Asevedo, L. et al. Palynological analysis of dental calculus from Pleistocene proboscideans of southern Brazil: a new approach for paleodiet and paleoenvironmental reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 540, 109523 (2020).Article
Google Scholar
Cristiani, E. et al. Wild cereal grain consumption among Early Holocene foragers of the Balkans predates the arrival of agriculture. Elife 10, e72976 (2021).Article
CAS
Google Scholar
Nava, A. et al. Multipronged dental analyses reveal dietary differences in last foragers and first farmers at Grotta Continenza, central Italy (15,500–7000 BP). Sci. Rep. 11, 1–14 (2021).Article
Google Scholar
Ottoni, C. et al. Tracking the transition to agriculture in Southern Europe through ancient DNA analysis of dental calculus. Proc. Natl. Acad. Sci. USA 118, e2102116118 (2021).Article
CAS
Google Scholar
Cammidge, T. S., Kooyman, B. & Theodor, J. M. Diet reconstructions for end-Pleistocene Mammut americanum and Mammuthus based on comparative analysis of mesowear, microwear, and dental calculus in modern Loxodonta africana. Palaeogeogr. Palaeoclimatol. Palaeoecol. 538, 109403 (2020).Article
Google Scholar
de Oliveira, K. et al. From oral pathology to feeding ecology: the first dental calculus paleodiet study of a South American native megamammal. J. S. Am. Earth Sci. 109, 103281 (2021).Article
Google Scholar
Mothé, D. et al. The micro from mega: dental calculus description and the first record of fossilized oral bacteria from an extinct proboscidean. Int. J. Paleopathol. 33, 55–60 (2021).Article
Google Scholar
Eglinton, G. & Logan, G. A. Molecular preservation. Philosophical Transactions of the Royal Society of London. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 333, 315–328 (1991).CAS
Google Scholar
Romanowski, G., Lorenz, M. G. & Wackernagel, W. Adsorption of plasmid DNA to mineral surfaces and protection against Dnase I. Appl. Environ. Microbiol. 57, 1057–1061 (1991).Article
CAS
Google Scholar
Milanesi, C. et al. Ultrastructural study of archaeological Vitis vinifera L. seeds using rapid-freeze fixation and substitution. Tissue Cell 41, 443–447 (2009).Article
CAS
Google Scholar
Power, R. C., Salazar-García, D. C., Wittig, R. M., Freiberg, M., & Henry, A. G. Dental calculus evidence of Taï Forest chimpanzee plant consumption and life history transitions. Sci. Rep. 5, 15161 (2015).Goude, G. et al. A multidisciplinary approach to Neolithic life reconstruction. J. Archaeol. Method Theory 26, 537–560 (2019).Article
Google Scholar
Farrer, A. G. et al. Effectiveness of decontamination protocols when analyzing ancient DNA preserved in dental calculus. Sci. Rep. 11, 1–14 (2021).Article
Google Scholar
Weyrich, L. S., Dobney, K. & Cooper, A. Ancient DNA analysis of dental calculus. J. Hum. Evol. 79, 119–124 (2015).Article
Google Scholar
Ozga, A. T. et al. Successful enrichment and recovery of whole mitochondrial genomes from ancient human dental calculus. Am. J. Phys. Anthropol. 160, 220–228 (2016).Article
Google Scholar
Mann, A. E. et al. Do I have something in my teeth? The trouble with genetic analyses of diet from archaeological dental calculus. Quat. Int. https://doi.org/10.1016/j.quaint.2020.11.019 (2020).Wright, S. L., Dobney, K. & Weyrich, L. S. Advancing and refining archaeological dental calculus research using multiomic frameworks. Sci. Technol. Archaeol. Res. 7, 13–30 (2021).
