More stories

  • in

    Permafrost in the Cretaceous supergreenhouse

    Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 264 (2019).Article 
    ADS 

    Google Scholar 
    Murton, J. B. What and where are periglacial landscapes? Permaf. Periglac. Process. 32, 186–212 (2021).Article 

    Google Scholar 
    Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Reyes, F. & Lougheed, V. L. Rapid nutrient release from permafrost thaw in Arctic aquatic ecosystems. Arct. Antarct. Alp. Res. 47, 35–48 (2015).Article 

    Google Scholar 
    Fouché, J., Christiansen, C. T., Lafrenière, M. J., Grogan, P. & Lamoureux, S. F. Canadian permafrost stores large pools of ammonium and optically distinct dissolved organic matter. Nat. Commun. 11, 4500 (2020).Article 
    ADS 

    Google Scholar 
    Alley, N. F., Hore, S. B. & Frakes, L. A. Glaciations at high-latitude Southern Australia during the Early Cretaceous. Aust. J. Earth Sci. 67, 1045–1095 (2020).Article 
    ADS 

    Google Scholar 
    Hore, S. B., Hill, S. M. & Alley, N. F. Early Cretaceous glacial environment and paleosurface evolution within the Mount Painter Inlier, northern Flinders Ranges, South Australia. Aust. J. Earth Sci. 67, 1117–1160 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodríguez-López, J. P. et al. Glacial dropstones in the western Tethys during the late Aptian–early Albian cold snap: Palaeoclimate and palaeogeographic implications for the mid-Cretaceous. Palaeogeogr. Palaeoclimatol. Palaeoecol. 452, 11–27 (2016).Article 

    Google Scholar 
    Schneider, S. et al. Macrofauna and biostratigraphy of the Rollrock Section, northern Ellesmere Island, Canadian Arctic Islands e a comprehensive high latitude archive of the Jurassic–Cretaceous transition. Cret. Res. 114, 104508 (2020).Article 

    Google Scholar 
    Jeans, C. V. & Platten, I. M. The erratic rocks of the Upper Cretaceous Chalk of England: how did they get there, ice transport or other means? Acta Geol. Pol. 71, 287–304 (2021).
    Google Scholar 
    Wu, C. & Rodríguez-López, J. P. Cryospheric processes in Quaternary and Cretaceous hyper-arid oases. Sedimentology 68, 755–770 (2021).Article 

    Google Scholar 
    Grasby, S. E., McCune, G. E., Beauchamp, B. & Galloway, J. M. Lower Cretaceous cold snaps led to widespread glendonite occurrences in the Sverdrup Basin, Canadian High Arctic. GSA Bull. 129, 771–787 (2017).Article 
    CAS 

    Google Scholar 
    Galloway, J. M. et al. Finding the VOICE: organic carbon isotope chemostratigraphy of the Late Jurassic–Early Cretaceous of Arctic Canada. Geol. Mag. 1–15 https://doi.org/10.1017/S0016756819001316 (2019).Rogov, M. et al. Database of global glendonite and ikaite records throughout the Phanerozoic. Earth Syst. Sci. Data 13, 343–356 (2021).Article 
    ADS 

    Google Scholar 
    Price, G. D. The evidence and implications of polar ice during the Mesozoic. Earth–Sci. Rev. 48, 183–210 (1999).Article 
    ADS 

    Google Scholar 
    Savidge, R. A. Evidence of early glaciation of southeastern Beringia. Can. J. Earth Sci. 57, 199–226 (2020).Article 
    ADS 

    Google Scholar 
    Wang, Y. et al. Relict sand wedges suggest a high altitude and cold temperature during the Early Cretaceous in the Ordos Basin, North China. Int. Geol. Rev. https://doi.org/10.1080/00206814.2022.2081938 (2022).Nelson, D. A., Cottle, J. M., Bindeman, I. N. & Camacho, A. Ultra-depleted hydrogen isotopes in hydrated glass record Late Cretaceous glaciation in Antarctica. Nat. Commun. 13, 5209 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Yang, W.-B. et al. Isotopic evidence for continental ice sheet in mid-latitude region in the supergreenhouse Early Cretaceous. Sci. Rep. 3, 2732 (2013).Article 

    Google Scholar 
    Gao, T. et al. Accelerating permafrost collapse on the eastern Tibetan Plateau. Environ. Res. Lett. 16, 054023 (2021).Article 
    ADS 

    Google Scholar 
    Huang, Y. B. The origin and evolution of the desert in southern Ordos in early Cretaceous: Constraint from Magnetostratigraphy of Zhidan Group and magnetic susceptibility of its sediment. Doctoral Dissertation. Lanzhou University (2010).Ma, J. Sedimentary Basin Analysis of the Cretaceous Ancient Desert in the Ordos Basin. Master’s thesis, China University of Geosciences (2020).Wu, C. H., Rodríguez-López, J. P. & Santosh, M. Plateau archives of lithosphere dynamics, cryosphere and paleoclimate: the formation of Cretaceous desert basins in east Asia. Geosci. Front. 13, 101454 (2022).Article 
    CAS 

    Google Scholar 
    Zhu, R. X., Chen, L., Wu, F. Y. & Liu, J. L. Timing, scale and mechanism of the destruction of the North China Craton. Sci. China Earth Sci. 54, 789–797 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodríguez-López, J. P., Clemmensen, L. B., Lancaster, N., Mountney, N. P. & Veiga, G. D. Archean to Recent aeolian sand systems and their preserved successions: current understanding and way forward. Sedimentology 61, 1487–1534 (2014).Article 

    Google Scholar 
    Murton, J. B. in Encyclopedia of Quaternary Science Vol. 3 (eds Elias, S. A. & Mock, C. J.) 436–451 (Elsevier, Amsterdam, 2013).Rodríguez-López, J. P., Van Vliet-Lanöe, B., López-Martínez, J. & Martín-García, R. Scouring by rafted ice and cryogenic pattern ground preserved in a Palaeoproterozoic equatorial proglacial lagoon succession, eastern India, Nuna supercontinent. Mar. Pet. Geol. 123, 104766 (2021).Article 

    Google Scholar 
    Murton, J. B., Worsley, P. & Gozdzik, J. Sand veins and wedges in cold aeolian environments. Quat. Sci. Rev. 19, 899–922 (2000).Article 
    ADS 

    Google Scholar 
    Kovács, J., Fábián, S. A., Schweitzer, F. & Varga, G. A relict sand-wedge polygon site in north-central Hungary. Permafr. Periglac. Process. 18, 379–384 (2007).Article 

    Google Scholar 
    Fábián, S. Á. et al. Distribution of relict permafrost features in the Pannonian Basin, Hungary. Boreas 43, 722–732 (2014).Article 

    Google Scholar 
    Williams, G. E. Proterozoic (pre-Ediacaran) glaciation and the high obliquity, low-latitude ice, strong seasonality (HOLIST) hypothesis: principles and tests. Earth–Sci. Rev. 87, 61–93 (2008).Article 
    ADS 

    Google Scholar 
    Williams, G. E., Schmidt, P. W. & Young, G. M. Strongly seasonal Proterozoic glacial climate in low palaeolatitudes: radically different climate system on the pre-Ediacaran Earth. Geosci. Front. 7, 555–571 (2016).Article 

    Google Scholar 
    Van Vliet-Lanoë, B. Deformations in the active layer related with ice/soil wedge growth and decay in present day Arctic. Paleoclimate implications. Ann. Soc. Géol. Nord. 13, 81–95 (2005).
    Google Scholar 
    Remillard, A. M. et al. Chronology and palaeoenvironmental implications of the ice-wedge pseudomorphs and composite wedge casts on the Magdalen Islands (eastern Canada). Boreas 44, 658–675 (2015).Article 

    Google Scholar 
    Murton, J. B. Thermokarst sediments and sedimentary structures, Tuktoyaktuk Coastlands, western Arctic Canada. Glob. Planet. Change 28, 175–192 (2001).Article 
    ADS 

    Google Scholar 
    Harris, C., Murton, J. B. & Davies, M. C. R. An analysis of mechanisms of ice-wedge casting based on geotechnical centrifuge modelling. Geomorphology 71, 328–343 (2005).Article 
    ADS 

    Google Scholar 
    Houmark-Nielsen, M. et al. Early and Middle Valdaian glaciations, ice-dammed lakes and periglacial interstadials in northwest Russia: new evidence from the Pyoza River area. Glob. Planet. Change 31, 215–237 (2001).Article 
    ADS 

    Google Scholar 
    Murton, J. B. & Kolstrup, E. Ice-wedge casts as indicators of palaeotemperatures: precise proxy or wishful thinking? Prog. Phys. Geogr. 27, 155–170 (2003).Article 

    Google Scholar 
    Harry, D. G. & Gozdzik, J. S. Ice wedges: growth, thaw transformation, and palaeoenvironmental significance. J. Quat. Sci. 3, 39–55 (1988).Article 

    Google Scholar 
    Wolfe, S. A., Morse, P. D., Neudorf, C. M., Kokelj, S. V., Lian, O. B. & O’Neill, H. B. Contemporary sand wedge development in seasonally frozen ground and paleoenvironmental implications. Geomorphology 308, 215–229 (2018).Article 
    ADS 

    Google Scholar 
    Murton, J. B. & Bateman, M. D. Syngenetic sand veins and anti-syngenetic sand wedges, Tuktoyaktuk Coastlands, western Arctic Canada. Permafr. Periglac. Process. 18, 33–47 (2007).Article 

    Google Scholar 
    Obu, J., Westermann, S., Kääb, A., & Bartsch, A. Ground Temperature Map, 2000–2016, Northern Hemisphere Permafrost (Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA, 2018)Obu, J. et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth–Sci. Rev. 193, 299–316 (2019).Article 
    ADS 

    Google Scholar 
    Hock, R. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 131–202 (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2019).Mackay, J. R. The origin of hummocks, western arctic coast, Canada. Can. J. Earth Sci. 17, 996–1006 (1980).Article 
    ADS 

    Google Scholar 
    Kokelj, S. V., Burn, C. R. & Tarnocai, C. The structure and dynamics of earth hummocks in the subarctic forest near Inuvik, Northwest Territories, Canada. Arct. Antarct. Alp. Res. 39, 99–109 (2007).Article 

    Google Scholar 
    Rodríguez-López, J. P., Meléndez, N., de Boer, P. L., Soria, A. R. & Liesa, C. L. Spatial variability of multicontrolled aeolian supersurfaces in central-erg and marine erg-margin systems. Aeolian Res. 11, 141–154 (2013).Article 
    ADS 

    Google Scholar 
    Lunt, D. J. et al. Palaeogeographic controls on climate and proxy interpretation. Clim. Past 12, 1181–1198 (2016).Article 

    Google Scholar 
    Cheng, G., Bai, Y. & Sun, Y. Paleomagnetic study on the tectonic evolution of the Ordos Block, North China. Seismol. Geol. 10, 81–87 (1988).
    Google Scholar 
    Zheng, Z. et al. The apparent polar wander path for the North China Block since the Jurassic. Geophys. J. Int. 104, 29–40 (1991).Article 
    ADS 

    Google Scholar 
    Malinverno, A., Hildebrandt, J., Tominaga, M. & Channell, J. E. T. M-sequence geomagnetic polarity time scale (MHTC12) that steadies global spreading rates and incorporates astrochronology constraints. J. Geophys. Res. 117, B06104 (2012).ADS 

    Google Scholar 
    Zachos, J. C., Shackleton, N. J., Revenaugh, J. S., Pälike, H. & Flower, B. P. Climate response to orbital forcing across the Oligocene–Miocene boundary. Science 292, 274–278 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, M. et al. Astronomical tuning of the end-Permian extinction and the Early Triassic Epoch of South China and Germany. Earth Planet. Sci. Lett. 441, 10–25 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Westall, F. The nature of fossil bacteria: a guide to the search for extraterrestial live. J. Geophys. Res. 104, 437–16,451 (1999).
    Google Scholar 
    Yang, H., Chen, Z.-Q. & Papineau, D. Cyanobacterial spheroids and other biosignatures from microdigitate stromatolites of Mesoproterozoic Wumishan Formation in Jixian, North China. Precambrian Res. 368, 106496 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Kremer, B., Kazmierczak, J., Łukomska-Kowalczyk, M. & Kempe, S. Calcification and silicification: fossilization potential of cyanobacteria from stromatolites of Niuafo’ou’s caldera lakes (Tonga) and implications for the early fossil record. Astrobiology 12, 535–548 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Astafieva M. M. et al. Fossil Bacteria and Other Microorganisms in Terrestrial Rocks and Astromaterials (Paleontological Institute Russian Academy of Science, Moscow, 2011).Rozanov, A. Y. & Zavarzin, G. A. Bacterial paleontology. Vestn. Akad. Med. Nauk 67, 241–245 (1997).
    Google Scholar 
    Perez-Mon, C., Stierli, B., Plötze, M. & Frey, B. Fast and persistent responses of alpine permafrost microbial communities to in situ warming. Sci. Total Environ. 807, 150–720 (2022).Article 

    Google Scholar 
    Rivkina, E. et al. Earth’s perennially frozen environments as a model of cryogenic planet ecosystems. Permafr. Periglac. Process. 29, 246–256 (2018).Article 

    Google Scholar 
    Vishnivetskaya, T. A. et al. Insights into community of photosynthetic microorganisms from permafrost. FEMS Microbiol. Ecol. 96, fiaa229 (2020).Article 
    CAS 

    Google Scholar 
    Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Choe, Y. H. et al. Comparing rock-inhabiting microbial communities in different rock types from a high arctic polar desert. FEMS Microbiol. Ecol. 94, fiy070 (2018).ADS 

    Google Scholar 
    Wu, X. et al. Comparative metagenomics of the active layer and permafrost from low-carbon soil in the Canadian High Arctic. Environ. Sci. Technol. 55, 12683–12693 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Vickers, M. L. et al. The duration and magnitude of Cretaceous cold events: evidence from the northern high latitudes. Geol. Soc. Am. Bull. 131, 1979–1994 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Lehmann, J. in Ammonoid Palaeobiology: From Macroevolution to Palaeogeography (eds Klug, C. De Baets, K., Kruta I. & Mapes, R. H.) 403–429 (Springer, Amsterdam, 2015).Keller, M. A. & Macquaker, J. H. S. in Studies by the U.S. Geological Survey in Alaska: US Geological Survey Professional Paper 1814-B Vol. 15 (ed Dumoulin, J. A.) 1–35 (US Geological Survey, US Department of The Interior, Reston, 2015).Cavalheiro, L. et al. Impact of global cooling on Early Cretaceous high pCO2 world during the Weissert Event. Nat. Commun. 12, 5411 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    McArthur, J. M. et al. Palaeotemperatures, polar ice-volume, and isotope stratigraphy (Mg/Ca, d18O, d13C, 87Sr/86Sr): the Early Cretaceous (Berriasian, Valanginian, Hauterivian). Palaeogeogr. Palaeoclimatol. Palaeoecol. 248, 391–430 (2007).Article 

    Google Scholar 
    Lini, A., Weissert, H. & Erba, E. The Valanginian carbon isotope event: a first episode of greenhouse climate conditions during the Cretaceous. Terra Nova 4, 374–384 (1992).Article 
    ADS 

