More stories

  • in

    Laboratory and semi-field efficacy evaluation of permethrin–piperonyl butoxide treated blankets against pyrethroid-resistant malaria vectors

    All methods were performed in accordance with the relevant guidelines and regulations.Study siteThe laboratory experiments on regeneration and wash resistance were conducted at the KCMUCo-PAMVERC Insecticide Testing Facility; while experimental hut study was carried out at Harusini, the facility’s field site located at Mabogini village (S03˚22.764’ E03˚720.793’), adjacent to Lower Moshi rice irrigation scheme in north-eastern Tanzania. The dominant vector at this site is An. arabiensis with moderate level of resistance to pyrethroids conferred by both oxidase and esterase activities32. In this study, pyrethroid-resistant laboratory reared An. gambiae Muleba-Kis mosquitoes were released into the huts for the release-recapture experiment.Test systemsNon-blood fed, 2–5 day old females of susceptible An. gambiae s.s. Kisumu strain and pyrethroid resistant An. gambiae s.s Muleba-Kis strain were used for the evaluation of efficacy in the laboratory (phase I). The Muleba-Kis strain has been colonized for more than 8 years and it is resistant to permethrin with fixed L1014S kdr frequency and metabolic resistance through increased oxidase activity has also been reported21. Only An. gambiae s.s Muleba-Kis were used in release-recapture experiments. The Kisumu strain is fully susceptible to insecticides and free of any detectable insecticide resistance mechanisms. The strain originated from Kisumu, Kenya and has been colonized for many years in laboratory. At the KCMUCo-PAMVERC Moshi insectary, the adult Kisumu strain mosquitoes are reared at a temperature of 24–27 °C, 75 ± 10% relative humidity (RH) and maintained under a dark:light regime of 12:12 h. The Muleba-Kis mosquitoes used for the release-recapture experiments were reared in the field insectary under ambient temperature and relative humidity and treated as previously explained21. The susceptibility status of these colonies is checked every three months using WHO susceptibility test33 and, CDC bottle bioassay test34. The colonies are regularly genotyped for kdr mutations using TaqMan assays35. To maintain the resistance of Muleba-Kis, larvae are frequently selected with alpha-cypermethrin.Regeneration timeTo determine the regeneration time of the insecticide-treated blankets, blankets were cut into 25 × 25 cm pieces and tested before washing and then washed and dried three times consecutively following WHO recommended procedures for LLINs36. The pieces were then re-tested after one, two, three, six and seven days post-washing using WHO cylinders against susceptible An. gambiae s.s (Kisumu).Graphs for 24-h mortality and 60 min knock down (KD) correlating to insecticide bioavailability, as measured by 3 min exposure in cylinder bioassays, were established before and after washing blanket pieces three times consecutively in a day, and tested within a maximum of seven days post-washing. The time in days required to reach initial mortality or 60 min KD plateau is the period required for full regeneration of insecticide-treated blanket.Wash resistanceWHO cylinder bioassays36 were used to assess the wash resistance for the blanket pieces washed 0, 5, 10, 15 and 20 times at the intervals equivalent to the regeneration time. Four pieces cut from 4 permethrin and 4 untreated blankets were used as positive and negative control respectively, against 4 pieces cut from 4 PBO–permethrin blankets.Bioassay proceduresFive, non-blood fed, 2–5 day old An. gambiae Kisumu or An. gambiae Muleba-Kis mosquitoes were exposed for 3 min or 30 min to blanket pieces in WHO cylinder. Bioassays were carried out at 27 ± 2 °C and 75 ± 10% RH. Knock-down was scored after 60 min post-exposure and mortality after 24 h. Fifty mosquitoes (5 mosquitoes per cylinder) were used on each 25 × 25 cm piece of blanket sample. After exposure, the mosquitoes were held for 24 h with access to 10% glucose solution in the paper cups covered with a net material. Mosquitoes exposed to untreated blanket were referred as a negative control.WHO tunnel test methodBlanket pieces which recorded ≤ 80% mortality in cylinder bioassay were tested in the tunnel assay using WHO guidelines. The tunnel was made of an acrylic square cylinder (25 cm in height, 25 cm in width, and 60 cm in length) divided into two sections using a blanket-covered frame fitted into a slot across the tunnel. During the assays a guinea pig was held in a small wooden cage (as a bait) in one of the sections and 50, non-blood fed, female An. gambiae Kisumu or An. gambiae Muleba-Kis aged 5–8 days were released in the other section at dusk and left overnight (13 h) for experimentation at 27 ± 2 °C and 75 ± 10% RH. The blanket surface was deliberately holed (nine 1-cm holes) to allow mosquitoes to contact the blanket material and penetrate to the baited chamber. Treated blankets were tested concurrently together with an untreated blanket. Scoring for the numbers of mosquitoes found alive or dead, fed or unfed, in each section were done in the morning. Mosquitoes found alive were removed and held in paper cups with labels corresponding to each tunnel sections under controlled conditions (25–27 °C and 75–85% RH) and fed on 10% glucose solution to monitor for delayed mortality post exposurely. Outcomes recorded were: mosquito penetration, blood feeding and mortality.Washing of blankets and whole nets for hut trialBlankets and whole nets were separately washed following WHOPES guidelines. In brief, each blanket/net was washed in Savon de Marseilles soap solution (2 g/L) for 10 min: 3 min stirring, 4 min soaking, then another 3 min stirring. This was followed by 2 rinse cycles of the same duration with water only. The water pH was 6 for all washes. The mean water hardness was within the WHOPES limit of ≤ 89 ppm. All nets used in the experimental hut study were cut with holes (4 cm × 4 cm) to simulate the conditions of a torn net. While nets were washed 20 times as per guidelines, blankets were only washed 10 times. To simulate a situation in emergence situations where washing is less frequent due to water scarcity30,31.Experimental hut trial:experimental hut designExperimental hut study was done in Lower Moshi using typical East African experimental huts design as described in the WHOPES35. Huts were constructed with brick walls and featured with cement plaster on the inside and a ceiling board, a metal iron sheet roof, open eaves with window and veranda traps on each side and window traps. Slight modifications from the original structure were made by installing metal eave baffles on two sides. The baffles allow mosquito entry but prevent exits. The window traps were used to collect mosquitoes that tend to exit the huts.Test item labelling, washing and perforatingBoth blankets and LLINs for the trial were distinctively labelled with fabric labels that withstand washes. For wash resistance, the blankets and nets were separately washed according to a protocol adapted from the standard WHO washing procedure36 at the interval equivalent to the regeneration time established in the laboratory for blanket and LLIN respectively. Before testing in the experimental huts, all nets were deliberately holed i.e. 30 holes measuring 4 × 4 cm were made in each net, 9 holes in each of the long side panels, and 6 holes at each short side (head- and foot-side panels) to enhance blood-feeding on the control arm.Test items packagingEach blanket and net were sealed in a plastic bag and then packed in the large plastic container. Each container was labelled for a single treatment to avoid cross contamination between test items.Experimental hut decontaminationA cone assay with 10 susceptible mosquitoes was performed on one wall per hut to rule out any contamination of the wall surface. Only huts with 24 h mortality of susceptible mosquitoes  More

  • in

    Effects of aspect on phenology of Larix gmelinii forest in Northeast China

    La Sorte, F. A., Johnston, A. & Ault, T. R. Global trends in the frequency and duration of temperature extremes. Clim. Change 166, 1–2 (2021).Article 
    ADS 

    Google Scholar 
    Hansen, J., Sato, M., Ruedy, R., Lo, K. & Medina-Elizade, M. Global temperature change. Proc. Natl. Acad. Sci. U.S.A. 103(39), 14288–14293 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Borchert, R., Robertson, K., Schwartz, M. D. & Williams-Linera, G. Phenology of temperate trees in tropical climates. Int. J. Biometeorol. 50, 57–65 (2005).Article 
    ADS 

    Google Scholar 
    Misra, G., Sarah, A. & Menzel, A. Ground and satellite phenology in alpine forests are becoming more heterogeneous across higher elevations with warming. Agric. For. Meteorol. 303, 108383 (2021).Article 
    ADS 

    Google Scholar 
    Zuo, Z., Xiao, D. & Qiong, H. Role of the warming trend in global land surface air temperature variations. Sci. China Earth Sci. 6, 866–871 (2021).Article 
    ADS 

    Google Scholar 
    Ling, Y. et al. Assessing the accuracy of forest phenological extraction from sentinel-1 C-band backscatter measurements in deciduous and coniferous forests. Remote Sens. 14(3), 674 (2022).Article 
    ADS 

    Google Scholar 
    Zhang, H., Yuan, W., Liu, S., Dong, W. & Fu, Y. Sensitivity of flowering phenology to changing temperature in China. J. Geophys. Res. Biogeosci. 120(8), 1658–1665 (2015).Article 

    Google Scholar 
    Cho, J. G. et al. Apple phenology occurs earlier across South Korea with higher temperatures and increased precipitation. Int. J. Biometeorol. 65, 265–276 (2020).Article 

    Google Scholar 
    Li, C. et al. Response of vegetation phenology to the interaction of temperature and precipitation changes in Qilian mountains. Remote Sens. 14(5), 1248 (2022).Article 
    ADS 

    Google Scholar 
    Berra, E. F. & Gaulton, R. Remote sensing of temperate and boreal forest phenology: A review of progress, challenges and opportunities in the intercomparison of in-situ and satellite phenological metrics. For. Ecol. Manage. 480, 118663 (2021).Article 

    Google Scholar 
    Zhang, Y. & Li, M. A new method for monitoring start of season (SOS) of forest based on multisource remote sensing. Int. J. Appl. Earth Obs. Geoinf. 104, 102556 (2021).
    Google Scholar 
    Zhang, X. et al. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 84(3), 471–475 (2003).Article 
    ADS 

    Google Scholar 
    Thapa, S., Garcia Millan, V. E. & Eklundh, L. Assessing forest phenology: A multi-scale comparison of near-surface (UAV, spectral reflectance sensor, PhenoCam) and Satellite (MODIS, Sentinel-2) remote sensing. Remote Sens. 13, 1597 (2021).Article 
    ADS 

    Google Scholar 
    Bórnez, K., Descals, A., Verger, A. & Peñuelas, J. Land surface phenology from VEGETATION and PROBA-V data: Assessment over deciduous forests. Int. J. Appl. Earth Observ. Geoinf. 84, 101974 (2020).
    Google Scholar 
    Yu, L., Yan, Z. & Zhang, S. Forest phenology shifts in response to climate change over China–Mongolia–Russia international economic corridor. Forests 11, 757 (2020).Article 

    Google Scholar 
    Lara, C. et al. Climatic regulation of vegetation phenology in protected areas along Western South America. Remote Sens. 13, 2590 (2021).Article 
    ADS 

    Google Scholar 
    Silveira, E. M. O. et al. Forest phenoclusters for Argentina based on vegetation phenology and climate. Ecol. Appl. 32, 2526 (2022).Article 

    Google Scholar 
    Tatalovich, Z., Wilson, J. P. & Cockburn, M. A comparison of thiessen polygon, kriging, and spline models of potential UV exposure. Cartogr. Geogr. Inf. Sci. 33, 217–231 (2006).Article 

    Google Scholar 
    Choubin, B. et al. Spatiotemporal dynamics assessment of snow cover to infer snowline elevation mobility in the mountainous regions. Cold Reg. Sci. Technol. 167, 102870 (2019).Article 

    Google Scholar 
    Rojas, R., Flexas, J. & Coopman, R. E. Particularities of the highest elevation treeline in the world: Polylepis tarapacana Phil. as a model to study ecophysiological adaptations to extreme environments. Flora 292, 152076 (2022).Article 

    Google Scholar 
    Du, J. et al. Interacting effects of temperature and precipitation on climatic sensitivity of spring vegetation green-up in arid mountains of China. Agric. For. Meteorol. 269–270, 71–77 (2019).Article 
    ADS 

    Google Scholar 
    Du, J. et al. Daily minimum temperature and precipitation control on spring phenology in arid-mountain ecosystems in China. Int. J. Climatol. 40, 2568–2579 (2020).Article 

    Google Scholar 
    He, Z. et al. Impacts of recent climate extremes on spring phenology in arid-mountain ecosystems in China. Agric. For. Meteorol. 260–261, 31–40 (2018).Article 
    ADS 

    Google Scholar 
    He, Z. et al. Assessing temperature sensitivity of subalpine shrub phenology in semi-arid mountain regions of China. Agric. For. Meteorol. 213, 42–52 (2015).Article 
    ADS 

    Google Scholar 
    Mu, C., Lu, H., Wang, B., Bao, X. & Cui, W. Short-term effects of harvesting on carbon storage of boreal Larix gmelinii–Carex schmidtii forested wetlands in Daxing’anling, northeast China. For. Ecol. Manage. 293, 140–148 (2013).Article 

    Google Scholar 
    Hu, T. et al. Effects of fire on soil respiration and its components in a Dahurian larch (Larix gmelinii) forest in northeast China: Implications for forest ecosystem carbon cycling. Geoderma 402, 115273 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Nyikadzino, B., Chitakira, M. & Muchuru, S. Rainfall and runoff trend analysis in the Limpopo river basin using the Mann Kendall statistic. Phys. Chem. Earth 117, 102870 (2020).Article 

    Google Scholar 
    Gocic, M. & Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Change 100, 172–182 (2013).Article 
    ADS 

    Google Scholar 
    Fang, Y. et al. Changing contribution rate of heavy rainfall to the rainy season precipitation in Northeast China and its possible causes. Atmos. Res. 197, 437–445 (2017).Article 

    Google Scholar 
    Piao, S. et al. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob. Change Biol. 17, 3228–3239 (2011).Article 
    ADS 

    Google Scholar 
    Ahas, R., Aasa, A., Menzel, A., Fedotova, V. G. & Scheifinger, H. Changes in European spring phenology. Int. J. Climatol. 22, 1727–1738 (2002).Article 