Google Scholar
Sawafuji, R., Saso, A., Suda, W., Hattori, M. & Ueda, S. Ancient DNA analysis of food remains in human dental calculus from the Edo period, Japan. PLoS One 15, e0226654 (2020).Article
CAS
Google Scholar
Weyrich, L. S. et al. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544, 357–361 (2017).Article
CAS
Google Scholar
Ottoni, C. et al. Metagenomic analysis of dental calculus in ancient Egyptian baboons. Sci. Rep. 9, 1–10 (2019).Article
Google Scholar
Hollingsworth, P. M., Graham, S. W. & Little, D. P. Choosing and using a Plant DNA barcode. PLoS One 6, 1–13 (2011).Article
Google Scholar
Gismondi, A., Fanali, F., Labarga, J. M. M., Caiola, M. G. & Canini, A. Crocus sativus L. genomics and different DNA barcode applications. Plant Syst. Evol. 299, 1859–1863 (2013).Article
CAS
Google Scholar
ICSN. The international code for starch nomenclature, accessed 15 September 2021; http://fossilfarm.org/ICSN/Code.html (2011).Gismondi, A. et al. Starch granules: a data collection of 40 food species. Plant Biosyst. 153, 273–279 (2019).Article
Google Scholar
Henry, A. G., Brooks, A. S. & Piperno, D. R. Plant foods and the dietary ecology of Neanderthals and early modern humans. J. Hum. Evol. 69, 44–54 (2014).Article
Google Scholar
PalDat. A palynological database (2000 onwards), accessed 19 January 2022; https://www.paldat.org/ (2019).Berglund, B. E. & Ralska-Jasiewiczowa, M. Pollen analysis and pollen diagrams. In Handbook of Holocene Palaeoecology and Palaeohydrology (ed. Berglund, B. E.) 455–484 (Wiley, 1986).Faegri, K. & Iversen, J. Textbook of Pollen analysis, 4th edn (eds Faegri, K. et al.) (John Wiley and Sons-Chichester, 1989).Grímsson, F. et al. Fagaceae pollen from the early Cenozoic of West Greenland: revisiting Engler’s and Chaney’s Arcto-Tertiary hypotheses. Plant Syst. Evol. 301, 809–832 (2015).Article
Google Scholar
Denk, T. & Tekleva, M. V. Pollen morphology and ultrastructure of Quercus with focus on Group Ilex (= Quercus Subgenus Heterobalanus (Oerst.) Menitsky): Implications for oak systematics and evolution. Grana 53, 255–282 (2014).Article
Google Scholar
Grímsson, F. & Zetter, R. Combined LM and SEM study of the middle Miocene (Sarmatian) palynofora from the Lavanttal Basin, Austria: Part II. Pinophyta (Cupressaceae, Pinaceae and Sciadopityaceae). Grana 50, 262–310 (2011).Article
Google Scholar
Mohanty, R. P., Buchheim, M. A., Portman, R. & Levetin, E. Molecular and ultrastructural detection of plastids in Juniperus (Cupressaceae) pollen. Phytologia 98, 298–310 (2016).
Google Scholar
Martin, A. C. & Harvey, W. J. The Global Pollen Project: a new tool for pollen identifcation and the dissemination of physical reference collections. Methods Ecol. Evol. 8, 892–897 (2017).Article
Google Scholar
Maciejewska-Rutkowska, I., Bocianowski, J. & Wrońska-Pilarek, D. Pollen morphology and variability of Polish native species from genus Salix L. PLoS One 16, e0243993 (2021).Article
CAS
Google Scholar
Abreu, I., Costa, I., Oliveira, M., Cunha, M. & De Castro, R. Ultrastructure and germination of Vitis vinifera cv. Loureiro pollen. Protoplasma 228, 131–135 (2006).Article
CAS
Google Scholar
Nagels, A. et al. Palynological diversity and major evolutionary trends in Cyperaceae. Plant Syst. Evol. 277, 117 (2009).Article
Google Scholar
El Ghazali, G. E. Pollen morphological studies in Amaranthaceae s. lat. (incl. Chenopodiaceae) and their taxonomic significance: a review. Grana 61, 1–7 (2022).Article
Google Scholar
Petraco, N., & Kubic, T. Color Atlas and Manual of Microscopy for Criminalists, Chemists, and Conservators (Boca Raton-CRC Press, 2003).D’Agostino, A. et al. Environmental implications and evidence of natural products from dental calculi of a Neolithic–Chalcolithic community (central Italy). Sci. Rep. 11, 1–13 (2021).Article
Google Scholar
Frangiote-Pallone, S. & de Souza, L. A. Pappus and cypsela ontogeny in Asteraceae: structural considerations of the tribal category. Rev. Mex. Biodivers. 85, 62–77 (2014).Article
Google Scholar
Eglinton, G., Gonzalez, A. G., Hamilton, R. J. & Raphael, R. A. Hydrocarbon constituents of the wax coatings of plant leaves: a taxonomic survey. Phytochemistry 1, 89–102 (1962).Article
CAS
Google Scholar
Buckley, S. A., Stott, A. W. & Evershed, R. P. Studies of organic residues from ancient Egyptian mummies using high temperature-gas chromatography-mass spectrometry and sequential thermal desorption-gas chromatography-mass spectrometry and pyrolysis-gas chromatography-mass spectrometry. Analyst 124, 443–452 (1999).Article
CAS
Google Scholar
Hardy, K. et al. Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften 99, 617–626 (2012).Article
CAS
Google Scholar
Luong, S., Tocheri, M. W., Sutikna, T., Saptomo, E. W. & Roberts, R. G. Incorporating terpenes, monoterpenoids and alkanes into multiresidue organic biomarker analysis of archaeological stone artefacts from Liang Bua (Flores, Indonesia). J. Archaeol. Sci. Rep. 19, 189–199 (2018).