    Google Scholar 
    Li, X. et al. Carbon isotope signatures of pedogenic carbonates from SE China: rapid atmospheric pCO2 changes during middle–late Early Cretaceous time. Geol. Mag. 151, 830–849 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    O’Brien, Ch. L. et al. Cretaceous sea-surface temperature evolution: constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth–Sci. Rev. 172, 224–247 (2017).Article 
    ADS 

    Google Scholar 
    Price, G. D. et al. A high-resolution Belemnite geochemical analysis of early Cretaceous (Valanginian–Hauterivian) environmental and climatic perturbations. Geochem. Geophys. Geosyst. 19, 3832–3843 (2018).Article 
    CAS 

    Google Scholar 
    Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Van der Kolk, D. A., Whalen, M. T., Wartes, M. A., Newberry, R. J. & McCarthy, P. in Arctic to the Cordillera: Unlocking the Potential. American Association of Petroleum Geologists Pacific Section Meeting, May 8–11, Anchorage, AK, USA, Search and Discovery Article 90125 (American Association of Petroleum Geologists, 2011).Walter Anthony, K. M. et al. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9, 3262 (2018).Article 
    ADS 

    Google Scholar 
    Cheng, F. et al. Alpine permafrost could account for a quarter of thawed carbon based on Plio-Pleistocene palaeoclimate analogue. Nat. Commun. 13, 1329 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Brouillette, M. How microbes in permafrost could trigger a massive carbon bomb. Nature 591, 360–362 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Murton, J. B. in Climate Change, Observed Impacts on Planet Earth, 3rd edn (ed Letcher, T.) 281–326 (Elsevier, Amsterdam, 2021).Schnyder, J., Ruffell, A., Deconinck, J. F. & Baudin, F. Conjunctive use of spectral gamma-ray logs and clay mineralogy in defining late Jurassic–early Cretaceous palaeoclimate change (Dorset, UK). Palaeogeogr. Palaeoclimatol. Palaeoecol. 229, 303–320 (2006).Article 

    Google Scholar 
    Li, M. et al. Astrochronology of the Anisian stage (Middle Triassic) at the guandao reference section, south china. Earth Planet. Sci. Lett. 482, 591–606 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, M. et al. Palaeoclimate proxies for cyclostratigraphy: comparative analysis using a Lower Triassic marine section in South China. Earth–Sci. Rev. 189, 125–146 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, M., Hinnov, L. & Kump, L. Acycle: time–series analysis software for palaeoclimate research and education. Comput. Geosci. 127, 12–22 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Laskar, J. et al. A long–term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).Article 
    ADS 

    Google Scholar  More

  • in

    Validation of SNP markers for thermotolerance adaptation in Ovis aries adapted to different climatic regions using KASP-PCR technique

    IPCC. Summary for Policymakers. In (Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield, eds) Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In Press (2018).Malhi, Y. et al. Climate change and ecosystems: Threats, opportunities and solutions. Philos. Trans. R. Soc. B Biol. Sci. 375(1794), 20190104. https://doi.org/10.1098/rstb.2019.0104 (2020).Article 
    CAS 

    Google Scholar 
    McElwee, P. Climate change and biodiversity loss. Curr. Hist. 120(829), 295–300. https://doi.org/10.1525/curh.2021.120.829.295 (2021).Article 

    Google Scholar 
    Dickinson, M. G., Orme, C. D. L., Suttle, K. B. & Mace, G. M. Separating sensitivity from exposure in assessing extinction risk from climate change. Sci. Rep. 4(1), 6898. https://doi.org/10.1038/srep06898 (2015).Article 
    CAS 

    Google Scholar 
    UNFCCC (United Nations Framework Convention on Climate Change). Global Warming Potentials http://unfccc.int/ghg_data/items/3825.php (2014).BelhadjSlimen, I., Chniter, M., Najar, T. & Ghram, A. Meta-analysis of some physiologic, metabolic and oxidative responses of sheep exposed to environmental heat stress. Livestock Sci. 229, 179–187. https://doi.org/10.1016/j.livsci.2019.09.026 (2019).Article 

    Google Scholar 
    Wojtas, K., Cwynar, P. & Kołacz, R. Effect of thermal stress on physiological and blood parameters in merino sheep. Bull. Vet. Inst. Pulawy 58(2), 283–288. https://doi.org/10.2478/bvip-2014-0043 (2014).Article 

    Google Scholar 
    Gavojdian, D., Cziszter, L. T., Budai, C. & Kusza, S. Effects of behavioral reactivity on production and reproduction traits in Dorper sheep breed. J. Vet. Behav. 10(4), 365–368. https://doi.org/10.1016/j.jveb.2015.03.012 (2015).Article 

    Google Scholar 
    Mehaba, N., Coloma-Garcia, W., Such, X., Caja, G. & Salama, A. A. K. Heat stress affects some physiological and productive variables and alters metabolism in dairy ewes. J. Dairy Sci. 104(1), 1099–1110. https://doi.org/10.3168/jds.2020-18943 (2021).Article 
    CAS 

    Google Scholar 
    Ramón, M., Díaz, C., Pérez-Guzman, M. D. & Carabaño, M. J. Effect of exposure to adverse climatic conditions on production in Manchega dairy sheep. J. Dairy Sci. 99(7), 5764–6577. https://doi.org/10.3168/jds.2016-10909 (2016).Article 
    CAS 

    Google Scholar 
    Mahjoubi, E. et al. The effect of cyclical and severe heat stress on growth performance and metabolism in Afshari lambs1. J. Anim. Sci. 93(4), 1632–1640. https://doi.org/10.2527/jas.2014-8641 (2015).Article 
    CAS 

    Google Scholar 
    dos Hamilton, T. R. S. et al. Evaluation of lasting effects of heat stress on sperm profile and oxidative status of ram semen and epididymal sperm. Oxid. Med. Cell. Longev. 1–12, 2016. https://doi.org/10.1155/2016/1687657 (2016).Article 
    CAS 

    Google Scholar 
    Romo-Barron, C. B. et al. Impact of heat stress on the reproductive performance and physiology of ewes: A systematic review and meta-analyses. Int. J. Biometeorol. 63(7), 949–962. https://doi.org/10.1007/s00484-019-01707-z (2019).Article 
    ADS 

    Google Scholar 
    Caroprese, M. et al. Glucocorticoid effects on sheep peripheral blood mononuclear cell proliferation and cytokine production under in vitro hyperthermia. J. Dairy Sci. 101(9), 8544–8551. https://doi.org/10.3168/jds.2018-14471 (2018).Article 
    CAS 

    Google Scholar 
    Marcone, G., Kaart, T., Piirsalu, P. & Arney, D. R. Panting scores as a measure of heat stress evaluation in sheep with access and with no access to shade. Appl. Anim. Behav. Sci. 240, 105350. https://doi.org/10.1016/j.applanim.2021.105350 (2021).Article 

    Google Scholar 
    Van Wettere, W. H. E. J. et al. Review of the impact of heat stress on reproductive performance of sheep. J. Anim. Sci. Biotechnol. 12(1), 26. https://doi.org/10.1186/s40104-020-00537-z (2021).Article 

    Google Scholar 
    Belhadj Slimen, I., Najar, T., Ghram, A. & Abdrrabba, M. Heat stress effects on livestock: Molecular, cellular and metabolic aspects, a review. J. Anim. Physiol. Anim. Nutr. 100(3), 401–412. https://doi.org/10.1111/jpn.12379 (2016).Article 
    CAS 

    Google Scholar 
    Guo, Z., Gao, S., Ouyang, J., Ma, L. & Bu, D. Impacts of heat stress-induced oxidative stress on the milk protein biosynthesis of dairy cows. Animals 11(3), 726. https://doi.org/10.3390/ani11030726 (2021).Article 

    Google Scholar 
    Liu, Z. et al. Heat stress in dairy cattle alters lipid composition of milk. Sci. Rep. 7(1), 961. https://doi.org/10.1038/s41598-017-01120-9 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Krishnan, G. et al. Mitigation of the heat stress impact in Livestock reproduction. In Theriogenology (InTech, 2017).
    Google Scholar 
    Robertson, S. & Friend, M. Strategies to ameliorate heat stress effects on sheep reproduction. In Climate Change and Livestock Production: Recent Advances and Future Perspectives 175–183 (Springer, 2021). https://doi.org/10.1007/978-981-16-9836-1_15.Chapter 

    Google Scholar 
    Sawyer, G. & Narayan, E. J. A review on the influence of climate change on sheep reproduction. In Comparative Endocrinology of Animals (Intech Open, 2019). https://doi.org/10.5772/intechopen.86799.Chapter 

    Google Scholar 
    Maurya, V. P., Sejian, V., Kumar, D. & Naqvi, S. M. K. Biological ability of Malpura rams to counter heat stress challenges and its consequences on production performance in a semi-arid tropical environment. Biol. Rhythm. Res. 49(3), 479–493. https://doi.org/10.1080/09291016.2017.1381451 (2018).Article 

    Google Scholar 
    Shahat, A. M., Rizzoto, G. & Kastelic, J. P. Amelioration of heat stress-induced damage to testes and sperm quality. Theriogenology 158, 84–96. https://doi.org/10.1016/j.theriogenology.2020.08.034 (2020).Article 
    CAS 

    Google Scholar 
    Singh, K. M. et al. Association of heat stress protein 90 and 70 gene polymorphism with adaptability traits in Indian sheep (Ovis aries). Cell Stress Chaperones 22(5), 675–684. https://doi.org/10.1007/s12192-017-0770-4 (2017).Article 
    CAS 

    Google Scholar 
    Kim, E.-S. et al. Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity 116(3), 255–264. https://doi.org/10.1038/hdy.2015.94 (2016).Article 
    CAS 

    Google Scholar 
    do Paim, T. P., Alves dos Santos, C., de Faria, D. A., Paiva, S. R. & McManus, C. Genomic selection signatures in Brazilian sheep breeds reared in a tropical environment. Livestock Sci. 258, 104865. https://doi.org/10.1016/j.livsci.2022.104865 (2022).Article 

    Google Scholar 
    Kusza, S. et al. Kompetitive Allele Specific PCR (KASPTM) genotyping of 48 polymorphisms at different caprine loci in French Alpine and Saanen goat breeds and their association with milk composition. PeerJ 6, e4416. https://doi.org/10.7717/peerj.4416 (2018).Article 
    CAS 

    Google Scholar 
    Zhang, Y. et al. Technical note: Development and application of KASP assays for rapid screening of 8 genetic defects in Holstein cattle. J. Dairy Sci. 103(1), 619–624. https://doi.org/10.3168/jds.2019-16345 (2020).Article 
    CAS 

    Google Scholar 
    Chaari, A. Molecular chaperones biochemistry and role in neurodegenerative diseases. Int. J. Biol. Macromol. 131, 396–411. https://doi.org/10.1016/j.ijbiomac.2019.02.148 (2019).Article 
    CAS 

    Google Scholar 
    Tripathy, K., Sodhi, M., Kataria, R. S., Chopra, M. & Mukesh, M. In silico analysis of HSP70 gene family in bovine genome. Biochem. Genet. 59(1), 134–158. https://doi.org/10.1007/s10528-020-09994-7 (2021).Article 
    CAS 

    Google Scholar 
    Rehman, S. et al. Genomic identification, evolution and sequence analysis of the heat-shock protein gene family in buffalo. Genes 11(11), 1388. https://doi.org/10.3390/genes11111388 (2020).Article 
    CAS 

    Google Scholar 
    Huo, C. et al. Chronic heat stress negatively affects the immune functions of both spleens and intestinal mucosal system in pigs through the inhibition of apoptosis. Microbial Pathog. 136, 103672. https://doi.org/10.1016/j.micpath.2019.103672 (2019).Article 
    CAS 

    Google Scholar 
    Morange, M. HSFs in development. In Molecular Chaperones in Health and Disease 153–169 (Springer, 2006). https://doi.org/10.1007/3-540-29717-0_7.Chapter 

    Google Scholar 
    Hoter, A., El-Sabban, M. & Naim, H. The HSP90 family: Structure, regulation, function, and implications in health and disease. Int. J. Mol. Sci. 19(9), 2560. https://doi.org/10.3390/ijms19092560 (2018).Article 
    CAS 

    Google Scholar 
    Vanselow, J., Vernunft, A., Koczan, D., Spitschak, M. & Kuhla, B. Exposure of lactating dairy cows to acute pre-ovulatory heat stress affects granulosa cell-specific gene expression profiles in dominant follicles. PLoS One 11(8), e0160600. https://doi.org/10.1371/journal.pone.0160600 (2016).Article 
    CAS 

    Google Scholar 
    Joy, A. et al. Resilience of small ruminants to climate change and increased environmental temperature: A review. Animals 10(5), 86. https://doi.org/10.3390/ani10050867 (2020).Article 

    Google Scholar 
    Saravanan, K. A. et al. Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics 113(3), 955–963. https://doi.org/10.1016/j.ygeno.2021.02.009 (2021).Article 
    CAS 

    Google Scholar 
    Singh, A. K., Upadhyay, R. C., Malakar, D., Kumar, S. & Singh, S. V. Effect of thermal stress on HSP70 expression in dermal fibroblast of zebu (Tharparkar) and crossbred (Karan-Fries) cattle. J. Therm. Biol 43, 46–53. https://doi.org/10.1016/j.jtherbio.2014.04.006 (2014).Article 
    CAS 

    Google Scholar 
    Verma, N., Gupta, I. D., Verma, A., Kumar, R. & Das, R. Novel SNPs in HSPB8 gene and their association with heat tolerance traits in Sahiwal indigenous cattle. Trop. Anim. Health Prod. 48(1), 175–180. https://doi.org/10.1007/s11250-015-0938-9 (2016).Article 

    Google Scholar 
    Al-Thuwaini, T. M., Al-Shuhaib, M. B. S. & Hussein, Z. M. A novel T177P missense variant in the HSPA8 gene associated with the low tolerance of Awassi sheep to heat stress. Trop. Anim. Health Prod. 52(5), 2405–2416. https://doi.org/10.1007/s11250-020-02267-w (2020).Article 

    Google Scholar 
    Onasanya, G. O. et al. Heterozygous single-nucleotide polymorphism genotypes at heat shock protein 70 gene potentially influence thermo-tolerance among four Zebu breeds of Nigeria. Front. Genet. https://doi.org/10.3389/fgene.2021.642213 (2021).Article 

    Google Scholar 
    Pascal, C. Researches regarding quality of sheep skins obtained from Karakul from Botosani sheep. Biotechnol. Anim. Husband. 27(3), 1123–1130. https://doi.org/10.2298/BAH1103123P (2011).Article 

    Google Scholar 
    Kevorkian, S. E. M., Zǎuleţ, M., Manea, M. A., Georgescu, S. E. & Costache, M. Analysis of the ORF region of the prion protein gene in the Botosani Karakul sheep breed from Romania. Turk. J. Vet. Anim. Sci. 35(2), 105–109. https://doi.org/10.3906/vet-0909-124 (2011).Article 
    CAS 

    Google Scholar 
    Kusza, S. et al. Mitochondrial DNA variability in Gyimesi Racka and Turcana sheep breeds. Acta Biochim. Pol. 62(2), 273–280. https://doi.org/10.18388/abp.2015_978 (2015).Article 
    CAS 

    Google Scholar 
    Gavojdian, D. et al. Effects of using indigenous heritage sheep breeds in organic and low-input production systems on production efficiency and animal welfare in Romania. Landbauforschung Volkenrode 66(4), 290–297. https://doi.org/10.3220/LBF1483607712000 (2016).Article 

