More stories

  • in

    Building a living shoreline to help combat climate change

    I’m a conservation land manager at the Port of San Diego in California. My team and I aim to manage the tidelands around San Diego Bay, an area of more than 4,850 hectares, three-quarters of which is covered by water at high tide. At least 60% of the bay’s shoreline is ‘hardened’ — that is, it is edged with either a solid seawall or rip rap, piles of artificial boulders.To prevent erosion of the adjacent natural shoreline and restore wetlands, we’re participating in the San Diego Bay Native Oyster Living Shoreline project. As part of that, in December 2021, we placed 360 reef balls — depicted in this photograph from September this year — along 260 metres of shoreline to form the foundation of a native-oyster reef in the south bay. Here, I’m looking for oysters that have settled and are growing on the spheres.The reef balls are made out of ‘baycrete’, a concrete mixture made with local sand and the shells of farmed oysters. These attract wild oysters, which come to live there. We’re targeting the native Olympia oysters (Ostrea lurida), which can filter up to 190 litres of water per day. And sediment should accumulate behind the reef balls, encouraging the growth of eelgrass (Zostera marina). The grass is the foundation of the bay’s food chain.In a couple of years, native oysters will cover the reef balls, forming an artificial reef offshore. This reef will cause storm waves to break farther from the shoreline, protecting the adjacent salt marsh. Just inland from this area is a wetlands habitat refuge for the endangered California least tern (Sternula antillarum browni), and many birds are already hopping onto the reef balls and eating what’s living there.Living shorelines are an important part of sequestering carbon to combat climate change — both eelgrass and oysters store a lot of carbon. The reef balls are win–win–win. I often joke that we’re trying to save the planet one acre (0.4 hectares) at a time. More

  • in

    Thermal physiology integrated species distribution model predicts profound habitat fragmentation for estuarine fish with ocean warming

    Reygondeau, G. & Beaugrand, G. Future climate-driven shifts in distribution of Calanus finmarchicus. Glob. Change Biol. 17, 756–766 (2011).Article 
    ADS 

    Google Scholar 
    Grieve, B. D., Hare, J. A. & Saba, V. S. Projecting the effects of climate change on Calanus finmarchicus distribution within the U.S. Northeast Continental Shelf. Sci. Rep. 7, 6264 (2017).Article 
    ADS 

    Google Scholar 
    Bosso, L. et al. The rise and fall of an alien: Why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biol. Invasions 24, 3169–3187 (2022).Article 

    Google Scholar 
    Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).Article 

    Google Scholar 
    Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).Article 

    Google Scholar 
    Kaschner, K., Watson, R., Trites, A. W. & Pauly, D. Mapping world-wide distributions of marine mammal species using a relative environmental suitability (RES) model. Mar. Ecol. Prog. Ser. 316, 285–310 (2006).Article 
    ADS 

    Google Scholar 
    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12, 361–371 (2003).Article 

    Google Scholar 
    Buckley, L. B. Linking traits to energetics and population dynamics to predict lizard ranges in changing environments. Am. Nat. 171, E1–E19 (2008).Article 

    Google Scholar 
    Kolbe, J. J., Kearney, M. & Shine, R. Modeling the consequences of thermal trait variation for the cane toad invasion of Australia. Ecol. Appl. 20, 2273–2285 (2010).Article 

    Google Scholar 
    Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Ann. Rev. Mar. Sci. 3, 509–535 (2011).Article 

    Google Scholar 
    Somero, G. N., Lockwood, B. L. & Tomanek, L. Biochemical Adaptation: Response to Environmental Challenges, From Life’s Origins to the Anthropocene (Sinauer Associates, 2017).
    Google Scholar 
    Kuo, E. S. & Sanford, E. Geographic variation in the upper thermal limits of an intertidal snail: Implications for climate envelope models. Mar. Ecol. Prog. Ser. 388, 137–146 (2009).Article 
    ADS 

    Google Scholar 
    Smeraldo, S. et al. Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential distribution models: lessons from bats. Biodivers. Conserv. 27, 2425–2441 (2018).Article 

    Google Scholar 
    Gamliel, I. et al. Incorporating physiology into species distribution models moderates the projected impact of warming on selected Mediterranean marine species. Ecography 43, 1090–1106 (2020).Article 

    Google Scholar 
    Kearney, M. R., Wintle, B. A. & Porter, W. P. Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conserv. Lett. 3, 203–213 (2010).Article 

    Google Scholar 
    Buckley, L. B., Waaser, S. A., MacLean, H. J. & Fox, R. Does including physiology improve species distribution model predictions of responses to recent climate change?. Ecology 92, 2214–2221 (2011).Article 

    Google Scholar 
    Fry, F. E. J. Effects of the environment on animal activity. Pub. Ontario Fish. Lab. No. 68. Toronto Studies Biol. Ser. 55, 1–52 (1947).
    Google Scholar 
    Brett, J. R. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerkd). Am Zoologist 11, 99–113 (1971).Article 

    Google Scholar 
    Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).Article 
    ADS 

    Google Scholar 
    Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).Article 

    Google Scholar 
    Eliason, E. J. et al. Differences in thermal tolerance among sockeye salmon populations. Science 332, 109–112 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Donelson, J. M., Munday, P. L., McCormick, M. I. & Pitcher, C. R. Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat. Clim. Change 2, 30–32 (2012).Article 
    ADS 

    Google Scholar 
    Pörtner, H. Climate change and temperature-dependent biogeography: Oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146 (2001).Article 
    ADS 

    Google Scholar 
    Pörtner, H.-O. Oxygen-and capacity-limitation of thermal tolerance: A matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010).Article 

    Google Scholar 
    Clark, T. D., Sandblom, E. & Jutfelt, F. Response to Farrell and to Pörtner and Giomi. J. Exp. Biol. 216, 4495–4497 (2013).Article 

    Google Scholar 
    Farrell, A. P. Aerobic scope and its optimum temperature: Clarifying their usefulness and limitations: Correspondence on J. Exp. Biol. 216, 2771–2782. J. Exp. Biol. 216, 4493–4494 (2013).Article 

    Google Scholar 
    Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O. & Huey, R. B. Climate change tightens a metabolic constraint on marine habitats. Science 348, 1132–1135 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    Clarke, A. Is there a universal temperature dependence of metabolism?. Funct. Ecol. 18, 252–256 (2004).Article 

    Google Scholar 
    Clarke, A. & Fraser, K. P. P. Why does metabolism scale with temperature?. Funct. Ecol. 18, 243–251 (2004).Article 

    Google Scholar 
    Fangue, N. A., Hofmeister, M. & Schulte, P. M. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus. J. Exp. Biol. 209, 2859–2872 (2006).Article 
    CAS 

    Google Scholar 
    Dhillon, R. S. & Schulte, P. M. Intraspecific variation in the thermal plasticity of mitochondria in killifish. J. Exp. Biol. 214, 3639–3648 (2011).Article 
    CAS 

    Google Scholar 
    Fangue, N. A., Podrabsky, J. E., Crawshaw, L. I. & Schulte, P. M. Countergradient variation in temperature preference in populations of killifish Fundulus heteroclitus. Physiol. Biochem. Zool. 82, 776–786 (2009).Article 

    Google Scholar 
    Healy, T. M. & Schulte, P. M. Thermal acclimation is not necessary to maintain a wide thermal breadth of aerobic scope in the common killifish (Fundulus heteroclitus). Physiol. Biochem. Zool. 85, 107–119 (2012).Article 
    CAS 

    Google Scholar 
    Chust, G. et al. Are Calanus spp. shifting poleward in the North Atlantic? A habitat modelling approach. ICES J. Mar. Sci. 71, 241–253 (2014).Article 

    Google Scholar 
    Norin, T., Malte, H. & Clark, T. D. Aerobic scope does not predict the performance of a tropical eurythermal fish at elevated temperatures. J. Exp. Biol. 217, 244–251 (2014).
    Google Scholar 
    Payne, N. L. et al. Temperature dependence of fish performance in the wild: links with species biogeography and physiological thermal tolerance. Funct. Ecol. 30, 903–912 (2016).Article 

    Google Scholar 
    Raffel, T. R. et al. Disease and thermal acclimation in a more variable and unpredictable climate. Nat. Clim. Change 3, 146–151 (2013).Article 
    ADS 

    Google Scholar 
    Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?. Ecol. Lett. 19, 1372–1385 (2016).Article 

    Google Scholar 
    Dahlke, F. T. et al. Northern cod species face spawning habitat losses if global warming exceeds 1.5°C. Sci. Adv. 4, 8821 (2018).Article 
    ADS 

    Google Scholar 
    Pörtner, H.-O. & Giomi, F. Nothing in experimental biology makes sense except in the light of ecology and evolution: Correspondence on J. Exp. Biol. 2771-2782. J. Exp. Biol. 216, 4494–4495 (2013).Article 

    Google Scholar 
    Pörtner, H.-O. How and how not to investigate the oxygen and capacity limitation of thermal tolerance (OCLTT) and aerobic scope: Remarks on the article by Gräns et al. J. Exp. Biol. 217, 4432–4433 (2014).Article 

    Google Scholar 
    Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932).Article 
    CAS 

    Google Scholar 
    Killen, S. S., Atkinson, D. & Glazier, D. S. The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature. Ecol. Lett. 13, 184–193 (2010).Article 

    Google Scholar 
    Norin, T. & Gamperl, A. K. Metabolic scaling of individuals vs. populations: Evidence for variation in scaling exponents at different hierarchical levels. Funct. Ecol. 32, 379–388 (2018).Article 

    Google Scholar 
    Jayasundara, N., Kozal, J. S., Arnold, M. C., Chan, S. S. L. & Giulio, R. T. D. High-throughput tissue bioenergetics analysis reveals identical metabolic allometric scaling for teleost hearts and whole organisms. PLoS ONE 10, e0137710 (2015).Article 

    Google Scholar 
    Kinnison, M. T., Unwin, M. J. & Quinn, T. P. Migratory costs and contemporary evolution of reproductive allocation in male chinook salmon. J. Evol. Biol. 16, 1257–1269 (2003).Article 
    CAS 

    Google Scholar 
    Clarke, A. & Johnston, N. M. Scaling of metabolic rate with body mass and temperature in teleost fish. J. Anim. Ecol. 68, 893–905 (1999).Article 

    Google Scholar 
    Duvernell, D. D., Lindmeier, J. B., Faust, K. E. & Whitehead, A. Relative influences of historical and contemporary forces shaping the distribution of genetic variation in the Atlantic killifish, Fundulus heteroclitus. Mol. Ecol. 17, 1344–1360 (2008).Article 

