Pronounced differences in heart rate and metabolism distinguish daily torpor and short-term hibernation in two bat species
Lyman, C. P., Willis, J. S., Malan, A. & Wang, L. C. H. Hibernation and Torpor in Mammals and Birds (Academic Press, 1982).
Google Scholar
Boyles, J. G. et al. A global heterothermic continuum in mammals. Glob. Ecol. Biogeogr. 22, 1029–1039. https://doi.org/10.1111/geb.12077 (2013).Article
Google Scholar
Geiser, F. Ecological Physiology of Daily Torpor and Hibernation (Springer, 2021). https://doi.org/10.1007/978-3-030-75525-6.Book
Google Scholar
Buck, C. L. & Barnes, B. M. Effects of ambient temperature on metabolic rate, respiratory quotient and torpor in an arctic hibernator. Am. J. Physiol. Reg. Integr. Comp. Physiol 279, R255–R262. https://doi.org/10.1152/ajpregu.2000.279.1.R255 (2000).Article
CAS
Google Scholar
Ortmann, S. & Heldmaier, G. Regulation of body temperature and energy requirements of hibernating Alpine marmots (Marmota marmota). Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R698–R704. https://doi.org/10.1152/ajpregu.2000.278.3.R698 (2000).Article
CAS
Google Scholar
Swoap, S. J. & Gutilla, M. J. Cardiovascular changes during daily torpor in the laboratory mouse. Am. J. Physiol. Regul. Integr. Comp. Physiol 297, R769–R774. https://doi.org/10.1152/ajpregu.00131.2009 (2009).Article
CAS
Google Scholar
Kirsch, R., Ouarour, A. & Pévet, P. Daily torpor in the Djungarian hamster (Phodopus sungorus): photoperiodic regulation, characteristics and circadian organization. J. Comp. Physiol. A 168, 121–128. https://doi.org/10.1007/BF00217110 (1991).Article
CAS
Google Scholar
Nowack, J., Stawski, C. & Geiser, F. More functions of torpor and their roles in a changing world. J. Comp. Physiol. (B) 187, 889–897. https://doi.org/10.1007/s00360-017-1100-y (2017).Article
Google Scholar
Nowack, J., Levesque, D. L., Reher, S. & Dausmann, K. H. Variable climates lead to varying phenotypes: “Weird” mammalian torpor and lessons from non-holarctic species. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00060 (2020).Article
Google Scholar
Hoelzl, F. et al. How to spend the summer? Free-living dormice (Glis glis) can hibernate for 11 months in non-reproductive years. J. Comp. Physiol. B 185, 931–939. https://doi.org/10.1007/s00360-015-0929-1 (2015).Article
Google Scholar
Geiser, F. Seasonal expression of avian and mammalian daily torpor and hibernation: not a simple summer-winter affair. F. Phys. 11, 436. https://doi.org/10.3389/fphys.2020.00436 (2020).Article
Google Scholar
Jonasson, K. A. & Willis, C. K. R. Hibernation energetics of free-ranging little brown bats. J. Exp. Biol. 215, 2141–2149. https://doi.org/10.1242/jeb.066514 (2012).Article
Google Scholar
Dietz, M., Kalko, E. K. V. Seasonal changes in daily torpor patterns of free-ranging female and male Daubenton’s bats (Myotis daubentonii). J. Comp. Physiol. B. 176(3), 223–231. https://doi.org/10.1007/s00360-005-0043-x (2006).Article
Google Scholar
Kobbe, S., Ganzhorn, J. U. & Dausmann, K. H. Extreme individual flexibility of heterothermy in free-ranging Malagasy mouse lemurs (Microcebus griseorufus). J. Comp. Physiol. B 181, 165–173. https://doi.org/10.1007/s00360-010-0507-5 (2011).Article
Google Scholar
Ruf, T. & Geiser, F. Daily torpor and hibernation in birds and mammals. Biol. Rev. 90, 891–926. https://doi.org/10.1111/brv.12137 (2015).Article
Google Scholar
Geiser, F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239–274 (2004).Article
ADS
CAS
Google Scholar
Storey, K. B. & Storey, J. M. Metabolic rate depression: the biochemistry of mammalian hibernation. Adv. Clin. Chem. 52, 77–108 (2010).Article
