costs (including labour, $ km−2), harvest costs ($ km−2) and transport emissions per distance travelled (tCO2 km−1) in the literature (Table 1, Supplementary Tables 1 and 2); annual seaweed biomass (tDW km−2, for the preferred seaweed type in each grid cell), line spacing and number of harvests (species-dependent) from the biophysical model; as well as datasets of distances to the nearest port (km), ocean depth (m) and significant wave height (m).Capital costs were calculated as:$$c_{cap} = c_{capbase} + left( {c_{capbase} times left( {k_d + k_w} right)} right) + c_{sl}$$
    (1)
    where ccap is the total annualized capital costs per km2, ccapbase is the annualized capital cost per km2 (for example, cost of buoys, anchors, boats, structural rope) before applying depth and wave impacts, kd and kw are the impacts of depth and waviness on capital cost, respectively, each expressed as a multiplier between 0 and 1 modelled using our Monte Carlo method and applied only to grid cells with depth >500 m and/or significant wave height >3 m, respectively, and csl is the total annual cost of seeded line calculated as:$$c_{sl} = c_{slbase} times p_{sline}$$
    (2)
    where cslbase is the cost per metre of seeded line, and psline is the total length of line per km2, based on the optimal seaweed type grown in each grid cell.Operating and maintenance costs were calculated as:$$c_{op} = c_{ins} + c_{lic} + c_{lab} + c_{opbase}$$
    (3)
    where cop is the total annualized operating and maintenance costs per km2, cins is the annual insurance cost per km2, clic is the annual cost of a seaweed aquaculture license per km2, clab is the annual cost of labour excluding harvest labour, and copbase is all other operating and maintenance costs.Harvest costs were calculated as:$$c_{harv} = c_{harvbase} times n_{harv}$$
    (4)
    where charv is the total annual costs associated with harvesting seaweed per km2, charvbase is the cost per harvest per km2 (including harvest labour but excluding harvest transport), and nharv is the total number of harvests per year.Costs associated with transporting equipment to the farming location were calculated as:$$c_{eqtrans} = c_{transbase} times m_{eq} times d_{port}$$
    (5)
    where ceqtrans is total annualized cost of transporting equipment, ctransbase is the cost to transport 1 ton of material 1 km on a barge, meq is the annualized equipment mass in tons and dport is the ocean distance to the nearest port in km.The total production cost of growing and harvesting seaweed was therefore calculated as:$$c_{prod} = frac{{left( {c_{cap}} right) + left( {c_{op}} right) + left( {c_{harv}} right) + (c_{eqtrans})}}{{s_{dw}}}$$
    (6)
    where cprod is total annual cost of seaweed production (growth + harvesting), ccap is as calculated in equation (1), cop is as calculated in equation (3), charv is as calculated in equation (4), ceqtrans is as calculated in equation (5) and sdw is the DW of seaweed harvested annually per km2.Emissions associated with transporting equipment to the farming location were calculated as:$$e_{eqtrans} = e_{transbase} times m_{eq} times d_{port}$$
    (7)
    where eeqtrans is the total annualized CO2 emissions in tons from transporting equipment, etransbase is the CO2 emissions from transporting 1 ton of material 1 km on a barge, meq is the annualized equipment mass in tons and dport is the ocean distance to the nearest port in km.Emissions from maintenance trips to/from the seaweed farm were calculated as:$$e_{mnt} = left( {left( {2 times d_{port}} right) times e_{mntbase} times left( {frac{{n_{mnt}}}{{a_{mnt}}}} right)} right) + (e_{mntbase} times d_{mnt})$$
    (8)
    where emnt is total annual CO2 emissions from farm maintenance, dport is the ocean distance to the nearest port in km, nmnt is the number of maintenance trips per km2 per year, amnt is the area tended to per trip, dmnt is the distance travelled around each km2 for maintenance and emntbase is the CO2 emissions from travelling 1 km on a typical fishing maintenance vessel (for example, a 14 m Marinnor vessel with 2 × 310 hp engines) at an average speed of 9 knots (16.67 km h−1), resulting in maintenance vessel fuel consumption of 0.88 l km−1 (refs. 28,56).Total emissions from growing and harvesting seaweed were therefore calculated as:$$e_{prod} = frac{{(e_{eqtrans}) + (e_{mnt})}}{{s_{dw}}}$$
    (9)
    where eprod is total annual emissions from seaweed production (growth + harvesting), eeqtrans is as calculated in equation (7), emnt is as calculated in equation (8) and sdw is the DW of seaweed harvested annually per km2.Market value and climate benefits of seaweedFurther transportation and processing costs, economic value and net emissions of either sinking seaweed in the deep ocean for carbon sequestration or converting seaweed into usable products (biofuel, animal feed, pulses, vegetables, fruits, oil crops and cereals) were calculated on the basis of ranges of transport costs ($ tDW−1 km−1), transport emissions (tCO2-eq t−1 km−1), conversion cost ($ tDW−1), conversion emissions (tCO2-eq tDW−1), market value of product ($ tDW−1) and the emissions avoided by product (tCO2-eq tDW−1) in the literature (Table 1). Market value was treated as globally homogeneous and does not vary by region. Emissions avoided by products were determined by comparing estimated emissions related to seaweed production to emissions from non-seaweed products that could potentially be replaced by seaweed (including non-CO2 greenhouse gas emissions from land use)24. Other parameters used are distance to nearest port (km), water depth (m), spatially explicit sequestration fraction (%)57 and distance to optimal sinking location (km; cost-optimized for maximum emissions benefit considering transport emissions combined with spatially explicit sequestration fraction; see ‘Distance to sinking point calculation’ below). Each Monte Carlo simulation calculated the cost of both CDR via sinking seaweed and GHG emissions mitigation via seaweed products.For seaweed CDR, after the seaweed is harvested, it can either be sunk in the same location that it was grown, or be transported to a more economically favourable sinking location where more of the seaweed carbon would remain sequestered for 100 yr (see ‘Distance to optimal sinking point’ below). Immediately post-harvest, the seaweed still contains a large amount of water, requiring a conversion from dry mass to wet mass for subsequent calculations33:$$s_{ww} = frac{{s_{dw}}}{{0.1}}$$
    (10)
    where sww is the annual wet weight of seaweed harvested per km2 and sdw is the annual DW of seaweed harvested per km2.The cost to transport harvested seaweed to the optimal sinking location was calculated as:$$c_{swtsink} = c_{transbase} times d_{sink} times s_{ww}$$
    (11)
    where cswtsink is the total annual cost to transport harvested seaweed to the optimal sinking location, ctransbase is the cost to transport 1 ton of material 1 km on a barge, dsink is the distance in km to the economically optimized sinking location and sww is the annually harvested seaweed wet weight in t km−2 as in equation (10).The costs associated with transporting replacement equipment (for example, lines, buoys,anchors) to the farming location and hauling back used equipment at the end of its assumed lifetime (1 yr for seeded line, 5–20 yr for capital equipment by equipment type) in the sinking CDR pathway were calculated as:$$c_{eqtsink} = left( {c_{transbase} times left( {2 times d_{sink}} right) times m_{eq}} right) + (c_{transbase} times d_{port} times m_{eq})$$