    Google Scholar 
    Navarro-Racines, C., Tarapues, J., Thornton, P., Jarvis, A. & Ramirez-Villegas, J. High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Sci. Data 7, 1–14 (2020).Article 

    Google Scholar 
    Franke, R. Scattered data interpolation: Tests of some methods. Math. Comput. 38, 181–200 (1982).MathSciNet 
    MATH 

    Google Scholar 
    Levitus, S. et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 39, 15. https://doi.org/10.1029/2012GL051106 (2012).Article 

    Google Scholar 
    Kaschner, K. et al. AquaMaps: Predicted Range Maps for Aquatic Species (Worldwide Web Electronic Publication, 2019).
    Google Scholar 
    Jayasundara, N. Ecological significance of mitochondrial toxicants. Toxicology 391, 64–74 (2017).Article 
    CAS 

    Google Scholar 
    Beers, J. M. & Jayasundara, N. Antarctic notothenioid fish: what are the future consequences of ‘losses’ and ‘gains’ acquired during long-term evolution at cold and stable temperatures?. J. Exp. Biol. 218, 1834–1845 (2015).Article 

    Google Scholar 
    Lear, K. O. et al. Thermal performance responses in free-ranging elasmobranchs depend on habitat use and body size. Oecologia 191, 829–842 (2019).Article 
    ADS 

    Google Scholar 
    Good, S. et al. The current configuration of the OSTIA system for operational production of foundation sea surface temperature and ice concentration analyses. Remote Sens. 12, 720 (2020).Article 
    ADS 

    Google Scholar 
    Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2014).
    Google Scholar 
    Ready, J. et al. Predicting the distributions of marine organisms at the global scale. Ecol. Model. 221, 467–478 (2010).Article 

    Google Scholar 
    Pawlowicz, R. M_Map: A Mapping Package for MATLAB, Version 1.4 m. Computer Software, UBC EOAS. https://www.eoas.ubc.ca/rich/map.html (2020).Schulzweida, U., Kornblueh, L. & Quast, R. CDO User’s Guide. Climate Data Operators, Version 1, (2006).Nychka, D., Furrer, R., Paige, J. & Sain, S. Fields: Tools for Spatial Data. R Package Version 11.6. (2017).Chen, Z., Farrell, A. P., Matala, A. & Narum, S. R. Mechanisms of thermal adaptation and evolutionary potential of conspecific populations to changing environments. Mol. Ecol. 27, 659–674 (2018).Article 

    Google Scholar 
    da Silva, C. R. B., Riginos, C. & Wilson, R. S. An intertidal fish shows thermal acclimation despite living in a rapidly fluctuating environment. J. Comp. Physiol. B. 189, 385–398 (2019).Article 

    Google Scholar 
    Slesinger, E. et al. The effect of ocean warming on black sea bass (Centropristis striata) aerobic scope and hypoxia tolerance. PLoS ONE 14, e0218390 (2019).Article 
    CAS 

    Google Scholar 
    Moffett, E. R., Fryxell, D. C., Palkovacs, E. P., Kinnison, M. T. & Simon, K. S. Local adaptation reduces the metabolic cost of environmental warming. Ecology 99, 2318–2326 (2018).Article 

    Google Scholar 
    Turker, H. The effect of water temperature on standard and routine metabolic rate in two different sizes of Nile tilapia. Kafkas Universitesi Veteriner Fakultesi Dergisi 17, 575–580 (2011).
    Google Scholar 
    Hvas, M., Folkedal, O., Imsland, A. & Oppedal, F. The effect of thermal acclimation on aerobic scope and critical swimming speed in Atlantic salmon, Salmo salar. J. Exp. Biol. 220, 2757–2764 (2017).
    Google Scholar 
    Ohlberger, J., Mehner, T., Staaks, G. & Hölker, F. Intraspecific temperature dependence of the scaling of metabolic rate with body mass in fishes and its ecological implications. Oikos 121, 245–251 (2012).Article 

    Google Scholar 
    Kunz, K. L. et al. New encounters in Arctic waters: A comparison of metabolism and performance of polar cod (Boreogadus saida) and Atlantic cod (Gadus morhua) under ocean acidification and warming. Polar Biol. 39, 1137–1153 (2016).Article 

    Google Scholar 
    Norin, T., Bailey, J. A. & Gamperl, A. K. Thermal biology and swimming performance of Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus). PeerJ 7, e7784 (2019).Article 

    Google Scholar 
    Nowell, L. B. et al. Swimming energetics and thermal ecology of adult bonefish (Albula vulpes): A combined laboratory and field study in Eleuthera, The Bahamas. Environ. Biol. Fishes 98, 2133–2146 (2015).Article 

    Google Scholar 
    Pang, X., Yuan, X.-Z., Cao, Z.-D., Zhang, Y.-G. & Fu, S.-J. The effect of temperature on repeat swimming performance in juvenile qingbo (Spinibarbus sinensis). Fish Physiol. Biochem. 41, 19–29 (2015).Article 
    CAS 

    Google Scholar 
    Schwieterman, G. D. et al. Metabolic Rates and Hypoxia Tolerences of clearnose skate (Rostaraja eglanteria), summer flounder (Paralichthys dentatus), and thorny skate (Amblyraja radiata). Biology 8, 56 (2019).Article 
    CAS 

    Google Scholar 
    Xie, H. et al. Effects of acute temperature change and temperature acclimation on the respiratory metabolism of the snakehead. Turk. J. Fish. Aquat. Sci. 17, 535–542 (2017).Article 

    Google Scholar  More

  • in

    Impacts of soil nutrition on floral traits, pollinator attraction, and fitness in cucumbers (Cucumis sativus L.)

    Fichtner, K. & Schulze, E. D. The effect of nitrogen nutrition on growth and biomass partitioning of annual plants originating from habitats of different nitrogen availability. Oecologia 92, 236–241 (1992).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodger, J. G. et al. Widespread vulnerability of flowering plant seed production to pollinator declines. Sci. Adv. 7, eabd3524. https://doi.org/10.1126/sciadv.abd3524 (2021).Article 
    ADS 

    Google Scholar 
    de Groot, C. C., Marcelis, L. F. M., van den Boogaard, R., Kaiser, W. M. & Lambers, H. Interaction of nitrogen and phosphorus nutrition in determining growth. Plant Soil 248, 257–268 (2003).Article 

    Google Scholar 
    Wang, Z. & Li, S. Effects of nitrogen and phosphorus fertilization on plant growth and nitrate accumulation in vegetables. J. Plant Nutr. 27, 539–556 (2004).Article 
    CAS 

    Google Scholar 
    Razaq, M., Zhang, P. & Shen, H. L. Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS One 12, e0171321. https://doi.org/10.1371/journal.pone.0171321 (2017).Article 
    CAS 

    Google Scholar 
    Poulton, J. L., Bryla, D., Koide, R. T. & Stephenson, A. G. Mycorrhizal infection and high soil phosphorus improve vegetative growth and the female and male functions in tomato. New Phytol. 154, 255–264 (2002).Article 
    CAS 

    Google Scholar 
    Burkle, L. A. & Irwin, R. E. The effects of nutrient addition on floral characters and pollination in two subalpine plants, Ipomopsis aggregata and Linum lewisii. Plant Ecol. 203, 83–98 (2009).Article 

    Google Scholar 
    Burkle, L. A. & Irwin, R. E. Beyond biomass: measuring the effects of community-level nitrogen enrichment on floral traits, pollinator visitation and plant reproduction. J. Ecol. 98, 705–717 (2010).Article 

    Google Scholar 
    Hoover, S. E. R. et al. Warming, CO2, and nitrogen deposition interactively affect a plant-pollinator mutualism. Ecol. Lett. 15, 227–234 (2012).Article 

    Google Scholar 
    Lau, T. C. & Stephenson, A. G. Effects of soil nitrogen on pollen production, pollen grain size, and pollen performance in Cucurbita pepo (Cucurbitaceae). Am. J. Bot. 80, 763–768 (1993).Article 
    CAS 

    Google Scholar 
    Lau, T. C. & Stephenson, A. Effects of soil phosphorus on pollen production, pollen size, pollen phosphorus content, and the ability to sire seeds in Cucurbita pepo (Cucurbitaceae). Sex. Plant Reprod. 7, 215–220 (1994).Article 

    Google Scholar 
    Atasay, A., Akgül, H., Uçgun, K. & Şan, B. Nitrogen fertilization affected the pollen production and quality in apple cultivars ‘Jerseymac’ and ‘Golden Delicious’. Acta Agric. Scand. Sect. B. Soil Plant Sci. 63, 460–465 (2013).
    Google Scholar 
    Shuel, R. W. Some aspects of the relation between nectar secretion and nitrogen, phosphorus, and potassium nutrition. Can. J. Plant Sci. 37, 220–236 (1957).Article 
    CAS 

    Google Scholar 
    Robacker, D. C., Flottum, P. K., Sammataro, D. & Erickson, E. H. Effects of climatic and edaphic factors on soybean flowers and on the subsequent attractiveness of the plants to honey bees. Field Crops Res. 6, 267–278 (1983).Article 

    Google Scholar 
    Dror, I., Yaron, B. & Berkowitz, B. The human impact on all soil-forming factors during the anthropocene. ACS Environ. Au 2, 11–19 (2022).Article 
    CAS 

    Google Scholar 
    David, T. I., Storkey, J. & Stevens, C. J. Understanding how changing soil nitrogen affects plant–pollinator interactions. Arthropod. Plant Interact. 13, 671–684 (2019).Article 

    Google Scholar 
    Russo, L., Buckley, Y. M., Hamilton, H., Kavanagh, M. & Stout, J. C. Low concentrations of fertilizer and herbicide alter plant growth and interactions with flower-visiting insects. Agric. Ecosyst. Environ. 304, 107141. https://doi.org/10.1016/j.agee.2020.107141 (2020).Article 
    CAS 

    Google Scholar 
    Akter, A. & Klečka, J. Water stress and nitrogen supply affect floral traits and pollination of the white mustard, Sinapis alba (Brassicaceae). PeerJ 10, e13009. https://doi.org/10.7717/peerj.13009 (2022).Article 
    CAS 

    Google Scholar 
    Wu, Y. et al. Soil water and nutrient availability interactively modify pollinator-mediated directional and correlational selection on floral display. New Phytol. https://doi.org/10.1111/nph.18537 (2022).Article 