    Google Scholar 
    Liang, L., Henebry, G. M., Liu, L., Zhang, X. & Hsu, L. C. Trends in land surface phenology across the conterminous United States (1982–2016) analyzed by NEON domains. Ecol. Appl. 31, e02323 (2021).Article 

    Google Scholar 
    Fu, Y. H. et al. Decreasing control of precipitation on grassland spring phenology in temperate China. Glob. Ecol. Biogeogr. 30, 490–499 (2020).Article 

    Google Scholar 
    Aze, T. Unraveling ecological signals from a global warming event of the past. Proc. Natl. Acad. Sci. U.S.A. 119, e2201495119 (2022).Article 

    Google Scholar 
    Menzel, A., Estrella, N. & Testka, A. Temperature response rates from long-term phenological records. Climate Res. 30, 21–28 (2005).Article 
    ADS 

    Google Scholar 
    Wang, H., Liu, D., Lin, H., Montenegro, A. & Zhu, X. NDVI and vegetation phenology dynamics under the influence of sunshine duration on the Tibetan plateau. Int. J. Climatol. 35, 687–698 (2015).Article 

    Google Scholar 
    Lesica, P. & Kittelson, P. M. Precipitation and temperature are associated with advanced flowering phenology in a semi-arid grassland. J. Arid Environ. 74, 1013–1017 (2010).Article 
    ADS 

    Google Scholar 
    Shen, M., Piao, S., Cong, N., Zhang, G. & Jassens, I. A. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Glob. Change Biol. 21, 3647–3656 (2015).Article 
    ADS 

    Google Scholar 
    Li, Z. et al. Spatio-temporal responses of cropland phenophases to climate change in Northeast China. J. Geog. Sci. 22, 29–45 (2012).Article 
    CAS 

    Google Scholar 
    Badeck, F. W. et al. Responses of spring phenolgy to climate change. New Phytol. 162, 295–309 (2004).Article 

    Google Scholar 
    Peng, H., Xia, H., Chen, H., Zhi, P. & Xu, Z. Spatial variation characteristics of vegetation phenology and its influencing factors in the subtropical monsoon climate region of southern China. PLoS ONE 16, e0250825 (2021).Article 
    CAS 

    Google Scholar 
    Zhang, J. et al. NIRv and SIF better estimate phenology than NDVI and EVI: Effects of spring and autumn phenology on ecosystem production of planted forests. Agric. For. Meteorol. 315, 108819 (2022).Article 
    ADS 

    Google Scholar 
    Yu, X., Zhuang, D., Hou, X. & Chen, H. Forest phenological patterns of Northeast China inferred from MODIS data. J. Geog. Sci. 15, 239–246 (2005).Article 

    Google Scholar 
    Chen, X. & Xu, L. Phenological responses of Ulmus pumila (Siberian Elm) to climate change in the temperate zone of China. Int. J. Biometeorol. 56, 695–706 (2012).Article 
    ADS 

    Google Scholar 
    Ma, X., Bai, H., He, Y. & Li, S. The vegetation RSP of Qinling Mountains based on the NDVI and the response of temperature to it. Appl. Mech. Mater. 700, 394–399 (2014).Article 

    Google Scholar  More

  • in

    Seasonal range fidelity of a megaherbivore in response to environmental change

    Richard, E., Said, S., Hamann, J. L. & Gaillard, J. M. Daily, seasonal and annual variations in individual home range overlap of two sympatric spacies of deer. Can. J. Zool. 92, 853–859 (2014).Article 

    Google Scholar 
    Sorensen, A. A., Stenhouse, G. B., Bourbonnais, M. L. & Nelson, T. A. Effects of habitat quality and anthropogenic disturbance on grizzly bear (Ursus arctos horribilis) home-range fidelity. Can. J. Zool. 93, 857–865 (2015).Article 

    Google Scholar 
    van Beest, F. M., Rivrud, I. M., Loe, L. E., Milner, J. M. & Mysterud, A. What determines variation in home range size across spatiotemporal scales in a large browsing herbivore?. J. Anim. Ecol. 80, 771–785 (2011).Article 

    Google Scholar 
    Naidoo, R., Du, P., Weaver, G. S. L. C., Jago, M. & Wegmann, M. Factors affecting intraspecific variation in home range size of a large African herbivore. Landsc. Ecol. 27, 1523–1534 (2012).Article 

    Google Scholar 
    Bose, S. et al. Implications of fidelity and philopatry for the population structure of female black-tailed deer. Behav. Ecol. 28, 983–990 (2017).Article 

    Google Scholar 
    Northrup, J. M., Anderson, C. R. Jr. & Wittemyer, G. Environmental dynamics and anthropogenic development alter philopatry and space-use in a North American cervid. Divers. Distrib. 22, 547–557 (2016).Article 

    Google Scholar 
    Passadore, C., Möller, L., Diaz-aguirre, F. & Parra, G. J. High site fidelity and restricted ranging patterns in southern Australian bottlenose dolphins. Ecol. Evol. 8, 242–256 (2018).Article 

    Google Scholar 
    Morales, J. M. et al. Building the bridge between animal movement and population dynamics. Philos. Trans. R. Soc. B Biol. Sci. 365, 2289–2301 (2010).Article 

    Google Scholar 
    Shaw, A. K. Causes and consequences of individual variation in animal movement. Mov. Ecol. 8, 1–12 (2020).Article 

    Google Scholar 
    Morrison, T. A. et al. Drivers of site fidelity in ungulates. J. Anim. Ecol. 00, 1–12 (2021).
    Google Scholar 
    Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2021).Article 

    Google Scholar 
    Barraquand, F. & Benhamou, S. Animal movements in heterogeneous landscapes: Identifying profitable places and homogeneous movement bouts. Ecology 89, 3336–3348 (2008).Article 

    Google Scholar 
    Mueller, T. & Fagan, W. F. Search and navigation in dynamic environments: From individual behaviors to population distributions. Oikos 117, 654–664 (2008).Article 

    Google Scholar 
    Sawyer, H., Merkle, J. A., Middleton, A. D., Dwinnell, S. P. H. & Monteith, K. L. Migratory plasticity is not ubiquitous among large herbivores. J. Anim. Ecol. 88, 450–460 (2019).
    Google Scholar 
    Shakeri, Y. N., White, K. S. & Waite, J. N. Staying close to home: Ecological constraints on space use and range fidelity in a mountain ungulate. Ecol. Evol. 11, 11051–11064 (2021).Article 

    Google Scholar 
    Damuth, J. Home range, home range overlap, and species energy use among herbivorous mammals. Biol. J. Linn. Soc. 15, 185–193 (1981).Article 

    Google Scholar 
    Lindstedt, S. L., Miller, B. J. & Buskirk, S. W. Home range, time, and body size in mammals. Ecol. Soc. Am. 67, 413–418 (1986).
    Google Scholar 
    Ofstad, E. G., Herfindal, I., Solberg, E. J. & Sæther, B. E. Home ranges, habitat and body mass: Simple correlates of home range size in ungulates. Proc. R. Soc. B Biol. Sci. 283, 20161234 (2016).Article 

    Google Scholar 
    Gehr, B. et al. Stay home, stay safe—Site familiarity reduces predation risk in a large herbivore in two contrasting study sites. J. Anim. Ecol. 89, 1329–1339 (2020).Article 

    Google Scholar 
    Sach, F., Dierenfeld, E. S., Langley-Evans, S. C., Watts, M. J. & Yon, L. African savanna elephants (Loxodonta africana) as an example of a herbivore making movement choices based on nutritional needs. PeerJ 7, 1–27 (2019).Article 

    Google Scholar 
    Pretorius, Y. et al. Diet selection of African elephant over time shows changing optimization currency. Oikos 121, 2110–2120 (2012).Article 

    Google Scholar 
    Chamaillé-Jammes, S., Valeix, M. & Fritz, H. Managing heterogeneity in elephant distribution: Interactions between elephant population density and surface-water availability. J. Appl. Ecol. 44, 625–633 (2007).Article 

    Google Scholar 
    Purdon, A. & van Aarde, R. J. Water provisioning in Kruger National Park alters elephant spatial utilisation patterns. J. Arid Environ. 141, 45–51 (2017).Article 
    ADS 

    Google Scholar 
    Shannon, G., Matthews, W. S., Page, B. R., Parker, G. E. & Smith, R. J. The affects of artificial water availability on large herbivore ranging patterns in savanna habitats: A new approach based on modelling elephant path distributions. Divers. Distrib. 15, 776–783 (2009).Article 

    Google Scholar 
    Kos, M. et al. Seasonal diet changes in elephant and impala in mopane woodland. Eur. J. Wildl. Res. 58, 279–287 (2012).Article 

    Google Scholar 
    Shannon, G., Mackey, R. L. & Slotow, R. Diet selection and seasonal dietary switch of a large sexually dimorphic herbivore. Acta Oecologica 46, 48–55 (2013).Article 
    ADS 

    Google Scholar 
    Loarie, S. R., van Aarde, R. J. & Pimm, S. L. Elephant seasonal vegetation preferences across dry and wet savannas. Biol. Conserv. 142, 3099–3107 (2009).Article 

    Google Scholar 
    Scogings, P. F. et al. Seasonal variations in nutrients and secondary metabolites in semi-arid savannas depend on year and species. J. Arid Environ. 114, 54–61 (2015).Article 
    ADS 

    Google Scholar 
    Birkett, P. J., Vanak, A. T., Muggeo, V. M. R., Ferreira, S. M. & Slotow, R. Animal perception of seasonal thresholds: Changes in elephant movement in relation to rainfall patterns. PLoS ONE 7, 1–8 (2012).Article 

    Google Scholar 
    Cushman, S. A., Chase, M. & Griffin, C. Elephants in space and time. Oikos 109, 331–341 (2005).Article 

    Google Scholar 
    Bohrer, G., Beck, P. S., Ngene, S. M., Skidmore, A. K. & Douglas-Hamilton, I. Elephant movement closely tracks precipitation-driven vegetation dynamics in a Kenyan forest-savanna landscape. Mov. Ecol. 2, 1–12 (2014).Article 

    Google Scholar 
    Purdon, A., Mole, M. A., Chase, M. J. & van Aarde, R. J. Partial migration in savanna elephant populations distributed across southern Africa. Sci. Rep. 8, 1–11 (2018).Article 
    CAS 

    Google Scholar 
    Shannon, G., Page, B. R., Duffy, K. J. & Slotow, R. The ranging behaviour of a large sexually dimorphic herbivore in response to seasonal and annual environmental variation. Austral Ecol. 35, 731–742 (2010).Article 

    Google Scholar 
    Tsalyuk, M., Kilian, W., Reineking, B. & Getz, W. M. Temporal variation in resource selection of African elephants follows long-term variability in resource availability. Ecol. Monogr. 89, 1–19 (2019).Article 

    Google Scholar 
    Thaker, M., Prins, H. H. T., Slotow, R., Vanak, A. T. & Gupte, P. R. Fine-scale tracking of ambient temperature and movement reveals shuttling behavior of elephants to water. Front. Ecol. Evol. 7, 1–12 (2019).Article 

    Google Scholar 
    Govender, N., Trollope, W. S. W. & Van Wilgen, B. W. The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. J. Appl. Ecol. 43, 748–758 (2006).Article 

    Google Scholar 
    MacFadyen, S., Hui, C., Verburg, P. H. & Van Teeffelen, A. J. A. Spatiotemporal distribution dynamics of elephants in response to density, rainfall, rivers and fire in Kruger National Park, South Africa. Divers. Distrib. 25, 880–894 (2019).Article 

    Google Scholar 
    Edwards, M. A., Nagy, J. A. & Derocher, A. E. Low site fidelity and home range drift in a wide-ranging, large Arctic omnivore. Anim. Behav. 77, 23–28 (2009).Article 

    Google Scholar 
    Switzer, P. Site fidelity in predictable and unpredictable habitats. Evol. Ecol. 7, 533–555 (1993).Article 

    Google Scholar 
    Kranstauber, B., Kays, R., Lapoint, S. D., Wikelski, M. & Safi, K. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. J. Anim. Ecol. 81, 738–746 (2012).Article 

    Google Scholar 
    Kranstauber, B., Smolla, M. & Safi, K. Similarity in spatial utilization distributions measured by the earth mover’s distance. Methods Ecol. Evol. 8, 155–160 (2017).Article 

    Google Scholar 
    Wartmann, F., Juarez, C. & Fernandez-duque, E. Size, site fidelity, and overlap of home ranges and core areas in the socially monogamous owl monkey (Aotus azarae) of Northern Argentina. Int. J. Primatol. 35, 919–939 (2014).Article 

    Google Scholar 
    Pringle, R. M. Elephants as agents of habitat creation for small vertebrates at the patch scale. Ecology 89, 26–33 (2008).Article 

    Google Scholar 
    Valeix, M. et al. Elephant-induced structural changes in the vegetation and habitat selection by large herbivores in an African savanna. Biol. Conserv. 144, 902–912 (2011).Article 

    Google Scholar 
    Coverdale, T. C. et al. Elephants in the understory: opposing direct and indirect effects of consumption and ecosystem engineering by megaherbivores. Ecology 97, 3219–3230 (2016).Article 

    Google Scholar 
    Gertenbach, W. Rainfall patterns in the Kruger National Park. Koedoe 23, 35–43 (1980).Article 

    Google Scholar 
    Venter, F. J., Scholes, R. J. & Eckhardt, H. C. The abiotic template and its associated vegetation pattern. In The Kruger Experience (eds du Toit, J. T. et al.) 83–129 (Island Press, 2003).
    Google Scholar 
    Young, K. D., Ferreira, S. M. & van Aarde, R. J. The influence of increasing population size and vegetation productivity on elephant distribution in the Kruger National Park. Austral Ecol. 34, 329–342 (2009).Article 

    Google Scholar 
    Ferreira, S. M., Greaver, C. & Simms, C. Elephant population growth in Kruger National Park, South Africa, under a landscape management approach. Koedoe 59, 1–6 (2017).Article 

