More stories

  • in

    Water motion and pH jointly impact the availability of dissolved inorganic carbon to macroalgae

    Duggins, D. O., Simenstad, C. A. & Estes, J. A. Magnification of secondary producition by kelp detritus in coastal marine ecosystems. Science 1979(245), 170–173 (1989).Article 
    ADS 

    Google Scholar 
    Hill, R. et al. Can macroalgae contribute to blue carbon? An Australian perspective. Limnol. Oceanogr. 60, 1689–1706 (2015).Article 
    ADS 

    Google Scholar 
    Mann, K. H. Seaweeds: Their productivity and strategy for growth. Science 1979(182), 975–981 (1973).Article 
    ADS 

    Google Scholar 
    Steneck, R. S. et al. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).Article 

    Google Scholar 
    Giordano, M., Beardall, J. & Raven, J. A. CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 56, 99–131 (2005).Article 
    CAS 

    Google Scholar 
    Raven, J. A. & Beardall, J. The ins and outs of CO2. J. Exp. Bot. 67, 1–13 (2016).Article 
    CAS 

    Google Scholar 
    Raven, J. A. et al. Seaweeds in cold seas: Evolution and carbon acquisition. Ann. Bot. 90, 525–536. https://doi.org/10.1093/aob/mcf171 (2002).Article 
    CAS 

    Google Scholar 
    Raven, J. et al. Ocean Acidification due to Increasing Atmospheric Carbon Dioxide 1–68 (The Royal Society, 2005).
    Google Scholar 
    Kübler, J. E. & Dudgeon, S. R. Predicting effects of ocean acidification and warming on algae lacking carbon concentrating mechanisms. PLoS ONE 10, 1–19 (2015).Article 

    Google Scholar 
    Fernández, P. A., Hurd, C. L. & Roleda, M. Y. Bicarbonate uptake via an anion excange protein is the main mechanism of inorganic carbon acquisition by the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) under variable pH1. J. Phycol. 50, 1–11 (2014).Article 

    Google Scholar 
    Raven, J. A. et al. Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Funct. Plant Biol. 29, 355 (2002).Article 
    CAS 

    Google Scholar 
    Raven, J. A., Cockell, C. S. & De La Rocha, C. L. The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philos. Trans. R. Soc. B 363, 2641–2650 (2008).Article 
    CAS 

    Google Scholar 
    Bidwell, R. G. S. S. & McLachlan, J. Carbon nutrition of seaweeds: Photosynthesis, photorespiration and respiration. J. Exp. Mar. Biol. Ecol. 86, 15–46 (1985).Article 
    CAS 

    Google Scholar 
    Hurd, C. L. Water motion, marine macroalgal physiology and production. J. Phycol. 36, 453–472. https://doi.org/10.1046/j.1529-8817.2000.99139.x (2000).Article 
    CAS 

    Google Scholar 
    Hurd, C. L., Stevens, C. L., Laval, B. E., Lawrence, G. A. & Harrison, P. J. Visualization of seawater flow around morphologically distinct forms of the giant kelp Macrocystis integrifolia from wave-sheltered and exposed sites. Limnol. Oceanogr. 42, 156–163. https://doi.org/10.4319/lo.1997.42.1.0156 (1997).Article 
    ADS 

    Google Scholar 
    Smith, F. A. A. & Walker, N. A. A. Photosynthesis by aquatic plants: Effects of unstirred layers in relation to assimilation of CO2 and HCO3- to carbon isotope discrimination. N. Phytol. 86, 245–259 (1980).Article 
    CAS 

    Google Scholar 
    Wheeler, W. N. Effect of boundary layer transport on the fixation of carbon by the giant kelp Macrocystis pyrifera. Mar. Biol. 56, 103–110 (1980).Article 
    ADS 
    CAS 

    Google Scholar 
    Hurd, C. L., Lenton, A., Tilbrook, B. & Boyd, P. W. Current understanding and challenges for oceans in a higher-CO2 world. Nat. Clim. Chang. 8, 686–694 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Stocker, T. F. et al. Technical Summary. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 33–115 (2013).Hepburn, C. D. et al. Diversity of carbon use strategies in a kelp forest community: Implications for a high CO2 ocean. Glob. Chang. Biol. 17, 2488–2497 (2011).Article 
    ADS 

    Google Scholar 
    Beer, S. & Koch, E. Photosynthesis of marine macroalgae and seagrasses in globally changing CO2 environments. Mar. Ecol. Prog. Ser. 141, 199–204 (1996).Article 
    ADS 

    Google Scholar 
    Ihnken, S., Roberts, S. & Beardall, J. Differential responses of growth and photosynthesis in the marine diatom Chaetoceros muelleri to CO2 and light availability. Phycologia 50, 182–193 (2011).Article 
    CAS 

    Google Scholar 
    Gerard, V. A. In situ water motion and nutrient uptake by the giant kelp Macrocystis pyrifera. Mar. Biol. 69, 51–54 (1982).Article 

    Google Scholar 
    Hepburn, C. D., Holborow, J. D., Wing, S. R., Frew, R. D. & Hurd, C. L. Exposure to waves enhances the growth rate and nitrogen status of the giant kelp Macrocystis pyrifera. Mar. Ecol. Prog. Ser. 339, 99–108 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Hurd, C. L. Shaken and stirred: The fundamental role of water motion in resource acquisition and seaweed productivity. Persp. Phycol. 4, 73–81 (2017).ADS 

    Google Scholar 
    Sültemeyer, D. F., Miller, A. G., Espie, G. S., Fock, H. P. & Canvin, D. T. Active CO2 transport by the green alga Chlamydomonas reinhardtii. Plant Physiol. 89, 1213–1219 (1989).Article 

    Google Scholar 
    Koch, M., Bowes, G., Ross, C. & Zhang, X. H. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Chang. Biol. 19, 103–132 (2013).Article 
    ADS 

    Google Scholar 
    Britton, D., Cornwall, C. E., Revill, A. T., Hurd, C. L. C. L. & Johnson, C. R. Ocean acidification reverses the positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat-forming kelp Ecklonia radiata. Sci. Rep. 6, 1–10 (2016).Article 

    Google Scholar 
    Cornwall, C. E. et al. Carbon-use strategies in macroalgae: Differential responses to lowered ph and implications for ocean acidification. J. Phycol. 48, 137–144 (2012).Article 
    CAS 

    Google Scholar 
    Kram, S. L. et al. Variable responses of temperate calcified and fleshy macroalgae to elevated pCO2 and warming. ICES J. Mar. Sci. 73, 693–703 (2016).Article 

    Google Scholar 
    Kübler, J. E., Johnston, A. M. & Raven, J. A. The effects of reduced and elevated CO2 and O2 on the seaweed Lomentaria articulata. Plant Cell Environ. 22, 1303–1310 (1999).Article 

    Google Scholar 
    van der Loos, L. M. et al. Responses of macroalgae to CO2 enrichment cannot be inferred solely from their inorganic carbon uptake strategy. Ecol. Evol. 9, 125–140 (2019).Article 

    Google Scholar 
    Cornwall, C. E. & Hurd, C. L. Variability in the benefits of ocean acidification to photosynthetic rates of macroalgae without CO2-concentrating mechanisms. Mar. Freshw. Res. 71, 275–280 (2019).Article 

    Google Scholar 
    Cornwall, C. E., Revill, A. T. & Hurd, C. L. High prevalence of diffusive uptake of CO2 by macroalgae in a temperate subtidal ecosystem. Photosynth. Res. 124, 181–190 (2015).
    Article 
    CAS 

    Google Scholar 
    Lovelock, C. E., Reef, R., Raven, J. A. & Pandolfi, J. M. Regional variation in δ13C of coral reef macroalgae. Limnol. Oceanogr. 65, 2291–2302 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Fischer, G. & Wiencke, C. Stable carbon isotope composition, depth distribution and fate of macroalgae from the Antarctic Peninsula region. Polar. Biol. 12, 341–348 (1992).Article 

    Google Scholar 
    Stephens, T. A. & Hepburn, C. D. Mass-transfer gradients across kelp beds influence Macrocystis pyrifera growth over small spatial scales. Mar. Ecol. Prog. Ser. 515, 97–109 (2014).Article 
    ADS 

    Google Scholar 
    Kregting, L. T., Hepburn, C. D. & Savidge, G. Seasonal differences in the effects of oscillatory and uni-directional flow on the growth and nitrate-uptake rates of juvenile Laminaria digitata (Phaeophyceae). J. Phycol. 51, 1116–1126 (2015).Article 
    CAS 

    Google Scholar 
    Parker, H. S. Influence of relative water motion on the growth, ammonium uptake and carbon and nitrogen composition of Ulva lactuca (Chlorophyta). Mar. Biol. 63, 309–318 (1981).Article 
    CAS 

    Google Scholar 
    Bergstrom, E. et al. Inorganic carbon uptake strategies in coralline algae: Plasticity across evolutionary lineages under ocean acidification and warming. Mar. Environ. Res. 161, 105107 (2020).Article 
    CAS 

    Google Scholar 
    Maberly, S. C., Raven, J. A. & Johnston, A. M. Discrimination between C-12 and C-13 by marine plants. Oecologia 91, 481–492 (1992).Article 
    ADS 
    CAS 

