More stories

  • in

    Quantification of biological nitrogen fixation by Mo-independent complementary nitrogenases in environmental samples with low nitrogen fixation activity

    Direct injection method for ethylene and acetylene δ13C analyses by GC-C-IRMSFollowing the direct injection approach of classical ISARA12 with a few modifications, ARA samples with high ethylene yield ( > 500 ppmv) in 10% v/v acetylene were manually injected into a Thermo Scientific Trace GC Ultra-Isolink with an Agilent HP-PLOT/Q  capillary GC column (30 m, i.d. = 0.32 mm, f.t. = 20 μm) and a combustion reactor connected to a Thermo Scientific Delta V Plus isotope ratio mass spectrometer (GC-C-IRMS; Fig. 1a). Modifications include the replacement of silver ferrules in the GC oven with Valcon polymide (graphite reinforced polymer) ferrules to limit memory effects from acetylene. The combustion reactor was oxidized with pure oxygen for 1 h before each run and brief (15 min) seed oxidations were performed between measurement batches (i.e., required every ~ 6–8 ethylene injections, ~ 4–6 acetylene injections) to regenerate reactor oxidation capacity and minimize drift of δ13C values. See Supplementary Table S1a online for additional instrument settings.Ethylene Pre-Concentration (EPCon) methodARA samples with  More

  • in

    Global predictions for the risk of establishment of Pierce’s disease of grapevines

    Thermal requirements to develop PDWe examined the response of a wide spectrum of European grapevine varieties to XfPD infection in three independent experiments conducted in 2018, 2019, and 2020. Overall, 86.1% (n = 764) of 886 inoculated plants, comprising 36 varieties and 57 unique scion/rootstock combinations, developed PD symptoms 16 weeks after inoculation. European V. vinifera varieties exhibited significant differences in their susceptibility to XfPD (Supplementary Table S1). All varieties, however, showed PD symptoms to some extent, confirming previous field observations of general susceptibility to XfPD9,12,37. We also found significant differences in virulence (χ2 = 68.73, df = 1, P = 2.2 × 10−16) between two XfPD strains isolated from grapevines in Majorca across grapevine varieties (Supplementary Fig. S1). Full details on the results of the inoculation tests are available in “Methods”, Supplementary Note 1, Supplementary Table S1 and Supplementary Data 1.Growing degree days (GDD) have traditionally been used to describe and predict phenological events of plants and insect pests, but rarely in plant diseases58. We took advantage of data collated in the inoculation trials together with temperature to relate symptom development to the accumulated heat units at weeks eight, 10, 12, 14, and 16 after inoculation (Supplementary Data 1). Rather than counting GDDs linearly above a threshold temperature, we consider Xf ’s specific growth rate in vitro within its cardinal temperatures. The empirical growth rates come from the seminal work by Feil & Purcell38 shown in the inset of Fig. 1a. This Arrhenius plot was transformed, as explained in Supplementary Note 2A, to obtain a a piece-wise function f(T) Eq. (1). Our model and risk maps are based on f(T) (red line in Fig. 1a) because it provides the best fit to the experimental data when compared with the commonly used Beta function (blue line) for representing the thermal response in biological processes59,60. This Modified Growing Degree Day (MGDD) profile Eq. (1) enables to measure the thermal integral from hourly average temperatures, improving the prediction scale of the biological process61. MGDD also provides an excellent metric to link XfPD growth in culture with PD development as, once the pathogen is injected into the healthy vine, symptoms progression mainly depends upon the bacterial load (i.e., multiplication) and the movement through the xylem vessel network, which are fundamentally temperature-dependent processes38,62. Moreover, MGDD can be mathematically related to the exponential or logistic growth of the pathogen within the plant (Supplementary Note 2B).Fig. 1: Climatic and transmission layers composing the epidemiological model.a MGDD profile fitted to the in vitro data of Xf growth rate in Feil & Purcell 200138. The original Arrhenius plot in Kelvin degrees (inset) was converted to Celsius, as explained in (Supplementary Note 2A), to obtain the fit shown in the main plot red line; the blue line represents the fit with a Beta function. b Correlation between CDD and the average ({T}_{min }) of the coldest month between 1981 and 2019. Plotted black dots (worldwide) and yellow dots (main wine-producing zones) depict climatic data from 6,487,200 cells at 0.1∘ × 0.1∘ resolution, spread globally and retrieved from ERA5-Land dataset. The red solid line depicts the fitted exponential function for worldwide data and the blue solid line for main vineyard zones. c Nonlinear relationship between MGDD (red line) and CDD (blue line) and the likelihood of developing chronic infections. Black dots depict the cumulative proportion of grapevine plants in the population of 36 inoculated varieties showing five or more symptomatic leaves at each of the 15 MGDD levels (see Supplementary Information). Vertical bars are the 95% CI. d Combined ranges of MGDD and CDD on the likelihood of developing chronic infection. e Transmission layer in the dynamic equation (1) of the SIR compartmental model. f Relationship between the exponential growth of the number of infected plants with the risk index and their ranks.Full size imageInterannual infection survival in grapevines plays a relevant role when modelling PD epidemiology. In our model, we assumed a threshold of five or more symptomatic leaves for these chronic infections based on the relationship between the timing and severity of the infection during the growing season and the likelihood of winter recovery38,39,42. This five-leaf cut-off was grounded on: (i) the bimodal distribution in the frequency of the number of symptomatic leaves among the population of inoculated grapevines (Supplementary Fig. S1), whereby vines that generally show less than five symptomatic leaves at 12 weeks after inoculation remain so in the following weeks, while those that pass that threshold continue to produce symptomatic leaves, and (ii) the observed correlation between the acropetal and basipetal movement of Xf along the cane (Supplementary Fig. S1). The likelihood of developing chronic infections as a function of accumulated MGDD among the population of grapevine varieties was modelled using survival analysis with data fitted to a logistic distribution ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}})). A minimum window of MGDD = 528 was needed to develop chronic infections (var. Tempranillo), about 975 for a median estimate, while a cumulative MGDD  > 1159 indicate over 90% probability within a growing season (red curve in Fig. 1c and “Methods”).Next, we intended to model the probability of disease recovery by exposure to cold temperatures. Previous works had specifically modelled cold curing on Pinot Noir and Cabernet Sauvignon varieties in California as the effect of temperature and duration39 by assuming a progressive elimination of the bacterial load with cold temperatures42. In the absence of appropriate empirical data to formulate a general average pattern of winter curing among grapevine varieties, we combined the approach of Lieth et al.39 and the empirical observations of Purcell on the distribution of PD in the US related to the average minimum temperature of the coldest month, Tmin, isolines41. To consider the accumulation of cold units in an analogy of the MGDD, we searched for a general correlation between Tmin and the cold degree days (CDDs) with base temperature = 6 ∘C (see “Methods”). We found an exponential relation, ({{{{{rm{CDD}}}}}} sim 230exp (-0.26cdot {T}_{min })), where specifically, CDD ≳ 306 correspond to ({T}_{min } < -1.{1},^{circ }{{{{{rm{C}}}}}}) (Fig. 1b). To transform this exponential relationship to a probabilistic function analogous to ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}})), hereafter denoted ({{{{{{{mathcal{G}}}}}}}}({{{{{rm{CDD}}}}}})), ranging between 0 and 1, we considered the sigmoidal family of functions (f(x)=frac{A}{B+{x}^{C}}) with A = 9 × 106, B = A and C = 3 (Fig. 1c), fulfilling the limit ({{{{{{{mathcal{G}}}}}}}}({{{{{rm{CDD}}}}}}=0)=1), i.e., no winter curing when no cold accumulated, and a conservative 75% of the infected plants recovered at ({T}_{min }=-1.{1},^{circ }{{{{{rm{C}}}}}}) instead of 100% to reflect uncertainties on the effect of winter curing.MGDD/CDD distribution mapsMGDD were used to compute annual risk maps of developing PD during summer for the period 1981–2019 (see “Methods”). The resulting averaged map identifies all known areas with a recent history of severe PD in the US corresponding to ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}}) , > , 90 %) (i.e., high-risk), such as the Gulf Coast states (Texas, Alabama, Mississippi, Louisiana, Florida), Georgia and Southern California sites (e.g., Temecula Valley) (Fig. 2a), while captures areas with a steep gradation of disease endemicity in the north coast of California (({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}} , > , 50 % )). Overall, more than 95% of confirmed PD sites (n = 155) in the US (Supplementary Data 2) fall in grid cells with ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}}) , > , 50 %).Fig. 2: Average thermal-dependent maps for Pierce’s disease (PD) development and recovery in North America and Europe.PD development during the growing season based on average ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}})) estimations between 1981 and 2019 in North America (a) and Europe (b) derived from the results of the inoculation experiments on 36 grapevine varieties. Large differences in the areal extension with favourable MGDDs can be observed between the US and Europe. The winter curing effect is reflected in the distribution of the average ({{{{{{{mathcal{G}}}}}}}}({{{{{rm{CDD}}}}}})) for the 1981–2019 period in the United States (c) and Europe (d). A snapshot of the temperature-driven probability of chronic infection averaged for the 1981–2019 period is obtained from the joint effect of MGDD and CDD in North America (e) and Europe (f). Warmer colours indicate more favourable conditions for chronic PD and the dashed line highlights the threshold of chronic infection probability being 0.5.Full size imageThe average MGDD-projected map for Europe during 1981–2019 spots a high risk for the coast, islands and major river valleys of the Mediterranean Basin, southern Spain, the Atlantic coast from Gibraltar to Oporto, and continental areas of central and southeast Europe (Fig. 2b). Of these, however, only some Mediterranean islands, such as Cyprus and Crete, show ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}}) , > , 99 %) comparable to areas with high disease incidence in the Gulf Coast states of the US and California. Almost all the Atlantic coast from Oporto (Portugal) to Denmark are below suitable MGDD, with an important exception in the Garonne river basin in France (Bordeaux Area) with low to moderate MGDD (Fig. 2b).Figure 2a shows how the area with high-risk MGDD values extends further north of the current known PD distribution in the southeastern US, suggesting that winter temperatures limit the expansion of PD northwards9. A comparison between MGDD and CDD maps (Fig. 2a vs. Fig. 2c, Fig. 2e) further supports the idea that winter curing is restricting PD northward migration from the southeastern US. However, consistent with growing concern among Midwest states winegrowers on PD northward migration led by climate change63, we found a mean increase of 0.12% y−1 in the areal extent with CDD  0.075) in 22.3% of the vineyards in Europe. However, no vineyard is in epidemic-risk zones with a high-risk index and only 2.9% of the vineyard surface is at moderate risk (Supplementary Table S8). The areas with the highest risk index (r(t) between 0.70 and 0.88) are mainly located in the Mediterranean islands of Crete, Cyprus and the Balearic Islands or at pronounced peninsulas like Apulia (Italy) and Peloponnese (Greece) in the continent (Fig. 6a and Supplementary Table S8). Most vineyards are in non-risk zones (42.1%), whereas 35.6% are located in transition zones with presently non-risk but where XfPD could become established in the next decades causing some sporadic outbreaks. In Supplementary Data 4 and Supplementary Table S8, we provide full details of the total vineyard areas currently at risk for each country and region.Fig. 6: Intersection between Corine-land-cover vineyard distribution map and PD-risk maps for 2020 and 2050.Data were obtained from Corine-land-cover (2018) and the layer of climatic suitability forP. spumarius in Europe from35. The surface of the vineyard contour has been enlarged to improve the visualisation of the risk zones and disease-incidence growth-rate ranks. a PD risk map for 2019 and its projection for 2050 (b). Blue colours represent non-risk zones and transient risk zones for chronic PD (R0  More

  • in

    Evolution of self-organised division of labour driven by stigmergy in leaf-cutter ants

    Wilson, E. O. Success and dominance in ecosystems: the case of the social insects. Vol. 2 I-XXI (Ecology Institute, 1990).Anderson, C., Franks, N. R. & McShea, D. W. The complexity and hierarchical structure of tasks in insect societies. Anim. Behav. 62, 643–651. https://doi.org/10.1006/anbe.2001.1795 (2001).Article 

    Google Scholar 
    Theraulaz, G. & Deneubourg, J.-L. in The Ethological roots of Culture (eds Gardner RA, Chiarelli AB, Gardner BT, & Ploojd FX) 1–19 (Kluwer Academic Publishers, 1994).Theraulaz, G. & Bonabeau, E. Modelling the collective building of complex architectures in social insects with lattice swarms. J. Theor. Biol. 177, 381–400. https://doi.org/10.1006/jtbi.1995.0255 (1995).Article 
    ADS 

    Google Scholar 
    Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S. & Camazine, S. Self-organization in social insects. Trends Ecol. Evol. 12, 188–193 (1997).Article 

    Google Scholar 
    Gordon, D. M. The organization of work in social insect colonies. Nature 380, 121–124 (1996).Article 
    ADS 

    Google Scholar 
    Gordon, D. M. The evolution of the algorithms for collective behavior. Cell Syst. 3, 514–520 (2016).Article 

    Google Scholar 
    Grüter, C. et al. Negative feedback enables fast and flexible collective decision-making in ants. PLoS ONE 7, e44501. https://doi.org/10.1371/journal.pone.0044501 (2012).Article 
    ADS 

    Google Scholar 
    Wehner, R., Harkness, R. D. & Schmid-Hempel, P. Foraging Strategies in Individually Searching Ants. (Fischer, 1983).Oster, G. F. & Wilson, E. O. Caste and Ecology in the Social Insects. (Princeton University Press, 1978).Anderson, C. & Franks, N. R. Teams in animal societies. Behav. Ecol. 12, 534–540. https://doi.org/10.1093/beheco/12.5.534 (2001).Article 

    Google Scholar 
    Jeanne, R. L. The evolution of the organization of work in social insects. Monitore Zool. Italiano-Ital. J. Zool. 20, 119–133. https://doi.org/10.1080/00269786.1986.10736494 (1986).Article 

    Google Scholar 
    Ratnieks, F. L. & Anderson, C. Task partitioning in insects societies. Insectes Soc. 46, 95–108 (1999).Article 

    Google Scholar 
    Anderson, C., Boomsma, J. J. & Bartholdi, J. J. Task partitioning in insect societies: bucket brigades. Insectes Soc. 49, 171–180. https://doi.org/10.1007/s00040-002-8298-7 (2002).Article 

    Google Scholar 
    Jeanson, R. & Weidenmüller, A. Interindividual variability in social insects–proximate causes and ultimate consequences. Biol. Rev. 89, 671–687 (2014).Article 

    Google Scholar 
    Leighton, G. M., Charbonneau, D. & Dornhaus, A. Task switching is associated with temporal delays in Temnothorax rugatulus ants. Behav. Ecol. 28, 319–327. https://doi.org/10.1093/beheco/arw162 (2017).Article 

    Google Scholar 
    Grassé, P.-P. La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes Soc. 6, 41–80 (1959).Article 

    Google Scholar 
    Theraulaz, G. & Bonabeau, E. A brief history of stigmergy. Artif. Life 5, 97–116. https://doi.org/10.1162/106454699568700 (1999).Article 

    Google Scholar 
    Karsai, I. Decentralized control of construction behavior in paper wasps: an overview of the stigmergy approach. Artif. Life 5, 117–136. https://doi.org/10.1162/106454699568719 (1999).Article 

    Google Scholar 
    Karsai, I. & Penzes, Z. Comb Building in Social Wasps – Self-Organization and Stigmergic Script. J. Theor. Biol. 161, 505–525. https://doi.org/10.1006/jtbi.1993.1070 (1993).Article 
    ADS 