    Google Scholar 
    Gavojdian, D. et al. Reproduction efficiency and health traits in Dorper, White Dorper, and Tsigai sheep breeds under temperate European conditions. Asian Australas. J. Anim. Sci. 28(4), 599–603. https://doi.org/10.5713/ajas.14.0659 (2015).Article 
    CAS 

    Google Scholar 
    Kusza, S. et al. The genetic variability of Hungarian Tsigai sheep. Archiv Tierzuch 53(3), 309–317 (2010).
    Google Scholar 
    Kusza, S. et al. Study of genetic differences among Slovak Tsigai populations using microsatellite markers. Czeh J. Anim. Sci. 54(10), 468–474. https://doi.org/10.17221/1670-CJAS (2009).Article 
    CAS 

    Google Scholar 
    Marcos-Carcavilla, A. et al. Polymorphisms in the HSP90AA1 5′ flanking region are associated with scrapie incubation period in sheep. Cell Stress Chaperones 15(4), 343–349. https://doi.org/10.1007/s12192-009-0149-2 (2010).Article 
    CAS 

    Google Scholar 
    Salces-Ortiz, J. et al. Looking for adaptive footprints in the HSP90AA1 ovine gene. BMC Evol. Biol. 15(1), 7. https://doi.org/10.1186/s12862-015-0280-x (2015).Article 
    CAS 

    Google Scholar 
    Toscano, J. H. B. et al. Innate immune responses associated with resistance against Haemonchus contortus in Morada Nova Sheep. J. Immunol. Res. 2019, 1–10. https://doi.org/10.1155/2019/3562672 (2019).Article 
    CAS 

    Google Scholar 
    Estrada-Reyes, Z. M. et al. Signatures of selection for resistance to Haemonchus contortus in sheep and goats. BMC Genom. 20(1), 735. https://doi.org/10.1186/s12864-019-6150-y (2019).Article 
    CAS 

    Google Scholar 
    Caroprese, M., Bradford, B. J. & Rhoads, R. P. Editorial: Impact of climate change on immune responses in agricultural animals. Front. Vet. Sci. https://doi.org/10.3389/fvets.2021.732203 (2021).Article 

    Google Scholar 
    FAO/IAEA. Agriculture biotechnology laboratory—handbook of laboratory exercises. Seibersdorf: IAEA Laboratories, 18 (2004).Zsolnai, A. & Orbán, L. Accelerated separation of random complex DNA patterns in gels: Comparing the performance of discontinuous and continuous buffers. Electrophoresis 20(7), 1462–1468. https://doi.org/10.1002/(SICI)1522-2683(19990601)20:7%3c1462::AID-ELPS1462%3e3.0.CO;2-0 (1999).Article 
    CAS 

    Google Scholar 
    Cavalcanti, L. C. G. et al. Genetic characterization of coat color genes in Brazilian Crioula sheep from a conservation nucleus. Pesq. Agrop. Brasil. 52(8), 615–622. https://doi.org/10.1590/s0100-204×2017000800007 (2017).Article 

    Google Scholar 
    Li, Y. et al. Heat stress-responsive transcriptome analysis in the liver tissue of Hu sheep. Genes 10(5), 395. https://doi.org/10.3390/genes10050395 (2019).Article 
    CAS 

    Google Scholar 
    Younis, F. Expression pattern of heat shock protein genes in sheep. Mansoura Vet. Med. J. 21(1), 1–5. https://doi.org/10.35943/mvmj.2020.21.001 (2020).Article 

    Google Scholar 
    Yeh F. C., Boyle R., Yang R. C., Ye Z., Mao J. X. & Yeh D. POPGENE version 1.32. Computer program and documentation distributed by the author. http://www.ualberta.ca/∼fyeh/popgene.html (1999).Lê, S., Josse, J. & Husson, F. FactoMineR: A package for multivariate analysis. J. Stat. Softw. 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01 (2008).Article 

    Google Scholar 
    Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer. https://ggplot2.tidyverse.org (2016) (ISBN 978-3-319-24277-4).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020). More

  • in

    Responses to salinity in the littoral earthworm genus Pontodrilus

    Lavelle, P., Blanchart, E., Martin, A., Spain, A. V. & Martin, S. Impact of soil fauna on the properties of soils in the humid tropics. In Myths and Science of Soils of the Tropics (eds Lal, R. & Sanchez, P.) 157–185 (Soil Science Society of America, 1992).
    Google Scholar 
    Eisenhauer, N. The action of an animal ecosystem engineer: Identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia 53, 343–352 (2010).Article 

    Google Scholar 
    Eisenhauer, N. & Eisenhauer, E. The “intestines of the soil”: The taxonomic and functional diversity of earthworms—A review for young ecologists. Preprint at https://doi.org/10.32942/osf.io/tfm5y (2020).Gates, G. E. Burmese earthworms, an introduction to the systematics and biology of megadrile oligochaetes with special reference to South-east Asia. Trans. Amer. Phil. Soc. 62, 1–326. https://doi.org/10.2307/1006214 (1972).Article 

    Google Scholar 
    Blakemore, R. J. Origin and means of dispersal of cosmopolitan Pontodrilus litoralis (Oligocaheta: Megascolecidae). Eur. J. Soil Biol. 443, S3–S8. https://doi.org/10.1016/j.ejsobi.2007.08.041 (2007).Article 

    Google Scholar 
    Seesamut, T., Sutcharit, C., Jirapatrasilp, P., Chanabun, R. & Panha, S. Morphological and molecular evidence reveal a new species of the earthworm genus Pontodrilus Perrier, 1874 (Clitellata, Megascolecidae) from Thailand and Peninsular Malaysia. Zootaxa 4496, 218–237. https://doi.org/10.11646/zootaxa.4496.1.18 (2018).Article 

    Google Scholar 
    Seesamut, T., Jirapatrasilp, P., Chanabun, R., Oba, Y. & Panha, S. Size variation and geographical distribution of the luminous earthworm Pontodrilus litoralis (Grube, 1855) (Clitellata, Megascolecidae) in Southeast Asia and Japan. Zookeys 862, 23–43. https://doi.org/10.3897/zookeys.862.35727 (2019).Article 

    Google Scholar 
    Seesamut, T., Jirapatrasilp, P., Sutcharit, C., Tongkerd, P. & Panha, S. Mitochondrial genetic population structure and variation of the littoral earthworm Pontodrilus longissimus Seesamut and Panha, 2018 along the coast of Thailand. Eur. J. Soil Biol. 93, 103091. https://doi.org/10.1016/j.ejsobi.2019.103091 (2019).Article 

    Google Scholar 
    Attrill, M. J. A testable linear model for diversity trends in estuaries. J. Anim. Ecol. 71, 262–269. https://doi.org/10.1046/j.1365-2656.2002.00593.x (2002).Article 

    Google Scholar 
    McLusky, D. S. & Elliott, M. The Estuarine Ecosystem: Ecology, Threats and Management 3rd edn. (Oxford University Press, 2004).Book 

    Google Scholar 
    Telesh, I. V. & Khlebovich, V. V. Principal processes within the estuarine salinity gradient: A review. Mar. Pollut. Bull. 61, 149–155. https://doi.org/10.1016/j.marpolbul.2010.02.008 (2010).Article 
    CAS 

    Google Scholar 
    Owojori, O. J. & Reinecke, A. J. Effects of natural (flooding and drought) and anthropogenic (copper and salinity) stressors on the earthworm Aporrectodea caliginosa under field conditions. Appl. Soil Ecol. 44, 156–163. https://doi.org/10.1016/j.apsoil.2009.11.006 (2010).Article 

    Google Scholar 
    Guzyte, G., Sujetoviene, G. & Zaltauskaite, J. Effects of salinity on earthworm (Eisenia fetida). Environ. Eng. 8, 111 (2011).
    Google Scholar 
    Ganapati, P. N. & Subba Rao, B. V. S. S. R. Salinity tolerance of a littoral oligochaete, Pontodrilus bermudensis Beddard. Proc. Ind. Nat. Sci. Acad. 38, 350–354 (1972).
    Google Scholar 
    Subba Rao, B. V. S. S. R. Volume regulation in a euryhaline oligochaete, Pontodrilus bermudensis Beddard. Proc. Indian Acad. Sci. 87, 339–347 (1978).Article 

    Google Scholar 
    Owojori, O. J., Reinecke, A. J. & Rozanov, A. B. Effects of salinity on partitioning, uptake and toxicity of zinc in the earthworm Eisenia fetida. Soil Biol. Biochem. 40, 2385–2393. https://doi.org/10.1016/j.soilbio.2008.05.019 (2008).Article 
    CAS 

    Google Scholar 
    Seesamut, T. et al. Occurrence of bioluminescent and nonbioluminescent species in the littoral earthworm genus Pontodrilus. Sci. Rep. 11, 8407 (2021).Article 
    CAS 

    Google Scholar 
    Sivinski, J. & Forrest, T. Luminous defense in an earthworm. Fla. Entomol. 66, 517 (1983).Article 

    Google Scholar 
    Verdes, A. & Gruber, D. F. Glowing worms: Biological, chemical, and functional diversity of bioluminescent annelids. Integr. Comp. Biol. 57, 18–32. https://doi.org/10.1093/icb/icx017 (2017).Article 
    CAS 

    Google Scholar 
    Shimomura, O. & Yampolsky, I. Bioluminescence: Chemical Principles and Methods 3rd edn. (World Scientific, 2019).Book 

    Google Scholar 
    Easton, E. G. Earthworms (Oligochaeta) from islands of the south-western Pacific, and a note on two species from Papua New Guinea. N. Z. J. Zool. 11, 111–128. https://doi.org/10.1080/03014223.1984.10423750 (1984).Article 

    Google Scholar 
    Shen, H.-P., Tsai, S.-C. & Tsai, C.-F. Occurrence of the earthworms Pontodrilus litoralis (Grube, 1855), Metaphire houlleti (Perrier, 1872), and Eiseniella tetraedra (Savigny, 1826) from Taiwan. Taiwania 50, 11–21 (2005).
    Google Scholar 
    Satheeshkumar, P., Khan, A. B. & Senthilkumar, D. Annelida, Oligochaeta, Megascolecidae, Pontodrilus litoralis (Grupe, 1985): First record from Pondicherry mangroves, southeast coast of India. Int. J. Zool. Res. 7, 406–409. https://doi.org/10.3923/ijzr.2011.406.409 (2011).Article 

    Google Scholar 
    Nguyen, T. T., Nguyen, D. A., Tran, T. T. B. & Blakemore, R. J. A comprehensive checklist of earthworm species and subspecies from Vietnam (Annelida: Clitellata: Oligochaeta: Almidae, Eudrilidae, Glossoscolecidae, Lumbricidae, Megascolecidae, Moniligastridae, Ocnerodrilidae, Octochaetidae). Zootaxa 4140, 1–92. https://doi.org/10.11646/zootaxa.4140.1.1 (2016).Article 

    Google Scholar 
    Chen, S.-Y., Hsu, C.-H. & Soong, K. How to cross the sea: Testing the dispersal mechanisms of the cosmopolitan earthworm Pontodrilus litoralis. R. Soc. Open Sci. 8, 202297. https://doi.org/10.1098/rsos.202297 (2021).Article 
    ADS 

    Google Scholar 
    Smyth, K. & Elliott, M. Effects of changing salinity on the ecology of the marine environment. In Stressors in the Marine Environment (eds Solan, M. & Whiteley, N. M.) 161–175 (Oxford University Press, 2016).Chapter 

    Google Scholar 
    Veiga, M. P. T., Gutierre, S. M. M., Castellano, G. C. & Freire, C. A. Tolerance of high and low salinity in the intertidal gastropod Stramonita brasiliensis (Muricidae): Behaviour and maintenance of tissue water content. J. Molluscan Stud. 82, 154–160. https://doi.org/10.1093/mollus/eyv044 (2016).Article 

    Google Scholar 
    Carley, W. W., Caracciolo, E. A. & Mason, R. T. Cell and coelomic fluid volume regulation in the earthworm Lumbricus terrestris. Comp. Biochem. Physiol. 74, 569–575 (1983).Article 

    Google Scholar 
    Sharif, F. et al. Salinity tolerance of earthworms and effects of salinity and vermi amendments on growth of Sorghum bicolor. Arch. Agron. Soil Sci. 62, 1169–1181. https://doi.org/10.1080/03650340.2015.1132838 (2016).Article 
    CAS 

    Google Scholar 
    Wu, Z. et al. Effects of salinity on earthworms and the product during vermicomposting of kitchen wastes. Int. J. Environ. Res. Public Health 16, 4737. https://doi.org/10.3390/ijerph16234737 (2019).Article 
    CAS 

    Google Scholar 
    Oglesby, L. C. Volume regulation in aquatic invertebrates. J. Exp. Zool. 215, 289–301 (1981).Article 
    CAS 

    Google Scholar 
    Generlich, O. & Giere, O. Osmoregulation in two aquatic oligochaetes from habitats with different salinity and comparison to other annelids. Hydrobiologia 334, 251–261. https://doi.org/10.1007/BF00017375 (1996).Article 

    Google Scholar 
    Carregosa, V. et al. Tolerance of Venerupis philippinarum to salinity: Osmotic and metabolic aspects. Comp. Biochem. Physiol. A 171, 36–43. https://doi.org/10.1016/j.cbpa.2014.02.009 (2014).Article 
    CAS 

    Google Scholar 
    Freitas, R. et al. The effects of salinity changes on the polychaete Diopatra neapolitana: Impacts on regenerative capacity and biochemical markers. Aquat. Toxicol. 163, 167–176. https://doi.org/10.1016/j.aquatox.2015.04.006 (2015).Article 
    CAS 

    Google Scholar 
    Rivera-Ingraham, G. A. & Lignot, J. H. Osmoregulation, bioenergetics and oxidative stress in coastal marine invertebrates: Raising the questions for future research. J. Exp. Biol. 220, 1749–1760. https://doi.org/10.1242/jeb.135624 (2017).Article 

    Google Scholar 
    Munnoli, P. M. & Bhosle, S. Effect of soil cow dung proportion of vermicomposting. J. Sci. Ind. Res. 68, 57–60 (2009).
    Google Scholar  More

  • in

    Commerson’s dolphin population structure: evidence for female phylopatry and male dispersal

    Waples, R. S. & Gaggiotti, O. INVITED REVIEW: What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol. Ecol. 15, 1419–1439 (2006).Article 
    CAS 

    Google Scholar 
    Mendez, M., Rosenbaum, H. C., Subramaniam, A., Yackulic, C. & Bordino, P. Isolation by environmental distance in mobile marine species: Molecular ecology of franciscana dolphins at their southern range. Mol. Ecol. 19, 2212–2228 (2010).Article 
    CAS 

    Google Scholar 
    De Meeûs, T. et al. Population genetics and molecular epidemiology or how to “débusquer la bête”. Infect. Genet. Evol. 7, 308–332 (2007).Article 

    Google Scholar 
    Durigan, M. et al. Population genetic analysis of Giardia duodenalis: Genetic diversity and haplotype sharing between clinical and environmental sources. MicrobiologyOpen 6, e00424 (2017).Article 

    Google Scholar 
    Amaral, A. R. et al. Seascape genetics of a globally distributed, highly mobile marine mammal: The short-beaked common dolphin (genus Delphinus). PLoS ONE 7, e31482 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Mendez, M. et al. Molecular ecology meets remote sensing: Environmental drivers to population structure of humpback dolphins in the Western Indian Ocean. Heredity 107, 349–361 (2011).Article 
    CAS 