    Google Scholar 
    Gattuso, J. P. et al. Package ‘Seacarb ’. Preprint at http://cran.r-project.org/package=seacarb (2015).Raven, J. A., Beardall, J. & Giordano, M. Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynth. Res. 121, 111–124 (2014).Article 
    CAS 

    Google Scholar 
    Raven, J. A., Walker, D. I., Johnston, A. M., Handley, L. L. & Kübler, J. E. Implications of 13C natural abundance measurements for photosynthetic performance by marine macrophytes in their natural environment. Mar. Ecol. Prog. Ser. 123, 193–205 (1995).Article 
    ADS 

    Google Scholar 
    Raven, J. A. Inorganic carbon acquisition by marine autotrophs. Adv. Bot. Res. 27, 85–209 (1997).Article 
    CAS 

    Google Scholar 
    Fernández, P. A., Roleda, M. Y. & Hurd, C. L. Effects of ocean acidification on the photosynthetic performance, carbonic anhydrase activity and growth of the giant kelp Macrocystis pyrifera. Photosynth. Res. 124, 293–304 (2015).Article 

    Google Scholar 
    Bailly, J. & Coleman, J. R. Effect of CO(2) concentration on protein biosynthesis and carbonic anhydrase expression in Chlamydomonas reinhardtii. Plant Physiol. 87, 833–840 (1988).Article 
    CAS 

    Google Scholar 
    Dionisio-Sese, M. L., Fukuzawa, H. & Miyachi, S. Light-induced carbonic anhydrase expression in Chlamydomonas reinhardtii. Plant Physiol. 94, 1103–1110 (1990).Article 
    CAS 

    Google Scholar 
    Pollock, S. V., Colombo, S. L., Prout, D. L., Godfrey, A. C. & Moroney, J. V. Rubisco activase is required for optimal photosynthesis in the green alga Chlamydomonas reinhardtii in a low-CO2 atmosphere. Plant Physiol. 133, 1854–1861 (2003).Article 
    CAS 

    Google Scholar 
    Carlberg, S., Axelsson, L., Larsson, C., Ryberg, H. & Uusitalo, J. Inducible CO2 concentrating mechanisms in green seaweeds I. Taxonomical and physiological aspects. In Current Research in Photosynthesis (ed. Baltscheffsky, M.) (Springer, 1990). https://doi.org/10.1007/978-94-009-0511-5_749.Chapter 

    Google Scholar 
    Wheeler, W. N. Effect of boundary-layer transport on the fixation of carbon by the giant-kelp Macrocystis pyrifera. Mar. Biol. 56, 103–110 (1980).Article 
    ADS 
    CAS 

    Google Scholar 
    Johnston, A. M. & Raven, J. A. Effects of culture in high CO2 on the photosynthetic physiology of Fucus serratus. Br. J. Phycol. 25, 75–82 (1990).Article 

    Google Scholar 
    Connell, S. D., Kroeker, K. J., Fabricius, K. E., Kline, D. I. & Russell, B. D. The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Philos. Trans. R. Soc. Lond. 368, 20120442 (2013).Article 

    Google Scholar 
    Porter, E. T., Sanford, L. P. & Suttles, S. E. Gypsum dissolution is not a universal integrator of water motion. Limnol. Oceanogr. 45, 145–158 (2000).Article 
    ADS 

    Google Scholar 
    Gerard, V. A. & Mann, K. H. Growth and production of Laminaria longicruris (Phaeophyta) populations exposed to different intensities of water movement. J. Phycol. 15, 33–41 (1979).Article 

    Google Scholar 
    Bivand, R., Keitt, T. & Rowlingson, B. Package ‘rgdal’. R Package https://doi.org/10.1353/lib.0.0050 (2016).Article 

    Google Scholar 
    LINZ. LINZ Data Service. https://data.linz.govt.nz/layer/50258-nz-coastlines-topo-150k/history/ Accessed July 2021 (2021).Kirk, J. T. Characteristics of the light field in highly turbid waters: A Monte Carlo study. Limnol. Oceanogr. 39, 702–706 (1994).Article 
    ADS 

    Google Scholar 
    Strickland, J. D. H. & Parsons, T. R. A Practical Handbook of Seawater Analysis (Fisheries Research Board of Canada, 1968).
    Google Scholar 
    Kohler, K. E. & Gill, S. M. Coral Point Count with Excel extensions (CPCe): A visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32, 1259–1269 (2006).Article 
    ADS 

    Google Scholar 
    Axelsson, L., Mercado, J. & Figueroa, F. Utilization of HCO3− at high ph by the brown macroalga laminaria saccharina. Eur. J. Phycol. 35, 53–59 (2000).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. Preprint at (2017).Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).Article 
    MathSciNet 
    MATH 

    Google Scholar  More

  • in

    Biodiversity stabilizes plant communities through statistical-averaging effects rather than compensatory dynamics

    Empirical dataWe applied our theory to two datasets (Table 1): the plant survey dataset and the biodiversity-manipulated experiment dataset. The plant survey dataset contains nine sites of long-term grassland experiments across the United States (see also Hallett et al.10, and Zhao et al.23). Five of nine sites are from the Long Term Ecological Research (LTER) network (see Table 1). Plant abundances were measured either as biomass or as percent cover. In percent-cover cases, summed values can exceed 100% due to vertically overlapping canopies. All sites were sampled annually and were spatially replicated. We only used data of the plant survey dataset from unmanipulated control plots. Methods for data collection were constant over time.The biodiversity-manipulated experimental dataset comprises two long-term grassland experiments, BigBio and BioCON, at the Cedar Creek Ecosystem Science Reserve. Both experiments directly manipulated plant species number (1, 2, 4, 8, 16 for BigBio; and 1, 4, 9, 16 for BioCON). BioCON also contains different treatment levels for nitrogen and atmospheric CO2, but here only data from the ambient CO2 and ambient N treatments were used. We excluded plots with only one species. BigBio comprises 125 plots over 17 years, and BioCON comprises 59 plots over 22 years (Table 1).TheoryLet xi(t) denote the biomass of species i = 1, …, S at time t = 1, …, t and let μi = mean (xi (t)), σi = ({{mbox{sd}}})(xi (t)), and ({v}_{i}={sigma }_{i}^{2}) be the mean, standard deviation and variance of species i, computed through time. Let vij = cov (({x}_{i}left(tright),, {x}_{j}left(tright))) be the covariance, through time, of the dynamics of species i and j. Let xtot (left(tright)={sum }_{i}{x}_{i}(t)), ({mu }_{{{mbox{tot}}}}={sum }_{i}{mu }_{i}), ({v}_{{{mbox{tot}}}}={sum }_{i,j}{v}_{{ij}}), and ({{{{{{rm{sigma }}}}}}}_{{{{{{rm{tot}}}}}}}=sqrt{{v}_{{{{{{rm{tot}}}}}}}}). When population time series are uncorrelated, ({v}_{{{{{{rm{tot}}}}}}}={sum }_{i}{v}_{i}).As defined previously10,15, community stability is the inverse coefficient of variation of ({x}_{{{mbox{tot}}}}left(tright)), ({S}_{{{{{{rm{com}}}}}}}={mu }_{{{{{{rm{tot}}}}}}}/{sigma }_{{{{{{rm{tot}}}}}}}). Population stability is the inverse of weighted-average population variability9, ({sum }_{i}frac{{mu }_{i}}{{mu }_{{{{{{rm{tot}}}}}}}}{{CV}}_{i}={sum }_{i}frac{{mu }_{i}}{{mu }_{{{{{{rm{tot}}}}}}}}frac{{sigma }_{i}}{{mu }_{i}}={sum }_{i}frac{{sigma }_{i}}{{mu }_{{{{{{rm{tot}}}}}}}}), i.e, ({S}_{{pop}}={mu }_{{{{{{rm{tot}}}}}}}/{sum }_{i}{sigma }_{i}). The ratio of community stability over population stability is the Loreau-de Mazancourt asynchrony index14, Φ = ({sum }_{i}{sigma }_{i}/{sigma }_{{{{{{rm{tot}}}}}}}), so that$${S}_{{{{{{rm{com}}}}}}}=varPhi {S}_{{{{{{rm{pop}}}}}}}.$$
    (1)
    Now we suppose a hypothetical community with the same species-level variances and means as the original community but with species covariances equal to zero. Then, (1) becomes Scom_ip = (SAE)Spop, where ({S}_{{{{{{rm{com}}}}}}_{{{{{rm{ip}}}}}}}=frac{{mu }_{{{{{{rm{tot}}}}}}}}{sqrt{{sum }_{i}{v}_{i}}}=frac{{mu }_{{{{{{rm{tot}}}}}}}}{sqrt{{sum }_{i}{sigma }_{i}^{2}}}) is the value of community stability in the case of uncorrelated or independent populations and SAE is the component of Φ due to statistical averaging (here, “ip” stands for “independent populations”). The equation Scom_ip = (SAE)Spop can be interpreted as a definition of SAE. We then have$$SAE=frac{{S}_{{{{{{rm{com}}}}}}_{{{{{rm{ip}}}}}}}}{{S}_{{{{{{rm{pop}}}}}}}}=frac{{sum }_{i}{sigma }_{i}}{sqrt{{sum }_{i}{sigma }_{i}^{2}}}.$$
    (2)
    The compensatory effect is then the rest of Φ, i.e.,$$CPE=frac{{S}_{{{{{{rm{com}}}}}}}}{{S}_{{{{{{rm{pop}}}}}}}times SAE}=frac{{sum }_{i}{sigma }_{i}}{{sigma }_{{{{{{rm{tot}}}}}}}left({sum }_{i}{sigma }_{i}/sqrt{{sum }_{i}{sigma }_{i}^{2}}right)}=frac{sqrt{{sum }_{i}{sigma }_{i}^{2}}}{{sigma }_{{{{{{rm{tot}}}}}}}}.$$
    (3)
    Considering the classic variance ratio ({{{{{rm{varphi }}}}}}=frac{{V}_{{{{{{rm{tot}}}}}}}}{{sum }_{i}{V}_{i}}=frac{{sigma }_{{{{{{rm{tot}}}}}}}^{2}}{{sum }_{i}{sigma }_{i}^{2}}), our CPE is (1/sqrt{varphi }). Values CPE  > 1 (respectively, More