    (12)
    where ceqtsink is the total annualized cost to transport both used and replacement equipment, ctransbase is the cost to transport 1 ton of material 1 km on a barge, meq is the annualized equipment mass in tons, dsink is the distance in km to the economically optimized sinking location and dport is the ocean distance to the nearest port in km. We assumed that the harvesting barge travels from the farming location directly to the optimal sinking location with harvested seaweed and replaced (used) equipment in tow (including used seeded line and annualized mass of used capital equipment), sinks the harvested seaweed, returns to the farm location and then returns to the nearest port (see Supplementary Fig. 16). These calculations assumed the shortest sea-route distance (see Distance to optimal sinking point).The total value of seaweed that is sunk for CDR was therefore calculated as:$$v_{sink} = frac{{left( {v_{cprice} – left( {c_{swtsink} + c_{eqtsink}} right)} right)}}{{s_{dw}}}$$
    (13)
    where vsink is the total value (cost, if negative) of seaweed farmed for CDR in $ tDW−1, vcprice is a theoretical carbon price, cswtsink is as calculated in equation (11), ceqtsink is as calculated in equation (12) and sdw is the annually harvested seaweed DW in t km−2. We did not assume any carbon price in our Monte Carlo simulations (vcprice is equal to zero), making vsink negative and thus representing a net cost.To calculate net carbon impacts, our model included uncertainty in the efficiency of using the growth and subsequent deep-sea deposition of seaweed as a CDR method. The uncertainty is expected to include the effects of reduced phytoplankton growth from nutrient competition, the relationship between air–sea gas exchange and overturning circulation (hereafter collectively referred to as the ‘atmospheric removal fraction’) and the fraction of deposited seaweed carbon that remains sequestered for at least 100 yr. The total amount of atmospheric CO2 removed by sinking seaweed was calculated as:$$e_{seqsink} = k_{atm} times k_{fseq} times frac{{tC}}{{tDW}} times frac{{tCO_2}}{{tC}}$$
    (14)
    where eseqsink is net atmospheric CO2 sequestered annually in t km−2, katm is the atmospheric removal fraction and kfseq is the spatially explicit fraction of sunk seaweed carbon that remains sequestered for at least 100 yr (see ref. 57).The emissions from transporting harvested seaweed to the optimal sinking location were calculated as:$$e_{swtsink} = e_{transbase} times d_{sink} times s_{ww}$$
    (15)
    where eswtsink is the total annual CO2 emissions from transporting harvested seaweed to the optimal sinking location in tCO2 km−2, etransbase is the CO2 emissions (tons) from transporting 1 ton of material 1 km on a barge (tCO2 per t-km), dsink is the distance in km to the economically optimized sinking location and sww is the annually harvested seaweed wet weight in t km−2 as in equation (10). Since the unit for etransbase is tCO2 per t-km, the emissions from transporting seaweed to the optimal sinking location are equal to (e_{mathrm{transbase}} times d_{mathrm{sink}} times s_{mathrm{ww}}), and the emissions from transporting seaweed from the optimal sinking location back to the farm are equal to 0 (since the seaweed has already been deposited, the seaweed mass to transport is now 0). Note that this does not yet include transport emissions from transport of equipment post-seaweed-deposition (see equation 16 below and Supplementary Fig. 16).The emissions associated with transporting replacement equipment (for example, lines, buoys, anchors) to the farming location and hauling back used equipment at the end of its assumed lifetime (1 yr for seeded line, 5–20 yr for capital equipment by equipment type)28,41 in the sinking CDR pathway were calculated as:$$e_{eqtsink} = left( {e_{transbase} times left( {2 times d_{sink}} right) times m_{eq}} right) + (e_{transbase} times d_{port} times m_{eq})$$
    (16)
    where eeqtsink is the total annualized CO2 emissions in tons from transporting both used and replacement equipment, etransbase is the CO2 emissions from transporting 1 ton of material 1 km on a barge, meq is the annualized equipment mass in tons, dsink is the distance in km to the economically optimized sinking location and dport is the ocean distance to the nearest port in km. We assumed that the harvesting barge travels from the farming location directly to the optimal sinking location with harvested seaweed and replaced (used) equipment in tow (including used seeded line and annualized mass of used capital equipment), sinks the harvested seaweed, returns to the farm location and then returns to the nearest port. These calculations assumed the shortest sea-route distance (see Distance to optimal sinking point).Net CO2 emissions removed from the atmosphere by sinking seaweed were thus calculated as:$$e_{remsink} = frac{{left( {e_{seqsink} – left( {e_{swtsink} + e_{eqtsink}} right)} right)}}{{s_{dw}}}$$
    (17)
    where eremsink is the net atmospheric CO2 removed per ton of seaweed DW, eseqsink is as calculated in equation (14), eswtsink is as calculated in equation (15), eeqtsink is as calculated in equation (16) and sdw is the annually harvested seaweed DW in t km−2.Net cost of climate benefitsSinkingTo calculate the total net cost and emissions from the production, harvesting and transport of seaweed for CDR, we combined the cost and emissions from the sinking-pathway cost and value modules. The total net cost of seaweed CDR per DW ton of seaweed was calculated as:$$c_{sinknet} = c_{prod} – v_{sink}$$
    (18)
    where csinknet is the total net cost of seaweed for CDR per DW ton harvested, cprod is the net production cost per DW ton as calculated in equation (6) and vsink is the net value (or cost, if negative) per ton seaweed DW as calculated in equation (13).The total net CO2 emissions removed per DW ton of seaweed were calculated as:$$e_{sinknet} = e_{remsink} – e_{prod}$$
    (19)
    where esinknet is the total net atmospheric CO2 removed per DW ton of seaweed harvested annually (tCO2 tDW−1 yr−1), eremsink is the net atmospheric CO2 removed via seaweed sinking annually as calculated in equation (17) and eprod is the net CO2 emitted from production and harvesting of seaweed annually as calculated in equation (9). For each Monte Carlo simulation, locations where esinknet is negative (that is, net emissions rather than net removal) were not included in subsequent calculations since they would not be contributing to CDR in that location under the given scenario. Note that these net emissions cases only occur in areas far from port in specific high-emissions scenarios. Even in such cases, most areas still contribute to CO2 removal (negative emissions), hence costs from locations with net removal were included.Total net cost was then divided by total net emissions to get a final value for cost per ton of atmospheric CO2 removed:$$c_{pertonsink} = frac{{c_{sinknet}}}{{e_{sinknet}}}$$
    (20)