    Google Scholar 
    de los Angeles Bayas-Rea, R., Félix, F. & Montufar, R. Genetic divergence and fine scale population structure of the common bottlenose dolphin (Tursiops truncatus, Montagu) found in the Gulf of Guayaquil. Ecuador. PeerJ 6, e4589 (2018).Article 

    Google Scholar 
    Natoli, A., Peddemors, V. M. & Rus Hoelzel, A. Population structure and speciation in the genus Tursiops based on microsatellite and mitochondrial DNA analyses. J. Evol. Biol. 17, 363–375 (2004).Article 
    CAS 

    Google Scholar 
    Oliveira, L. R., Loizaga De Castro, R., Cárdenas-Alayza, S. & Bonatto, S. L. Conservation genetics of South American aquatic mammals: An overview of gene diversity, population structure, phylogeography, non-invasive methods and forensics. Mammal Rev. 42, 275–303 (2012).Article 

    Google Scholar 
    Vollmer, N. L. & Rosel, P. E. Fine-scale population structure of common bottlenose dolphins (Tursiops truncatus) in offshore and coastal waters of the US Gulf of Mexico. Mar. Biol. 164, 1–15 (2017).Article 

    Google Scholar 
    MacLeod, C. D. Global climate change, range changes and potential implications for the conservation of marine cetaceans: A review and synthesis. Endanger. Species Res. 7, 125–136 (2009).Article 

    Google Scholar 
    Hartl, D. L., Clark, A. G. & Clark, A. G. Principles of Population Genetics, Vol. 116 (Sinauer associates Sunderland, 1997).Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Reeves, R. R., Smith, B. D., Crespo, E. A. & Notarbartolo di Sciara, G. Dolphins, whales and porpoises: 2002–2010 conservation action plan for the world’s cetaceans, Vol. 58 (IUCN, 2003).Crespo, E. A. & Hall, M. A. In Marine Mammals, 463–490 (Springer, 2002).Crespo, E. A. et al. Direct and indirect effects of highseas fisheries on the marine mammal populations in the northern and central Patagonian coast. J. Northwest Atl. Fish. Sci. 22, 189–207 (1997).Article 

    Google Scholar 
    Harlin-Cognato, A. D., Markowitz, T., Würsig, B. & Honeycutt, R. L. Multi-locus phylogeography of the dusky dolphin (Lagenorhynchus obscurus): Passive dispersal via the west-wind drift or response to prey species and climate change?. BMC Evol. Biol. 7, 1–17 (2007).Article 

    Google Scholar 
    Hoelzel, A. Evolution of population genetic structure in marine mammal species. In Population genetics for animal conservation, 294–318 (Cambridge University Press, Cambridge, 2009).Fraser, C. I., Nikula, R., Ruzzante, D. E. & Waters, J. M. Poleward bound: Biological impacts of Southern Hemisphere glaciation. Trends Ecol. Evol. 27, 462–471 (2012).Article 

    Google Scholar 
    Louis, M. et al. Influence of past climate change on phylogeography and demographic history of narwhals, Monodon monoceros. Proc. R. Soc. B 287, 20192964 (2020).Article 
    CAS 

    Google Scholar 
    Skovrind, M. et al. Circumpolar phylogeography and demographic history of beluga whales reflect past climatic fluctuations. Mol. Ecol. 30, 2543–2559 (2021).Article 

    Google Scholar 
    Foote, A. D. et al. Ancient DNA reveals that bowhead whale lineages survived Late Pleistocene climate change and habitat shifts. Nat. Commun. 4, 1–7 (2013).Article 

    Google Scholar 
    Crespo, E. A. et al. Status, population trend and genetic structure of South American fur seals, Arctocephalus australis, in southwestern Atlantic waters. Mar. Mamm. Sci. 31, 866–890 (2015).Article 

    Google Scholar 
    Feijoo, M., Lessa, E. P., De Castro, R. L. & Crespo, E. A. Mitochondrial and microsatellite assessment of population structure of South American sea lion (Otaria flavescens) in the Southwestern Atlantic Ocean. Mar. Biol. 158, 1857–1867 (2011).Article 

    Google Scholar 
    Túnez, J. I., Cappozzo, H. L., Nardelli, M. & Cassini, M. H. Population genetic structure and historical population dynamics of the South American sea lion, Otaria flavescens, in north-central Patagonia. Genetica 138, 831–841 (2010).Article 

    Google Scholar 
    Oliveira, L., Ott, P. H., Grazziotin, F. G., White, B. & Bonatto, S. In Paper (SC/S11/RW26) presented to the Southern Right Whale Assessment Workshop (Commission International Whaling).Loizaga de Castro, R., Dans, S. L. & Crespo, E. A. Spatial genetic structure of dusky dolphin, Lagenorhynchus obscurus, along the argentine coast: Preserve what scale?. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 173–183 (2016).Article 

    Google Scholar 
    Pimper, L. E., Goodall, R. N. P. & Remis, M. I. First mitochondrial DNA analysis of the spectacled porpoise (Phocoena dioptrica) from Tierra del Fuego, Argentina. Mamm. Biol. 77, 459–462 (2012).Article 

    Google Scholar 
    Pichler, F. B. et al. Origin and radiation of Southern Hemisphere coastal dolphins (genus Cephalorhynchus). Mol. Ecol. 10, 2215–2223 (2001).Article 
    CAS 

    Google Scholar 
    Dawson, S. M. In Encyclopedia of Marine Mammals, 166–172 (Elsevier, 2018).Robineau, D., Goodall, R. N. P., Pichler, F. & Baker, C. S. Description of a new subspecies of Commerson’s dolphin, Cephalorhynchus commersonii (Lacépède, 1804), inhabiting the coastal waters of the Kerguelen Islands. Mammalia 71, 172–180 (2007).Article 

    Google Scholar 
    Crespo, E. A. et al. Cephalorhynchus commersonii, Commerson’s Dolphin. IUCN; The IUCN Red List of Threatened Species; 10-2017; 1-14 (2017).Goodall, R. Commerson’s dolphin Cephalorhynchus commersonii (Lacépède 1804). Handb. Mar. Mamm. 5, 241–267 (1994).
    Google Scholar 
    Coscarella, M. A. Ecologıa, comportamiento y evaluación del impacto de embarcaciones sobre manadas de tonina overa Cephalorhynchus commersonii en Bahıa Engano, Chubut (Universidad de Buenos Aires, Buenos Aires, 2005).Dellabianca, N. A. et al. Spatial models of abundance and habitat preferences of commerson’s and peale’s dolphin in southern patagonian waters. PLoS ONE 11, e0163441 (2016).Article 

    Google Scholar 
    Goodall, R. et al. Studies of Commerson’s dolphins, Cephalorhynchus commersonii, off Tierra del Fuego, 1976–1984. Report of the International Whaling Commission (Special Issue 9), 143–160 (1988).White, R. The Distribution of Seabirds and Marine Mammals in Falkland Islands Waters (Joint Nature Conservation Committee, 2002).Loizaga de Castro, R., Dans, S. L., Coscarella, M. A. & Crespo, E. A. Living in an estuary: Commerson’s dolphin (Cephalorhynchus commersonii (Lacépède, 1804)), habitat use and behavioural pattern at the Santa Cruz River, Patagonia, Argentina. Latin Am. J. Aquat. Res. 41, 985–991 (2013).Article 

    Google Scholar 
    Pedraza, S. Ecología poblacional de la tonina overa, Cephalorhynchus commersonii, (Lacépède, 1804) en el litoral patagónico. Unpublished PhD thesis, Universidad de Buenos Aires, Buenos Aires, Argentina (2008).Garaffo, G. V. et al. Modeling habitat use for dusky dolphin and Commerson’s dolphin in Patagonia. Mar. Ecol. Prog. Ser. 421, 217–227 (2011).Article 
    ADS 

    Google Scholar 
    Cipriano, F., Hevia, M. & Iñíguez, M. Genetic divergence over small geographic scales and conservation implications for Commerson’s dolphins (Cephalorhynchus commersonii) in southern Argentina. Mar. Mamm. Sci. 27, 701–718 (2011).Article 
    CAS 

    Google Scholar 
    Pimper, L. E., Baker, C. S., Goodall, R. N. P., Olavarría, C. & Remis, M. I. Mitochondrial DNA variation and population structure of Commerson’s dolphins (Cephalorhynchus commersonii) in their southernmost distribution. Conserv. Genet. 11, 2157–2168 (2010).Article 

    Google Scholar 
    O’Brien, S. J. A role for molecular genetics in biological conservation. Proc. Natl. Acad. Sci. 91, 5748–5755 (1994).Article 
    ADS 
    CAS 

    Google Scholar 
    Loizaga de Castro, R., Hoelzel, A. & Crespo, E. Behavioural responses of Argentine coastal dusky dolphins (Lagenorhynchus obscurus) to a biopsy pole system. Anim. Welf. 22, 13–23 (2013).Article 
    CAS 

    Google Scholar 
    Elphinstone, M. S., Hinten, G. N., Anderson, M. J. & Nock, C. J. An inexpensive and high-throughput procedure to extract and purify total genomic DNA for population studies. Mol. Ecol. Notes 3, 317–320 (2003).Article 
    CAS 

    Google Scholar 
    Bérubé, M. & Palsbøll, P. Identification of sex in cetaceans by multiplexing with three ZFX and ZFY specific primers. Mol. Ecol. 5, 283–287 (1996).Article 

    Google Scholar 
    Hoelzel, A., Hancock, J. & Dover, G. Evolution of the cetacean mitochondrial D-loop region. Mol. Biol. Evol. 8, 475–493 (1991).CAS 

    Google Scholar 
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).Article 
    CAS 

    Google Scholar 
    Ruzzante, D. E. et al. Validation of close-kin mark–recapture (CKMR) methods for estimating population abundance. Methods Ecol. Evol. 10, 1445–1453 (2019).Article 

    Google Scholar 
    Faircloth, B. C., Branstetter, M. G., White, N. D. & Brady, S. G. Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among H ymenoptera. Mol. Ecol. Resour. 15, 489–501 (2015).Article 
    CAS 

    Google Scholar 
    Faircloth, B. C. MSATCOMMANDER: Detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol. Ecol. Resour. 8, 92–94 (2008).Article 
    CAS 

    Google Scholar 
    Zhan, L. et al. MEGASAT: Automated inference of microsatellite genotypes from sequence data. Mol. Ecol. Resour. 17, 247–256 (2017).Article 
    CAS 

    Google Scholar 
    Nei, M. Molecular Evolutionary Genetics (Columbia University Press, 1987).Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).Article 
    CAS 

    Google Scholar 
    Schneider, S., Roessli, D. & Excoffier, L. Arlequin: A software for population genetics data analysis, version 2.000. Genetics Biometry Laboratory, Department of Anthropology, University of Geneva, Switzerland (2000).Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).Article 
    CAS 

    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).Article 
    CAS 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour 10, 564–567 (2010).Article 

    Google Scholar 
    Bandelt, H.-J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).Article 
    CAS 

    Google Scholar 
    Fu, Y.-X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).Article 
    CAS 

    Google Scholar 
    Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992).CAS 

    Google Scholar 
    Peakall, R. & Smouse, P. E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).Article 

    Google Scholar 
    Mantel, N. The detection of disease clustering and a generalized regression approach. Can. Res. 27, 209–220 (1967).CAS 

    Google Scholar 
    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).Article 

    Google Scholar 
    Harlin, A. D., Markowitz, T., Baker, C. S., Würsig, B. & Honeycutt, R. L. Genetic structure, diversity, and historical demography of New Zealand’s dusky dolphin (Lagenorhynchus obscurus). J. Mammal. 84, 702–717 (2003).Article 

    Google Scholar 
    Rambaut, A., Suchard, M., Xie, D. & Drummond, A. Tracer v1. 6. http://beast.bio.ed.ac.uk/Tracer (2014).Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).Article 

    Google Scholar 
    Rice, W. R. Analyzing tables of statistical tests. Evolution 43, 223–225 (1989).
    Google Scholar 
    Goudet, J. FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9. 3. http://www2.unil.ch/popgen/softwares/fstat.htm (2001).Waples, R. S. & Do, C. LDNE: A program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Resour. 8, 753–756 (2008).Article 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).Article 
    CAS 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).Article 
    CAS 

    Google Scholar 
    Earl, D. A. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).Article 

    Google Scholar 
    Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 43, 258–275 (1989).
    Google Scholar 
    Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).Article 

    Google Scholar 
    Milinkovitch, M. C., Leduc, R., Tiedemann, R. & Dizon, A. In Marine Mammals: Biology and Conservation (ed Evans, P. G. H. & Raga, J. A.) 325–359 (Springer, 2002).Pichler, F. Population structure and genetic variation in Hector’s dolphin (Cephalorhynchus hectori), ResearchSpace@ Auckland (2001).Pichler, F. & Baker, C. Loss of genetic diversity in the endemic Hector’s dolphin due to fisheries-related mortality. Proc. R. Soc. Lond. Ser. B Biol. Sci. 267, 97–102 (2000).Article 
    CAS 

    Google Scholar 
    Greenwood, P. J. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28, 1140–1162 (1980).Article 

    Google Scholar 
    Chilvers, B. L. & Wilkinson, I. S. Philopatry and site fidelity of New Zealand sea lions (Phocarctos hookeri). Wildl. Res. 35, 463–470 (2008).Article 

    Google Scholar 
    Engelhaupt, D. et al. Female philopatry in coastal basins and male dispersion across the North Atlantic in a highly mobile marine species, the sperm whale (Physeter macrocephalus). Mol. Ecol. 18, 4193–4205 (2009).Article 
    CAS 

    Google Scholar 
    Möller, L. M. & Beheregaray, L. B. Genetic evidence for sex-biased dispersal in resident bottlenose dolphins (Tursiops aduncus). Mol. Ecol. 13, 1607–1612 (2004).Article 

    Google Scholar 
    Jansen van Vuuren, B., Best, P., Roux, J. P. & Robinson, T. Phylogeographic population structure in the Heaviside’s dolphin (Cephalorhynchus heavisidii): Conservation implications. Anim. Conserv. 5, 303–307 (2002).Article 

    Google Scholar 
    Pérez-Alvarez, M. J. et al. Microsatellite markers reveal strong genetic structure in the endemic Chilean dolphin. PLoS ONE 10, e0123956 (2015).Article 

    Google Scholar 
    Hamner, R. M., Pichler, F. B., Heimeier, D., Constantine, R. & Baker, C. S. Genetic differentiation and limited gene flow among fragmented populations of New Zealand endemic Hector’s and Maui’s dolphins. Conserv. Genet. 13, 987–1002 (2012).Article 

    Google Scholar 
    Pichler, F., Dawson, S., Slooten, E. & Baker, C. Geographic isolation of Hector’s dolphin populations described by mitochondrial DNA sequences. Conserv. Biol. 12, 676–682 (1998).Article 

    Google Scholar 
    Kraft, S. et al. From settlers to subspecies: Genetic differentiation in commerson’s Dolphins between South America and the Kerguelen Islands. Front. Mar. Sci. 8, 782512 (2021).Article 

    Google Scholar 
    Grant, W. & Bowen, B. W. Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation. J. Hered. 89, 415–426 (1998).Article 