  • in

    Predicting potential global distribution and risk regions for potato cyst nematodes (Globodera rostochiensis and Globodera pallida)

    Evans, K., Franco, J. & De Scurrah, M. M. Distribution of species of potato cyst-nematodes in South America. Nematologica 21, 365–369. https://doi.org/10.1163/187529275×00103 (1975).Article 

    Google Scholar 
    Plantard, O. et al. Origin and genetic diversity of Western European populations of the potato cyst nematode (Globodera pallida) inferred from mitochondrial sequences and microsatellite loci. Mol. Ecol. 17, 2208–2218. https://doi.org/10.1111/j.1365-294X.2008.03718.x (2008).Article 
    CAS 

    Google Scholar 
    Price, J. A., Coyne, D., Blok, V. C. & Jones, J. T. Potato cyst nematodes Globodera rostochiensis and G. pallida. Mol. Plant Pathol. 22, 495–507. https://doi.org/10.1111/mpp.13047 (2021).Article 
    CAS 

    Google Scholar 
    CABI. Globodera rostochiensis (yellow potato cyst nematode). https://www.cabi.org/isc/datasheet/27034 (2021).CABI. Globodera pallida (white potato cyst nematode). https://www.cabi.org/isc/datasheet/27033 (2021).Ruthes, A. C. & Dahlin, P. The impact of management strategies on the development and status of potato cyst nematode populations in Switzerland: An overview from 1958 to present. Plant Dis. 106, 1096–1104. https://doi.org/10.1094/pdis-04-21-0800-sr (2021).Article 

    Google Scholar 
    Minnis, S. T. et al. Potato cyst nematodes in England and Wales—Occurrence and distribution. Ann. Appl. Biol. 140, 187–195. https://doi.org/10.1111/j.1744-7348.2002.tb00172.x (2002).Article 

    Google Scholar 
    Djebroune, A. et al. Integrative morphometric and molecular approach to update the impact and distribution of potato cyst nematodes Globodera rostochiensis and Globodera pallida (Tylenchida: Heteroderidae) in Algeria. Pathogens 10, 216. https://doi.org/10.3390/pathogens10020216 (2021).Article 

    Google Scholar 
    Vallejo, D. et al. Occurrence and molecular characterization of cyst nematode species (Globodera spp.) associated with potato crops in Colombia. PLoS One 16, e0241256. https://doi.org/10.1371/journal.pone.0241256 (2021).Article 
    CAS 

    Google Scholar 
    Hajjaji, A., Mhand, R. A., Rhallabi, N. & Mellouki, F. First report of morphological and molecular characterization of Moroccan populations of Globodera pallida. J. Nematol. 53, e2021-07. https://doi.org/10.21307/jofnem-2021-007 (2021).Article 
    CAS 

    Google Scholar 
    Camacho, M. J. et al. Potato cyst nematodes: Geographical distribution, phylogenetic relationships and integrated pest management outcomes in Portugal. Front. Plant Sci. 11, 9. https://doi.org/10.3389/fpls.2020.606178 (2020).Article 

    Google Scholar 
    Handayani, N. D. et al. Distribution, DNA barcoding and genetic diversity of potato cyst nematodes in Indonesia. Eur. J. Plant Pathol. 158, 363–380. https://doi.org/10.1007/s10658-020-02078-7 (2020).Article 
    CAS 

    Google Scholar 
    Bairwa, A. et al. Morphological and molecular characterization of potato cyst nematode populations from the Nilgiris. Indian J. Agric. Sci. 90, 273–278 (2020).Article 
    CAS 

    Google Scholar 
    Mburu, H. et al. Potato cyst nematodes: A new threat to potato production in East Africa. Front. Plant Sci. 11, 13. https://doi.org/10.3389/fpls.2020.00670 (2020).Article 

    Google Scholar 
    Altas, A., Evlice, E., Ozer, G., Dababat, A. & Imren, M. Identification, distribution and genetic diversity of Globodera rostochiensis (Wollenweber, 1923) Skarbilovich, 1959 (Tylenchida: Heteroderidae) populations in Turkey. Turk. Entomol. Derg. Turk. J. Entomol. 44, 385–397. https://doi.org/10.16970/entoted.740223 (2020).Article 

    Google Scholar 
    Dandurand, L.-M., Zasada, I. A., Wang, X. & Mimee, B. Current status of potato cyst nematodes in North America. Annu. Rev. Phytopathol. 57, 117–133. https://doi.org/10.1146/annurev-phyto-082718-100254 (2019).Article 
    CAS 

    Google Scholar 
    Blacket, M. J. et al. Molecular assessment of the introduction and spread of potato cyst nematode, Globodera rostochiensis, in Victoria, Australia. Phytopathology 109, 659–669. https://doi.org/10.1094/phyto-06-18-0206-r (2019).Article 
    CAS 

    Google Scholar 
    Sullivan, M. J., Inserra, R. N., Franco, J., Moreno-Leheude, I. & Greco, N. Potato cyst nematodes: Plant host status and their regulatory impact. Nematropica 37, 193–201 (2007).
    Google Scholar 
    Hodda, M. & Cook, D. C. Economic impact from unrestricted spread of potato cyst nematodes in Australia. Phytopathology 99, 1387–1393. https://doi.org/10.1094/phyto-99-12-1387 (2009).Article 
    CAS 

    Google Scholar 
    Koirala, S., Watson, P., McIntosh, C. S. & Dandurand, L. M. Economic impact of Globodera pallida on the Idaho economy. Am. J. Potato Res. 97, 214–220. https://doi.org/10.1007/s12230-020-09768-2 (2020).Article 

    Google Scholar 
    Trudgill, D. L., Elliott, M. J., Evans, K. & Phillips, M. S. The white potato cyst nematode (Globodera pallida)—A critical analysis of the threat in Britain. Ann. Appl. Biol. 143, 73–80. https://doi.org/10.1111/j.1744-7348.2003.tb00271.x (2003).Article 

    Google Scholar 
    Duan, Y. X. Plant Nematology (Science Press, 2011).
    Google Scholar 
    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644. https://doi.org/10.5194/hess-11-1633-2007 (2007).Article 
    ADS 

    Google Scholar 
    Li, J. Suitable Risk Assessment for Six Potential Invasive Nematodes in China, Master thesis (Jilin Agriculture University, 2008).
    Google Scholar 
    Contina, J. B., Dandurand, L. M. & Knudsen, G. R. A spatiotemporal analysis and dispersal patterns of the potato cyst nematode Globodera pallida in Idaho. Phytopathology 110, 379–392. https://doi.org/10.1094/phyto-04-19-0113-r (2020).Article 
    CAS 

    Google Scholar 
    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models with Applications in R (Cambridge University Press, 2017). https://doi.org/10.1017/9781139028271.Book 

    Google Scholar 
    Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning 83. https://doi.org/10.1145/1015330.1015412 (Association for Computing Machinery, 2004).Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x (2008).Article 

    Google Scholar 
    Wan, J. et al. Predicting the potential geographic distribution of Bactrocera bryoniae and Bactrocera neohumeralis (Diptera: Tephritidae) in China using MaxEnt ecological niche modeling. J. Integr. Agric. 19, 2072–2082. https://doi.org/10.1016/S2095-3119(19)62840-6 (2020).Article 
    CAS 

    Google Scholar 
    Midmore, D. J. Potato production in the tropics. In The Potato Crop: The Scientific Basis for Improvement 728–793 (Springer Netherlands, 1992).Chapter 

    Google Scholar 
    Naika, S., de Jeude, J. V. L., de Goffau, M., Hilmi, M. & van Dam, B. Cultivation of Tomato: Production, Processing and Marketing (Digigrafi, 2005).
    Google Scholar 
    Chapman, M. A. Eggplant breeding and improvement for future climates. In Genomic Designing of Climate-Smart Vegetable Crops 257–276 (Springer, 2020).Chapter 

    Google Scholar 
    Management, D. o. C. List of National Agricultural Plant Quarantine Pests Distribution Administrative Areas. https://www.moa.gov.cn/nybgb/2019/201906/201907/t20190701_6320036.htm (Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2021).Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x (2011).Article 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 33, 607–611. https://doi.org/10.1111/j.1600-0587.2009.06142.x (2010).Article 