    where cpertonsink is the total net cost per ton of atmospheric CO2 removed via seaweed sinking ($ per tCO2 removed), csinknet is total net cost per ton seaweed DW harvested as calculated in equation (18) ($ tDW−1) and esinknet is the total net atmospheric CO2 removed per ton seaweed DW harvested as calculated in equation (19) (tCO2 tDW−1).GHG emissions mitigationInstead of sinking seaweed for CDR, seaweed can be used to make products (including but not limited to food, animal feed and biofuels). Replacing convention products with seaweed-based products can result in ‘avoided emissions’ if the emissions from growing, harvesting, transporting and converting seaweed into products are less than the total greenhouse gas emissions (including non-CO2 GHGs) embodied in conventional products that seaweed-based products replace.When seaweed is used to make products, we assumed it is transported back to the nearest port immediately after being harvested. The annualized cost to transport the harvested seaweed and replacement equipment (for example, lines, buoys, anchors) was calculated as:$$c_{transprod} = frac{{left( {c_{transbase} times d_{port} times left( {s_{ww} + m_{eq}} right)} right)}}{{s_{dw}}}$$
    (21)
    where ctransprod is the annualized cost per ton seaweed DW to transport seaweed and equipment back to port from the farm location, ctransbase is the cost to transport 1 ton of material 1 km on a barge, meq is the annualized equipment mass in tons, dport is the ocean distance to the nearest port in km, sww is the annual wet weight of seaweed harvested per km2 as calculated in equation (10) and sdw is the annual DW of seaweed harvested per km2.The total value of seaweed that is used for seaweed-based products was calculated as:$$v_{product} = v_{mkt} – left( {c_{transprod} + c_{conv}} right)$$
    (22)
    where vproduct is the total value (cost, if negative) of seaweed used for products ($ tDW−1), vmkt is how much each ton of seaweed would sell for, given the current market price of conventional products that seaweed-based products replace ($ tDW−1), ctransprod is as calculated in equation (21) and cconv is the cost to convert each ton of seaweed to a usable product ($ tDW−1).The annualized CO2 emissions from transporting harvested seaweed and equipment back to port were calculated as:$$e_{transprod} = frac{{left( {e_{transbase} times d_{port} times left( {s_{ww} + m_{eq}} right)} right)}}{{s_{dw}}}$$
    (23)
    where etransprod is the annualized CO2 emissions per ton seaweed DW to transport seaweed and equipment back to port from the farm location, etransbase is the CO2 emissions from transporting 1 ton of material 1 km on a barge, meq is the annualized equipment mass in tons, dport is the ocean distance to the nearest port in km, sww is the annual wet weight of seaweed harvested per km2 as calculated in equation (10) and sdw is the annual DW of seaweed harvested per km2.Total emissions avoided by each ton of harvested seaweed DW were calculated as:$$e_{avprod} = e_{subprod} – left( {e_{transprod} + e_{conv}} right)$$
    (24)
    where eavprod is total CO2-eq emissions avoided per ton of seaweed DW per year (including non-CO2 GHGs using a GWP time period of 100 yr), esubprod is the annual CO2-eq emissions avoided per ton seaweed DW by replacing a conventional product with a seaweed-based product, etransprod is as calculated in equation (23) and econv is the annual CO2 emissions per ton seaweed DW from converting seaweed into usable products. esubprod was calculated by converting seaweed DW to caloric content58 for food/feed and comparing emissions intensity per kcal to agricultural products24, or by converting seaweed DW into equivalent biofuel content with a yield of 0.25 tons biofuel per ton DW59 and dividing the CO2 emissions per ton fossil fuel by the seaweed biofuel yield.To calculate the total net cost and emissions from the production, harvesting, transport and conversion of seaweed for products, we combined the cost and emissions from the product-pathway cost and value modules. The total net cost of seaweed for products per ton DW was calculated as:$$c_{prodnet} = c_{prod} – v_{product}$$
    (25)
    where cprodnet is the total net cost per ton DW of seaweed harvested for use in products, cprod is the net production cost per ton DW as calculated in equation (6) and vproduct is the net value (or cost, if negative) per ton DW as calculated in equation (22).The total net CO2-eq emissions avoided per ton DW of seaweed used in products were calculated as:$$e_{prodnet} = e_{avprod} – e_{prod}$$
    (26)
    where eprodnet is the total net CO2-eq emissions avoided per ton DW of seaweed harvested annually (tCO2 tDW−1 yr−1), eavprod is the net CO2-eq emissions avoided by seaweed products annually as calculated in equation (24) and eprod is the net CO2 emitted from production and harvesting of seaweed annually as calculated in equation (9). For each Monte Carlo simulation, locations where eprodnet is negative (that is, net emissions rather than net emissions avoided) were not included in subsequent calculations since they would not be avoiding any emissions in that scenario.Total net cost was then divided by total net emissions avoided to get a final value for cost per ton of CO2-eq emissions avoided:$$c_{pertonprod} = frac{{c_{prodnet}}}{{e_{prodnet}}}$$
    (27)
    where cpertonprod is the total net cost per ton of CO2-eq emissions avoided by seaweed products ($ per tCO2-eq avoided), cprodnet is total net cost per ton seaweed DW harvested for products as calculated in equation (25) ($ tDW−1) and eprodnet is total net CO2-eq emissions avoided per ton seaweed DW harvested for products as calculated in equation (26) (tCO2 tDW−1).Parameter ranges for Monte Carlo simulationsFor technoeconomic parameters with two or more literature values (see Supplementary Table 1), we assumed that the maximum literature value reflected the 95th percentile and the minimum literature value represented the 5th percentile of potential costs or emissions. For parameters with only one literature value, we added ±50% to the literature value to represent greater uncertainty within the modelled parameter range. Values at each end of parameter ranges were then rounded before Monte Carlo simulations as follows: capital costs, operating costs and harvest costs to the nearest $10,000 km−2, labour costs and insurance costs to the nearest $1,000 km−2, line costs to the nearest $0.05 m−1, transport costs to the nearest $0.05 t−1 km−1, transport emissions to the nearest 0.000005 tCO2 t−1 km−1, maintenance transport emissions to the nearest 0.0005 tCO2 km−1, product-avoided emissions to the nearest 0.1 tCO2-eq tDW−1, conversion cost down to the nearest $10 tDW−1 on the low end of the range and up to the nearest $10 tDW−1 on the high end of the range, and conversion emissions to the nearest 0.01 tCO2 tDW−1.We extended the minimum range values of capital costs to $10,000 km−2 and transport emissions to 0 to reflect potential future innovations, such as autonomous floating farm setups that would lower capital costs and net-zero emissions boats that would result in 0 transport emissions. To calculate the minimum value of $10,000 km−2 for a potential autonomous floating farm, we assumed that the bulk of capital costs for such a system would be from structural lines and flotation devices, and we therefore used the annualized structural line (system rope) and buoy costs from ref. 41 rounded down to the nearest $5,000 km−2. The full ranges used for our Monte Carlo simulations and associated literature values are shown in Supplementary Table 1.Distance to optimal sinking pointDistance to the optimal sinking point was calculated using a weighted distance transform (path-finding algorithm, modified from code in ref. 60) that finds the shortest ocean distance from each seaweed growth pixel to the location at which the net CO2 removed is maximized (including impacts of both increased sequestration fraction and transport emissions for different potential sinking locations) and the net cost is