    Google Scholar 
    Ponce, J. F., Rabassa, J., Coronato, A. & Borromei, A. M. Palaeogeographical evolution of the Atlantic coast of Pampa and Patagonia from the last glacial maximum to the Middle Holocene. Biol. J. Lin. Soc. 103, 363–379 (2011).Article 

    Google Scholar 
    Wright, S. Isolation by distance. Genetics 28, 114 (1943).Article 
    CAS 

    Google Scholar 
    Meirmans, P. G. Nonconvergence in B ayesian estimation of migration rates. Mol. Ecol. Resour. 14, 726–733 (2014).Article 

    Google Scholar  More

  • in

    A sensitive soil biological indicator to changes in land-use in regions with Mediterranean climate

    Takoutsing, B. et al. Assessment of soil health indicators for sustainable production of maize in smallholder farming systems in the highlands of Cameroon. Geoderma 276, 64–73 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Wenzel, W. W. et al. Soil and land use factors control organic caron status and accumulation in agricultural soils of Lower Austria. Geoderma 409, 115595. https://doi.org/10.1016/j.geoderma.2021.115595 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Rinot, O., Levy, G. J., Steinberger, Y., Svoray, T. & Eshel, G. Soil health assessment: A critical review of current methodologies and a proposed new approach. Sci. Total. Environ. 648, 1484–1491 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Veum, K. S., Sudduth, K. A., Kremer, R. J. & Kitchen, R. (2017) Sensor data fusion for soil health assessment. Geoderma 305, 53–61 (2017).Article 
    ADS 

    Google Scholar 
    Nunes, M. R., Van Es, H. M., Schindelbeck, R., Ristow, A. J. & Ryan, M. No-till and cropping system diversification improve soil health and crop yield. Geoderma 328, 30–43 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Chhipaa, V., Stein, A., Shankar, H., George, K. J. & Alidoost, F. Assessing and transferring soil health information in a hilly terrain. Geoderma 343, 130–138 (2019).Article 
    ADS 

    Google Scholar 
    Oliver, D. P., Bramley, R. G. V., Riches, D., Porter, I. & Edwards, J. A review of soil physical and chemical properties as indicators of soil quality in Australian viticulture. Aust. J. Grape Wine Res. 19, 129–139 (2013).Article 
    CAS 

    Google Scholar 
    Riches, D. et al. Review: soil biological properties as indicators of soil quality in Australian viticulture. Aust. J. Grape Wine Res. 19, 311–323 (2013).CAS 

    Google Scholar 
    Ritz, K., Black, H. I. J., Campbell, C. D., Harris, J. A. & Wood, C. Selecting biological indicators for monitoring soils: a framework for balancing scientific opinion to assist policy development. Ecol. Ind. 9, 1212–1221 (2009).Article 
    CAS 

    Google Scholar 
    Zhuo, Z., Kirchner, I., Pfahl, S. & Cubasch, U. Climate impact of volcanic eruptions: the sensitivity to eruption season and latitude in MPI-ESM ensemble experiments. Atmos. Chem. Phys. 21, 13425–13442 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Griffiths, B. S., Bonkowski, M., Roy, J. & Ritz, K. Functional stability, substrate utilisation and biological indicators of soils following environmental impacts. Appl. Soil Ecol. 16(1), 49–61 (2001).Article 

    Google Scholar 
    Avidano, L., Gamalero, E., Cossa, G. P. & Carraro, E. Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Appl. Soil Ecol. 30(1), 21–33 (2005).Article 

    Google Scholar 
    Pattison, A. B. et al. Development of key soil health indicators for the Australian banana industry. Appl. Soil Ecol. 40(1), 155–164 (2008).Article 

    Google Scholar 
    Damsma, K. M., Rose, M. T. & Cavagnaro, T. R. Landscape scale survey of indicators of soil health in grazing systems. Soil Res. 53(2), 154–167 (2015).Article 

    Google Scholar 
    Fine, A. K., van Es, H. M. & Schindelbeck, R. R. Statistics, scoring functions, and regional analysis of a comprehensive soil health database. Soil Sci. Soc. Am. J. 81(3), 589–601 (2016).Article 

    Google Scholar 
    Roper, W. R., Osmond, D. L., Heitman, J. L., Wagger, M. G. & Reberg-Horton, S. C. Soil Health indicators do not differentiate among agronomic management systems in North Carolina soils. Soil Sci. Soc. Am. J. 81(4), 828–843 (2016).Article 

    Google Scholar 
    Li, Z. et al. Rapid diagnosis of agricultural soil health: A novel soil health index based on natural soil productivity and human management. J. Environ. Manage. 277, 111402. https://doi.org/10.1016/j.jenvman.2020.111402 (2021).Article 

    Google Scholar 
    Oren, A. & Steinberger, Y. Catabolic profiles of soil fungal communities along a geographic climatic gradient in Israel. Soil Biol. Biochem. 40, 2578–2587 (2008).Article 
    CAS 

    Google Scholar 
    Yu, J., Glazer, N. & Steinberger, Y. Carbon utilization, microbial biomass, and respiration in biological soil crusts in the Negev Desert. Biol. Fert. Soils 50, 285–293 (2014).Article 
    CAS 

    Google Scholar 
    Van der Putten, W. H. et al. Plant–soil feedbacks: the past, the present and future challenges. J. Ecol. 101, 265–276 (2013).Article 

    Google Scholar 
    Sherman, C. & Steinberger, Y. Microbial functional diversity associated with plant litter decomposition along a climatic gradient. Microb. Ecol. 64, 399–415 (2012).Article 
    CAS 

    Google Scholar 
    Dwivedi, V. & Soni, P. A review on the role of soil microbial biomass in eco-restoration of degraded ecosystem with special reference to mining areas. J. Appl. Nat. Sci. 3(1), 151–158 (2011).Article 

    Google Scholar 
    Barreiro, A., Martín, A., Carballas, T. & Díaz-Raviña, M. Long-term response of soil microbial communities to fire and fire-fighting chemicals. Biol. Fertil. Soils 52, 963–975 (2016).Article 
    CAS 

    Google Scholar 
    Soil Science Division Staff. Soil survey manual. In USDA Handbook 18 (ed. Ditzler, C., Scheffe, K. & Monger, H.C.). (Washington, G. P. O., 2017).Campbell, C. D., Chapman, S. J., Cameron, C. M., Davidson, M. S. & Potts, J. M. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69, 3593–3599 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Anderson, J. P. E. & Domsch, K. H. Physiological method for quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10, 215–221 (1978).Article 
    CAS 

    Google Scholar 
    Creamer, R. E., Stone, D., Berry, P. & Kuiper, I. Measuring respiration profiles of soil microbial communities across Europe using MicroResp™ method. Appl. Soil Ecol. 97, 36–43 (2016).Article 

    Google Scholar 
    Oren, A. & Steinberger, Y. Coping with artifacts induced by CaCO3–CO2–H2O equilibria in substrate utilization profiling of calcareous soils. Soil Biol. Biochem. 40, 2569–2577 (2008).Article 
    CAS 

    Google Scholar 
    Zak, J. C., Willig, M. R., Howard, D. L. & Wildman, G. Functional diversity of microbial communities: A quantitative approach. Soil Biol. Biochem. 26(9), 1101–1108 (1994).Article 

    Google Scholar 
    Hotelling, H. The most predictable criterion. J. Educ. Psychol. 26, 139–142 (1935).Article 

    Google Scholar 
    Morrison, D. F. Multivariate Statistical Methods 2nd edn. (McGraw-Hill, 1976).MATH 

    Google Scholar 
    Rencher, A. C. Methods of Multivariate Analysis (Wiley, Uk, 1995).MATH 

    Google Scholar 
    IBM Corp. Released 2020. IBM SPSS Statistics for Windows, Version 27.0. (Armonk, NY: IBM Corp., 2020)R Core Team. A language and environment for statistical computing (R Foundation for Statistical Computing, 2021).
    Google Scholar 
    Bartoń K. MuMIn: Multi-Model Inference. R package version 1.46.0, https://CRAN.R-project.org/package=MuMIn, 2022.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Book 
    MATH 

    Google Scholar 
    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).Article 

    Google Scholar 
    Kiryushin, V. I. The management of soil fertility and productivity of agrocenoses in adaptive-landscape farming systems. Eurasian Soil Sci. 52, 1137–1145 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Hermans, S. M. et al. Using soil bacterial communities to predict physic-chemical variables and soil quality. Microbiome 8, 79 (2020).Article 
    CAS 

    Google Scholar 
    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U. S. A. 103, 626–631 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Frey, S. D., Drijber, R., Smith, H. & Melillo, J. M. Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol. Biochem. 40, 2904–2907 (2008).Article 
    CAS 

    Google Scholar 
    Powlson, D. S., Brookes, P. C. & Christensen, B. T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem. 19, 159–164 (1987).Article 
    CAS 

    Google Scholar 
    Brookes, P. C. The use of microbial parameters in monitoring soil pollution by heavy metals. Biol. Fertil. Soils. 19, 269–279 (1995).Article 
    CAS 

    Google Scholar 
    Hermans, S. M. et al. Bacteria as emerging indicators of soil condition. Appl. Environ. Microbiol. 83, e02826-e2916. https://doi.org/10.1128/AEM.02826-16 (2016).Article 

    Google Scholar 
    Liddicoat, C. et al. Can bacterial indicators of a grassy woodland restoration inform ecosystem assessment and microbiota-mediated human health?. Environ. Int. 129, 105–117 (2019).Article 

    Google Scholar 
    Jeanne, T., Parent, S. -É. & Hogue, R. Using a soil bacterial species balance index to estimate potato crop productivity. PLoS ONE 14, e0214089. https://doi.org/10.1371/journal.pone.0214089 (2019).Article 
    CAS 

    Google Scholar 
    Taylor, B. R. & Parkinson, D. Respiration and mass loss rates of aspen and pine leaf litter decomposing in laboratory microcosms. Can. J. Bot. 66, 1948–1959 (1988).Article 

    Google Scholar 
    Wardle, D. A. & Parkinson, D. Response of the soil microbial biomass to glucose, and selective inhibitors, across a soil moisture gradient. Soil Biol. Biochem. 22, 825–834 (1990).Article 
    CAS 

    Google Scholar 
    Baldrian, P., Merhautová, V., Petránková, M., Cajthaml, T. & Snajdr, J. Distribution of microbial biomass and activity of extracellular enzymes in a hardwood forest soil reflect soil moisture content. Appl. Soil Ecol. 46, 177–182 (2010).Article 

    Google Scholar 
    Holland, T. C. et al. The response of soil biota to water availability in vineyards. Pedobiol. Int. J. Soil Biol. 56, 9–14 (2013).
    Google Scholar 
    Yu, J. & Steinberger, Y. Vertical distribution of microbial-community functionality under the canopies of Zygophyllum dumosum and Hammada scoparia in the Negev Desert. Microb. Ecol. 62, 218–227 (2011).Article 

    Google Scholar 
    Wardle, D. A. & Parkinson, D. Interaction between microclimatic variables and the soil microbial biomass. Biol. Fertil. Soils. 9, 273–280 (1990).Article 

    Google Scholar  More

  • in

    Ocean acidification causes fundamental changes in the cellular metabolism of the Arctic copepod Calanus glacialis as detected by metabolomic analysis