    Google Scholar 
    Foot, M. A. The Ecology of Globodera pallida (Stone) Mulvey & Stone (Nematoda, Heteroderidae) at Pukekohe, New Zealand, Doctoral thesis (The University of Auckland, 1978).
    Google Scholar 
    Phillips, S. J., Dudík, M., & Schapire, R. E. Maxent software for modeling species niches and distributions (Version 3.4.1) [Internet]. http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 24-10-2020.Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x (2013).Article 

    Google Scholar 
    Wan, J., Wang, R., Ren, Y. & McKirdy, S. Potential distribution and the risks of Bactericera cockerelli and its associated plant pathogen Candidatus Liberibacter solanacearum for global potato production. Insects 11, 298. https://doi.org/10.3390/insects11050298 (2020).Article 

    Google Scholar 
    Cobos, M. E., Peterson, A. T., Barve, N. & Osorio-Olvera, L. kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 7, e6281. https://doi.org/10.7717/peerj.6281 (2019).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/. Accessed 30-10-2020.Peterson, A. T., Papeş, M. & Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model. 213, 63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008 (2008).Article 

    Google Scholar 
    Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342. https://doi.org/10.1890/10-1171.1 (2011).Article 

    Google Scholar 
    ESRI. ArcGIS Desktop: Release 10 (Version 10.4.1) (Environmental Systems Research Institute). Accessed 24-10-2020.Kong, W., Li, X. & Zou, H. Optimizing MaxEnt model in the prediction of species distribution. J. Appl. Ecol. 30, 2116–2128. https://doi.org/10.13287/j.1001-9332.201906.029 (2019).Article 

    Google Scholar 
    Fischer, G. et al. Global Agro-ecological Zones (GAEZ v3.0). http://pure.iiasa.ac.at/id/eprint/13290/ (2012).Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893. https://doi.org/10.1111/ecog.03049 (2017).Article 

    Google Scholar 
    da Silva, J. C. P., de Medeiros, F. H. V. & Campos, V. P. Building soil suppressiveness against plant-parasitic nematodes. Biocontrol Sci. Technol. 28, 423–445. https://doi.org/10.1080/09583157.2018.1460316 (2018).Article 

    Google Scholar 
    Kim, E., Seo, Y., Kim, Y. S., Park, Y. & Kim, Y. H. Effects of soil textures on infectivity of root-knot nematodes on carrot. Plant Pathol. J. 33, 66–74. https://doi.org/10.5423/ppj.Oa.07.2016.0155 (2017).Article 
    CAS 

    Google Scholar 
    Duyck, P.-F. et al. Niche partitioning based on soil type and climate at the landscape scale in a community of plant-feeding nematodes. Soil Biol. Biochem. 44, 49–55. https://doi.org/10.1016/j.soilbio.2011.09.014 (2012).Article 
    CAS 

    Google Scholar 
    Stanton, J. C., Pearson, R. G., Horning, N., Ersts, P. & ReşitAkçakaya, H. Combining static and dynamic variables in species distribution models under climate change. Methods Ecol. Evol. 3, 349–357. https://doi.org/10.1111/j.2041-210X.2011.00157.x (2012).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Multimodel inference understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304. https://doi.org/10.1177/0049124104268644 (2004).Article 
    MathSciNet 

    Google Scholar 
    Din, A. U. et al. The impact of COVID-19 on the food supply chain and the role of e-commerce for food purchasing. Sustainability 14, 3074. https://doi.org/10.3390/su14053074 (2022).Article 
    CAS 

    Google Scholar 
    Lang, T. & McKee, M. The reinvasion of Ukraine threatens global food supplies. BMJ https://doi.org/10.1136/bmj.o676,o676,10.1136/bmj.o676 (2022).Article 

    Google Scholar 
    Hijmans, R. J. Global distribution of the potato crop. Am. J. Potato Res. 78, 403–412. https://doi.org/10.1007/bf02896371 (2001).Article 

    Google Scholar 
    Motti, R. The Solanaceae family: Botanical features and diversity. In The Wild Solanums Genomes 1–9 (Springer International Publishing, 2021).
    Google Scholar 
    Chytrý, M. et al. Projecting trends in plant invasions in Europe under different scenarios of future land-use change. Glob. Ecol. Biogeogr. 21, 75–87. https://doi.org/10.1111/j.1466-8238.2010.00573.x (2012).Article 

    Google Scholar 
    Lin, W., Cheng, X. & Xu, R. Impact of different economic factors on biological invasions on the global scale. PLoS One 6, e18797. https://doi.org/10.1371/journal.pone.0018797 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Jones, L. M. et al. Climate change is predicted to alter the current pest status of Globodera pallida and G. rostochiensis in the United Kingdom. Glob. Change Biol. 23, 4497–4507. https://doi.org/10.1111/gcb.13676 (2017).Article 
    ADS 
    MathSciNet 

    Google Scholar 
    Kaczmarek, A., MacKenzie, K., Kettle, H. & Blok, V. C. Influence of soil temperature on Globodera rostochiensis and Globodera pallida. Phytopathol. Mediterr. 53, 396–405. https://doi.org/10.14601/Phytopathol_Mediterr-13512 (2014).Article 
    CAS 

    Google Scholar 
    Hearne, R., Lettice, E. P. & Jones, P. W. Interspecific and intraspecific competition in the potato cyst nematodes Globodera pallida and G. rostochiensis. Nematology 19, 463–475. https://doi.org/10.1163/15685411-00003061 (2017).Article 
    CAS 

    Google Scholar 
    Skelsey, P., Kettle, H., Mackenzie, K. & Blok, V. Potential impacts of climate change on the threat of potato cyst nematode species in Great Britain. Plant. Pathol. 67, 909–919. https://doi.org/10.1111/ppa.12807 (2018).Article 

    Google Scholar 
    Carlton, J. & Ruiz, G. M. Invasive Species: Vectors and Management Strategies (Island Press, 2003).
    Google Scholar 
    Singh, S. K., Paini, D. R., Ash, G. J. & Hodda, M. Prioritising plant-parasitic nematode species biosecurity risks using self organising maps. Biol. Invasions 16, 1515–1530. https://doi.org/10.1007/s10530-013-0588-7 (2014).Article 

    Google Scholar 
    Jiang, D., Chen, S., Hao, M. M., Fu, J. Y. & Ding, F. Y. Mapping the Potential global codling moth (Cydia pomonella L.) distribution based on a machine learning method. Sci. Rep. 8, 8. https://doi.org/10.1038/s41598-018-31478-3 (2018).Article 
    CAS 

    Google Scholar 
    Simberloff, D. et al. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 28, 58–66. https://doi.org/10.1016/j.tree.2012.07.013 (2013).Article 

    Google Scholar 
    Ravichandra, N. Nematodes of quarantine importance. In Horticultural Nematology 369–385 (Springer, 2014).
    Google Scholar  More

  • in

    Effects of diversity on thermal niche variation in bird communities under climate change

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).Article 

    Google Scholar 
    Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Chang. 2, 121–124 (2012).Article 
    ADS 

    Google Scholar 
    Princé, K. & Zuckerberg, B. Climate change in our backyards: The reshuffling of North America’s winter bird communities. Glob. Change Biol. 21, 572–585 (2015).Article 
    ADS 

    Google Scholar 
    Brotons, L., Jiguet, F., Herando, S. & Lehikoinen, A. Bird communities and climate change. In Effects of Climate Change on Birds (eds Dunn, P. O. & Møller, A. P.) 221–235 (Oxford University Press, 2019).Chapter 

    Google Scholar 
    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 

    Google Scholar 
    Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).Article 

    Google Scholar 
    Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. R. Soc. B Biol. Sci. 275, 2743–2748 (2008).Article 

    Google Scholar 
    Lehikoinen, A. et al. Wintering bird communities are tracking climate change faster than breeding communities. J. Anim. Ecol. 90, 1085–1095 (2021).Article 

    Google Scholar 
    McNaughton, S. J. Diversity and stability of ecological communities: A comment on the role of empiricism in ecology. Am. Nat. 111, 515–525 (1977).Article 

    Google Scholar 
    Loreau, M. et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science (80-. ) 294, 804–808 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Loreau, M. & de Mazancourt, C. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013).Article 

    Google Scholar 
    Fonseca, C. R. & Ganade, G. Species functional redundancy, random extinctions and the stability of ecosystems. J. Ecol. 89, 118–125 (2001).Article 

    Google Scholar 
    Hodgson, D., McDonald, J. L. & Hosken, D. J. What do you mean, ‘resilient’?. Trends Ecol. Evol. 30, 503–506 (2015).Article 

    Google Scholar 
    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).Article 
    CAS 

    Google Scholar 
    Oksanen, J. et al. Community ecology package vegan, R package version 2.0-7 (2013).Laliberté, E., Legendre, P. & Shipley, B. FD: Measuring functional diversity from multiple traits, and other tools for functional ecology. R package (2014).García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity-ecosystem stability relationship globally. Proc. Natl. Acad. Sci. U. S. A. 115, 8400–8405 (2018).Article 
    ADS 

    Google Scholar 
    De Boeck, H. J. et al. Patterns and drivers of biodiversity-stability relationships under climate extremes. J. Ecol. 106, 890–902 (2018).Article 