    Google Scholar 
    Brownrigg, R. Package ‘Maps’: Draw Geographical Maps (2022).Kranstauber, B. & Smolla, M. Move: Visualizing and analyzing animal track data. R package version 2.1.0 (2013).R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. URL https://www.R-project.org/ (2017).Horne, J. S., Garton, E. O., Krone, S. M. & Lewis, J. S. Analyzing animal movement using Brownian bridges. Ecology 88, 2354–2363 (2007).Article 

    Google Scholar 
    Wato, Y. A. et al. Movement patterns of African elephants (Loxodonta africana) in a semi-arid savanna suggest that they have information on the location of dispersed water sources. Front. Ecol. Evol. 6, 1–8 (2018).Article 

    Google Scholar 
    Polansky, L., Kilian, W. & Wittemyer, G. Elucidating the significance of spatial memory on movement decisions by African savannah elephants using state-space models. Proc. R. Soc. B Biol. Sci. 282, 1–7 (2015).
    Google Scholar 
    Archibald, S. & Scholes, R. J. Leaf green-up in a semi-arid African savanna–separating tree and grass responses to environmental cues. J. Veg. Sci. 18, 583–594 (2007).
    Google Scholar 
    Majozi, N. P. et al. Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa. Hydrol. Earth Syst. Sci. 21, 3401–3415 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Dodge, S. et al. The environmental-data automated track annotation (Env-DATA) system: Linking animal tracks with environmental data. Mov. Ecol. 1, 1–14 (2013).Article 

    Google Scholar 
    Didan, K. MOD13Q1 MODIS/terra vegetation indices 16-day L3 global 250m SIN Grid V006. NASA EOSDIS Land Process. DAAC https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).Redfern, J. V., Grant, C. C., Gaylard, A. & Getz, W. M. Surface water availability and the management of herbivore distributions in an African savanna ecosystem. J. Arid Environ. 63, 406–424 (2005).Article 
    ADS 

    Google Scholar 
    Young, K. D., Ferreira, S. M. & van Aarde, R. J. Elephant spatial use in wet and dry savannas of southern Africa. J. Zool. 278, 189–205 (2009).Article 

    Google Scholar 
    Goldenberg, S. Z., Douglas-Hamilton, I. & Wittemyer, G. Inter-generational change in African elephant range use is associated with poaching risk, primary productivity and adult mortality. Proc. R. Soc. B Biol. Sci. 285, 1–8 (2018).
    Google Scholar 
    Woolley, L.-A. et al. Population and individual elephant response to a catastrophic fire in Pilanesberg National Park. PLoS ONE 3, 1–10 (2008).Article 

    Google Scholar 
    Eby, S. L., Anderson, T. M., Mayemba, E. P. & Ritchie, M. E. The effect of fire on habitat selection of mammalian herbivores: The role of body size and vegetation characteristics. J. Anim. Ecol. 83, 1196–1205 (2014).Article 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodal Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    Mazerolle, M. J. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c) (2020).van Moorter, B. et al. Memory keeps you at home: A mechanistic model for home range emergence. Oikos 118, 641–652 (2009).Article 

    Google Scholar 
    Guldemond, R. A. R., Purdon, A. & van Aarde, R. J. A systematic review of elephant impact across Africa. PLoS ONE 12, 1–12 (2017).Article 

    Google Scholar 
    Abraham, J. O., Goldberg, E. R., Botha, J. & Staver, A. C. Heterogeneity in African savanna elephant distributions and their impacts on trees in Kruger National Park, South Africa. Ecol. Evol. 11, 5624–5634 (2021).Article 

    Google Scholar 
    Wall, J., Douglas-Hamilton, I. & Vollrath, F. Elephants avoid costly mountaineering. Curr. Biol. 16, 527–529 (2006).Article 

    Google Scholar 
    Presotto, A., Fayrer-Hosken, R., Curry, C. & Madden, M. Spatial mapping shows that some African elephants use cognitive maps to navigate the core but not the periphery of their home ranges. Anim. Cogn. 22, 251–263 (2019).Article 

    Google Scholar 
    Landman, M., Schoeman, D. S., Hall-Martin, A. J. & Kerley, G. I. H. Understanding long-term variations in an elephant piosphere effect to manage impacts. PLoS ONE 7, 1–11 (2012).Article 

    Google Scholar 
    Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).Article 

    Google Scholar 
    Hamm, M. & Drossel, B. Habitat heterogeneity hypothesis and edge effects in model metacommunities. J. Theor. Biol. 426, 40–48 (2017).Article 
    ADS 

    Google Scholar 
    Katayama, N. et al. Landscape heterogeneity-biodiversity relationship: Effect of range size. PLoS ONE 9, 1–8 (2014).Article 

    Google Scholar 
    Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).Article 

    Google Scholar 
    O’Connor, T. G., Goodman, P. S. & Clegg, B. A functional hypothesis of the threat of local extirpation of woody plant species by elephant in Africa. Biol. Conserv. 136, 329–345 (2007).Article 

    Google Scholar 
    Codron, J. et al. Elephant (Loxodonta africana) diets in Kruger National Park, South Africa: Spatial and landscape differences. J. Mammal. 87, 27–34 (2006).Article 

    Google Scholar 
    Mduma, S. A. R., Sinclair, A. R. E. & Hilborn, R. Food regulates the Serengeti wildebeest: A 40-year record. J. Anim. Ecol. 68, 1101–1122 (1999).Article 

    Google Scholar 
    Ogutu, J. O. & Owen-Smith, N. ENSO, rainfall and temperature influences on extreme population declines among African savanna ungulates. Ecol. Lett. 6, 412–419 (2003).Article 

    Google Scholar 
    Codron, J. et al. Landscape-scale feeding patterns of African elephant inferred from carbon isotope analysis of feces. Oecologia 165, 89–99 (2011).Article 
    ADS 

    Google Scholar 
    Woolley, L.-A., Millspaugh, J. J., Woods, R. J., Page, B. R. & Slotow, R. Intraspecific strategic responses of African elephants to temporal variation in forage quality. J. Wildl. Manag. 73, 827–835 (2009).Article 

    Google Scholar 
    Dube, K. & Nhamo, G. Evidence and impact of climate change on South African national parks. Potential implications for tourism in the Kruger National Park. Environ. Dev. 33, 1–11 (2020).Article 

    Google Scholar 
    Tshipa, A. et al. Partial migration links local surface-water management to large-scale elephant conservation in the world’s largest transfrontier conservation area. Biol. Conserv. 215, 46–50 (2017).Article 

    Google Scholar 
    Nathan, R. et al. Big-data approaches lead to an increased understanding of the ecology of animal movement. Science (80-.) 375, 1–12 (2022).Article 

    Google Scholar 
    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science (80-.) 348, 1222–1232 (2015).Article 
    CAS 

    Google Scholar 
    Mpakairi, K. S., Ndaimani, H., Tagwireyi, P., Zvidzai, M. & Madiri, T. H. Futuristic climate change scenario predicts a shrinking habitat for the African elephant (Loxodonta africana): Evidence from Hwange National Park, Zimbabwe. Eur. J. Wildl. Res. 66, 1–10 (2020).Article 

    Google Scholar 
    Staver, A. C., Wigley-Coetsee, C. & Botha, J. Grazer movements exacerbate grass declines during drought in an African savanna. J. Ecol. 107, 1482–1491 (2019).Article 

    Google Scholar 
    Asner, G. P., Vaughn, N., Smit, I. P. J. & Levick, S. Ecosystem-scale effects of megafauna in African savannas. Ecography (Cop.) 39, 240–252 (2016).Article 

    Google Scholar 
    Shannon, G. et al. Relative impacts of elephant and fire on large trees in a savanna ecosystem. Ecosystems 14, 1372–1381 (2011).Article 

    Google Scholar 
    Mole, M. A., DÁraujo, S. R., van Aarde, R. J., Mitchell, D. & Fuller, A. Coping with heat: Behavioural and physiological responses of savanna elephants in their natural habitat. Conserv. Physiol. 4, 1–11 (2016).Article 

    Google Scholar 
    Ncongwane, K. P., Botai, J. O., Sivakumar, V., Botai, C. M. & Adeola, A. M. Characteristics and long-term trends of heat stress for South Africa. Sustainability 13, 1–20 (2021).Article 

    Google Scholar 
    Lagendijk, G., Mackey, R. L., Page, B. R. & Slotow, R. The effects of herbivory by a mega- and mesoherbivore on tree recruitment in sand forest, South Africa. PLoS ONE 6, 1–9 (2011).Article 

    Google Scholar 
    Wells, H. B. M. et al. Experimental evidence that effects of megaherbivores on mesoherbivore space use are influenced by species’ traits. J. Anim. Ecol. 90, 2510–2522 (2021).Article 

    Google Scholar 
    Thaker, M. et al. Minimizing predation risk in a landscape of multiple predators: Effects on the spatial distribution of African ungulates. Ecology 92, 398–407 (2011).Article 

    Google Scholar 
    Fležar, U. et al. Simulated elephant-induced habitat changes can create dynamic landscapes of fear. Biol. Conserv. 237, 267–279 (2019).Article 

    Google Scholar 
    Brennan, A. et al. Characterizing multispecies connectivity across a transfrontier conservation landscape. J. Appl. Ecol. 57, 1700–1710 (2020).Article 

    Google Scholar 
    Roever, C. L., van Aarde, R. J. & Leggett, K. Functional connectivity within conservation networks: Delineating corridors for African elephants. Biol. Conserv. 157, 128–135 (2013).Article 

    Google Scholar 
    Green, S. E., Davidson, Z., Kaaria, T. & Doncaster, C. P. Do wildlife corridors link or extend habitat? Insights from elephant use of a Kenyan wildlife corridor. Afr. J. Ecol. 56, 860–871 (2018).Article 

    Google Scholar  More

  • in

    Phylogenetic relationships of sleeper gobies (Eleotridae: Gobiiformes: Gobioidei), with comments on the position of the miniature genus Microphilypnus

    Jordan, D. S. A classification of fishes including families and genera as far as know. Stanford University Publications. Bio. Sci. 3, 79–243. https://doi.org/10.5962/bhl.title.161386 (1923).Article 

    Google Scholar 
    Akihito, et al. Evolutionary aspects of gobioid fishes based on an analysis of mitochondrial cytochrome b genes. Gene 259, 5–15 (2000).Article 
    CAS 

    Google Scholar 
    Wang, H.-Y., Tsai, M.-P., Dean, J. & Lee, S.-C. Molecular phylogeny of gobioid Wshes (Perciformes: Gobioidei) based on mitochondrial 12S rRNA sequences. Mol. Phylogenet. Evol. 20, 390–408. https://doi.org/10.1016/j.ympev.2005.05.004 (2001).Article 
    CAS 

    Google Scholar 
    Nelson, J. S., Grande, T. C. & Wilson, M. V. Fishes of the World (Wiley, 2016).Book 

    Google Scholar 
    Fricke, R., Eschmeyer, W. N. & Van der Laan, R. Eschmeyer’s Catalog of fishes: Genera, Species, references. (http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp) (Accessed 15 June 2022).Guimarães-Costa, A. et al. Molecular evidence of two new species of Eleotris (Gobiiformes: Eleotridae) in the western Atlantic. Mol. Phylogenet. Evol. 98, 52–56. https://doi.org/10.1016/j.ympev.2016.01.014 (2016).Article 

    Google Scholar 
    Thacker, C. E. & Hardman, M. A. Molecular phylogeny of basal gobioid fishes: Rhyacichthyidae, Odontobutidae, Xenisthmidae, Eleotridae (Teleostei: Perciformes: Gobioidei). Mol. Phylogenet. Evol. 37, 858–887. https://doi.org/10.1016/j.ympev.2005.05.004 (2005).Article 
    CAS 

    Google Scholar 
    Nordlie, F. G. Life-history characteristics of eleotrid fishes of the western hemisphere, and perils of life in a vanishing environment. Rev. Fish Biol. Fisher. 22(1), 189–224. https://doi.org/10.1007/s11160-011-9229-3 (2012).Article 

    Google Scholar 
    Berra, T. M. Freshwater Fish Distribution (Academic Press, 2001).
    Google Scholar 
    Graham, J. B. Air-Breathing Fishes: Evolution, Diversity, and Adaptation (Academic Press, 1997).Book 

    Google Scholar 
    Thacker, C. E. Phylogeny of Gobioidea and its placement within Acanthomorpha, with a new classification and investigation of diversification and character evolution. Copeia 1, 93–104. https://doi.org/10.1643/CI-08-004 (2009).Article 

    Google Scholar 
    Chakrabarty, P., Davis, M. P. & Sparks, J. S. The first record of a trans-oceanic sister-group relationship between obligate vertebrate troglobites. PLoS One 7, e44083. https://doi.org/10.1371/journal.pone.0044083 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Agorreta, A. et al. Molecular phylogenetics of Gobioidei and phylogenetic placement of European gobies. Mol. Phylogenet. Evol. 69, 619–633. https://doi.org/10.1016/j.ympev.2013.07.017 (2013).Article 

    Google Scholar 
    McCraney, W. T., Thacker, C. E. & Alfaro, M. E. Supermatrix phylogeny resolves goby lineages and reveals unstable root of Gobiaria. Mol. Phylogenet. Evol. 151, 106862. https://doi.org/10.1016/j.ympev.2020.106862 (2020).Article 

    Google Scholar 
    Karl, S. A. & Avise, J. C. Balancing selection at allozyme loci in oysters: Implications from nuclear RFLPs. Science 256, 100. https://doi.org/10.1126/science.1348870 (1992).Article 
    ADS 
    CAS 

    Google Scholar 
    Hey, J. & Machado, C. A. The study of structured populations—New hope for a difficult and divided science. Nat. Rev. Genet. 4, 535–543. https://doi.org/10.1038/nrg1112 (2003).Article 
    CAS 