    Using a targeted metabolomics approach, we showed that late copepodite stages of the keystone Arctic copepod Calanus glacialis experience important changes in several central energetic pathways following exposure to decreasing pH. These findings shed light on the physiological changes underpinning the effects of OA on fitness related traits such as ingestion rate and metabolic rate previously observed in this species17,18,20.Cellular energy metabolismCellular energy production was altered consistently in both stage CIV and CV, with concentrations of higher energy adenosine phosphates (ATP and ADP) increasing, and concentrations of the lower energy, less-phosphorylated AMP decreasing, with decreasing seawater pH. Moreover, Phospho-L-arginine, which in crustaceans functions as phosphagen in the replenishment of ATP from ADP during transient energy demands32, increased significantly in stage CV. These changes strongly suggest that exposure to low pH affects energy production and expenditure in both developmental stages, although with nuanced differences.NAD+ increased significantly in stage CIV. NAD+ is an essential redox carrier receiving electrons from oxidative processes in the glycolysis, the TCA cycle, and fatty acid oxidation to form NADH. A high NAD+/NADH ratio facilitates higher rates of these reactions and thus potentially higher rates of ATP production (unfortunately, the LC-HRMS could not detect NADH). But most importantly, the produced NADH serves as electron donors to ATP synthesis in the oxidative phosphorylation. For every ATP produced in the oxidative phosphorylation one NADH is oxidised back to NAD+. High rates of ATP production in the oxidative phosphorylation would therefore amass NAD+, as observed in stage CIV. Conversely, ATP production in the glycolysis and TCA cycle consumes NAD+ (9 NAD+ per 4 ATP) and glycolytic ATP production would decrease the NAD+ concentration with decreasing pH.Heterotrophic organisms generally face a trade-off between rate and yield of ATP production. The efficient low rate/high yield production in the TCA cycle/oxidative phosphorylation may prevail under certain circumstances, whereas under other circumstances, the less efficient high rate/low yield production in the glycolysis may predominate33. Because glycolysis and oxidative phosphorylation compete for ADP, the one dominate over the other in terms of rates depending on the substrate being metabolised. In stage CIV copepodites, the TCA cycle pathway was enriched in the MetPA, and metabolites associated with glycolysis and the TCA cycle showed significant changes in their concentrations at decreasing seawater pH. Glucose, the entry point to glycolysis, increased significantly with decreasing pH. High levels of blood glucose (hyperglycemia) have been observed as a general stress response in decapod crustaceans34. Copepods have no circulatory system (although they have a dorsal heart) but might nevertheless react similarly on the cellular level. Along with the significant increase in glucose, lactate decreased significantly with pH in stage CIV. Lactate is an inevitable end product of glycolysis, because lactate dehydrogenase has the highest Vmax of any enzymes in the glycolytic pathway and the Keq for pyruvate to lactate is far in the direction of lactate35. Accordingly, although the glycolysis was not enriched in the MetPA, conceivably because none of its intermediate metabolites were included in the analyses (the protocol did not allow for it), we hypothesise that stage CIV copepodites experience a general down-regulation of glycolysis under decreasing pH. Alternatively, the amassing of glucose and depletion of lactate could also indicate increased gluconeogenesis. Gluconeogenesis occurs during starvation to replenish glycogen stores and ingestion rates did decrease in stage CIV20. But again, we did not target any intermediates in our analyses, and thus cannot firmly conclude on this.Phosphofructokinase-1 is a key regulatory enzyme of glycolysis36. This enzyme is allosterically inhibited by ATP and activated by AMP, and interestingly this regulation is augmented by low pH37,38. Thus, phosphofructokinase-1 could be key to the down-regulation of glycolysis we hypothesise. The fact that we found increasing oxygen consumption with decreasing pH in stage CIV copepodites from the same experiment adds further momentum to this line of thought20. It seems that stage CIV copepodites might experience the so-called Pasteur effect—a decrease in glycolysis at increased levels of oxygen uptake—when exposed to decreasing pH39. Although ATP and AMP were significantly affected also in stage CV, glucose, pyruvate and lactate did not change with decreasing pH, which perhaps indicate absence of the down-regulation of glycolysis we hypothesise for stage CIV. There is, nevertheless, one indication that down-regulation may in fact occur also in this developmental stage. Alpha-glycerophosphate decreased significantly with decreasing pH in stage CV. This molecule is an intermediate in the transfer of electrons from NADH produced by glycolysis in the cytosol to the oxidative phosphorylation in the mitochondria, and decreased concentrations could result from down-regulation of the glycolysis also in stage CV copepodites.The TCA cycle was enriched for stage CIV and most of the measured TCA cycle metabolites (alpha-ketoglutarate, succinate, fumarate, and malate) showed increasing concentrations at decreasing pH. Trigg et al.40 observed a similar increase in concentrations of TCA cycle-related metabolites in the Dungeness crab, Cancer magister (Dana, 1852), at decreased pH and concluded that TCA cycle activity is upregulated under OA. Since NAD+ is the product of the transport of electrons from the TCA cycle to the oxidative phosphorylation in the mitochondria,  the increase in NAD+ concentration we observed in stage CIV could reflect an increase in the flow of electrons from the TCA cycle to the oxidative phosphorylation, and by extension an increase in the energy production by the TCA cycle and the oxidative phosphorylation. There is negative feedback from the TCA cycle to glycolysis through inhibition of phosphofructokinase-1 by citrate, a metabolite of the TCA cycle38. Unfortunately, we did not target citrate in our targeted approach to specifically test this hypothesis, but the amassing of NAD+ do provide additional support to the idea that glycolysis is down-regulated at decreasing pH. Again, there is a less clear picture of how cellular energy metabolism is affected by decreasing pH in stage CV when compared to stage CIV. There was no clear pattern of regulation of TCA metabolites, and the TCA cycle was not enriched in the MetPA. Nevertheless, alpha-ketoglutarate concentrations did increase with decreasing pH in CVs.The glyoxylate/dicarboxylate cycle was also enriched in the pathway analysis, but this is probably also a result of the increases in concentrations of alpha-ketoglutarate, succinate, fumarate, and malate, and we are unable to distinguish it from the TCA cycle based on the set of metabolites analysed.Conclusively, lowered glycolysis due to inhibition of phosphofructokinase-1 and upregulation of the TCA cycle and oxidative phosphorylation at low pH in stage CIV appear plausible causes for the changes in ATP, ADP and AMP concentrations we observed. Alongside these effects, down-regulation of transcription of genes involved in the glycolysis were also present in nauplii of C. glacialis exposed to 35–38 days of low pH conditions16. On the other hand, studies on the acclimatisation and adaptation to OA in another calanoid copepod species, Pseudocalanus acuspes (Giesbrecht, 1881), showed no increase in expression of mitochondrial genes at pHT 7.54, which would have been expected if the TCA cycle or oxidative phosphorylation is upregulated41. Interestingly, De Wit et al.41 also showed natural selection in a large fraction of mitochondrial genes under OA conditions. Even evolutionarily conserved sequences, such as cytochrome oxidase subunit I, were under selection and it was hypothesised that the mitochondrial function of oxidative phosphorylation is a target for natural selection in copepods at low pH41.Besides its role in the transfer of energy from the mitochondria to the cell, ATP is also used to fuel cell homeostasis and active cellular acid–base regulation by activation of ATP-dependent enzymes involved in osmo-ionic- and acid–base regulation. In crustaceans, acid–base status is linked to ion regulation, and is maintained primarily through ion transport mechanisms moving acid and/or base equivalents between the extracellular fluid and the ambient water42. One prominent process in this respect is regulation by Na+/K+-ATPase42,43. While this regulation takes place in the gills of decapod crustaceans43, it is located in the maxillary glands and other specialised organs on the swimming legs of copepods44. Any extensive ATPase mediated pH regulation could have manifested itself by decreasing ATP concentrations, but this is contrary to what we report here. Interestingly, while the pCO2-sensitive isopod Cymodoce truncata (Leach, 1814) is able to maintain its cellular ATP concentration at the expense of the concentration of carbonate anhydrase (an enzyme involved in the cellular transformation of water and CO2 to bicarbonate ions and H+ prior to the ATPase mediated transport of H+ across the cell membrane), the pCO2-tolerant isopod Dynamene bifida (Torelli, 1930) upregulates ATP with no functional compromise to CA concentrations45. Finally, C. glacialis nauplii have shown upregulation of Na+/H+-antiporters independent of ATPase as a response to OA16, which one could hypothesise also may be the case in the copepodites. Arctic populations of the amphipod Gammarus setosus also do not experience increased ATPase activity during OA conditions46. It seems that C. glacialis faces OA without any ATP dependent acid/base regulation activity.Glycolysis is the first step of catabolism of carbohydrates for the production of energy. When down-regulating glycolysis the copepods may be increasingly dedicated to catabolism of amino acids e.g. through oxidative deamination of glutamate and/or catabolism of fatty acids through beta-oxidation to produce the energy they require21. Both lead to the production of molecules entering the TCA cycle and ultimately the oxidative phosphorylation for energy production in the mitochondria.Amino acid metabolismOf the free amino acids which were significantly affected by decreasing pH, the majority decreased in concentration, for both stage CIV and CV copepodites. This could be an indication of changes in protein synthesis at decreasing pH. Supporting this idea, biosynthesis of aminoacyl-tRNA was indicated as significantly enriched in the MetPA in both stage CIV and CV. Aminoacyl-tRNA partakes in the elongation of the protein amino acid chain during protein synthesis and the enrichment was most likely due to the changes in concentration of the many amino acids tested. One probable cause of protein synthesis is the increased demands of enzymes needed to handle stress at low pH, including for example enzymes involved in acid–base- and osmo-regulation or regulation of energy production. Increased protein synthesis caused by OA conditions has been observed in larvae of the purple sea urchin Strongylocentrotus purpuratus (O.F. Müller, 1776), where in vivo rates of protein synthesis and ion transport increased ∼50%47. Costs of protein synthesis are high and have shown to constitute a major part of copepod metabolic demand48 and we did observe significant increases in metabolic rate in copepodite stage CIV from the same experiment20 giving further credit to the idea that protein synthesis was upregulated.An alternate but not mutually exclusive explanation is that the copepods experience increased amino acid catabolism under OA. Glutamate increased in stage CIV accompanied by a significant increase in alpha-ketoglutarate in both stage CIV and CV. Alpha-ketoglutarate is part of the metabolic pathway of glutamine, glutamate and arginine in which glutamate acts as an intermediate in catabolism of these amino acids when it is deaminated to alpha-ketoglutarate to enter the TCA cycle49. Glutamate metabolism (in conjunction with alanine and aspartate metabolism) was significantly enriched in the MetPA in both stage CIV and CV, and these changes could be taken as an indication of a shift towards amino acid catabolism with decreasing pH. The key enzyme catalysing the oxidative deamination of glutamate is glutamate dehydrogenase (GDH), which functions in both directions: deamination of glutamate to form alpha-ketoglutarate or formation of glutamate from alpha-ketoglutarate. Studies on the ribbed mussel, Modiolus dernissus (Dillwyn, 1817), have shown that the balance of this action is strongly pushed towards deamination when pH decreases from 8.0 to 7.550. GDH is activated by ADP, and one could argue that the increase in ADP we observed would work against this shift, but ADP activates GDH mainly in the glutamate forming direction51. The other measured amino acids enter the TCA cycle at different positions we unfortunately could not target in our analyses. Glutamate also partakes in the arginine biosynthesis pathway in which it is transformed to ornithine to enter the urea cycle. Arginine biosynthesis was enriched in the MetPA and it is therefore possible that decreasing pH also changes amino acid catabolism to increase urea excretion. Decreasing pH has a similar depressing effect on amino acid concentration in the gills of the shore crab Carcinus maenas (Linnaeus, 1758) which also has been interpreted as a sign of increased protein catabolism52. Hammer and colleagues52 argued that this increase in catabolism served to buffer H+ by supplying nitrogen to NH4 formation in the cells. All in all, we hypothesise that increased amino acid catabolism, possibly driven by changes in GDH activity, and the down-regulation of glycolysis by inhibition of phosphofructokinase-1 may be major drivers of a shift from carbohydrate metabolism towards catabolism of amino acids.D-glutamine/D-glutamate metabolism was highly enriched in the MetPA in both developmental stages. Several studies show enriched D-glutamine/D-glutamate metabolism in crustaceans [e.g. 53], but they offer no explanation of its function or the reason why it is enriched. While D-glutamate act in neurotransmission, this action is evolutionarily restricted to ctenophores, and biochemical measurements of D-amino acid concentrations have shown absence of D-glutamate in crustaceans54,55.We observed no changes in concentrations of 8-oxy-2-deoxyguanosine, a product of DNA oxidation. Furthermore, regulation of cellular response to oxidative stress is down-regulated in C. glacialis nauplii16, and OA may not induce oxidative stress in C. glacialis.Fatty acid metabolismBesides their importance in energy storage as wax esters, fatty acids are involved in many central processes in cells, most prominently through their function as cell membrane building blocks. Many fatty acids are obtained from the diet but some longer chain fatty acids, such as 20:1n-9 are synthesised de novo in copepods56. Stage CV copepodites experienced increases in most of the targeted free fatty acids (18 of 21) with decreasing pH. Only one of those 18 increased significantly, but since the direction of change were the same in all, we argue that the pattern of change does merit consideration. Conspicuous exceptions were eicosapentaenoic acid (EPA) 20:5n-3 and docosahexaenoic acid (DHA) 22:6n-3, which both decreased significantly. The only other study (to our knowledge) of metabolomic effects of environmental changes in copepods showed the exact same response to starvation in a mix of C. finmarchicus and C. helgolandicus stage CV copepodites, with most fatty acids increasing while EPA and DHA decreased in concentration57. EPA and DHA are key marine polyunsaturated fatty acids (PUFAs) exclusively produced by marine algae. They contribute a major fraction of the fatty acids of cell membrane phospholipids58, and zooplankton reproductive production is highly dependent on especially EPA59. EPA and DHA are key for cell membrane fluidity, which for calanoid copepods is especially important during diapause in the deep during copepodite stage CV60. They have also been linked to diapause buoyancy control, and are selectively metabolized in diapausing copepodites61. The importance of EPA and DHA for cell membrane integrity may be central for the changes we observed. Glycerol-3-phosphate, the precursor for the glycerol backbone of cell membrane phospholipids also decreased significantly and it seems decreasing pH could affect cell membrane turnover.Changing fatty acid concentration could be due to either a change in lipid intake from feeding or increased fatty acid catabolism. While ingestion rates decreased in stage CIV, they were unchanged in stage CV with decreasing pH20. Also, Thalassiosira weissflogii (Grunow) G.Fryxell & Hasle, 1977, the diatom we fed to the copepods, is rich in 16:0, 16:1n-7 and EPA59. The concentrations of 16:0 and 16:1n-7 increased, whereas EPA concentration decreased. If fatty acid concentrations reflected feeding, we would have seen increased concentrations of all three. We therefore believe that the general increases in concentrations of free fatty acids were caused by increasing catabolism of the wax esters stored in stage CV. It may be that due to the metabolic reconfiguration to enter hibernation, stage CV copepodites are already committed to the catabolism of fatty acids through beta-oxidation, and stored wax esters are being hydrolysed to increase the availability of free fatty acids for energy production. Mayor and colleagues57 arrived at the same conclusion. We hypothesise that stress due to low pH increases the organism’s energetic demands, but carbohydrates are not used to accommodate these demands due to the down-regulation of the glycolysis, rather demands are met by hydrolysing and metabolising wax esters in stage CV. The further ramifications of future OA could therefore be a less efficient build-up of wax esters so important for hibernation in this species.Finally, besides their importance for cell membrane fluidity, EPA and DHA are important precursors for eicosanoid endocrine hormones. These hormones are important regulators of, among other processes, ion flux62. As mentioned above, acid base regulation is coupled to osmoregulation in crustaceans42, and the decrease in concentrations of these two specific fatty acids, when all other fatty acid concentrations increased might represent an indication for changing endocrine hormone production to counter adverse whole-organism effects of OA.Changes in metabolite concentrations cannot be directly translated into changes in the rate of the processes they are involved in. However, they do pin-point processes which are affected by the imposed environmental changes. Also, in our analyses we targeted a limited range of molecules. In that respect OA could inflict changes in other important metabolic pathways we did not investigate. The absence of specific biochemical pathways in our analyses and discussion should therefore not be taken as indication that these are not implicated in this species responses to OA.From our previously published study on copepodites from the same incubations, we know that high pCO2/low pH conditions have detrimental effects on the balance between energy input (ingestion) and energy expenditure (metabolism) in stage CIV copepodites but not in stage CV copepodites20. The effects we report here help in this sense to shed light on the metabolic origin of the rather severe effects on energy balance we observed in stage CIV copepodites and the difference in response between stage CIV and CV20. Copepods develop through six nauplii and five copepodite stages before maturation, and while previous studies show negligible effects in stage CV and adults17,18,20, any effects in any developmental stage along the way will affect the fitness of the individual and the recruitment to the population as a whole. In addition, the enhanced fatty acid metabolism observed in stage CV needs further investigation, to determine the magnitude of the fitness implications of the energy diverted away from energy storage for hibernation. More

  • in

    Effects of phytoplankton, viral communities, and warming on free-living and particle-associated marine prokaryotic community structure

    Azam, F. et al. The ecological role of water-column microbes in the sea. Marine Ecol. Prog. Ser. 10, 257–263 (1983).Fuhrman, J. A. & Caron D. A. in Manual of Environmental Microbiology (eds Yates, M. V. et al.) 4.2.2–4.2.2.-34 (ASM Press, 2016).Gasol, J. M. & Kirchman, D. L. Microbial Ecology of the Oceans (John Wiley & Sons, 2018).Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl Acad. Sci. 105, 7774–7778 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Gilbert, J. A. et al. The seasonal structure of microbial communities in the Western English Channel. Environ. Microbiol. 11, 3132–3139 (2009).Article 
    CAS 

    Google Scholar 
    Gilbert, J. A. et al. Defining seasonal marine microbial community dynamics. ISME J. 6, 298–308 (2012).Article 
    CAS 

    Google Scholar 
    Hatosy, S. M. et al. Beta diversity of marine bacteria depends on temporal scale. Ecology 94, 1898–1904 (2013).Article 

    Google Scholar 
    Ward, C. S. et al. Annual community patterns are driven by seasonal switching between closely related marine bacteria. ISME J. 11, 1412–1422 (2017).Article 

    Google Scholar 
    Fuhrman, J. A. et al. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Natl Acad. Sci. 103, 13104–13109 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Gonzalez, J. M., Sherr, E. B. & Sherr, B. F. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl. Environ. Microbiol. 56, 583–589 (1990).Article 
    ADS 
    CAS 

    Google Scholar 
    Guixa-Boixereu, N., Vaque, D., Gasol, J. M. & Pedros-Alio, C. Distribution of viruses and their potential effect on bacterioplankton in an oligotrophic marine system. Aquat. Microb. Ecol. 19, 205–213 (1999).Article 

    Google Scholar 
    Šimek, K. et al. Shifts in bacterial community composition associated with different microzooplankton size fractions in a eutrophic reservoir. Limnol. Oceanogr. 44, 1634–1644 (1999).Article 
    ADS 

    Google Scholar 
    Hewson, I., Vargo, G. & Fuhrman, J. Bacterial diversity in shallow oligotrophic marine benthos and overlying waters: effects of virus infection, containment, and nutrient enrichment. Microb. Ecol. 46, 322–336 (2003).Article 
    CAS 