minimized. This is not necessarily the location in which the seaweed was grown, since the fraction of sunk carbon that remains sequestered for 100 yr is spatially heterogeneous (see ref. 57). For each ocean grid cell, we determined the cost-optimal sinking point by iteratively calculating equations (11–20) and assigning dsink as the distance calculated by weighted distance transform to each potential sequestration fraction (0.01–1.00) in increments of 0.01. Except for transport emissions, the economic parameter values used for these calculations were the averages of unrounded literature value ranges; we assumed that the maximum literature value reflected the 95th percentile and the minimum literature value represented the 5th percentile of potential costs or emissions, or for parameters with only one literature value, we added ±50% to the literature value to represent greater uncertainty within the modelled parameter range. For transport and maintenance transport emissions, we extended the minimum values of the literature ranges to zero to reflect potential net-zero emissions transport options and used the mean values of the resulting ranges. The dsink that resulted in minimum net cost per ton CO2 for each ocean grid cell was saved as the final dsink map, and the associated sequestration fraction value that the seaweed is transported to via dsink was assigned to the original cell where the seaweed was farmed and harvested (Supplementary Fig. 19). If the cost-optimal location to sink using this method was the same cell where the seaweed was harvested, then dsink was 0 km and the sequestration fraction was not modified from its original value (Supplementary Fig. 18).Comparison of gigaton-scale sequestration area to previous estimatesPrevious related work estimating the ocean area suitable for macroalgae cultivation13 and/or the area that might be required to reach gigaton-scale carbon removal via macroalgae cultivation13,19,36 has yielded a wide range of results, primarily due to differences in modelling methods. For example, Gao et al. (2022)36 estimate that 1.15 million km2 would be required to sequester 1 GtCO2 annually when considering carbon lost from seaweed biomass/sequestered as particulate organic carbon (POC) and refractory dissolved organic carbon (rDOC), and assume that the harvested seaweed is sold as food such that the carbon in the harvested seaweed is not sequestered. The area (0.31 million km2) required to sequester 1 GtCO2 in our study assumes that all harvested seaweed is sunk to the deep ocean to sequester carbon.Additionally, Wu et al.19 estimates that roughly 12 GtCO2 could be sequestered annually via macroalgae cultivation in approximately 20% of the world ocean area (that is, 1.67% ocean area per GtCO2), which is a much larger area per GtCO2 than our estimate of 0.085% ocean area. This notable difference arises for several reasons (including differences in yields, which in Wu et al. are around 500 tDW yr−1 in the highest-yield areas, whereas yields in our cheapest sequestration areas from G-MACMODS average 3,400 tDW km−2 yr−1) that arise from differences in model methodology. First, Wu et al. model temperate brown seaweeds, while our study considers different seaweed types, many of which have higher growth rates, and uses the most productive seaweed type for each ocean grid cell. The G-MACMODS seaweed growth model we use also has a highly optimized harvest schedule, includes luxury nutrient uptake (a key feature of macroalgal nutrient physiology) and does not directly model competition with phytoplankton during seaweed growth. Finally, tropical red seaweeds (the seaweed type in our cheapest sequestration areas) grow year-round, while others, such as the temperate brown seaweeds modelled by Wu et al., only grow seasonally. These differences all contribute to higher productivity in our model, leading to a smaller area required for gigaton-scale CO2 sequestration compared with Wu et al.Conversely, the ocean areas we model for seaweed-based CO2 sequestration or GHG emissions avoided are much larger than the 48 million km2 that Froehlich et al.13 estimate to be suitable for macroalgae farming globally. Although our maps show productivity and costs everywhere, the purpose of our modelling was to evaluate where different types of seaweed grow best and how production costs and product values vary over space, to highlight the lowest-cost areas (which are often the highest-producing areas) under various technoeconomic assumptions.Comparison of seaweed production costs to previous estimatesAlthough there are not many estimates of seaweed production costs in the scientific literature, our estimates for the lowest-cost 1% area of the ocean ($190–$2,790 tDW−1) are broadly consistent with previously published results: seaweed production costs reported in the literature range from $120 to $1,710 tDW−1 (refs. 40,41,61,62), but are highly dependent on assumed seaweed yields. For example, Camus et al.41 calculate a cost of $870 tDW−1 assuming a minimum yield of 12.4 kgDW m−1 of cultivation line (equivalent to 8.3 kgDW m−2 using 1.5 m spacing between lines). Using the economic values from Camus et al. but with our estimates of average yield for the cheapest 1% production cost areas (2.6 kgDW m−2) gives a much higher average cost of $2,730 tDW−1. Contrarily, van den Burg et al.40 calculate a cost of $1,710 tDW−1 using a yield of 20 tDW ha−1 (that is, 2.0 kg m−2). Instead assuming the average yield to be that from our lowest-cost areas (that is, 2.6 kgDW m−2 or 26 tDW ha−1) would decrease the cost estimated by van den Burg et al. (2016) to $1,290 tDW−1. Most recently, Capron et al.62 calculate an optimistic scenario cost of $120 tDW−1 on the basis of an estimated yield of 120 tDW ha−1 (12 kg m−2; over 4.5 times higher than the average yield in our lowest-cost areas). Again, instead assuming the average yield to be that in our lowest-cost areas would raise Capron et al.’s production cost to $540 tDW−1 (between the $190–$880 tDW−1 minimum to median production costs in the cheapest 1% areas from our model; Fig. 1a,b).Data sourcesSeaweed biomass harvestedWe used spatially explicit data for seaweed harvested globally under both ambient and limited-nutrient scenarios from the G-MACMODS seaweed growth model33.Fraction of deposited carbon sequestered for 100 yrWe used data from ref. 57 interpolated to our 1/12-degree grid resolution.Distance to the nearest portWe used the Distance from Port V1 dataset from Global Fishing Watch (https://globalfishingwatch.org/data-download/datasets/public-distance-from-port-v1) interpolated to our 1/12-degree grid resolution.Significant wave heightWe used data for annually averaged significant wave height from the European Center for Medium-range Weather Forecasts (ECMWF) interpolated to our 1/12-degree grid resolution.Ocean depthWe used data from the General Bathymetric Chart of the Oceans (GEBCO).Shipping lanesWe used data of Automatic Identification System (AIS) signal count per ocean grid cell, interpolated to our 1/12-degree grid resolution. We defined a major shipping lane grid cell as any cell with >2.25 × 108 AIS signals, a threshold that encompasses most major trans-Pacific and trans-Atlantic shipping lanes as well as major shipping lanes in the Indian Ocean, the North Sea, and coastal routes worldwide.Marine protected areas (MPAs)We used data from the World Database on Protected Areas (WDPA) and defined an MPA as any ocean MPA >20 km2.Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article. More