    Google Scholar 
    Fridley, J. D. et al. The invasion paradox: Reconciling pattern and process in species invasions. Ecology 88, 3–17 (2007).Article 
    CAS 

    Google Scholar 
    Elton, C. S. The Ecology of Invasions by Plants and Animals (Methuen, 1958).Book 

    Google Scholar 
    Pigot, A. L., Trisos, C. H. & Tobias, J. A. Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds. Proc. R. Soc. B Biol. Sci. 283, 20152013 (2016).Article 

    Google Scholar 
    Pellissier, V., Barnagaud, J. Y., Kissling, W. D., Şekercioǧlu, Ç. H. & Svenning, J. C. Niche packing and expansion account for species richness–productivity relationships in global bird assemblages. Glob. Ecol. Biogeogr. 27, 604–615 (2018).Article 

    Google Scholar 
    Schipper, A. M. et al. Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010. Glob. Change Biol. 22, 3948–3959 (2016).Article 
    ADS 

    Google Scholar 
    Jarzyna, M. A. & Jetz, W. A near half-century of temporal change in different facets of avian diversity. Glob. Change Biol. 23, 2999–3011 (2017).Article 
    ADS 

    Google Scholar 
    Catano, C. P., Fristoe, T. S., LaManna, J. A. & Myers, J. A. Local species diversity, β-diversity and climate influence the regional stability of bird biomass across North America. Proc. R. Soc. B Biol. Sci. 287, 20192520 (2020).Article 

    Google Scholar 
    Wang, S. et al. An invariability-area relationship sheds new light on the spatial scaling of ecological stability. Nat. Commun. 8, 1–8 (2017).ADS 

    Google Scholar 
    Pimm, S. L. & Redfearn, A. The variability of population densities. Nature 334, 613–614 (1988).Article 
    ADS 

    Google Scholar 
    Santangeli, A. & Lehikoinen, A. Are winter and breeding bird communities able to track rapid climate change? Lessons from the high North. Divers. Distrib. 23, 308–316 (2017).Article 

    Google Scholar 
    Sauer, J. R. et al. The first 50 years of the North American Breeding Bird Survey. Condor 119, 576–593 (2017).Article 

    Google Scholar 
    Meehan, T. D., Michel, N. L. & Rue, H. Spatial modeling of Audubon Christmas Bird Counts reveals fine-scale patterns and drivers of relative abundance trends. Ecosphere 10, e020707 (2019).Article 
    ADS 

    Google Scholar 
    Meller, K., Piha, M., Vähätalo, A. V. & Lehikoinen, A. A positive relationship between spring temperature and productivity in 20 songbird species in the boreal zone. Oecologia 186, 883–893 (2018).Article 
    ADS 

    Google Scholar 
    Lefcheck, J. S. & Duffy, J. E. Multitrophic functional diversity predicts ecosystem functioning in experimental assemblages of estuarine consumers. Ecology 96, 2973–2983 (2015).Article 

    Google Scholar 
    Alerstam, T. & Högstedt, G. Bird migration and reproduction in relation to habitats for survival and breeding. Scand. J. Ornithol. 13, 25–37 (1982).
    Google Scholar 
    Dingle, H. Migration: The Biology of Life on the Move (Oxford University Press, 1996).
    Google Scholar 
    Jones, P. D. et al. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD017139 (2012).Article 
    ADS 

    Google Scholar 
    Rosenfeld, J. S. Functional redundancy in ecology and conservation. Oikos 98, 156–162 (2002).Article 

    Google Scholar 
    Bartley, T. J. et al. Food web rewiring in a changing world. Nat. Ecol. Evol. 3, 345–354 (2019).Article 

    Google Scholar 
    Thébault, E. & Loreau, M. Trophic interactions and the relationship between species diversity and ecosystem stability. Am. Nat. 166, E95–E114 (2005).Article 

    Google Scholar 
    Kokkoris, G. D., Jansen, V. A. A., Loreau, M. & Troumbis, A. Y. Variability in interaction strength and implications for biodiversity. J. Anim. Ecol. 71, 362–371 (2002).Article 

    Google Scholar 
    Vázquez, D. P. & Simberloff, D. Ecological specialization and susceptibility to disturbance: Conjectures and refutations. Am. Nat. 159, 606–623 (2002).Article 

    Google Scholar 
    Carvalheiro, L. G. et al. The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness. Ecol. Lett. 17, 1389–1399 (2014).Article 

    Google Scholar 
    Morris, R. J., Lewis, O. T. & Godfray, H. C. J. Experimental evidence for apparent competition in a tropical forest food web. Nature 428, 310–313 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Pace, M. L., Cole, J. J., Carpenter, S. R. & Kitchell, J. F. Trophic cascades revealed in diverse ecosystems. Trends Ecol. Evol. 14, 483–488 (1999).Article 
    CAS 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the Anthropocene. Science (80-. ) 345, 401–406 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Lindström, Å., Green, M., Paulson, G., Smith, H. G. & Devictor, V. Rapid changes in bird community composition at multiple temporal and spatial scales in response to recent climate change. Ecography (Cop.) 36, 313–322 (2013).Article 

    Google Scholar 
    Pearce-Higgins, J. W., Eglington, S. M., Martay, B. & Chamberlain, D. E. Drivers of climate change impacts on bird communities. J. Anim. Ecol. 84, 943–954 (2015).Article 

    Google Scholar 
    Socolar, J. B., Epanchin, P. N., Beissinger, S. R. & Tingley, M. W. Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts. Proc. Natl. Acad. Sci. 114, 12976–12981 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Pollock, H. S., Brawn, J. D. & Cheviron, Z. A. Heat tolerances of temperate and tropical birds and their implications for susceptibility to climate warming. Funct. Ecol. https://doi.org/10.1111/1365-2435.13693 (2020).Article 

    Google Scholar 
    Wu, J. X., Wilsey, C. B., Taylor, L. & Schuurman, G. W. Projected avifaunal responses to climate change across the U.S. National Park System. PLoS ONE 13, 1–18 (2018).
    Google Scholar 
    Root, T. Environmental factors associated with avian distributional boundaries. J. Biogeogr. 15, 489 (1988).Article 

    Google Scholar 
    Zuckerberg, B. et al. Climatic constraints on wintering bird distributions are modified by urbanization and weather. J. Anim. Ecol. 80, 403–413 (2011).Article 

    Google Scholar 
    Newton, I. The Migration Ecology of Birds (Academic Press Inc., 2008).
    Google Scholar 
    La Sorte, F. A., Johnston, A. & Ault, T. R. Global trends in the frequency and duration of temperature extremes. Clim. Change 166, 1–14 (2021).Article 
    ADS 

    Google Scholar 
    Faurby, S. & Araújo, M. B. Anthropogenic range contractions bias species climate change forecasts. Nat. Clim. Change 8, 252–256 (2018).Article 
    ADS 

    Google Scholar 
    Jiguet, F., Brotons, L. & Devictor, V. Community responses to extreme climatic conditions. Curr. Zool. 57, 406–413 (2011).Article 

    Google Scholar 
    Tayleur, C. et al. Swedish birds are tracking temperature but not rainfall: Evidence from a decade of abundance changes. Glob. Ecol. Biogeogr. 24, 859–872 (2015).Article 

    Google Scholar 
    Clements, C. F. & Ozgul, A. Indicators of transitions in biological systems. Ecol. Lett. 21, 905–919 (2018).Article 

    Google Scholar 
    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Fischer, J. et al. Functional richness and relative resilience of bird communities in regions with different land use intensities. Ecosystems 10, 964–974 (2007).Article 

    Google Scholar 
    Olivier, T., Thébault, E., Elias, M., Fontaine, B. & Fontaine, C. Urbanization and agricultural intensification destabilize animal communities differently than diversity loss. Nat. Commun. 11, 1–9 (2020).Article 
    ADS 

    Google Scholar 
    Michel, N. L. et al. Metrics for conservation success: Using the “Bird‐Friendliness Index” to evaluate grassland and aridland bird community resilience across the Northern Great Plains ecosystem. Divers. Distrib. 26, 1687–1702 (2020).National Audubon Society. The Christmas bird count historical results [online]. http://www.christmasbirdcount.org (2019).BirdLife International & NatureServe. Bird species distribution maps of the world. Version 4.0 (2015).Billerman, S. M., Keeney, B. K., Rodewald, P. G. & Schulenberg, T. S. Birds of the world (2020).BirdLife International. IUCN red list for birds. http://www.birdlife.org (2020).De Magalhães, J. P. & Costa, J. A database of vertebrate longevity records and their relation to other life-history traits. J. Evol. Biol. 22, 1770–1774 (2009).Article 

    Google Scholar 
    Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).Article 

    Google Scholar 
    IUCN. The IUCN red list of threatened species. Version 2019-2. http://www.iucnredlist.org (2019).Morelli, F., Benedetti, Y., Møller, A. P. & Fuller, R. A. Measuring avian specialization. Ecol. Evol. 9, 8378–8386 (2019).Article 

    Google Scholar 
    MacLean, S. A. & Beissinger, S. R. Species’ traits as predictors of range shifts under contemporary climate change: A review and meta-analysis. Glob. Change Biol. 23, 4094–4105 (2017).Article 
    ADS 