    Google Scholar 
    Castroviejo-Fisher, S., Guayasamin, J. M., Gonzalez-Voyer, A. & Vilà, C. Neotropical diversification seen through glassfrogs. J. Biogeogr. 41, 66–80. https://doi.org/10.1111/jbi.12208 (2014).Article 

    Google Scholar 
    Dornburg, A., Townsend, J. P., Friedman, M. & Near, T. J. Phylogenetic informativeness reconciles ray-finned fish molecular divergence times. BMC Evol. Biol. 14, 169. https://doi.org/10.1186/s12862-014-0169-0 (2014).Article 

    Google Scholar 
    Hundt, P. J., Iglésias, S. P., Hoey, A. S. & Simons, A. M. A multilocus molecular phylogeny of combtooth blennies (Percomorpha: Blennioidei: Blenniidae): Multiple invasions of intertidal habitats. Mol. Phylogenet. Evol. 70, 47–56. https://doi.org/10.1016/j.ympev.2013.09.001 (2014).Article 

    Google Scholar 
    Olave, M., Avila, L. J., Sites, J. W. & Morando, M. Multilocus phylogeny of the widely distributed South American lizard clade Eulaemus (Liolaemini, Liolaemus). Zool. Scr. 43, 323–337. https://doi.org/10.1111/zsc.12053 (2014).Article 

    Google Scholar 
    Meyer, B. S., Matschiner, M. & Salzburger, W. A tribal level phylogeny of Lake Tanganyika cichlid fishes based on a genomic multi-marker approach. Mol. Phylogenet. Evol. 83, 56–71. https://doi.org/10.1016/j.ympev.2014.10.009 (2015).Article 

    Google Scholar 
    Jønsson, K. A. et al. A supermatrix phylogeny of corvoid passerine birds (Aves: Corvides). Mol. Phylogenet. Evol. 94, 87–94. https://doi.org/10.1016/j.ympev.2015.08.020 (2016).Article 

    Google Scholar 
    Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475(7357), 493–496. https://doi.org/10.1038/nature10231 (2011).Article 
    CAS 

    Google Scholar 
    Frantz, R. S. X-efficiency: Theory, Evidence and Applications Vol. 2 (Springer Science & Business Media, 2013).
    Google Scholar 
    Bessa-Silva, A. et al. The roles of vicariance and dispersal in the differentiation of two species of the Rhinella marina species complex. Mol. Phylogenet. Evol. 145, 106723. https://doi.org/10.1016/j.ympev.2019.106723 (2020).Article 

    Google Scholar 
    Leutenegger, W. Maternal-fetal weight relationships in primates. Folia Primatol. 20(4), 280–293. https://doi.org/10.1159/000155580 (1973).Article 
    CAS 

    Google Scholar 
    Yeh, J. The effect of miniaturized body size on skeletal morphology in frogs. Evolution 56(3), 628–641. https://doi.org/10.1111/j.0014-3820.2002.tb01372.x (2002).Article 

    Google Scholar 
    Daza, J. D. et al. An enigmatic miniaturized and attenuate whole lizard from the Mid-Cretaceous amber of Myanmar. Breviora 563(1), 1–18. https://doi.org/10.3099/MCZ49.1 (2018).Article 

    Google Scholar 
    Hanken, J. & Wake, D. B. Miniaturization of body size: Organismal consequences and evolutionary significance. Annu. Rev. Ecol. Evol. Syst. 24(1), 501–519. https://doi.org/10.1146/annurev.es.24.110193.002441 (1993).Article 

    Google Scholar 
    Britz, R. & Conway, K. W. Osteology of Paedocypris, a miniature and highly developmentally truncated fish (Teleostei: Ostariophysi: Cyprinidae). J. Morphol. 270(4), 389–412. https://doi.org/10.1002/jmor.10698 (2009).Article 
    CAS 

    Google Scholar 
    Britz, R., Conway, K. W. & Ruber, L. Spectacular morphological novelty in a miniature cyprinid fish, Danionella dracula n. sp.. Proc. R. Soc. Lond. 276(1665), 2179–2186. https://doi.org/10.1098/rspb.2009.0141 (2009).Article 

    Google Scholar 
    Weitzman, S. H. & Vari, R. P. Miniaturization in South American freshwater fishes; an overview and discussion. Proc. Biol. Soc. Wash. 101(2), 444–465 (1988).
    Google Scholar 
    Toledo-Piza, M., Mattox, G. M. & Britz, R. Priocharax nanus, a new miniature characid from the rio Negro, Amazon basin (Ostariophysi: Characiformes), with an updated list of miniature Neotropical freshwater fishes. Neotrop. Ichthyol. 12(2), 229–246. https://doi.org/10.1590/1982-0224-20130171 (2014).Article 

    Google Scholar 
    Caires, R. A. & Figueiredo, J. L. Review of the genus Microphilypnus Myers, 1927 (Teleostei: Gobioidei: Eleotridae) from the lower Amazon basin, with description of one new species. Zootaxa 3036, 39–57. https://doi.org/10.11646/zootaxa.3036.1.3 (2011).Article 

    Google Scholar 
    Caires, R. A. Microphilypnus tapajosensis, a new species of eleotridid from the Tapajós basin, Brazil (Gobioidei: Eleotrididae). Ichthyol. Explor. Freshw. 23, 155–160 (2013).
    Google Scholar 
    Caires, R. A. & Guimarães-Costa, A. Family Eleotridae. In Field Guide to Amazonian Fishes (eds van Sleen, P. & Albert, J.) 388–391 (Princeton University Press, 2017).
    Google Scholar 
    Caires, R. A. & Toledo-Piza, M. A New species of miniature fish of the genus Microphilypnus (Gobioidei: Eleotridae) from the upper Rio Negro Basin, Amazonas Brazil. Copeia 106(1), 49–55. https://doi.org/10.1643/CI-17-634 (2018).Article 

    Google Scholar 
    Roberts, T.R. Leptophilypnion, a new genus with two new species of tiny central Amazonian gobioid fishes (Teleostei, Eleotridae). Aqua (2013).Gould, R. E. & Delevoryas, T. The biology of Glossopteris: Evidence from petrified seed-bearing and pollen-bearing organs. Alcheringa 1(4), 387–399 (1977).Article 

    Google Scholar 
    Rüber, L., Kottelat, M., Tan, H. H., Ng, P. K. & Britz, R. Evolution of miniaturization and the phylogenetic position of Paedocypris, comprising the world’s smallest vertebrate. BMC Evol. Biol. 7(1), 1–10. https://doi.org/10.1186/1471-2148-7-38 (2007).Article 
    CAS 

    Google Scholar 
    Britz, R., Conway, K. W. & Rüber, L. Miniatures, morphology and molecules: Paedocypris and its phylogenetic position (Teleostei, Cypriniformes). Zool. J. Linn. Soc. 172(3), 556–615. https://doi.org/10.1111/zoj.12184 (2014).Article 

    Google Scholar 
    Bloom, D. D., Kolmann, M., Foster, K. & Watrous, H. Mode of miniaturisation influences body shape evolution in New World anchovies (Engraulidae). J. Fish Biol. 96(1), 194–201 (2019).Article 

    Google Scholar 
    Thacker, C. E. Molecular phylogeny of the gobioid fishes (Teleostei: Perciformes: Gobioidei). Mol. Phylogenet. Evol. 26, 354–368. https://doi.org/10.1016/S1055-7903(02)00361-5 (2003).Article 
    CAS 

    Google Scholar 
    Birdsong, R. S., Murdy, E. O. & Pezold, F. L. A study of the vertebral column and median fin osteology in gobioid fishes with comments on gobioid relationships. Bull. Mar. Sci. 42(2), 174–214 (1988).
    Google Scholar 
    Thacker, C. E. Patterns of divergence in fish species separated by the Isthmus of Panama. BMC Evol. Biol. 17(1), 1–14. https://doi.org/10.1186/s12862-017-0957-4 (2017).Article 

    Google Scholar 
    Galván-Quesada, S. et al. Molecular phylogeny and biogeography of the amphidromous fish genus Dormitator Gill 1861 (Teleostei: Eleotridae). PLoS One 11(4), e0153538. https://doi.org/10.1371/journal.pone.0153538 (2016).Article 
    CAS 

    Google Scholar 
    Lessios, H. A. The great American schism: Divergence of marine organisms after therise of the central American isthmus. Annu. Rev. Ecol. Evol. Syst. 2008(39), 63–92. https://doi.org/10.1146/annurev.ecolsys.38.091206.095815 (2008).Article 

    Google Scholar 
    Lovejoy, N. R., Albert, J. S. & Crampton, W. G. Miocene marine incursions and marine/freshwater transitions: Evidence from Neotropical fishes. J. S. Am. Earth Sci. 21, 5–13. https://doi.org/10.1016/j.jsames.2005.07.009 (2006).Article 

    Google Scholar 
    Cooke, G. M., Chao, N. L. & Beheregaray, L. B. Marine incursions, cryptic species and ecological diversification in Amazonia: The biogeographic history of the croaker genus Plagioscion (Sciaenidae). J. Biogeogr. 39, 724–738. https://doi.org/10.1111/j.1365-2699.2011.02635.x (2012).Article 

    Google Scholar 
    Bloom, D. D. & Lovejoy, N. R. On the origins of marine-derived freshwater fishes in South America. J. Biogeogr. 44(9), 1927–1938. https://doi.org/10.1111/jbi.12954 (2017).Article 

    Google Scholar 
    Monsch, K. A. Miocene fish faunas from the northwestern Amazonia basin (Colombia, Peru, Brazil) with evidence of marine incursions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 143, 31–50. https://doi.org/10.1016/S0031-0182(98)00064-9 (1998).Article 

    Google Scholar 
    Hoorn, C. Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: Results of a palynostratigraphic study. Palaeogeogr. Palaeoclimatol. Palaeoecol. 105, 267–309. https://doi.org/10.1016/0031-0182(93)90087-Y (1993).Article 

    Google Scholar 
    Hoorn, C., Guerrero, J., Sarmiento, G. A. & Lorente, M. A. Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology 23, 237–240. https://doi.org/10.1130/0091-7613(1995)023%3C0237:ATAACF%3E2.3.CO;2 (1995).Article 
    ADS 

    Google Scholar 
    Gingras, M. K., Rasanen, M. E., Pemberton, S. G. & Romero, L. P. Ichnology and sedimentology reveal depositional characteristics of bay-margin parasequences in the Miocene Amazonian foreland basin. J. Sediment. Res. 72, 871–883. https://doi.org/10.1306/052002720871 (2002).Article 
    ADS 

    Google Scholar 
    Wesselingh, F. P. et al. Lake Pebas: A palaeoecological reconstruction of a Miocene, long-lived lake complex in western Amazonia. Cainoz. Res. 1, 35–81 (2002).
    Google Scholar 
    Bloom, D. D. & Lovejoy, N. R. Molecular phylogenetics reveals a pattern of biome conservatism in New World anchovies (family Engraulidae). J. Evol. Biol. 25(4), 701–715 (2012).Article 

    Google Scholar 
    Ward, A. B. & Azizi, E. Convergent evolution of the head retraction escape response in elongate fishes and amphibians. Zoology 107(3), 205–217. https://doi.org/10.1016/j.zool.2004.04.003 (2004).Article 

    Google Scholar 
    Palumbi, S. R. & Benzie, J. Large mitochondrial DNA differences between morphologically similar penaeid shrimp. Mol. Mar. Biol. Biotechnol. 1, 27–34 (1991).CAS 

    Google Scholar 
    Chen, W. J., Bonillo, C. & Lecointre, G. Repeatability of clades as criterion of reliability: A case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Mol. Phylogenet. Evol. 26, 262–288. https://doi.org/10.1016/j.gene.2008.07.016 (2003).Article 
    CAS 

    Google Scholar 
    Chen, W. J., Miya, M., Saitoh, K. & Mayden, R. L. Phylogenetic utility of two existing and four novel nuclear gene loci in reconstructing Tree of Life of ray-finned fishes: The order Cypriniformes (Ostariophysi) as a case study. Gene 423, 125–134. https://doi.org/10.1016/j.gene.2008.07.016 (2008).Article 
    CAS 

    Google Scholar 
    Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. PNAS 74(12), 5463–5467. https://doi.org/10.1073/pnas.74.12.5463 (1977).Article 
    ADS 
    CAS 

    Google Scholar 
    Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340 (2004).Article 
    CAS 

    Google Scholar 
    Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180 (2011).Article 

    Google Scholar 
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msw260 (2016).Article 

    Google Scholar 
    Heled, J. & Drummond, A. J. Bayesian inference of population size history from multiple loci. BMC Evol. Biol. 8(1), 1–15. https://doi.org/10.1186/1471-2148-8-289 (2008).Article 
    CAS 

    Google Scholar 
    Bouckaert, R. et al. BEAST 2: A software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10(4), e1003537. https://doi.org/10.1371/journal.pcbi.1003537 (2014).Article 
    CAS 

    Google Scholar 
    Drummond, A. J., Ho, S. Y., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4(5), e88. https://doi.org/10.1371/journal.pbio.0040088 (2006).Article 
    CAS 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67(5), 901. https://doi.org/10.1093/sysbio/syy032 (2018).Article 
    CAS 

    Google Scholar 
    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214. https://doi.org/10.1186/1471-2148-7-214 (2007).Article 
    CAS 

    Google Scholar 
    Rambaut, A. FigTree, a graphical viewer of phylogenetic trees (Version 1.4.3) (2017).Betancur-R, R. et al. Phylogenetic classification of bony fishes. BMC Evol. Biol. 17(1), 1–40. https://doi.org/10.1186/s12862-017-0958-3 (2017).Article 

    Google Scholar 
    Jones, G. Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. J. Math. Biol. 74, 447–467 (2017).Article 
    MathSciNet 
    MATH 