CAS
Google Scholar
Stawski, C., Willis, C. K. R. & Geiser, F. The importance of temporal heterothermy in bats. J. Zool. 292, 86–100. https://doi.org/10.1111/jzo.12105 (2014).Article
Google Scholar
Bondarenco, A., Körtner, G. & Geiser, F. Some like it cold: summer torpor by freetail bats in the Australian arid zone. J. Comp. Physiol. (B) 183, 1113–1122. https://doi.org/10.1007/s00360-013-0779-7 (2013).Article
Google Scholar
O’Mara, M. T. et al. Heart rate reveals torpor at high body temperatures in lowland tropical free-tailed bats. R. Soc. Open Sci. 4, 171359. https://doi.org/10.1098/rsos.171359 (2017).Article
ADS
CAS
Google Scholar
Reher, S., Ehlers, J., Rabarison, H. & Dausmann, K. H. Short and hyperthermic torpor responses in the Malagasy bat Macronycteris commersoni reveal a broader hypometabolic scope in heterotherms. J. Comp. Physiol. B https://doi.org/10.1007/s00360-018-1171-4 (2018).Article
Google Scholar
Geiser, F. et al. Hibernation and daily torpor in Australian and New Zealand bats: Does the climate zone matter?. Aust. J. Zool https://doi.org/10.1071/ZO20025 (2020).Article
Google Scholar
Stawski, C., Turbill, C. & Geiser, F. Hibernation by a free-ranging subtropical bat (Nyctophilus bifax). J. Comp. Physiol. (B) 179, 284–292. https://doi.org/10.1007/s00360-008-0328-y (2009).Article
Google Scholar
Levin, E. et al. Subtropical mouse-tailed bats use geothermally heated caves for winter hibernation. Proc. R. Soc. Lond. B Biol. Sci. 282, 20142781. https://doi.org/10.1098/rspb.2014.2781 (2015).Article
Google Scholar
Bartholomew, G. A., Dawson, W. R. & Lasiewski, R. C. Thermoregulation and heterothermy in some of the smaller flying foxes (Megachiroptera) of New Guinea. Z. Vergl. Physiol. 70, 196–209 (1970).Article
Google Scholar
Bartels, W., Law, B. S. & Geiser, F. Daily torpor and energetics in a tropical mammal, the northern blossom-bat Macroglossus minimus (Megachiroptera). J. Comp. Physiol. (B) 168, 233–239. https://doi.org/10.1007/s003600050141 (1998).Article
CAS
Google Scholar
Geiser, F., Coburn, D. K., Körtner, G. & Law, B. S. Thermoregulation, energy metabolism, and torpor in blossom-bats, Syconycteris australis (Megachiroptera). J. Zool. 239, 538–590. https://doi.org/10.1111/j.1469-7998.1996.tb05944.x (1996).Article
Google Scholar
Geiser, F. & Coburn, D. K. Field metabolic rates and water uptake in the blossom-bat Syconycteris australis (Megachiroptera). J. Comp. Physiol. (B) 169, 133–138. https://doi.org/10.1007/s003600050203 (1999).Article
CAS
Google Scholar
Turbill, C. Roosting and thermoregulatory behaviour of male Gould’s long-eared bats, Nyctophilus gouldi: energetic benefits of thermally unstable tree roosts. Aust. J. Zool. 54, 57–60. https://doi.org/10.1071/ZO05068 (2006).Article
Google Scholar
Currie, S. E. No effect of season on the electrocardiogram of long-eared bats (Nyctophilus gouldi) during torpor. J. Comp. Physiol. B 188, 695–705. https://doi.org/10.1007/s00360-018-1158-1 (2018).Article
Google Scholar
Stawski, C. & Geiser, F. Do season and distribution affect thermal energetics of a hibernating bat endemic to the tropics and subtropics?. Am. J. Physiol. Regul. Integr. Comp. Physiol 301, R542–R547. https://doi.org/10.1152/ajpregu.00792.2010 (2011).Article
CAS
Google Scholar
Currie, S. E., Stawski, C. & Geiser, F. Cold-hearted bats: uncoupling of heart rate and metabolism during torpor at subzero temperatures. J. Exp. Biol. https://doi.org/10.1242/jeb.170894 (2018).Article
Google Scholar
Churchill, S. Australian Bats 2nd edn. (Allen and Unwin, 2008).