    Google Scholar 
    Schwalbach, M. S., Hewson, I. & Fuhrman, J. A. Viral effects on bacterial community composition in marine plankton microcosms. Aquat. Microb. Ecol. 34, 117–127 (2004).Article 

    Google Scholar 
    Winter, C., Smit, A., Herndl, G. J. & Weinbauer, M. G. Linking bacterial richness with viral abundance and prokaryotic activity. Limnol. Oceanogr. 50, 968–977 (2005).Article 
    ADS 

    Google Scholar 
    Chow, C.-E. T., Kim, D. Y., Sachdeva, R., Caron, D. A. & Fuhrman, J. A. Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists. ISME J. 8, 816–829 (2014).Article 
    CAS 

    Google Scholar 
    Suzuki, S. et al. Comparison of community structures between particle-associated and free-living prokaryotes in tropical and subtropical Pacific Ocean surface waters. J. Oceanogr. 73, 383–395 (2017).Article 
    CAS 

    Google Scholar 
    Milici, M. et al. Diversity and community composition of particle‐associated and free‐living bacteria in mesopelagic and bathypelagic Southern Ocean water masses: evidence of dispersal limitation in the Bransfield Strait. Limnol. Oceanogr. 62, 1080–1095 (2017).Article 
    ADS 

    Google Scholar 
    D’ambrosio, L., Ziervogel, K., MacGregor, B., Teske, A. & Arnosti, C. Composition and enzymatic function of particle-associated and free-living bacteria: a coastal/offshore comparison. ISME J. 8, 2167–2179 (2014).Article 

    Google Scholar 
    Rieck, A., Herlemann, D. P., Jürgens, K. & Grossart, H.-P. Particle-associated differ from free-living bacteria in surface waters of the Baltic Sea. Front. Microbiol. 6, 1297 (2015).Article 

    Google Scholar 
    Yung, C.-M., Ward, C. S., Davis, K. M., Johnson, Z. I. & Hunt, D. E. Insensitivity of diverse and temporally variable particle-associated microbial communities to bulk seawater environmental parameters. Appl. Environ. Microbiol. 82, 3431–3437 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014).Article 
    CAS 

    Google Scholar 
    Duret, M. T., Lampitt, R. S. & Lam, P. Prokaryotic niche partitioning between suspended and sinking marine particles. Environ. Microbiol. Rep. 11, 386–400 (2019).Article 
    CAS 

    Google Scholar 
    Crespo, B. G., Pommier, T., Fernández‐Gómez, B. & Pedrós‐Alió, C. Taxonomic composition of the particle‐attached and free‐living bacterial assemblages in the Northwest Mediterranean Sea analyzed by pyrosequencing of the 16S rRNA. Microbiologyopen 2, 541–552 (2013).Article 
    CAS 

    Google Scholar 
    Mestre, M., Borrull, E., Sala, M. & Gasol, J. M. Patterns of bacterial diversity in the marine planktonic particulate matter continuum. ISME J. 11, 999–1010 (2017).Yeh, Y. C. et al. Comprehensive single‐PCR 16S and 18S rRNA community analysis validated with mock communities, and estimation of sequencing bias against 18S. Environ. Microbiol. 23, 3240–3250 (2021).Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).Article 
    CAS 

    Google Scholar 
    Needham, D. M. et al. Dynamics and interactions of highly resolved marine plankton via automated high-frequency sampling. ISME J. 12, 2417 (2018).Article 
    CAS 

    Google Scholar 
    McNichol, J., Berube, P. M., Biller, S. J. & Fuhrman, J. A. Evaluating and improving small subunit rRNA PCR primer coverage for bacteria, archaea, and eukaryotes using metagenomes from global ocean surveys. Msystems 6, e00565–00521 (2021).Article 
    CAS 

    Google Scholar 
    Chow, C. E. T. & Fuhrman, J. A. Seasonality and monthly dynamics of marine myovirus communities. Environ. Microbiol. 14, 2171–2183 (2012).Article 

    Google Scholar 
    Filée, J., Tétart, F., Suttle, C. A. & Krisch, H. Marine T4-type bacteriophages, a ubiquitous component of the dark matter of the biosphere. Proc. Natl Acad. Sci. 102, 12471–12476 (2005).Article 
    ADS 

    Google Scholar 
    Pagarete, A. et al. Strong seasonality and interannual recurrence in marine myovirus communities. Appl. Environ. Microbiol. 79, 6253–6259 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Comeau, A. M. & Krisch, H. M. The capsid of the T4 phage superfamily: the evolution, diversity, and structure of some of the most prevalent proteins in the biosphere. Mol. Biol. Evolution 25, 1321–1332 (2008).Article 
    CAS 

    Google Scholar 
    Needham, D. M. et al. Short-term observations of marine bacterial and viral communities: patterns, connections and resilience. ISME J. 7, 1274–1285 (2013).Article 
    CAS 

    Google Scholar 
    Needham, D. M., Sachdeva, R. & Fuhrman, J. A. Ecological dynamics and co-occurrence among marine phytoplankton, bacteria and myoviruses shows microdiversity matters. ISME J. 11, 1614–1629 (2017).Article 

    Google Scholar 
    Ahlgren, N. A., Perelman, J. N., Yeh, Y. C. & Fuhrman, J. A. Multi‐year dynamics of fine‐scale marine cyanobacterial populations are more strongly explained by phage interactions than abiotic, bottom‐up factors. Environ. Microbiol. 21, 2948–2963 (2019).Article 
    CAS 

    Google Scholar 
    Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A. & Sun, F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome 5, 1–20 (2017).Article 

    Google Scholar 
    Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).Article 

    Google Scholar 
    Ignacio-Espinoza, J. C., Ahlgren, N. A. & Fuhrman, J. A. Long-term stability and Red Queen-like strain dynamics in marine viruses. Nat. Microbiol. 5, 265–271 (2020).Article 
    CAS 

    Google Scholar 
    Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, (2015).Brown, M. V. et al. Global biogeography of SAR11 marine bacteria. Mol. Syst. Biol. 8, 595 (2012).Article 
    ADS 

    Google Scholar 
    Johnson, Z. I. et al. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Zwirglmaier, K. et al. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ. Microbiol. 10, 147–161 (2008).
    Google Scholar 
    Martiny, A. C., Tai, A. P., Veneziano, D., Primeau, F. & Chisholm, S. W. Taxonomic resolution, ecotypes and the biogeography of Prochlorococcus. Environ. Microbiol. 11, 823–832 (2009).Article 

    Google Scholar 
    Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).Article 
    ADS 

    Google Scholar 
    Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047 (2016).Article 
    ADS 

    Google Scholar 
    Traving, S. J. et al. Prokaryotic responses to a warm temperature anomaly in northeast subarctic Pacific waters. Commun. Biol. 4, 1–12 (2021).Article 

    Google Scholar 
    Peña, M. A., Nemcek, N. & Robert, M. Phytoplankton responses to the 2014–2016 warming anomaly in the northeast subarctic Pacific Ocean. Limnol. Oceanogr. 64, 515–525 (2019).Article 
    ADS 

    Google Scholar 
    Yang, B., Emerson, S. R. & Peña, M. A. The effect of the 2013–2016 high temperature anomaly in the subarctic Northeast Pacific (the “Blob”) on net community production. Biogeosciences 15, 6747–6759 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Cavole, L. M. et al. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 

    Google Scholar 
    Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. 1, 16005 (2016).Article 
    CAS 

    Google Scholar 
    Grossart, H. P., Levold, F., Allgaier, M., Simon, M. & Brinkhoff, T. Marine diatom species harbour distinct bacterial communities. Environ. Microbiol. 7, 860–873 (2005).Article 
    CAS 

    Google Scholar 
    Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336, 608–611 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Chafee, M. et al. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J. 12, 237–252 (2018).Article 

    Google Scholar 
    Teeling, H. et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. elife 5, e11888 (2016).Article 

    Google Scholar 
    Unfried, F. et al. Adaptive mechanisms that provide competitive advantages to marine bacteroidetes during microalgal blooms. ISME J. 12, 2894–2906 (2018).Article 
    CAS 

    Google Scholar 
    Francis, T. B. et al. Changing expression patterns of TonB-dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom. ISME J. 15, 2336–2350 (2021).Thingstad, T. F. & Lignell, R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol. 13, 19–27 (1997).Article 

    Google Scholar 
    Thingstad, T. F., Våge, S., Storesund, J. E., Sandaa, R.-A. & Giske, J. A theoretical analysis of how strain-specific viruses can control microbial species diversity. Proc. Natl Acad. Sci. 111, 7813–7818 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Thingstad, T. F., Pree, B., Giske, J. & Våge, S. What difference does it make if viruses are strain-, rather than species-specific? Front. Microbiol. 6, 320 (2015).Article 

    Google Scholar 
    Prokopowich, C. D., Gregory, T. R. & Crease, T. J. The correlation between rDNA copy number and genome size in eukaryotes. Genome 46, 48–50 (2003).Article 
    CAS 

    Google Scholar 
    Zhu, F., Massana, R., Not, F., Marie, D. & Vaulot, D. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol. Ecol. 52, 79–92 (2005).Article 
    CAS 

    Google Scholar 
    Sintes, E. & Del Giorgio, P. A. Feedbacks between protistan single-cell activity and bacterial physiological structure reinforce the predator/prey link in microbial foodwebs. Front. Microbiol. 5, 453 (2014).Article 

    Google Scholar 
    Del Giorgio, P. A. et al. Bacterioplankton community structure: protists control net production and the proportion of active bacteria in a coastal marine community. Limnol. Oceanogr. 41, 1169–1179 (1996).Article 
    ADS 

    Google Scholar 
    Andersson, A., Larsson, U. & Hagström, Å. Size-selective grazing by a microflagellate on pelagic bacteria. Marine Ecol. Prog. Ser. 33, 51–57 (1986).Pernthaler, J. Predation on prokaryotes in the water column and its ecological implications. Nat. Rev. Microbiol. 3, 537–546 (2005).Article 
    CAS 

    Google Scholar 
    Baltar, F. et al. Marine bacterial community structure resilience to changes in protist predation under phytoplankton bloom conditions. ISME J. 10, 568–581 (2016).Article 

    Google Scholar 
    Suzuki, M. T. Effect of protistan bacterivory on coastal bacterioplankton diversity. Aquat. Microb. Ecol. 20, 261–272 (1999).Article 

    Google Scholar 
    Yokokawa, T. & Nagata, T. Growth and grazing mortality rates of phylogenetic groups of bacterioplankton in coastal marine environments. Appl. Environ. Microbiol. 71, 6799–6807 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Eren, A. M. et al. Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol. Evolution 4, 1111–1119 (2013).Article 

    Google Scholar 
    Coleman, M. L. & Chisholm, S. W. Code and context: Prochlorococcus as a model for cross-scale biology. Trends Microbiol. 15, 398–407 (2007).Article 
    CAS 

    Google Scholar 
    Scanlan, D. J. et al. Ecological genomics of marine picocyanobacteria. Microbiol. Mol. Biol. Rev. 73, 249–299 (2009).Article 
    CAS 

    Google Scholar 
    Moore, L. R., Rocap, G. & Chisholm, S. W. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393, 464–467 (1998).Article 
    ADS 
    CAS 

    Google Scholar 
    Rusch, D. B., Martiny, A. C., Dupont, C. L., Halpern, A. L. & Venter, J. C. Characterization of Prochlorococcus clades from iron-depleted oceanic regions. Proc. Natl Acad. Sci. 107, 16184–16189 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Larkin, A. A. et al. Persistent El Niño driven shifts in marine cyanobacteria populations. PloS ONE 15, e0238405 (2020).Article 
    CAS 

    Google Scholar 
    Arandia‐Gorostidi, N. et al. Warming the phycosphere: differential effect of temperature on the use of diatom‐derived carbon by two copiotrophic bacterial taxa. Environ. Microbiol. 22, 1381–1396 (2020).Article 

    Google Scholar 
    Arandia‐Gorostidi, N., Huete‐Stauffer, T. M., Alonso‐Sáez L, G. & Morán, X. A. Testing the metabolic theory of ecology with marine bacteria: different temperature sensitivity of major phylogenetic groups during the spring phytoplankton bloom. Environ. Microbiol. 19, 4493–4505 (2017).Article 

    Google Scholar 
    Fagan, A. J., Moreno, A. R. & Martiny, A. C. Role of ENSO conditions on particulate organic matter concentrations and elemental ratios in the Southern California Bight. Front. Mar. Sci. 6, 386 (2019).Article 

    Google Scholar 
    Chang, C. W. et al. Reconstructing large interaction networks from empirical time series data. Ecol. Lett. 24, 2763–2774 (2021).Article 

    Google Scholar 
    Lie, A. A., Kim, D. Y., Schnetzer, A. & Caron, D. A. Small-scale temporal and spatial variations in protistan community composition at the San Pedro Ocean Time-series station off the coast of southern California. Aquat. Microb. Ecol. 70, 93–110 (2013).Article 

    Google Scholar 
    Yeh, Y.-C., Needham, D. M., Sieradzki, E. T. & Fuhrman, J. A. Taxon disappearance from microbiome analysis reinforces the value of mock communities as a standard in every sequencing run. MSystems 3, e00023–00018 (2018).Article 

    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).Article 
    CAS 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).Article 
    CAS 

    Google Scholar 
    Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D579–D604 (2013).
    Google Scholar 
    Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. MSystems 2, (2017).Decelle, J. et al. Phyto REF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol. Ecol. Resour. 15, 1435–1445 (2015).Article 
    CAS 

    Google Scholar 
    Amin, S. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98–101 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).Article 
    ADS 

    Google Scholar 
    Hill, M. O. & Gauch, H. G. J. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42, 47–58 (1980).Ter Braak, C. J. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179 (1986).Article 

    Google Scholar 
    Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).Article 

    Google Scholar  More

  • in

    A regulatory hydrogenase gene cluster observed in the thioautotrophic symbiont of Bathymodiolus mussel in the East Pacific Rise

    Sogin, E. M., Leisch, N. & Dubilier, N. Chemosynthetic symbioses. Curr. Biol. 30, R1137–R1142 (2020).Article 
    CAS 

    Google Scholar 
    Dubilier, N., Bergin, C. & Lott, C. Symbiotic diversity in marine animals: The art of harnessing chemosynthesis. Nat. Rev. Microbiol. 6, 725–740 (2008).Article 
    CAS 

    Google Scholar 
    Barry, J. P. et al. Methane-based symbiosis in a mussel, Bathymodiolus platifrons, from cold seeps in Sagami Bay Japan. Invertebr. Biol. 121, 47–54 (2002).Article 

    Google Scholar 
    Le Pennec, M., Donval, A. & Herry, A. Nutritional strategies of the hydrothermal ecosystem bivalves. Prog. Oceanogr. 24, 71–80 (1990).Article 
    ADS 

    Google Scholar 
    Rau, G. H. & Hedges, J. I. Carbon-13 depletion in a hydrothermal vent mussel: Suggestion of a chemosynthetic food source. Science 203, 648–649 (1979).Article 
    ADS 
    CAS 

    Google Scholar 
    Wentrup, C., Wendeberg, A., Schimak, M., Borowski, C. & Dubilier, N. Forever competent: Deep-sea bivalves are colonized by their chemosynthetic symbionts throughout their lifetime. Environ. Microbiol. 16, 3699–3713 (2014).Article 