    Google Scholar  More

  • in

    Divergent roles of herbivory in eutrophying forests

    FAO. Global forest resources assessment. www.fao.org/publications (2015).Finlayson, M. et al. A Report of the Millennium Ecosystem Assessment. (The Cropper Foundation, 2005).Lal, R., & Lorenz, K. In Recarbonization of the Biosphere: Ecosystems and the Global Carbon Cycle (eds Lal, R., Lorenz, K., Hüttl, R. F., Schneider, B. U. & von Braun, J.) Ch. 9 (Springer, 2012).Gilliam, F. S. Forest ecosystems of temperate climatic regions: from ancient use to climate change. N. Phytologist 212, 871–887 (2016).Article 

    Google Scholar 
    de Gouvenain, R. C. & Silander, J. A. Temperate forests in Reference Module in Life Sciences (Elsevier, 2017).Keith, S. A., Newton, A. C., Morecroft, M. D., Bealey, C. E. & Bullock, J. M. Taxonomic homogenization of woodland plant communities over 70 years. Proc. R. Soc. B: Biol. Sci. 276, 3539–3544 (2009).Article 

    Google Scholar 
    Rackham, O. Ancient woodlands: modern threats. N. Phytologist 180, 571–586 (2008).Article 

    Google Scholar 
    Bernhardt-Römermann, M. et al. Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Glob. Chang. Biol. 21, 3726–3737 (2015).Article 
    ADS 

    Google Scholar 
    Waller, D. M. & Alverson, W. S. The white-tailed deer: a keystone herbivore. Wildl. Soc. Bull. 25, 217–226 (1997).
    Google Scholar 
    Ramirez, J. I. Uncovering the different scales in deer–forest interactions. Ecol. Evol. 11, 5017–5024 (2021).Article 

    Google Scholar 
    Rooney, T. P., Wiegmann, S. M., Rogers, D. A. & Waller, D. M. Biotic impoverishment and homogenization in unfragmented forest understory communities. Conserv. Biol. 18, 787–798 (2004).Stockton, S. A., Allombert, S., Gaston, A. J. & Martin, J. L. A natural experiment on the effects of high deer densities on the native flora of coastal temperate rain forests. Biol. Conserv 126, 118–128 (2005).Article 

    Google Scholar 
    Hegland, S. J., Lilleeng, M. S. & Moe, S. R. Old-growth forest floor richness increases with red deer herbivory intensity. Ecol. Manag. 310, 267–274 (2013).Article 

    Google Scholar 
    Simončič, T., Bončina, A., Jarni, K. & Klopčič, M. Assessment of the long-term impact of deer on understory vegetation in mixed temperate forests. J. Veg. Sci. 30, 108–120 (2019).Article 

    Google Scholar 
    Vild, O. et al. The paradox of long-term ungulate impact: increase of plant species richness in a temperate forest. Appl. Veg. Sci. 20, 282–292 (2017).Article 

    Google Scholar 
    Russell, F. L., Zippin, D. B. & Fowler, N. L. Effects of white-tailed deer (Odocoileus virginianus) on plants, plant populations and communities: a review. Am. Midl. Nat. 146, 1–26 (2001).Article 

    Google Scholar 
    Öllerer, K. et al. Beyond the obvious impact of domestic livestock grazing on temperate forest vegetation–A global review. Biol. Conserv. 237, 209–219 (2019).Article 

    Google Scholar 
    Borer, E. T. et al. Nutrients cause grassland biomass to outpace herbivory. Nat. Commun. 11, 1–8 (2020).Article 
    ADS 

    Google Scholar 
    Kaarlejärvi, E., Eskelinen, A. & Olofsson, J. Herbivores rescue diversity in warming tundra by modulating trait-dependent species losses and gains. Nat. Commun. 8, 1–8 (2017).
    Google Scholar 
    Simkin, S. M. et al. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proc. Natl Acad. Sci. USA 113, 4086–4091 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecol. Appl. 20, 30–59 (2010).Article 
    CAS 

    Google Scholar 
    Reinecke, J., Klemm, G. & Heinken, T. Vegetation change and homogenization of species composition in temperate nutrient deficient Scots pine forests after 45 yr. J. Veg. Sci. 25, 113–121 (2014).Article 

    Google Scholar 
    Speed, J. D. M., Austrheim, G., Kolstad, A. L. & Solberg, E. J. Long-term changes in northern large-herbivore communities reveal differential rewilding rates in space and time. PLoS ONE 14, e0217166 (2019).Article 
    CAS 

    Google Scholar 
    Valente, A. M., Acevedo, P., Figueiredo, A. M., Fonseca, C. & Torres, R. T. Overabundant wild ungulate populations in Europe: management with consideration of socio-ecological consequences. Mamm. Rev. 50, 353–366 (2020).Article 

    Google Scholar 
    Linnell, J. D. C. et al. The challenges and opportunities of coexisting with wild ungulates in the human-dominated landscapes of Europe’s Anthropocene. Biol. Conserv. 244, 108500 (2020).Waller, D. M. The Herbaceous Layer in Forests of Eastern North America (ed. Gilliam, F.) Ch. 16 (Oxford Univ. Press, 2014).Kerley, G. I. H., Kowalczyk, R. & Cromsigt, J. P. G. M. Conservation implications of the refugee species concept and the European bison: king of the forest or refugee in a marginal habitat? Ecography 35, 519–529 (2011).Svenning, J. C. A review of natural vegetation openness in north-western Europe. Biol. Conserv 104, 133–148 (2002).Article 

    Google Scholar 
    Sandom, C. J., Ejrnaes, R., Hansen, M. D. D. & Svenning, J. C. High herbivore density associated with vegetation diversity in interglacial ecosystems. Proc. Natl Acad. Sci. USA 111, 4162–4167 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Ramirez, J. I., Jansen, P. A., den Ouden, J., Goudzwaard, L. & Poorter, L. Long-term effects of wild ungulates on the structure, composition and succession of temperate forests. Ecol. Manag. 432, 478–488 (2019).Article 

    Google Scholar 
    Ramirez, J. I., Jansen, P. A. & Poorter, L. Effects of wild ungulates on the regeneration, structure and functioning of temperate forests: A semi-quantitative review. Ecol. Manag. 424, 406–419 (2018).Article 

    Google Scholar 
    Albert, A. et al. Seed dispersal by ungulates as an ecological filter: a trait-based meta-analysis. Oikos 124, 1109–1120 (2015).Article 

    Google Scholar 
    McNaughton, S. J. Grazing lawns: on domesticated and wild grazers. Am. Nat. 128, 937–939 (1986).Article 

    Google Scholar 
    Cromsigt, J. P. G. M. & Kuijper, D. P. J. Revisiting the browsing lawn concept: evolutionary Interactions or pruning herbivores? Perspect. Plant Ecol. 13, 207–215 (2011).Article 

    Google Scholar 
    Ramirez, J. I. et al. Temperate forests respond in a non-linear way to a population gradient of wild deer. Forestry 94, 502–511 (2021).Article 

    Google Scholar 
    Boulanger, V. et al. Ungulates increase forest plant species richness to the benefit of non‐forest specialists. Glob. Chang. Biol. 24, e485–e495 (2018).Article 

    Google Scholar 
    Kirby, K. J. The impact of deer on the ground flora of British broadleaved woodland. Forestry 74, 219–229 (2001).Article 

    Google Scholar 
    Royo, A. A., Collins, R., Adams, M. B., Kirschbaum, C. & Carson, W. P. Pervasive interactions between ungulate browsers and disturbance regimes promote temperate forest herbaceous diversity. Ecology 91, 93–105 (2010).Happonen, K. et al. Trait-based responses to land use and canopy dynamics modify long-term diversity changes in forest understories. Glob. Ecol. Biogeogr. 30, 1863–1875 (2021).Article 

    Google Scholar 
    Peñuelas, J. & Sardans, J. The global nitrogen-phosphorus imbalance. Science 375, 266–267 (2022).Article 
    ADS 

    Google Scholar 
    Staude, I. R. et al. Replacements of small- by large-ranged species scale up to diversity loss in Europe’s temperate forest biome. Nat. Ecol. Evol. 4, 802–808 (2020).Article 

    Google Scholar 
    Newbold, T. et al. Widespread winners and narrow-ranged losers: Land use homogenizes biodiversity in local assemblages worldwide. PLoS Biol. 16, e2006841 (2018).Article 

    Google Scholar 
    Verheyen, K. et al. Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. Br. Ecol. Soc. J. Ecol. 100, 352–365 (2012).
    Google Scholar 
    Gilliam, F. S. Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. J. Ecol. 94, 1176–1191 (2006).Article 
    CAS 

    Google Scholar 
    de Schrijver, A. et al. Cumulative nitrogen input drives species loss in terrestrial ecosystems. Glob. Ecol. Biogeogr. 652, 803–816 (2011).Article 

    Google Scholar 
    de Frenne, P. et al. Light accelerates plant responses to warming. Nat. Plants 1, 15110 (2015).Article 

    Google Scholar 
    Baeten, L. et al. Herb layer changes (1954-2000) related to the conversion of coppice-with-standards forest and soil acidification. Appl. Veg. Sci. 12, 187–197 (2009).Article 

    Google Scholar 
    Becker, T., Spanka, J., Schröder, L. & Leuschner, C. Forty years of vegetation change in former coppice-with-standards woodlands as a result of management change and N deposition. Appl. Veg. Sci. 20, 304–313 (2017).Article 

    Google Scholar 
    van Calster, H. et al. Diverging effects of overstorey conversion scenarios on the understorey vegetation in a former coppice-with-standards forest. Ecol. Manag. 256, 519–528 (2008).Article 

    Google Scholar 
    Luyssaert, S. et al. The European carbon balance. Part 3: forests. Glob. Chang. Biol. 16, 1429–1450 (2010).Article 
    ADS 

    Google Scholar 
    Kirby, K. J. et al. Five decades of ground flora changes in a temperate forest: the good, the bad and the ambiguous in biodiversity terms. Ecol. Manag. 505, 119896 (2022).Article 

    Google Scholar 
    Hautier, Y., Niklaus, P. A. & Hector, A. Competition for light causes plant biodiversity loss after eutrophication. Science 324, 636–638 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Kowalczyk, R., Kamiński, T. & Borowik, T. Do large herbivores maintain open habitats in temperate forests? For. Ecol. Manag. 494, 119310 (2021).Dormann, C. F. et al. Plant species richness increases with light availability, but not variability, in temperate forests understorey. BMC Ecol. 20, 1–9 (2020).Article 

    Google Scholar 
    Dirnböck, T. et al. Forest floor vegetation response to nitrogen deposition in Europe. Glob. Chang. Biol. 20, 429–440 (2014).Article 
    ADS 

    Google Scholar 
    Perring, M. P. et al. Understanding context dependency in the response of forest understorey plant communities to nitrogen deposition. Environ. Pollut. 242, 1787–1799 (2018).Article 
    CAS 

    Google Scholar 
    Anderson, T. M. et al. Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecology 99, 822–831 (2018).Article 

    Google Scholar 
    Gough, L. & Grace, J. B. Herbivore effects on plant species density at varying productivity levels. Ecology 79, 1586–1594 (1998).Article 

    Google Scholar 
    Eskelinen, A., Harpole, W. S., Jessen, M.-T., Virtanen, R. & Hautier, Y. Light competition drives herbivore and nutrient effects on plant diversity. Nature 611, 301–305 (2022).Knight, T. M., Dunn, J. L., Smith, L. A., Davis, J. A. & Kalisz, S. Deer facilitate invasive plant success in a Pennsylvania forest understory. Nat. Areas 29, 110–116 (2009).Article 

    Google Scholar 
    Beguin, J., Pothier, D. & Côté, S. D. Deer browsing and soil disturbance induce cascading effects on plant communities: a multilevel path analysis. Ecol. Appl. 21, 439–451 (2011).Gilliam, F. S. et al. Twenty-five-year response of the herbaceous layer of a temperate hardwood forest to elevated nitrogen deposition. Ecosphere 7, e01250 (2016).Article 

    Google Scholar 
    de Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. USA 110, 18561–18565 (2013).Article 
    ADS 

    Google Scholar 
    Hedwall, P. O. et al. Half a century of multiple anthropogenic stressors has altered northern forest understory plant communities. Ecol. Appl. 29, e01874 (2019).Perring, M. P. et al. Global environmental change effects on plant community composition trajectories depend upon management legacies. Glob. Chang. Biol. 24, 1722–1740 (2018).Article 
    ADS 

    Google Scholar 
    Boulanger, V. et al. Decreasing deer browsing pressure influenced understory vegetation dynamics over 30 years. Ann. Sci. 72, 367–378 (2015).Article 

    Google Scholar 
    Bernes, C. et al. Manipulating ungulate herbivory in temperate and boreal forests: effects on vegetation and invertebrates. A systematic review. Environ. Evid. 7, 1–32 (2018).Article 

    Google Scholar 
    Reimoser, F. Steering the impacts of ungulates on temperate forests. J. Nat. Conserv. 10, 243–252 (2003).Article 

    Google Scholar 
    Vavra, M., Parks, C. G. & Wisdom, M. J. Biodiversity, exotic plant species, and herbivory: the good, the bad, and the ungulate. Ecol. Manag. 246, 66–72 (2007).Article 

    Google Scholar 
    Depauw, L. et al. Light availability and land-use history drive biodiversity and functional changes in forest herb layer communities. J. Ecol. 108, 1411–1425 (2020).Article 
    CAS 

    Google Scholar 
    Chevaux, L. et al. Effects of stand structure and ungulates on understory vegetation in managed and unmanaged forests. Ecol. Appl. 32, e01874 (2022).Gordon, I. J. Browsing and grazing ruminants: are they different beasts? Ecol. Manag. 181, 13–21 (2003).Article 

    Google Scholar 
    Brasseur, B. et al. What deep‐soil profiles can teach us on deep‐time pH dynamics after land use change? Land Degrad. Dev. 29, 2951–2961 (2018).Article 

    Google Scholar 
    Schmitz, A. et al. Responses of forest ecosystems in Europe to decreasing nitrogen deposition. Environ. Pollut. 244, 980–994 (2019).Article 
    CAS 