    Google Scholar 
    Nicolson, S. W. Sweet solutions: nectar chemistry and quality. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 2163. https://doi.org/10.1098/rstb.2021.0163 (2022).Article 
    CAS 

    Google Scholar 
    Vaudo, A. D., Tooker, J. F., Grozinger, C. M. & Patch, H. M. Bee nutrition and floral resource restoration. Curr. Opin. Insect Sci. 10, 133–141 (2015).Article 

    Google Scholar 
    Cnaani, J., Thomson, J. D. & Papaj, D. R. Flower choice and learning in foraging bumblebees: effects of variation in nectar volume and concentration. Ethology 112, 278–285 (2006).Article 

    Google Scholar 
    Vaudo, A. D., Patch, H. M., Mortensen, D. A., Tooker, J. F. & Grozinger, C. M. Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences. Proc. Natl. Acad. Sci. U. S. A. 113, E4035–E4042. https://doi.org/10.1073/pnas.1606101113 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Vaudo, A. D. et al. Pollen protein: lipid macronutrient ratios may guide broad patterns of bee species floral preferences. Insects 11, 132. https://doi.org/10.3390/insects11020132 (2020).Article 

    Google Scholar 
    Cardoza, Y. J., Harris, G. K. & Grozinger, C. M. Effects of soil quality enhancement on pollinator-plant interactions. Psyche 2012, 581458. https://doi.org/10.1155/2012/581458 (2012).Article 

    Google Scholar 
    Ceulemans, T., Hulsmans, E., Vanden Ende, W. & Honnay, O. Nutrient enrichment is associated with altered nectar and pollen chemical composition in Succisa pratensis Moench and increased larval mortality of its pollinator Bombus terrestris L.. PLoS One 12, e0175160. https://doi.org/10.1371/journal.pone.0175160 (2017).Article 
    CAS 

    Google Scholar 
    Russo, L., Vaudo, A. D., Fisher, C. J., Grozinger, C. M. & Shea, K. Bee community preference for an invasive thistle associated with higher pollen protein content. Oecologia 190, 901–912 (2019).Article 
    ADS 

    Google Scholar 
    Russo, L., Keller, J., Vaudo, A. D., Grozinger, C. M. & Shea, K. Warming increases pollen lipid concentration in an invasive thistle, with minor effects on the associated floral-visitor community. Insects 11, 20. https://doi.org/10.3390/insects11010020 (2019).Article 

    Google Scholar 
    Awmack, C. S. & Leather, S. R. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817–844 (2002).Article 
    CAS 

    Google Scholar 
    Carisey, N. & Bauce, E. Does nutrition-related stress carry over to spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae) progeny?. Bull. Entomol. Res. 92, 101–108 (2002).Article 
    CAS 

    Google Scholar 
    Zhang, G. & Han, X. N: P stoichiometry in Ficus racemosa and its mutualistic pollinator. J. Plant Ecol. 3, 123–130 (2010).Article 

    Google Scholar 
    Visanuvimol, L. & Bertram, S. M. How dietary phosphorus availability during development influences condition and life history traits of the cricket Acheta domesticas. J. Insect Sci. 11, 63. https://doi.org/10.1673/031.011.6301 (2011).Article 

    Google Scholar 
    Dovrat, G., Meron, E., Shachak, M., Golodets, C. & Osem, Y. Plant size is related to biomass partitioning and stress resistance in water-limited annual plant communities. J. Arid Environ. 165, 1–9 (2019).Article 
    ADS 

    Google Scholar 
    Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20, 30–59 (2010).Article 
    CAS 

    Google Scholar 
    Tao, L. & Hunter, M. D. Does anthropogenic nitrogen deposition induce phosphorus limitation in herbivorous insects?. Glob. Chang. Biol. 18, 1843–1853 (2012).Article 
    ADS 

    Google Scholar 
    Tognetti, P. M. et al. Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proc. Natl. Acad. Sci. 118(28), e2023718118. https://doi.org/10.1073/pnas.2023718118 (2021).Article 
    CAS 

    Google Scholar 
    Leghari, S. J. et al. Role of nitrogen for plant growth and development: a review. Adv. Environ. Biol. 10, 209–218 (2016).
    Google Scholar 
    Carvalheiro, L. G. et al. Soil eutrophication shaped the composition of pollinator assemblages during the past century. Ecography 43, 209–221 (2020).Article 

    Google Scholar 
    Lefcheck, J. S. Piecewisesem: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Roulston, T. H., Cane, J. H. & Buchmann, S. L. What governs protein content of pollen: Pollinator preferences, pollen–pistil interactions, or phylogeny?. Ecol. Monogr. 70, 617–643 (2000).
    Google Scholar 
    Pacini, E. & Hesse, M. Pollenkitt—its composition, forms and functions. Flora 200, 399–415 (2005).Article 

    Google Scholar 
    Vaudo, A. D. et al. Bumble bees regulate their intake of essential protein and lipid pollen macronutrients. J. Exp. Biol. 219, 3962–3970 (2016).CAS 

    Google Scholar 
    Vaudo, A. D., Farrell, L. M., Patch, H. M., Grozinger, C. M. & Tooker, J. F. Consistent pollen nutritional intake drives bumble bee (Bombus impatiens) colony growth and reproduction across different habitats. Ecol. Evol. 8, 5765–5776 (2018).Article 

    Google Scholar 
    Treanore, E. D., Vaudo, A. D., Grozinger, C. M. & Fleischer, S. J. Examining the nutritional value and effects of different floral resources in pumpkin agroecosystems on Bombus impatiens worker physiology. Apidologie 50, 542–552 (2019).Article 

    Google Scholar 
    Baker, H. G. & Baker, I. The predictive value of nectar chemistry to the recognition of pollinator types. Israel J. Bot. 39, 157–166 (1990).CAS 

    Google Scholar 
    Thomson, J. D. Pollen transport and deposition by bumble bees in Erythronium: influences of floral nectar and bee grooming. J. Ecol. 74, 329–341 (1986).Article 

    Google Scholar 
    Gonzalez, M. V., Coque, M. & Herrero, M. Influence of pollination systems on fruit set and fruit quality in kiwifruit (Actinidia deliciosa). Ann. Appl. Biol. 132, 349–355 (1998).Article 

    Google Scholar 
    Morandin, L. A., Laverty, T. M. & Kevan, P. G. Effect of bumble bee (Hymenoptera: Apidae) pollination intensity on the quality of greenhouse tomatoes. J. Econ. Entomol. 94, 172–179 (2001).Article 
    CAS 

    Google Scholar 
    Karron, J. D., Mitchell, R. J. & Bell, J. M. Multiple pollinator visits to Mimulus ringens (Phrymaceae) flowers increase mate number and seed set within fruits. Am. J. Bot. 93, 1306–1312 (2006).Article 

    Google Scholar 
    Kiatoko, N., Raina, S. K., Muli, E. & Mueke, J. Enhancement of fruit quality in Capsicum annum through pollination by Hypotrigona gribodoi in Kakamega Western Kenya. Entomol. Sci. 17, 106–110 (2014).Article 

    Google Scholar 
    Abrol, D. P., Gorka, A. K., Ansari, M. J., Al-Ghamdi, A. & Al-Kahtani, S. Impact of insect pollinators on yield and fruit quality of strawberry. Saudi J. Biol. Sci. 26, 524–530 (2019).Article 

    Google Scholar 
    Osman, M. A., Raju, P. S. & Peacock, J. M. The effect of soil temperature, moisture and nitrogen on Striga asiatica (L.) Kuntze seed germination, viability and emergence on sorghum (Sorghum bicolor L. Moench) roots under field conditions. Plant Soil 131, 265–273 (1991).Article 
    CAS 

    Google Scholar 
    Rose, T. J. & Raymond, C. A. Seed phosphorus effects on rice seedling vigour in soils differing in phosphorus status. Agronomy 10(12), 1919. https://doi.org/10.3390/agronomy10121919 (2020).Article 
    CAS 

    Google Scholar 
    Cavatorta, J. et al. ‘Marketmore 97’: a monoecious slicing cucumber inbred with multiple disease and insect resistances. HortScience 42, 707–709 (2007).Article 

    Google Scholar 
    Friedman, J. The evolution of annual and perennial plant life histories: ecological correlates and genetic mechanisms. Annu. Rev. Ecol. Evol. Syst. 51, 461–481 (2020).Article 

    Google Scholar 
    Alzate-Marin, A. L. et al. Warming and elevated CO2 induces changes in the reproductive dynamics of a tropical plant species. Sci. Total Environ. 768, 144899. https://doi.org/10.1016/j.scitotenv.2020.144899 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Mu, J. et al. Domesticated honey bees evolutionarily reduce flower nectar volume in a Tibetan lotus. Ecology 95, 3161–3172 (2014).Article 

    Google Scholar 
    Cruden, R. W. Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31, 32–46 (1977).
    Google Scholar 
    Costa, C. M. & Yang, S. Counting pollen grains using readily available, free image processing and analysis software. Ann. Bot. 104, 1005–1010 (2009).Article 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).Article 
    CAS 

    Google Scholar 
    Vaudo, A. D., Patch, H. M., Mortensen, D. A., Grozinger, C. M. & Tooker, J. F. Bumble bees exhibit daily behavioral patterns in pollen foraging. Arthropod. Plant. Interact. 8, 273–283 (2014).
    Google Scholar  More

  • in

    Ant milk: The mysterious fluid that helps them thrive

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Grazing pressure on drylands

    Maestre and colleagues collected data using a standardized field survey at 98 sites across 25 countries and 6 continents, fitted linear mixed models to data from all sites and grazing pressure levels, and then applied a multimodel inference procedure to select the set of best-fitting models. The authors found interactions between grazing and biodiversity in almost half of the best-fitting models, where increasing grazing pressure had positive effects on ecosystem services in colder sites with high plant species richness. However, increases in grazing pressure at warmer sites with high rainfall seasonality and low plant species richness interacted with soil properties to either increase or reduce the delivery of multiple ecosystem services. The authors’ findings highlight how increasing herbivore richness could enhance ecosystem service delivery across contrasting environmental and biodiversity conditions, enhancing soil carbon storage and reducing the negative impacts of increased grazing pressure. More

  • in

    A signal-like role for floral humidity in a nocturnal pollination system

    Kulahci, I. G., Dornhaus, A. & Papaj, D. R. Multimodal signals enhance decision making in foraging bumble-bees. Proc. Biol. Sci. 275, 797–802 (2008).
    Google Scholar 
    Goldshtein, A. et al. Reinforcement learning enables resource partitioning in foraging bats. Curr. Biol. 30, 4096–4102.e4096 (2020).CAS 