  • in

    Maize and ancient Maya droughts

    Evans, N. P. et al. Quantification of drought during the collapse of the classic Maya civilization. Science 361, 498–501 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Gill, R. B. The Great Maya Droughts: Water, Life, and Death (University of New Mexico Press, 2001).
    Google Scholar 
    Coe, M. D. The Maya (Thames and Hudson, 1993).
    Google Scholar 
    Douglas, P. M. J. et al. Drought, agricultural adaptation, and sociopolitical collapse in the Maya Lowlands. Proc. Natl. Acad. Sci. USA 112, 5607–5612 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Haug, G. H. et al. Climate and the collapse of Maya civilization. Science 299, 1731–1735 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Ford, A. & Nigh, R. Origins of the Maya forest garden: Maya resource management. J. Ethnobiol. 29, 213–236 (2009).Article 

    Google Scholar 
    Anderson, E. N. et al. Las Plantas de los Mayas: Etnobotánica en Quintana Roo, México (CONABIO-ECOSUR, 2005).
    Google Scholar 
    Fedick, S. L. Maya cornucopia: Indigenous food plants of the Maya lowlands. in The Real Business of Ancient Maya Economies (eds. Masson, M. A., Freidel, D. A. & Demarest, A. A.). 224–237 (University Press Florida, 2020).Ford, A. & Clarke, K. C. Linking the past and present of the ancient Maya: Lowland land use, population distribution, and density in the Late Classic period. in The Oxford Handbook of Historical Ecology and Applied Archaeology (eds. Isendahl, C. & Stump, D.) (Oxford Handbook of Historical Ecology and Applied Archaeology, 2015).Ford, A. & Nigh, R. The Maya Forest Garden: Eight Millennia of Sustainable Cultivation of the Tropical Woodlands (Routledge, 2016).Gómez-Pompa, A. On maya silviculture. Mexican Stud. (Estudios Mexicanos) 3, 1–17 (1987).Article 

    Google Scholar 
    Beach, T., Luzzadder-Beach, S., Krause, S. & Walling, S. ‘Mayacene’ floodplain and wetland formation in the Rio Bravo watershed of northwestern Belize. Holocene 25(10), 1612–1622 (2015).Pohl, M. D. et al. Early agriculture in the Maya lowlands. Lat. Am. Antiq. 7, 355–372 (1996).Article 

    Google Scholar 
    Fedick, S. L. The Managed Mosaic: Ancient Maya Agriculture and Resource Use (University of Utah Press, 1996).
    Google Scholar 
    Mueller, A. D. et al. Recovery of the forest ecosystem in the tropical lowlands of northern Guatemala after disintegration of Classic Maya polities. Geology 38, 523–526 (2010).Article 
    ADS 

    Google Scholar 
    Hodell, D. A., Curtis, J. H. & Brenner, M. Possible role of climate in the collapse of Classic Maya civilization. Nature 375, 391–394 (1995).Article 
    ADS 
    CAS 

    Google Scholar 
    Islebe, G. A., Hooghiemstra, H., Brenner, M., Curtis, J. H. & Hodell, D. A. A Holocene vegetation history from lowland Guatemala. Holocene 6, 265–271 (1996).Article 
    ADS 

    Google Scholar 
    Medina-Elizalde, M., Polanco-Martínez, J. M., Lases-Hernández, F., Bradley, R. & Burns, S. Testing the ‘tropical storm’ hypothesis of Yucatan Peninsula climate variability during the Maya Terminal Classic Period. Quat. Res. 86, 111–119 (2016).Aragón-Moreno, A. A., Islebe, G. A., Torrescano-Valle, N. & Arellano-Verdejo, J. Middle and late Holocene mangrove dynamics of the Yucatan Peninsula, Mexico. J. South Am. Earth Sci. 85, 307–311 (2018).Article 
    ADS 

    Google Scholar 
    Aragón-Moreno, A. A., Islebe, G. A., Roy, P. D., Torrescano-Valle, N. & Mueller, A. D. Climate forcings on vegetation of the southeastern Yucatán Peninsula (Mexico) during the middle to late Holocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 495, 214–226 (2018).Article 

    Google Scholar 
    Kennett, D. J. et al. Development and disintegration of Maya political systems in response to climate change. Science 338, 788–791 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Conde, C. et al. El Niño y la agricultura. in Los impactos de El Niño en México (ed. Magaña, V.). 103–135 (Dirección General de Protección Civil, Secretaría de Gobernación, México, 1999).Magaña, V. O., Vázquez, J. L., Pérez, J. L. & Pérez, J. B. Impact of El Niño on precipitation in Mexico. Geofísica Int. 42, 313–330 (2003).
    Google Scholar 
    Wahl, D., Byrne, R. & Anderson, L. An 8700 year paleoclimate reconstruction from the southern Maya lowlands. Quat. Sci. Rev. 103, 19–25 (2014).Article 
    ADS 

    Google Scholar 
    Nooren, K. et al. Climate impact on the development of Pre-Classic Maya civilisation. Clim. Past 14, 1253–1273 (2018).Article 

    Google Scholar 
    Palomo-Kumul, J., Valdez-Hernández, M., Islebe, G. A., Cach-Pérez, M. J. & El Andrade, J. L. Niño-Southern oscillation affects the water relations of tree species in the Yucatan Peninsula. Mexico. Sci. Rep. 11, 10451 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Rosenswig, R. M., VanDerwarker, A. M., Culleton, B. J. & Kennett, D. J. Is it agriculture yet? Intensified maize-use at 1000 cal BC in the Soconusco and Mesoamerica. J. Anthropol. Archaeol. 40, 89–108 (2015).Article 

    Google Scholar 
    Mueller, A. D. et al. Climate drying and associated forest decline in the lowlands of northern Guatemala during the late Holocene. Quat. Res. 71, 133–141 (2009).Article 

    Google Scholar 
    Aragón-Moreno, A. A., Islebe, G. A. & Torrescano-Valle, N. A ~3800-yr, high-resolution record of vegetation and climate change on the north coast of the Yucatan Peninsula. Rev. Palaeobot. Palynol. 178, 35–42 (2012).Article 

    Google Scholar 
    Carrillo-Bastos, A., Islebe, G. A. & Torrescano-Valle, N. 3800 Years of quantitative precipitation reconstruction from the Northwest Yucatan Peninsula. PLoS ONE 8, e84333 (2013).Article 
    ADS 

    Google Scholar 
    Berglund, B. E. Human impact and climate changes—Synchronous events and a causal link?. Quat. Int. 105, 7–12 (2003).Article 

    Google Scholar 
    Vela-Peláez, A. A., Torrescano-Valle, N., Islebe, G. A., Mas, J. F. & Weissenberger, H. Holocene precipitation changes in the Maya forest, Yucatán peninsula. Mexico. Palaeogeogr. Palaeoclimatol. Palaeoecol. 505, 42–52 (2018).Article 
    ADS 

    Google Scholar 
    Torrescano-Valle, N. & Islebe, G. A. Holocene paleoecology, climate history and human influence in the southwestern Yucatán Peninsula. Rev. Palaeobot. Palynol. 217, 1–8 (2015).Article 

    Google Scholar 
    Anselmetti, F. S., Hodell, D. A., Ariztegui, D., Brenner, M. & Rosenmeier, M. F. Quantification of soil erosion rates related to ancient Maya deforestation. Geology 35, 915–918 (2007).Article 
    ADS 

    Google Scholar 
    Beach, T. et al. A review of human and natural changes in Maya Lowland wetlands over the Holocene. Quat. Sci. Rev. 28, 1710–1724 (2009).Article 
    ADS 

    Google Scholar 
    Kerr, M. T. Holocene Precipitation Variability, Prehistoric Agriculture, and Natural and Human-Set Fires in Costa Rica (University of Tennessee, 2019).
    Google Scholar 
    Ebert, C. E., Peniche May, N., Culleton, B. J., Awe, J. J. & Kennett, D. J. Regional response to drought during the formation and decline of Preclassic Maya societies. Quat. Sci. Rev. 173, 211–235 (2017).Article 
    ADS 

    Google Scholar 
    De la Barreda, B., Metcalfe, S. E. & Boyd, D. S. Precipitation regionalization, anomalies and drought occurrence in the Yucatan Peninsula, Mexico. Int. J. Climatol. 40, 4541–4555 (2020).Article 

