Root biomass and cumulative yield increase with mowing height in Festuca pratensis irrespective of Epichloë symbiosis
Jackson, R. B. et al. The Ecology of soil carbon: Pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445. https://doi.org/10.1146/annurev-ecolsys-112414-054234 (2017).Article
Google Scholar
Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. PNAS 114, 9575–9580 (2017).Article
ADS
CAS
Google Scholar
Amelung, W. et al. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 11, 5427. https://doi.org/10.1038/s41467-020-18887-7 (2020).Article
ADS
CAS
Google Scholar
Hopkins, A. & Holz, B. Grassland for agriculture and nature conservation: Production, quality and multi-functionality. Agron 4, 3–20 (2006).
Google Scholar
van Veen, J. A., Liljeroth, E., Lekkerkerk, L. J. A. & van de Geijn, S. C. Carbon fluxes in plant-soil systems at elevated atmospheric CO2 levels. Ecol. Appl. 1, 175–181. https://doi.org/10.2307/1941810 (1991).Article
Google Scholar
Jones, M. B. & Donnelly, A. Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol. 164, 423–439. https://doi.org/10.1111/j.1469-8137.2004.01201.x (2004).Article
Google Scholar
Ward, S. E. et al. Legacy effects of grassland management on soil carbon to depth. Glob. Change Biol. 22, 2929–2938. https://doi.org/10.1111/gcb.13246 (2016).Article
ADS
Google Scholar
Hungate, B. A. et al. The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388, 576–579. https://doi.org/10.1038/41550 (1997).Article
ADS
CAS
Google Scholar
Six, J., Conant, R. T., Paul, E. A. & Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 241, 155–176. https://doi.org/10.1023/A:1016125726789 (2002).Article
CAS
Google Scholar
Chang, J. et al. Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nat. Commun. 12, 118. https://doi.org/10.1038/s41467-020-20406-7 (2021).Article
ADS
CAS
Google Scholar
IPCC. 2001. Climate change 2001: The scientific basis contribution of working group 1 to the third assessment report of the intergovernmental panel on climate change In (eds Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., Van Der Linden, P. J., Dai, X., Maskell, K. & Johnson, C. A.) (Cambridge University Press).Gwin, L. Scaling-up sustainable livestock production: Innovation and challenges for grass-fed beef in the U.S. J. Sustain. Agric. 33, 189–209. https://doi.org/10.1080/10440040802660095 (2009).Article
Google Scholar
Iqbal, J., Siegrist, J. A., Nelson, J. A. & McCulley, R. L. Fungal endophyte infection increases carbon sequestration potential of southeastern USA tall fescue stands. Soil Biol. Biochem. 44, 81–92. https://doi.org/10.1016/j.soilbio.2011.09.010 (2012).Article
CAS
Google Scholar
Robinson, R. A. & Sutherland, W. J. Post-war changes in arable farming and biodiversity in Great Britain. J. Appl. Ecol. 39, 157–176. https://doi.org/10.1046/j.1365-2664.2002.00695.x (2002).Article
Google Scholar
Law, Q. D., Bigelow, C. A. & Patton, A. J. Selecting turfgrasses and mowing practices that reduce mowing requirements. Crop Sci. 56, 3318–3327. https://doi.org/10.2135/cropsci2015.09.0595 (2016).Article
Google Scholar
White, L. M. Carbohydrate reserves of grasses: A review. Rangel Ecol. Manag. 26(1), 13–18 (1973).Article
CAS
Google Scholar
Virkajarvi, P. Effects of defoliation height on regrowth of timothy and meadow fescue in the generative and vegetative phases of growth. Agric. Food Sci. 12, 177–193 (2003).Article
Google Scholar
Reicher, Z., Patton, A. J., Bigelow, C. A. & Voigt, T. Mowing, Thatching, Aerifying, and Rolling Turf (Turf Grass Sci. Purdue Univ, 2006).