    Google Scholar 
    Dattagupta, S., Bergquist, D., Szalai, E., Macko, S. & Fisher, C. Tissue carbon, nitrogen, and sulfur stable isotope turnover in transplanted Bathymodiolus childressi mussels: Relation to growth and physiological condition. Limnol. Oceanogr. 49, 1144–1151 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Ikuta, T. et al. Heterogeneous composition of key metabolic gene clusters in a vent mussel symbiont population. ISME J. 10, 990–1001 (2016).Article 

    Google Scholar 
    Takishita, K. et al. Genomic evidence that methanotrophic endosymbionts likely provide deep-sea Bathymodiolus mussels with a sterol intermediate in cholesterol biosynthesis. Genome Biol. Evol. 9, 1148–1160 (2017).Article 

    Google Scholar 
    Sayavedra, L. et al. Horizontal acquisition followed by expansion and diversification of toxin-related genes in deep-sea bivalve symbionts. BioRxiv 110, 330 (2019).
    Google Scholar 
    Ponnudurai, R. et al. Metabolic and physiological interdependencies in the Bathymodiolus azoricus symbiosis. ISME J. 11, 463–477 (2017).Article 
    CAS 

    Google Scholar 
    Ponnudurai, R. et al. Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont. Stand Genom. Sci. 12, 1–9 (2017).
    Google Scholar 
    Kiel, S. The Vent and Seep Biota: Aspects from Microbes to Ecosystems Vol. 33 (Springer Science & Business Media, 2010).
    Google Scholar 
    Lorion, J. et al. Adaptive radiation of chemosymbiotic deep-sea mussels. Proc. R. Soc. B 280, 20131243 (2013).Article 

    Google Scholar 
    Nussbaumer, A. D., Fisher, C. R. & Bright, M. Horizontal endosymbiont transmission in hydrothermal vent tubeworms. Nature 441, 345–348 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Gros, O., Liberge, M., Heddi, A., Khatchadourian, C. & Felbeck, H. Detection of the free-living forms of sulfide-oxidizing gill endosymbionts in the lucinid habitat (Thalassia testudinum environment). Appl. Environ. Microbiol. 69, 6264–6267 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Won, Y.-J. et al. Environmental acquisition of thiotrophic endosymbionts by deep-sea mussels of the genus Bathymodiolus. Appl. Environ. Microbiol. 69, 6785–6792 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Laming, S. R., Gaudron, S. M. & Duperron, S. Lifecycle ecology of deep-sea chemosymbiotic mussels: A review. Front. Mar. Sci. 5, 282 (2018).Article 

    Google Scholar 
    Laming, S. R., Duperron, S., Cunha, M. R. & Gaudron, S. M. Settled, symbiotic, then sexually mature: Adaptive developmental anatomy in the deep-sea, chemosymbiotic mussel Idas modiolaeformis. Mar. Biol. 161, 1319–1333 (2014).Article 

    Google Scholar 
    Salerno, J. L. et al. Characterization of symbiont populations in life-history stages of mussels from chemosynthetic environments. Biol. Bull. 208, 145–155 (2005).Article 

    Google Scholar 
    Wentrup, C., Wendeberg, A., Huang, J. Y., Borowski, C. & Dubilier, N. Shift from widespread symbiont infection of host tissues to specific colonization of gills in juvenile deep-sea mussels. ISME J. 7, 1244–1247 (2013).Article 
    CAS 

    Google Scholar 
    Pennec, M. L. & Beninger, P. G. Ultrastructural characteristics of spermatogenesis in three species of deep-sea hydrothermal vent mytilids. Can. J. Zool. 75, 308–316 (1997).Article 

    Google Scholar 
    Eckelbarger, K. & Young, C. Ultrastructure of gametogenesis in a chemosynthetic mytilid bivalve (Bathymodiolus childressi) from a bathyal, methane seep environment (northern Gulf of Mexico). Mar. Biol. 135, 635–646 (1999).Article 

    Google Scholar 
    Ansorge, R. et al. Diversity matters: Deep-sea mussels harbor multiple symbiont strains. bioRxiv 99, 1039 (2019).
    Google Scholar 
    Petersen, J. M., Wentrup, C., Verna, C., Knittel, K. & Dubilier, N. Origins and evolutionary flexibility of chemosynthetic symbionts from deep-sea animals. Biol. Bull. 223, 123–137 (2012).Article 
    CAS 

    Google Scholar 
    Sayavedra, L. et al. Abundant toxin-related genes in the genomes of beneficial symbionts from deep-sea hydrothermal vent mussels. Elife 4, e07966 (2015).Article 

    Google Scholar 
    Ansorge, R. et al. Functional diversity enables multiple symbiont strains to coexist in deep-sea mussels. Nat. Microbiol. 4, 2487–2497 (2019).Article 

    Google Scholar 
    Petersen, J. M. et al. Hydrogen is an energy source for hydrothermal vent symbioses. Nature 476, 176–180 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Nakamura, K. & Takai, K. Theoretical constraints of physical and chemical properties of hydrothermal fluids on variations in chemolithotrophic microbial communities in seafloor hydrothermal systems. Prog. Earth Planet Sci. 1, 1–24 (2014).Article 
    ADS 

    Google Scholar 
    Perez, M. & Juniper, S. K. Insights into symbiont population structure among three vestimentiferan tubeworm host species at eastern Pacific spreading centers. Appl. Environ. Microbiol. 82, 5197–5205 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Wilbanks, E. G. et al. Metagenomic methylation patterns resolve bacterial genomes of unusual size and structural complexity. ISME J. https://doi.org/10.1038/s41396-022-01242-7 (2022).Article 

    Google Scholar 
    Rodriguez-Casariego, J. A., Cunning, R., Baker, A. C. & Eirin-Lopez, J. M. Symbiont shuffling induces differential DNA methylation responses to thermal stress in the coral Montastraea cavernosa. Mol. Ecol. 31, 588–602 (2022).Article 
    CAS 

    Google Scholar 
    Triant, D. A. & Whitehead, A. Simultaneous extraction of high-quality RNA and DNA from small tissue samples. J. Hered. 100, 246–250 (2009).Article 
    CAS 

    Google Scholar 
    Chin, C.-S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).Article 
    CAS 

    Google Scholar 
    Wick, R. R. et al. Trycycler: Consensus long-read assemblies for bacterial genomes. Genome Biol. 22, 1–17 (2021).Article 

    Google Scholar 
    Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).Article 
    CAS 

    Google Scholar 
    Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, e1005595 (2017).Article 
    ADS 

    Google Scholar 
    Krawczyk, P. S., Lipinski, L. & Dziembowski, A. PlasFlow: Predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res. 46, e35–e35 (2018).Article 

    Google Scholar 
    Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D. & Gurevich, A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 34, i142–i150 (2018).Article 
    CAS 

    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).Article 
    CAS 

    Google Scholar 
    Couvin, D. et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 46, W246–W251 (2018).Article 
    CAS 

    Google Scholar 
    Perez, M., Angers, B., Young, C. R. & Juniper, S. K. Shining light on a deep-sea bacterial symbiont population structure with CRISPR. Microbial. Genom. https://doi.org/10.1099/mgen.0.000625 (2021).Article 

    Google Scholar 
    Hyatt, D. et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 1–11 (2010).Article 

    Google Scholar 
    Nielsen, H. Protein Function Prediction 59–73 (Springer, 2017).Book 

    Google Scholar 
    Krogh, A., Larsson, B., Von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).Article 
    CAS 

    Google Scholar 
    Lagesen, K. et al. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100-31C08 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Chan, P. P. & Lowe, T. M. Gene Prediction 1–14 (Springer, 2019).
    Google Scholar 
    Griffiths-Jones, S. et al. Rfam: Annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121–D124 (2005).Article 
    CAS 

    Google Scholar 
    Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).Article 
    CAS 

    Google Scholar 
    Siguier, P., Pérochon, J., Lestrade, L., Mahillon, J. & Chandler, M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 34, D32–D36 (2006).Article 
    CAS 

    Google Scholar 
    Bertelli, C. et al. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 45, W30–W35 (2017).Article 
    CAS 

    Google Scholar 
    Arndt, D. et al. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16–W21 (2016).Article 
    CAS 

    Google Scholar 
    Roeselers, G. et al. Complete genome sequence of Candidatus Ruthia magnifica. Stand Genomic Sci. 3, 163–173 (2010).Article 

    Google Scholar 
    Emms, D. M. & Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 1–14 (2019).Article 

    Google Scholar 
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).Article 

    Google Scholar 
    Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).Article 
    CAS 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547 (2018).Article 
    CAS 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).Article 
    CAS 

    Google Scholar 
    Eren, A. M. et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat. Microbiol. 6, 3–6 (2021).Article 
    CAS 

    Google Scholar 
    Darling, A. E., Mau, B. & Perna, N. T. progressiveMauve: Multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5, e11147 (2010).Article 
    ADS 

    Google Scholar 
    Tesler, G. GRIMM: Genome rearrangements web server. Bioinformatics 18, 492–493 (2002).Article 
    CAS 

    Google Scholar 
    Cabanettes, F. & Klopp, C. D-GENIES: Dot plot large genomes in an interactive, efficient and simple way. PeerJ 6, e4958 (2018).Article 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).Article 
    CAS 

    Google Scholar 
    Gilchrist, C. L. & Chooi, Y.-H. Clinker & clustermap. js: Automatic generation of gene cluster comparison figures. Bioinformatics 37, 2473–2475 (2021).Article 
    CAS 

    Google Scholar 
    Taboada, B., Estrada, K., Ciria, R. & Merino, E. Operon-mapper: A web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics 34, 4118–4120 (2018).Article 
    CAS 

    Google Scholar 
    Søndergaard, D., Pedersen, C. N. & Greening, C. HydDB: A web tool for hydrogenase classification and analysis. Sci. Rep. 6, 1–8 (2016).Article 

    Google Scholar 
    NCBI Genome Browser. https://www.ncbi.nlm.nih.gov/genome/browse/#!/prokaryotes/. Accessed 12 March 2022.Mcmullin, E. R., Hourdez, S., Schaeffer, S. W. & Fisher, C. R. Review article phylogeny and biogeography of deep sea vestimentiferan tubeworms and their bacterial symbionts. Symbiosis. 34, 1–41 (2003).
    Google Scholar 
    Won, Y.-J., Jones, W. J. & Vrijenhoek, R. C. Absence of cospeciation between deep-sea mytilids and their thiotrophic endosymbionts. J. Shellfish Res. 27, 129–138 (2008).Article 

    Google Scholar 
    Miyazaki, J.-I., Martins, Ld. O., Fujita, Y., Matsumoto, H. & Fujiwara, Y. Evolutionary process of deep-sea Bathymodiolus mussels. PLoS ONE 5, e10363 (2010).Article 
    ADS 

    Google Scholar 
    Bright, M. & Bulgheresi, S. A complex journey: Transmission of microbial symbionts. Nat. Rev. Microbiol. 8, 218–230 (2010).Article 
    CAS 

    Google Scholar 
    Raggi, L., Schubotz, F., Hinrichs, K. U., Dubilier, N. & Petersen, J. M. Bacterial symbionts of Bathymodiolus mussels and Escarpia tubeworms from Chapopote, an asphalt seep in the southern Gulf of Mexico. Environ. Microbiol. 15, 1969–1987 (2013).Article 
    CAS 

    Google Scholar 
    Goris, J. et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57, 81–91 (2007).Article 
    CAS 

    Google Scholar 
    Meier-Kolthoff, J. P., Auch, A. F., Klenk, H.-P. & Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 14, 1–14 (2013).Article 

    Google Scholar 
    Konstantinidis, K. T. & Tiedje, J. M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. 102, 2567–2572 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Ho, P.-T. et al. Geographical structure of endosymbiotic bacteria hosted by Bathymodiolus mussels at eastern Pacific hydrothermal vents. BMC Evol. Biol. 17, 1–16 (2017).Article 

    Google Scholar 
    Romero Picazo, D. et al. Horizontally transmitted symbiont populations in deep-sea mussels are genetically isolated. ISME J. 13, 2954–2968 (2019).Article 

    Google Scholar 
    Perez, M. & Juniper, S. K. Is the trophosome of Ridgeia piscesae monoclonal?. Symbiosis 74, 55–65 (2018).Article 
    CAS 

    Google Scholar 
    Polzin, J., Arevalo, P., Nussbaumer, T., Polz, M. F. & Bright, M. Polyclonal symbiont populations in hydrothermal vent tubeworms and the environment. Proc. R. Soc. B 286, 20181281 (2019).Article 
    CAS 

    Google Scholar 
    Russell, S. L. & Cavanaugh, C. M. Intrahost genetic diversity of bacterial symbionts exhibits evidence of mixed infections and recombinant haplotypes. Mol. Biol. Evol. 34, 2747–2761 (2017).Article 
    CAS 

    Google Scholar 
    Breusing, C., Genetti, M., Russell, S. L., Corbett-Detig, R. B. & Beinart, R. A. Horizontal transmission enables flexible associations with locally adapted symbiont strains in deep-sea hydrothermal vent symbioses. Proc. Natl. Acad. Sci. 119, e2115608119 (2022).Article 
    CAS 

    Google Scholar 
    Lan, Y. et al. Endosymbiont population genomics sheds light on transmission mode, partner specificity, and stability of the scaly-foot snail holobiont. ISME J. https://doi.org/10.1038/s41396-022-01261-4 (2022).Article 

    Google Scholar 
    Anantharaman, K., Breier, J. A., Sheik, C. S. & Dick, G. J. Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria. Proc. Natl. Acad. Sci. 110, 330–335 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Fritsch, J. et al. Rubredoxin-related maturation factor guarantees metal cofactor integrity during aerobic biosynthesis of membrane-bound [NiFe] hydrogenase. J. Biol. Chem. 289, 7982–7993 (2014).Article 
    CAS 

    Google Scholar 
    Petersen, J. M. et al. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat. Microbiol. 2, 1–11 (2016).Article 

    Google Scholar 
    Nakagawa, S. et al. Allying with armored snails: The complete genome of gammaproteobacterial endosymbiont. ISME J. 8, 40–51 (2014).Article 
    CAS 

    Google Scholar 
    Vignais, P. M., Billoud, B. & Meyer, J. Classification and phylogeny of hydrogenases. FEMS Microbiol. Rev. 25, 455–501 (2001).Article 
    CAS 

    Google Scholar 
    Perez, M. et al. Divergent paths in the evolutionary history of maternally transmitted clam symbionts. Proc. R. Soc. B 289, 20212137 (2022).Article 
    CAS 

    Google Scholar 
    Li, S. et al. N 4-cytosine DNA methylation is involved in the maintenance of genomic stability in Deinococcus radiodurans. Front. Microbiol. 10, 1905 (2019).Article 

    Google Scholar 
    Casadesús, J. & Low, D. Epigenetic gene regulation in the bacterial world. Microbiol. Mol. Biol. Rev. 70, 830–856 (2006).Article 

    Google Scholar 
    De Oliveira, A. L., Srivastava, A., Espada-Hinojosa, S. & Bright, M. The complete and closed genome of the facultative generalist Candidatus Endoriftia persephone from deep-sea hydrothermal vents. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13668 (2022).Article 

    Google Scholar 
    Ponnudurai, R. et al. Comparative proteomics of related symbiotic mussel species reveals high variability of host–symbiont interactions. ISME J. 14, 649–656 (2020).Article 
    CAS 

    Google Scholar 
    Yu, N. Y. et al. PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26, 1608–1615 (2010).Article 
    CAS 

    Google Scholar  More