    Google Scholar 
    Dirnböck, T. et al. Currently legislated decreases in nitrogen deposition will yield only limited plant species recovery in European forests. Environ. Res. Lett. 13, 125010 (2018).Article 

    Google Scholar 
    Peterken, G. F. Natural Woodland: Ecology and Conservation in Northern Temperate Regions (Cambridge Univ. Press, 1996).Chamberlain, S. A. & Boettiger, C. R Python, and Ruby clients for GBIF species occurrence data. preprint. PeerJ Preprints 5, e3304v1 (2017).Chamberlain, S. A. & Szöcs, E. taxize: taxonomic search and retrieval in R. F1000Res 2, 191 (2013).Article 

    Google Scholar 
    Hédl, R., Kopecký, M. & Komárek, J. Half a century of succession in a temperate oakwood: from species-rich community to mesic forest. Divers Distrib. 16, 267–276 (2010).Article 

    Google Scholar 
    Giménez-Anaya, A., Herrero, J., Rosell, C., Couto, S. & García-Serrano, A. Food habits of wild boars (Sus scrofa) in a Mediterranean coastal wetland. Wetlands 28, 197–203 (2008).Article 

    Google Scholar 
    Barrios-Garcia, M. N. & Ballari, S. A. Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biol. Invasions 14, 2283–2300 (2012).Article 

    Google Scholar 
    Andersen, R. et al. An overview of the progress and challenges of peatland restoration in Western Europe. Restor. Ecol. 25, 271–282 (2017).Article 

    Google Scholar 
    Faurby, S. et al. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99, 2626 (2018).Article 

    Google Scholar 
    van den Berg, L. J. L. et al. Evidence for differential effects of reduced and oxidised nitrogen deposition on vegetation independent of nitrogen load. Environ. Pollut. 208, 890–897 (2016).Article 

    Google Scholar 
    McNaughton, S. J., Oesterheld, M., Frank, D. A. & Williams, K. J. Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341, 142–144 (1989).Article 
    ADS 
    CAS 

    Google Scholar 
    Koerner, S. E. et al. Change in dominance determines herbivore effects on plant biodiversity. Nat. Ecol. Evol. 2, 1925–1932 (2018).Article 

    Google Scholar 
    Fréjaville, T. & Garzón, M. B. The EuMedClim database: yearly climate data (1901-2014) of 1 km resolution grids for Europe and the Mediterranean Basin. Front. Ecol. Evol. 6, 1–5 (2018).Article 

    Google Scholar 
    Al‐Yaari, A. et al. Asymmetric responses of ecosystem productivity to rainfall anomalies vary inversely with mean annual rainfall over the conterminous United States. Glob. Chang. Biol. 26, 6959–6973 (2020).Article 
    ADS 

    Google Scholar 
    Szabó, P. & Hédl, R. Advancing the integration of history and ecology for conservation. Conserv. Biol. 25, 680–687 (2011).Article 

    Google Scholar 
    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Spec. Feature Ecol. 80, 1150–1156 (1999).
    Google Scholar 
    Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).Article 

    Google Scholar 
    Holz, H., Segar, J., Valdez, J. & Staude, I. R. Assessing extinction risk across the geographic ranges of plant species in Europe. Plants People Planet 4, 303–311 (2022).Article 

    Google Scholar 
    Staude, I. R. et al. Directional turnover towards larger‐ranged plants over time and across habitats. Ecol. Lett. 25, 466–482 (2021).Article 

    Google Scholar 
    Ellenberg, H., Weber, H. E., Düll, R., Wirth, V. & Werner, W. Zeigerwerte von Pflanzen in Mitteleuropa (Verlag Wrich Goltze, 2001).Chytrý, M., Tichý, L., Dřevojan, P., Sádlo, J. & Zelený, D. Ellenbergtype indicator values for the Czech flora. Preslia 90, 83–103 (2018).Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).Article 

    Google Scholar 
    Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).MathSciNet 

    Google Scholar 
    Dushoff, J., Kain, M. P. & Bolker, B. M. I can see clearly now: reinterpreting statistical significance. Methods Ecol. Evol. 10, 756–759 (2019).Article 

    Google Scholar 
    Bradshaw, L. & Waller, D. M. Impacts of white-tailed deer on regional patterns of forest tree recruitment. Ecol. Manag. 375, 1–11 (2016).Article 

    Google Scholar 
    McGarvey, J. C., Bourg, N. A., Thompson, J. R., McShea, W. J. & Shen, X. Effects of twenty years of deer exclusion on woody vegetation at three life-history stages in a mid-atlantic temperate deciduous forest. Northeast. Nat. 20, 451–468 (2013).Nuttle, T., Ristau, T. E. & Royo, A. A. Long-term biological legacies of herbivore density in a landscape-scale experiment: forest understoreys reflect past deer density treatments for at least 20 years. J. Ecol. 102, 221–228 (2013). More

  • in

    Author Correction: The hidden land use cost of upscaling cover crops

    Correction to: Communications Biology https://doi.org/10.1038/s42003-020-1022-1, published online 11 June 2020.In the original version of the Perspective, a unit conversion error affected calculations for cereal rye, triticale, barley, and oats. Further, berseem clover yield estimates were mistranscribed from the original source. These mistakes led to errors in Supplementary Data 1, Figure 2 and in the presentation of the data in the text.Supplementary Data 1 has now been replaced with a file containing the correct numbers.Figure 2 has been corrected:Original figure 2New figure 2The Abstract stated: “In this Perspective, we estimate land use requirements to supply the United States maize production area with cover crop seed, finding that across 18 cover crops, on average 3.8% (median 2.0%) of current production area would be required, with the popular cover crops rye and hairy vetch requiring as much as 4.5% and 11.9%, respectively”.The text should read: “In this Perspective, we estimate land use requirements to supply the United States maize production area with cover crop seed, finding that across 18 cover crops, on average 2.4% (median 2.1%) of current production area would be required, with the popular cover crops rye and hairy vetch requiring as much as 4.8% and 11.9%, respectively”.In the 1st paragraph of the right hand column on page 2, the text said: “(…), we find that the land requirements for production of cover crop seed would be on average 1.4 million hectares (median 746,000 ha), which is equivalent to 3.8% (median 2.0%) of the U.S. maize farmland. Rye (Secale cereale L.) – a midrange seed yielding cover crop and one of the most commonly used in the corn belt, would require as much as 1,661,000 hectares (4.5% of maize farmland), (…)”The text should read: “(…) we find that the land requirements for production of cover crop seed would be on average 892,526 hectares (median 774,417 ha), which is equivalent to 2.4% (median 2.1%) of the U.S. maize farmland. Rye (Secale cereale L.) – a midrange seed yielding cover crop and one of the most commonly used in the corn belt, would require as much as 1,779,770 hectares (4.8% of maize farmland), (…)”On page 3, second paragraph the text said: “Cover cropping the entire U.S. maize area would require the equivalent of as much as 18% (rye) to 49% (hairy vetch) (…)”The text should read: “Cover cropping the entire U.S. maize area would require the equivalent of as much as 19% (rye) to 49% (hairy vetch) (…)”This errors have now been corrected in the Perspective Article. More

  • in

    Simultaneous invasion decouples zebra mussels and water clarity

    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).Article 
    CAS 

    Google Scholar 
    Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52, 273–288 (2005).Article 

    Google Scholar 
    Simberloff, D. & Von Holle, B. Positive interactions of nonindigenous species: invadsional meltdown? Biol. Invasions 1, 21–32 (1999).Article 

    Google Scholar 
    Montgomery, W. I., Lundy, M. G. & Reid, N. ‘Invasional meltdown’: evidence for unexpected conseuences and cumulative impacts of multispecies invasions. Biol. Invasions 14, 1111–1115 (2012).Article 

    Google Scholar 
    Jackson, M. C. Interactions among multiple invasive animals. Ecology 96, 2035–2041 (2015).Article 
    CAS 

    Google Scholar 
    Braga, R. R. et al. Invasional meltdown: an experimental test and a framework to distinguish synergistic, additive, and antagonistic effects. Hydrobiologia 847, 1603–1618 (2020).Article 

    Google Scholar 
    Crooks, K. R. & Soulé, M. E. Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400, 563–566 (1999).Article 
    CAS 

    Google Scholar 
    Klemmer, A. J., Wissinger, S. A., Greig, H. S. & Ostrofsky, M. L. Nonlinear effects of consumer density on multiple ecosystem processes. J. Anim. Ecol. 81, 779–780 (2012).Article 

    Google Scholar 
    De Meester, L., Vanoverbeke, J., Kilsdonk, L. J. & Urban, M. C. Evolving perspectives on monopolization and priority effects. Trends Ecol. Evol. 31, 136–146 (2016).Article 

    Google Scholar 
    Vitousek, P. M., D’Antonio, C. M., Loope, L. L. & Westbrooks, R. Biological invasions as global environmental change. Am. Sci. 84, 468–478 (1996).
    Google Scholar 
    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).Article 
    CAS 

    Google Scholar 
    Liebig, J. et al. Bythotrephes longimanus: U.S. Geological Survey, Nonindigenous Aquatic Species Database (2021). Available at: https://nas.er.usgs.gov/queries/factsheet.aspx?SpeciesID=162.Benson, A.J. et al. Dreissena polymorpha (Pallas, 1771): U.S. Geological Survey, Nonindigenous Aquatic Species Database (2021). Available at: https://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=5Stewart, T. J., Johannsson, O. E., Holeck, K., Sprules, W. G. & O’Gorman, R. The Lake Ontario zooplankton community before (1987-1991) and after (2001-2005) invasion-induced ecosystem change. J. Gt. Lakes Res. 36, 596–605 (2010).Article 

    Google Scholar 
    Strecker, A. L. et al. Direct and indirect effects of an invasive planktonic predator on pelagic food webs. Limnol. Oceanogr. 56, 179–192 (2011).Article 

    Google Scholar 
    Karatayev, A. Y., Burlakova, L. E. & Padilla, D. K. Zebra versus quagga mussels: a review of their spread, population dynamics, and ecosystem impacts. Hydrobiologia 746, 97–112 (2015).Article 
    CAS 

    Google Scholar 
    Kerfoot, W. C. et al. A plague of waterfleas (Bythotrephes): impacts on microcrustacean community structure, seasonal biomass, and secondary production in a large inland-lake complex. Biol. Invasions 18, 1121–1145 (2016).Article 

    Google Scholar 
    Strayer, D. et al. Long-term variability and density dependence in Hudson River Dreissena populations. Freshw. Biol. 65, 474–489 (2019).Article 

    Google Scholar 
    Fang, X., Stefan, H. G., Jiang, L., Jacobson, P. C. & Pereira D. L. Projected impacts of climatic changes on cisco oxythermal habitat in Minnesota lakes and management strategies in Handbook of Climate Change mitigation and Adaptation (eds. Chen, W.-Y., Suzuki, T. & Lackner, M.) 657-722 (Springer, 2015).Stefan, H. G., Hondzo, M., Fang, X., Eaton, J. G. & McCormick, J. H. Simulated long-term temperature and dissolved oxygen characteristics of lakes in the north-central United States and associated fish habitat limits. Limnol. Oceanogr. 41, 1124–1135 (1996).Article 

    Google Scholar 
    Jacobson, P. C., Jones, T. S., Rivers, P. & Pereira, D. L. Field estimation of a lethal oxythermal niche boundary for adult ciscoes in Minnesota lakes. T. Am. Fish. Soc. 137, 1464–1474 (2008).Article 

    Google Scholar 
    Hecky, R. E. et al. The nearshore phosphorus shunt: a consequence of ecosystem engineering by dreissenids in the Laurentian Great Lakes. Can. J. Fish. Aquat. Sci. 61, 1285–1293 (2004).Article 
    CAS 

    Google Scholar 
    Sousa, R., Gutiérrez, J. L. & Aldridge, D. C. Non-indigenous invasive bivalves as ecosystem engineers. Biol. Invasions 11, 2367–2385 (2009).Article 

    Google Scholar 
    Higgins, S. N. & Vander Zanden, M. J. What a difference a species makes: a meta-analysis of dreissenid mussel impacts on freshwater ecosystems. Ecol. Monogr. 80, 179–196 (2010).Article 

    Google Scholar 
    Mayer, C. M. et al. Benthification of Freshwater Lakes: Exotic Mussels Turning Ecosystems Upside Down in Quagga and Zebra Mussels: Biology, Impacts, and Control, 2nd ed. (eds. Nalepa, T. F. & Schloesser D. W.) 575-586 (CRC Press, 2014).Lehman, J. T. & Cárcres, C. E. Food-web responses to species invasion by a predatory invertebrate: Bythotrephes in Lake Michigan. Limnol. Oceanogr. 38, 879–891 (1993).Article 

    Google Scholar 
    Bunnell, D. B., Keeler, K. M., Puchala, E. A., Davis, B. M. & Pothoven, S. A. Comparing seasonal dynamics of the Lake Huron zooplankton community between 1983-1984 and 2007 and revisiting the impact of Bythotrephes planktivory. J. Gt. Lakes Res. 38, 451–462 (2012).Article 

    Google Scholar 
    Pawlowski, M. B., Branstrator, D. K., Hrabik, T. R. & Sterner, R. W. Changes in the cladoceran community of Lake Superior and thee role of Bythotrephes longimanus. J. Gt. Lakes Res. 43, 1101–1110 (2017).Article 

    Google Scholar 
    Hoffman, J. C., Smith, M. E. & Lehman, J. T. Perch or plankton: top-down control of Daphnia by yellow perch (Perca flavescens) or Bythotrephes cederstroemi in an inland lake? Freshw. Biol. 46, 759–775 (2001).Article 

    Google Scholar 
    Bunnell, D. B., Davis, B. M., Warner, D. M., Chriscinske, M. A. & Roseman, E. F. Planktivory in the changing Lake Huron zooplankton community: Bythotrephes consumption exceeds that of Mysis and fish. Freshw. Biol. 56, 1281–1296 (2011).Article 