    Google Scholar 
    Dorigo, M., Bonabeau, E. & Theraulaz, G. Ant algorithms and stigmergy. Fut. Gen. Comput. Syst. 16, 851–871 (2000).Article 

    Google Scholar 
    Camazine, S. Self-organizing pattern-formation on the combs of Honey-Bee Colonies. Behav. Ecol. Sociobiol. 28, 61–76. https://doi.org/10.1007/bf00172140 (1991).Article 

    Google Scholar 
    Camazine, S., Sneyd, J., Jenkins, M. J. & Murray, J. D. A Mathematical-model of self-organized pattern-formation on the combs of Honeybee Colonies. J. Theor. Biol. 147, 553–571. https://doi.org/10.1016/S0022-5193(05)80264-4 (1990).Article 
    ADS 

    Google Scholar 
    Deneubourg, J.-L. et al. in Simulation of Adaptive Behavior: From Animals to Animats (eds J.A. Meyer & S.W. Wilson) 356–365 (The MIT Press/Bradford Books, 1991).Franks, N. R. & Sendovafranks, A. B. Brood Sorting by Ants – Distributing the Workload over the Work-Surface. Behav. Ecol. Sociobiol. 30, 109–123 (1992).Article 

    Google Scholar 
    Sendova-Franks, A. B., Scholes, S. R., Franks, N. R. & Melhuish, C. Brood sorting by ants: two phases and differential diffusion. Anim. Behav. 68, 1095–1106. https://doi.org/10.1016/j.anbehav.2004.02.013 (2004).Article 

    Google Scholar 
    Lan, T., Liu, S. & Yang, S. X. in 2006 6th World Congress on Intelligent Control and Automation. 441–445 (IEEE).Renucci, M., Tirard, A. & Provost, E. Complex undertaking behavior in Temnothorax lichtensteini ant colonies: from corpse-burying behavior to necrophoric behavior. Insectes Soc. 58, 9–16 (2011).Article 

    Google Scholar 
    Detrain, C. & Deneubourg, J. L. Collective decision-making and foraging patterns in Ants and Honeybees. Advances in Insect Physiology 35(35), 123–173. https://doi.org/10.1016/S0065-2806(08)00002-7 (2008).Article 

    Google Scholar 
    Couzin, I. D. & Franks, N. R. Self-organized lane formation and optimized traffic flow in army ants. Proc Biol Sci 270, 139–146. https://doi.org/10.1098/rspb.2002.2210 (2003).Article 

    Google Scholar 
    Gulyas, L., Laufer, L. & Szabo, R. in International Workshop on Engineering Self-Organising Applications 50–65 (Springer).Langridge, E. A., Franks, N. R. & Sendova-Franks, A. B. Improvement in collective performance with experience in ants. Behav. Ecol. Sociobiol. 56, 523–529. https://doi.org/10.1007/s00265-004-0824-3 (2004).Article 

    Google Scholar 
    Oberst, S. et al. Revisiting stigmergy in light of multi-functional, biogenic, termite structures as communication channel. Comput. Struct. Biotechnol. J. 18, 2522–2534 (2020).Article 

    Google Scholar 
    Hart, A., Anderson, C. & Ratnieks, F. Task partitioning in leafcutting ants. Acta Ethologica 5, 1–11. https://doi.org/10.1007/s10211-002-0062-5 (2002).Article 

    Google Scholar 
    Hart, A. G. & Ratnieks, F. L. Leaf caching in the leafcutting ant Atta colombica: organizational shift, task partitioning and making the best of a bad job. Anim. Behav. 62, 227–234 (2001).Article 

    Google Scholar 
    Röschard, J. & Roces, F. Sequential load transport in grass-cutting ants (Atta vollenweideri): maximization of plant delivery rate or improved information transfer? Psyche 2011 (2011).Nickele, M. A., Reis Filho, W. & Pie, M. R. Sequential load transport during foraging in Acromyrmex (Hymenoptera: Formicidae) leaf-cutting ants. Myrmecol News 21, 73–82 (2015).Ferrante, E., Turgut, A. E., Duenez-Guzman, E., Dorigo, M. & Wenseleers, T. Evolution of Self-Organized Task Specialization in Robot Swarms. PLoS Comp. Biol. 11, e1004273. https://doi.org/10.1371/journal.pcbi.1004273 (2015).Article 
    ADS 

    Google Scholar 
    Grueter, C. et al. Negative feedback enables fast and flexible collective decision-making in ants. (2012).Holcombe, M. et al. Modelling complex biological systems using an agent-based approach. Integr. Biol. 4, 53–64 (2012).Article 

    Google Scholar 
    Fourcassié, V., Dussutour, A. & Deneubourg, J.-L. Ant traffic rules. J. Exp. Biol. 213, 2357–2363 (2010).Article 

    Google Scholar 
    Modlmeier, A. P., Keiser, C. N., Shearer, T. A. & Pruitt, J. N. Species-specific influence of group composition on collective behaviors in ants. Behav. Ecol. Sociobiol. 68, 1929–1937 (2014).Article 

    Google Scholar 
    Modlmeier, A. P., Liebmann, J. E. & Foitzik, S. Diverse societies are more productive: a lesson from ants. Proc. R. Soc. B 279, 2142–2150 (2012).Article 

    Google Scholar 
    Walsh, J. T., Garnier, S. & Linksvayer, T. A. Ant collective behavior is heritable and shaped by selection. Am. Nat. 196, 541–554 (2020).Article 

    Google Scholar 
    Tannenbaum, E. When does division of labor lead to increased system output?. J. Theor. Biol. 247, 413–425 (2007).Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Wahl, L. M. Evolving the division of labour: Generalists, specialists and task allocation. J. Theor. Biol. 219, 371–388 (2002).Article 
    ADS 
    MathSciNet 

    Google Scholar 
    Wakano, J., Nakata, K. & Yamamura, N. Dynamic model of optimal age polyethism in social insects under stable and fluctuating environments. J. Theor. Biol. 193, 153–165 (1998).Article 
    ADS 

    Google Scholar 
    Goldsby, H. J., Dornhaus, A., Kerr, B. & Ofria, C. Task-switching costs promote the evolution of division of labor and shifts in individuality. Proc. Natl. Acad. Sci. 109, 13686–13691 (2012).Article 
    ADS 

    Google Scholar 
    Rueffler, C., Hermisson, J. & Wagner, G. P. Evolution of functional specialization and division of labor. Proc. Natl. Acad. Sci. 109, E326–E335 (2012).Article 
    ADS 

    Google Scholar 
    Lopes, J. F., Forti, L. C., Camargo, R. S., Matos, C. A. & Verza, S. S. The effect of trail length on task partitioning in three Acromyrmex species (Hymenoptera: Formicidae). Sociobiology 42, 87–92 (2003).
    Google Scholar 
    Duarte, A., Weissing, F. J., Pen, I. & Keller, L. An evolutionary perspective on self-organized division of labor in social insects. Annu. Rev. Ecol. Evol. Syst. 42(42), 91–110. https://doi.org/10.1146/annurev-ecolsys-102710-145017 (2011).Article 

    Google Scholar 
    Duarte, A., Pen, I., Keller, L. & Weissing, F. J. Evolution of self-organized division of labor in a response threshold model. Behav. Ecol. Sociobiol. 66, 947–957. https://doi.org/10.1007/s00265-012-1343-2 (2012).Article 

    Google Scholar 
    Floreano, D. & Keller, L. Evolution of adaptive behaviour in robots by means of Darwinian selection. PLoS Biol. 8, e1000292 (2010).Article 

    Google Scholar 
    Floreano, D., Mitri, S., Magnenat, S. & Keller, L. Evolutionary conditions for the emergence of communication in robots. Curr. Biol. 17, 514–519 (2007).Article 

    Google Scholar 
    Mitri, S., Floreano, D. & Keller, L. The evolution of information suppression in communicating robots with conflicting interests. Proc. Natl. Acad. Sci. 106, 15786–15790 (2009).Article 
    ADS 

    Google Scholar 
    Abiodun, O. I. et al. State-of-the-art in artificial neural network applications: A survey. Heliyon 4, e00938 (2018).Article 

    Google Scholar 
    Dingemanse, N. J., Kazem, A. J., Réale, D. & Wright, J. Behavioural reaction norms: Animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81–89 (2010).Article 

    Google Scholar 
    Van den Berg, P. & Weissing, F. J. The importance of mechanisms for the evolution of cooperation. Proc. R. Soc. B 282, 20151382 (2015).Article 

    Google Scholar 
    Wetterer, J. K. Ontogenetic changes in forager polymorphism and foraging ecology in the leaf-cutting ant Atta cephalotes. Oecologia 98, 235–238. https://doi.org/10.1007/BF00341478 (1994).Article 
    ADS 

    Google Scholar 
    Wetterer, J. K. Forager size and ecology of Acromyrmex coronatus and other leaf-cutting ants in Costa Rica. Oecologia 104, 409–415. https://doi.org/10.1007/BF00341337 (1995).Article 
    ADS 

    Google Scholar 
    Evison, S. E. F. & Hughes, W. O. Genetic caste polymorphism and the evolution of polyandry in Atta leaf-cutting ants. Naturwissenschaften 98, 643–649 (2011).Article 
    ADS 

    Google Scholar 
    Hughes, W. O., Oldroyd, B. P., Beekman, M. & Ratnieks, F. L. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320, 1213–1216 (2008).Article 
    ADS 

    Google Scholar 
    Villesen, P., Murakami, T., Schultz, T. R. & Boomsma, o. J. Identifying the transition between single and multiple mating of queens in fungus-growing ants. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 269, 1541–1548 (2002).Mueller, U. G. & Rabeling, C. A breakthrough innovation in animal evolution. Proc. Natl. Acad. Sci. 105, 5287–5288 (2008).Article 
    ADS 

    Google Scholar 
    Schultz, T. R. & Brady, S. G. Major evolutionary transitions in ant agriculture. Proc. Natl. Acad. Sci. 105, 5435–5440 (2008).Article 
    ADS 

    Google Scholar 
    Fowler, H. G. Latitudinal gradients and diversity of the leaf-cutting ants (Atta and Acromyrmex)(Hymenoptera: Formicidae). Rev. Biol. Trop. 31, 213–216 (1983).
    Google Scholar 
    Jackson, D. E. & Ratnieks, F. L. Communication in ants. Curr. Biol. 16, R570–R574 (2006).Article 

    Google Scholar 
    Roces, F. & Hölldobler, B. Vibrational communication between hitchhikers and foragers in leaf-cutting ants (Atta cephalotes). Behav. Ecol. Sociobiol. 37, 297–302 (1995).Article 

    Google Scholar 
    Hubbell, S. P., Johnson, L. K., Stanislav, E., Wilson, B. & Fowler, H. Foraging by bucket-brigade in leaf-cutter ants. Biotropica 1, 210–213 (1980).Article 

    Google Scholar 
    Boi, S., Couzin, I. D., Buono, N. D., Franks, N. & Britton, N. Coupled oscillators and activity waves in ant colonies. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266, 371–378 (1999).Cole, B. J. Short-term activity cycles in ants: generation of periodicity by worker interaction. Am. Nat. 137, 244–259 (1991).Article 

    Google Scholar 
    Cornejo, A., Dornhaus, A., Lynch, N. & Nagpal, R. in International Symposium on Distributed Computing. 46–60 (Springer).Franks, N. R., Bryant, S., Griffiths, R. & Hemerik, L. Synchronization of the behaviour within nests of the antleptothorax acervorum (fabricius)—I. Discovering the phenomenon and its relation to the level of starvation. Bull. Math. Biol. 52, 597–612 (1990).Pagliara, R., Gordon, D. M. & Leonard, N. E. Regulation of harvester ant foraging as a closed-loop excitable system. PLoS Comp. Biol. 14, e1006200 (2018).Article 
    ADS 

    Google Scholar 
    Schmickl, T. & Karsai, I. Integral feedback control is at the core of task allocation and resilience of insect societies. Proc. Natl. Acad. Sci. 115, 13180–13185 (2018).Article 
    ADS 

    Google Scholar 
    Solé, R. V., Miramontes, O. & Goodwin, B. C. Oscillations and chaos in ant societies. J. Theor. Biol. 161, 343–357 (1993).Article 
    ADS 

    Google Scholar 
    Gordon, D. M., Goodwin, B. C. & Trainor, L. E. A parallel distributed model of the behaviour of ant colonies. J. Theor. Biol. 156, 293–307 (1992).Article 
    ADS 

    Google Scholar 
    Aoki, S. K. et al. A universal biomolecular integral feedback controller for robust perfect adaptation. Nature 570, 533–537 (2019).Article 

    Google Scholar 
    Ma, W., Trusina, A., El-Samad, H., Lim, W. A. & Tang, C. Defining network topologies that can achieve biochemical adaptation. Cell 138, 760–773 (2009).Article 

    Google Scholar 
    Niemeyer, N., Schleimer, J.-H. & Schreiber, S. Biophysical models of intrinsic homeostasis: Firing rates and beyond. Curr. Opin. Neurobiol. 70, 81–88 (2021).Article 

    Google Scholar 
    Rombouts, J., Vandervelde, A. & Gelens, L. Delay models for the early embryonic cell cycle oscillator. PLoS ONE 13, e0194769 (2018).Article 

    Google Scholar 
    Tyson, J. J., Chen, K. C. & Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221–231 (2003).Article 

    Google Scholar 
    Bryant, B. D. & Miikkulainen, R. Foundations of Trusted Autonomy 87–115 (Springer, 2018).
    Google Scholar 
    Masad, D. & Kazil, J. in 14th PYTHON in Science Conference. 53–60 (Citeseer).Knaden, M. & Graham, P. The sensory ecology of ant navigation: from natural environments to neural mechanisms. Annu. Rev. Entomol. 61, 63–76 (2016).Article 

    Google Scholar  More

  • in

    Neolithic dental calculi provide evidence for environmental proxies and consumption of wild edible fruits and herbs in central Apennines

    Asevedo, L. et al. Palynological analysis of dental calculus from Pleistocene proboscideans of southern Brazil: a new approach for paleodiet and paleoenvironmental reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 540, 109523 (2020).Article 

    Google Scholar 
    Cristiani, E. et al. Wild cereal grain consumption among Early Holocene foragers of the Balkans predates the arrival of agriculture. Elife 10, e72976 (2021).Article 
    CAS 

    Google Scholar 
    Nava, A. et al. Multipronged dental analyses reveal dietary differences in last foragers and first farmers at Grotta Continenza, central Italy (15,500–7000 BP). Sci. Rep. 11, 1–14 (2021).Article 

    Google Scholar 
    Ottoni, C. et al. Tracking the transition to agriculture in Southern Europe through ancient DNA analysis of dental calculus. Proc. Natl. Acad. Sci. USA 118, e2102116118 (2021).Article 
    CAS 

    Google Scholar 
    Cammidge, T. S., Kooyman, B. & Theodor, J. M. Diet reconstructions for end-Pleistocene Mammut americanum and Mammuthus based on comparative analysis of mesowear, microwear, and dental calculus in modern Loxodonta africana. Palaeogeogr. Palaeoclimatol. Palaeoecol. 538, 109403 (2020).Article 

    Google Scholar 
    de Oliveira, K. et al. From oral pathology to feeding ecology: the first dental calculus paleodiet study of a South American native megamammal. J. S. Am. Earth Sci. 109, 103281 (2021).Article 

    Google Scholar 
    Mothé, D. et al. The micro from mega: dental calculus description and the first record of fossilized oral bacteria from an extinct proboscidean. Int. J. Paleopathol. 33, 55–60 (2021).Article 