Google Scholar
Kaatz, P. Cutting management for cool-season forage grasses. Michigan State University Extension, https://www.canr.msu.edu/news/cutting_management_for_cool_season_forage_grasses (2011).Briske, D. D. Strategies of plant survival in grazed systems: A functional interpretation. Ecol. Manag. Graz. Syst. 37–67 (1996).Crider, F. J. Root-growth stoppage resulting from defoliation of grass (No. 156759). United States Department of Agriculture, Economic Research Service (1995).Lal, R., Negassa, W. & Lorenz, K. Carbon sequestration in soil. Curr. Opin. Environ. Sustain. 15, 79–86. https://doi.org/10.1016/j.cosust.2015.09.002 (2015).Article
Google Scholar
Coughenour, M. B., McNaughton, S. J. & Wallace, L. L. Modelling primary production of perennial graminoids – uniting physiological processes and morphometric traits. Ecol. Modell. 23, 101–134. https://doi.org/10.1016/0304-3800(84)90121-2 (1984).Article
CAS
Google Scholar
Whipps, J. M. & Lynch, J. M. Energy losses by the plant in rhizodeposition. Plant products and the new technology / edited by K.W. Fuller and J.R. Gallon (1985).Johansson, G. Release of organic C from growing roots of meadow fescue (Festuca pratensis L.). Soil Biol. Biochem. 24, 427–433. https://doi.org/10.1016/0038-0717(92)90205-C (1992).Article
Google Scholar
Woodburn, A. T. Glyphosate: Production, pricing and use worldwide. Pest Manag. Sci. 56, 309–312. https://doi.org/10.1002/(SICI)1526-4998(200004)56:4%3c309::AID-PS143%3e3.0.CO;2-C (2000).Article
CAS
Google Scholar
Duke, S. O. & Powles, S. B. Glyphosate: A once-in-a-century herbicide. Pest Manag. Sci. 64, 319–325. https://doi.org/10.1002/ps.1518 (2008).Article
CAS
Google Scholar
Helander, M., Saloniemi, I. & Saikkonen, K. Glyphosate in northern ecosystems. Trends Plant Sci. 17, 569–574. https://doi.org/10.1016/j.tplants.2012.05.008 (2012).Article
CAS
Google Scholar
Benbrook, C. M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 28, 3. https://doi.org/10.1186/s12302-016-0070-0 (2016).Article
CAS
Google Scholar
Helander, M. et al. Glyphosate decreases mycorrhizal colonization and affects plant-soil feedback. Sci. Total Environ. 642, 285–291. https://doi.org/10.1016/j.scitotenv.2018.05.377 (2018).Article
ADS
CAS
Google Scholar
Helander, M., Pauna, A., Saikkonen, K. & Saloniemi, I. Glyphosate residues in soil affect crop plant germination and growth. Sci. Rep. 9, 19653. https://doi.org/10.1038/s41598-019-56195-3 (2019).Article
ADS
CAS
Google Scholar
Zaller, J. G. & Brühl, C. A. Editorial: Non-target effects of pesticides on organisms inhabiting agroecosystems. Front Environ. Sci. 7, 75. https://doi.org/10.3389/fenvs.2019.00075 (2019).Article
Google Scholar
Muola, A. et al. Risk in the circular food economy: Glyphosate-based herbicide residues in manure fertilizers decrease crop yield. Sci. Total Environ. 750, 141422. https://doi.org/10.1016/j.scitotenv.2020.141422 (2021).Article
ADS
CAS
Google Scholar
Fuchs, B., Saikkonen, K. & Helander, M. Glyphosate-modulated biosynthesis driving plant defense and species interactions. Trends Plant Sci. 26, 312–323. https://doi.org/10.1016/j.tplants.2020.11.004 (2021).Article
CAS
Google Scholar
Fuchs, B. et al. A Glyphosate-based herbicide in soil differentially affects hormonal homeostasis and performance of non-target crop plants. Front Plant Sci. 12, 787958 (2022).Article
Google Scholar
Borggaard, O. K. & Gimsing, A. L. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: A review. Pest Manag. Sci. 64, 441–456. https://doi.org/10.1002/ps.1512 (2008).Article
CAS
Google Scholar
Rueppel, M. L., Brightwell, B. B., Schaefer, J. & Marvel, J. T. Metabolism and degradation of glyphosate in soil and water. J. Agric. Food Chem. 25, 517–528. https://doi.org/10.1021/jf60211a018 (1977).Article
CAS
Google Scholar
Carlisle, S. M. & Trevors, J. T. Glyphosate in the environment. Wat Air Soil Poll 39, 409–420 (1988).Article