Google Scholar
Luong, S. et al. Combined organic biomarker and use-wear analyses of stone artefacts from Liang Bua, Flores, Indonesia. Sci. Rep. 9, 1–17 (2019).Article
CAS
Google Scholar
Dabney, J., Meyer, M. & Pääbo, S. Ancient DNA damage. Cold Spring Harb. Perspect. Biol. 5, a012567 (2013).Article
Google Scholar
Mann, A. E. et al. Differential preservation of endogenous human and microbial DNA in dental calculus and dentin. Sci. Rep. 8, 1–15 (2018).Article
Google Scholar
Horrocks, M., Nieuwoudt, M. K., Kinaston, R., Buckley, H. & Bedford, S. Microfossil and Fourier Transform InfraRed analyses of Lapita and post-Lapita human dental calculus from Vanuatu, Southwest Pacific. J. R. Soc. N. Z. 44, 17–33 (2014).Article
Google Scholar
Radini, A., Nikita, E., Buckley, S., Copeland, L. & Hardy, K. Beyond food: the multiple pathways for inclusion of materials into ancient dental calculus. Am. J. Phys. Anthropol. 162, 71–83 (2017).Article
Google Scholar
Henry, A. G. Other microparticles: volcanic glass, minerals, insect remains, feathers, and other plant parts. In Handbook for the Analysis of Micro-Particles in Archaeological Samples 289–295 (Springer, Cham, 2020).MacKenzie, L., Speller, C. F., Holst, M., Keefe, K., & Radini, A. Dental calculus in the industrial age: human dental calculus in the Post-Medieval period, a case study from industrial Manchester. Quat. Int. https://doi.org/10.1016/j.quaint.2021.09.020 (2021).Radini, A., & Nikita, E. Beyond dirty teeth: Integrating dental calculus studies with osteoarchaeological parameters. Quat. Int. https://doi.org/10.1016/j.quaint.2022.03.003 (2022).Dobney, K. & Brothwell, D. A scanning electron microscope study of archaeological dental calculus. In Scanning Electron Microscopy in Archaeology BAR International Series (ed. & Olsen S), vol. 452, pp. 372–385 (Oxford, UK: BAR, 1988).Henry, A. G. & Piperno, D. R. Using plant microfossils from dental calculus to recover human diet: a case study from Tell al-Raqā’i, Syria. J. Archaeol. Sci. 35, 1943–1950 (2008).Article
Google Scholar
Wesolowski, V., de Souza, S. M. F. M., Reinhard, K. J. & Ceccantini, G. Evaluating microfossil content of dental calculus from Brazilian sambaquis. J. Archaeol. Sci. 37, 1326–1338 (2010).Article
Google Scholar
González-Guarda, E. et al. Multiproxy evidence for leaf-browsing and closed habitats in extinct proboscideans (Mammalia, Proboscidea) from Central Chile. Proc. Natl. Acad. Sci. USA 115, 9258–9263 (2018).Article
Google Scholar
Radley, J. A. Starch and its Derivatives (Chapman and Hall, London, 1968).Power, R. C., Salazar-García, D. C., Wittig, R. M. & Henry, A. G. Assessing use and suitability of scanning electron microscopy in the analysis of micro remains in dental calculus. J. Archaeol. Sci. 49, 160–169 (2014).Article
CAS
Google Scholar
Rottoli, M. & Castiglioni, E. Prehistory of plant growing and collecting in northern Italy, based on seed remains from the early Neolithic to the Chalcolithic (c. 5600–2100 cal BC). Veg. Hist. Archaeobot. 18, 91–103 (2009).Article
Google Scholar
Fiorentino, G. et al. Climate changes and human–environment interactions in the Apulia region of southeastern Italy during the Neolithic period. Holocene 23, 1297–1316 (2013).Article
Google Scholar
Rottoli, M., & Pessina, A. Neolithic agriculture in Italy: an update of archaeobotanical data with particular emphasis on northern settlements. In The Origins and Spread of Domestic Plants in Southwest Asia and Europe 157–170 (Routledge, 2016).Arobba, D., Panelli, C., Caramiello, R., Gabriele, M. & Maggi, R. Cereal remains, plant impressions and 14C direct dating from the Neolithic pottery of Arene Candide Cave (Finale Ligure, NW Italy). J. Archaeol. Sci. Rep. 12, 395–404 (2017).