    Google Scholar 
    Jiguet, F., Gadot, A. S., Julliard, R., Newson, S. E. & Couvet, D. Climate envelope, life history traits and the resilience of birds facing global change. Glob. Change Biol. 13, 1672–1684 (2007).Article 
    ADS 

    Google Scholar 
    Julliard, R., Jiguet, F. & Couvet, D. Common birds facing global changes: What makes a species at risk?. Glob. Change Biol. 10, 148–154 (2004).Article 
    ADS 

    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Grimm, A. et al. Earlier breeding, lower success: Does the spatial scale of climatic conditions matter in a migratory passerine bird?. Ecol. Evol. 5, 5722–5734 (2015).Article 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).Article 

    Google Scholar 
    Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).Article 

    Google Scholar 
    Barnagaud, J. Y. et al. Biogeographical, environmental and anthropogenic determinants of global patterns in bird taxonomic and trait turnover. Glob. Ecol. Biogeogr. 26, 1190–1200 (2017).Article 

    Google Scholar 
    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).Article 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effects model (2019).Barton, K. MuMIn: Multi-model inference. R package (2020).R Core Team. R: A language and environment for statistical computing. Version 3.5.3. http://www.r-project.org/ (2019).Devictor, V. et al. Functional biotic homogenization of bird communities in disturbed landscapes. Glob. Ecol. Biogeogr. 17, 252–261 (2008).Article 

    Google Scholar 
    Neutel, A. M., Heesterbeek, J. A. P. & De Ruiter, P. C. Stability in real food webs: weak links in long loops. Science (80-. ) 296, 1120–1123 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Wallach, A. D. et al. Trophic cascades in 3D: Network analysis reveals how apex predators structure ecosystems. Methods Ecol. Evol. 8, 135–142 (2017).Article 

    Google Scholar  More

  • in

    The effects of temperature stress and population origin on the thermal sensitivity of Lymantria dispar L. (Lepidoptera: Erebidae) larvae

    In the autumn (November), L. dispar egg masses were collected at two sites: unpolluted and polluted forest. The first was a mixed oak forest at Kosmaj Mountain, 40 km south-east of Belgrade (coordinates 44°27′56″N 20°33′56″E). These woods are regarded as unpolluted because they are far from direct pollution and are part of the system of protected green areas around Belgrade, where the construction of industrial facilities and traffic infrastructure with potential negative effects on the environment is prohibited by legal regulations. The second site was Lipovica Forest (coordinates 44°38′11″N 20°24′12″E), with mixed Quercus frainetto and Quercus cerris trees, considered a polluted forest since it is located along the border of State Road 22, one of the most frequently used IB-class roads in Serbia.Collected egg masses were kept in a refrigerator at 4 °C until spring (March) when 200 eggs for each experimental group were set for hatching. After hatching in transparent Petri dishes (V = 200 mL), 10 first instar larvae were transferred and reared together at 23 °C with a 12:12 h light: dark photoperiod and relative humidity of 60%, until the third larval instar. Then, five 3rd instar larvae were reared together in the same Petri dish. After molting into the 4th instar, each larva was kept individually until the third day of the 5th instar, when they were sacrificed. Larvae were fed on an artificial diet designed for L. dispar42, and food was replaced every 48 h. Each experimental group contained between 50 and 60 larvae (Fig. 7).Figure 7A schematic figure of the experimental treatments.Full size imageThe optimal temperature for L. dispar larval development is 23 °C, and the control group was reared at this temperature. The highest summer temperature (2007–2010) measured in Serbian Quercus forests at a similar elevation was 28.4 °C, and the lowest 19.6 °C, while the average summer temperature was 26.3 °C43. Thus, we established variable temperature regimens that included brief (24 h) and daily (72 h) exposures to 28 °C. The control group of larvae were reared through the whole experiment on optimal 23 °C. Results of Huey et al.44 indicate that short term (daily) exposure to higher temperatures during development can increase both optimal temperature and maximal growth rate at the optimum, an example of beneficial thermal acclimation. In our previous research we found that induced thermotolerance modifies the activity of detoxifying enzymes in larvae originating from the polluted forest. We exposed L. dispar larvae in several experimental groups to that regime at 4th larval instar, with intention of analyze the effects of induce thermotolerance on observed parameters (ALP, ACP, hsp 70) in 5th instar larvae reared on optimal or elevated temperature28.At sacrifice on the third day of the 5th instar, the caterpillar midguts were dissected out on ice (n = 8–11 larval midguts per group for each enzyme assay). Midgut from single larvae was weighed and homogenized in insect physiological saline, as insect fluids have buffer values similar to vertebrates45. Homogenization was performed in ice-cold 0.15 M NaCl (final tissue concentration was 100 mg/mL in each sample), for 3 intervals of 10 s with a 15 s pause between them, at 5000 rpm, using Ultra Turrax homogenizer (IKA-Werke, Staufen, Germany). The homogenates were centrifuged for 10 min at 10,000 g at 4 ℃, and supernatants were used for enzyme assays and NATIVE gel electrophoresis. This protocol ensured that supernatants would contain cytosol and lysosomes.On the third day of the 5th instar, larval brain tissues were dissected out on ice and weighed. Pooled brain tissue (n = 30 brain tissues per experimental group) was diluted with 0.9% NaCl (1:9/w:V) and homogenized on ice at 5000 rpm during three 10 s intervals, separated by 15 s pauses (MHX/E Xenox homogenizer, Germany). Homogenates were centrifuged at 25,000 g for 10 min at 4 °C in an Eppendorf 5417R centrifuge (Germany). The supernatants were used for Western blotting and indirect non-competitive enzyme-linked immunosorbent assay (ELISA). Protein concentrations samples were determined using BSA as the standard46.A modified method by Nemec and Socha47 was used to determine the activity of ALP. The reaction mixture contained 0.1 M Tris HCl buffer pH 8.6, 5 mM MgCl2, midgut homogenate, and 5 mM p-nitrophenyl phosphate. During 30 min of incubation time at 30 ℃, the hydrolytic release of p-nitrophenol from p-nitrophenyl phosphate (pNPP) occurred under alkaline conditions.The reaction was stopped with 0.5 M NaOH, and the absorbance of p-nitrophenol was measured at 405 nm. Blank and non-catalytic probes were included. One unit of enzyme activity was defined as the amount of enzyme that released 1 mmol of p-nitrophenol per minute under the assay conditions.The same modified method of Nemec and Socha47 was employed to determine ACP activity, but under acidic conditions (0.1 M citrate buffer pH 5.6 was found optimal for L. dispar ACP), with a prolonged incubation time of 60 min. One unit of enzyme activity was defined as the amount of enzyme that released 1 μmol of p-nitrophenol per minute per mg of total protein. Total ACP activity determined in the midgut samples came from lysosomal ACP that ended up in the cytosol and non-lysosomal ACP, typically localized in the cytosol.Lysosomal ACP were detected indirectly48, under the same conditions, in a mixture containing the specific enzyme inhibitor NaF (50 mM). The absorbance determined at 405 nm is proportional to the activity of the non-lysosomal fraction of total ACP. The activity of the lysosomal fraction was obtained by subtracting not inhibited non-lysosomal acid phosphatases from the total phosphatase activity. Specific activities of ACP are given in mU per mg of total protein.A modified method by Allen et al.49 was used to detect ALP isoforms after native PAGE. Using 12% polyacrylamide gel, 10 μg protein aliquots per well were separated at 100 V and 4 ℃. The ALP isoform activity was visualized by soaking the gel in an incubation mixture consisting of 0.13% α-naphthyl phosphate, 100 mM Tris–HCl buffer (pH 8.6), and 0.1% Fast Blue B. The gels were incubated at room temperature until bands appeared.For ACP phosphatase detection, the same method of Allen et al.49 was also modified. After electrophoresis, the gel was washed with deionized water and equilibrated in 100 mM acetate buffer (pH 5.2) at 30 ℃. The nitrocellulose membrane was pre-soaked in 0.13% α-naphthyl phosphate dissolved in the same acetate buffer for 50 min at room temperature. The gel was covered with the membrane and incubated in a moist chamber for 60 min at 30 ℃. The membrane was soaked in 0.3% Fast Blue B stain dissolved in acetate buffer until bands became visible.Gels were scanned with a CanoScan LiDE 120 (Japan). The intensities of enzyme bands in the regions of ALP and ACP activities were analyzed using the ImageJ 1.42q software (U. S. National Institutes of Health, Bethesda, Maryland, USA).An indirect non-competitive ELISA was used to quantify the concentration of hsp70 in L. dispar brain tissue. Samples were diluted with carbonate-bicarbonate buffer (pH 9.6) and coated on a microplate (15 μg of tissue/well) (Multiwell immunoplate, NAXISORP, Thermo Scientific, Denmark) overnight at 4 °C, in the dark. The indirect non-competitive ELISA for L. dispar hsp70 was performed according to general practice: samples were first incubated with monoclonal anti-Hsp70 mouse IgG1 (dilution 1:5000) (clone BRM-22, Sigma Aldrich, USA) for 12 h at 4 °C, and then for 2 h at 25 °C with secondary anti-mouse IgG1 (gamma-chain)-HRP conjugate (dilution 1:5000) antibodies (Sigma Aldrich, USA). Chromogenic substrate 3, 3’, 5, 5’-Tetramethylbenzidine (TMB) was used as a visualizing reagent. Absorption was measured on a microplate reader (LKB 5060-006, Austria) at 450 nm. To enable statistically valid comparisons of experimental groups across multiple microplates, each microplate contained serial dilutions of standard hsp70 (recombinant hsp70, 50 ng/mL), used for the hsp70 standard curve, and homogenized brain tissues pulled by each treatment that were loaded on the microplates in a matched design, ensuring that each data point represented the mean of three replicates from each experimental group.Western blots were used to detect the presence of heat-shock protein 70 isoforms. Brain tissue homogenates were separated by SDS PAGE electrophoresis on 12% gels, according to Laemmli50. Protein transfer from the gel to the nitrocellulose membrane (Amersham Prothron, Premium 0.45 mm NC, GE Healthcare Life Sciences, UK) was left overnight at 40 V and 4 °C. Monoclonal anti-hsp70 mouse IgG1 (1:5000 dilution, clone BRM-22, Sigma Aldrich) and secondary mouse anti-mouse Hsp70 horseradish peroxidase conjugate antiserum (1:10,000 dilution, Sigma-Aldrich) were used for detection of hsp70 expression patterns in L. dispar larval brain tissue. Bands were visualized using chemiluminescence (ECL kit, Amersham).This study identified the hsp70 concentration in brain tissue and specific activities of total ACP and ALP in the larval midgut as the most promising biomarkers, which are sensitive and have consistent responses to thermal stress. These three biomarkers were combined into an IBR analysis according to Beliaeff and Burgeot51. The value of each biomarker (Xi) was standardized by the formula Yi = (Xi − mean)/SD, where Yi is the standardized biomarker response, and mean and SD were obtained from all values of the selected parameters. The next step was describing Zi as Zi = Yi or Zi = − Yi, depending on whether the temperature treatment caused induction or inhibition of the selected biomarkers. After finding the minimum value of Zi for each biomarker (min), the scores (Si) were computed as Si = Zi + |min|. Scores for biomarkers were used as the radius coordinates of the studied biomarker in the star plots. Star plot areas for the three-biomarker assembly, positioned in successive clockwise order—Hsp70, total ACP, and ALP, were obtained from the following formulas: ({A}_{i}=frac{{S}_{i}}{2*mathrm{sin}beta }left({S}_{i}*mathrm{cos}beta + {S}_{i+1}*mathrm{sin}beta right)), (beta = {mathrm{tan}}^{-1}left(frac{{S}_{i+1}*mathrm{sin}alpha }{{S}_{i}-{S}_{i+1}*mathrm{cos}alpha }right)),(alpha =2pi /n) radians (n is the number of biomarkers). The IBR values were calculated as follows:(IBR= sum_{i=1}^{n}{A}_{i}), where Ai is the area represented by two consecutive biomarkers on the star plot. Excel software (Microsoft, USA) was used to calculate IBR values and generate star plots.Statistical analyses were conducted in GraphPad Prism 6 (GraphPad Software, Inc., USA). Mean values ± standard errors of mean values (SEM) were calculated for the activity of enzymes, larval midgut mass, and the hsp70 concentration in brain tissue. D’Agostino-Pearson omnibus and Shapiro–Wilk tests were used to check the normality of data distribution. The effects of thermal treatments and their interaction on the variance of analyzed biomarkers in larvae from the polluted and the unpolluted forest were tested using two-way ANOVA with thermal treatments as fixed factors. For all comparisons, the level of significance was set at p  More