    Google Scholar 
    Skogen, K. A., Overson, R. P., Hilpman, E. T. & Fant, J. B. Hawkmoth pollination facilitates long-distance pollen dispersal and reduces isolation across a gradient of land-use change. Ann. Mo. Bot. Gard. 104, 495–511 (2019). 417.
    Google Scholar 
    Deng, J.-Y., van Noort, S., Compton, S. G., Chen, Y. & Greeff, J. M. Conservation implications of fine scale population genetic structure of Ficus species in South African forests. Ecol. Manag. 474, 118387 (2020).
    Google Scholar 
    Galizia, C. G. et al. Relationship of visual and olfactory signal parameters in a food-deceptive flower mimicry system. Behav. Ecol. 16, 159–168 (2004).
    Google Scholar 
    Gibernau, M., HossaertMcKey, M., Frey, J. & Kjellberg, F. Are olfactory signals sufficient to attract fig pollinators. Ecoscience 5, 306–311 (1998).
    Google Scholar 
    Kapustjansky, A., Chittka, L. & Spaethe, J. Bees use three-dimensional information to improve target detection. Naturwissenschaften 97, 229–233 (2010).ADS 
    CAS 

    Google Scholar 
    Hempel de Ibarra, N., Langridge, K. V. & Vorobyev, M. More than colour attraction: behavioural functions of flower patterns. Curr. Opin. Insect Sci. 12, 64–70 (2015).
    Google Scholar 
    Boff, S., Henrique, J. A., Friedel, A. & Raizer, J. Disentangling the path of pollinator attraction in temporarily colored flowers. Int. J. Trop. Insect Sci. 41, 1305–1311 (2021).
    Google Scholar 
    Leonard, A. S. & Papaj, D. R. ‘X’ marks the spot: the possible benefits of nectar guides to bees and plants. Funct. Ecol. 25, 1293–1301 (2011).
    Google Scholar 
    Dobson, H. E. M. & Bergström, G. The ecology and evolution of pollen odors. Plant Syst. Evol. 222, 63–87 (2000).CAS 

    Google Scholar 
    Raguso, R. A. Why are some floral nectars scented? Ecology 85, 1486–1494 (2004).
    Google Scholar 
    Corbet, S. A., Kerslake, C. J. C., Brown, D. & Morland, N. E. Can bees select nectar-rich flowers in a patch. J. Apic. Res. 23, 234–242 (1984).
    Google Scholar 
    Policha, T. et al. Disentangling visual and olfactory signals in mushroom-mimicking Dracula orchids using realistic three-dimensional printed flowers. N. Phytol. 210, 1058–1071 (2016).CAS 

    Google Scholar 
    Stout, J. C., Goulson, D. & Allen, J. A. Repellent scent-marking of flowers by a guild of foraging bumblebees (Bombus spp.). Behav. Ecol. Sociobiol. 43, 317–326 (1998).
    Google Scholar 
    Howell, A. D. & Alarcón, R. Osmia bees (Hymenoptera: Megachilidae) can detect nectar-rewarding flowers using olfactory cues. Anim. Behav. 74, 199–205 (2007).von Arx, M. Floral humidity and other indicators of energy rewards in pollination biology. Commun. Integr. Biol. 6, e22750–e22750 (2013).
    Google Scholar 
    Goyret, J. The breath of a flower: CO2 adds another channel-and then some-to plant-pollinator interactions. Commun. Integr. Biol. 1, 66–68 (2008).CAS 

    Google Scholar 
    Bradbury, J. W. & Vehrencamp, S. L. Principles of Animal Communication 2nd edn (Sinauer Associates, 2011).McMeniman, C. J., Corfas, R. A., Matthews, B. J., Ritchie, S. A. & Vosshall, L. B. Multimodal integration of carbon dioxide and other sensory cues drives mosquito attraction to humans. Cell 156, 1060–1071 (2014).CAS 

    Google Scholar 
    Smith, J. M. & Harper, D. Animal Signals (Oxford Univ. Press, 2003).Smith, M. J. & Harper, D. G. C. Animal signals: models and terminology. J. Theor. Biol. 177, 305–311 (1995).ADS 

    Google Scholar 
    Laidre, M. E. & Johnstone, R. A. Animal signals. Curr. Biol. 23, R829–R833 (2013).CAS 

    Google Scholar 
    Smith, J. M. Must reliable signals always be costly? Anim. Behav. 47, 1115–1120 (1994).
    Google Scholar 
    Guerenstein, P. G., A.Yepez, E., van Haren, J., Williams, D. G. & Hildebrand, J. G. Floral CO2 emission may indicate food abundance to nectar-feeding moths. Naturwissenschaften 91, 329–333 (2004).ADS 
    CAS 

    Google Scholar 
    Goyret, J., Markwell, P. M. & Raguso, R. A. Context- and scale-dependent effects of floral CO2 on nectar foraging by Manduca sexta. Proc. Natl Acad. Sci. USA 105, 4565–4570 (2008).ADS 
    CAS 

    Google Scholar 
    Thom, C., Guerenstein, P. G., Mechaber, W. L. & Hildebrand, J. G. Floral CO2 reveals flower profitability to moths. J. Chem. Ecol. 30, 1285–1288 (2004).CAS 

    Google Scholar 
    Gilbert, F. S., Haines, N. & Dickson, K. Empty flowers. Funct. Ecol. 5, 29–39 (1991).
    Google Scholar 
    von Arx, M., Goyret, J., Davidowitz, G. & Raguso, R. A. Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths. Proc. Natl Acad. Sci. USA 109, 9471–9476 (2012).ADS 

    Google Scholar 
    Harrap, M. J. M., Hempel de Ibarra, N., Knowles, H. D., Whitney, H. M. & Rands, S. A. Floral humidity in flowering plants: A preliminary survey. Front. Plant Sci. https://doi.org/10.3389/fpls.2020.00249 (2020).Harrap, M. J. M. & Rands, S. A. The role of petal transpiration in floral humidity generation. Planta 255, 78 (2022).CAS 

    Google Scholar 
    Harrap, M. J. M., Hempel de Ibarra, N., Knowles, H. D., Whitney, H. M. & Rands, S. A. Bumblebees can detect floral humidity. J. Exp. Biol. https://doi.org/10.1242/jeb.240861 (2021).Hebets, E. A. & Papaj, D. R. Complex signal function: developing a framework of testable hypotheses. Behav. Ecol. Sociobiol. 57, 197–214 (2005).
    Google Scholar 
    Bronstein, J. L., Huxman, T., Horvath, B., Farabee, M. & Davidowitz, G. Reproductive biology of Datura wrightii: the benefits of a herbivorous pollinator. Ann. Bot. 103, 1435–1443 (2009).
    Google Scholar 
    Johnson, C. A. et al. Coevolutionary transitions from antagonism to mutualism explained by the co-opted antagonist hypothesis. Nat. Commun. https://doi.org/10.1038/s41467-021-23177-x (2021).Clark, C. J. The role of power versus energy in courtship: what is the ‘energetic cost’ of a courtship display? Anim. Behav. 84, 269–277 (2012).
    Google Scholar 
    Willmott, A. P. & Ellington, C. P. The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight. J. Exp. Biol. 200, 2705–2722 (1997).CAS 

    Google Scholar 
    Shields, V. D. C. & Hildebrand, J. G. Fine structure of antennal sensilla of the female sphinx moth, Manduca sexta (Lepidoptera: Sphingidae). II. Auriculate, coeloconic, and styliform complex sensilla. Can. J. Zool. 77, 302–313 (1999).
    Google Scholar 
    Lee, J. K. & Strausfeld, N. J. Structure, distribution and number of surface sensilla and their receptor cells on the olfactory appendage of the male moth Manduca sexta. J. Neurocytol. 19, 519–538 (1990).CAS 

    Google Scholar 
    Shields, V. D. & Hildebrand, J. G. Recent advances in insect olfaction, specifically regarding the morphology and sensory physiology of antennal sensilla of the female sphinx moth Manduca sexta. Microsc. Res. Tech. 55, 307–329 (2001).CAS 

    Google Scholar 
    Tichy, H. & Loftus, R. Hygroreceptors in insects and a spider: Humidity transduction models. Naturwissenschaften 83, 255–263 (1996).ADS 
    CAS 

    Google Scholar 
    Ahrens, M., Huang, K.-H., Narayan, S., Mensh, B. & Engert, F. Two-photon calcium imaging during fictive navigation in virtual environments. Front. Neural Circuits https://doi.org/10.3389/fncir.2013.00104 (2013).Lacher, V. Elektrophysiologische untersuchungen an einzelnen rezeptoren für geruch, kohlendioxyd, luftfeuchtigkeit und tempratur auf den antennen der arbeitsbiene und der drohne (Apis mellifica L.). Z. f.ür. Vgl. Physiologie 48, 587–623 (1964).
    Google Scholar 
    Waldow, U. Elektrophysiologische untersuchungen an feuchte-, trocken- und kälterezeptoren auf der antenne der wanderheuschrecke Locusta. Z. f.ür. Vgl. Physiologie 69, 249–283 (1970).
    Google Scholar 
    Yokohari, F. & Tateda, H. Moist and dry hygroreceptors for relative humidity of the cockroach, Periplaneta americana L. J. Comp. Physiol. 106, 137–152 (1976).
    Google Scholar 
    Tichy, H. Low rates of change enhance effect of humidity on the activity of insect hygroreceptors. J. Comp. Physiol. A Neuroethol. Sens Neural Behav. Physiol. 189, 175–179 (2003).CAS 

    Google Scholar 
    Tichy, H., Hellwig, M. & Kallina, W. Revisiting theories of humidity transduction: a focus on electrophysiological data. Front. Physiol. 8, 650 (2017).
    Google Scholar 
    Tichy, H. & Kallina, W. Insect hygroreceptor responses to continuous changes in humidity and air pressure. J. Neurophysiol. 103, 3274–3286 (2010).CAS 

    Google Scholar 
    Wolfin, M. S., Raguso, R. A., Davidowitz, G. & Goyret, J. Context dependency of in-flight responses by Manduca sexta moths to ambient differences in relative humidity. J. Exp. Biol. https://doi.org/10.1242/jeb.177774 (2018).Smith, G., Kim, C. & Raguso, R. A. Pollen accumulation on hawkmoths varies substantially among moth-pollinated flowers. Preprint at bioRxiv https://doi.org/10.1101/2022.07.15.500245 (2022).Haverkamp, A., Bing, J., Badeke, E., Hansson, B. S. & Knaden, M. Innate olfactory preferences for flowers matching proboscis length ensure optimal energy gain in a hawkmoth. Nat. Commun. 7, 11644 (2016).ADS 
    CAS 

