More stories

  • in

    Anaerobic methanotroph ‘Candidatus Methanoperedens nitroreducens’ has a pleomorphic life cycle

    Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513 (2007).Article 
    CAS 

    Google Scholar 
    Chadwick, G. L. et al. Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea. PLoS Biol. 20, e3001508 (2022).Article 

    Google Scholar 
    Haroon, M. F. et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570 (2013).Article 
    CAS 

    Google Scholar 
    Hallam, S. J. et al. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305, 1457–1462 (2004).Article 
    CAS 

    Google Scholar 
    McGlynn, S. E. Energy metabolism during anaerobic methane oxidation in ANME Archaea. Microbes Environ. 32, 5–13 (2017).Article 

    Google Scholar 
    Beal, E. J., House, C. H. & Orphan, V. J. Manganese- and iron-dependent marine methane oxidation. Science 325, 184–187 (2009).Article 
    CAS 

    Google Scholar 
    McGlynn, S. E., Chadwick, G. L., Kempes, C. P. & Orphan, V. J. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531–535 (2015).Article 
    CAS 

    Google Scholar 
    Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H. E. & Boetius, A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590 (2015).Article 
    CAS 

    Google Scholar 
    Cai, C. et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J. 12, 1929–1939 (2018).Article 
    CAS 

    Google Scholar 
    Ettwig, K. F. et al. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc. Natl Acad. Sci. USA 113, 12792–12796 (2016).Article 
    CAS 

    Google Scholar 
    Leu, A. O. et al. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. ISME J. 14, 1030–1041 (2020).Article 
    CAS 

    Google Scholar 
    Leu, A. O. et al. Lateral gene transfer drives metabolic flexibility in the anaerobic methane-oxidizing archaeal family Methanoperedenaceae. mBio 11, e01325-20 (2020).Cai, C. et al. Response of the anaerobic methanotrophic archaeon Candidatus ‘Methanoperedens nitroreducens’ to the long-term ferrihydrite amendment. Front. Microbiol. 13, 799859 (2022).Arshad, A. et al. A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by Methanoperedens-like Archaea. Front. Microbiol. 6, 1423 (2015).Article 

    Google Scholar 
    Raghoebarsing, A. A. et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918–921 (2006).Article 
    CAS 

    Google Scholar 
    Walker, D. J. F. et al. The archaellum of Methanospirillum hungatei is electrically conductive. mBio 10, e00579-19 (2019).Article 
    CAS 

    Google Scholar 
    Krukenberg, V. et al. Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia. Environ. Microbiol. 20, 1651–1666 (2018).Article 
    CAS 

    Google Scholar 
    Schubert, C. J. et al. Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). FEMS Microbiol. Ecol. 76, 26–38 (2011).Article 
    CAS 

    Google Scholar 
    Stahl, D. A. & Amann, R. in Nucleic Acid Techniques in Bacterial Systematics (eds Stackebrandt, E. & Goodfellow, M.) 205–248 (Wiley, 1991).Wallner, G., Amann, R. & Beisker, W. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14, 136–143 (1993).Article 
    CAS 

    Google Scholar 
    Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome- assembled genome (MIMAG) of Bacteria and Archaea. Nat. Biotechnol. 36, 660 (2018).Article 
    CAS 

    Google Scholar 
    Vo, C. H., Goyal, N., Karimi, I. A. & Kraft, M. First observation of an acetate switch in a methanogenic autotroph (Methanococcus maripaludis S2). Microbiol. Insights 13, 1178636120945300 (2020).Article 

    Google Scholar 
    Cai, C. et al. Acetate production from anaerobic oxidation of methane via intracellular storage compounds. Environ. Sci. Technol. 53, 7371–7379 (2019).Article 
    CAS 

    Google Scholar 
    Ratcliff, W. C. & Denison, R. F. Bacterial persistence and bet hedging in Sinorhizobium meliloti. Commun. Integr. Biol. 4, 98–100 (2011).Article 
    CAS 

    Google Scholar 
    Ma, K., Schicho, R. N., Kelly, R. M. & Adams, M. W. Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. Proc. Natl Acad. Sci. USA 90, 5341–5344 (1993).Article 
    CAS 

    Google Scholar 
    Simon, G.-C. et al. Response of the anaerobic methanotroph “Candidatus Methanoperedens nitroreducens” to oxygen stress. Appl. Environ. Microbiol. 84, e01832-18 (2018).
    Google Scholar 
    van der Star, W. R. L. et al. The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnol. Bioeng. 101, 286–294 (2008).Article 

    Google Scholar 
    Duggin, I. G. et al. CetZ tubulin-like proteins control archaeal cell shape. Nature 519, 362–365 (2015).Article 
    CAS 

    Google Scholar 
    Schwarzer, S., Rodriguez-Franco, M., Oksanen, H. M. & Quax, T. E. F. Growth phase dependent cell shape of Haloarcula. Microorganisms 9, 231 (2021).Article 
    CAS 

    Google Scholar 
    Dang, H. Y. & Lovell, C. R. Microbial surface colonization and biofilm development in marine environments. Microbiol. Mol. Biol. Rev. 80, 91–138 (2016).Article 
    CAS 

    Google Scholar 
    Howard-Varona, C., Hargreaves, K. R., Abedon, S. T. & Sullivan, M. B. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11, 1511–1520 (2017).Article 

    Google Scholar 
    Pires, D. P., Melo, L. D. R. & Azeredo, J. Understanding the complex phage–host interactions in biofilm communities. Annu. Rev. Virol. 8, 73–94 (2021).Canchaya, C., Proux, C., Fournous, G., Bruttin, A. & Brüssow, H. Prophage genomics. Microbiol. Mol. Biol. Rev. 67, 238–276 (2003).Article 
    CAS 

    Google Scholar 
    Zhang, X. et al. Polyhydroxyalkanoate-driven current generation via acetate by an anaerobic methanotrophic consortium. Water Res. 221, 118743 (2022).Article 
    CAS 

    Google Scholar 
    Knittel, K., Lösekann, T., Boetius, A., Kort, R. & Amann, R. Diversity and distribution of methanotrophic Archaea at cold seeps. Appl. Environ. Microbiol. 71, 467–479 (2005).Article 
    CAS 

    Google Scholar 
    Orphan, V. J., House, C. H., Hinrichs, K.-U., McKeegan, K. D. & DeLong, E. F. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc. Natl Acad. Sci. USA 99, 7663–7668 (2002).Article 
    CAS 

    Google Scholar 
    Orphan, V. J. et al. Geological, geochemical, and microbiological heterogeneity of the seafloor around methane vents in the Eel River Basin, offshore California. Chem. Geol. 205, 265–289 (2004).Article 
    CAS 

    Google Scholar 
    Ackermann, M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 13, 497–508 (2015).Article 
    CAS 

    Google Scholar 
    Robinson, R. W. Life cycles in the methanogenic archaebacterium Methanosarcina mazei. Appl. Environ. Microbiol. 52, 17–27 (1986).Article 
    CAS 

    Google Scholar 
    Daims, H., Stoecker, K. & Wagner, M. in Molecular Microbial Ecology (eds Osborn, A. M. & Smith, C. J.) 213–239 (Taylor & Francis, 2005).Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).Article 
    CAS 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).Article 
    CAS 

    Google Scholar 
    Yilmaz, L. S., Parnerkar, S. & Noguera, D. R. mathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Appl. Environ. Microbiol. 77, 1118–1122 (2011).Article 
    CAS 

    Google Scholar 
    Stoecker, K., Dorninger, C., Daims, H. & Wagner, M. Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl. Environ. Microbiol. 76, 922–926 (2010).Article 
    CAS 

    Google Scholar 
    Fuchs, B. M., Glockner, F. O., Wulf, J. & Amann, R. Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Appl. Environ. Microbiol. 66, 3603–3607 (2000).Article 
    CAS 

    Google Scholar 
    Manz, W., Amann, R., Ludwig, W., Wagner, M. & Schleifer, K.-H. Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst. Appl. Microbiol. 15, 593–600 (1992).Article 

    Google Scholar 
    Ostle, A. G. & Holt, J. G. Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl. Environ. Microbiol. 44, 238–241 (1982).Article 
    CAS 

    Google Scholar 
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).Article 
    CAS 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 1091 (2019).Article 
    CAS 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 

    Google Scholar 
    Eren, A. M., Vineis, J. H., Morrison, H. G. & Sogin, M. L. A filtering method to generate high quality short reads using Illumina paired-end technology. PLoS ONE 8, e66643 (2013).Article 

    Google Scholar 
    Minoche, A. E., Dohm, J. C. & Himmelbauer, H. Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol. 12, R112 (2011).Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).Article 
    CAS 

    Google Scholar 
    Warren, R. L. et al. LINKS: scalable, alignment-free scaffolding of draft genomes with long reads. GigaScience 4, 35 (2015).Article 

    Google Scholar 
    Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).Article 

    Google Scholar 
    Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350–3352 (2015).Article 
    CAS 

    Google Scholar 
    Wick, R. R. et al. Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biol. 22, 266 (2021).Article 
    CAS 

    Google Scholar 
    Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).Article 
    CAS 

    Google Scholar 
    Wick, R. R. & Holt, K. E. Benchmarking of long-read assemblers for prokaryote whole genome sequencing. F1000Res. 8, 2138 (2021).Vaser, R. & Šikić, M. Time- and memory-efficient genome assembly with Raven. Nat. Comput. Sci. 1, 332–336 (2021).Article 

    Google Scholar 
    Wick, R. R. & Holt, K. E. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Comput. Biol. 18, e1009802 (2022).Article 
    CAS 

    Google Scholar 
    Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).
    Google Scholar 
    Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).Article 
    CAS 

    Google Scholar 
    Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. Preprint at bioRxiv https://doi.org/10.1101/201178 (2017).Article 

    Google Scholar 
    Heller, D. & Vingron, M. SVIM: structural variant identification using mapped long reads. Bioinformatics 35, 2907–2915 (2019).Article 
    CAS 

    Google Scholar 
    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).Article 
    CAS 

    Google Scholar 
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).Article 
    CAS 

    Google Scholar 
    Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R. & Wu, C. H. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23, 1282–1288 (2007).Article 
    CAS 

    Google Scholar 
    Tatusov, R. L. et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41 (2003).Article 

    Google Scholar 
    Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2016).Article 
    CAS 

    Google Scholar 
    Haft, D. H. et al. TIGRFAMs and genome properties in 2013. Nucleic Acids Res. 41, D387–D395 (2013).Article 
    CAS 

    Google Scholar 
    Zhou, Z. et al. METABOLIC: high-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks. Microbiome 10, 33 (2022).Article 
    CAS 

    Google Scholar 
    Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).Article 
    CAS 

    Google Scholar 
    Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 32, D138–D141 (2004).Article 
    CAS 

    Google Scholar 
    Amann, R. I. et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–1925 (1990).Article 
    CAS 

    Google Scholar 
    Daims, H., Brühl, A., Amann, R., Schleifer, K. H. & Wagner, M. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 434–444 (1999).Article 
    CAS 