  • in

    Impacts of soil nutrition on floral traits, pollinator attraction, and fitness in cucumbers (Cucumis sativus L.)

    Fichtner, K. & Schulze, E. D. The effect of nitrogen nutrition on growth and biomass partitioning of annual plants originating from habitats of different nitrogen availability. Oecologia 92, 236–241 (1992).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodger, J. G. et al. Widespread vulnerability of flowering plant seed production to pollinator declines. Sci. Adv. 7, eabd3524. https://doi.org/10.1126/sciadv.abd3524 (2021).Article 
    ADS 

    Google Scholar 
    de Groot, C. C., Marcelis, L. F. M., van den Boogaard, R., Kaiser, W. M. & Lambers, H. Interaction of nitrogen and phosphorus nutrition in determining growth. Plant Soil 248, 257–268 (2003).Article 

    Google Scholar 
    Wang, Z. & Li, S. Effects of nitrogen and phosphorus fertilization on plant growth and nitrate accumulation in vegetables. J. Plant Nutr. 27, 539–556 (2004).Article 
    CAS 

    Google Scholar 
    Razaq, M., Zhang, P. & Shen, H. L. Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS One 12, e0171321. https://doi.org/10.1371/journal.pone.0171321 (2017).Article 
    CAS 

    Google Scholar 
    Poulton, J. L., Bryla, D., Koide, R. T. & Stephenson, A. G. Mycorrhizal infection and high soil phosphorus improve vegetative growth and the female and male functions in tomato. New Phytol. 154, 255–264 (2002).Article 
    CAS 

    Google Scholar 
    Burkle, L. A. & Irwin, R. E. The effects of nutrient addition on floral characters and pollination in two subalpine plants, Ipomopsis aggregata and Linum lewisii. Plant Ecol. 203, 83–98 (2009).Article 

    Google Scholar 
    Burkle, L. A. & Irwin, R. E. Beyond biomass: measuring the effects of community-level nitrogen enrichment on floral traits, pollinator visitation and plant reproduction. J. Ecol. 98, 705–717 (2010).Article 

    Google Scholar 
    Hoover, S. E. R. et al. Warming, CO2, and nitrogen deposition interactively affect a plant-pollinator mutualism. Ecol. Lett. 15, 227–234 (2012).Article 

    Google Scholar 
    Lau, T. C. & Stephenson, A. G. Effects of soil nitrogen on pollen production, pollen grain size, and pollen performance in Cucurbita pepo (Cucurbitaceae). Am. J. Bot. 80, 763–768 (1993).Article 
    CAS 

    Google Scholar 
    Lau, T. C. & Stephenson, A. Effects of soil phosphorus on pollen production, pollen size, pollen phosphorus content, and the ability to sire seeds in Cucurbita pepo (Cucurbitaceae). Sex. Plant Reprod. 7, 215–220 (1994).Article 

    Google Scholar 
    Atasay, A., Akgül, H., Uçgun, K. & Şan, B. Nitrogen fertilization affected the pollen production and quality in apple cultivars ‘Jerseymac’ and ‘Golden Delicious’. Acta Agric. Scand. Sect. B. Soil Plant Sci. 63, 460–465 (2013).
    Google Scholar 
    Shuel, R. W. Some aspects of the relation between nectar secretion and nitrogen, phosphorus, and potassium nutrition. Can. J. Plant Sci. 37, 220–236 (1957).Article 
    CAS 

    Google Scholar 
    Robacker, D. C., Flottum, P. K., Sammataro, D. & Erickson, E. H. Effects of climatic and edaphic factors on soybean flowers and on the subsequent attractiveness of the plants to honey bees. Field Crops Res. 6, 267–278 (1983).Article 

    Google Scholar 
    Dror, I., Yaron, B. & Berkowitz, B. The human impact on all soil-forming factors during the anthropocene. ACS Environ. Au 2, 11–19 (2022).Article 
    CAS 

    Google Scholar 
    David, T. I., Storkey, J. & Stevens, C. J. Understanding how changing soil nitrogen affects plant–pollinator interactions. Arthropod. Plant Interact. 13, 671–684 (2019).Article 

    Google Scholar 
    Russo, L., Buckley, Y. M., Hamilton, H., Kavanagh, M. & Stout, J. C. Low concentrations of fertilizer and herbicide alter plant growth and interactions with flower-visiting insects. Agric. Ecosyst. Environ. 304, 107141. https://doi.org/10.1016/j.agee.2020.107141 (2020).Article 
    CAS 

    Google Scholar 
    Akter, A. & Klečka, J. Water stress and nitrogen supply affect floral traits and pollination of the white mustard, Sinapis alba (Brassicaceae). PeerJ 10, e13009. https://doi.org/10.7717/peerj.13009 (2022).Article 
    CAS 

    Google Scholar 
    Wu, Y. et al. Soil water and nutrient availability interactively modify pollinator-mediated directional and correlational selection on floral display. New Phytol. https://doi.org/10.1111/nph.18537 (2022).Article 

    Google Scholar 
    Nicolson, S. W. Sweet solutions: nectar chemistry and quality. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 2163. https://doi.org/10.1098/rstb.2021.0163 (2022).Article 
    CAS 

    Google Scholar 
    Vaudo, A. D., Tooker, J. F., Grozinger, C. M. & Patch, H. M. Bee nutrition and floral resource restoration. Curr. Opin. Insect Sci. 10, 133–141 (2015).Article 

    Google Scholar 
    Cnaani, J., Thomson, J. D. & Papaj, D. R. Flower choice and learning in foraging bumblebees: effects of variation in nectar volume and concentration. Ethology 112, 278–285 (2006).Article 

    Google Scholar 
    Vaudo, A. D., Patch, H. M., Mortensen, D. A., Tooker, J. F. & Grozinger, C. M. Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences. Proc. Natl. Acad. Sci. U. S. A. 113, E4035–E4042. https://doi.org/10.1073/pnas.1606101113 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Vaudo, A. D. et al. Pollen protein: lipid macronutrient ratios may guide broad patterns of bee species floral preferences. Insects 11, 132. https://doi.org/10.3390/insects11020132 (2020).Article 