    Google Scholar 
    Eglinton, G. & Logan, G. A. Molecular preservation. Philosophical Transactions of the Royal Society of London. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 333, 315–328 (1991).CAS 

    Google Scholar 
    Romanowski, G., Lorenz, M. G. & Wackernagel, W. Adsorption of plasmid DNA to mineral surfaces and protection against Dnase I. Appl. Environ. Microbiol. 57, 1057–1061 (1991).Article 
    CAS 

    Google Scholar 
    Milanesi, C. et al. Ultrastructural study of archaeological Vitis vinifera L. seeds using rapid-freeze fixation and substitution. Tissue Cell 41, 443–447 (2009).Article 
    CAS 

    Google Scholar 
    Power, R. C., Salazar-García, D. C., Wittig, R. M., Freiberg, M., & Henry, A. G. Dental calculus evidence of Taï Forest chimpanzee plant consumption and life history transitions. Sci. Rep. 5, 15161 (2015).Goude, G. et al. A multidisciplinary approach to Neolithic life reconstruction. J. Archaeol. Method Theory 26, 537–560 (2019).Article 

    Google Scholar 
    Farrer, A. G. et al. Effectiveness of decontamination protocols when analyzing ancient DNA preserved in dental calculus. Sci. Rep. 11, 1–14 (2021).Article 

    Google Scholar 
    Weyrich, L. S., Dobney, K. & Cooper, A. Ancient DNA analysis of dental calculus. J. Hum. Evol. 79, 119–124 (2015).Article 

    Google Scholar 
    Ozga, A. T. et al. Successful enrichment and recovery of whole mitochondrial genomes from ancient human dental calculus. Am. J. Phys. Anthropol. 160, 220–228 (2016).Article 

    Google Scholar 
    Mann, A. E. et al. Do I have something in my teeth? The trouble with genetic analyses of diet from archaeological dental calculus. Quat. Int. https://doi.org/10.1016/j.quaint.2020.11.019 (2020).Wright, S. L., Dobney, K. & Weyrich, L. S. Advancing and refining archaeological dental calculus research using multiomic frameworks. Sci. Technol. Archaeol. Res. 7, 13–30 (2021).
    Google Scholar 
    Sawafuji, R., Saso, A., Suda, W., Hattori, M. & Ueda, S. Ancient DNA analysis of food remains in human dental calculus from the Edo period, Japan. PLoS One 15, e0226654 (2020).Article 
    CAS 

    Google Scholar 
    Weyrich, L. S. et al. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544, 357–361 (2017).Article 
    CAS 

    Google Scholar 
    Ottoni, C. et al. Metagenomic analysis of dental calculus in ancient Egyptian baboons. Sci. Rep. 9, 1–10 (2019).Article 

    Google Scholar 
    Hollingsworth, P. M., Graham, S. W. & Little, D. P. Choosing and using a Plant DNA barcode. PLoS One 6, 1–13 (2011).Article 

    Google Scholar 
    Gismondi, A., Fanali, F., Labarga, J. M. M., Caiola, M. G. & Canini, A. Crocus sativus L. genomics and different DNA barcode applications. Plant Syst. Evol. 299, 1859–1863 (2013).Article 
    CAS 

    Google Scholar 
    ICSN. The international code for starch nomenclature, accessed 15 September 2021; http://fossilfarm.org/ICSN/Code.html (2011).Gismondi, A. et al. Starch granules: a data collection of 40 food species. Plant Biosyst. 153, 273–279 (2019).Article 

    Google Scholar 
    Henry, A. G., Brooks, A. S. & Piperno, D. R. Plant foods and the dietary ecology of Neanderthals and early modern humans. J. Hum. Evol. 69, 44–54 (2014).Article 

    Google Scholar 
    PalDat. A palynological database (2000 onwards), accessed 19 January 2022; https://www.paldat.org/ (2019).Berglund, B. E. & Ralska-Jasiewiczowa, M. Pollen analysis and pollen diagrams. In Handbook of Holocene Palaeoecology and Palaeohydrology (ed. Berglund, B. E.) 455–484 (Wiley, 1986).Faegri, K. & Iversen, J. Textbook of Pollen analysis, 4th edn (eds Faegri, K. et al.) (John Wiley and Sons-Chichester, 1989).Grímsson, F. et al. Fagaceae pollen from the early Cenozoic of West Greenland: revisiting Engler’s and Chaney’s Arcto-Tertiary hypotheses. Plant Syst. Evol. 301, 809–832 (2015).Article 

    Google Scholar 
    Denk, T. & Tekleva, M. V. Pollen morphology and ultrastructure of Quercus with focus on Group Ilex (= Quercus Subgenus Heterobalanus (Oerst.) Menitsky): Implications for oak systematics and evolution. Grana 53, 255–282 (2014).Article 

    Google Scholar 
    Grímsson, F. & Zetter, R. Combined LM and SEM study of the middle Miocene (Sarmatian) palynofora from the Lavanttal Basin, Austria: Part II. Pinophyta (Cupressaceae, Pinaceae and Sciadopityaceae). Grana 50, 262–310 (2011).Article 

    Google Scholar 
    Mohanty, R. P., Buchheim, M. A., Portman, R. & Levetin, E. Molecular and ultrastructural detection of plastids in Juniperus (Cupressaceae) pollen. Phytologia 98, 298–310 (2016).
    Google Scholar 
    Martin, A. C. & Harvey, W. J. The Global Pollen Project: a new tool for pollen identifcation and the dissemination of physical reference collections. Methods Ecol. Evol. 8, 892–897 (2017).Article 

    Google Scholar 
    Maciejewska-Rutkowska, I., Bocianowski, J. & Wrońska-Pilarek, D. Pollen morphology and variability of Polish native species from genus Salix L. PLoS One 16, e0243993 (2021).Article 
    CAS 

    Google Scholar 
    Abreu, I., Costa, I., Oliveira, M., Cunha, M. & De Castro, R. Ultrastructure and germination of Vitis vinifera cv. Loureiro pollen. Protoplasma 228, 131–135 (2006).Article 
    CAS 

    Google Scholar 
    Nagels, A. et al. Palynological diversity and major evolutionary trends in Cyperaceae. Plant Syst. Evol. 277, 117 (2009).Article 

    Google Scholar 
    El Ghazali, G. E. Pollen morphological studies in Amaranthaceae s. lat. (incl. Chenopodiaceae) and their taxonomic significance: a review. Grana 61, 1–7 (2022).Article 

    Google Scholar 
    Petraco, N., & Kubic, T. Color Atlas and Manual of Microscopy for Criminalists, Chemists, and Conservators (Boca Raton-CRC Press, 2003).D’Agostino, A. et al. Environmental implications and evidence of natural products from dental calculi of a Neolithic–Chalcolithic community (central Italy). Sci. Rep. 11, 1–13 (2021).Article 

    Google Scholar 
    Frangiote-Pallone, S. & de Souza, L. A. Pappus and cypsela ontogeny in Asteraceae: structural considerations of the tribal category. Rev. Mex. Biodivers. 85, 62–77 (2014).Article 

    Google Scholar 
    Eglinton, G., Gonzalez, A. G., Hamilton, R. J. & Raphael, R. A. Hydrocarbon constituents of the wax coatings of plant leaves: a taxonomic survey. Phytochemistry 1, 89–102 (1962).Article 
    CAS 

    Google Scholar 
    Buckley, S. A., Stott, A. W. & Evershed, R. P. Studies of organic residues from ancient Egyptian mummies using high temperature-gas chromatography-mass spectrometry and sequential thermal desorption-gas chromatography-mass spectrometry and pyrolysis-gas chromatography-mass spectrometry. Analyst 124, 443–452 (1999).Article 
    CAS 

    Google Scholar 
    Hardy, K. et al. Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften 99, 617–626 (2012).Article 
    CAS 

    Google Scholar 
    Luong, S., Tocheri, M. W., Sutikna, T., Saptomo, E. W. & Roberts, R. G. Incorporating terpenes, monoterpenoids and alkanes into multiresidue organic biomarker analysis of archaeological stone artefacts from Liang Bua (Flores, Indonesia). J. Archaeol. Sci. Rep. 19, 189–199 (2018).
    Google Scholar 
    Luong, S. et al. Combined organic biomarker and use-wear analyses of stone artefacts from Liang Bua, Flores, Indonesia. Sci. Rep. 9, 1–17 (2019).Article 
    CAS 

    Google Scholar 
    Dabney, J., Meyer, M. & Pääbo, S. Ancient DNA damage. Cold Spring Harb. Perspect. Biol. 5, a012567 (2013).Article 

    Google Scholar 
    Mann, A. E. et al. Differential preservation of endogenous human and microbial DNA in dental calculus and dentin. Sci. Rep. 8, 1–15 (2018).Article 

    Google Scholar 
    Horrocks, M., Nieuwoudt, M. K., Kinaston, R., Buckley, H. & Bedford, S. Microfossil and Fourier Transform InfraRed analyses of Lapita and post-Lapita human dental calculus from Vanuatu, Southwest Pacific. J. R. Soc. N. Z. 44, 17–33 (2014).Article 

    Google Scholar 
    Radini, A., Nikita, E., Buckley, S., Copeland, L. & Hardy, K. Beyond food: the multiple pathways for inclusion of materials into ancient dental calculus. Am. J. Phys. Anthropol. 162, 71–83 (2017).Article 

    Google Scholar 
    Henry, A. G. Other microparticles: volcanic glass, minerals, insect remains, feathers, and other plant parts. In Handbook for the Analysis of Micro-Particles in Archaeological Samples 289–295 (Springer, Cham, 2020).MacKenzie, L., Speller, C. F., Holst, M., Keefe, K., & Radini, A. Dental calculus in the industrial age: human dental calculus in the Post-Medieval period, a case study from industrial Manchester. Quat. Int. https://doi.org/10.1016/j.quaint.2021.09.020 (2021).Radini, A., & Nikita, E. Beyond dirty teeth: Integrating dental calculus studies with osteoarchaeological parameters. Quat. Int. https://doi.org/10.1016/j.quaint.2022.03.003 (2022).Dobney, K. & Brothwell, D. A scanning electron microscope study of archaeological dental calculus. In Scanning Electron Microscopy in Archaeology BAR International Series (ed. & Olsen S), vol. 452, pp. 372–385 (Oxford, UK: BAR, 1988).Henry, A. G. & Piperno, D. R. Using plant microfossils from dental calculus to recover human diet: a case study from Tell al-Raqā’i, Syria. J. Archaeol. Sci. 35, 1943–1950 (2008).Article 

    Google Scholar 
    Wesolowski, V., de Souza, S. M. F. M., Reinhard, K. J. & Ceccantini, G. Evaluating microfossil content of dental calculus from Brazilian sambaquis. J. Archaeol. Sci. 37, 1326–1338 (2010).Article 

    Google Scholar 
    González-Guarda, E. et al. Multiproxy evidence for leaf-browsing and closed habitats in extinct proboscideans (Mammalia, Proboscidea) from Central Chile. Proc. Natl. Acad. Sci. USA 115, 9258–9263 (2018).Article 

    Google Scholar 
    Radley, J. A. Starch and its Derivatives (Chapman and Hall, London, 1968).Power, R. C., Salazar-García, D. C., Wittig, R. M. & Henry, A. G. Assessing use and suitability of scanning electron microscopy in the analysis of micro remains in dental calculus. J. Archaeol. Sci. 49, 160–169 (2014).Article 
    CAS 

    Google Scholar 
    Rottoli, M. & Castiglioni, E. Prehistory of plant growing and collecting in northern Italy, based on seed remains from the early Neolithic to the Chalcolithic (c. 5600–2100 cal BC). Veg. Hist. Archaeobot. 18, 91–103 (2009).Article 

    Google Scholar 
    Fiorentino, G. et al. Climate changes and human–environment interactions in the Apulia region of southeastern Italy during the Neolithic period. Holocene 23, 1297–1316 (2013).Article 

    Google Scholar 
    Rottoli, M., & Pessina, A. Neolithic agriculture in Italy: an update of archaeobotanical data with particular emphasis on northern settlements. In The Origins and Spread of Domestic Plants in Southwest Asia and Europe 157–170 (Routledge, 2016).Arobba, D., Panelli, C., Caramiello, R., Gabriele, M. & Maggi, R. Cereal remains, plant impressions and 14C direct dating from the Neolithic pottery of Arene Candide Cave (Finale Ligure, NW Italy). J. Archaeol. Sci. Rep. 12, 395–404 (2017).
    Google Scholar 
    Ucchesu, M., Sau, S. & Lugliè, C. Crop and wild plant exploitation in Italy during the Neolithic period: New data from Su Mulinu Mannu, Middle Neolithic site of Sardinia. J. Archaeol. Sci. Rep. 14, 1–11 (2017).
    Google Scholar 
    Scorrano, G. et al. Effect of Neolithic transition on an Italian community: Mora Cavorso (Jenne, Rome). Archaeol. Anthropol. Sci. 11, 1443–1459 (2019).Article 

    Google Scholar 
    De Angelis, F. et al. Exploring mobility in Italian Neolithic and Copper Age communities. Sci. Rep. 11, 1–14 (2021).Article 

    Google Scholar 
    Oxilia, G. et al. Exploring late Paleolithic and Mesolithic diet in the Eastern Alpine region of Italy through multiple proxies. Am. J. Phys. Anthropol. 174, 232–253 (2021).Article 

    Google Scholar 
    Fahmy, A. G. E. Palaeoethnobotanical studies of the Neolithic settlement in Hidden Valley, Farafra Oasis, Egypt. Veg. Hist. Archaeobot. 10, 235–246 (2001).Article 

    Google Scholar 
    Reed, K. From the field to the hearth: plant remains from Neolithic Croatia (ca. 6000–4000 cal bc). Veg. Hist. Archaeobot. 24, 601–619 (2015).Article 

    Google Scholar 
    Lucarini, G., Radini, A., Barton, H. & Barker, G. The exploitation of wild plants in Neolithic North Africa. Use-wear and residue analysis on non-knapped stone tools from the Haua Fteah cave, Cyrenaica, Libya. Quat. Int. 410, 77–92 (2016).Article 

    Google Scholar 
    García-Granero, J. J., Urem-Kotsou, D., Bogaard, A. & Kotsos, S. Cooking plant foods in the northern Aegean: microbotanical evidence from Neolithic Stavroupoli (Thessaloniki, Greece). Quat. Int. 496, 140–151 (2018).Article 

    Google Scholar 
    Bouby, L. et al. Early Neolithic (ca. 5850-4500 cal BC) agricultural diffusion in the Western Mediterranean: an update of archaeobotanical data in SW France. PLoS One 15, e0230731 (2020).Article 
    CAS 

    Google Scholar 
    Delhon, C., Binder, D., Verdin, P. & Mazuy, A. Phytoliths as a seasonality indicator? The example of the Neolithic site of Pendimoun, south-eastern France. Veg. Hist. Archaeobot. 29, 229–240 (2020).Article 

    Google Scholar 
    Lu, H. et al. Phytoliths analysis for the discrimination of foxtail millet (Setaria italica) and common millet (Panicum miliaceum). PLoS One 4, e4448 (2009).Article 