    Google Scholar 
    Harrison, A. S. & Rands, S. A. The ability of bumblebees Bombus terrestris (hymenoptera: Apidae) to detect floral humidity is dependent upon environmental humidity. Environ. Entomol. 51, 1010–1019 (2022).
    Google Scholar 
    Kelber, A. What a hawkmoth remembers after hibernation depends on innate preferences and conditioning situation. Behav. Ecol. 21, 1093–1097 (2010).
    Google Scholar 
    Riffell, J. A. et al. Flower discrimination by pollinators in a dynamic chemical environment. Science 344, 1515–1518 (2014).ADS 
    CAS 

    Google Scholar 
    Schellenberg, R. The trouble with humidity: the hidden challenge of RH calibration. Cal. Lab. 9, 40–42 (2002).
    Google Scholar 
    Roddy, A. B., Brodersen, C. R. & Dawson, T. E. Hydraulic conductance and the maintenance of water balance in flowers. Plant Cell Environ. 39, 2123–2132 (2016).CAS 

    Google Scholar 
    Sane, S. P. & Jacobson, N. P. Induced airflow in flying insects. II. Measurement of induced flow. J. Exp. Biol. 209, 43–56 (2006).
    Google Scholar 
    Daly, K. C., Kalwar, F., Hatfield, M., Staudacher, E. & Bradley, S. P. Odor detection in Manduca sexta is optimized when odor stimuli are pulsed at a frequency matching the wing beat during flight. PLoS ONE 8, e81863 (2013).ADS 

    Google Scholar 
    Yokohari, F. Hygroreceptor mechanism in the antenna of the cockroach. Periplaneta. J. Comp. Physiol. 124, 153 (1978).
    Google Scholar 
    Loftus, R. Temperature-dependent dry receptor on antenna of Periplaneta. Tonic response. J. Comp. Physiol. 111, 153–170 (1976).
    Google Scholar 
    Tichy, H. & Kallina, W. Sensitivity of honeybee hygroreceptors to slow humidity changes and temporal humidity variation detected in high resolution by mobile measurements. PLoS ONE 9, e99032 (2014).ADS 

    Google Scholar 
    Galen, C., Sherry, R. A. & Carroll, A. B. Are flowers physiological sinks or faucets? Costs and correlates of water use by flowers of Polemonium viscosum. Oecologia 118, 461–470 (1999).ADS 

    Google Scholar 
    Elle, E., van Dam, N. M. & Hare, J. D. Cost of glandular trichomes, a “resistance” character in Datura wrightii regel (solanaceae). Evolution 53, 22–35 (1999).
    Google Scholar 
    Elle, E. & Hare, J. D. Environmentally induced variation in floral traits affects the mating system in Datura wrightii. Funct. Ecol. 16, 79–88 (2002).
    Google Scholar 
    Marler, C. A. & Ryan, M. J. Energetic constraints and steroid hormone correlates of male calling behaviour in the túngara frog. J. Zool. 240, 397–409 (1996).
    Google Scholar 
    Bernal, X. E., Rand, A. S. & Ryan, M. J. Acoustic preferences and localization performance of blood-sucking flies (Corethrella Coquillett) to túngara frog calls. Behav. Ecol. 17, 709–715 (2006).
    Google Scholar 
    Raguso, R. A. Flowers as sensory billboards: progress towards an integrated understanding of floral advertisement. Curr. Opin. Plant Biol. 7, 434–440 (2004).
    Google Scholar 
    Peach, D. A. H., Gries, R., Zhai, H., Young, N. & Gries, G. Multimodal floral cues guide mosquitoes to tansy inflorescences. Sci. Rep. 9, 3908 (2019).ADS 

    Google Scholar 
    Riffell, J. A. & Alarcón, R. Multimodal floral signals and moth foraging decisions. PLoS ONE 8, e72809 (2013).ADS 
    CAS 

    Google Scholar 
    van der Kooi, C. J., Kevan, P. G. & Koski, M. H. The thermal ecology of flowers. Ann. Bot. 124, 343–353 (2019).
    Google Scholar 
    Terry, L. I., Roemer, R. B., Walter, G. H., Booth, D. & Lee, K. P. Thrips’ responses to thermogenic associated signals in a cycad pollination system: the interplay of temperature, light, humidity and cone volatiles. Funct. Ecol. 28, 857–867 (2014).
    Google Scholar 
    Bronstein, J. L., Alarcón, R. & Geber, M. The evolution of plant–insect mutualisms. N. Phytol. 172, 412–428 (2006).
    Google Scholar 
    Schaefer, H. M. & Ruxton, G. D. Deception in plants: mimicry or perceptual exploitation. Trends Ecol. Evol. 24, 676–685 (2009).
    Google Scholar 
    Franchi, G. G., Nepi, M. & Pacini, E. Is flower/corolla closure linked to decrease in viability of desiccation-sensitive pollen? Facts and hypotheses: a review of current literature with the support of some new experimental data. Plant Syst. Evol. 300, 577–584 (2014).
    Google Scholar 
    Safavian, D. et al. High humidity partially rescues the Arabidopsis thaliana exo70A1 stigmatic defect for accepting compatible pollen. Plant Reprod. 27, 121–127 (2014).CAS 

    Google Scholar 
    Shivanna, K. R. & Cresti, M. Effects of high humidity and temperature stress on pollen membrane integrity and pollen vigour in Nicotiana tabacum. Sex. Plant Reprod. 2, 137–141 (1989).
    Google Scholar 
    Richman, S. K. et al. The sensory and cognitive ecology of nectar robbing. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2021.698137 (2021).Raguso, R. A. et al. Trumpet flowers of the Sonoran Desert: floral biology of Peniocereus Cacti and Sacred Datura. Int. J. Plant Sci. 164, 877–892 (2003).CAS 

    Google Scholar 
    Carazo, P. & Font, E. ‘Communication breakdown’: the evolution of signal unreliability and deception. Anim. Behav. 87, 17–22 (2014).
    Google Scholar 
    Schemske, D. W. Evolution of floral display in the orchid Brassavola nodosa. Evolution 34, 489–493 (1980).
    Google Scholar 
    Haber, W. A. Pollination by deceit in a mass-flowering tropical tree Plumeria rubra L. (apocynaceae). Biotropica 16, 269–275 (1984).
    Google Scholar 
    Brandenburg, A., Kuhlemeier, C. & Bshary, R. Hawkmoth pollinators decrease seed set of a low-nectar Petunia axillaris line through reduced probing time. Curr. Biol. 22, 1635–1639 (2012).CAS 

    Google Scholar 
    Bye, R. & Sosa, V. Molecular phylogeny of the jimsonweed genus Datura (solanaceae). Syst. Bot. 38, 818–829 (2013).
    Google Scholar 
    Kariñho-Betancourt, E., Agrawal, A. A., Halitschke, R. & Núñez-Farfán, J. Phylogenetic correlations among chemical and physical plant defenses change with ontogeny. N. Phytol. 206, 796–806 (2015).
    Google Scholar 
    Kawahara, A. Y. et al. Evolution of Manduca sexta hornworms and relatives: biogeographical analysis reveals an ancestral diversification in Central America. Mol. Phylogenet. Evol. 68, 381–386 (2013).
    Google Scholar 
    Contreras, H. L. et al. The effect of ambient humidity on the foraging behavior of the hawkmoth Manduca sexta. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 199, 1053–1063 (2013).
    Google Scholar 
    Cardoso, J. C. F., Gonzaga, M. O., Cavalleri, A., Maruyama, P. K. & Alves-Silva, E. The role of floral structure and biotic factors in determining the occurrence of florivorous thrips in a dystilous shrub. Arthropod-Plant Interact. 10, 477–484 (2016).
    Google Scholar 
    Nicolson, S. W. Sweet solutions: nectar chemistry and quality. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 20210163 (2022).CAS 

    Google Scholar 
    Pellmyr, O. & Thien, L. B. Insect reproduction and floral fragrances: keys to the evolution of the Angiosperms. Taxon 35, 76–85 (1986).
    Google Scholar 
    Enjin, A. et al. Humidity sensing in Drosophila. Curr. Biol. 26, 1352–1358 (2016).CAS 

    Google Scholar 
    Knecht, Z. A. et al. Distinct combinations of variant ionotropic glutamate receptors mediate thermosensation and hygrosensation in Drosophila. eLife 5, e17879 (2016).
    Google Scholar 
    Knecht, Z. A. et al. Ionotropic receptor-dependent moist and dry cells control hygrosensation in Drosophila. eLife 6, e26654 (2017).
    Google Scholar 
    Croset, V. et al. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet. 6, e1001064–e1001064 (2010).
    Google Scholar 
    Dahake, A. et al. MATLAB codes: a signal-like role for floral humidity in a nocturnal pollination system. Zenodo https://doi.org/10.5281/zenodo.7320037 (2022).Pereira, T. D. et al. Fast animal pose estimation using deep neural networks. Nat. Methods 16, 117–125 (2019).CAS 

    Google Scholar 
    Nilsson, S. R. et al. Simple behavioral analysis (SimBA) – an open source toolkit for computer classification of complex social behaviors in experimental animals. Preprint at bioRxiv https://doi.org/10.1101/2020.04.19.049452 (2020).Casey, T. M. Flight energetics of sphinx moths: power input during hovering flight. J. Exp. Biol. 64, 529–543 (1976).CAS 

    Google Scholar 
    Riffell, J. A. et al. Behavioral consequences of innate preferences and olfactory learning in hawkmoth-flower interactions. Proc. Natl Acad. Sci. USA 105, 3404–3409 (2008).ADS 
    CAS 

    Google Scholar 
    Lott, G. K., Johnson, B. R., Bonow, R. H., Land, B. R. & Hoy, R. R. g-PRIME: a free, windows based data acquisition and event analysis software package for physiology in classrooms and research labs. J. Undergrad. Neurosci. Educ. 8, A50–A54 (2009).
    Google Scholar 
    Chaure, F. J., Rey, H. G. & Quiroga, R. Q. A novel and fully automatic spike-sorting implementation with variable number of features. J. Neurophysiol. 120, 1859–1871 (2018).CAS 