    Google Scholar 
    Cardoza, Y. J., Harris, G. K. & Grozinger, C. M. Effects of soil quality enhancement on pollinator-plant interactions. Psyche 2012, 581458. https://doi.org/10.1155/2012/581458 (2012).Article 

    Google Scholar 
    Ceulemans, T., Hulsmans, E., Vanden Ende, W. & Honnay, O. Nutrient enrichment is associated with altered nectar and pollen chemical composition in Succisa pratensis Moench and increased larval mortality of its pollinator Bombus terrestris L.. PLoS One 12, e0175160. https://doi.org/10.1371/journal.pone.0175160 (2017).Article 
    CAS 

    Google Scholar 
    Russo, L., Vaudo, A. D., Fisher, C. J., Grozinger, C. M. & Shea, K. Bee community preference for an invasive thistle associated with higher pollen protein content. Oecologia 190, 901–912 (2019).Article 
    ADS 

    Google Scholar 
    Russo, L., Keller, J., Vaudo, A. D., Grozinger, C. M. & Shea, K. Warming increases pollen lipid concentration in an invasive thistle, with minor effects on the associated floral-visitor community. Insects 11, 20. https://doi.org/10.3390/insects11010020 (2019).Article 

    Google Scholar 
    Awmack, C. S. & Leather, S. R. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817–844 (2002).Article 
    CAS 

    Google Scholar 
    Carisey, N. & Bauce, E. Does nutrition-related stress carry over to spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae) progeny?. Bull. Entomol. Res. 92, 101–108 (2002).Article 
    CAS 

    Google Scholar 
    Zhang, G. & Han, X. N: P stoichiometry in Ficus racemosa and its mutualistic pollinator. J. Plant Ecol. 3, 123–130 (2010).Article 

    Google Scholar 
    Visanuvimol, L. & Bertram, S. M. How dietary phosphorus availability during development influences condition and life history traits of the cricket Acheta domesticas. J. Insect Sci. 11, 63. https://doi.org/10.1673/031.011.6301 (2011).Article 

    Google Scholar 
    Dovrat, G., Meron, E., Shachak, M., Golodets, C. & Osem, Y. Plant size is related to biomass partitioning and stress resistance in water-limited annual plant communities. J. Arid Environ. 165, 1–9 (2019).Article 
    ADS 

    Google Scholar 
    Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20, 30–59 (2010).Article 
    CAS 

    Google Scholar 
    Tao, L. & Hunter, M. D. Does anthropogenic nitrogen deposition induce phosphorus limitation in herbivorous insects?. Glob. Chang. Biol. 18, 1843–1853 (2012).Article 
    ADS 

    Google Scholar 
    Tognetti, P. M. et al. Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proc. Natl. Acad. Sci. 118(28), e2023718118. https://doi.org/10.1073/pnas.2023718118 (2021).Article 
    CAS 

    Google Scholar 
    Leghari, S. J. et al. Role of nitrogen for plant growth and development: a review. Adv. Environ. Biol. 10, 209–218 (2016).
    Google Scholar 
    Carvalheiro, L. G. et al. Soil eutrophication shaped the composition of pollinator assemblages during the past century. Ecography 43, 209–221 (2020).Article 

    Google Scholar 
    Lefcheck, J. S. Piecewisesem: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Roulston, T. H., Cane, J. H. & Buchmann, S. L. What governs protein content of pollen: Pollinator preferences, pollen–pistil interactions, or phylogeny?. Ecol. Monogr. 70, 617–643 (2000).
    Google Scholar 
    Pacini, E. & Hesse, M. Pollenkitt—its composition, forms and functions. Flora 200, 399–415 (2005).Article 

    Google Scholar 
    Vaudo, A. D. et al. Bumble bees regulate their intake of essential protein and lipid pollen macronutrients. J. Exp. Biol. 219, 3962–3970 (2016).CAS 

    Google Scholar 
    Vaudo, A. D., Farrell, L. M., Patch, H. M., Grozinger, C. M. & Tooker, J. F. Consistent pollen nutritional intake drives bumble bee (Bombus impatiens) colony growth and reproduction across different habitats. Ecol. Evol. 8, 5765–5776 (2018).Article 

    Google Scholar 
    Treanore, E. D., Vaudo, A. D., Grozinger, C. M. & Fleischer, S. J. Examining the nutritional value and effects of different floral resources in pumpkin agroecosystems on Bombus impatiens worker physiology. Apidologie 50, 542–552 (2019).Article 

    Google Scholar 
    Baker, H. G. & Baker, I. The predictive value of nectar chemistry to the recognition of pollinator types. Israel J. Bot. 39, 157–166 (1990).CAS 

    Google Scholar 
    Thomson, J. D. Pollen transport and deposition by bumble bees in Erythronium: influences of floral nectar and bee grooming. J. Ecol. 74, 329–341 (1986).Article 

    Google Scholar 
    Gonzalez, M. V., Coque, M. & Herrero, M. Influence of pollination systems on fruit set and fruit quality in kiwifruit (Actinidia deliciosa). Ann. Appl. Biol. 132, 349–355 (1998).Article 

    Google Scholar 
    Morandin, L. A., Laverty, T. M. & Kevan, P. G. Effect of bumble bee (Hymenoptera: Apidae) pollination intensity on the quality of greenhouse tomatoes. J. Econ. Entomol. 94, 172–179 (2001).Article 
    CAS 

    Google Scholar 
    Karron, J. D., Mitchell, R. J. & Bell, J. M. Multiple pollinator visits to Mimulus ringens (Phrymaceae) flowers increase mate number and seed set within fruits. Am. J. Bot. 93, 1306–1312 (2006).Article 

    Google Scholar 
    Kiatoko, N., Raina, S. K., Muli, E. & Mueke, J. Enhancement of fruit quality in Capsicum annum through pollination by Hypotrigona gribodoi in Kakamega Western Kenya. Entomol. Sci. 17, 106–110 (2014).Article 

    Google Scholar 
    Abrol, D. P., Gorka, A. K., Ansari, M. J., Al-Ghamdi, A. & Al-Kahtani, S. Impact of insect pollinators on yield and fruit quality of strawberry. Saudi J. Biol. Sci. 26, 524–530 (2019).Article 

    Google Scholar 
    Osman, M. A., Raju, P. S. & Peacock, J. M. The effect of soil temperature, moisture and nitrogen on Striga asiatica (L.) Kuntze seed germination, viability and emergence on sorghum (Sorghum bicolor L. Moench) roots under field conditions. Plant Soil 131, 265–273 (1991).Article 
    CAS 

    Google Scholar 
    Rose, T. J. & Raymond, C. A. Seed phosphorus effects on rice seedling vigour in soils differing in phosphorus status. Agronomy 10(12), 1919. https://doi.org/10.3390/agronomy10121919 (2020).Article 
    CAS 

    Google Scholar 
    Cavatorta, J. et al. ‘Marketmore 97’: a monoecious slicing cucumber inbred with multiple disease and insect resistances. HortScience 42, 707–709 (2007).Article 

    Google Scholar 
    Friedman, J. The evolution of annual and perennial plant life histories: ecological correlates and genetic mechanisms. Annu. Rev. Ecol. Evol. Syst. 51, 461–481 (2020).Article 

    Google Scholar 
    Alzate-Marin, A. L. et al. Warming and elevated CO2 induces changes in the reproductive dynamics of a tropical plant species. Sci. Total Environ. 768, 144899. https://doi.org/10.1016/j.scitotenv.2020.144899 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Mu, J. et al. Domesticated honey bees evolutionarily reduce flower nectar volume in a Tibetan lotus. Ecology 95, 3161–3172 (2014).Article 

    Google Scholar 
    Cruden, R. W. Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31, 32–46 (1977).
    Google Scholar 
    Costa, C. M. & Yang, S. Counting pollen grains using readily available, free image processing and analysis software. Ann. Bot. 104, 1005–1010 (2009).Article 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).Article 
    CAS 

    Google Scholar 
    Vaudo, A. D., Patch, H. M., Mortensen, D. A., Grozinger, C. M. & Tooker, J. F. Bumble bees exhibit daily behavioral patterns in pollen foraging. Arthropod. Plant. Interact. 8, 273–283 (2014).
    Google Scholar  More

  • in

    Ant milk: The mysterious fluid that helps them thrive

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Grazing pressure on drylands

    Maestre and colleagues collected data using a standardized field survey at 98 sites across 25 countries and 6 continents, fitted linear mixed models to data from all sites and grazing pressure levels, and then applied a multimodel inference procedure to select the set of best-fitting models. The authors found interactions between grazing and biodiversity in almost half of the best-fitting models, where increasing grazing pressure had positive effects on ecosystem services in colder sites with high plant species richness. However, increases in grazing pressure at warmer sites with high rainfall seasonality and low plant species richness interacted with soil properties to either increase or reduce the delivery of multiple ecosystem services. The authors’ findings highlight how increasing herbivore richness could enhance ecosystem service delivery across contrasting environmental and biodiversity conditions, enhancing soil carbon storage and reducing the negative impacts of increased grazing pressure. More