    Google Scholar 
    Celant, A. Indagini paleobotaniche su macroresti vegetali dai siti neo-eneolitici del territorio di Roma. In Roma prima del mito. Abitati e necropoli dal Neolitico alla prima età dei Metalli nel territorio di Roma (VI-III millennio a.C.) (eds Anzidei, A. P. & Carboni, C.) Vol. 2, 687–704 (Archaeopress Archaeol., 2020).Carra, M. et al. Plant foods in the Late Palaeolithic of Southern Italy and Sicily: Integrating carpological and dental calculus evidence. Quat. Int. https://doi.org/10.1016/j.quaint.2022.06.007 (2022) .Bednar, G. E. et al. Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine model. J. Nutr. 131, 276–286 (2001).Article 
    CAS 

    Google Scholar 
    Hoover, R., Hughes, T., Chung, H. J. & Liu, Q. Composition, molecular structure, properties, and modification of pulse starches: a review. Food Res. Int. 43, 399–413 (2010).Article 
    CAS 

    Google Scholar 
    Wani, I. A. et al. Isolation, composition, and physicochemical properties of starch from legumes: a review. Starch‐Stärke 68, 834–845 (2016).Article 
    CAS 

    Google Scholar 
    Tayade, R., Kulkarni, K. P., Jo, H., Song, J. T. & Lee, J. D. Insight into the prospects for the improvement of seed starch in legume—a review. Front. Plant Sci. 10, 1213 (2019).Article 

    Google Scholar 
    Stafford, H. A. Distribution of tartaric acid in the leaves of certain angiosperms. Am. J. Bot. 46, 347–352 (1959).Article 
    CAS 

    Google Scholar 
    DeBolt, S., Cook, D. R. & Ford, C. M. L-Tartaric acid synthesis from vitamin C in higher plants. Proc. Natl. Acad. Sci. USA 103, 5608–5613 (2006).Article 
    CAS 

    Google Scholar 
    Fernández-García, E. et al. Carotenoids bioavailability from foods: from plant pigments to efficient biological activities. Food Res. Int. 46, 438–450 (2012).Article 

    Google Scholar 
    Gliszczyńska, A. & Brodelius, P. E. Sesquiterpene coumarins. Phytochem. Rev. 11, 77–96 (2012).Article 

    Google Scholar 
    Eerkens, J. The preservation and identification of Piñon resins by GC‐MS in pottery from the Western Great Basin. Archaeometry 44, 95–105 (2002).Article 
    CAS 

    Google Scholar 
    Barnard, H. et al. Mixed results of seven methods for organic residue analysis applied to one vessel with the residue of a known foodstuff. J. Archaeol. Sci. 34, 28–37 (2007).Article 

    Google Scholar 
    Wysocka, W., Przybył, A. & Brukwicki, T. The structure of angustifoline, an alkaloid of Lupinus angustifolius, in solution. Monatsh. Chem. 125, 1267–1272 (1994).Article 
    CAS 

    Google Scholar 
    Ohmiya, S., Saito, K., & Murakoshi, I. Lupine alkaloids. In The alkaloids: Chemistry and Pharmacology Vol. 47, 1–114) (Academic Press, 1995).Mancinotti, D., Frick, K. M. & Geu-Flores, F. Biosynthesis of quinolizidine alkaloids in lupins: mechanistic considerations and prospects for pathway elucidation. Nat. Prod. Rep. 39, 1423–1437 (2022).Article 
    CAS 

    Google Scholar 
    Silvestri, L., Achino, K. F., Gatta, M., Rolfo, M. F. & Salari, L. Grotta Mora Cavorso: physical, material and symbolic boundaries of life and death practices in a Neolithic cave of central Italy. Quat. Int. 539, 29–38 (2020).Article 

    Google Scholar 
    Steele, V. J., Stern, B. & Stott, A. W. Olive oil or lard?: distinguishing plant oils from animal fats in the archaeological record of the eastern Mediterranean using gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 24, 3478–3484 (2010).Article 
    CAS 

    Google Scholar 
    Buonasera, T. Investigating the presence of ancient absorbed organic residues in groundstone using GC–MS and other analytical techniques: a residue study of several prehistoric milling tools from central California. J. Archaeol. Sci. 34, 1379–1390 (2007).Article 

    Google Scholar 
    Luong, S. et al. Development and application of a comprehensive analytical workflow for the quantification of non-volatile low molecular weight lipids on archaeological stone tools. Anal. Met. 9, 4349–4362 (2017).Article 
    CAS 

    Google Scholar 
    Baeten, J., Jervis, B., De Vos, D. & Waelkens, M. Molecular evidence for the mixing of Meat, Fish and Vegetables in Anglo‐Saxon coarseware from Hamwic, UK. Archaeometry 55, 1150–1174 (2013).Article 
    CAS 

    Google Scholar 
    Evershed, R. P. Chemical composition of a bog body adipocere. Archaeometry 34, 253–265 (1992).Article 
    CAS 

    Google Scholar 
    Garnier, N., Bernal-Casasola, D., Driard, C. & Pinto, I. V. Looking for ancient fish products through invisible biomolecular residues in the roman production vats from the Atlantic. Coast J. Marit. Archaeol. 13, 285–328 (2018).Article 

    Google Scholar 
    Copley, M. S., Bland, H. A., Rose, P., Horton, M. & Evershed, R. P. Gas chromatographic, mass spectrometric and stable carbon isotopic investigations of organic residues of plant oils and animal fats employed as illuminants in archaeological lamps from Egypt. Analyst 130, 860–871 (2005).Article 
    CAS 

    Google Scholar 
    Reber, E. A. & Hart, J. P. Pine resins and pottery sealing: analysis of absorbed and visible pottery residues from central New York State. Archaeometry 50, 999–1017 (2008).Article 
    CAS 

    Google Scholar 
    Simopoulos, A. P. Omega‐3 fatty acids in wild plants, nuts and seeds. Asia Pac. J. Clin. Nutr. 11, S163–S173 (2002).Article 
    CAS 

    Google Scholar 
    Harris, W. S. et al. Stearidonic acid-enriched soybean oil increased the omega-3 index, an emerging cardiovascular risk marker. Lipids 43, 805–811 (2008).Article 
    CAS 

    Google Scholar 
    Gismondi, A., Rolfo, M. F., Leonardi, D., Rickards, O. & Canini, A. Identification of ancient Olea europaea L. and Cornus mas L. seeds by DNA barcoding. C. R. Biol. 335, 472–479 (2012).Article 
    CAS 

    Google Scholar 
    Steffens, W. & Wirth, M. Freshwater fish-an important source of n-3 polyunsaturated fatty acids: a review. Fish. Aquat. Sci. 13, 5–16 (2005).
    Google Scholar 
    Swanson, D., Block, R. & Mousa, S. A. Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv. Nutr. 3, 1–7 (2012).Article 
    CAS 

    Google Scholar 
    Wiermann, R., & Gubatz, S. Pollen wall and sporopollenin. In International Review of Cytology 35–72 (Academic Press, 1992).Cristiani, E., Radini, A., Edinborough, M. & Borić, D. Dental calculus reveals Mesolithic foragers in the Balkans consumed domesticated plant foods. Proc. Natl. Acad. Sci. USA 113, 10298–10303 (2016).Article 
    CAS 

    Google Scholar 
    Hardy, K. et al. Dental calculus reveals potential respiratory irritants and ingestion of essential plant-based nutrients at Lower Palaeolithic Qesem Cave Israel. Quat. Int. 398, 129–135 (2016).Article 

    Google Scholar 
    Radini, A. et al. Neanderthals, trees and dental calculus: new evidence from El Sidrón. Antiquity 90, 290–301 (2016).Article 

    Google Scholar 
    Lippi, M. M., Pisaneschi, L., Sarti, L., Lari, M. & Moggi-Cecchi, J. Insights into the Copper-Bronze Age diet in central Italy: plant microremains in dental calculus from Grotta dello Scoglietto (Southern Tuscany, Italy). J. Archaeol. Sci. Rep. 15, 30–39 (2017).
    Google Scholar 
    Modi, A. et al. Combined metagenomic and archaeobotanical analyses on human dental calculus: a cross-section of lifestyle conditions in a Copper Age population of central Italy. Quat. Int. https://doi.org/10.1016/j.quaint.2021.12.003 (2021).Warinner, C. et al. Pathogens and host immunity in the ancient human oral cavity. Nat. Genet. https://doi.org/10.1038/ng.2906 (2014).Lieverse, A. R. Diet and the aetiology of dental calculus. Int. J. Osteoarchaeol. 9, 219–232 (1999).Article 

    Google Scholar 
    Lukacs, J. R. & Largaespada, L. L. Explaining sex differences in dental caries prevalence: saliva, hormones, and “life‐history” etiologies. Am. J. Hum. Biol. 18, 540–555 (2006).Article 

    Google Scholar 
    Moore, P. D., Webb, J. A., & Collison, M. E. Pollen Analysis (Blackwell Scientific Publications, 1991).Borojević, K., Forenbaher, S., Kaiser, T. & Berna, F. Plant use at Grapčeva cave and in the eastern Adriatic Neolithic. J. Field Archaeol. 33, 279–303 (2008).Article 

    Google Scholar 
    Martin, L., Jacomet, S. & Tiebault, S. Plant economy during the Neolithic in a mountain context: the case of “Le Chenet des Pierres” in the French Alps (Bozel-Savoie, France). Veg. Hist. Archaeobot. 17, 113–122 (2008).Article 

    Google Scholar 
    Moser, D., Di Pasquale, G., Scarciglia, F. & Nelle, O. Holocene mountain forest changes in central Mediterranean: soil charcoal data from the Sila Massif (Calabria, southern Italy). Quat. Int. 457, 113–130 (2017).Article 

    Google Scholar 
    D’Agostino, A. et al. Pollen record of the Late Pleistocene–Holocene stratigraphic sequence and current plant biodiversity from Grotta Mora Cavorso (Simbruini Mountains, Central Italy). Ecol. Evol. 12, e9486 (2022).Radaeski, J. N., Bauermann, S. G. & Pereira, A. B. Poaceae pollen from Southern Brazil: distinguishing grasslands (campos) from forests by analyzing a diverse range of Poaceae species. Front. Plant Sci. 7, 1833 (2016).Article 

    Google Scholar 
    Turner, S. D. & Brown, A. G. Vitis pollen dispersal in and from organic vineyards: I. Pollen trap and soil pollen data. Rev. Palaeobot. Palynol. 129, 117–132 (2004).Article 

    Google Scholar 
    Marvelli, S., De’Siena, S., Rizzoli, E. & Marchesini, M. The origin of grapevine cultivation in Italy: the archaeobotanical evidence. Ann. Bot. 3, 155–163 (2013).
    Google Scholar 
    Riaz, S. et al. Genetic diversity analysis of cultivated and wild grapevine (Vitis vinifera L.) accessions around the Mediterranean basin and Central Asia. BMC Plant Biol. 18, 1–14 (2018).Article 

    Google Scholar 
    Arnold, C., Gillet, F., & Gobat, J. M. Situation de la vigne sauvage Vitis vinifera subsp. silvestris en Europe. Vitis 159–170 (1998).Terral, J. F. et al. Evolution and history of grapevine (Vitis vinifera) under domestication: new morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Ann. Bot. 105, 443–455 (2010).Article 

    Google Scholar 
    Buckley, S., Usai, D., Jakob, T., Radini, A. & Hardy, K. Dental calculus reveals unique insights into food items, cooking and plant processing in prehistoric central Sudan. PLoS One 9, e100808 (2014).Article 

    Google Scholar 
    Petrov, P. R., Popova, E. D. & Zlatanova, D. P. Niche partitioning among the red fox Vulpes vulpes (L.), stone marten Martes foina (Erxleben) and pine marten Martes martes (L.) in two mountains in Bulgaria. Acta Zool. Bulg. 68, 375–390 (2016).
    Google Scholar 
    Mikrjukov, K. A. Revision of genera and species composition of lower Centroheliozoa. II. Family Raphidiophryidae n. tam. Arch. Protistenkd. 147, 205–212 (1996).Article 

    Google Scholar 
    Cavalier-Smith, T. & von der Heyden, S. Molecular phylogeny, scale evolution and taxonomy of centrohelid heliozoa. Mol. Phylogen. Evol. 44, 1186–1203 (2007).Article 
    CAS 

    Google Scholar 
    Mertens, K. N., Rengefors, K., Moestrup, Ø. & Ellegaard, M. A review of recent freshwater dinoflagellate cysts: taxonomy, phylogeny, ecology and palaeocology. Phycologia 51, 612–619 (2012).Article 

    Google Scholar 
    Zlatogursky, V. V. Raphidiophrys heterophryoidea sp. nov. (Centrohelida: Raphidiophryidae), the first heliozoan species with a combination of siliceous and organic skeletal elements. Eur. J. Protist. 48, 9–16 (2012).Article 

    Google Scholar 
    Prokina, K. I. & Mylnikov, A. P. Centrohelid heliozoans from freshwater habitats of different types of South Patagonia and Tierra del Fuego, Chile. Inland Water Biol. 12, 10–20 (2019).Article 

    Google Scholar 
    Siemensma, F. J. & Roijackers, M. M. A study of new and little- known acanthocystid heliozoans, and a proposed division of the genus Acanthocystis (Actinopoda, Heliozoea). Arch. Protistenkd. 135, 197 (1988a).Article 

    Google Scholar 
    Siemensma, F. J. & Roijackers, M. M. The genus Raphidiophrys (Actinopoda, Heliozoea): scale morphology and species distinctions. Arch. Protistenkd. 136 237–248 (1988).Taylor, W.D. & Sanders, R. W. PROTOZOA. In Ecology and Classification of North American Freshwater Invertebrates (eds Thorp, J. H. & Covich, A. P.) 43–96 (Academic Press, 2001).Manconi, R., & Pronzato, R. Global diversity of sponges (Porifera: Spongillina) in freshwater. In Freshwater Animal Diversity Assessment 27–33 (Springer, Dordrecht, 2007).Malone, C. & Stoddart, S. The neolithic site of San Marco, Gubbio (Perugia), Umbria: survey and excavation 1985–7. Pap. Br. Sch. Rome 60, 1–69 (1992).Article 

    Google Scholar 
    Rottoli, M. La Marmotta, Anguillara Sabazia (RM). Scavi 1989. Analisi paletnobotaniche: prime risultanze, Appendice 1 M.A. In La Marmotta” (Anguillara Sabazia, RM). Scavi 1989. Un abitato perilacustre di età neolitica (eds. Fugazzola Delpino, M. A., D’Eugenio, G. & Pessina, A.) Bullettino di Paletnologia Italiana 84, 305–315 (1993).Pini, R. Late Neolithic vegetation history at the pile‐dwelling site of Palù di Livenza (northeastern Italy). J. Quat. Sci. 19, 769–781 (2004).Article 

    Google Scholar 
    Tinner, W. et al. Holocene environmental and climatic changes at Gorgo Basso, a coastal lake in southern Sicily, Italy. Quat. Sci. Rev. 28, 1498–1510 (2009).Article 

    Google Scholar 
    Bieniek, A. Archaeobotanical analysis of some early Neolithic settlements in the Kujawy region, central Poland, with potential plant gathering activities emphasized. Veg. Hist. Archaeobot. 11, 33–40 (2002).Article 

    Google Scholar 
    Tolar, T., Jacomet, S., Velušček, A. & Čufar, K. Plant economy at a late Neolithic lake dwelling site in Slovenia at the time of the Alpine Iceman. Veg. Hist. Archaeobot. 20, 207–222 (2011).Article 

    Google Scholar 
    D’Agostino, A. et al. Investigating plant micro-remains embedded in dental calculus of the Phoenician inhabitants of Motya (Sicily, Italy). Plants 9, 1395 (2020).Article 

    Google Scholar 
    Mercader, J. et al. Exaggerated expectations in ancient starch research and the need for new taphonomic and authenticity criteria. Facets 3, 777–798 (2018).Article 