    Google Scholar 
    Tichy, H. Humidity-dependent cold cells on the antenna of the stick insect. J. Neurophysiol. 97, 3851–3858 (2007).
    Google Scholar 
    Campbell, R. raacampbell/shadedErrorBar. https://github.com/raacampbell/shadedErrorBar (2022).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Broadhead, G. T. & Raguso, R. A. Associative learning of non-sugar nectar components: amino acids modify nectar preference in a hawkmoth. J. Exp. Biol. https://doi.org/10.1242/jeb.234633 (2021). More

  • in

    Anthrax hotspot mapping in Kenya support establishing a sustainable two-phase elimination program targeting less than 6% of the country landmass

    Data sourcesThis study builds on two datasets; 666 livestock anthrax outbreaks collected over 60 years (1957–2017) by the Kenya Directorate of Veterinary Services (KDVS), and 13 reported anthrax outbreaks we investigated between 2017 and 201811,13. These datasets were combined with data from targeted active anthrax surveillance we conducted in 2019–2020 (see below) to define anthrax suitable areas in Kenya, including hotspots, and subsequently assessed effectiveness of livestock vaccination as a control strategy.Targeted active surveillance-collected anthrax data, 2019–2020Active anthrax surveillance was conducted for 12 months between 2019 and 2020 in randomly selected areas to ensure representation of all AEZs of the country. AEZs are land units defined based on the patterns of soil, landforms and climatic characteristics. Kenya has seven AEZs that include agro-alpine, high potential, medium potential, semi-arid, arid, very-arid and desert. In 2013, Kenya devolved governance into 47 semi-autonomous counties that are subdivided into 290 subcounties which are in turn divided into 1450 administrative wards, the smallest administrative units in the country. Using a geographic map that condensed Kenya into five AEZs; agro-alpine, high potential, medium potential, semi-arid, and arid/very arid zones, we randomly selected 4 administrative sub-counties from each AEZ (N = 20). To increase geographic spread of the study and enhance detection of anthrax outbreaks, we surveilled the larger administrative county (consisting of 20 to 45 administrative wards) where the randomly selected sub-counties were located. As shown in Fig. S1, we ultimately carried out the active anthrax surveillance in 18 counties, containing 523 administrative wards, the latter being used for measuring spatial association (see below).We conducted the surveillance between April 2019 and June 2020, through 523 animal health practitioners (AHPs), one in each ward, after intensive training to identify anthrax using a standard case definition, and to collect and electronically transmit the data weekly using telephone-based short messaging system (SMS) to a central server hosted by KDVS. Regarding case definition, any livestock death classified as anthrax through clinical or laboratory diagnosis was considered an anthrax event. Using standard guidelines issued by the KDVS, a clinical diagnosis was made by the AHPs across the country as an acute cattle, sheep or goat disease characterized by sudden death with or without bleeding from natural orifices, accompanied by absence of rigor mortis. Further, if the carcass was accidentally opened, failure of blood to clot and/or the presence of splenomegaly were included. In pigs, symptoms included swelling of the face and neck with oedema. A laboratory confirmed anthrax was diagnosed using Gram and methylene blue stains followed by identification of the capsule and typical rod-shaped B. anthracis in clinical specimens that the AHPs submitted to the central or regional veterinary investigation laboratories in Kenya. One case of anthrax in either species was considered an outbreak.During the surveillance, the programmed server sent prompting texts directly to the AHPs’ cell phones every Friday of each week for the 52 weeks. The AHPs interacted with the platform by responding to prompting questions sent via SMS to their telephones. Data were securely stored in an online encrypted platform which was subsequently downloaded into Ms Excel for analysis. This surveillance detected 119 anthrax outbreaks, whose partial data were used to model effects of climate change on future anthrax distribution in Kenya14. Here, we integrated these active surveillance data with other datasets to conduct detailed ENM and kernel-smoothed density mapping with a goal of refining suitable anthrax areas including crystalizing hotspots in the country.Anthrax outbreak incidence per livestock population by countyWe knew the total number of livestock per county and wards by species for the active surveillance period. The counties represented the level of disease management including vaccine distribution while the wards within counties represented the modeling unit for targeting control. Therefore, we estimated the outbreak incidence as the total number of outbreaks per livestock species per 100,000 head of that species.Ecological niche modeling and validationWe used boosted regression tree (BRT) algorithm as previously published13. In those studies, we estimated the geographic distribution of anthrax in southern Kenya using 69 spatially unique outbreak points (thinned from the 86 outbreaks in the records) and 18 environmental variables resampled to 250 m resolution. In this study, the final experiments were run with a learning rate (lr) = 0.001, bagging fraction (br) = 5, and maximum tree = 2500. We then mapped anthrax suitability as the mean output of the 100 experiments and the lower 2.5% and upper 97.5% mapped as confidence intervals. We determined variable contribution and derived partial dependence as previously described13. As BRTs are a random walk and each experiment randomly resamples training and test data, it was necessary to repeat those outputs along with the map predictions.Here, our goal was to evaluate the BRT models built with records data from 2011 to 2017 data and use the predict function to calculate model accuracy metrics using the 2017–2020 outbreaks as presence points and the sub-counties reporting zero outbreaks during the 2019–2020 active surveillance period as absence points. The model of southern Kenya was projected onto all of Kenya using climate variables clipped to the whole of Kenya. We tested the BRT models in two ways; first, evaluating 2011–2017 data models with holdout data using a random resampling and multi-modeling approach. Here, we report the area under curve (AUC) for each of the original training/testing split into the 69 historical points and the 2017–2020 data serving as independent data, the latter representing true model validation. Second, to determine the total percentage of surveillance data predicted and map areas of anthrax suitability to compare with kernel density estimates (see below), we produced a dichotomized map using the Youden index cutoff17 following Otieno et al.14.Outbreak concentrations from kernel density estimation (KDE)To describe the spatial concentration of reported outbreaks, we calculated descriptive spatial statistics, including the spatial mean, standard distance, and standard deviational ellipse of outbreak locations from the prospective surveillance dataset following Blackburn et al.18 These spatial statistics help to differentiate the geographic focus (spatial mean) and dispersion of outbreak reports from year to year and across the sampling period. We then conducted kernel density estimation (KDE) to visualize the concentration of anthrax outbreaks per square kilometer per year and across the study period18. We used the spatstat package for all KDE analyses using the quadratic kernel function19:$$fleft( x right) = frac{1}{{nh^{2} }} mathop sum limits_{i = 1}^{n} Kleft( {frac{{x – X_{i} }}{h}} right)$$where h is the bandwidth, x-Xi is the distance to each anthrax outbreak i. Finally, K is the quadratic kernel function, defined as:$$Kleft( x right) = frac{3}{4}left( {1 – x^{2} } right), left| x right| le 1$$$$Kleft( x right) = 0,x > 1$$This function was employed to estimate anthrax outbreak concentration across space using each outbreak weighted as one. We calculated the bandwidth (kernel) using hopt that uses the sample size (number of outbreaks) and the standard distance to estimate bandwidth. Finally, we estimated bandwidth for each year and then averaged them to apply the same fixed bandwidth for each year under study in Q-GIS version 3.1.8. The resulting outputs were map surfaces representing the spatial concentrations of outbreaks across the country per 1 km2 for each study year and all study years combined. For this study, we used the cutoff criteria of Nelson and Boots19 to identify outbreak hotspots as areas with density values in the upper 25%, 10%, and 5% of outbreak concentrations. The analyses identified these areas by year (2017–2020) and for all surveillance years combined.Local spatial clustering at the ward levelAnthrax outbreak incidence per livestock speciesThe ENM and KDE-derived maps provide a first estimate of potential risk and outbreak concentration, respectively. We were also interested in estimating anthrax outbreak intensity relative to livestock populations at a local level. For the active surveillance period, we knew the total number of outbreaks per ward (the smallest administrative spatial unit) by livestock species. For this two-year period, we estimated the ward-level outbreak incidence as the total number of outbreaks per livestock species per 10,000 head of that species. To estimate livestock population per ward, we extracted the values in the raster file of the areal weighted gridded livestock of the world data using the zonal statistic routine in Q-GIS version 3.1.8, into the polygon consisting of all pixels per ward as the total population19,20. We calculated outbreak incidence as the number of outbreaks per ward cattle population per 10,000 cattle for each administrative ward. We limited this analysis to those 18 counties participating in the active surveillance study (Fig. S1), as we could appropriately assume any ward with no reports was a ‘true zero’ for the estimation. Given that most reported outbreaks were in domestic cattle (see results below), we here report those results involving cattle alone. Given the overall high number of wards and the high number of wards without outbreaks, we performed the empirical Bayes smoothing and spatial Bayes smoothing routines in GeoDa version 1.12.1.161 to reduce the variance in anthrax incidence estimates20,21. To evaluate smoothing routine performance, we box plotted rates per ward and selected the method with the greatest reduction in outliers21. Smoothed rates were mapped as choropleth map in Q-GIS version 3.1.8 using the four equal area bins.Spatial cluster analysisWe used Local Moran’s I16 to test for spatial cluster of livestock anthrax in cattle using the smoothed outbreak incidence estimates. The Local Moran’s I statistic tests whether individual wards are part of spatial cluster, like incidence estimates surrounded by similar estimate (high-high or low-low) or spatial outliers where wards with significantly high or low estimates are surrounded by dissimilar values (high-low or low–high). The local Moran’s I is written as16:$$I_{i} = Z_{i} sum W_{ij} Z_{j}$$where Ii is the statistic for a ward i, Zi is the difference between the incidence at i and the mean anthrax incidence rate for all of wards in the study, Zj is the difference between anthrax risk at ward j and the mean for all wards. Wij is the weights matrix. In this study, the 1st order queen contiguity was employed. Here, Wij equals 1/n if a ward shared a boundary or vertex and 0 if not. For this study, Local Moran’s I was performed on the wards using 999 permutations and p = 0.05 using GeoDa version 1.12.1.161.Assessing effectiveness of cattle vaccination in burden hotspotsAs a first estimate of how we might scale up livestock anthrax vaccination efforts in Kenya, we slightly adjusted a simple published anthrax outbreak simulation model in a cattle population. For this study we applied an early mathematical approach of Funiss and Hahn22 to simulate anthrax at the ward level. While other recent models are available23,24, these are difficult to parameterize or require time series data we could not derive with the surveillance approach in this study. Like the more recent models, Funiss and Hahn22 assumed anthrax transmission was driven by cattle accessing spore-contaminated environments. Here the proportion of infected cattle each day depended on the population of susceptible animals in the population and probability of getting infected. This probability depends on environmental contamination (“a”), and a fraction of anthrax carcasses in the environment on a day (“f,”). Each day, the newly infected cattle are transferred to an incubation period vector, “d,” waiting to die following a probability “p”. In this model, all infected animals, “n,” die following the incubation periods given by the vector, “p”, in which pi is the probability of a cow dying i days after the infection. Following death, the cattle are transferred to a carcass state, providing a direct infection source to the susceptible cattle via environmental contamination. Environmental contamination “a,” is therefore defined as the number of spores ingested by an animal in a day. This environmental contamination depends on spores from carcasses and an assumed spore decay rate γ22.The complete set of difference equations with a daily time step is given by:$${text{S}}_{(t + 1)} = {text{S}}_{(t)} – {text{ S}}_{(t)} *left( {{1} – {text{e}}^{{ – left( {{text{a}}_{t} + gamma {text{f}}_{{{text{t}} + 1}} } right)}} } right)$$$${text{I}}_{(t + 1)} = {text{I}}_{(t)} + {text{ S}}_{(t)} *left( {{1} – {text{e}}^{{ – left( {{text{a}}_{{text{t}}} + gamma {text{f}}_{{{text{t}} + {1}}} } right)}} } right)$$where the expression (left( {{1} – {text{e}}^{{ – left( {{text{a}}_{t} + gamma {text{f}}_{{{text{t}} + 1}} } right)}} } right)) denotes the probability of an animal becoming infected and at + γft+1 is the mean number of spores ingested by a cow in a day. The equation for environmental contamination, a, is given by:$${text{a}}_{t + 1} {-}{text{a}}_{{text{t}}} = alpha {text{a}}_{{text{t}}} + beta {text{c}}_{{{text{t}} + {1}}}$$The newly infected animals die after a certain number of days. The distribution of incubation periods is given by the vector, p. On each day, the new cases are placed in a due-to-die vector, d, and when they die, they are subsequently moved down one step to fresh carcasses, ft. The fresh carcasses provide a direct source of infection to the susceptible cattle via the ‘fresh carcass term’, γ. These carcasses decay or are scavenged or disposed by man. The equation expressing the disseminating carcasses, c, is:$${text{C}}_{t + 1} – {text{c}}_{t} = {text{f}}_{t + 1} – delta {text{c}}_{t}$$The model parameters variables are provided in Table 1 and are similar to those used by Funiss and Hahn22 to generate a standard run. We ran the model for one year and extrapolated to cattle population in the identified hotspot wards.Table 1 Model parameters and variables.Full size table More