    Google Scholar 
    Schmid, M. C. et al. Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria. Appl. Environ. Microbiol. 71, 1677–1684 (2005).Article 
    CAS 

    Google Scholar 
    Yu, N. Y. et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26, 1608–1615 (2010).Article 
    CAS 

    Google Scholar 
    Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795 (2004).Article 

    Google Scholar  More

  • in

    Enhanced regional connectivity between western North American national parks will increase persistence of mammal species diversity

    Newmark, W. D. A land-bridge island perspective on mammalian extinctions in western North American parks. Nature 325, 430–432 (1987).Article 
    ADS 
    CAS 

    Google Scholar 
    Newmark, W. D. Isolation of African protected areas. Front. Ecol. Environ. 6, 321–328 (2008).Article 

    Google Scholar 
    Radeloff, V. C. et al. Housing growth in and near United States protected areas limits their conservation value. Proc. Natl. Acad. Sci. U. S. A. 107, 940–945 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).Article 
    CAS 

    Google Scholar 
    Elsen, P. R., Monahan, W. B., Dougherty, E. R. & Merenlender, A. M. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv. https://doi.org/10.1126/sciadv.aay0814 (2020).Article 

    Google Scholar 
    Wasser, S. K. et al. Genetic assignment of large seizures of elephant ivory reveals Africa’s major poaching hotspots. Science 349, 84–87 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Davis, C. R. & Hansen, A. J. Trajectories in land use change around U,S. national parks and challenges and opportunities for management. Ecol. Appl. 21, 3299–3316 (2011).Article 

    Google Scholar 
    Newmark, W. D. Extinction of mammal populations in western North American national parks. Conserv. Biol. 9, 512–526 (1995).Article 

    Google Scholar 
    Newmark, W. D. Insularization of Tanzanian parks and the local extinction of large mammals. Conserv. Biol. 10, 1549–1556 (1996).Article 

    Google Scholar 
    Brashares, J. S., Arcese, P. & Sam, M. K. Human demography and reserve size predict wildlife extinction in West Africa. Proc. R. Soc. B Biol. Sci. 268, 2473–2478 (2001).Article 
    CAS 

    Google Scholar 
    Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).Article 
    ADS 
    CAS 

    Google Scholar 
    Turner, M. G. & Dale, V. H. Comparing large, infrequent disturbances: What have we learned?. Ecosystems 1, 493–496 (1998).Article 

    Google Scholar 
    Berger, J. The last mile: How to sustain long-distance migration in mammals. Conserv. Biol. 18, 320–331 (2004).Article 

    Google Scholar 
    Bolger, D. T., Newmark, W. D., Morrison, T. A. & Doak, D. F. The need for integrative approaches to understand and conserve migratory ungulates. Ecol. Lett. 11, 63–77 (2008).
    Google Scholar 
    Sawyer, H., Kauffman, M. J., Nielson, R. M. & Horne, J. S. Identifying and prioritizing ungulate migration routes for landscape-level conservation. Ecol. Appl. 19, 2016–2025 (2009).Article 

    Google Scholar 
    Tucker, M. A. et al. Moving in the anthropocene: Global reductions in terrestrial mammalian movements. Science 469, 466–469 (2018).Article 
    ADS 

    Google Scholar 
    Soulé, M. E. & Terborgh, J. Conserving nature at regional and continental scales-a scientific program for North America. Bioscience 49, 809–817 (1999).Article 

    Google Scholar 
    Hilty, J. et al. Guidelines for conserving connectivity through ecological networks and corridors. Best Pract. Prot. Area Guidel. Ser. 30, 122 (2020).
    Google Scholar 
    Haddad, N. & Tewksbury, J. Impacts of corridors on populations and communities. in Connectivity Conservation (eds. Crooks, K. R. & Sanjayan, M.) 390–415 (Cambridge University Press, 2010).
    Google Scholar 
    Ramiadantsoa, T., Ovaskainen, O., Rybicki, J. & Hanski, I. Large-scale habitat corridors for biodiversity conservation: A forest corridor in Madagascar. PLoS One 10, 1–18 (2015).Article 
    CAS 

    Google Scholar 
    Newmark, W. D., Jenkins, C. N., Pimm, S. L., McNeally, P. B. & Halley, J. M. Targeted habitat restoration can reduce extinction rates in fragmented forests. Proc. Natl. Acad. Sci. USA. 114, 9635–9640 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Diamond, J. M. Biogeographic kinetics: Estimation of relaxation times for avifaunas of southwest Pacific islands. Proc. Natl. Acad. Sci. 69, 3199–3203 (1972).Article 
    ADS 
    CAS 

    Google Scholar 
    Terborgh, J. Preservation of natural diversity: The problem of extinction prone species. Bioscience 24, 715–722 (1974).Article 

    Google Scholar 
    Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. Habitat destruction and the extinction debt revisited. Nature 371, 65–66 (1994).Article 
    ADS 

    Google Scholar 
    Halley, J. M., Monokrousos, N., Mazaris, A. D., Newmark, W. D. & Vokou, D. Dynamics of extinction debt across five taxonomic groups. Nat. Commun. 7, 1–6 (2016).Article 

    Google Scholar 
    Wearn, O. R., Reuman, D. C. & Ewers, R. M. Extinction debt and windows of conservation opportunity in the Brazilian amazon. Science 337, 228–232 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Hanski, I. Extinction debt and species credit in boreal forests: Modelling the consequences of different approaches to conservation. Ann. Zool. Fennici 37, 271–280 (2000).
    Google Scholar 
    LaBarbera, M. Analyzing body size as a factor in ecology and evolution. Annu. Rev. Ecol. Syst. 20, 97–117 (1989).Article 

    Google Scholar 
    Oakleaf, J. K. et al. Habitat selection by recolonizing wolves in the northern Rocky mountains of the United States. J. Wildl. Manage. 70, 554–563 (2006).Article 

    Google Scholar 
    Cushman, S. A., McKelvey, K. S. & Schwartz, M. K. Use of empirically derived source-destination models to map regional conservation corridors. Conserv. Biol. 23, 368–376 (2009).Article 

    Google Scholar 
    Schwartz, M. K. et al. Wolverine gene flow across a narrow climatic niche. Ecology 90, 3222–3232 (2014).Article 

    Google Scholar 
    McKelvey, K. S. et al. Climate change predicted to shift wolverine distributions, connectivity, and dispersal corridors. Ecol. Appl. 21, 2882–2897 (2011).Article 

    Google Scholar 
    Carroll, C., Mcrae, B. H. & Brookes, A. Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America. Conserv. Biol. 26, 78–87 (2012).Article 

    Google Scholar 
    Parks, S. A., McKelvey, K. S. & Schwartz, M. K. Effects of weighting schemes on the identification of wildlife corridors generated with least-cost methods. Conserv. Biol. 27, 145–154 (2013).Article 

    Google Scholar 
    Peck, C. P. et al. Potential paths for male-mediated gene flow to and from an isolated grizzly bear population. Ecosphere 8, e01969 (2017).Article 

    Google Scholar 
    Wild Migrations: Atlas of Wyoming’s Ungulates. (Oregon State University, 2018).Singleton, P. H., Gaines, W. L. & Lehmkuhl, J. F. Landscape permeability for large carnivores in Washington: A geographic information system weighted-distance and least-cost corridor assessment. (2002).Long, R. A. et al. The Cascades carnivore connectivity project: A landscape genetic assessment of connectivity in Washington’s north Cascades ecosystem. Final report for the Seattle City Light Wildlife Research Program (2013).Diamond, J. M. The island dilemma: Lessons of modern biogeographic studies for the design of natural reserves. Biol. Conserv. 7, 129–146 (1975).Article 

    Google Scholar 
    Wilson, E. O. & Willis, E. O. Applied biogeography. In Ecological structure of ecological communities (eds. Cody, M. L, & Diamond, J. M.) 522–534 (Harvard University Press, 1975)
    Google Scholar 
    Halley, J. M. & Iwasa, Y. Neutral theory as a predictor of avifaunal extinctions after habitat loss. Proc. Natl. Acad. Sci. USA 108, 2316–2321 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Cushman, S. A., Lewis, J. S. & Landguth, E. L. Evaluating the intersection of a regional wildlife connectivity network with highways. Mov. Ecol. 1, 1–11 (2013).Article 

    Google Scholar 
    Singleton, P. H. & Lehmkuhl, J. F. I-90 Snoqualmie pass wildlife habitat linkage assessment. Final Report. USDA, Pacific Northwest Research Station. (2000).Craighead, L., Craighead, A., Oeschslia, L. & Kociolek, A. Bozeman pass post-fencing wildlife monitoring. Final Report. FHWA/MT-10-006/8173 (2011).Andis, A. Z., Huijser, M. P. & Broberg, L. Performance of arch-style road crossing structures from relative movement rates of large mammals. Front. Ecol. Evol. 5, 1–13 (2017).Article 

    Google Scholar 
    Millward, L. Small mammal microhabitat use and species composition at a wildlife crossing structure compared with nearby forest (Central Washington University, 2018).
    Google Scholar 
    Bischof, R., Steyaert, S. M. J. G. & Kindberg, J. Caught in the mesh: Roads and their network-scale impediment to animal movement. Ecography 40, 1369–1380 (2017).Article 

    Google Scholar 
    Balkenhol, N. & Waits, L. P. Molecular road ecology: Exploring the potential of genetics for investigating transportation impacts on wildlife. Mol. Ecol. 18, 4151–4164 (2009).Article 

    Google Scholar 
    Clevenger, A. P. & Wierzchowski, J. Maintaining and restoring connectivity in landscapes fragmented by roads. In Connectivity Conservation, (eds. Crooks, K. R. & Sanjayan, M.) 502–535 (Cambridge University Press, 2010.)
    Google Scholar 
    Sawaya, M. A., Kalinowski, S. T. & Clevenger, A. P. Genetic connectivity for two bear species at wildlife crossing structures in Banff National Park. Proc. R. Soc. B Biol. Sci. 281, 20131705 (2014).Article 

    Google Scholar 
    Sawaya, M. A., Clevenger, A. P. & Schwartz, M. K. Demographic fragmentation of a protected wolverine population bisected by a major transportation corridor. Biol. Conserv. 236, 616–625 (2019).Article 

    Google Scholar 
    Kamal, S., Grodzińska-Jurczak, M. & Brown, G. Conservation on private land: A review of global strategies with a proposed classification system. J. Environ. Plan. Manag. 58, 576–597 (2015).Article 

    Google Scholar 
    Wasserman, T. N., Cushman, S. A., Littell, J. S., Shirk, A. J. & Landguth, E. L. Population connectivity and genetic diversity of American marten (Martes americana) in the United States northern Rocky Mountains in a climate change context. Conserv. Genet. 14, 529–541 (2013).Article 

    Google Scholar 
    Wasserman, T. N., Cushman, S. A., Shirk, A. S., Landguth, E. L. & Littell, J. S. Simulating the effects of climate change on population connectivity of American marten (Martes americana) in the northern Rocky Mountains, USA. Landsc. Ecol. 27, 211–225 (2012).Article 