    Google Scholar 
    Adojoh, O., Fabienne, M., Duller, R. & Osterloff, P. Taxonomy and phytoecology of palynomorphs and non-pollen palynomorphs: a refined compendium from the West Africa Margin. Biodivers. Int. J. 3, 188–200 (2019).Article 

    Google Scholar 
    Knapp, M., Clarke, A. C., Horsburgh, K. A. & Matisoo-Smith, E. A. Setting the stage building and working in an ancient DNA laboratory. Ann. Anat. 194, 3 (2012).Article 
    CAS 

    Google Scholar 
    Knapp, M., Lalueza-Fox, C. & Hofreiter, M. Re-inventing ancient human DNA. Investig. Genet. 6, 1 (2015).Article 

    Google Scholar 
    Gismondi, A. et al. Grapevine carpological remains revealed the existence of a Neolithic domesticated Vitis vinifera L. specimen containing ancient DNA partially preserved in modern ecotypes. J. Archaeol. Sci. 69, 75–84 (2016).Article 
    CAS 

    Google Scholar 
    Llamas, B. et al. From the field to the laboratory: controlling DNA contamination in human ancient DNA research in the high-throughput sequencing era. Sci. Technol. Archaeol. Res. 3, 1–14 (2017).Le Moyne, C. & Crowther, A. Effects of chemical pre-treatments on modified starch granules: recommendations for dental calculus decalcification for ancient starch research. J. Archaeol. Sci. Rep. 35, 102762 (2021).
    Google Scholar 
    Rolfo, M. F., Achino, K. F., Fusco, I., Salari, L. & Silvestri, L. Reassessing human occupation patterns in the inner central Apennines in prehistory: the case-study of Grotta Mora Cavorso. J. Archaeol. Sci. Rep. 7, 358–367 (2016).
    Google Scholar  More

  • in

    Climate warming has compounded plant responses to habitat conversion in northern Europe

    IPBES. Global assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, 2019).Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    IPCC. Summary for Policymakers. in Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2022).Travis, J. M. J. Climate change and habitat destruction: a deadly anthropogenic cocktail. P. R. Soc. B. 270, 467–473 (2003).Article 
    CAS 

    Google Scholar 
    Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. P. R. Soc. B. 285, 20180792 (2018).Article 

    Google Scholar 
    Anderson, K. J., Allen, A. P., Gillooly, J. F. & Brown, J. H. Temperature-dependence of biomass accumulation rates during secondary succession. Ecol. Lett. 9, 673–682 (2006).Article 

    Google Scholar 
    Fridley, J. D. & Wright, J. P. Temperature accelerates the rate fields become forests. Proc. Natl Acad. Sci. USA 115, 4702–4706 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Auffret, A. G., Kimberley, A., Plue, J. & Waldén, E. Super-regional land-use change and effects on the grassland specialist flora. Nat. Commun. 9, 3464 (2018).Article 
    ADS 

    Google Scholar 
    Auffret, A. G. & Thomas, C. D. Synergistic and antagonistic effects of land use and non-native species on community responses to climate change. Glob. Change Biol. 25, 4303–4314 (2019).Article 
    ADS 

    Google Scholar 
    Hill, M. O. Local frequency as a key to interpreting species occurrence data when recording effort is not known. Methods Ecol. Evol. 3, 195–205 (2012).Article 

    Google Scholar 
    Isaac, N. J. B., Strien, A. J., van, August, T. A., Zeeuw, M. Pde & Roy, D. B. Statistics for citizen science: extracting signals of change from noisy ecological data. Methods Ecol. Evol. 5, 1052–1060 (2014).Article 

    Google Scholar 
    Tyler, T., Herbertsson, L., Olofsson, J. & Olsson, P. A. Ecological indicator and traits values for Swedish vascular plants. Ecol. Indic. 120, 106923 (2021).Article 
    CAS 

    Google Scholar 
    Jiang, M., Bullock, J. M. & Hooftman, D. A. P. Mapping ecosystem service and biodiversity changes over 70 years in a rural English county. J. Appl. Ecol. 50, 841–850 (2013).Article 

    Google Scholar 
    IPCC. Summary for Policymakers. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2021).Van Calster, H. et al. Unexpectedly high 20th century floristic losses in a rural landscape in northern France. J. Ecol. 96, 927–936 (2008).Article 

    Google Scholar 
    Staude, I. R. et al. Replacements of small- by large-ranged species scale up to diversity loss in Europe’s temperate forest biome. Nat. Ecol. Evol. 4, 802–808 (2020).Article 

    Google Scholar 
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 

    Google Scholar 
    Platts, P. J. et al. Habitat availability explains variation in climate-driven range shifts across multiple taxonomic groups. Sci. Rep. 9, 1–10 (2019).Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 
    Macgregor, C. J. et al. Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nat. Commun. 10, 4455 (2019).Article 
    ADS 

    Google Scholar 
    Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622 (2012).Article 
    ADS 

    Google Scholar 
    Svenning, J.-C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).Article 

    Google Scholar 
    Cannone, N. & Pignatti, S. Ecological responses of plant species and communities to climate warming: upward shift or range filling processes? Climatic Change 123, 201–214 (2014).Article 
    ADS 

    Google Scholar 
    Wiens, J. J. Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species. PLOS Biol. 14, e2001104 (2016).Article 

    Google Scholar 
    Hill, M. O. & Preston, C. D. Disappearance of boreal plants in southern Britain: habitat loss or climate change? Biol. J. Linn. Soc. 115, 598–610 (2015).Article 

    Google Scholar 
    Lynn, J. S., Klanderud, K., Telford, R. J., Goldberg, D. E. & Vandvik, V. Macroecological context predicts species’ responses to climate warming. Glob. Change Biol. 27, 2088–2101 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Liu, D. et al. Species selection under long-term experimental warming and drought explained by climatic distributions. N. Phytol. 217, 1494–1506 (2018).Article 

    Google Scholar 
    Buitenwerf, R., Sandel, B., Normand, S., Mimet, A. & Svenning, J.-C. Land surface greening suggests vigorous woody regrowth throughout European semi-natural vegetation. Glob. Change Biol. 24, 5789–5801 (2018).Article 

    Google Scholar 
    Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).Article 
    ADS 

    Google Scholar 
    De Frenne, P. et al. Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J. Ecol. 101, 784–795 (2013).Article 

    Google Scholar 
    Ash, J. D., Givnish, T. J. & Waller, D. M. Tracking lags in historical plant species’ shifts in relation to regional climate change. Glob. Change Biol. 23, 1305–1315 (2017).Article 
    ADS 

    Google Scholar 
    Savage, J. & Vellend, M. Elevational shifts, biotic homogenization and time lags in vegetation change during 40 years of climate warming. Ecography 38, 546–555 (2015).Article 

    Google Scholar 
    Gerstner, K., Dormann, C. F., Stein, A., Manceur, A. M. & Seppelt, R. Effects of land use on plant diversity—a global meta-analysis. J. Appl. Ecol. 51, 1690–1700 (2014).Article 

    Google Scholar 
    Kempel, A. et al. Nationwide revisitation reveals thousands of local extinctions across the ranges of 713 threatened and rare plant species. Conserv. Lett. 13, e12749 (2020).Article 

    Google Scholar 
    Bilz, M., Kell, S. P., Maxted, N. & Lansdown, R. V. European Red List of Vascular Plants (Publications Office of the EU, 2011).Timmermann, A., Damgaard, C., Strandberg, M. T. & Svenning, J.-C. Pervasive early 21st-century vegetation changes across Danish semi-natural ecosystems: more losers than winners and a shift towards competitive, tall-growing species. J. Appl. Ecol. 52, 21–30 (2015).Article 

    Google Scholar 
    Staude, I. R. et al. Directional turnover towards larger-ranged plants over time and across habitats. Ecol. Lett. 25, 466–482 (2022).Article 

    Google Scholar 
    Finderup Nielsen, T., Sand‐Jensen, K., Dornelas, M. & Bruun, H. H. More is less: net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).Article 

    Google Scholar 
    Christiansen, D. M., Iversen, L. L., Ehrlén, J. & Hylander, K. Changes in forest structure drive temperature preferences of boreal understorey plant communities. J. Ecol. 110, 631–643 (2022).Article 

    Google Scholar 
    Gossner, M. M. et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Duprè, C. et al. Changes in species richness and composition in European acidic grasslands over the past 70 years: the contribution of cumulative atmospheric nitrogen deposition. Glob. Change Biol. 16, 344–357 (2010).Article 
    ADS 

    Google Scholar 
    Tyler, T. et al. Climate warming and land‐use changes drive broad‐scale floristic changes in Southern Sweden. Glob. Change Biol. 24, 2607–2621 (2018).Article 
    ADS 

    Google Scholar 
    Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Halley, J. M., Monokrousos, N., Mazaris, A. D., Newmark, W. D. & Vokou, D. Dynamics of extinction debt across five taxonomic groups. Nat. Commun. 7, 12283 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Bertrand, R. et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517–520 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).Article 

    Google Scholar 
    Plue, J. et al. Buffering effects of soil seed banks on plant community composition in response to land use and climate. Glob. Ecol. Biogeogr. 30, 128–139 (2021).Article 

    Google Scholar 
    Honnay, O. & Bossuyt, B. Prolonged clonal growth: escape route or route to extinction? Oikos 108, 427–432 (2005).Article 

    Google Scholar 
    Ozinga, W. A. et al. Dispersal failure contributes to plant losses in NW Europe. Ecol. Lett. 12, 66–74 (2009).Article 

    Google Scholar 
    Svenning, J.-C., Normand, S. & Skov, F. Postglacial dispersal limitation of widespread forest plant species in nemoral Europe. Ecography 31, 316–326 (2008).Article 

    Google Scholar 
    Lenoir, J., Gégout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Warren, R., Price, J., Graham, E., Forstenhaeusler, N. & VanDerWal, J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5 °C rather than 2 °C. Science 360, 791–795 (2018).Article 
    CAS 

    Google Scholar 
    Garrido, P. et al. Experimental rewilding may restore abandoned wood-pastures if policy allows. Ambio 50, 101–112 (2021).Article 

    Google Scholar 
    Kowalczyk, R., Kamiński, T. & Borowik, T. Do large herbivores maintain open habitats in temperate forests? For. Ecol. Manag. 494, 119310 (2021).Article 

    Google Scholar 
    Auffret, A. G., Schmucki, R., Reimark, J. & Cousins, S. A. O. Grazing networks provide useful functional connectivity for plants in fragmented systems. J. Veg. Sci. 23, 970–977 (2012).Article 

    Google Scholar 
    Fricke, E. C., Ordonez, A., Rogers, H. S. & Svenning, J.-C. The effects of defaunation on plants’ capacity to track climate change. Science 375, 210–214 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Blomgren, E., Falk, E. & Herloff, B. Bohusläns Flora (Föreningen Bohusläns Flora, 2011).Fries, H. Göteborgs och Bohus Läns Fanerogamer och Ormbunkar (Elanders Boktryckeri, 1945).Lidberg, R. & Lindström, H. Medelpads Flora (The vascular plants of Medelpad) (SBF Förlaget, 2010).Sterner, R. Flora der insel Öland Vol. IX (Almqvist & Wiksells, 1938).Almquist, E. Upplands vegetation och flora. Acta Phytogeogr. Suec. 1, 1–622 (1929).
    Google Scholar 
    Jonsell, L. Upplands Flora (SBF Förlaget, 2010).Maad, J., Sundberg, S., Stolpe, P. & Jonsell, L. Floraförändringar i Uppland under 1900-talet—en analys från Projekt Upplands flora [Floristic changes during the 20th century in Uppland, east central Sweden; with English summary]. Sven. Botanisk Tidskr. 103, 67–104 (2009).
    Google Scholar 
    Auffret, A. G. et al. HistMapR: Rapid digitization of historical land-use maps in R. Methods Ecol. Evol. 8, 1453–1457 (2017).Article 

    Google Scholar 
    August, T. et al. sparta: Trend analysis for unstructured data. R package version 0.1.44 (2018).Eichenberg, D. et al. Widespread decline in Central European plant diversity across six decades. Glob. Change Biol. 27, 1097–1110 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Redhead, J. W. et al. Potential landscape-scale pollinator networks across Great Britain: structure, stability and influence of agricultural land cover. Ecol. Lett. 21, 1821–1832 (2018).Article 

    Google Scholar 
    Gillings, S. et al. Breeding and wintering bird distributions in Britain and Ireland from citizen science bird atlases. Glob. Ecol. Biogeogr. 28, 866–874 (2019).Article 

    Google Scholar 
    Stroh, P. A., Walker, K. J., Humphrey, T. A., Pescott, O. L. & Burkmar, R. J. Plant Atlas 2020: Mapping Changes in the Distribution of the British and Irish Flora (Princeton, planned publication date: 21/03/2023).Pearce-Higgins, J. W., Ausden, M. A., Beale, C. M., Oliver, T. H. & Crick, H. Q. P. Research on the assessment of risks & opportunities for species in England as a result of climate change – NECR175. Natural England Commissioned Reports Vol. 175 (2015).R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).Telfer, M. G., Preston, C. D. & Rothery, P. A general method for measuring relative change in range size from biological atlas data. Biol. Conserv. 107, 99–109 (2002).Article 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. M. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. http://CRAN.R-project.org/package=lme4 (2014).Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2009).Article 

    Google Scholar 
    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).Article 

    Google Scholar 
    Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).Article 

    Google Scholar 
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    Borcard, D. & Legendre, P. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Model. 153, 51–68 (2002).Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community ecology package. R package version 2.3-5. http://CRAN.R-project.org/package=vegan (2016).Meineri, E. & Hylander, K. Fine-grain, large-domain climate models based on climate station and comprehensive topographic information improve microrefugia detection. Ecography 40, 1003–1013 (2017).Article 

    Google Scholar 
    Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. performance: an R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139 (2021).Article 
    ADS 

    Google Scholar 
    Breheny, P. & Burchett, W. Visualization of regression models using visreg. R. J. 9, 57–71 (2017).Article 

    Google Scholar 
    Hijmans, R. J. raster: Geographic data analysis and modeling. R package version 2.5-8. http://CRAN.R-project.org/package=raster (2016). More

  • in

    Environmentally driven phenotypic convergence and niche conservatism accompany speciation in hoary bats

    Orr, M. R. & Smith, T. B. Ecology and speciation. Trends Ecol. Evol. 13, 502–506 (1998).Article 
    CAS 

    Google Scholar 
    Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, 2004).
    Google Scholar 
    Gillespie, R. G. Adaptive radiation: Convergence and non-equilibrium. Curr. Biol. 23, R71–R74 (2013).Article 
    CAS 

    Google Scholar 
    Price, T. Speciation in Birds (Roberts and Company Publishers, 2008).
    Google Scholar 
    Schluter, D. Evidence for ecological speciation and its alternative. Science 323, 737–741 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Stroud, J. T. & Losos, J. B. Ecological opportunity and adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 47, 507–532 (2016).Article 

    Google Scholar 
    Jønsson, K. A. et al. Ecological and evolutionary determinants for the adaptive radiation of the Madagascan vangas. Proc. Natl. Acad. Sci. 109, 6620–6625 (2012).Article 
    ADS 

    Google Scholar 
    Wiens, J. J. Speciation and ecology revisited: Phylogenetic niche conservatism and the origin of species. Evolution 58, 193–197 (2004).
    Google Scholar 
    Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).Article 

    Google Scholar 
    Wiens, J. J. & Graham, C. H. Niche Conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).Article 