    Google Scholar 
    Islebe, G. A. et al. Holocene Paleoecology and Paleoclimatology of south and south-eastern Mexico: A palynological approach. in Mexico´s Environmental Holocene and Anthropocene History (eds. Torrescano-Valle, N., Islebe, G. A. & Roy, P.) (Springer, 2019).Tuxill, J., Reyes, L. A., Moreno, L. L., Uicab, V. C. & Jarvis, D. I. All maize is not equal: Maize variety choices and Mayan foodways in rural Yucatan, Mexico. in Pre-Columbian Foodways: Interdisciplinary Approaches to Food, Culture, and Markets in Ancient Mesoamerica (eds. Staller, J. & Carrasco, M.) 467–486 (Springer, 2010).Torrescano-Valle, N., Ramírez-Barajas, P. J., Islebe, G. A., Vela-Pelaez, A. A. & Folan, W. J. Human influence versus natural climate variability. in The Holocene and Anthropocene Environmental History of Mexico: A Paleoecological Approach on Mesoamerica (eds. Torrescano-Valle, N., Islebe, G. A. & Roy, P. D.). 171–194 (Springer, 2019).Faegri, K. & Iversen, J. Textbook of Pollen Analysis (Wiley, 1989).
    Google Scholar 
    Ford, A. The Maya forest: A domesticated landscape. in The Maya World (eds. Hutson, S. R. & Ardren, T.). 519–539 (Routledge, 2020).Fedick, S. L. & Santiago, L. S. Large variation in availability of Maya food plant sources during ancient droughts. Proc. Natl. Acad. Sci. USA 119, 2115657118 (2022).Article 

    Google Scholar 
    Puleston, D. E. The role of ramón in Maya subsistence. in Maya Subsistence. 353–366 (Elsevier, 1982).Atran, S. et al. Itza Maya tropical agro-forestry [and comments and replies]. Curr. Anthropol. 34, 633–700 (1993).Article 

    Google Scholar 
    Dussol, L., Elliott, M., Michelet, D. & Nondédéo, P. Ancient Maya sylviculture of breadnut (Brosimum alicastrum Sw.) and sapodilla (Manilkara zapota (L.) P. Royen) at Naachtun (Guatemala): A reconstruction based on charcoal analysis. Quat. Int. 457, 29–42 (2017).Ebel, R., de Jesús Méndez Aguilar, M. & Putnam, H. R. Milpa: One sister got climate-sick. The impact of climate change on traditional Maya farming systems. Int. J. Sociol. Agric. Food (Online) 24, 175–199 (2018).
    Google Scholar 
    Hernández-González, O. & Vergara-Yoisura, S. Studies on the productivity of Brosimum alicastrum a tropical tree used for animal feed in the Yucatan Peninsula. Bothalia 22, 7 (2014).
    Google Scholar 
    Martínez-Ruiz, N. del R. & Larqué-Saavedra, A. Semilla de Ramón. in Alimentos Vegetales Autóctonos Iberoamericanos Subutilizados (eds. Sonia, S.-A. & Álvarez-Parrilla, E.). 177–192 (Fabro Editores, 2018).Hatfield, J. L. & Dold, C. Water-use efficiency: Advances and challenges in a changing climate. Front. Plant Sci. 10, 103 (2019).Article 

    Google Scholar 
    Basso, B. & Ritchie, J. T. Evapotranspiration in high-yielding maize and under increased vapor pressure deficit in the US Midwest. Agric. Environ. Lett. 3, 170039 (2018).Article 

    Google Scholar 
    Gregory, P. J., Simmonds, L. P. & Pilbeam, C. J. Soil type, climatic regime, and the response of water use efficiency to crop management. Agron. J. 92, 814–820 (2000).Article 

    Google Scholar 
    Moy, C. M., Seltzer, G. O., Rodbell, D. T. & Anderson, D. M. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162–165 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research. R package at https://CRAN.R-project.org/package=psych (2022).Wickham, H. & Bryan, J. readxl: Read Excel Files. R package at https://readxl.tidyverse.org/ (2022).Wei, T. et al. Package ‘corrplot’. Statistician 56, e24 (2017).
    Google Scholar 
    QGIS Development Team. QGIS Geographic Information System. QGIS Association at https://www.qgis.org (2022)Instituto Nacional de Estadistica Geographia e Informatica (INEGI). 1:1000000 Merida, Carta de Precipitacion. Merida, Yucatán, Mexico (1981). More

  • in

    Commerson’s dolphin population structure: evidence for female phylopatry and male dispersal

    Waples, R. S. & Gaggiotti, O. INVITED REVIEW: What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol. Ecol. 15, 1419–1439 (2006).Article 
    CAS 

    Google Scholar 
    Mendez, M., Rosenbaum, H. C., Subramaniam, A., Yackulic, C. & Bordino, P. Isolation by environmental distance in mobile marine species: Molecular ecology of franciscana dolphins at their southern range. Mol. Ecol. 19, 2212–2228 (2010).Article 
    CAS 

    Google Scholar 
    De Meeûs, T. et al. Population genetics and molecular epidemiology or how to “débusquer la bête”. Infect. Genet. Evol. 7, 308–332 (2007).Article 

    Google Scholar 
    Durigan, M. et al. Population genetic analysis of Giardia duodenalis: Genetic diversity and haplotype sharing between clinical and environmental sources. MicrobiologyOpen 6, e00424 (2017).Article 

    Google Scholar 
    Amaral, A. R. et al. Seascape genetics of a globally distributed, highly mobile marine mammal: The short-beaked common dolphin (genus Delphinus). PLoS ONE 7, e31482 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Mendez, M. et al. Molecular ecology meets remote sensing: Environmental drivers to population structure of humpback dolphins in the Western Indian Ocean. Heredity 107, 349–361 (2011).Article 
    CAS 

    Google Scholar 
    de los Angeles Bayas-Rea, R., Félix, F. & Montufar, R. Genetic divergence and fine scale population structure of the common bottlenose dolphin (Tursiops truncatus, Montagu) found in the Gulf of Guayaquil. Ecuador. PeerJ 6, e4589 (2018).Article 

    Google Scholar 
    Natoli, A., Peddemors, V. M. & Rus Hoelzel, A. Population structure and speciation in the genus Tursiops based on microsatellite and mitochondrial DNA analyses. J. Evol. Biol. 17, 363–375 (2004).Article 
    CAS 

    Google Scholar 
    Oliveira, L. R., Loizaga De Castro, R., Cárdenas-Alayza, S. & Bonatto, S. L. Conservation genetics of South American aquatic mammals: An overview of gene diversity, population structure, phylogeography, non-invasive methods and forensics. Mammal Rev. 42, 275–303 (2012).Article 

    Google Scholar 
    Vollmer, N. L. & Rosel, P. E. Fine-scale population structure of common bottlenose dolphins (Tursiops truncatus) in offshore and coastal waters of the US Gulf of Mexico. Mar. Biol. 164, 1–15 (2017).Article 

    Google Scholar 
    MacLeod, C. D. Global climate change, range changes and potential implications for the conservation of marine cetaceans: A review and synthesis. Endanger. Species Res. 7, 125–136 (2009).Article 