    Google Scholar 
    Cushman, S. A., Landguth, E. L. & Flather, C. H. Evaluating the sufficiency of protected lands for maintaining wildlife population connectivity in the U.S. northern Rocky Mountains. Divers. Distrib. 18, 873–884 (2012).Article 

    Google Scholar 
    Beier, P., Spencer, W., Baldwin, R. F. & Mcrae, B. H. Toward best practices for developing regional connectivity maps. Conserv. Biol. 25, 879–892 (2011).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (2020). More

  • in

    Migration direction in a songbird explained by two loci

    Ethics statementAnimals’ care was in accordance with institutional guidelines. Ethical permit was issued by Malmö-Lund djurförsöksetiska nämnd 5.8.18-00848/2018.Field workWe carried out the field work in Sweden during four breeding seasons (2018–2021). Adult male willow warblers were captured in their breeding territories using mist nets and playback of a song. From each bird, we collected the innermost primary feather from the right wing. From the birds that returned with a logger we also collected ~20 μl of blood from the brachial wing vein. The blood was stored in SET buffer (0.015 M NaCl, 0.05 M Tris, 0.001 M of EDTA, pH 8.0) at room temperature until deposited for permanent storage at −20 °C. We deployed Migrate Technology Ltd geolocators (Intigeo-W30Z11-DIP 12 × 5 × 4 mm, 0.32 g) and used a nylon string to mount them on birds with the “leg-loop” harness method as outlined in our previous work24. The mass of the logger relative to that of the bird was on average 3.3% (range 2.7–3.8%).The tagged birds were ringed with a numbered aluminum ring, and two, colored plastic rings for later identification in the field. In total, we tagged 466 males (349 in 2018 and 117 in 2020) at breeding territories. During the first tagging season (2018), birds were trapped at 17 locations (average 22 birds per site; range 7–30) distributed across Sweden (Fig. S1). Three of the sites were in southern Sweden to document migration routes of allopatric trochilus and three sites were located above the Arctic circle to record migratory routes of allopatric acredula, whereas the remaining (239) loggers were spread over 11 sites located in the migratory divide. Given the observed densities and distribution of hybrids after analyzing returning birds in 2019, we deployed 117 more loggers at one single site (63.439°N, 14.831°E) in 2020. We successfully retrieved tracks from 57 birds tagged in 2019 and 16 from birds tagged in 2021. In search for birds with loggers, we checked circa 3000 willow warbler males and covered an area of at least 0.5 km radius around each site the year after tagging.Geolocator data treatmentThe R package GeoLight (version 2.0)25 was used to extract and analyze locations from raw geolocator data. All twilight events were obtained with light threshold of 3 lux. The most extreme outliers were trimmed with “loessFilter” function and a K value of 3. We used GeoLight’s function “getElevation” for estimating the sun elevation angle for the breeding period: these sets of locations were used to infer the positions for autumn departure direction. In addition, we carried out a “Hill-Ekström” calibration for the longest stationary winter site during the period before the spring equinox. Winter calibration produced location sets that better reflected the winter coordinates of the main winter site in sub-Saharan Africa26. We reduced some of the inherent geolocation “noise” by applying cantered 5-day rolling means to the coordinates. The equinox periods were visually identified by inspecting standard deviations in latitude. Latitudes from equinox periods were omitted (on average autumn equinox obscured data for 45 days (range 25–68). For the main winter site, we used the longest period at which bird stayed stationary and from which in all cases begun the spring migration (mean = 118, SD = 23 days). Timing of autumn departure was estimated by manual inspection of longitudes and latitudes plotted in time series. To estimate at which longitude the birds crossed the Mediterranean, we extracted the longitude when birds crossed latitude 35 N° (Mediterranean crossing longitude). For 29 birds, it was possible to directly extract the longitude at crossing latitude 35 N°. For the rest of the cases, the birds had not reached latitude 35 N° before the latitude was obscured by the equinox, we calculated the mean longitude of 10 days from the onset of fall equinox as a measure of the Mediterranean crossing. This measurement correlated highly with the winter longitude (r = 0.78, p = 2.8 × 10−16). To control for the birds relative breeding site longitude, we extracted the departure direction (1°–360°) relative from the tagging site to the location where the birds crossed the Mediterranean (departure direction). The departure data was of circular type (measured in 360°), however the variance did not span more than 180° degrees (range 151°–224°). Therefore, we proceeded with analyses using linear statistics. Geographic distances and departure direction were calculated using R package “geosphere” (version 1.5-10). Complete set of positions of each individual bird with equinoxes excluded is presented in Supplementary Data 1.Laboratory work and molecular data extractionWe extracted DNA from blood samples following the ammonium acetate protocol16. Genotyping for divergent regions on chromosome 1 (InvP-Ch1) and chromosome 5 (InvP-Ch5) was done using a qPCR SNP assay16, which is based on one informative SNP per region (SNP 65 for chromosome 1 and SNP 285 for chromosome 5). Probes and primers were produced by Thermo Fisher Scientific and were designed using the online Custom TaqMan® Assay Design tool (Table S4). We used Bio-Rad CFX96™ Real-time PCR system (Bio-Rad Laboratories, CA, USA) and the universal Fast-two-steps protocol: 95 °C, 15 min—40*(95 °C, 10 s–60 °C, 30 s, plate read. Both regions contain inversion polymorphisms that restrict recombination between subspecies-specific haplotypes and contain nearly all the SNPs separating the two subspecies13. For each region, we scored genotypes as either “Tro” (homozygous for trochilus haplotypes), “Acr” (homozygous for acredula haplotypes) or “Het” (heterozygous). The method that we used to assess the presence of MARB-a is based on a qPCR assay that quantifies the copy number of a novel TE (previously known as AFLP-WW212) that has expanded in acredula. The quantification of repeats by this method has been shown to be highly repeatable (R2 = 0.88) when comparing estimates obtained from DNA in blood and feathers15. We used the forward (5′-CCTTGCATACTTCTATTTCTCCC-3′) and reverse (5′-CATAGGACAGACATTGTTGAGG-3′) primers developed by Caballero-López et al.15 to amplify the TE motif. For reference of a single copy region we used the primers SFRS3F and SFRS3R27. We diluted DNA to 1 ng/μl−1 and used a Bio-Rad CFX96™ Real-time PCR system (Bio-Rad Laboratories, CA, USA) with SYBR-green-based detection. Total reaction volume was 25 μl of which 4 μl of DNA, 12.5 μl of SuperMix, 0.1 μl ROX, 1 μl of primer (forward and reverse), and 6.4 μl of double distilled H2O. We ran quantifications of the single copy gene and the TE variant found on MARB-a on separate plates with the following settings: 50 °C for 2 min as initial incubation, 95 °C for 2 min X 43 (94 °C for 30 s [55.3 °C SFRS3 and 55.5 °C for TE, 30 s] and 72 °C for 45 s). Each sample was run in duplicate and together with a two-fold serial standard dilution (2.5–7.8 × 10−2 ng). Allopatric trochilus have 0–6 copies whereas allopatric acredula have 8–45 copies15; a bimodal distribution was also confirmed in this new data set (Fig. S2). Accordingly, for the present analyses, we split the data in two groups: birds with ≤6 TE copies and birds with >7, translating into absence or presence of MARB-a, with the former assumed to be homozygous for the absence of MARB-a and the latter heterozygous or homozygous for the presence of MARB-a. Data from two investigated willow warbler families suggest a Mendelian inheritance pattern and provide support for our interpretation of how TE copy numbers reflect the three genotypes (Table S5). Moreover, the TE copy numbers within the hybrid swarm have a distribution similar to a combination of allopatric trochilus and acredula, further supporting that the copies are inherited as intact blocks (haplotypes). However, a precise distinction between heterozygotes and homozygotes on MARB-a is still not possible15.Statistical analysisWe used linear models with departure direction, winter longitude, migration distance and departure timing as response variables and the three genetic markers: MARB-a (a factor with two levels), InvP-Ch1 (a factor with three levels) and InvP-Ch5 (a factor with three levels) as explanatory variables. Models were constructed with R base package “stats”. We reported Type II ANOVA for models with more than one explanatory variable and no interactions and type III ANOVA results for models with interaction term by using R package “Car” (version 3.0-12)28. We initially constructed mixed effect models with timing of departure and tagging year as random factors however, this delivered singular fits due to insufficient sample sizes across categories. Normality of residuals was checked with a Shapiro–Wilk test. For carrying out circular statistics on autumn migration direction we used the R package “circular” (version 0.4-93). Watson’s U2 pairwise comparisons of different groups delivered the same results as linear models (Table S2 and Fig. S5). Circular means were identical to conventional linear means in our data set, which we take as another evidence that linear models are appropriate for the analysis of our data (Table S3 and Fig. S5). Maps in Figs. 1 and 2b and S1, S3 and S4 were created with R package “ggplot2” (version 3.3.6) using continent contours from Natural Earth, naturalearthdata.com/. Heat gradient over the maps in Fig. 1a–d were created with R package “gstat” (version 2.0-8) and the inverse distance weighting power of 3.0. Circular plots were created with ORIANA (version 4.02). All analyses were carried out with R version 4.1.1 (R Core Team 2021).Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article. More

  • in

    Predator-mediated diversity of stream fish assemblages in a boreal river basin, China

    Chase, J. M. et al. The interaction between predation and competition: A review and synthesis. Ecol. Lett. 5, 302–315. https://doi.org/10.1046/j.1461-0248.2002.00315.x (2002).Article 

    Google Scholar 
    Droge, E., Creel, S., Becker, M. S. & M’Soka, J. Risky times and risky places interact to affect prey behaviour. Nat. Ecol. Evol. 1, 1123–1128. https://doi.org/10.1038/s41559-017-0220-9 (2017).Article 

    Google Scholar 
    Allesina, S. & Levine Jonathan, M. A competitive network theory of species diversity. Proc. Natl. Acad. Sci. U.S.A. 108, 5638–5642. https://doi.org/10.1073/pnas.1014428108 (2011).Article 
    ADS 

    Google Scholar 
    Bairey, E., Kelsic, E. D. & Kishony, R. High-order species interactions shape ecosystem diversity. Nat. Commun. 7, 12285. https://doi.org/10.1038/ncomms12285 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Letten, A. D. & Stouffer, D. B. The mechanistic basis for higher-order interactions and non-additivity in competitive communities. Ecol. Lett. 22, 423–436. https://doi.org/10.1111/ele.13211 (2019).Article 

    Google Scholar 
    Lotka, A. J. Elements of physical biology. Sci. Prog. Twent. Century (1919–1933) 21, 341–343 (1926).
    Google Scholar 
    Volterra, V. Variazioni e Fluttuazioni del Numero d’Individui in Specie Animali Conviventi. (Società Anonima Tipografica “Leonardo da Vinci”, 1926).Schmitz, O. J. Top predator control of plant biodiversity and productivity in an old-field ecosystem. Ecol. Lett. 6, 156–163. https://doi.org/10.1046/j.1461-0248.2003.00412.x (2003).Article 