Google Scholar
Ucchesu, M., Sau, S. & Lugliè, C. Crop and wild plant exploitation in Italy during the Neolithic period: New data from Su Mulinu Mannu, Middle Neolithic site of Sardinia. J. Archaeol. Sci. Rep. 14, 1–11 (2017).
Google Scholar
Scorrano, G. et al. Effect of Neolithic transition on an Italian community: Mora Cavorso (Jenne, Rome). Archaeol. Anthropol. Sci. 11, 1443–1459 (2019).Article
Google Scholar
De Angelis, F. et al. Exploring mobility in Italian Neolithic and Copper Age communities. Sci. Rep. 11, 1–14 (2021).Article
Google Scholar
Oxilia, G. et al. Exploring late Paleolithic and Mesolithic diet in the Eastern Alpine region of Italy through multiple proxies. Am. J. Phys. Anthropol. 174, 232–253 (2021).Article
Google Scholar
Fahmy, A. G. E. Palaeoethnobotanical studies of the Neolithic settlement in Hidden Valley, Farafra Oasis, Egypt. Veg. Hist. Archaeobot. 10, 235–246 (2001).Article
Google Scholar
Reed, K. From the field to the hearth: plant remains from Neolithic Croatia (ca. 6000–4000 cal bc). Veg. Hist. Archaeobot. 24, 601–619 (2015).Article
Google Scholar
Lucarini, G., Radini, A., Barton, H. & Barker, G. The exploitation of wild plants in Neolithic North Africa. Use-wear and residue analysis on non-knapped stone tools from the Haua Fteah cave, Cyrenaica, Libya. Quat. Int. 410, 77–92 (2016).Article
Google Scholar
García-Granero, J. J., Urem-Kotsou, D., Bogaard, A. & Kotsos, S. Cooking plant foods in the northern Aegean: microbotanical evidence from Neolithic Stavroupoli (Thessaloniki, Greece). Quat. Int. 496, 140–151 (2018).Article
Google Scholar
Bouby, L. et al. Early Neolithic (ca. 5850-4500 cal BC) agricultural diffusion in the Western Mediterranean: an update of archaeobotanical data in SW France. PLoS One 15, e0230731 (2020).Article
CAS
Google Scholar
Delhon, C., Binder, D., Verdin, P. & Mazuy, A. Phytoliths as a seasonality indicator? The example of the Neolithic site of Pendimoun, south-eastern France. Veg. Hist. Archaeobot. 29, 229–240 (2020).Article
Google Scholar
Lu, H. et al. Phytoliths analysis for the discrimination of foxtail millet (Setaria italica) and common millet (Panicum miliaceum). PLoS One 4, e4448 (2009).Article
Google Scholar
Celant, A. Indagini paleobotaniche su macroresti vegetali dai siti neo-eneolitici del territorio di Roma. In Roma prima del mito. Abitati e necropoli dal Neolitico alla prima età dei Metalli nel territorio di Roma (VI-III millennio a.C.) (eds Anzidei, A. P. & Carboni, C.) Vol. 2, 687–704 (Archaeopress Archaeol., 2020).Carra, M. et al. Plant foods in the Late Palaeolithic of Southern Italy and Sicily: Integrating carpological and dental calculus evidence. Quat. Int. https://doi.org/10.1016/j.quaint.2022.06.007 (2022) .Bednar, G. E. et al. Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine model. J. Nutr. 131, 276–286 (2001).Article
CAS
Google Scholar
Hoover, R., Hughes, T., Chung, H. J. & Liu, Q. Composition, molecular structure, properties, and modification of pulse starches: a review. Food Res. Int. 43, 399–413 (2010).Article