  • in

    The China plant trait database version 2

    Site selection and sampling strategyField sites (Table 1) were selected to represent typical natural vegetation types showing little or no signs of disturbance. Although much of the natural vegetation of China has been altered by human activities, there are still extensive areas of natural vegetation. Access to these areas is facilitated by the existence of a number of ecological transects39,40, the ChinaFlux network (http://www.chinaflux.org) and the Chinese Ecosystem Research Network (http://www.cern.ac.cn/0index/index.asp).About half the sites in CPTDv1 used a stratified sampling approach and this approach was used at all of the new sites added in the CPTDv2. This sampling strategy involves sampling the dominant species within each vegetation stratum so as to be able to characterise trait values at community level18. Specifically, a total of 25 trees, 5 shrubs, 5 lianas or vines, and 5 understorey species (grasses, forbs) were sampled at each site. When there were less than 25 trees at a site, all of the tree species were sampled and additional examples from the other categories were included up to the maximum of 40 species. If there are more than the maximum sampling number in any one category, then the dominant (i.e. most common) representatives of each category were sampled. Sampled individuals of each species were mature, healthy plants. In principle, sun leaves (i.e. leaves in the canopy and fully exposed to sunlight) were sampled. For true shade-tolerant and understory species, the sampled individuals were those in well-lit environments and isolated to minimize interactions with other individuals.Nineteen sites from Xinjiang included in CPTDv1 used a simplified sampling strategy, where only canopy species were sampled. Sixteen sites from Xinjiang were particularly depauperate and thus only a limited number of species were sampled without consideration of abundance. These sites are retained in the database because they sample extremely arid location with α typically less than 0.25Species identification and taxonomic standardisationSampled plants were identified in the field by a taxonomist familiar with the local vegetation, most usually using a regional flora. Species names were subsequently standardised using the online version of the Flora of China (http://www.efloras.org/flora_page.aspx?flora_id=2). Where field-identified species were not accepted or included in the Flora of China, and thus could not be assigned unambiguously to an accepted taxonomic name, we cross-checked whether the species were listed in the Plant List (http://www.theplantlist.org/) (or alternative sources such as the Virtual Herbarium of China, Plants of the World Online or TROPICOS) in order to identify synonyms for these accepted names that were recognised by the Flora of China. In cases where we were unable to identify an accepted name consistent with the Flora of China, we retained the field-assigned name by default (Fig. 3). The decisions about taxonomy are described in the CPTDv2 table “Taxonomic Standardisation” (Table 2). The names assigned originally in the field and the accepted standardized names used in the database are given in the CPTDv2 table “Species Translations” (Table 3). When species were recognised in the Flora of China, we provide the Chinese translation of the species name. The written Chinese nomenclature system does not follow the Linnaean system, so this table of “Species Chinese Name” is designed to facilitate the use of the database by botanists in China (Table 4). There are no translations of names that are not recognized by the Flora of China and are used in the database by default.Fig. 3Flowchart showing the decision tree used to determine the names used in the China Plant Database (accepted names) and encapsulated in the Taxonomic Standardization table. ‘=1’ and ‘ >1’ indicate the number of Synonyms is equal or more than one.Full size imageDataset collection methodsPhotosynthetic pathwayInformation on photosynthetic pathway (Table 5) was obtained for each species from the literature. There are a large number of literature compilations on the photosynthetic pathway of Chinese plants (e.g.41,42,43,44,45,46. Where this information was not available from Chinese studies we used similar compilations from other regions of the world (e.g.47,48,49,50,51,52. Since C4 plants have much less carbon discrimination than C3 plants, the measurements on δ13C were also used as an indicator of the photosynthetic pathway53,54,55,56. δ13C value of –20‰ was applied as a threshold of C3 photosynthetic pathway distinction54. Information about photosynthetic pathway was not included for a species unless confirmed from the literature or δ13C measurements.Leaf physical and chemical traitsPhysical and chemical properties (Table 6) were measured on samples collected in the field following standard methods37. At least 10 g of leaves were collected for each species. Sunlit leaves of tree species were obtained with long-handled twig shears. The samples were subdivided for the measurement of specific leaf area, leaf dry matter content and the contents of carbon, nitrogen, phosphorus and potassium. Recorded values were the average of three replicates. Leaf area was determined by scanning five leaves (or more in the case of small leaves, to make up a total area ≥20 cm2 per species) with a laser scanner. Areas (Average LA) were measured using Photoshop on the scanned images. Leaf fresh weight was measured in the field. Dry weight was obtained after air drying for several days and then oven drying at 75 °C for 48 hours. Leaf dry matter content (LDMC) was expressed as leaf oven-dry weight divided by fresh weight. Specific leaf area (SLA) was then expressed as the ratio between leaf area and leaf dry mass. LMA is the inverse of SLA. Leaf carbon content (Cmass) was measured by the potassium dichromate volumetric method and leaf nitrogen content (Nmass) by the Micro-Kjeldahl method. Leaf phosphorus (Pmass) was analysed colorimetrically (Shimadzu UV-2550). Leaf potassium (Kmass) was measured by Flame Atomic Emission Spectrophotometry (PE 5100 PC). The area-based leaf chemical contents (Carea, Narea, Parea, Karea) were derived as a product of mass-based content and LMA. δ13C (d13C:12C) and δ15N (d15N:14N) were measured using the Isotope Ratio Mass Spectrometer (Thermo Fisher Scientific Inc., USA; Finnigan Corporation, San Jose, CA).Photosynthetic traitsSeveral different methods were used to characterise photosynthetic traits (Supplementary Table 1). Chlorophyll fluorescence measurements were made at the sites along Northeast China Transect. These measurements were recorded as the potential (Fv/Fm) and actual (QY) rates of photosynthetic electron transport. QY is correlated with photosynthetic rate, although it also includes the diversion of electrons to non-photosynthetic activities such as the elimination of reactive oxygen species57. Measurements of photosynthetic traits at most of the sites (about 68% of samples with photosynthetic measurements) were derived from leaf gas-exchange measurements in light-saturated conditions under either ambient or high CO2 levels, made with a portable infrared gas analyser (IRGA) system (LI-6400; Li-Cor Inc., Lincoln, NB, USA). Sunlit terminal branches from the upper canopy were collected and re-cut under water immediately prior to measurement. Measurements were made in the field with relative humidity and chamber block temperature close to that of the ambient air at the time of measurement, and a constant airflow rate (500 μmol s−1). The maximum capacity of carboxylation (Vcmax) and electron-transport (Jmax) were calculated from the light-saturated rate of net CO2 fixation at ambient and high CO2 level respectively using the one-point method for Vcmax58 and two-point method for Jmax59. Although it was indicated that applying one-point method could result in around 20% error in measuring photosynthetic capacity60, this time-saving method indeed allows much more samples to be measured in the field. For sites in CPTDv1, the Vcmax and Jmax values were made on a single specimen of each species at each site, due to the time-consuming nature of the measurement. For the newly collected sites in CPTDv2, for each species the Vcmax and Jmax were measured on three samples collected from three individual tress. The average values were recorded in the database. For Vcmax measurements, the CO2 level was set as the ambient atmospheric CO2 level, ranging from 380 ppm to 400 ppm. The leaves were exposed to a typical photosynthetic photon flux density (PPFD) of 1800 μmol m−2 s−1 with the light source. Pre-processing method was applied to determine the saturating PPFD for alpine plants, which goes up to 2000 μmol m−2 s−1 in the high elevation sites from Mountain Gonga. For Jmax measurements, the CO2 level was set as 1500 ppm or 2000 ppm to avoid any limitation on photosynthesis via carboxylation.There are a few cases (1 site from Cai, et al.61, and 8 sites from Zheng and Shangguan62, Zheng and Shangguan63), where field-measured ratio of leaf internal- to ambient-CO2 concentration (ci:ca) were not provided. In these cases, estimates of the ci:ca ratio were made from δ13C measurements using the method of64 to calculate isotopic discrimination (Δ) from δ13C (correcting for atmospheric δ13C, approximated as a function of time of collection and latitude), and the Ubierna and Farquhar65 method to calculate isotopic discrimination (Δ) from δ13C considering discrimination during stomatal diffusion and carboxylation. The R code for calculating Vcmax and Jcmax from original data was provided (seeing Code availability).Hydraulic traitsCPTDv2 contains information on four important hydraulic traits: specific sapwood conductivity, the sapwood to leaf area ratio (Huber value, vH), turgor loss point and wood density (Table 7). Hydraulic traits were measured on branches with a diameter wider than 7 mm, cut as close to the bifurcation point as possible to minimize any effect of measurement location on measured area. A section was taken from the part of the branch nearest to the bifurcation point, and the cross-sectional area of the xylem was measured at both ends of this section using digital calipers. Sapwood area was calculated as the average of these two measurements. All leaves attached to the branch were removed and dried at 70 °C for 72 hours before weighing. The total leaf area was obtained from dry mass and LMA. vH was calculated as the ratio of sapwood area and leaf area. The vH value recorded for each species at each site was the average of three measurements made on branches from different individuals.Five branches from at least three mature individuals of each species at each site were collected, wrapped in moist towels and sealed in black plastic bags, and then immediately transported to the laboratory. All the samples were re-cut under water, put into water and sealed in black plastic bags to rehydrate overnight. Sapwood-specific hydraulic conductivity, (KS) was measured using the method of Sperry, et al.66. Segments (10–15 cm length) were cut from the rehydrated branches and flushed using 20 mmol L−1 KCl solution for at least 30 minutes (to remove air from the vessels) until constant fluid dripped from the section. The segments were then placed under 0.005 MPa pressure to record the time (t) they took to transport a known water volume (W, m3). Length (L, m), sapwood area of both ends (S1 and S2, m2) and temperature (Tm, °C) were recorded. Sapwood-specific hydraulic conductivity at measurement temperature (KS,m, mol m−1 s−1 MPa−1) was calculated using Eq. (1). This was transformed to KS at mean maximum temperature during the growing season (KS,gt) and standard temperature (KS25) following Eqs. (2–3):$${K}_{S,m}={W,L{rho }_{w}/[0.005,t({S}_{1}+{S}_{2})/2]}(1000/,18)$$