    Google Scholar 
    Fey, K., Banks, P. B., Oksanen, L. & Korpimäki, E. Does removal of an alien predator from small islands in the Baltic Sea induce a trophic cascade?. Ecography 32, 546–552. https://doi.org/10.1111/j.1600-0587.2008.05637.x (2009).Article 

    Google Scholar 
    Terborgh John, W. Toward a trophic theory of species diversity. Proc. Natl. Acad. Sci. U.S.A. 112, 11415–11422. https://doi.org/10.1073/pnas.1501070112 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Pringle, R. M. et al. Predator-induced collapse of niche structure and species coexistence. Nature 570, 58–64. https://doi.org/10.1038/s41586-019-1264-6 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Sandom, C. et al. Mammal predator and prey species richness are strongly linked at macroscales. Ecology 94, 1112–1122. https://doi.org/10.1890/12-1342.1 (2013).Article 

    Google Scholar 
    Louette, G. & De Meester, L. Predation and priority effects in experimental zooplankton communities. Oikos 116, 419–426. https://doi.org/10.1111/j.2006.0030-1299.15381.x (2007).Article 

    Google Scholar 
    Johnston, N. K., Pu, Z. & Jiang, L. Predator identity influences metacommunity assembly. J. Anim. Ecol. 85, 1161–1170. https://doi.org/10.1111/1365-2656.12551 (2016).Article 

    Google Scholar 
    Karakoc, C., Radchuk, V., Harms, H. & Chatzinotas, A. Interactions between predation and disturbances shape prey communities. Sci. Rep. 8, 2968. https://doi.org/10.1038/s41598-018-21219-x (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32) (Princeton University Press, 2011).Book 

    Google Scholar 
    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, 2001).Book 

    Google Scholar 
    Daniel, J., Gleason, J. E., Cottenie, K. & Rooney, R. C. Stochastic and deterministic processes drive wetland community assembly across a gradient of environmental filtering. Oikos 128, 1158–1169. https://doi.org/10.1111/oik.05987 (2019).Article 

    Google Scholar 
    Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22. https://doi.org/10.1016/j.jhydrol.2004.03.028 (2004).Article 
    ADS 

    Google Scholar 
    Chase, J. M., Biro, E. G., Ryberg, W. A. & Smith, K. G. Predators temper the relative importance of stochastic processes in the assembly of prey metacommunities. Ecol. Lett. 12, 1210–1218. https://doi.org/10.1111/j.1461-0248.2009.01362.x (2009).Article 

    Google Scholar 
    Werner, E. E. & Peacor, S. D. A review of trait-mediated indirect interactions in ecological communities. Ecology 84, 1083–1100. https://doi.org/10.1890/0012-9658(2003)084[1083:AROTII]2.0.CO;2 (2003).Article 

    Google Scholar 
    Pearson, D. E., Ortega, Y. K., Eren, Ö. & Hierro, J. L. Community assembly theory as a framework for biological invasions. Trends Ecol. Evol. 33, 313–325. https://doi.org/10.1016/j.tree.2018.03.002 (2018).Article 

    Google Scholar 
    Duchesne, É. et al. Variable strength of predator-mediated effects on species occurrence in an arctic terrestrial vertebrate community. Ecography 44, 1236–1248. https://doi.org/10.1111/ecog.05760 (2021).Article 

    Google Scholar 
    Ryberg, W. A., Smith, K. G. & Chase, J. M. Predators alter the scaling of diversity in prey metacommunities. Oikos 121, 1995–2000. https://doi.org/10.1111/j.1600-0706.2012.19620.x (2012).Article 

    Google Scholar 
    Carrete Vega, G. & Wiens, J. J. Why are there so few fish in the sea?. Proc. R. Soc. B 279, 2323–2329. https://doi.org/10.1098/rspb.2012.0075 (2012).Article 

    Google Scholar 
    Barrett, M. et al. Living planet report 2018: Aiming higher. (2018).Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873. https://doi.org/10.1111/brv.12480 (2019).Article 

    Google Scholar 
    Di Marco, M. et al. Changing trends and persisting biases in three decades of conservation science. Glob. Ecol. Conserv. 10, 32–42. https://doi.org/10.1016/j.gecco.2017.01.008 (2017).Article 

    Google Scholar 
    Hammerschlag, N. et al. Ecosystem function and services of aquatic predators in the anthropocene. Trends Ecol. Evol. 34, 369–383. https://doi.org/10.1016/j.tree.2019.01.005 (2019).Article 

    Google Scholar 
    Wang, T. et al. Amur tigers and leopards returning to China: direct evidence and a landscape conservation plan. Landsc Ecol 31, 491–503. https://doi.org/10.1007/s10980-015-0278-1 (2016).Article 

    Google Scholar 
    Hong, S. et al. Stream health, topography, and land use influences on the distribution of the Eurasian otter Lutra lutra in the Nakdong River basin, South Korea. Ecol. Indic. 88, 241–249. https://doi.org/10.1016/j.ecolind.2018.01.004 (2018).Article 

    Google Scholar 
    Guter, A., Dolev, A., Saltz, D. & Kronfeld-Schor, N. Using videotaping to validate the use of spraints as an index of Eurasian otter (Lutra lutra) activity. Ecol. Indic. 8, 462–465. https://doi.org/10.1016/j.ecolind.2007.04.009 (2008).Article 

    Google Scholar 
    Sittenthaler, M., Bayerl, H., Unfer, G., Kuehn, R. & Parz-Gollner, R. Impact of fish stocking on Eurasian otter (Lutra lutra) densities: A case study on two salmonid streams. Mamm. Biol. 80, 106–113. https://doi.org/10.1016/j.mambio.2015.01.004 (2015).Article 

    Google Scholar 
    Zheng, B., Huang, H., Zhang, Y. & Dai, D. The Fishes of Tumen River (Jilin People’s Publishing House, 1980).
    Google Scholar 
    Fleishman, E., Murphy, D. D. & Brussard, P. F. A new method for selection of umbrella species for conservation planning. Ecol Appl 10, 569–579. https://doi.org/10.1890/1051-0761(2000)010[0569:ANMFSO]2.0.CO;2 (2000).Article 

    Google Scholar 
    Roberge, J.-M. & Angelstam, P. E. R. Usefulness of the umbrella species concept as a conservation tool. Conserv. Biol. 18, 76–85. https://doi.org/10.1111/j.1523-1739.2004.00450.x (2004).Article 

    Google Scholar 
    McGowan, J. et al. Conservation prioritization can resolve the flagship species conundrum. Nat. Commun. 11, 994. https://doi.org/10.1038/s41467-020-14554-z (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Katano, I., Doi, H., Eriksson, B. K. & Hillebrand, H. A cross-system meta-analysis reveals coupled predation effects on prey biomass and diversity. Oikos 124, 1427–1435. https://doi.org/10.1111/oik.02430 (2015).Article 

    Google Scholar 
    Leibold, M. A. A graphical model of keystone predators in food webs: Trophic regulation of abundance, incidence, and diversity patterns in communities. Am. Nat. 147, 784–812. https://doi.org/10.1086/285879 (1996).Article 

    Google Scholar 
    McPeek, M. A. The consequences of changing the top predator in a food web: A comparative experimental approach. Ecol. Monogr. 68, 1–23. https://doi.org/10.1890/0012-9615(1998)068[0001:TCOCTT]2.0.CO;2 (1998).Article 

    Google Scholar 
    Chase, J. M. & Leibold, M. A. Ecological Niches: Linking Classical and Contemporary Approaches (University of Chicago Press, 2003).Book 

    Google Scholar 
    Gravel, D., Canham, C. D., Beaudet, M. & Messier, C. Reconciling niche and neutrality: The continuum hypothesis. Ecol. Lett. 9, 399–409. https://doi.org/10.1111/j.1461-0248.2006.00884.x (2006).Article 

    Google Scholar 
    Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F. & Hairston, N. G. Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424, 303–306. https://doi.org/10.1038/nature01767 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Yin, X., Wang, J., Yin, H. & Ruan, Y. Does inducible defense mitigate physiological stress responses of prey to predation risk?. Hydrobiologia 843, 173–181. https://doi.org/10.1007/s10750-019-04046-7 (2019).Article 

    Google Scholar 
    Chalcraft, D. R. & Resetarits, W. J. Jr. Predator identity and ecological impacts: Functional redundancy or functional diversity?. Ecology 84, 2407–2418. https://doi.org/10.1890/02-0550 (2003).Article 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 9, 741–758. https://doi.org/10.1111/j.1461-0248.2006.00924.x (2006).Article 

    Google Scholar 
    Burner, R. C. et al. Functional structure of European forest beetle communities is enhanced by rare species. Biol. Conserv. 267, 109491. https://doi.org/10.1016/j.biocon.2022.109491 (2022).Article 

    Google Scholar  More

  • in

    Publisher Correction: Seasonal peak photosynthesis is hindered by late canopy development in northern ecosystems

    Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, ChinaQian Zhao, Yao Zhang & Shilong PiaoSchool of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, ChinaZaichun Zhu & Hui ZengKey Laboratory of Earth Surface System and Human—Earth Relations, Ministry of Natural Resources of China, Shenzhen Graduate School, Peking University, Shenzhen, ChinaZaichun Zhu & Hui ZengDepartment of Earth and Environment, Boston University, Boston, MA, USARanga B. MyneniCSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Catalonia, SpainJosep PeñuelasCREAF, Barcelona, Catalonia, SpainJosep PeñuelasState Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, ChinaShilong Piao More

  • in

    Rhizobial migration toward roots mediated by FadL-ExoFQP modulation of extracellular long-chain AHLs

    Identification of broad-host-range rhizoplane colonization genes by Tn-seqThis work was focused on SF2 harboring a typical multipartite genome of Sinorhizobium (chromosome, chromid, and symbiosis plasmid) [59]. To perform genome-wide survey of rhizoplane colonization genes of SF2 (Fig. 1), the input mutant library was inoculated on filter paper of plant culture dish, and output mutant libraries were collected from filter papers at 1 h post inoculation (F1h) and 7 days post inoculation (dpi; F7d), and from rhizoplane of cultivated soybean (CS7d), wild soybean (WS7d), rice (R7d), and maize (Z7d) at 7 dpi. To facilitate Tn-seq library construction, all output mutant libraries were subject to 32 h cultivation in the TY rich medium, with input libraries cultivated at the same condition as control (TY). Tn-seq revealed that transposon insertion density in three input and 21 output samples ranged from 57.03 to 86.99% (Table S3), which are above the threshold of 50% insertion density for a good Tn-seq dataset [49]. A reproducible rhizosphere effect was observed in three independent experiments (Fig. S1), i.e., rhizoplane samples (CS7d, WS7d, R7d, and Z7d) consistently formed distinct clusters compared to those of TY, F1h, and F7d. A considerable signature of three independent input libraries was also identified (Data S1, Data S2, and Fig. S1). These results highlight that stochastic variations among multiple independent input libraries should be considered before making conclusions on gene fitness, which has been largely overlooked in earlier studies based on just one input library [49].Based on gene fitness scores of rhizoplane samples (CS7d, WS7d, R7d and Z7d) compared to corresponding F1h datasets (Fig. S2A; Data S2), 93, 91, 127, and 206 genes were identified as rhizoplane colonization genes for test plants of cultivated soybean, wild soybean, maize, and rice, respectively, accounting for 1.4–3.1% of the SF2 genome (p values  More