CAS
Google Scholar
Wani, I. A. et al. Isolation, composition, and physicochemical properties of starch from legumes: a review. Starch‐Stärke 68, 834–845 (2016).Article
CAS
Google Scholar
Tayade, R., Kulkarni, K. P., Jo, H., Song, J. T. & Lee, J. D. Insight into the prospects for the improvement of seed starch in legume—a review. Front. Plant Sci. 10, 1213 (2019).Article
Google Scholar
Stafford, H. A. Distribution of tartaric acid in the leaves of certain angiosperms. Am. J. Bot. 46, 347–352 (1959).Article
CAS
Google Scholar
DeBolt, S., Cook, D. R. & Ford, C. M. L-Tartaric acid synthesis from vitamin C in higher plants. Proc. Natl. Acad. Sci. USA 103, 5608–5613 (2006).Article
CAS
Google Scholar
Fernández-García, E. et al. Carotenoids bioavailability from foods: from plant pigments to efficient biological activities. Food Res. Int. 46, 438–450 (2012).Article
Google Scholar
Gliszczyńska, A. & Brodelius, P. E. Sesquiterpene coumarins. Phytochem. Rev. 11, 77–96 (2012).Article
Google Scholar
Eerkens, J. The preservation and identification of Piñon resins by GC‐MS in pottery from the Western Great Basin. Archaeometry 44, 95–105 (2002).Article
CAS
Google Scholar
Barnard, H. et al. Mixed results of seven methods for organic residue analysis applied to one vessel with the residue of a known foodstuff. J. Archaeol. Sci. 34, 28–37 (2007).Article
Google Scholar
Wysocka, W., Przybył, A. & Brukwicki, T. The structure of angustifoline, an alkaloid of Lupinus angustifolius, in solution. Monatsh. Chem. 125, 1267–1272 (1994).Article
CAS
Google Scholar
Ohmiya, S., Saito, K., & Murakoshi, I. Lupine alkaloids. In The alkaloids: Chemistry and Pharmacology Vol. 47, 1–114) (Academic Press, 1995).Mancinotti, D., Frick, K. M. & Geu-Flores, F. Biosynthesis of quinolizidine alkaloids in lupins: mechanistic considerations and prospects for pathway elucidation. Nat. Prod. Rep. 39, 1423–1437 (2022).Article
CAS
Google Scholar
Silvestri, L., Achino, K. F., Gatta, M., Rolfo, M. F. & Salari, L. Grotta Mora Cavorso: physical, material and symbolic boundaries of life and death practices in a Neolithic cave of central Italy. Quat. Int. 539, 29–38 (2020).Article
Google Scholar
Steele, V. J., Stern, B. & Stott, A. W. Olive oil or lard?: distinguishing plant oils from animal fats in the archaeological record of the eastern Mediterranean using gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 24, 3478–3484 (2010).Article
CAS
Google Scholar
Buonasera, T. Investigating the presence of ancient absorbed organic residues in groundstone using GC–MS and other analytical techniques: a residue study of several prehistoric milling tools from central California. J. Archaeol. Sci. 34, 1379–1390 (2007).Article
Google Scholar
Luong, S. et al. Development and application of a comprehensive analytical workflow for the quantification of non-volatile low molecular weight lipids on archaeological stone tools. Anal. Met. 9, 4349–4362 (2017).Article