    (1)
    $${K}_{S,t}={K}_{S,m}{eta }_{m}/{eta }_{t}$$
    (2)
    $$eta =1{0}^{-3}exp[A+B/,(C+T)]$$
    (3)
    where ηm and ηt (Pa s) are the water viscosity at measurement temperature and transformed temperature (i.e. mean maximum daytime temperature during the growing season and at a standard temperature of 25 °C), respectively, and ρw (kg m−3) is the density of water. The parameter values used in Eq. (3) were A = −3.719, B = 580 and C = −13867.A small part of each sapwood segment was used to measure wood density, the ratio of dry weight to volume of sapwood. After removal of bark and heartwood, the volume of sapwood was measured by displacement and the sapwood dry weight was obtained after drying at 70 °C for 72 hours to constant weight.The method described by Bartlett, et al.68 was used for the rapid determination of turgor loss point (Ψtlp). After rehydration overnight, discs were sampled using a 6-mm-diameter punch from mature, healthy leaves collected on each branch, avoiding major and minor veins. Leaf discs wrapped in foil were frozen in liquid nitrogen for at least 2 minutes and then punctured 20 times quickly with sharp-tipped tweezers. Five repeat experiments using leaves from multiple individuals were carried out for every species at each site. The osmotic potential (Ψosm) was measured with a VAPRO 5600 vapor pressure osmometer (Wescor, Logan, UT, USA) and Ψtlp (in MPa) was calculated as:$${Psi }_{tlp}=0.83{2Psi }_{osm}-0.631$$
    (4)
    Morphometric traitsThe morphometric trait data (Supplementary Table 2) were measured systematically by the same people (SPH and ICP) at all the sites. A standardized template for the field measurement of morphometric traits was used (Supplementary Table 5). This template provides a checklist of the traits and the categories used to describe them. The leaf traits assessed were texture, colour, size, thickness, orientation, display, shape, margin form, the presence of hairs, pubescence, pruinosity or rugosity, the presence of surface wax, hypostomatism, marginal curling (involute, revolute), smell (aromatic or fetid), the presence of a terminal notch or drip-tip, surface patterning, succulence, the presence and positioning of spines or thorns on the leaves. Illustrations of the various categories used in the classification of leaf margin and leaf shape are provided in supplementary materials, together with the template for leaf size categories (Supplementary Figs. 1–3). Although the distinction between spines and thorns is sometimes based on the source material (where thorns are derived from shoots and buds, and spines from any part of the leaf containing vascular material), here the differentiation is based on the shape of the protrusion (where thorns are triangular in shape and can be branched, and spines are unbranched and linear features). The checklist template also includes a limited amount of information on stem traits, such as form, colour, whether the stem is photosynthetic, the presence of stem hairs, pubescence, or pruinosity, and the presence of spines or thorns. For woody plants (trees, shrubs, climbers), the checklist also includes information on bark type (deciduous or not, with an indication of whether the bark is strip or chunk deciduous), the presence of furrowing, and also the presence of spines or thorns.Plant Functional TypesThe database includes information on life form, plant phenology, leaf form and leaf phenology (Table 8). Although these four pieces of information are used by many modellers in the definition of plant functional types (PFTs)69,70, they are not strictly species-specific traits. Thus, some species can occur as a tree, a small tree or a shrub (e.g. Cyclobalanopsis obovatifolia), or as a shrub or liana (e.g. Smilax discotis), depending on environmental conditions. Similarly, some species can behave as an evergreen or deciduous plant, depending on moisture availability (e.g. Ulmus parvifolia). Thus, this information is recorded for individual species at each site and no attempt was made to ensure that a given species was classified identically at all sites. In total 20 distinct life forms were recognized, including tree, small tree, low to high shrub, erect dwarf shrub, prostrate dwarf shrub, trailing shrub, liana, climber, forb, cushion forb, rosette forb, graminoid, bamboo, cycad, geophyte, stem succulent, succulent, pteridophyte, epiphyte, parasite. Plant phenology is recorded as perennial, biennial or annual. The primary distinction in leaf phenology is between deciduous and evergreen, but the classification used in the database also recognizes facultative deciduousness (semi-deciduous) and leaf-exchangers (i.e. plants that retain their leaves for nearly the whole year but drop and replace all of the leaves in a single short period, rather than replacing some leaves continuously through the year as evergreens do). The concept of leaf phenology is only relevant for woody plants (trees, shrubs, lianas) and so is not recorded for e.g. forbs or climbers.VegetationThe local vegetation was not recorded in the field at each site, and in any case such descriptions are hard to standardize. The CPTDv2 database contains information on vegetation type extracted from the digital vegetation map of China at the scale of 1:1 million71, which uses 55 plant communities (48 natural plant communities and seven cropping systems). CPTDv2 further provides information on vegetation clusters aggregated from those fundamental plant communities from the Vegetation Atlas of China based on their bioclimatic context72. CPTDv2 also contains information on potential natural vegetation (PNV), derived from an updated version of the73 global mapping of PNV. This PNV map was produced using pollen-based vegetation reconstructions as a target, a set of 160 spatially explicit co-variate data sets representing the climatic, topographic, geologic, and hydrological controls on plant growth and survival, and an ensemble machine-learning approach to account for the relationships between vegetation types and these covariates (Table 9). The original version of the map had a spatial resolution of 1 km; the updated version used here (https://github.com/Envirometrix/PNVmaps) has a resolution of 250 m.ClimateClimatological estimates of monthly temperature, precipitation and fraction of sunshine hours were derived from records from 1814 meteorological stations (740 stations have observations from 1971 to 2000, the rest from 1981 to 1990: China Meteorological Administration, unpublished data), interpolated to a 0.01 grid using a three-dimensional thin-plate spline (ANUSPLIN version 4.36;74. These monthly climatological data were used directly to calculate the mean temperature of the coldest month (MTCO), mean annual temperature (MAT), mean monthly precipitation (MMP) and mean annual precipitation (MAP). Bioclimatic variables at each site were calculated from the interpolated monthly temperature, precipitation and fraction of sunshine hours using the Simple Process-Led Algorithms for Simulating Habitats (SPLASH) model75. The bioclimatic variables include total annual photosynthetically active radiation during the growing season when mean daily temperatures are >0 °C (PAR0), the daily mean photosynthetically active radiation during the growing season (mPAR0), growing degree days above a baseline of 0 °C (GDD0), the daily mean temperature during the growing season (mGDD0), the ratio of actual to equilibrium evapotranspiration (α), and a moisture index (MI) defined as the ratio of mean annual precipitation to potential evapotranspiration. We also calculated the timing of peak rainfall and rainfall seasonality, using metrics described in Kelley, et al.76 (Supplementary Table 3).The topography in the Gongga region is complex, and the standard climate data set is inadequate to capture the elevation impacts of local climate at the sites there13. We therefore also provide alternative estimates of climatic variables for the Gongga elevation transects using 17 weather stations from the region with records from January 2017 to December 2019 (Supplementary Table 4). These 17 stations range in elevation from 422 m to 3951 m, in latitude from 28° to 31° N, and in longitude from 99.1° to 103.8° E. The climatological records for each station were downloaded from China Meteorological Data Service Centre, National Meteorological Information Centre (http://data.cma.cn/data/detail/dataCode/A.0012.0001.html). The monthly maximum and minimum temperature, precipitation, percentage of possible sunshine hours were extracted. The monthly mean temperature was calculated as the average of maximum and minimum temperature. The elevationally-sensitive ANUSPLIN interpolation scheme74 was used to provide estimates of meteorological variables at each site as described above. The bioclimatic variables were calculated following the same methodology as the 0.01 grid data described above.SoilSoil was not sampled in the field, but to facilitate analyses we provide soil information extracted from the Harmonized World Soil Database (HWSD) v1.277 (Table 10). The HWSD v1.2 is a high-resolution (0.05°) soil database with soil characteristics determined from real soil profiles. The soil properties were estimated in a harmonized way, where the actual soil profile data and the development of pedotransfer rules were undertaken in cooperation with ISRIC and ESBN drawing on the WISE soil profile database and some earlier works78,79. The HWSD v1.2 provides information for the uppermost soil layer (0–30 cm) and the deeper soil layer (30–100 cm). Although HWSD v1.2 contains information on a large number of soil properties, we only extracted information on soil texture (sand fraction, silt fraction and clay fraction), the content of organic carbon, soil pH in water, and cation exchange capacity. More