  • in

    Conservation genomics of an endangered arboreal mammal following the 2019–2020 Australian megafire

    Ward, M. et al. Impact of 2019–2020 mega-fires on Australian fauna habitat. Nat. Ecol. Evol. 4(10), 1321–1326. https://doi.org/10.1038/s41559-020-1251-1 (2020).Article 

    Google Scholar 
    Legge, S. et al. Estimates of the impacts of the 2019–20 fires on populations of native animal species, Brisbane (2021).Yibo, H. et al. Genomic evidence for two phylogenetic species and long-term population bottlenecks in red pandas. Sci. Adv. 6(9), eaax5751. https://doi.org/10.1126/sciadv.aax5751 (2022).Article 

    Google Scholar 
    Grossen, C., Guillaume, F., Keller, L. F. & Croll, D. Purging of highly deleterious mutations through severe bottlenecks in Alpine ibex. Nat. Commun. 11(1), 1001. https://doi.org/10.1038/s41467-020-14803-1 (2020).Article 
    ADS 

    Google Scholar 
    van Aalst, M. K. The impacts of climate change on the risk of natural disasters. Disasters 30(1), 5–18. https://doi.org/10.1111/j.1467-9523.2006.00303.x (2006).Article 

    Google Scholar 
    Banholzer, S., Kossin, J. & Donner, S. The impact of climate change on natural disasters. In Reducing Disaster: Early Warning Systems For Climate Change (eds Singh, A. & Zommers, Z.) 21–49 (Springer Netherlands, 2014). https://doi.org/10.1007/978-94-017-8598-3_2.Chapter 

    Google Scholar 
    Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to Conservation Genetics 2nd edn. (Cambridge University Press, 2010).Book 

    Google Scholar 
    Bouzat, J. L. Conservation genetics of population bottlenecks: The role of chance, selection, and history. Conserv. Genet. 11(2), 463–478. https://doi.org/10.1007/s10592-010-0049-0 (2010).Article 

    Google Scholar 
    Leigh, D. M., Hendry, A. P., Vázquez-Domínguez, E. & Friesen, V. L. Estimated six per cent loss of genetic variation in wild populations since the industrial revolution. Evol. Appl. 12(8), 1505–1512. https://doi.org/10.1111/eva.12810 (2019).Article 

    Google Scholar 
    Willi, Y., Van Buskirk, J. & Hoffmann, A. A. Limits to the adaptive potential of small populations. Annu. Rev. Ecol. Evol. Syst. 37(1), 433–458 (2006).Article 

    Google Scholar 
    Tanaka, M. M., Wahl, L. M. & Wahl, L. M. Surviving environmental change: When increasing population size can increase extinction risk. Proc. R. Soc. B 289, 20220439. https://doi.org/10.1098/rspb.2022.0439 (2022).Article 

    Google Scholar 
    Gomulkiewicz, R. & Holt, R. D. When does evolution by natural selection prevent extinction?. Evolution 49(1), 201–207. https://doi.org/10.1111/j.1558-5646.1995.tb05971.x (1995).Article 

    Google Scholar 
    Bell, G. Evolutionary rescue. Annu. Rev. Ecol. Evol. Syst. 48(1), 605–627. https://doi.org/10.1146/annurev-ecolsys-110316-023011 (2017).Article 

    Google Scholar 
    Wood, J. L. A., Yates, M. C. & Fraser, D. J. Are heritability and selection related to population size in nature? Meta-analysis and conservation implications. Evol. Appl. 9(5), 640–657. https://doi.org/10.1111/eva.12375 (2016).Article 

    Google Scholar 
    Sgrò, C. M., Lowe, A. J. & Hoffmann, A. A. Building evolutionary resilience for conserving biodiversity under climate change. Evol. Appl. 4(2), 326–337 (2011).Article 

    Google Scholar 
    Hohenlohe, P. A., Funk, W. C. & Rajora, O. P. Population genomics for wildlife conservation and management. Mol. Ecol. 30(1), 62–82. https://doi.org/10.1111/mec.15720 (2021).Article 

    Google Scholar 
    Walters, A. D. & Schwartz, M. K. Population genomics for the management of wild vertebrate populations. In Population Genomics: Wildlife 419–436 (Springer, 2020).Chapter 

    Google Scholar 
    Willi, Y. et al. Conservation genetics as a management tool: The five best-supported paradigms to assist the management of threatened species. Proc. Natl. Acad. Sci. USA 119(1), 1–10. https://doi.org/10.1073/pnas.2105076119 (2022).Article 

    Google Scholar 
    Moore, J. F. et al. The potential and practice of arboreal camera trapping. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13666 (2021).Article 

    Google Scholar 
    Frankham, R. Challenges and opportunities of genetic approaches to biological conservation. Biol. Conserv. 143(9), 1919–1927. https://doi.org/10.1016/j.biocon.2010.05.011 (2010).Article 

    Google Scholar 
    Allendorf, F. W., Luikart, G. H. & Aitken, S. N. Conservation and the Genetics of Populations 2nd edn. (Wiley, 2012).
    Google Scholar 
    Franklin, I. Evolutionary change in small populations. In Conservation Biology—An Evolutionary-Ecological Perspective 135–149 (Sinauer Associates, 1980).
    Google Scholar 
    Soulé, M. E. Thresholds for survival: maintaining fitness and evolutionary potential. In Conservation Biology: An Evolutionary-Ecological Perspective 151–169 (Sinauer, 1980).
    Google Scholar 
    Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol. Conserv. https://doi.org/10.1016/J.BIOCON.2020.108654 (2020).Article 

    Google Scholar 
    McGregor, D. C. et al. Genetic evidence supports three previously described species of greater glider, Petauroides volans, P. minor, and P. armillatus. Sci. Rep. 10(1), 1–11. https://doi.org/10.1038/s41598-020-76364-z (2020).Article 

    Google Scholar 
    Hogg, C. J. et al. Threatened species initiative: Empowering conservation action using genomic resources. Proc. Natl. Acad. Sci. USA 119(4), e2115643118. https://doi.org/10.1073/pnas.2115643118 (2022).Article 

    Google Scholar 
    Pierson, J. C. et al. Genetic factors in threatened species recovery plans on three continents. Front. Ecol. Environ. 14(8), 433–440. https://doi.org/10.1002/fee.1323 (2016).Article 

    Google Scholar 
    Harris, J. M. & Maloney, K. S. S. Petauroides volans (Diprotodontia: Pseudocheiridae). Mamm. Species 42(866), 207–219. https://doi.org/10.1644/866.1 (2010).Article 

    Google Scholar 
    Kavanagh, R. P. & Lambert, M. J. Food selection by the greater glider, Petauroides volans: Is foliar nitrogen a determinant of habitat quality?. Austral. Wildl. Res. 17(3), 285–299 (1990).Article 

    Google Scholar 
    Youngentob, K. N. et al. Foliage chemistry influences tree choice and landscape use of a gliding marsupial folivore. J. Chem. Ecol. 37(1), 71–84. https://doi.org/10.1007/s10886-010-9889-9 (2011).Article 

    Google Scholar 
    Jensen, L. M., Wallis, I. R. & Foley, W. J. The relative concentrations of nutrients and toxins dictate feeding by a vertebrate browser, the greater glider Petauroides volans. PLoS ONE 10(5), 1–12. https://doi.org/10.1371/journal.pone.0121584 (2015).Article 

    Google Scholar 
    Kehl, J. & Borsboom, A. Home range, den tree use and activity patterns in the greater glider, Petauroides volans. Possums Gliders 229–236 (1984).Goldingay, R. L. Characteristics of tree hollows used by Australian arboreal and scansorial mammals. Aust. J. Zool. 59(5), 277–294 (2012).Article 

    Google Scholar 
    Eyre, T. J. Regional habitat selection of large gliding possums at forest stand and landscape scales in southern Queensland, Australia: I. Greater glider (Petauroides volans). For. Ecol. Manag 235(1–3), 270–282. https://doi.org/10.1016/j.foreco.2006.08.338 (2006).Article 

    Google Scholar 
    Kavanagh, R. P. & Bamkin, K. L. Distribution of nocturnal forest birds and mammals in relation to the logging mosaic in south-eastern New South Wales, Australia. Biol. Conserv. 71(1), 41–53. https://doi.org/10.1016/0006-3207(94)00019-M (1995).Article 

    Google Scholar 
    Lindenmayer, D. B. et al. Fire severity and landscape context effects on arboreal marsupials. Biol. Conserv. 167, 137–148 (2013).Article 

    Google Scholar 
    May-Stubbles, J. C., Gracanin, A. & Mikac, K. M. Increasing fire severity negatively affects greater glider density. Wildl. Res. https://doi.org/10.1071/wr21091 (2022).Article 

    Google Scholar 
    Smith, P. & Smith, J. Decline of the greater glider (Petauroides volans) in the lower Blue Mountains, New South Wales. Aust. J. Zool. 66(2), 103–114. https://doi.org/10.1071/ZO18021 (2019).Article 

    Google Scholar 
    Kearney, M. R., Wintle, B. A. & Porter, W. P. Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conserv. Lett. 3(3), 203–213. https://doi.org/10.1111/j.1755-263X.2010.00097.x (2010).Article 

    Google Scholar 
    Wagner, B. et al. Climate change drives habitat contraction of a nocturnal arboreal marsupial at its physiological limits. Ecosphere 11(10), e03262 (2020).Article 

    Google Scholar 
    McLean, C. M., Kavanagh, R. P., Penman, T. & Bradstock, R. The threatened status of the hollow dependent arboreal marsupial, the greater glider (Petauroides volans), can be explained by impacts from wildfire and selective logging. For. Ecol. Manag. 415, 19–25 (2018).Article 

    Google Scholar 
    Lindenmayer, D. B. et al. Conservation conundrums and the challenges of managing unexplained declines of multiple species. Biol. Conserv. 221, 279–292. https://doi.org/10.1016/j.biocon.2018.03.007 (2018).Article 

    Google Scholar 
    Lindenmayer, D. B. B. et al. How to make a common species rare: a case against conservation complacency. Biol. Conserv. 144(5), 1663–1672. https://doi.org/10.1016/j.biocon.2011.02.022 (2011).Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species (2022) https://www.iucnredlist.org (Accessed 17 Nov 2022).Rübsamen, K., Hume, I. D., Foley, W. J. & Rübsamen, U. Implications of the large surface area to body mass ratio on the heat balance of the greater glider (Petauroides volans: Marsupialia). J. Comp. Physiol. B. 154(1), 105–111. https://doi.org/10.1007/BF00683223 (1984).Article 