    Google Scholar 
    Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Winger, B. M., Barker, F. K. & Ree, R. H. Temperate origins of long-distance seasonal migration in New World songbirds. Proc. Natl. Acad. Sci. 111, 12115–12120 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: Evolution and determinants. Oikos 103, 247–260 (2003).Article 

    Google Scholar 
    Gómez, C., Tenorio, E. A., Montoya, P. & Cadena, C. D. Niche-tracking migrants and niche-switching residents: Evolution of climatic niches in New World warblers (Parulidae). Proc. R. Soc. B Biol. Sci. 283, 20152458 (2016).Article 

    Google Scholar 
    Menchaca, A., Arteaga, M. C., Medellin, R. A. & Jones, G. Conservation units and historical matrilineal structure in the tequila bat (Leptonycteris yerbabuenae). Glob. Ecol. Conserv. 23, e01164 (2020).Article 

    Google Scholar 
    Medellín, R. A. et al. Follow me: Foraging distances of Leptonycteris yerbabuenae (Chiroptera: Phyllostomidae) in Sonora determined by fluorescent powder. J. Mammal. 99, 306–311 (2018).Article 

    Google Scholar 
    Broennimann, O. et al. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10, 701–709 (2007).Article 
    CAS 

    Google Scholar 
    Martínez-Meyer, E., Peterson, A. T. & Hargrove, W. W. Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Glob. Ecol. Biogeogr. 13, 305–314 (2004).Article 

    Google Scholar 
    Soto-Centeno, J. A. & Steadman, D. W. Fossils reject climate change as the cause of extinction of Caribbean bats. Sci. Rep. 5, 7971 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Avise, J. C. Phylogeography: The History and Formation of Species (Harvard University Press, 2000).Book 

    Google Scholar 
    Hickerson, M. J. et al. Phylogeography’s past, present, and future: 10 years after Avise, 2000. Mol. Phylogenet. Evol. 54, 291–301 (2010).Article 
    CAS 

    Google Scholar 
    Pahad, G., Montgelard, C. & Jansen van Vuuren, B. Phylogeography and niche modelling: Reciprocal enlightenment. Mammalia 84, 10–25 (2019).Article 

    Google Scholar 
    Flanders, J. et al. Phylogeography of the greater horseshoe bat, Rhinolophus ferrumequinum: Contrasting results from mitochondrial and microsatellite data. Mol. Ecol. 18, 306–318 (2009).Article 
    CAS 

    Google Scholar 
    Machado, A. F. et al. Integrating phylogeography and ecological niche modelling to test diversification hypotheses using a Neotropical rodent. Evol. Ecol. 33, 111–148 (2019).Article 

    Google Scholar 
    Kalkvik, H. M., Stout, I. J., Doonan, T. J. & Parkinson, C. L. Investigating niche and lineage diversification in widely distributed taxa: Phylogeography and ecological niche modeling of the Peromyscus maniculatus species group. Ecography 35, 54–64 (2012).Article 

    Google Scholar 
    Wang, Y. et al. Ring distribution patterns—diversification or speciation? Comparative phylogeography of two small mammals in the mountains surrounding the Sichuan Basin. Mol. Ecol. 30, 2641–2658 (2021).Article 

    Google Scholar 
    Soto-Centeno, J. A., Barrow, L. N., Allen, J. M. & Reed, D. L. Reevaluation of a classic phylogeographic barrier: New techniques reveal the influence of microgeographic climate variation on population divergence. Ecol. Evol. 3, 1603–1613 (2013).Article 

    Google Scholar 
    Amador, L. I., Moyers Arévalo, R. L., Almeida, F. C., Catalano, S. A. & Giannini, N. P. Bat systematics in the light of unconstrained analyses of a comprehensive molecular supermatrix. J. Mamm. Evol. 25, 37–70 (2018).Article 

    Google Scholar 
    Rojas, D., Warsi, O. M. & Dávalos, L. M. Bats (Chiroptera: Noctilionoidea) challenge a recent origin of extant neotropical diversity. Syst. Biol. 65, 432–448 (2016).Article 

    Google Scholar 
    Shi, J. J. & Rabosky, D. L. Speciation dynamics during the global radiation of extant bats. Evolution 69, 1528–1545 (2015).Article 

    Google Scholar 
    Dumont, E. R. et al. Morphological innovation, diversification and invasion of a new adaptive zone. Proc. Biol. Sci. 279, 1797–1805 (2012).
    Google Scholar 
    Leiser-Miller, L. B. & Santana, S. E. Morphological diversity in the sensory system of phyllostomid bats: Implications for acoustic and dietary ecology. Funct. Ecol. 34, 1416–1427 (2020).Article 

    Google Scholar 
    Hedrick, B. P. & Dumont, E. R. Putting the leaf-nosed bats in context: A geometric morphometric analysis of three of the largest families of bats. J. Mammal. 99, 1042–1054 (2018).Article 

    Google Scholar 
    Clare, E. L. Cryptic species? Patterns of maternal and paternal gene flow in eight neotropical bats. PLoS One 6, e21460 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Chaverri, G. et al. Unveiling the hidden bat diversity of a neotropical montane forest. PLoS One 11, e0162712 (2016).Article 

    Google Scholar 
    Calahorra-Oliart, A., Ospina-Garcés, S. M. & León-Paniagua, L. Cryptic species in Glossophaga soricina (Chiroptera: Phyllostomidae): Do morphological data support molecular evidence?. J. Mammal. 102, 54–68 (2021).Article 

    Google Scholar 
    Lim, B. K., Loureiro, L. O. & Garbino, G. S. T. Cryptic diversity and range extension in the big-eyed bat genus Chiroderma (Chiroptera, Phyllostomidae). Zookeys 918, 41–63 (2020).Article 

    Google Scholar 
    Loureiro, L. O., Engstrom, M., Lim, B., González, C. L. & Juste, J. Not all Molossus are created equal: Genetic variation in the mastiff bat reveals diversity masked by conservative morphology. Acta Chiropterologica 21, 51 (2019).Article 

    Google Scholar 
    Morales, A., Villalobos, F., Velazco, P. M., Simmons, N. B. & Piñero, D. Environmental niche drives genetic and morphometric structure in a widespread bat. J. Biogeogr. 43, 1057–1068 (2016).Article 

    Google Scholar 
    Hedrick, B. P. et al. Morphological diversification under high integration in a hyper diverse mammal clade. J. Mamm. Evol. 27, 563–575 (2020).Article 

    Google Scholar 
    Morales, A. E. & Carstens, B. C. Evidence that myotis lucifugus “subspecies” are five nonsister species, despite gene flow. Syst. Biol. 67, 756–769 (2018).Article 

    Google Scholar 
    Simmons, N. B. & Cirranello, A. L. Bat species of the world: A taxonomic and geographic database. https://batnames.org.Russell, A. L., Pinzari, C. A., Vonhof, M. J., Olival, K. J. & Bonaccorso, F. J. Two tickets to paradise: Multiple dispersal events in the founding of hoary bat populations in Hawai’i. PLoS One 10, 1–13 (2015).
    Google Scholar 
    Shump, K. A. & Shump, A. U. Lasiurus cinereus. Mamm. Species 185, 1–5 (1982).
    Google Scholar 
    Ziegler, A. C., Howarth, F. G. & Simmons, N. B. A second endemic land mammal for the Hawaiian Islands: A new genus and species of fossil bat (Chiroptera: Vespertilionidae). Am. Museum Novit. 1–52 (2016).Bonaccorso, F. J. & McGuire, L. P. Modeling the colonization of Hawaii by hoary bats (Lasiurus cinereus). In Bat Evolution, Ecology, and Conservation (eds Adams, R. A. & Pedersen, S. C.) 187–205 (Springer, 2013).Chapter 

    Google Scholar 
    Baird, A. B. et al. Molecular systematic revision of tree bats (Lasiurini): Doubling the native mammals of the Hawaiian Islands. J. Mammal. 96, 1255–1274 (2015).Article 

    Google Scholar 
    Jacobs, D. S. Morphological divergence in an insular bat, Lasiurus cinereus semotus. Funct. Ecol. 10, 622–630 (1996).Article 

    Google Scholar 
    Baird, A. B. et al. Nuclear and mtDNA phylogenetic analyses clarify the evolutionary history of two species of native Hawaiian bats and the taxonomy of Lasiurini (Mammalia: Chiroptera). PLoS One 12, e0186085 (2017).Article 

    Google Scholar 
    Kumar, S. & Subramanian, S. Mutation rates in mammalian genomes. Proc. Natl. Acad. Sci. U.S.A. 99, 803–808 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Gillespie, R. G. et al. Comparing adaptive radiations across space, time, and taxa. J. Hered. 111, 1–20 (2020).Article 

    Google Scholar 
    Fišer, C., Robinson, C. T. & Malard, F. Cryptic species as a window into the paradigm shift of the species concept. Mol. Ecol. 27, 613–635 (2018).Article 

    Google Scholar 
    Espíndola, A. et al. Identifying cryptic diversity with predictive phylogeography. Proc. R. Soc. B Biol. Sci. 283, 20161529 (2016).Article 

    Google Scholar 
    Padial, J. M., Miralles, A., De la Riva, I. & Vences, M. The integrative future of taxonomy. Front. Zool. 7, 1–14 (2010).Article 

    Google Scholar 
    Fujita, M. K., Leaché, A. D., Burbrink, F. T., McGuire, J. A. & Moritz, C. Coalescent-based species delimitation in an integrative taxonomy. Trends Ecol. Evol. 27, 480–488 (2012).Article 

    Google Scholar 
    Solari, S., Sotero-Caio, C. G. & Baker, R. J. Advances in systematics of bats: Towards a consensus on species delimitation and classifications through integrative taxonomy. J. Mammal. 100, 838–851 (2018).Article 

    Google Scholar 
    Mayr, E. Geographical character gradients and climatic adaptation. Evolution 10, 105–108 (1956).
    Google Scholar 
    Morales, A. E., De-la-Mora, M. & Piñero, D. Spatial and environmental factors predict skull variation and genetic structure in the cosmopolitan bat Tadarida brasiliensis. J. Biogeogr. 45, 1529–1540 (2018).Article 

    Google Scholar 
    Pavan, A. C. & Marroig, G. Integrating multiple evidences in taxonomy: Species diversity and phylogeny of mustached bats (Mormoopidae: Pteronotus). Mol. Phylogenet. Evol. 103, 184–198 (2016).Article 

    Google Scholar 
    Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).Article 
    CAS 

    Google Scholar 
    Robinson, D. & Foulds, L. Comparison of phylogenetic trees. Math. Biosci. 53, 131–147 (1981).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Pattengale, N. D., Alipour, M., Bininda-Emonds, O. R., Moret, B. M. & Stamatakis, A. How many bootstrap replicates are necessary?. J. Comput. Biol. 17, 337–354 (2010).Article 
    MathSciNet 
    CAS 

    Google Scholar 
    Lemoine, F. et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556, 452–456 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).Article 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).Article 
    CAS 

    Google Scholar 
    Kapli, P. et al. Multi-rate Poisson Tree Processes for single-locus species delimitation under Maximum Likelihood and Markov Chain Monte Carlo. Bioinformatics 33, 1630–1638 (2017).CAS 

    Google Scholar 
    Yang, Z. & Rannala, B. Unguided species delimitation using DNA sequence data from multiple loci. Mol. Biol. Evol. 31, 3125–3135 (2014).Article 
    CAS 

    Google Scholar 
    Flouri, T., Jiao, X., Rannala, B. & Yang, Z. Species tree inference with BPP using genomic sequences and the multispecies coalescent. Mol. Biol. Evol. 35, 2585–2593 (2018).Article 
    CAS 

    Google Scholar 
    Van Buuren, S. & Groothuis-Oudshoorn, K. Multivariate imputation by chained equations. J. Stat. Softw. 45, 1–67 (2011).Article 

    Google Scholar 
    Penone, C. et al. Imputation of missing data in life-history trait datasets: Which approach performs the best?. Methods Ecol. Evol. 5, 961–970 (2014).Article 

    Google Scholar 
    Berner, D. Size correction in biology: How reliable are approaches based on (common) principal component analysis?. Oecologia 166, 961–971 (2011).Article 
    ADS 

    Google Scholar 
    Simmons, N. B. Order Chiroptera. In Mammal Species of the World: A Taxonomic and Geographic Reference (eds Wilson, D. E. & Reeder, D. M.) 312–529 (The John Hopkins University Press, 2005).
    Google Scholar 
    Wilson, D. E. & Mittermeier, R. A. Handbook of the Mammals of the World. Vol. 9. Bats (Lynx Editions, 2019).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing (2022).Kuhn, M. caret: Classification and Regression Training. R package version 6.0-86. https://CRAN.R-project.org/package=caret (2020).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).Book 
    MATH 

    Google Scholar 
    Kuhn, M. & Johnson, K. Applied Predictive Modeling (Springer, 2013).Book 
    MATH 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Hijmans, R. J. raster: Geographic Data Analysis and Modeling (2022).Barker, B. S., Rodríguez-Robles, J. A. & Cook, J. A. Climate as a driver of tropical insular diversity: Comparative phylogeography of two ecologically distinctive frogs in Puerto Rico. Ecography 38, 769–781 (2015).Article 

    Google Scholar 
    Petitpierre, B., Broennimann, O., Kueffer, C., Daehler, C. & Guisan, A. Selecting predictors to maximize the transferability of species distribution models: Lessons from cross-continental plant invasions. Glob. Ecol. Biogeogr. 26, 275–287 (2017).Article 

    Google Scholar 
    Akinwande, M. O., Dikko, H. G. & Samson, A. Variance inflation factor: As a condition for the inclusion of suppressor variable(s) in regression analysis. Open J. Stat. 05, 754–767 (2015).Article 

    Google Scholar 
    Izenman, A. J. Linear discriminant analysis. in Modern Multivariate Statistical Techniques 237–280 (2013).Lever, J., Krzywinski, M. & Altman, N. Points of significance: Principal component analysis. Nat. Methods 14, 641–642 (2017).Article 
    CAS 

    Google Scholar 
    Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. Unifying niche shift studies: Insights from biological invasions. Trends Ecol. Evol. 29, 260–269 (2014).Article 

    Google Scholar 
    Di Cola, V. et al. ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).Article 

    Google Scholar 
    Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).Article 

    Google Scholar 
    Liu, C., Wolter, C., Xian, W. & Jeschke, J. M. Most invasive species largely conserve their climatic niche. Proc. Natl. Acad. Sci. 117, 23643–23651 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).Article 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 33, 607–611 (2010).
    Google Scholar  More

  • in

    Number of simultaneously acting global change factors affects composition, diversity and productivity of grassland plant communities