CAS
Google Scholar
Baeten, J., Jervis, B., De Vos, D. & Waelkens, M. Molecular evidence for the mixing of Meat, Fish and Vegetables in Anglo‐Saxon coarseware from Hamwic, UK. Archaeometry 55, 1150–1174 (2013).Article
CAS
Google Scholar
Evershed, R. P. Chemical composition of a bog body adipocere. Archaeometry 34, 253–265 (1992).Article
CAS
Google Scholar
Garnier, N., Bernal-Casasola, D., Driard, C. & Pinto, I. V. Looking for ancient fish products through invisible biomolecular residues in the roman production vats from the Atlantic. Coast J. Marit. Archaeol. 13, 285–328 (2018).Article
Google Scholar
Copley, M. S., Bland, H. A., Rose, P., Horton, M. & Evershed, R. P. Gas chromatographic, mass spectrometric and stable carbon isotopic investigations of organic residues of plant oils and animal fats employed as illuminants in archaeological lamps from Egypt. Analyst 130, 860–871 (2005).Article
CAS
Google Scholar
Reber, E. A. & Hart, J. P. Pine resins and pottery sealing: analysis of absorbed and visible pottery residues from central New York State. Archaeometry 50, 999–1017 (2008).Article
CAS
Google Scholar
Simopoulos, A. P. Omega‐3 fatty acids in wild plants, nuts and seeds. Asia Pac. J. Clin. Nutr. 11, S163–S173 (2002).Article
CAS
Google Scholar
Harris, W. S. et al. Stearidonic acid-enriched soybean oil increased the omega-3 index, an emerging cardiovascular risk marker. Lipids 43, 805–811 (2008).Article
CAS
Google Scholar
Gismondi, A., Rolfo, M. F., Leonardi, D., Rickards, O. & Canini, A. Identification of ancient Olea europaea L. and Cornus mas L. seeds by DNA barcoding. C. R. Biol. 335, 472–479 (2012).Article
CAS
Google Scholar
Steffens, W. & Wirth, M. Freshwater fish-an important source of n-3 polyunsaturated fatty acids: a review. Fish. Aquat. Sci. 13, 5–16 (2005).
Google Scholar
Swanson, D., Block, R. & Mousa, S. A. Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv. Nutr. 3, 1–7 (2012).Article
CAS
Google Scholar
Wiermann, R., & Gubatz, S. Pollen wall and sporopollenin. In International Review of Cytology 35–72 (Academic Press, 1992).Cristiani, E., Radini, A., Edinborough, M. & Borić, D. Dental calculus reveals Mesolithic foragers in the Balkans consumed domesticated plant foods. Proc. Natl. Acad. Sci. USA 113, 10298–10303 (2016).Article
CAS
Google Scholar
Hardy, K. et al. Dental calculus reveals potential respiratory irritants and ingestion of essential plant-based nutrients at Lower Palaeolithic Qesem Cave Israel. Quat. Int. 398, 129–135 (2016).Article
Google Scholar
Radini, A. et al. Neanderthals, trees and dental calculus: new evidence from El Sidrón. Antiquity 90, 290–301 (2016).Article
Google Scholar
Lippi, M. M., Pisaneschi, L., Sarti, L., Lari, M. & Moggi-Cecchi, J. Insights into the Copper-Bronze Age diet in central Italy: plant microremains in dental calculus from Grotta dello Scoglietto (Southern Tuscany, Italy). J. Archaeol. Sci. Rep. 15, 30–39 (2017).