    Google Scholar 
    Wintle, B. A., Legge, S. & Woinarski, J. C. Z. After the megafires: What next for Australian wildlife?. Trends Ecol. Evol. 35(9), 753–757. https://doi.org/10.1016/j.tree.2020.06.009 (2020).Article 

    Google Scholar 
    Legge, S. et al. Estimates of the impacts of the 2019–2020 fires on populations of native animal species, Brisbane (2021).Hoffmann, A. A. & Sgró, C. M. Climate change and evolutionary adaptation. Nature 470(7335), 479–485. https://doi.org/10.1038/nature09670 (2011).Article 
    ADS 

    Google Scholar 
    Hoffmann, A. A., Sgrò, C. M. & Kristensen, T. N. Revisiting adaptive potential, population size, and conservation. Trends Ecol. Evol. 32(7), 506–517. https://doi.org/10.1016/j.tree.2017.03.012 (2017).Article 

    Google Scholar 
    Rossetto, M. et al. A conservation genomics workflow to guide practical management actions. Glob. Ecol. Conserv. 26, e01492. https://doi.org/10.1016/j.gecco.2021.e01492 (2021).Article 

    Google Scholar 
    Mcmahon, B. J., Teeling, E. C. & Höglund, J. How and why should we implement genomics into conservation?. Evol. Appl. 7(9), 999–1007. https://doi.org/10.1111/eva.12193 (2014).Article 

    Google Scholar 
    Hoffmann, A. et al. A framework for incorporating evolutionary genomics into biodiversity conservation and management. Clim. Change Responses https://doi.org/10.1186/s40665-014-0009-x (2015).Article 

    Google Scholar 
    Lindenmayer, D. B. et al. Integrating demographic and genetic studies of the greater glider Petauroides volans in fragmented forests: predicting movement patterns and rates for future testing. Pac. Conserv. Biol. 5(1), 2–8 (1999).Article 

    Google Scholar 
    Taylor, A. C., Kraaijeveld, K. & Lindenmayer, D. B. Microsatellites for the greater glider, Petauroides volans. Mol. Ecol. Notes 2(1), 57–59. https://doi.org/10.1046/j.1471-8286.2002.00148.x (2002).Article 

    Google Scholar 
    Taylor, A. C., Tyndale-Biscoe, H. & Lindenmayer, D. B. Unexpected persistence on habitat islands: Genetic signatures reveal dispersal of a eucalypt-dependent marsupial through a hostile pine matrix. Mol. Ecol. 16(13), 2655–2666. https://doi.org/10.1111/j.1365-294X.2007.03331.x (2007).Article 

    Google Scholar 
    NSW Scientific Committee. Greater glider population in the Mount Gibraltar Reserve area” endangered population listing. Final Determination to list an endangered ecological community under the Threatened Species Conservation Act 1995 (2015).NSW Scientific Committee. Greater glider, Petauroides volans, in the Eurobodalla local government area endangered population listing. Final Determination to list an endangered ecological community under the Threatened Species Conservation Act 1995. (2007).NSW Scientific Committee. Greater Glider population at Seven Mile Beach National Park Endangered population listing. Final Determination to list an endangered ecological community under the Threatened Species Conservation Act 1995 (2016).Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. The Action Plan for Australian Mammals 2012 (CSIRO Publishing, 2014).Book 

    Google Scholar 
    W. and the E. Department of Agriculture. Conservation advice for Petauroides volans (Greater Glider (southern)), Canberra (2021).Gracanin, A., Pearce, A., Hofman, M., Knipler, M. & Mikac, K. Greater glider (Petauroides volans) live capture methods. Austral. Mammal. 44(2), 280–286 (2021).Article 

    Google Scholar 
    Comport, S. S., Ward, S. J. & Foley, W. J. Home ranges, time budgets and food-tree use in a high-density tropical population of greater gliders, Petauroides volans minor (Pseudocheiridae: Marsupialia). Wildl. Res. 23(4), 401–419. https://doi.org/10.1071/WR9960401 (1996).Article 

    Google Scholar 
    Henry, S. R. Social organisation of the greater glider (Petauroides volans) in Victoria. In Possums and Gliders (eds Smith, A. P. & Hume, I. D.) 221–228 (1984).Kilian, A. et al. Diversity arrays technology: A generic genome profiling technology on open platforms. Methods Mol. Biol. 888, 67–89. https://doi.org/10.1007/978-1-61779-870-2_5 (2012).Article 

    Google Scholar 
    Gruber, B., Unmack, P. J., Berry, O. F. & Georges, A. dartr: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 18(3), 691–699. https://doi.org/10.1111/1755-0998.12745 (2018).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    Privé, F., Luu, K., Vilhjálmsson, B. J. & Blum, M. G. B. Performing highly efficient genome scans for local adaptation with R package pcadapt version 4. Mol. Biol. Evol. 37(7), 2153–2154. https://doi.org/10.1093/molbev/msaa053 (2020).Article 

    Google Scholar 
    Luu, K., Bazin, E. & Blum, M. G. B. pcadapt: An R package to perform genome scans for selection based on principal component analysis. Mol. Ecol. Resour. 17(1), 67–77. https://doi.org/10.1111/1755-0998.12592 (2017).Article 

    Google Scholar 
    Dabney, A., Storey, J. D. & Warnes, G. R. qvalue: Q-value estimation for false discovery rate control. R package version, vol. 1, no. 0 (2010).Oksanen, J. et al. Package “vegan”. Community ecology package, version, vol. 2, no. 9, 1–295 (2013).Pratt, E. A. L. et al. Seascape genomics of coastal bottlenose dolphins along strong gradients of temperature and salinity. Mol. Ecol. 31(8), 2223–2241 (2022).Article 

    Google Scholar 
    Forester, B. R., Lasky, J. R., Wagner, H. H. & Urban, D. L. Comparing methods for detecting multilocus adaptation with multivariate genotype–environment associations. Mol. Ecol. 27(9), 2215–2233 (2018).Article 

    Google Scholar 
    Zimmerman, S. J. et al. Environmental gradients of selection for an alpine-obligate bird, the white-tailed ptarmigan (Lagopus leucura). Heredity 126(1), 117–131 (2021).Article 

    Google Scholar 
    Lott, M. J. et al. Future‐proofing the koala: Synergising genomic and environmental data for effective species management. Mol. Ecol. (2022).Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315 (2017).Article 

    Google Scholar 
    Goudet, J. HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5(1), 184–186. https://doi.org/10.1111/J.1471-8286.2004.00828.X (2005).Article 

    Google Scholar 
    Nei, M. Molecular Evolutionary Genetics (Columbia University Press, 1987).Book 

    Google Scholar 
    Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 11(1), 5–18. https://doi.org/10.1111/J.1755-0998.2010.02927.X (2011).Article 

    Google Scholar 
    Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to Conservation Genetics (Cambridge University Press, 2002). https://doi.org/10.1016/j.foreco.2003.12.001.Book 

    Google Scholar 
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38(6), 1358. https://doi.org/10.2307/2408641 (1984).Article 

    Google Scholar 
    Pembleton, L. W., Cogan, N. O. I. & Forster, J. W. StAMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol. Ecol. Resour. 13(5), 946–952. https://doi.org/10.1111/1755-0998.12129 (2013).Article 

    Google Scholar 
    Bonferroni, S. Teoria statistica delle classi e calcolo delle probabilita. cir.nii.ac.jp, vol. 8, 3–62 (1936).Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155(2), 945–959 (2000).Article 

    Google Scholar 
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11(1), 1–15. https://doi.org/10.1186/1471-2156-11-94/FIGURES/9 (2010).Article 

    Google Scholar 
    Janes, J. K. et al. The K = 2 conundrum. Mol. Ecol. 26(14), 3594–3602. https://doi.org/10.1111/MEC.14187 (2017).Article 

    Google Scholar 
    Miller, J. M., Cullingham, C. I. & Peery, R. M. The influence of a priori grouping on inference of genetic clusters: Simulation study and literature review of the DAPC method. Heredity 125, 269–280. https://doi.org/10.1038/s41437-020-0348-2 (2020).Article 

    Google Scholar 
    Cullingham, C. I. et al. Confidently identifying the correct K value using the ΔK method: When does K = 2?. Mol. Ecol. 29(5), 862–869. https://doi.org/10.1111/mec.15374 (2020).Article 

    Google Scholar 
    Pritchard, J., Wen, X. & Falush, D. Documentation for STRUCTURE software: version 2.3|Request PDF (2003).Earl, D. A. & VonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4(2), 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).Article 

    Google Scholar 
    Stankiewicz, K. H., Vasquez Kuntz, K. L. & Baums, I. B. The impact of estimator choice: Disagreement in clustering solutions across K estimators for Bayesian analysis of population genetic structure across a wide range of empirical data sets. Mol. Ecol. Resour. 22(3), 1135–1148. https://doi.org/10.1111/1755-0998.13522 (2022).Article 

    Google Scholar 
    Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24(11), 1403–1405. https://doi.org/10.1093/bioinformatics/btn129 (2008).Article 

    Google Scholar 
    Harmon, L. J. & Braude, S. Conservation of small populations: effective population sizes, inbreeding, and the 50/500 rule. In An Introduction to Methods and Models in Ecology, Evolution, and Conservation Biology 125–138 (Princeton University Press, 2010).Chapter 

    Google Scholar 
    Do, C. et al. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne ) from genetic data. Mol. Ecol. Resour. 14(1), 209–214. https://doi.org/10.1111/1755-0998.12157 (2014).Article 

    Google Scholar 
    Waples, R. S. & Do, C. LDNE: A program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Resour. 8(4), 753–756. https://doi.org/10.1111/J.1755-0998.2007.02061.X (2008).Article 

    Google Scholar 
    Potvin, D. A. et al. Genetic erosion and escalating extinction risk in frogs with increasing wildfire frequency. J. Appl. Ecol. 54(3), 945–954. https://doi.org/10.1111/1365-2664.12809 (2017).Article 

    Google Scholar 
    Catullo, R. A. et al. Benchmarking taxonomic and genetic diversity after the fact: Lessons learned from the catastrophic 2019–2020 Australian bushfires. Front. Ecol. Evol. 9, 292. https://doi.org/10.3389/FEVO.2021.645820/BIBTEX (2021).Article 
    ADS 

    Google Scholar 
    DPIE. Fire Extent and Severity Mapping (FESM) 2019/20 (2021) https://datasets.seed.nsw.gov.au/dataset/fire-extent-and-severity-mapping-fesm-2019-20 (Accessed 23 June 2021).Banks, S. C. et al. Fire severity and landscape context effects on arboreal marsupials. Biol. Conserv. 167, 137–148. https://doi.org/10.1016/j.biocon.2013.07.028 (2013).Article 

    Google Scholar 
    Andrew, D., Koffel, D., Harvey, G., Griffiths, K. & Fleming, M. Rediscovery of the greater glider Petauroides volans (Marsupialia: Petauroidea) in the Royal National Park, NSW. Austral. Zool. 37(1), 23–28. https://doi.org/10.7882/AZ.2013.008 (2014).Article 