    Study species and pre-cultivationTo create the mesocosm communities, we selected nine herbaceous grassland species that are native to and widespread in Central Europe (Supplementary Table 9), where they can also co-occur. The species were Alopecurus pratensis L., Diplotaxis tenuifolia (L.) DC., Lolium perenne L., Poa pratensis L., Prunella vulgaris L., Sinapis arvensis L., Sonchus oleraceus L., Vicia cracca L., Vicia sativa L. To increase generalizability54, the species were selected from three functional groups (grasses, annual forbs, perennial forbs), and they represent five families.Seeds were obtained from different sources (Supplementary Table 9). For the transplanted-seedling community (see section ‘Experimental lay-out), seedlings were pre-cultivated in a greenhouse of the Botanical Garden of the University of Konstanz. As the species require different times for germination, they were sown on different dates (Supplementary Table 10) to ensure that seedlings of all species were at a similar developmental stage at transplantation. Seeds were sown separately per species in plastic trays filled with potting soil (Einheitserde®, Pikiererde CL P). The greenhouse had a regular day-night rhythm of c. 16:8 hours, and its ventilation windows automatically opened at 21 °C during the day and at 18 °C during the night. Two days before transplanting, the seedlings were placed outdoors to acclimatize. For the sown community, we sowed a seed mixture of the nine study species directly into the outdoor mesocosm pots.Experimental setupGlobal change treatmentsWe imposed six global change treatments: climate warming, light pollution, microplastic pollution, soil salinization, eutrophication, and fungicide accumulation, all of which frequently occur in the environment. These GCFs were chosen because they differ in their nature (i.e., physical, chemical), are likely to differ in their mode of action and effect direction21, and can be easily implemented. Each of the six GCFs have been shown to impact plants and their environment when applied on their own10,13,17,19,20,55,56,57,58,59,60. Furthermore, all of the chosen GCFs are likely to continue to increase in magnitude or extent in the near future61,62,63,64,65. For the climate-warming treatment, we used infrared-heater lamps (HS-2420; 240 V, 2000 W; Kalglo Electronics Co., Bethlehem, USA) set to 70% of their maximum capacity to achieve an average temperature increase of 2.0 °C (±SD = 0.2 °C) at plant level. This is within the range of temperature increases predicted by the RCP 4.5 scenario for the year 2100 [+1.1 − 2.6 °C; 63]. For the light-pollution treatment, we used LED spotlights (LED-Strahler Flare 10 W, IP 65, 900 lm, cool white 6500 K; REV Ritter GmbH, Mömbris, Germany), which were switched on daily from 9 pm to 5 am, corresponding to the times of sunset and -rise. The average light intensity was 24.5 lx at ground level, which is within the range of light intensities found below street lights, and matches the light intensities used in other light-pollution experiments14,56. For the microplastic pollution treatment, we used granules (1.0–2.5 mm diameter) of the synthetic rubber ethylene propylene diene monomer (EPDM Granulat, Gummi Appel GmbH + Co. KG, Kahl am Main, Germany) at a concentration of 1% (w/w, granules/dry soil, approximately corresponding to 1.5% v/v). EPDM granules are, for example, used in artificial sport turfs, from where they easily spread into the surroundings, and have been used previously to investigate the effects of microplastics on plants18. The chosen concentration is well within the range of concentrations used in previous studies18,66,67, and is at the low to intermediate range of concentrations found in sites polluted with plastics68. For the soil-salinization treatment, dissolved NaCl was added to the soil. Soil salinity is commonly measured as electrical conductivity, with a conductivity between 4 and 8 dS m−1 considered to be moderately saline69. For the experiment, we used a salinity of 6 dS m−1. To maintain a more or less constant salinity level, electrical conductivity was measured weekly, and, if required, adjusted by adding dissolved NaCl. For the eutrophication treatment, 3 g of a dissolved NPK fertilizer (Universol® blue oxide, ICL SF Germany & Austria, Nordhorn, Germany) was added per pot. For N, this corresponds to an input of 100 kg N ha−1, comparable to the yearly amounts of atmospheric N deposition in large parts of Europe52 and the yearly nitrogen input on agricultural field in the European Union70. To ensure a more or less constant nutrient availability during the experiments, we split total fertilizer input into three applications (directly after, 3 weeks after, and 6 weeks after starting the experiments) of 1 g fertilizer per pot per application. In addition, to avoid severe nutrient limitation in the other pots, all pots (irrespective of the eutrophication treatment) received basic fertilization. This was applied four times to the transplanted-seedling-community pots and five times to the sown community pots, with 0.2 g fertilizer per pot per application. For the pesticide treatment, we used the fungicide Landor® CT (Syngenta Agro GmbH, Maintal, Germany). This fungicide was chosen because it contains three azoles as active agents, which belong to the most widely used class of antifungal agents71. To each pot in this treatment, we added 1.5 μl fungicide dissolved in water (1‰). This corresponds to 60% of the maximum amount that should be used per hectare of cropland. A summary of the levels of the individual GCFs used in our experiment is provided in Supplementary Table 8.Combinations of simultaneously acting GCFsTo examine the potential effects of the numbers of simultaneously acting GCFs, we created five levels of increasing GCF numbers. These levels were: zero (i.e., the control without any GCF application), one (single), two, four and six GCFs. For the one-, two- and four-GCF levels, there were six different combinations, so that each of these levels included either six different GCFs in case of the one-factor, or six different GCF combinations in case of the two- and four-GCF levels. In the six-GCF level, all six factors were combined, so that there was only one combination. To avoid potential biases due to unequal representation of the different GCFs in each GCF-number level, we created the GCF combinations randomly but with the restriction that each GCF was present in an equal number of combinations for each GCF-number level (i.e., each GCF was included once in GCF-number levels 1 and 6, respectively, twice in GCF-number level 2, and four times in GCF-number level 4; Supplementary Table 11).Experimental lay-outThe experiment was conducted outdoors in the climate-warming-simulation facility of the Botanical Garden of the University of Konstanz, Germany (N: 47°69’19.56”, E: 9°17’78.42”). Twenty of the 2 m × 2 m plots of this facility were used for our experiment. As the climate-warming and light-pollution treatments could not be applied to each individual pot separately, we applied those treatments at the plot level. Therefore, we assigned four of the 20 plots to the climate-warming treatment, four plots to the light-pollution treatment and four plots to both climate-warming and light-pollution treatment combination. Each plot had a 145 cm high metal frame. The eight plots assigned to the climate-warming treatment were equipped with a 1.80 m long, horizontally hanging infrared-heating lamp at the top of the metal frame (i.e., at 145 cm above soil level). The heating lamp slowly oscillated along its longitudinal axis to ensure uniform heating of the whole 2 m × 2 m plot. The eight plots assigned to the light-pollution treatment, each had a LED spotlight attached to one of the sides of the metal frame at a height of 120 cm. To reduce illumination of the neighboring plots, light-pollution was only applied to the outer plots of the climate-warming-simulation facility (Supplementary Fig. 5), and LEDs were pointing away from the inner plots and were equipped with lamp shades made of black plastic pots (18 cm × 18 cm × 25.5 cm). Furthermore, to reduce the light intensity to a realistic light-pollution level (24.5 lx) as found below street lights, we covered the spotlight with a layer of white cloth (Supplementary Fig. 6). For further details on the artificial light treatment, see Supplementary Fig. 7.To create mesocosms with the transplanted-seedling and sown communities, we filled 10-L pots (CEP- Container, 10.0 F, Burger GmbH, Renningen-Malmsheim, Germany) with a mixture of 40% potting soil (see above), 40% quartz sand (0.5–0.8 mm), and—to inoculate the substrate with a natural soil community—20% top soil excavated from a seminatural grassland patch in the botanical garden. In total, the experiments with the transplanted-seedling and sown communities, each included 120 pots (i.e., 20 treatment combinations × six replicates × 2 experiments = 240 pots in total; see Supplementary Table 11), which were distributed across the 20 plots. To prevent leakage of fertilizer or salt solutions, each pot was placed onto a plastic dish. To reduce differences due to environmental variation within plots, the positions of pots within each plot were re-randomized every 14 days. Plants were watered regularly to avoid drought stress and to avoid differences in soil moisture due to application of fertilizer- and salt-solutions.For the sown community, we randomly distributed five seeds of each of the nine species on the substrate in each pot on 3 July 2020. For the transplanted-seedling community, two seedlings of each of the nine species were transplanted into each pot (i.e., 18 seedlings per pot) according to a fixed pattern (Supplementary Fig. 8) on 6 July 2020. Since there were a few seedlings missing for S. arvensis (six seedlings) and V. cracca (four seedlings), we re-sowed these species in germination trays on 6 July 2020. On 13 July 2020, dead seedlings, and the missing seedlings for S. arvensis were replaced. Since V. cracca took longer to germinate, the missing seedlings were transplanted on 17 July 2020.MeasurementsTo investigate the effects of single-GCFs and their number on the sown and transplanted-seedling communities, we used plant biomass as an indicator for plant performance72. As it was impossible to disentangle the roots, we only used aboveground biomass. On 14 and 15 September 2020, i.e., 10 weeks after transplanting, we harvested the transplanted-seedling communities. On 28 and 29 September, i.e., twelve weeks after sowing, we harvested the sown communities. For both community types, we harvested the plants separately by species. The harvested plants were stored in paper bags, dried at 70 °C for at least 72 hours and weighed.Statistical analysisAll analyses were done in R 3.6.273. As the transplanted-seedling and sown communities were harvested at different times, we treated them as separate experiments, and therefore analyzed them separately (but see the subsection “Community type specific responses” below).Community aboveground biomassTo analyze the effects GCF number on plant-community productivity, we fitted linear mixed-effects models separately for the transplanted-seedling and sown communities, using the lmer function in the “lme4” package74. Total aboveground biomass per pot was the response variable. To improve normality of the residuals, biomass of the transplanted-seedling and sown communities was square-root- and natural-log-transformed, respectively. We included GCF number as a continuous fixed variable. To account for non-independence of pots in the same GCF combination and of pots in the same plot, GCF combination and plot were included as random effects. The effects of the individual GCFs on biomass production were also assessed by fitting linear mixed-effects models, using only the data of the control and single-GCF treatments, and including GCF identity as fixed effect.Community compositionTo assess potential effects of single-GCFs and GCF number on the final composition of the transplanted-seedling and sown communities, we first assessed variation in species composition, based on biomass proportions, among pots using principal component analysis (PCA) [rda function of the “vegan” package75,]. For each PCA (Supplementary Fig. 1), we extracted the PC1 and PC2 values, which together explained more than 65% of the variation in community composition and included them as response variables in separate linear mixed models, as described above for community biomass.To evaluate whether GCF number affects the diversity and evenness of plant communities, we calculated the Shannon index (H)76, using the diversity function in the “vegan” package, and evenness index (J)77 based on species biomass proportions. Subsequently, the single-GCF and GCF-number effects on diversity and evenness of the sown and transplanted-seedling communities were analyzed using linear mixed-effects models, or—if adding random effects did not improve the model—more parsimonious linear models78,79. For all models, we used type II analysis of variance (ANOVA) tests (Anova function in the “car” package) to assess the significance of fixed effects.Hierarchical diversity-interaction modelingWhen there is a significant GCF-number effect, this could reflect that with increasing numbers of co-acting GCFs, there is a higher chance that it will include a GCF with a strong and dominant effect (i.e., sampling or selection effects). However, it could also be that the GCF-number effect is driven by interactions among the GCFs, and the effects of these interactions could be GCF-specific or general. As our experiment does not include all possible combinations of GCFs, it does not allow to test the contributions of each possible multi-way GCF interaction. Therefore, to gain insights into whether the GCF identities and specific or general GCF interactions underlie the significant GCF-number effects, we applied the hierarchical diversity-interaction modeling framework of Kirwan et al.80. This framework was originally developed for estimating contributions of species identities and their interactions to ecosystem functions, but we here applied it to GCF identities and interactions. For each of the response variables showing a significant GCF-number effect, we ran five hierarchical models specifying different assumptions about the potential contributions of individual GCFs and their interactions to the GCF-number effect, and compared them using likelihood ratio tests (Fig. 4). For these analyses, the data of the control treatment (i.e., GCF number zero) was excluded. Each of the five models specified different assumptions about the potential contributions of individual GCFs and their interactions to the GCF-number effect. The first model is the null model, which assumed that there were no GCF-specific contributions (i.e., all GCFs contributed equally) and that there were no contributions of GCF interactions. Therefore, the null model only included the centered sum of the GCFs of each treatment (M) as fixed effect. M accounts for differences in ‘initial abundances’ of GCFs—meaning that the other model terms are interpreted based on the average initial abundance—and was also included in the four other models80. This way, we could include the GCFs’ relative proportions in each GCF combination, instead of just considering GCF presence, while taking into account that, with increasing GCF number, the relative proportion of each individual GCF is automatically reduced. In the second model, the GCF identities (i.e., their proportions in the respective GCF combination) were added, assuming that individual GCFs contribute differently to the effect of GCF number. In the third model, separate-pairwise interactions between the GCFs were added, considering that, in addition to contributions of individual GCFs, specific pairwise interactions contributed to the GCF-number effect. In the fourth model, the average GCF-interaction model (which is also called the evenness model in Kirwan et al. 2009), the separate-pairwise GCF interactions were replaced by an average interaction effect. Thus, the average GCF-interaction model assumed equivalent contributions of all pairwise GCF interactions. In the fifth model, the additive GCF-specific interaction contributions model, the average interaction effect of the fourth model was replaced by average GCF-specific interaction effects. This model assumed that each GCF’s contribution to a pairwise interaction remains constant. For the calculation of the average GCF-specific and average interaction effect, we used the equations provided by Kirwan et al.80. For each of the response variables, we generally included the same random terms as in the main analyses of the GCF-number effect. However, as this resulted in singularity warnings for some of the hierarchical diversity-interaction models, e.g., those for species diversity and evenness measures, we used for these cases linear models instead of linear mixed models.Fig. 4: Hierarchical diversity-interaction-modeling framework to assess contributions of GCF identities and GCF interactions to GCF-number effects.The framework was adapted from Kirwan et al.80. The null model assumes equivalent contributions of all GCFs and no interactions between them. The subsequent models assume more complex effects of how the individual GCFs and their interactions determine the GCF-number effects. The questions that can be answered by comparing specific models are depicted next to the arrows connecting the two models.Full size imageCommunity type-specific responsesAs the transplanted-seedling and sown communities were harvested at different times, we treated them as separate experiments, and therefore analyzed them separately. However, to test explicitly whether both community types differed in their responses to single-GCFs and GCF number, we also analyzed them jointly. To this end, we fitted linear mixed-effects models for each response variable including GCF number (or single-factor treatments), community type and their interaction as fixed effects (Supplementary Table 5).Final number of plants per speciesTo test for effects of individual GCFs and GCF number on species presence, i.e., the number of individuals per species present at harvest, we fitted generalized linear mixed-effects models for the transplanted-seedling and sown communities separately. We included the survival rate (number of individuals present at harvest divided by the number of planted/sown individuals) as response variables. For the models testing the effects of GCF number, we included GCF combination, species, pot, and plot as random effects. For the models testing the effects of single-GCFs, the same random effects were included, except for GCF combination. Specific random effects were removed from the model if their incorporation resulted in singular fit warnings due to low variation. We assessed the effects of individual GCFs or GCF number using type III ANOVA tests (Anova function in the “car” package, Supplementary Table 7).Eutrophication effectsIn addition to the general assessment of individual GCF effects in the hierarchical diversity-interaction models, we specifically assessed the effects of eutrophication. This was done because eutrophication had the strongest effect on productivity as individual GCF, and this might also have dominated the GCF-number effect, indicating a sampling effect. To this end, we added a binary-coded variable to include information on whether eutrophication was included in the different GCF combinations. Subsequently, we fitted linear mixed-effects models for all response traits that were affected by GCF number. In these models, we included GCF number, community type, eutrophication, and the respective two-way interactions as fixed effects, and plot and GCF combination as random effects. Effects of fixed factors were assessed using type III ANOVA tests (Anova function in the “car” package; Supplementary Table 6).Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article. More

  • in

    Vitality as a measure of animal welfare during purse seine pumping related crowding of Atlantic mackerel (Scomber scrombrus)

    Huntingford, F. A. et al. Current issues in fish welfare. J. Fish Biol. 68, 332–372 (2006).Article 