    Google Scholar 
    Merkle, C. & De Stasio, B. Bythotrephes longimanus in shallow, nearshore waters: interactions with Leptodora kindtii, impacts on zooplankton, and implications for secondary dispersal from southern Green Bay, Lake Michigan. J. Gt. Lakes Res. 44, 934–942 (2018).Article 

    Google Scholar 
    Walsh, J. R., Carpenter, S. R. & Vander Zanden, M. J. Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proc. Natl. Acad. Sci. USA 113, 4081–4085 (2016).Article 
    CAS 

    Google Scholar 
    Lehman, J. T. Algal biomass unaltered by food-web changes in Lake Michigan. Nature 332, 537–538 (1988).Article 

    Google Scholar 
    Wahlström, E. & Westman, E. Planktivory by the predacious cladoceran Bythotrephes longimanus: effects on zooplankton size structure and density. Can. J. Fish. Aquat. Sci. 56, 1865–1872 (1999).Article 

    Google Scholar 
    Strecker, A. L. & Arnott, S. E. Invasive predator, Bythotrephes, has varied effects on ecosystem function in freshwater lakes. Ecosystems 11, 490–503 (2008).Article 

    Google Scholar 
    Benke, A. C. Concepts and patterns of invertebrate production in running waters. Verh. Int. Theor. Angew. Limnol. 25, 15–38 (1993).
    Google Scholar 
    Jones, T. & Montz, G. Population increase and associated effects of zebra mussels Dreissena polymorpha in Lake Mille Lacs, Minnesota, U.S.A. Bioinvasion Rec. 9, 772–792 (2020).Article 

    Google Scholar 
    Strayer, D. L. & Malcom, H. M. Long-term demography of a zebra mussel (Dreissena polymorpha) population. Freshw. Biol. 51, 117–130 (2006).Article 

    Google Scholar 
    Geisler, M. E., Rennie, M. D., Gillis, D. M. & Higgins, S. N. A predictive model for water clarity following dreissenid invasion. Biol. Invasions 18, 1989–2006 (2016).Article 

    Google Scholar 
    Barbiero, R. P. & Tuchman, M. L. Long-term dreissenid impacts on water clarity in Lake Erie. J. Gt. Lakes Res. 30, 557–565 (2004).Article 

    Google Scholar 
    Fishman, D. B., Adlerstein, S. A., Vanderploeg, H. A., Fahnenstiel, G. L. & Scavia, D. Causes of phytoplankton changes in Saginaw Bay, Lake Huron, during the zebra mussel invasion. J. Gt. Lakes Res. 35, 482–495 (2009).Article 

    Google Scholar 
    Zhang, H., Culver, D. A. & Boegman, L. Dreissenids in Lake Erie: an algal filter or a fertilizer? Aquat. Invasions 6, 175–194 (2011).Article 

    Google Scholar 
    Higgins, S. N., Vander Zanden, M. J., Joppa, L. N. & Vadeboncoeur, Y. The effect of dreissenid invasions on chlorophyll and the chlorophyll: total phosphorus ration in north-temperate lakes. Can. J. Fish. Aquat. Sci. 68, 319–329 (2011).Article 
    CAS 

    Google Scholar 
    Lehman, J. T. & Branstrator, D. K. A model for growth, development, and diet selection by the invertebrate predator Bythotrephes cederstroemi. J. Gt. Lakes Res. 21, 610–619 (1995).Article 

    Google Scholar 
    Azan, S. S. E., Arnott, S. E. & Yan, N. D. A review of the effects of Bythotrephes longimanus and calcium decline on zooplankton communities – can interactive effects be predicted? Environ. Rev. 23, 395–413 (2015).Article 
    CAS 

    Google Scholar 
    Pangle, K. L., Peacor, S. D. & Johannsson, O. E. Large nonlethal effects of an invasive invertebrate predator on zooplankton population growth rate. Ecology 88, 402–412 (2007).Article 

    Google Scholar 
    Cross, T. K. & Jacobson, P. C. Landscape factors influencing lake phosphorus concentrations across Minnesota. Lake Reserv Manag 29, 1–12 (2013).Article 
    CAS 

    Google Scholar 
    McQueen, D. J., Johannes, M. R. S., Post, J. R., Stewart, T. J. & Lean, D. R. S. Bottom-up and top-down impacts on freshwater pelagic community structure. Ecol. Monogr. 59, 289–309 (1989).Article 

    Google Scholar 
    Mills, E. L. et al. Lake Ontario: food web dynamics in a changing ecosystem (1970-2000). Can. J. Fish. Aquat. Sci. 60, 471–490 (2003).Article 

    Google Scholar 
    Lehman, J. T. Causes and consequences of cladoceran dynamics in Lake Michigan: implications of species invasion by. Bythotrephes. J. Gt. Lakes Res. 17, 437–445 (1991).Article 

    Google Scholar 
    Yan, N. D. et al. Long-term trends in zooplankton of Dorset, Ontario, lakes: the probable interactive effects of changes in pH, total phosphorus, dissolved organic carbon, and predators. Can. J. Fish. Aquat. Sci. 65, 862–877 (2008).Article 
    CAS 

    Google Scholar 
    Brooks, J. L. & Dodson, S. I. Predation, body size, and composition of plankton. Science 150, 28–35 (1965).Article 
    CAS 

    Google Scholar 
    Rennie, M. D., Evans, D. O. & Young, J. D. Increased dependence on nearshore benthic resources in the Lake Simcoe ecosystem after dreissenid invasion. Inland Waters 3, 297–310 (2013).Article 

    Google Scholar 
    Goto, D., Dunlop, E. S., Young, J. D. & Jackson, D. A. Shifting trophic control of fishery-ecosystem dynamics following biological invasions. Ecol. Appl. 30, e02190 (2020).Article 

    Google Scholar 
    Hansen, G. J. A. et al. Walleye growth declines following zebra mussel and Bythotrephes invasion. Biol. Invasions 22, 1481–1495 (2020).Article 

    Google Scholar 
    Yan, N. & Pawson, T. Changes in the crustacean zooplankton community of Harp Lake, Canada, following invasion by. Bythotrephes cederstrœmi. Freshw. Biol. 37, 409–425 (1997).Article 

    Google Scholar 
    Bourdeau, P. E., Bach, M. T. & Peacor, S. D. Predator presence dramatically reduces copepod abundance through condition-mediated non-consumptive effects. Freshw. Biol. 61, 1020–1031 (2016).Article 
    CAS 

    Google Scholar 
    Lehman, J. R. Ecological principles affecting community structure and secondary production by zooplankton in marine and freshwater environments. Limnol. Oceanogr. 33, 931–945 (1988).
    Google Scholar 
    Walsh, J. R., Lathrop, R. C., & Vander Zanden, M.J.Invasive invertebrate predator, Bythotrephes longimanus, reverses trophic cascade in a north-temperate lake. Limnol. Oceanogr. 62, 2498–2509 (2017).Article 

    Google Scholar 
    Underwood, A. J. On beyond BACI: sampling designs that might reliably detect environmental disturbances. Ecol. Appl. 4, 3–15 (1994).Article 

    Google Scholar 
    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).Article 
    CAS 

    Google Scholar 
    Strayer, D. L., Eviner, V. T., Jeschke, J. M. & Pace, M. L. Understanding the long-term effects of species invasions. Trends Ecol. Evol. 21, 645–651 (2006).Article 

    Google Scholar 
    Magnuson, J. J. Long-term ecological research and the invisible present. BioScience 40, 495–501 (1990).Article 

    Google Scholar 
    Doak, D. F. et al. Understanding and predicting ecological dynamics: are major surprises inevitable? Ecology 89, 952–961 (2008).Article 

    Google Scholar 
    Hansen, G. J. A., Gaeta, J. W., Hansen, J. F. & Carpenter, S. R. Learning to manage and managing to learn: sustaining freshwater recreational fisheries in a changing environment. Fisheries 40, 56–64 (2015).Article 

    Google Scholar 
    Dumont, H. J., Van De Velde, I. & Dumont, S. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19, 75–97 (1975).Article 

    Google Scholar 
    Culver, D. A., Boucherle, M. M., Bean, D. J. & Fletcher, J. W. Biomass of freshwater crustacean zooplankton from length-weight regressions. Can. J. Fish. Aquat. Sci. 42, 1380–1390 (1985).Article 

    Google Scholar 
    Manly, B. F. J. Randomization, bootstrap and Monet Carlo methods in biology, 3rd ed. (Chapman and Hall/CRC, 2007).Arar, E. J. Method 446.0. In vitro determination of chlorophylls a, b, c1 + c2 and pheopigments in marine and freshwater algae by visible spectrophotometry, revision 1.2. (U.S. Environmental Protection Agency, 1997).O’Dell, J. W. Method 365.1 Determination of phosphorus by semi-automated colorimetry, revision 2.0. (U.S. Environmental Agency, 1993).Helsel, D. R. & Hirsch, R. M. Statistical methods in water resources (U. S. Geological Survey, 2002).Minnesota Pollution Control Agency (MPCA). Surface water data. https://webapp.pca.state.mn.us/wqd/surface-water (MPCA, 2021).Read, J. S. et al. Data release: Process-based predictions of lake water temperature in the Midwest US: U.S. Geological Survey data release, https://doi.org/10.5066/P9CA6XP8 (USGS, 2021).Hothorn, T., Hornik, K., van de Wiel, M. A. & Zeileis, A. Lego system for conditional inference. Am. Stat. 60, 257–263 (2006).Article 

    Google Scholar 
    Dewitz, J. National Land Cover Database (NLCD) 2016 Products: U.S. Geological Survey data release, https://doi.org/10.5066/P96HHBIE (USGS, 2019).Use of Fishes in Research Committee. Guidelines for the use of fishes in research. (American Fisheries Society, 2014)Pedersen, E. J., Miller, D. L., Simpson, G. L. & Ross, N. Hierarchical generalized additive models in ecology: an introduction with mgcv. PeerJ 7, e6876 (2019).Article 

    Google Scholar 
    Minnesota Geospatial Commons. DNR Hydrology Dataset. (2022). Available at: https://gisdata.mn.gov/dataset/water-dnr-hydrography.Minnesota Geospatial Commons. Lake Bathymetric Outlines, Contours, and DEM. (2021). Available at: https://gisdata.mn.gov/dataset/water-lake-bathymetry.ESRI ArcGIS Desktop: Release 10.6. Redlands, CA: Environmental Systems Research Institute (2018).Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. 73, 3–36 (2011).Article 

    Google Scholar 
    Guerrero, F. & Rodríguez, V. Secondary production of a congeneric species assemblage of Acartia (Copepoda: Calanoida): a calculation based on the size-frequency distribution. Sci. Mar. 58, 161–167 (1994).
    Google Scholar 
    Cross, W. F. et al. Ecosystem ecology meets adaptive management: food web response to a controlled flood on the Colorado River, Glen Canyon. Ecol. Appl. 21, 2016–2033 (2011).Article 

    Google Scholar 
    Gillooly, J. F. Effect of body size and temperature on generation time in zooplankton. J. Plankton Res. 22, 241–251 (2000).Article 

    Google Scholar 
    Benke, A. C. & Huryn, A. D. Secondary production and quantitative food webs in Methods in Stream Ecology, Volume 2: ecosystem function (eds. Lamberti, G.A. & Hauer, F. R.) 235-254 (Academic Press, 2017).Wu, L. & Culver, D. A. Zooplankton grazing and phytoplankton abundance: an assessment before and after invasion of Dreissena polymorpha. J. Gt. Lakes Res. 17, 425–436 (1991).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (Vienna, Austria, 2020). Accessible at: https://www.R-project.org/Minnesota Geospatial Commons. State Boundary. (2013). Available at: https://gisdata.mn.gov/dataset/bdry-state-of-minnesota.United States Geological Survey. North America Political Boundaries. (2006). Available at: https://www.sciencebase.gov/catalog/item/4fb555ebe4b04cb937751db9. More

  • in

    Palau’s warmest reefs harbor thermally tolerant corals that thrive across different habitats

    Baker, A. C., Glynn, P. W. & Riegl, B. Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar. Coast Shelf Sci. 80, 435–471 (2008).Article 

    Google Scholar 
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).Article 
    CAS 

    Google Scholar 
    Normille, D. El Niño’s warmth devastating reefs worldwide. Science 352, 2015–2016 (2016).
    Google Scholar 
    Morikawa, M. K. & Palumbi, S. R. Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proc Natl Acad Sci USA 116, 10586–10591 (2019).Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9, 1671 (2018).Article 

    Google Scholar 
    Thomas, L. et al. Mechanisms of thermal tolerance in Reef-building corals across a fine-grained environmental mosaic: lessons from Ofu. Am. Samoa. Front Mar. Sci. 4, 434 (2018).Article 

    Google Scholar 
    Kenkel, C. D., Meyer, E. & Matz, M. V. Gene expression under chronic heat stress in populations of the mustard hill coral (Porites astreoides) from different thermal environments. Mol. Ecol. 22, 4322–4334 (2013).Article 
    CAS 

    Google Scholar 
    Gomulkiewicz, R. & Holt, R. D. When does evolution by natural selection prevent extinction? Evolution 49, 201–207 (1995).
    Google Scholar 
    Bruno, J. F., Siddon, C. E., Witman, J. D., Colin, P. L. & Toscano, M. A. El Niño related coral bleaching in Palau, western Caroline Islands. Coral Reefs 20, 127–136 (2001).Article 

    Google Scholar 
    Golbuu, Y. et al. Palau’s coral reefs show differential habitat recovery following the 1998-bleaching event. Coral Reefs 26, 319–332 (2007).Article 

    Google Scholar 
    van Woesik, R. et al. Climate-change refugia in the sheltered bays of Palau: analogs of future reefs. Ecol. Evol. 2, 2474–2484 (2012).Article 

    Google Scholar 
    Barkley, H. C. & Cohen, A. L. Skeletal records of community-level bleaching in Porites corals from Palau. Coral Reefs 35, 1407–1417 (2016).Article 