    Google Scholar 
    Lindenmayer, D. et al. What 15 years of monitoring is telling us about mammals in Booderee National Park (2018).Chafer, C. J. et al. The post-fire measurement of fire severity and intensity in the Christmas 2001 Sydney wildfires. Int. J. Wildland Fire 13(2), 227–240. https://doi.org/10.1071/WF03041 (2004).Article 

    Google Scholar 
    Vinson, S. G., Johnson, A. P. & Mikac, K. M. Current estimates and vegetation preferences of an endangered population of the vulnerable greater glider at Seven Mile Beach National Park. Austral. Ecol. 46(2), 303–314. https://doi.org/10.1111/aec.12979 (2020).Article 

    Google Scholar 
    Kavanagh, R. & Wheeler, R. Home-range of the greater glider Petauroides volans in tall montane forest of southeastern New South Wales, and changes following logging. In The Biology of Possums and Gliders (eds Goldingay, R. & Jackson, S.) 413–425 (Surrey Beatty & Sons, 2004).
    Google Scholar 
    Fleay, D. Gliders of the Gum Trees: The Most Beautiful and Enchanting Australian Marsupials (1947).Wright, S. Isolation by distance under diverse systems of mating. Genetics 31, 39–59 (1946).Article 

    Google Scholar 
    McGowan, B. & Wright, C. Braidwood’s enduring Chinese heritage. Historic Environ. 23(3), 34–39 (2011).
    Google Scholar 
    Pérez, I. et al. What is wrong with current translocations? A review and a decision-making proposal. Front. Ecol. Environ. 10(9), 494–501 (2012).Article 

    Google Scholar 
    Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22(6), 1424–1442. https://doi.org/10.1111/j.1523-1739.2008.01044.x (2008).Article 

    Google Scholar 
    Franklin, I. ‘Evolutionary change in small populations. In Conservation Biology—An Evolutionary-Ecological Perspective 135–149 (Sinauer Associates, 1980).
    Google Scholar 
    Frankham, R., Bradshaw, C. J. A. & Brook, B. W. Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol. Conserv. 170, 56–63. https://doi.org/10.1016/J.BIOCON.2013.12.036 (2014).Article 

    Google Scholar 
    Seaborn, T. et al. Integrating genomics in population models to forecast translocation success. Restor. Ecol. 29(4), e13395. https://doi.org/10.1111/rec.13395 (2021).Article 

    Google Scholar 
    Christie, M. R. & Knowles, L. L. Habitat corridors facilitate genetic resilience irrespective of species dispersal abilities or population sizes. Evol. Appl. 8(5), 454–463 (2015).Article 

    Google Scholar 
    Office of Environment and Heritage. Woody extent and foliage projective cover (2016) http://data.auscover.org.au/xwiki/bin/view/Product+pages/nsw+5m+woody+extent+and+fpc (Accessed 29 Oct 2020).Ashman, K. R., Watchorn, D. J., Lindenmayer, D. B. & Taylor, M. F. J. Is Australia’s environmental legislation protecting threatened species? A case study of the national listing of the greater glider. Pac. Conserv. Biol. 1980, 277–289. https://doi.org/10.1071/PC20077 (2021).Article 

    Google Scholar 
    ESRI. ArcGIS 10.7.1. (Environmental Systems Research Institute, 2011). More

  • in

    Grassland versus forest dwelling rodents as indicators of environmental contamination with the zoonotic nematode Toxocara spp.

    Magnaval, J.-F., Glickman, L. T., Dorchies, P. & Morassin, B. Highlights of human toxocariasis. Korean J. Parasitol. 39, 1 (2001).Article 

    Google Scholar 
    Parise, M. E., Hotez, P. J. & Slutsker, L. Neglected parasitic infections in the United States: Needs and opportunities. Am. J. Trop. Med. Hyg. 90, 783–785 (2014).Article 

    Google Scholar 
    Holland, C. V. Knowledge gaps in the epidemiology of Toxocara: The enigma remains. Parasitology 144, 81–94 (2017).Article 

    Google Scholar 
    Richards, D. T. & Lewis, J. W. Fecundity and egg output by Toxocara canis in the red fox Vulpes vulpes. J. Helminthol. 75, 157–164 (2001).
    Google Scholar 
    Glickman, L. T. & Schantz, P. M. Epidemiology and pathogenesis of zoonotic toxocariasis. Epidemiol. Rev. 3, 230–250 (1981).Article 

    Google Scholar 
    Keegan, J. D. & Holland, C. V. A comparison of Toxocara canis embryonation under controlled conditions in soil and hair. J. Helminthol. 87, 78–84 (2013).Article 

    Google Scholar 
    Overgaauw, P. A. M. & Nederland, V. Aspects of toxocara epidemiology: Toxocarosis in dogs and cats. Crit. Rev. Microbiol. 23, 233–251 (1997).Article 

    Google Scholar 
    Strube, C., Heuer, L. & Janecek, E. Toxocara spp. infections in paratenic hosts. Vet. Parasitol. 193, 375–89 (2013).Parsons, J. C. Ascarid infections of cats and dogs. Vet. Clin. N. Am. Small Anim. Pract. 17, 1307–1339 (1987).Article 

    Google Scholar 
    Brunaská, M., Dubinský, P. & Reiterová, K. Toxocara canis: Ultrastructural aspects of larval moulting in the maturing eggs. Int. J. Parasitol. 25, 683–690 (1995).Article 

    Google Scholar 
    Dubinsky, P., Havasiova-Reiterova, K., Petko, B., Hovorka, I. & Tomasovicova, O. Role of small mammals in the epidemiology of toxocariasis. Parasitology 110(Pt 2), 187–193 (1995).Ma, G. et al. Human toxocariasis. Lancet Infect. Dis. 18, e14–e24 (2018).Article 

    Google Scholar 
    Despommier, D. Toxocariasis: clinical aspects, epidemiology, medical ecology, and molecular aspects. Clin. Microbiol. Rev. 16, 265–272 (2003).Article 

    Google Scholar 
    Hotez, P. J. & Wilkins, P. P. Toxocariasis: America’s Most Common Neglected Infection of Poverty and a Helminthiasis of Global Importance?. PLoS Negl. Trop. Dis. 3, e400 (2009).Article 

    Google Scholar 
    Fan, C.-K., Holland, C. V., Loxton, K. & Barghouth, U. Cerebral toxocariasis: Silent progression to neurodegenerative disorders?. Clin. Microbiol. Rev. 28, 663–686 (2015).Article 

    Google Scholar 
    Nathwani, D., Laing, R. B. S. & Currie, P. F. Covert toxocariasis—A cause of recurrent abdominal pain in childhood. Br. J. Clin. Pract. (1992).Rostami, A. et al. Seroprevalence estimates for toxocariasis in people worldwide: A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 13, e0007809 (2019).Article 

    Google Scholar 
    Borecka, A. & Kłapeć, T. Epidemiology of human toxocariasis in Poland—A review of cases 1978–2009. Ann. Agric. Environ. Med. 22, 28–31 (2015).Article 

    Google Scholar 
    Krasnov, B. R., Mouillot, D., Shenbrot, G. I., Khokhlova, I. S. & Poulin, R. Geographical variation in host specificity of fleas (Siphonaptera) parasitic on small mammals: The influence of phylogeny and local environmental conditions. Ecography 27, 787–797 (2004).Article 

    Google Scholar 
    Andreassen, H. P. et al. Population cycles and outbreaks of small rodents: Ten essential questions we still need to solve. Oecologia 195, 601–622 (2021).Article 
    ADS 

    Google Scholar 
    Ylönen, H. Vole cycles and antipredatory behaviour. Trends Ecol. Evol. https://doi.org/10.1016/0169-5347(94)90125-2 (1994).Article 

    Google Scholar 
    Hanski, I., Hansson, L. & Henttonen, H. Specialist predators, generalist predators, and the microtine rodent cycle. J. Anim. Ecol. https://doi.org/10.2307/5465 (1991).Article 

    Google Scholar 
    Martinez-Bakker, M. & Helm, B. The influence of biological rhythms on host–parasite interactions. Trends Ecol. Evol. 30, 314–326 (2015).Article 

    Google Scholar 
    Bajer, A., Pawelczyk, A., Behnke, J. M., Gilbert, F. S. & Sinski, E. Factors affecting the component community structure of haemoparasites in bank voles (Clethrionomys glareolus) from the Mazury Lake District region of Poland. Parasitology 122(Pt 1), 43–54 (2001).Article 

    Google Scholar 
    Behnke, J. M., Lewis, J. W., Zain, S. N. & Gilbert, F. S. Helminth infections in Apodemus sylvaticus in southern England: interactive effects of host age, sex and year on the prevalence and abundance of infections. J. Helminthol. 73, 31–44 (1999).Article 

    Google Scholar 
    Ferrari, N., Cattadori, I. M., Nespereira, J., Rizzoli, A. & Hudson, P. J. The role of host sex in parasite dynamics: Field experiments on the yellow-necked mouse Apodemus flavicollis. Ecol. Lett. 7, 88–94 (2003).Article 

    Google Scholar 
    Grzybek, M. et al. Long-term spatiotemporal stability and dynamic changes in helminth infracommunities of bank voles (Myodes glareolus) in NE Poland. Parasitology 142, 1722–1743 (2015).Article 

    Google Scholar 
    Reiterová, K. et al. Small rodents—permanent reservoirs of toxocarosis in different habitats of Slovakia. Helminthologia 50, (2013).Habig, B., Doellman, M. M., Woods, K., Olansen, J. & Archie, E. A. Social status and parasitism in male and female vertebrates: A meta-analysis. Sci. Rep. 8, 3629 (2018).Article 
    ADS 

    Google Scholar 
    Izhar, R. & Ben-Ami, F. Host age modulates parasite infectivity, virulence and reproduction. J. Anim. Ecol. 84, 1018–1028 (2015).Article 

    Google Scholar 
    Migalska, M. et al. Long term patterns of association between MHC and helminth burdens in the bank vole support Red Queen dynamics. Mol. Ecol. 31, 3400–3415 (2022).Article 

    Google Scholar 
    Grzybek, M. et al. Zoonotic viruses in three species of voles from Poland. Animals 10, 1820 (2020).Article 

    Google Scholar 
    Bajer, A. et al. Rodents as intermediate hosts of cestode parasites of mammalian carnivores and birds of prey in Poland, with the first data on the life-cycle of Mesocestoides melesi. Parasit. Vectors 13, 95 (2020).Article 

    Google Scholar 
    Rabalski, L. et al. Zoonotic spillover of SARS-CoV-2: Mink-adapted virus in humans. bioRxiv (2021). https://doi.org/10.1101/2021.03.05.433713.Rabalski, L. et al. Severe acute respiratory syndrome coronavirus 2 in Farmed Mink (Neovison vison) Poland. Emerg. Infect. Dis. 27, 2333–2339 (2021).Article 