Google Scholar
Modi, A. et al. Combined metagenomic and archaeobotanical analyses on human dental calculus: a cross-section of lifestyle conditions in a Copper Age population of central Italy. Quat. Int. https://doi.org/10.1016/j.quaint.2021.12.003 (2021).Warinner, C. et al. Pathogens and host immunity in the ancient human oral cavity. Nat. Genet. https://doi.org/10.1038/ng.2906 (2014).Lieverse, A. R. Diet and the aetiology of dental calculus. Int. J. Osteoarchaeol. 9, 219–232 (1999).Article
Google Scholar
Lukacs, J. R. & Largaespada, L. L. Explaining sex differences in dental caries prevalence: saliva, hormones, and “life‐history” etiologies. Am. J. Hum. Biol. 18, 540–555 (2006).Article
Google Scholar
Moore, P. D., Webb, J. A., & Collison, M. E. Pollen Analysis (Blackwell Scientific Publications, 1991).Borojević, K., Forenbaher, S., Kaiser, T. & Berna, F. Plant use at Grapčeva cave and in the eastern Adriatic Neolithic. J. Field Archaeol. 33, 279–303 (2008).Article
Google Scholar
Martin, L., Jacomet, S. & Tiebault, S. Plant economy during the Neolithic in a mountain context: the case of “Le Chenet des Pierres” in the French Alps (Bozel-Savoie, France). Veg. Hist. Archaeobot. 17, 113–122 (2008).Article
Google Scholar
Moser, D., Di Pasquale, G., Scarciglia, F. & Nelle, O. Holocene mountain forest changes in central Mediterranean: soil charcoal data from the Sila Massif (Calabria, southern Italy). Quat. Int. 457, 113–130 (2017).Article
Google Scholar
D’Agostino, A. et al. Pollen record of the Late Pleistocene–Holocene stratigraphic sequence and current plant biodiversity from Grotta Mora Cavorso (Simbruini Mountains, Central Italy). Ecol. Evol. 12, e9486 (2022).Radaeski, J. N., Bauermann, S. G. & Pereira, A. B. Poaceae pollen from Southern Brazil: distinguishing grasslands (campos) from forests by analyzing a diverse range of Poaceae species. Front. Plant Sci. 7, 1833 (2016).Article
Google Scholar
Turner, S. D. & Brown, A. G. Vitis pollen dispersal in and from organic vineyards: I. Pollen trap and soil pollen data. Rev. Palaeobot. Palynol. 129, 117–132 (2004).Article
Google Scholar
Marvelli, S., De’Siena, S., Rizzoli, E. & Marchesini, M. The origin of grapevine cultivation in Italy: the archaeobotanical evidence. Ann. Bot. 3, 155–163 (2013).
Google Scholar
Riaz, S. et al. Genetic diversity analysis of cultivated and wild grapevine (Vitis vinifera L.) accessions around the Mediterranean basin and Central Asia. BMC Plant Biol. 18, 1–14 (2018).Article
Google Scholar
Arnold, C., Gillet, F., & Gobat, J. M. Situation de la vigne sauvage Vitis vinifera subsp. silvestris en Europe. Vitis 159–170 (1998).Terral, J. F. et al. Evolution and history of grapevine (Vitis vinifera) under domestication: new morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Ann. Bot. 105, 443–455 (2010).Article
Google Scholar
Buckley, S., Usai, D., Jakob, T., Radini, A. & Hardy, K. Dental calculus reveals unique insights into food items, cooking and plant processing in prehistoric central Sudan. PLoS One 9, e100808 (2014).Article
Google Scholar
Petrov, P. R., Popova, E. D. & Zlatanova, D. P. Niche partitioning among the red fox Vulpes vulpes (L.), stone marten Martes foina (Erxleben) and pine marten Martes martes (L.) in two mountains in Bulgaria. Acta Zool. Bulg. 68, 375–390 (2016).
Google Scholar
Mikrjukov, K. A. Revision of genera and species composition of lower Centroheliozoa. II. Family Raphidiophryidae n. tam. Arch. Protistenkd. 147, 205–212 (1996).Article
Google Scholar
Cavalier-Smith, T. & von der Heyden, S. Molecular phylogeny, scale evolution and taxonomy of centrohelid heliozoa. Mol. Phylogen. Evol. 44, 1186–1203 (2007).Article
CAS
Google Scholar
Mertens, K. N., Rengefors, K., Moestrup, Ø. & Ellegaard, M. A review of recent freshwater dinoflagellate cysts: taxonomy, phylogeny, ecology and palaeocology. Phycologia 51, 612–619 (2012).Article
Google Scholar
Zlatogursky, V. V. Raphidiophrys heterophryoidea sp. nov. (Centrohelida: Raphidiophryidae), the first heliozoan species with a combination of siliceous and organic skeletal elements. Eur. J. Protist. 48, 9–16 (2012).Article