Google Scholar
Geiser, F., Law, B. S. & Körtner, G. Daily torpor in relation to photoperiod in a subtropical blossom-bat, Syconycteris australis (Megachiroptera). J. Therm. Biol. 30, 574–579. https://doi.org/10.1016/j.jtherbio.2005.08.002 (2005).Article
Google Scholar
Coburn, D. K. & Geiser, F. Seasonal changes in energetics and torpor patterns in the subtropical blossom-bat Syconycteris australis (Megachiroptera). Oecologia 113, 467–473 (1998).Article
ADS
Google Scholar
Dietz, M. & Kalko, E. K. V. Seasonal changes in daily torpor patterns of free-ranging female and male Daubenton’s bats (Myotis daubentonii). J. Comp. Physiol. (B) 176, 223–231. https://doi.org/10.1007/s00360-005-0043-x (2006).Article
Google Scholar
Andrews, M. T. Advances in molecular biology of hibernation in mammals. BioEssays 29, 431–440. https://doi.org/10.1002/bies.20560 (2007).Article
CAS
Google Scholar
Twente, J. W. & Twente, J. Autonomic regulation of hibernation by Citellus and Eptesicus. In Strategies in Cold: Natural Torpidity and Thermogenesis (eds Wang, L. C. H. & Hudson, J. W.) 327–373 (Academic Press, 1978).Chapter
Google Scholar
Davis, W. H. & Reite, O. B. Responses of bats from temperate regions to changes in ambient temperature. Biol. Bull. 132, 320–328 (1967).Article
CAS
Google Scholar
Alston, J. M., Dillon, M. E., Keinath, D. A., Abernethy, I. M. & Goheen, J. R. Daily torpor reduces the energetic consequences of microhabitat selection for a widespread bat. Ecology 103, e3677. https://doi.org/10.1002/ecy.3677 (2022).Article
Google Scholar
Humphries, M. M., Thomas, D. W. & Speakman, J. R. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 418, 313–316. https://doi.org/10.1038/nature00828 (2002).Article
ADS
CAS
Google Scholar
Heller, H. C. Hibernation: neural aspects. Annu. Rev. Physiol. 41, 305–321. https://doi.org/10.1038/nature00828 (1979).Article
CAS
Google Scholar
McKechnie, A. E. & Wolf, B. O. The energetics of the rewarming phase of avian torpor. In Life in the Cold: Evolution, Mechanisms, Adaptation and Application (eds Barnes, B. M. & Carey, H. V.) 265–267 (University of Alaska, 2004).
Google Scholar
Geiser, F. & Baudinette, R. V. The relationship between body mass and rate of rewarming from hibernation and daily torpor in mammals. J. Exp. Biol. 151, 349–359. https://doi.org/10.1242/jeb.151.1.349 (1990).Article
CAS
Google Scholar
Voigt, C. C., Kelm, D. H. & visser, G. H.,. Field metabolic rates of phytophagous bats: do pollination strategies of plants make life of nectar-feeders spin faster?. J. Comp. Physiol. (B) 176, 213–222. https://doi.org/10.1007/s00360-005-0042-y (2006).Article
Google Scholar
Bullen, R. D., McKenzie, N. L., Bullen, K. E. & Williams, M. R. Bat heart mass: correlation with foraging niche and roost preference. Aust. J. Zool. 57, 399–408. https://doi.org/10.1071/ZO09053 (2009).Article
Google Scholar
Law, B. S. Climatic limitation of the southern distribution of the common blossom bat Syconycteris australis in New South Wales. Aust. J. Ecol. 19, 366–374. https://doi.org/10.1111/j.1442-9993.1994.tb00502.x (1994).Article
Google Scholar
Bonaccorso, F. J. & McNab, B. K. Plasticity of energetics in blossom bats (Pteropodidae): impact on distribution. J. Mammal. 78, 1073–1088. https://doi.org/10.2307/1383050 (1997).Article
Google Scholar
Geiser, F. & Brigham, R. M. Torpor, thermal biology and energetics in Australian long-eared bats (Nyctophilus). J. Comp. Physiol. (B) 170, 153–162. https://doi.org/10.1007/s003600050270 (2000).Article
CAS
Google Scholar
Withers, P. C. Metabolic, respiratory and haematological adjustments of the little pocket mouse to circadian torpor cycles. Respir. Physiol. 31, 295–307. https://doi.org/10.1016/0034-5687(77)90073-1 (1977).Article
CAS
Google Scholar
Bartholomew, G. A. & Tucker, V. A. Control of changes in body temperature, metabolism and circulation by the Agamid lizard, Amphibolurus barbatus. Physiol. Zool. 36, 199–218 (1963).Article
Google Scholar
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 48. https://doi.org/10.18637/jss.v067.i01 (2015).Article
Google Scholar
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26. https://doi.org/10.18637/jss.v082.i13 (2017).Article
Google Scholar
Warton, D. I., Duursma, R. A., Falster, D. S. & Taskinen, S. smatr 3- an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 3, 257–259. https://doi.org/10.1111/j.2041-210X.2011.00153.x (2012).Article
Google Scholar
Halsey, L. G. et al. Flexibility, variability and constraint in energy management patterns across vertebrate taxa revealed by long-term heart rate measurements. Funct. Ecol. 33, 260–272. https://doi.org/10.1111/1365-2435.13264 (2019).Article
Google Scholar More