    Google Scholar 
    Hartl, D. L., Clark, A. G. & Clark, A. G. Principles of Population Genetics, Vol. 116 (Sinauer associates Sunderland, 1997).Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Reeves, R. R., Smith, B. D., Crespo, E. A. & Notarbartolo di Sciara, G. Dolphins, whales and porpoises: 2002–2010 conservation action plan for the world’s cetaceans, Vol. 58 (IUCN, 2003).Crespo, E. A. & Hall, M. A. In Marine Mammals, 463–490 (Springer, 2002).Crespo, E. A. et al. Direct and indirect effects of highseas fisheries on the marine mammal populations in the northern and central Patagonian coast. J. Northwest Atl. Fish. Sci. 22, 189–207 (1997).Article 

    Google Scholar 
    Harlin-Cognato, A. D., Markowitz, T., Würsig, B. & Honeycutt, R. L. Multi-locus phylogeography of the dusky dolphin (Lagenorhynchus obscurus): Passive dispersal via the west-wind drift or response to prey species and climate change?. BMC Evol. Biol. 7, 1–17 (2007).Article 

    Google Scholar 
    Hoelzel, A. Evolution of population genetic structure in marine mammal species. In Population genetics for animal conservation, 294–318 (Cambridge University Press, Cambridge, 2009).Fraser, C. I., Nikula, R., Ruzzante, D. E. & Waters, J. M. Poleward bound: Biological impacts of Southern Hemisphere glaciation. Trends Ecol. Evol. 27, 462–471 (2012).Article 

    Google Scholar 
    Louis, M. et al. Influence of past climate change on phylogeography and demographic history of narwhals, Monodon monoceros. Proc. R. Soc. B 287, 20192964 (2020).Article 
    CAS 

    Google Scholar 
    Skovrind, M. et al. Circumpolar phylogeography and demographic history of beluga whales reflect past climatic fluctuations. Mol. Ecol. 30, 2543–2559 (2021).Article 

    Google Scholar 
    Foote, A. D. et al. Ancient DNA reveals that bowhead whale lineages survived Late Pleistocene climate change and habitat shifts. Nat. Commun. 4, 1–7 (2013).Article 

    Google Scholar 
    Crespo, E. A. et al. Status, population trend and genetic structure of South American fur seals, Arctocephalus australis, in southwestern Atlantic waters. Mar. Mamm. Sci. 31, 866–890 (2015).Article 

    Google Scholar 
    Feijoo, M., Lessa, E. P., De Castro, R. L. & Crespo, E. A. Mitochondrial and microsatellite assessment of population structure of South American sea lion (Otaria flavescens) in the Southwestern Atlantic Ocean. Mar. Biol. 158, 1857–1867 (2011).Article 

    Google Scholar 
    Túnez, J. I., Cappozzo, H. L., Nardelli, M. & Cassini, M. H. Population genetic structure and historical population dynamics of the South American sea lion, Otaria flavescens, in north-central Patagonia. Genetica 138, 831–841 (2010).Article 

    Google Scholar 
    Oliveira, L., Ott, P. H., Grazziotin, F. G., White, B. & Bonatto, S. In Paper (SC/S11/RW26) presented to the Southern Right Whale Assessment Workshop (Commission International Whaling).Loizaga de Castro, R., Dans, S. L. & Crespo, E. A. Spatial genetic structure of dusky dolphin, Lagenorhynchus obscurus, along the argentine coast: Preserve what scale?. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 173–183 (2016).Article 

    Google Scholar 
    Pimper, L. E., Goodall, R. N. P. & Remis, M. I. First mitochondrial DNA analysis of the spectacled porpoise (Phocoena dioptrica) from Tierra del Fuego, Argentina. Mamm. Biol. 77, 459–462 (2012).Article 

    Google Scholar 
    Pichler, F. B. et al. Origin and radiation of Southern Hemisphere coastal dolphins (genus Cephalorhynchus). Mol. Ecol. 10, 2215–2223 (2001).Article 
    CAS 

    Google Scholar 
    Dawson, S. M. In Encyclopedia of Marine Mammals, 166–172 (Elsevier, 2018).Robineau, D., Goodall, R. N. P., Pichler, F. & Baker, C. S. Description of a new subspecies of Commerson’s dolphin, Cephalorhynchus commersonii (Lacépède, 1804), inhabiting the coastal waters of the Kerguelen Islands. Mammalia 71, 172–180 (2007).Article 

    Google Scholar 
    Crespo, E. A. et al. Cephalorhynchus commersonii, Commerson’s Dolphin. IUCN; The IUCN Red List of Threatened Species; 10-2017; 1-14 (2017).Goodall, R. Commerson’s dolphin Cephalorhynchus commersonii (Lacépède 1804). Handb. Mar. Mamm. 5, 241–267 (1994).
    Google Scholar 
    Coscarella, M. A. Ecologıa, comportamiento y evaluación del impacto de embarcaciones sobre manadas de tonina overa Cephalorhynchus commersonii en Bahıa Engano, Chubut (Universidad de Buenos Aires, Buenos Aires, 2005).Dellabianca, N. A. et al. Spatial models of abundance and habitat preferences of commerson’s and peale’s dolphin in southern patagonian waters. PLoS ONE 11, e0163441 (2016).Article 

    Google Scholar 
    Goodall, R. et al. Studies of Commerson’s dolphins, Cephalorhynchus commersonii, off Tierra del Fuego, 1976–1984. Report of the International Whaling Commission (Special Issue 9), 143–160 (1988).White, R. The Distribution of Seabirds and Marine Mammals in Falkland Islands Waters (Joint Nature Conservation Committee, 2002).Loizaga de Castro, R., Dans, S. L., Coscarella, M. A. & Crespo, E. A. Living in an estuary: Commerson’s dolphin (Cephalorhynchus commersonii (Lacépède, 1804)), habitat use and behavioural pattern at the Santa Cruz River, Patagonia, Argentina. Latin Am. J. Aquat. Res. 41, 985–991 (2013).Article 

    Google Scholar 
    Pedraza, S. Ecología poblacional de la tonina overa, Cephalorhynchus commersonii, (Lacépède, 1804) en el litoral patagónico. Unpublished PhD thesis, Universidad de Buenos Aires, Buenos Aires, Argentina (2008).Garaffo, G. V. et al. Modeling habitat use for dusky dolphin and Commerson’s dolphin in Patagonia. Mar. Ecol. Prog. Ser. 421, 217–227 (2011).Article 
    ADS 

    Google Scholar 
    Cipriano, F., Hevia, M. & Iñíguez, M. Genetic divergence over small geographic scales and conservation implications for Commerson’s dolphins (Cephalorhynchus commersonii) in southern Argentina. Mar. Mamm. Sci. 27, 701–718 (2011).Article 
    CAS 

    Google Scholar 
    Pimper, L. E., Baker, C. S., Goodall, R. N. P., Olavarría, C. & Remis, M. I. Mitochondrial DNA variation and population structure of Commerson’s dolphins (Cephalorhynchus commersonii) in their southernmost distribution. Conserv. Genet. 11, 2157–2168 (2010).Article 

    Google Scholar 
    O’Brien, S. J. A role for molecular genetics in biological conservation. Proc. Natl. Acad. Sci. 91, 5748–5755 (1994).Article 
    ADS 
    CAS 