    Google Scholar 
    Gouezo, M. et al. Drivers of recovery and reassembly of coral reef communities. Proc. R. Soc. B Biol. Sci. 286, 20182908 (2019).Shamberger, K. E. F. et al. Diverse coral communities in naturally acidified waters of a Western Pacific reef. Geophys. Res. Lett. 41, 499–504 (2014).Article 

    Google Scholar 
    Barkley, H. C. et al. Changes in coral reef communities across a natural gradient in seawater pH. Sci. Adv. 1, e1500328 (2015).Article 

    Google Scholar 
    Fabricius, K. E., Mieog, J. C., Colin, P. L., Idip, D. & van Oppen, M. J. H. Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Mol. Ecol. 13, 2445–2458 (2004).Article 
    CAS 

    Google Scholar 
    Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S. & Hoegh-Guldberg, O. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc. Natl Acad. Sci. USA 105, 17442–17446 (2008).Article 
    CAS 

    Google Scholar 
    Gibbin, E. M., Putnam, H. M., Gates, R. D., Nitschke, M. R. & Davy, S. K. Species-specific differences in thermal tolerance may define susceptibility to intracellular acidosis in reef corals. Mar. Biol. 162, 717–723 (2015).Article 
    CAS 

    Google Scholar 
    Boulay, J. N., Hellberg, M. E., Cortés, J. & Baums, I. B. Unrecognized coral species diversity masks differences in functional ecology. Proc. R. Soc. B Biol. Sci. 281, 20131580 (2013).Baums, I. B., Boulay, J. N., Polato, N. R. & Hellberg, M. E. No gene flow across the Eastern Pacific Barrier in the reef-building coral Porites lobata. Mol. Ecol. 21, 5418–5433 (2012).Article 

    Google Scholar 
    Forsman, Z. H., Wellington, G. M., Fox, G. E. & Toonen, R. J. Clues to unraveling the coral species problem: Distinguishing species from geographic variation in Porites across the Pacific with molecular markers and microskeletal traits. PeerJ 3, e751 (2015).Article 

    Google Scholar 
    Levas, S. J., Grottoli, A. G., Hughes, A., Osburn, C. L. & Matsui, Y. Physiological and biogeochemical traits of bleaching and recovery in the mounding species of coral Porites lobata: implications for resilience in mounding corals. PLoS ONE 8, e63267 (2013).Article 
    CAS 

    Google Scholar 
    Linsley, B. K. et al. Coral carbon isotope sensitivity to growth rate and water depth with Paleo-sea level implications. Nat. Commun. 10, 1–9 (2019).
    Google Scholar 
    Peyrot-Clausade, M., Hutchings, P. & Richard, G. Temporal variations of macroborers in massive Porites lobata on Moorea, French Polynesia. Coral Reefs 11, 161–166 (1992).Article 

    Google Scholar 
    Nanami, A. & Nishihira, M. Microhabitat association and temporal stability in reef fish assemblages on massive Porites microatolls. Ichthyol. Res. 51, 165–171 (2004).Article 

    Google Scholar 
    Cantin, N. E. & Lough, J. M. Surviving coral bleaching events: porites growth anomalies on the Great Barrier Reef. PLoS ONE 9, e88720 (2014).Article 

    Google Scholar 
    Carilli, J. E., Norris, R. D., Black, B., Walsh, S. M. & Mcfield, M. Century-scale records of coral growth rates indicate that local stressors reduce coral thermal tolerance threshold. Glob. Chang Biol. 16, 1247–1257 (2010).Article 

    Google Scholar 
    Cantin, N. E., Cohen, A. L., Karnauskas, K. B., Tarrant, A. M. & McCorkle, D. C. Ocean warming slows coral growth in the central Red Sea. Science 329, 322–325 (2010).Article 
    CAS 

    Google Scholar 
    Lough, J. M. & Cooper, T. F. New insights from coral growth band studies in an era of rapid environmental change. Earth Sci. Rev. 108, 170–184 (2011).Article 
    CAS 

    Google Scholar 
    Mollica, N. R. N. et al. Skeletal records of bleaching reveal different thermal thresholds of Pacific coral reef assemblages. Coral Reefs 38, 743–757 (2019).Article 

    Google Scholar 
    Barkley, H. C. et al. Repeat bleaching of a central Pacific coral reef over the past six decades (1960–2016). Commun. Biol. 1, 177 (2018).DeCarlo, T. M. & Cohen, A. L. Dissepiments, density bands and signatures of thermal stress in Porites skeletons. Coral Reefs 36, 749–761 (2017).Article 

    Google Scholar 
    DeCarlo, T. M. et al. Acclimatization of massive reef-building corals to consecutive heatwaves. Proc. R. Soc. B 286, 20190235 (2019).DeCarlo, T. M. The past century of coral bleaching in the Saudi Arabian central Red Sea. PeerJ 8, e10200 (2020).Article 

    Google Scholar 
    Silverstein, R. N., Cunning, R. & Baker, A. C. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob. Chang Biol. 21, 236–249 (2015).Article 

    Google Scholar 
    Fabricius, K. E. Effects of irradiance, flow, and colony pigmentation on the temperature microenvironment around corals: Implications for coral bleaching? Limnol. Oceanogr. 51, 30–37 (2006).Article 

    Google Scholar 
    Edmunds, P. J., Putnam, H. M. & Gates, R. D. Photophysiological consequences of vertical stratification of Symbiodinium in tissue of the coral Porites lutea. Biol. Bull. 223, 226–235 (2012).Article 
    CAS 

    Google Scholar 
    Smith, L. W., Wirshing, H., Baker, A. C. & Birkeland, C. Environmental versus genetic influences on growth rates of the corals Pocillopora eydouxi and Porites lobata. Pac. Sci. 62, 57–69 (2008).Article 

    Google Scholar 
    Kenkel, C. D. & Bay, L. K. Exploring mechanisms that affect coral cooperation: symbiont transmission mode, cell density and community composition. PeerJ 2018, e6047 (2018).Article 

    Google Scholar 
    Sunde, J., Yıldırım, Y., Tibblin, P. & Forsman, A. Comparing the performance of microsatellites and RADseq in population genetic studies: analysis of data for Pike (Esox lucius) and a synthesis of previous studies. Front. Genet. 11, 218 (2020).Article 

    Google Scholar 
    Barkley, H. C., Cohen, A. L., McCorkle, D. C. & Golbuu, Y. Mechanisms and thresholds for pH tolerance in Palau corals. J. Exp. Mar. Biol. Ecol. 489, 7–14 (2017).Article 
    CAS 

    Google Scholar 
    Mollica, N. R. et al. Ocean acidification affects coral growth by reducing skeletal density. Proc. Natl Acad. Sci. USA 115, 1754–1759 (2018).Article 
    CAS 

    Google Scholar 
    DeCarlo, T. M. et al. Coral macrobioerosion is accelerated by ocean acidification and nutrients. Geology 43, 7–10 (2014).Article 

    Google Scholar 
    Manzello, D. P. et al. Role of host genetics and heat-tolerant algal symbionts in sustaining populations of the endangered coral Orbicella faveolata in the Florida Keys with ocean warming. Glob. Chang Biol. 25, 1016–1031 (2019).Article 

    Google Scholar 
    Rippe, J. P., Dixon, G., Fuller, Z. L., Liao, Y. & Matz, M. Environmental specialization and cryptic genetic divergence in two massive coral species from the Florida Keys Reef Tract. Mol. Ecol. 1–17 https://doi.org/10.1111/mec.15931 (2021).Schoepf, V. et al. Thermally variable, macrotidal Reef habitats promote rapid recovery from mass coral bleaching. Front. Mar. Sci. 7, 245 (2020).Article 

    Google Scholar 
    Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).Article 
    CAS 

    Google Scholar 
    Baums, I. B. et al. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecol. Appl. 29, 1–23 (2019).Article 

    Google Scholar 
    Gosselin, L. A. & Qian, P.-Y. Juvenile mortality in benthic marine invertebrates. Mar. Ecol. Prog. Ser. 146, 265–282 (1997).Article 

    Google Scholar 
    Gouezo, M. et al. Modelled larval supply predicts coral population recovery potential following disturbance. Mar. Ecol. Prog. Ser. 661, 127–145 (2021).Golbuu, Y., Gouezo, M., Kurihara, H., Rehm, L. & Wolanski, E. Long-term isolation and local adaptation in Palau’s Nikko Bay help corals thrive in acidic waters. Coral Reefs 35, 909–918 (2016).Article 

    Google Scholar 
    Golbuu, Y. et al. Predicting coral recruitment in Palau’s complex reef archipelago. PLoS ONE 7, e50998 (2012).Article 
    CAS 

    Google Scholar 
    Barshis, D. J., Birkeland, C., Toonen, R. J., Gates, R. D. & Stillman, J. H. High-frequency temperature variability mirrors fixed differences in thermal limits of the massive coral Porites lobata (Dana, 1846). J. Exp. Biol. jeb.188581 https://doi.org/10.1242/jeb.188581 (2018).Shamberger, K. E. F., Lentz, S. J. & Cohen, A. L. Low and variable ecosystem calcification in a coral reef lagoon under natural acidification. Limnol. Oceanogr. https://doi.org/10.1002/lno.10662 (2017).Cacciapaglia, C. & van Woesik, R. Climate-change refugia: shading reef corals by turbidity. Glob. Chang Biol. 22, 1145–1154 (2016).Article 

    Google Scholar 
    Anthony, K. R. Enhanced energy status of corals on coastal, high-turbidity reefs. Mar. Ecol. Prog. Ser. 319, 111–116 (2006).Article 

    Google Scholar 
    Houlbrèque, F. & Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. Camb. Philos. Soc. 84, 1–17 (2009).Article 

    Google Scholar 
    Aichelman, H. E. et al. Heterotrophy mitigates the response of the temperate coral Oculina arbuscula to temperature stress. Ecol. Evol. 6, 6758–6769 (2016).Article 

    Google Scholar 
    Gómez‐Corrales, M. & Prada, C. Cryptic lineages respond differently to coral bleaching. Mol. Ecol. 0, 1–9 (2020).
    Google Scholar 
    Fifer, J. E., Yasuda, N., Yamakita, T., Bove, C. B. & Davies, S. W. Genetic divergence and range expansion in a western North Pacific coral. Sci. Total Environ. 152423 https://doi.org/10.1016/J.SCITOTENV.2021.152423 (2021).Euclide, P. T. et al. Attack of the PCR clones: rates of clonality have little effect on RAD-seq genotype calls. Mol. Ecol. Resour. 20, 66–78 (2020).Article 
    CAS 

    Google Scholar 
    Noonan, S. H. C., DiPerna, S., Hoogenboom, M. O. & Fabricius, K. E. Effects of variable daily light integrals and elevated CO2 on the adult and juvenile performance of two Acropora corals. Mar. Biol. 169, 1–15 (2022).Article 

    Google Scholar 
    Martins, C. P. P. et al. Growth response of reef-building corals to ocean acidification is mediated by interplay of taxon-specific physiological parameters. Front. Mar. Sci. 0, 879 (2022).
    Google Scholar 
    Bairos-Novak, K. R., Hoogenboom, M. O., van Oppen, M. J. H. & Connolly, S. R. Coral adaptation to climate change: meta-analysis reveals high heritability across multiple traits. Glob. Chang. Biol. 27, 5694–5710 (2021).Article 
    CAS 

    Google Scholar 
    Kenkel, C. D., Setta, S. P. & Matz, M. V. Heritable differences in fitness-related traits among populations of the mustard hill coral, Porites astreoides. Heredity 115, 509–516 (2015).Article 
    CAS 

    Google Scholar 
    Dziedzic, K. E., Elder, H., Tavalire, H. & Meyer, E. Heritable variation in bleaching responses and its functional genomic basis in reef-building corals (Orbicella faveolata). Mol. Ecol. 28, 2238–2253 (2019).Article 

    Google Scholar 
    Quigley, K. M., Bay, L. K. & Oppen, M. J. H. Genome‐wide SNP analysis reveals an increase in adaptive genetic variation through selective breeding of coral. Mol. Ecol. 2176–2188 https://doi.org/10.1111/mec.15482 (2020).Veron, J. E. N. Corals of the World (Australian Institute of Marine Science, 2000).Polato, N. R., Concepcion, G. T., Toonen, R. J. & Baums, I. B. Isolation by distance across the Hawaiian Archipelago in the reef-building coral Porites lobata. Mol. Ecol. 19, 4661–4677 (2010).Article 
    CAS 

    Google Scholar 
    Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).Article 

    Google Scholar 
    Puritz, J. B., Hollenbeck, C. M. & Gold, J. R. dDocent: a RADseq, variant-calling pipeline designed for population genomics of non-model organisms. PeerJ 2, e431 (2014).Article 

    Google Scholar 
    Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).Article 
    CAS 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv (2013).Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. ArXiv (2012).Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).Article 
    CAS 

    Google Scholar 
    Kopelman, N. M., Mayzel, J., Jakobsson, M. & Rosenberg, N. A. CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).Article 
    CAS 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).Article 
    CAS 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).Article 
    CAS 

    Google Scholar 
    Puechmaille, S. J. The program STRUCTURE does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 16, 608–627 (2016).Article 

    Google Scholar 
    Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).Article 
    CAS 

    Google Scholar 
    Goudet, J. Hierfstat, a package for R to compute and test hierarchical F-statistics. Molecular Ecology Notes. 5, 184–186 (2005).Zeileis, A. & Grothendieck, G. zoo: S3 infrastructure for regular and irregular time series. J. Stat. Softw. 14, 1–27 (2005).Ryan, J. A. & Ulrich, J. M. xts: eXtensible Time Series. Package at https://cran.r-project.org/package=xts (2018).LaJeunesse, T. C. Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar. Biol. 141, 387–400 (2002).Article 

    Google Scholar 
    LaJeunesse, T. C. & Trench, R. K. Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biol. Bull. 199, 126–134 (2000).Article 
    CAS 

    Google Scholar  More