    Google Scholar 
    Kaiser, M. J. & Huntingford, F. A. Introduction to papers on fish welfare in commercial fisheries. J. Fish Biol. 75, 2852–2854 (2009).Article 
    CAS 

    Google Scholar 
    Veldhuizen, L. J. L., Berentsen, P. B. M., de Boer, I. J. M., van de Vis, J. W. & Bokkers, E. A. M. Fish welfare in capture fisheries: A review of injuries and mortality. Fish. Res. 204, 41–48 (2018).Article 

    Google Scholar 
    Breen, M. et al. Catch welfare in commercial fisheries. In The Welfare of Fish (eds Kristiansen, T. S. et al.) 401–437 (Springer, 2020).Chapter 

    Google Scholar 
    Diggles, B. K., Cooke, S. J., Rose, J. D. & Sawynok, W. Ecology and welfare of aquatic animals in wild capture fisheries. Rev. Fish. Biol. Fish. 21, 739–765 (2011).Article 

    Google Scholar 
    Korte, S. M., Olivier, B. & Koolhaas, J. M. A new animal welfare concept based on allostasis. Physiol. Behav. 92, 422–428 (2007).Article 
    CAS 

    Google Scholar 
    Broom, D. M. The scientific assessment of animal welfare. Appl. Anim. Behav. Sci. 20, 5–19 (1988).Article 

    Google Scholar 
    Broom, D. M. Animal welfare: Concepts and measurement. J. Anim. Sci. 69, 4167–4175 (1991).Article 
    CAS 

    Google Scholar 
    Tveit, G. M., Anders, N., Bondø, M. S., Mathiassen, J. R. & Breen, M. Atlantic mackerel (Scomber scombrus) change skin colour in response to crowding stress. J. Fish Biol. 100, 738–747 (2022).Article 
    CAS 

    Google Scholar 
    Noble, C. et al. Welfare Indicators for Farmed Atlantic Salmon: Tools for Assessing Fish Welfare (Nofima, 2018).
    Google Scholar 
    Sopinka, N. M., Donaldson, M. R., O’Connor, C. M., Suski, C. D. & Cooke, S. J. Stress indicators in fish. In Fish Physiology vol 35 405–462 (Elsevier, 2016).
    Google Scholar 
    Lawrence, M. J. et al. Are 3 minutes good enough for obtaining baseline physiological samples from teleost fish?. Can. J. Zool. 96, 774–786 (2018).Article 
    CAS 

    Google Scholar 
    Lawrence, M. J. et al. Best practices for non-lethal blood sampling of fish via the caudal vasculature. J. Fish Biol. 97, 4–15 (2020).Article 

    Google Scholar 
    Clark, T. D. et al. The efficacy of field techniques for obtaining and storing blood samples from fishes. J. Fish Biol. 79, 1322–1333 (2011).Article 
    CAS 

    Google Scholar 
    Davis, M. W., Olla, B. L. & Schreck, C. B. Stress induced by hooking, net towing, elevated sea water temperature and air in sablefish: Lack of concordance between mortality and physiological measures of stress. J. Fish Biol. 58, 1–15 (2001).Article 

    Google Scholar 
    Rushen, J. Problems associated with the interpretation of physiological data in the assessment of animal welfare. Appl. Anim. Behav. Sci. 28, 381–386 (1991).Article 

    Google Scholar 
    Dawkins, M. Using behaviour to assess animal welfare. Anim. Welf. 13, 3–7 (2004).
    Google Scholar 
    Moberg, G. P. & Mench, J. A. The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare (CABI, 2000).Book 

    Google Scholar 
    Wedemeyer, G. A. Effects of rearing conditions on the health and physiological quality of fish in intensive culture. In Fish Stress and Health in Aquaculture vol 278 (Cambridge University Press, 1997).
    Google Scholar 
    Botreau, R. et al. Aggregation of measures to produce an overall assessment of animal welfare. Part 1: A review of existing methods. Animal 1, 1179–1187 (2007).Article 
    CAS 

    Google Scholar 
    Turnbull, J., Bell, A., Adams, C., Bron, J. & Huntingford, F. Stocking density and welfare of cage farmed Atlantic salmon: Application of a multivariate analysis. Aquaculture 243, 121–132 (2005).Article 

    Google Scholar 
    North, B. P. et al. The impact of stocking density on the welfare of rainbow trout (Oncorhynchus mykiss). Aquaculture 255, 466–479 (2006).Article 

    Google Scholar 
    Spoolder, H., De Rosa, G., Hörning, B., Waiblinger, S. & Wemelsfelder, F. Integrating parameters to assess on-farm welfare. Anim. Welf. 12, 529–534 (2003).CAS 

    Google Scholar 
    Walker, J. K., Dale, A. R., D’Eath, R. B. & Wemelsfelder, F. Qualitative Behaviour Assessment of dogs in the shelter and home environment and relationship with quantitative behaviour assessment and physiological responses. Appl. Anim. Behav. Sci. 184, 97–108 (2016).Article 

    Google Scholar 
    Brscic, M. et al. Welfare assessment: Correlations and integration between a Qualitative Behavioural Assessment and a clinical health protocol applied in veal calves farms. Ital. J. Anim. Sci. 8, 601–603 (2009).Article 

    Google Scholar 
    Andreasen, S. N., Wemelsfelder, F., Sandøe, P. & Forkman, B. The correlation of Qualitative Behavior Assessments with Welfare Quality® protocol outcomes in on-farm welfare assessment of dairy cattle. Appl. Anim. Behav. Sci. 143, 9–17 (2013).Article 

    Google Scholar 
    Phythian, C. J., Michalopoulou, E., Cripps, P. J., Duncan, J. S. & Wemelsfelder, F. On-farm qualitative behaviour assessment in sheep: Repeated measurements across time, and association with physical indicators of flock health and welfare. Appl. Anim. Behav. Sci. 175, 23–31 (2016).Article 

    Google Scholar 
    Davis, M. W., Benoît, H. P., Breen, M., Kopp, D. & Depestele, J. Vitality Assessments. In ICES guidelines for estimating discard survival, ICES Cooperative Research Reports No. 351. 219 (International Council for the Exploration of the Sea, 2021). https://doi.org/10.17895/ices.pub.8006.Stoner, A. W. Assessing stress and predicting mortality in economically significant crustaceans. Rev. Fish. Sci. 20, 111–135 (2012).Article 

    Google Scholar 
    Humborstad, O.-B., Davis, M. W. & Løkkeborg, S. Reflex impairment as a measure of vitality and survival potential of Atlantic cod (Gadus morhua). Fish. Bull. 107, 395–402 (2009).
    Google Scholar 
    Campbell, M. D., Tolan, J., Strauss, R. & Diamond, S. L. Relating angling-dependent fish impairment to immediate release mortality of red snapper (Lutjanus campechanus). Fish. Res. 106, 64–70 (2010).Article 

    Google Scholar 
    Davis, M. W. Fish stress and mortality can be predicted using reflex impairment. Fish Fish. 11, 1–11 (2010).Article 

    Google Scholar 
    Barkley, A. S. & Cadrin, S. X. Discard mortality estimation of yellowtail flounder using reflex action mortality predictors. Trans. Am. Fish. Soc. 141, 638–644 (2012).Article 

    Google Scholar 
    Raby, G. D. et al. Validation of reflex indicators for measuring vitality and predicting the delayed mortality of wild coho salmon bycatch released from fishing gears. J. Appl. Ecol. 49, 90–98 (2012).Article 

    Google Scholar 
    LeDain, M. R. K. et al. Assisted recovery following prolonged submergence in fishing nets can be beneficial to turtles: An assessment with blood physiology and reflex impairment. Chelonian Conserv. Biol. 12, 172–177 (2013).Article 

    Google Scholar 
    Watson, R. A. & Tidd, A. Mapping nearly a century and a half of global marine fishing: 1869–2015. Mar. Policy 93, 171–177 (2018).Article 

    Google Scholar 
    Ben-Yami, M. Purse seining manual. (1994).Marçalo, A. et al. Mitigating slipping-related mortality from purse seine fisheries for small pelagic fish: Case studies from European Atlantic Waters. In The European Landing Obligation 297–318 (Springer, 2019).Chapter 

    Google Scholar 
    Digre, H., Tveit, G. M., Solvang-Garten, T., Eilertsen, A. & Aursand, I. G. Pumping of mackerel (Scomber scombrus) onboard purse seiners, the effect on mortality, catch damage and fillet quality. Fish. Res. 176, 65–75 (2016).Article 

    Google Scholar 
    Tenningen, M., Vold, A. & Olsen, R. E. The response of herring to high crowding densities in purse-seines: Survival and stress reaction. ICES J. Mar. Sci. 69, 1523–1531 (2012).Article 

    Google Scholar 
    Anders, N., Roth, B. & Breen, M. Physiological response and survival of Atlantic mackerel exposed to simulated purse seine crowding and release. Conserv. Physiol. 9, 25 (2021).Article 

    Google Scholar 
    Anders, N. et al. Effects on individual level behaviour in mackerel (Scomber scombrus) of sub-lethal capture related stressors: Crowding and hypoxia. PLoS One 14, e0213709 (2019).Article 
    CAS 

    Google Scholar 
    Marçalo, A. et al. Behavioural responses of sardines Sardina pilchardus to simulated purse-seine capture and slipping. J. Fish Biol. 83, 480–500 (2013).Article 

    Google Scholar 
    Anders, N., Eide, I., Lerfall, J., Roth, B. & Breen, M. Physiological and flesh quality consequences of pre-mortem crowding stress in Atlantic mackerel (Scomber scombrus). PLoS One 15, e0228454 (2020).Article 
    CAS 

    Google Scholar 
    Olsen, R. E., Oppedal, F., Tenningen, M. & Vold, A. Physiological response and mortality caused by scale loss in Atlantic herring. Fish. Res. 129–130, 21–27 (2012).Article 

    Google Scholar 
    Marçalo, A. et al. Fishing simulation experiments for predicting the effects of purse-seine capture on sardine (Sardina pilchardus). ICES J. Mar. Sci. 67, 334–344 (2010).Article 

    Google Scholar 
    Roth, B. & Skåra, T. Pre mortem capturing stress of Atlantic herring (Clupea harengus) in purse seine and subsequent effect on welfare and flesh quality. Fish. Res. 244, 106124 (2021).Article 

    Google Scholar 
    Marçalo, A. et al. Sardine (Sardina pilchardus) stress reactions to purse seine fishing. Mar. Biol. 149, 1509–1518 (2006).Article 

    Google Scholar 
    ICES. Working Group on Widely Distributed Stocks (WGWIDE). 1019 https://doi.org/10.17895/ices.pub.7475 (2020).Lockwood, S. J., Pawson, M. G. & Eaton, D. R. The effects of crowding on mackerel (Scomber scombrus L)— physical condition and mortality. Fish. Res. 2, 129–147 (1983).Article 

    Google Scholar 
    Huse, I. & Vold, A. Mortality of mackerel (Scomber scombrus L.) after pursing and slipping from a purse seine. Fish. Res. 20, 54–59 (2010).Article 

    Google Scholar 
    Sone, I., Skåra, T. & Olsen, S. H. Factors influencing post-mortem quality, safety and storage stability of mackerel species: A review. Eur. Food Res. Technol. 245, 775–791 (2019).Article 
    CAS 

    Google Scholar 
    Handegard, N. O. et al. Effects on schooling function in mackerel of sub-lethal capture related stressors: Crowding and hypoxia. PLoS One 12, e0190259 (2017).Article 

    Google Scholar 
    Percie du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. J. Cereb. Blood Flow Metab. 40, 1769–1777 (2020).Article 

    Google Scholar 
    Koolhaas, J. M. et al. Stress revisited: A critical evaluation of the stress concept. Neurosci. Biobehav. Rev. 35, 1291–1301 (2011).Article 
    CAS 

    Google Scholar 
    Tenningen, M., Pobitzer, A., Handegard, N. O. & de Jong, K. Estimating purse seine volume during capture: Implications for fish densities and survival of released unwanted catches. ICES J. Mar. Sci. 76, 2481–2488 (2019).Article 

    Google Scholar 
    Fulton, T. W. The Rate of Growth of Fishes. 141–241 (1904).Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).Book 
    MATH 

    Google Scholar 
    Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11, 54–71 (2006).Article 

    Google Scholar 
    Dray, S. & Dufour, A.-B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).Article 

    Google Scholar 
    Tenningen, M., Peña, H. & Macaulay, G. J. Estimates of net volume available for fish shoals during commercial mackerel (Scomber scombrus) purse seining. Fish. Res. 161, 244–251 (2015).Article 

    Google Scholar 
    Johnston, R., Jones, K. & Manley, D. Confounding and collinearity in regression analysis: A cautionary tale and an alternative procedure, illustrated by studies of British voting behaviour. Qual. Quant. 52, 1957–1976 (2018).Article 

    Google Scholar 
    Burnham, K. & Anderson, D. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: Challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).Article 
    CAS 

    Google Scholar 
    Hartig, F. & Lohse, L. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. (2022).Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Speers-Roesch, B., Mandic, M., Groom, D. J. E. & Richards, J. G. Critical oxygen tensions as predictors of hypoxia tolerance and tissue metabolic responses during hypoxia exposure in fishes. J. Exp. Mar. Biol. Ecol. 449, 239–249 (2013).Article 
    CAS 

    Google Scholar 
    Rogers, N. J., Urbina, M. A., Reardon, E. E., McKenzie, D. J. & Wilson, R. W. A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (Pcrit). Conserv. Physiol. 4, cow012 (2016).Article 

    Google Scholar 
    Domenici, P., Herbert, N. A., Lefrançois, C., Steffensen, J. F. & McKenzie, D. J. The Effect of Hypoxia on Fish Swimming Performance and Behaviour. In Swimming Physiology of Fish: Towards Using Exercise to Farm a Fit Fish in Sustainable Aquaculture (eds Palstra, A. P. & Planas, J. V.) 129–159 (Springer, 2013).Chapter 

    Google Scholar 
    Johnstone, A. D. F., Wardle, C. S. & Almatar, S. M. Routine respiration rates of Atlantic mackerel, Scomber scombrus L., and herring, Clupea harengus L., at low activity levels. J. Fish Biol. 42, 149–151 (1993).Article 

    Google Scholar 
    Peña, H., Macaulay, G. J., Ona, E., Vatnehol, S. & Holmin, A. J. Estimating individual fish school biomass using digital omnidirectional sonars, applied to mackerel and herring. ICES J. Mar. Sci. 78, 940–951 (2021).Article 

    Google Scholar 
    Kieffer, J. D. Limits to exhaustive exercise in fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 126, 161–179 (2000).Article 
    CAS 

    Google Scholar 
    Wardle, C. S. & He, P. Burst swimming speeds of mackerel, Scomber scombrus L. J. Fish Biol. 32, 471–478 (1988).Article 

    Google Scholar 
    Anders, N., Breen, M., Skåra, T., Roth, B. & Sone, I. Effects of capture-related stress and pre-freezing holding in refrigerated sea water (RSW) on the muscle quality and storage stability of Atlantic mackerel (Scomber scombrus) during subsequent frozen storage. Food Chem. https://doi.org/10.1016/j.foodchem.2022.134819 (2022).Article 

    Google Scholar 
    Sogn-Grundvåg, G., Zhang, D. & Iversen, A. Large buyers at a fish auction: The case of the Norwegian pelagic auction. Mar. Policy 104, 232–238 (2019).Article 

    Google Scholar 
    Breen, M. et al. Behaviour & Welfare of Mackerel & Herring During Capture in Purse Seine. 134 https://www.fhf.no/prosjekter/prosjektbasen/901350/ (2021). More