Google Scholar
Prokina, K. I. & Mylnikov, A. P. Centrohelid heliozoans from freshwater habitats of different types of South Patagonia and Tierra del Fuego, Chile. Inland Water Biol. 12, 10–20 (2019).Article
Google Scholar
Siemensma, F. J. & Roijackers, M. M. A study of new and little- known acanthocystid heliozoans, and a proposed division of the genus Acanthocystis (Actinopoda, Heliozoea). Arch. Protistenkd. 135, 197 (1988a).Article
Google Scholar
Siemensma, F. J. & Roijackers, M. M. The genus Raphidiophrys (Actinopoda, Heliozoea): scale morphology and species distinctions. Arch. Protistenkd. 136 237–248 (1988).Taylor, W.D. & Sanders, R. W. PROTOZOA. In Ecology and Classification of North American Freshwater Invertebrates (eds Thorp, J. H. & Covich, A. P.) 43–96 (Academic Press, 2001).Manconi, R., & Pronzato, R. Global diversity of sponges (Porifera: Spongillina) in freshwater. In Freshwater Animal Diversity Assessment 27–33 (Springer, Dordrecht, 2007).Malone, C. & Stoddart, S. The neolithic site of San Marco, Gubbio (Perugia), Umbria: survey and excavation 1985–7. Pap. Br. Sch. Rome 60, 1–69 (1992).Article
Google Scholar
Rottoli, M. La Marmotta, Anguillara Sabazia (RM). Scavi 1989. Analisi paletnobotaniche: prime risultanze, Appendice 1 M.A. In La Marmotta” (Anguillara Sabazia, RM). Scavi 1989. Un abitato perilacustre di età neolitica (eds. Fugazzola Delpino, M. A., D’Eugenio, G. & Pessina, A.) Bullettino di Paletnologia Italiana 84, 305–315 (1993).Pini, R. Late Neolithic vegetation history at the pile‐dwelling site of Palù di Livenza (northeastern Italy). J. Quat. Sci. 19, 769–781 (2004).Article
Google Scholar
Tinner, W. et al. Holocene environmental and climatic changes at Gorgo Basso, a coastal lake in southern Sicily, Italy. Quat. Sci. Rev. 28, 1498–1510 (2009).Article
Google Scholar
Bieniek, A. Archaeobotanical analysis of some early Neolithic settlements in the Kujawy region, central Poland, with potential plant gathering activities emphasized. Veg. Hist. Archaeobot. 11, 33–40 (2002).Article
Google Scholar
Tolar, T., Jacomet, S., Velušček, A. & Čufar, K. Plant economy at a late Neolithic lake dwelling site in Slovenia at the time of the Alpine Iceman. Veg. Hist. Archaeobot. 20, 207–222 (2011).Article
Google Scholar
D’Agostino, A. et al. Investigating plant micro-remains embedded in dental calculus of the Phoenician inhabitants of Motya (Sicily, Italy). Plants 9, 1395 (2020).Article
Google Scholar
Mercader, J. et al. Exaggerated expectations in ancient starch research and the need for new taphonomic and authenticity criteria. Facets 3, 777–798 (2018).Article
Google Scholar
Adojoh, O., Fabienne, M., Duller, R. & Osterloff, P. Taxonomy and phytoecology of palynomorphs and non-pollen palynomorphs: a refined compendium from the West Africa Margin. Biodivers. Int. J. 3, 188–200 (2019).Article
Google Scholar
Knapp, M., Clarke, A. C., Horsburgh, K. A. & Matisoo-Smith, E. A. Setting the stage building and working in an ancient DNA laboratory. Ann. Anat. 194, 3 (2012).Article
CAS
Google Scholar
Knapp, M., Lalueza-Fox, C. & Hofreiter, M. Re-inventing ancient human DNA. Investig. Genet. 6, 1 (2015).Article
Google Scholar
Gismondi, A. et al. Grapevine carpological remains revealed the existence of a Neolithic domesticated Vitis vinifera L. specimen containing ancient DNA partially preserved in modern ecotypes. J. Archaeol. Sci. 69, 75–84 (2016).Article
CAS
Google Scholar
Llamas, B. et al. From the field to the laboratory: controlling DNA contamination in human ancient DNA research in the high-throughput sequencing era. Sci. Technol. Archaeol. Res. 3, 1–14 (2017).Le Moyne, C. & Crowther, A. Effects of chemical pre-treatments on modified starch granules: recommendations for dental calculus decalcification for ancient starch research. J. Archaeol. Sci. Rep. 35, 102762 (2021).
Google Scholar
Rolfo, M. F., Achino, K. F., Fusco, I., Salari, L. & Silvestri, L. Reassessing human occupation patterns in the inner central Apennines in prehistory: the case-study of Grotta Mora Cavorso. J. Archaeol. Sci. Rep. 7, 358–367 (2016).
Google Scholar More