    Google Scholar 
    Loizaga de Castro, R., Hoelzel, A. & Crespo, E. Behavioural responses of Argentine coastal dusky dolphins (Lagenorhynchus obscurus) to a biopsy pole system. Anim. Welf. 22, 13–23 (2013).Article 
    CAS 

    Google Scholar 
    Elphinstone, M. S., Hinten, G. N., Anderson, M. J. & Nock, C. J. An inexpensive and high-throughput procedure to extract and purify total genomic DNA for population studies. Mol. Ecol. Notes 3, 317–320 (2003).Article 
    CAS 

    Google Scholar 
    Bérubé, M. & Palsbøll, P. Identification of sex in cetaceans by multiplexing with three ZFX and ZFY specific primers. Mol. Ecol. 5, 283–287 (1996).Article 

    Google Scholar 
    Hoelzel, A., Hancock, J. & Dover, G. Evolution of the cetacean mitochondrial D-loop region. Mol. Biol. Evol. 8, 475–493 (1991).CAS 

    Google Scholar 
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).Article 
    CAS 

    Google Scholar 
    Ruzzante, D. E. et al. Validation of close-kin mark–recapture (CKMR) methods for estimating population abundance. Methods Ecol. Evol. 10, 1445–1453 (2019).Article 

    Google Scholar 
    Faircloth, B. C., Branstetter, M. G., White, N. D. & Brady, S. G. Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among H ymenoptera. Mol. Ecol. Resour. 15, 489–501 (2015).Article 
    CAS 

    Google Scholar 
    Faircloth, B. C. MSATCOMMANDER: Detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol. Ecol. Resour. 8, 92–94 (2008).Article 
    CAS 

    Google Scholar 
    Zhan, L. et al. MEGASAT: Automated inference of microsatellite genotypes from sequence data. Mol. Ecol. Resour. 17, 247–256 (2017).Article 
    CAS 

    Google Scholar 
    Nei, M. Molecular Evolutionary Genetics (Columbia University Press, 1987).Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).Article 
    CAS 

    Google Scholar 
    Schneider, S., Roessli, D. & Excoffier, L. Arlequin: A software for population genetics data analysis, version 2.000. Genetics Biometry Laboratory, Department of Anthropology, University of Geneva, Switzerland (2000).Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).Article 
    CAS 

    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).Article 
    CAS 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour 10, 564–567 (2010).Article 

    Google Scholar 
    Bandelt, H.-J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).Article 
    CAS 

    Google Scholar 
    Fu, Y.-X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).Article 
    CAS 

    Google Scholar 
    Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992).CAS 

    Google Scholar 
    Peakall, R. & Smouse, P. E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).Article 

    Google Scholar 
    Mantel, N. The detection of disease clustering and a generalized regression approach. Can. Res. 27, 209–220 (1967).CAS 

    Google Scholar 
    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).Article 

    Google Scholar 
    Harlin, A. D., Markowitz, T., Baker, C. S., Würsig, B. & Honeycutt, R. L. Genetic structure, diversity, and historical demography of New Zealand’s dusky dolphin (Lagenorhynchus obscurus). J. Mammal. 84, 702–717 (2003).Article 

    Google Scholar 
    Rambaut, A., Suchard, M., Xie, D. & Drummond, A. Tracer v1. 6. http://beast.bio.ed.ac.uk/Tracer (2014).Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).Article 

    Google Scholar 
    Rice, W. R. Analyzing tables of statistical tests. Evolution 43, 223–225 (1989).
    Google Scholar 
    Goudet, J. FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9. 3. http://www2.unil.ch/popgen/softwares/fstat.htm (2001).Waples, R. S. & Do, C. LDNE: A program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Resour. 8, 753–756 (2008).Article 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).Article 
    CAS 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).Article 
    CAS 

    Google Scholar 
    Earl, D. A. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).Article 

    Google Scholar 
    Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 43, 258–275 (1989).
    Google Scholar 
    Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).Article 

    Google Scholar 
    Milinkovitch, M. C., Leduc, R., Tiedemann, R. & Dizon, A. In Marine Mammals: Biology and Conservation (ed Evans, P. G. H. & Raga, J. A.) 325–359 (Springer, 2002).Pichler, F. Population structure and genetic variation in Hector’s dolphin (Cephalorhynchus hectori), ResearchSpace@ Auckland (2001).Pichler, F. & Baker, C. Loss of genetic diversity in the endemic Hector’s dolphin due to fisheries-related mortality. Proc. R. Soc. Lond. Ser. B Biol. Sci. 267, 97–102 (2000).Article 
    CAS 

    Google Scholar 
    Greenwood, P. J. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28, 1140–1162 (1980).Article 

    Google Scholar 
    Chilvers, B. L. & Wilkinson, I. S. Philopatry and site fidelity of New Zealand sea lions (Phocarctos hookeri). Wildl. Res. 35, 463–470 (2008).Article 

    Google Scholar 
    Engelhaupt, D. et al. Female philopatry in coastal basins and male dispersion across the North Atlantic in a highly mobile marine species, the sperm whale (Physeter macrocephalus). Mol. Ecol. 18, 4193–4205 (2009).Article 
    CAS 

    Google Scholar 
    Möller, L. M. & Beheregaray, L. B. Genetic evidence for sex-biased dispersal in resident bottlenose dolphins (Tursiops aduncus). Mol. Ecol. 13, 1607–1612 (2004).Article 

    Google Scholar 
    Jansen van Vuuren, B., Best, P., Roux, J. P. & Robinson, T. Phylogeographic population structure in the Heaviside’s dolphin (Cephalorhynchus heavisidii): Conservation implications. Anim. Conserv. 5, 303–307 (2002).Article 

    Google Scholar 
    Pérez-Alvarez, M. J. et al. Microsatellite markers reveal strong genetic structure in the endemic Chilean dolphin. PLoS ONE 10, e0123956 (2015).Article 

    Google Scholar 
    Hamner, R. M., Pichler, F. B., Heimeier, D., Constantine, R. & Baker, C. S. Genetic differentiation and limited gene flow among fragmented populations of New Zealand endemic Hector’s and Maui’s dolphins. Conserv. Genet. 13, 987–1002 (2012).Article 

    Google Scholar 
    Pichler, F., Dawson, S., Slooten, E. & Baker, C. Geographic isolation of Hector’s dolphin populations described by mitochondrial DNA sequences. Conserv. Biol. 12, 676–682 (1998).Article 

    Google Scholar 
    Kraft, S. et al. From settlers to subspecies: Genetic differentiation in commerson’s Dolphins between South America and the Kerguelen Islands. Front. Mar. Sci. 8, 782512 (2021).Article 

    Google Scholar 
    Grant, W. & Bowen, B. W. Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation. J. Hered. 89, 415–426 (1998).Article 

    Google Scholar 
    Ponce, J. F., Rabassa, J., Coronato, A. & Borromei, A. M. Palaeogeographical evolution of the Atlantic coast of Pampa and Patagonia from the last glacial maximum to the Middle Holocene. Biol. J. Lin. Soc. 103, 363–379 (2011).Article 

    Google Scholar 
    Wright, S. Isolation by distance. Genetics 28, 114 (1943).Article 
    CAS 

    Google Scholar 
    Meirmans, P. G. Nonconvergence in B ayesian estimation of migration rates. Mol. Ecol. Resour. 14, 726–733 (2014).Article 

    Google Scholar  More