    Google Scholar 
    Grzybek, M. et al. Seroprevalence of Trichinella spp. infection in bank voles (Myodes glareolus)—A long term study. Int. J. Parasitol. Parasites Wildl. 9, 144–148 (2019).Binder, F. et al. Heterogeneous Puumala orthohantavirus situation in endemic regions in Germany in summer 2019. Transbound Emerg. Dis. 67, 502–509 (2020).Article 

    Google Scholar 
    Tołkacz, K. et al. Prevalence, genetic identity and vertical transmission of Babesia microti in three naturally infected species of vole, Microtus spp. (Cricetidae). Parasit. Vectors 10, 1–12 (2017).Tołkacz, K. et al. Bartonella infections in three species of Microtus: Prevalence and genetic diversity, vertical transmission and the effect of concurrent Babesia microti infection on its success. Parasit. Vectors 11, 491 (2018).Article 

    Google Scholar 
    Behnke, J. M. et al. Variation in the helminth community structure in bank voles (Clethrionomys glareolus) from three comparable localities in the Mazury Lake District region of Poland. Parasitology 123, 401–414 (2001).Article 

    Google Scholar 
    Behnke, J. M. et al. Temporal and between-site variation in helminth communities of bank voles (Myodes glareolus) from N.E. Poland. 2. The infracommunity level. Parasitology 135, 999–1018 (2008).Behnke, J. M. et al. Temporal and between-site variation in helminth communities of bank voles (Myodes glareolus) from N.E. Poland. 1. Regional fauna and component community levels. Parasitology 135, 985–997 (2008).Tołkacz, K. et al. Prevalence, genetic identity and vertical transmission of Babesia microti in three naturally infected species of vole, Microtus spp. (Cricetidae). Parasit. Vectors 10, 66 (2017).Morris, P. A review of mammalian age determination methods. Mamm. Rev. 2, 69–104 (1972).Antolová, D. et al. Small mammals: Paratenic hosts for species of Toxocara in eastern Slovakia. J. Helminthol. 87, 52–58 (2013).Article 

    Google Scholar 
    Reiterová, K. et al. Small rodents—permanent reservoirs of toxocarosis in different habitats of Slovakia. Helminthologia 50, 20–26 (2013).Article 

    Google Scholar 
    Reperant, L. A., Hegglin, D., Tanner, I., Fischer, C. & Deplazes, P. Rodents as shared indicators for zoonotic parasites of carnivores in urban environments. Parasitology 136, 329–337 (2009).Article 

    Google Scholar 
    Savigny, D. H. In vitro maintenance of Toxocara canis larvae and a simple method for the production of Toxocara ES antigen for use in serodiagnostic tests for visceral larva migrans. J. Parasitol. 61, 781–782 (1975).Article 

    Google Scholar 
    Cuéllar, C., Fenoy, S. & Guillén, J. L. Cross-reactions of sera from Toxascaris leonina and Ascaris suum infected mice with Toxocara canis, Toxascaris leonina and Ascaris suum antigens. Int. J. Parasitol. 25, 731–739 (1995).Article 

    Google Scholar 
    Naguleswaran, A., Hemphill, A., Rajapakse, R. P. V. J. & Sager, H. Elaboration of a crude antigen ELISA for serodiagnosis of caprine neosporosis: Validation of the test by detection of Neospora caninum-specific antibodies in goats from Sri Lanka. Vet. Parasitol. 126, 257–262 (2004).Article 

    Google Scholar 
    Sokal, R. R. & Rohlf, F. J. Statistical Tables (Freeman, 1995).MATH 

    Google Scholar 
    Behnke, J. M. et al. Variation in the helminth community structure in bank voles (Clethrionomys glareolus) from three comparable localities in the mazury lake istrict region of Poland. Parasitology 123, 401–414 (2001).Article 

    Google Scholar 
    Grzybek, M., Bajer, A., Behnke-Borowczyk, J., Al-Sarraf, M. & Behnke, J. M. Female host sex-biased parasitism with the rodent stomach nematode Mastophorus muris in wild bank voles (Myodes glareolus). Parasitol. Res. 114, 523–533 (2014).Article 

    Google Scholar 
    Grzybek, M. et al. Seroprevalence of TBEV in bank voles from Poland-a long-term approach. Emerg. Microbes Infect. 7, 145 (2018).Article 

    Google Scholar 
    Pullan, R. L., Smith, J. L., Jasrasaria, R. & Brooker, S. J. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit Vectors 7, 37 (2014).Article 

    Google Scholar 
    GBD 2017 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1859–1922 (2018).Reperant, L. A., Hegglin, D., Tanner, I., Fisher, C. & Deplazes, P. Rodents as shared indicators for zoonotic parasites of carnivores in urban environments. Parasitology 136, 329–337 (2009).Article 

    Google Scholar 
    Antolová, D., Reiterová, K., Miterpáková, M., Stanko, M. & Dubinský, P. Circulation of Toxocara spp. in suburban and rural ecosystems in the Slovak Republic. Vet. Parasitol 126, 317–324 (2004).Reiterová, K. et al. Small rodents—permanent reservoirs of toxocarosis in different habitats of Slovakia. Helminthologia (Poland) 50, 20–26 (2013).Article 

    Google Scholar 
    Dvorožňáková, E., Kołodziej-Sobocińska, M., Hurníková, Z., Víchová, B. & Zub, K. Prevalence of zoonotic pathogens in wild rodents living in the Białowieża Primeval Forest, Poland. Ann. Parasitol. 62 (2016).Dubinský, P., Havasiova-Reiterova, K., Peťko, B., Hovorka, I. & Tomašovičová, O. Role of small mammals in the epidemiology of toxocariasis. Parasitology 110, 187–193 (1995).Article 

    Google Scholar 
    Antolová, D., Reiterová, K., Miterpáková, M., Stanko, M. & Dubinský, P. Circulation of Toxocara spp. in suburban and rural ecosystems in the Slovak Republic. Vet. Parasitol. 126, 317–24 (2004).Hildebrand, J., Zalesny, G., Okulewicz, A. & Baszkiewicz, K. Preliminary studies on the zoonotic importance of rodents as a reservoir of toxocariasis from recreation grounds in Wroclaw (Poland). Helminthologia 46, 80–84 (2009).Article 

    Google Scholar 
    Dvorožňáková, E., Kołodziej-Sobocińska, M., Hurníková, Z., Víchová, B. & Zub, K. Prevalence of zoonotic pathogens in wild rodents living in the Białowieża Primeval Forest Poland. Ann. Parasitol. 62, 183 (2016).
    Google Scholar 
    Azam, D., Ukpai, O. M., Said, A., Abd-Allah, G. A. & Morgan, E. R. Temperature and the development and survival of infective Toxocara canis larvae. Parasitol. Res. 110, 649–656 (2012).Article 

    Google Scholar 
    Kloch, A., Bednarska, M. & Bajer, A. Intestinal macro- and microparasites of wolves (Canis lupus L.) from north-eastern Poland recovered by coprological study. Ann. Agric. Environ. Med. 12, 237–45 (2005).Mierzejewska, E. J. et al. The efficiency of live-capture traps for the study of Red Fox (Vulpes vulpes) cubs: A three-year study in Poland. Animals 10, 374 (2020).Article 

    Google Scholar 
    Karamon, J. et al. Intestinal helminths of raccoon dogs (Nyctereutes procyonoides) and red foxes (Vulpes vulpes) from the Augustów Primeval Forest (north-eastern Poland). J. Vet. Res. (Poland) 60, 273–277 (2016).Article 

    Google Scholar 
    Cisek, A., Ramisz, A., Balicka-Ramisz, A., Pilarczyk, B. & Laurans, L. The prevalence of Toxocara canis (Werner, 1782) in dogs and red foxes in north-west Poland. Wiad Parazytol 50, 641–646 (2004).
    Google Scholar 
    Jarošová, J., Antolová, D., Lukáč, B. & Maďari, A. A Survey of Intestinal Helminths of dogs in Slovakia with an emphasis on zoonotic species. Animals 11, 3000 (2021).Article 

    Google Scholar 
    Kidawa, D. & Kowalczyk, R. The effects of sex, age, season and habitat on diet of the red fox Vulpes vulpes in northeastern Poland. Acta Theriol. (Warsz) 56, 209–218 (2011).Article 

    Google Scholar 
    Grzybek, M. et al. Seroprevalence of Trichinella spp. infection in bank voles (Myodes glareolus)—A long term study. Int. J. Parasitol. Parasites Wildl. (2019). https://doi.org/10.1016/j.ijppaw.2019.03.005.Grzybek, M. et al. Seroprevalence of Toxoplasma gondii among Sylvatic Rodents in Poland. Animals 11, 1048 (2021).Article 

    Google Scholar 
    Maciag, L., Morgan, E. R. & Holland, C. Toxocara: Time to let cati ‘out of the bag’. Trends Parasitol. 38, 280–289 (2022).Article 

    Google Scholar 
    Foreman-Worsley, R., Finka, L. R., Ward, S. J. & Farnworth, M. J. Indoors or outdoors? an international exploration of owner demographics and decision making associated with lifestyle of pet cats. Animals 11, 253 (2021).Article 

    Google Scholar 
    Liberg, O. Food habits and prey impact by feral and house-based domestic cats in a rural area in southern Sweden. J. Mammal. 65, 424–432 (1984).Article 

    Google Scholar 
    Krücken, J. et al. Small rodents as paratenic or intermediate hosts of carnivore parasites in Berlin Germany. PLoS ONE 12, e0172829 (2017).Article 

    Google Scholar 
    Dunsmore, J. D., Thompson, R. C. A. & Bates, I. A. The accumulation of Toxocara canis larvae in the brains of mice. Int. J. Parasitol. 13, 517–521 (1983).Article 

    Google Scholar 
    Nijsse, R., Mughini-Gras, L., Wagenaar, J. A., Franssen, F. & Ploeger, H. W. Environmental contamination with Toxocara eggs: a quantitative approach to estimate the relative contributions of dogs, cats and foxes, and to assess the efficacy of advised interventions in dogs. Parasit. Vectors 8, 397 (2015).Article 

    Google Scholar 
    Dunsmore, J. D., Thompson, R. C. A. & Bates, I. A. Prevalence and survival of Toxocara canis eggs in the urban environment of Perth Australia. Vet. Parasitol. 16, 303–311 (1984).Article 

    Google Scholar 
    Duscher, G. G., Leschnik, M., Fuehrer, H.-P. & Joachim, A. Wildlife reservoirs for vector-borne canine, feline and zoonotic infections in Austria. Int. J. Parasitol. Parasites Wildl. 4, 88–96 (2015).Article 

    Google Scholar 
    Ghai, R. R. et al. A generalizable one health framework for the control of zoonotic diseases. Sci. Rep. 12, 8588 (2022).Article 
    ADS 

    Google Scholar 
    Grzybek, M. et al. Zoonotic virus seroprevalence among bank voles, Poland, 2002–2010. Emerg. Infect. Dis. 25, 1607–1609 (2019).Article 

    Google Scholar  More