ADS
CAS
Google Scholar
Torstensson, N. T. L., Lundgren, L. N. & Stenström, J. Influence of climatic and edaphic factors on persistence of glyphosate and 2,4-D in forest soils. Ecotoxicol. Environ. Saf. 18, 230–239. https://doi.org/10.1016/0147-6513(89)90084-5 (1989).Article
CAS
Google Scholar
Stenrød, M., Eklo, O. M., Charnay, M.-P. & Benoit, P. Effect of freezing and thawing on microbial activity and glyphosate degradation in two Norwegian soils. Pest Manag. Sci. 61, 887–898. https://doi.org/10.1002/ps.1107 (2005).Article
CAS
Google Scholar
Antier, C. et al. Glyphosate use in the European agricultural sector and a framework for its further monitoring. Sustainability 12, 5682. https://doi.org/10.3390/su12145682 (2020).Article
CAS
Google Scholar
Jones, R. J. Effect of an associate grass, cutting interval, and cutting height on yield and botanical composition of Siratro pastures in a sub-tropical environment. Aust. J. Exp. Agric. 14, 334–342. https://doi.org/10.1071/ea9740334 (1974).Article
Google Scholar
Volenec, J. J. & Nelson, C. J. Responses of Tall Fescue leaf meristems to N fertilization and harvest frequency. Crop Sci. 23(4), 720–724. https://doi.org/10.2135/cropsci1983.0011183X002300040028x (1983).Article
Google Scholar
Saikkonen, K. et al. Fungal endophytes help prevent weed invasions. Agric. Ecosyst. Environ. 165, 1–5. https://doi.org/10.1016/j.agee.2012.12.002 (2013).Article
Google Scholar
Scavo, A. & Mauromicale, G. Integrated weed management in herbaceous field crops. Agronomy 10, 466. https://doi.org/10.3390/agronomy10040466 (2020).Article
Google Scholar
Clay, K. & Holah, J. Fungal endophyte symbiosis and plant diversity in successional fields. Science 285, 1742–1744. https://doi.org/10.1126/science.285.5434.1742 (1999).Article
CAS
Google Scholar
Gundel, P. E., Pérez, L. I., Helander, M. & Saikkonen, K. Symbiotically modified organisms: Nontoxic fungal endophytes in grasses. Trends Plant Sci. 18, 420–427. https://doi.org/10.1016/j.tplants.2013.03.003 (2013).Article
CAS
Google Scholar
Kauppinen, M., Saikkonen, K., Helander, M., Pirttilä, A. M. & Wäli, P. R. Epichloë grass endophytes in sustainable agriculture. Nat. Plants 2, 15224 (2016).Article
Google Scholar
Clay, K. Fungal endophytes of grasses. Annu. Rev. Ecol. Syst. 21, 275–297 (1990).Article
Google Scholar
Saikkonen, K., Young, C. A., Helander, M. & Schardl, C. L. Endophytic Epichloë species and their grass hosts: From evolution to applications. Plant Mol. Biol. 90, 665–675. https://doi.org/10.1007/s11103-015-0399-6 (2016).Article
CAS
Google Scholar
Ahlholm, J. U., Helander, M., Lehtimäki, S., Wäli, P. & Saikkonen, K. Vertically transmitted fungal endophytes: Different responses of host-parasite systems to environmental conditions. Oikos 99, 173–183. https://doi.org/10.1034/j.1600-0706.2002.990118.x (2002).Article
Google Scholar
Easton, H. S. & Fletcher, L. R. in Proc. 6th International Symposium Fungal Endophytes of Grasses (eds Popay, A. J. & Thom, E. R.) 11–18 (New Zealand Grassland Association, 2007).Saari, S., Lehtonen, P., Helander, M. & Saikkonen, K. High variation in frequency of infection by endophytes in cultivars of meadow fescue in Finland. Grass Forage Sci. 64, 169–176. https://doi.org/10.1111/j.1365-2494.2009.00680.x (2009).Article
Google Scholar
König, J., Fuchs, B., Krischke, M., Mueller, M. J. & Krauss, J. Hide and seek: Infection rates and alkaloid concentrations of Epichloë festucae var. lolii in Lolium perenne along a land-use gradient in Germany. Grass Forage Sci. 73, 510–516. https://doi.org/10.1111/gfs.12330 (2018).Article
CAS
Google Scholar
Krauss, J. et al. Epichloë endophyte infection rates and alkaloid content in commercially available grass seed mixtures in Europe. Microorganisms 8, 498. https://doi.org/10.3390/microorganisms8040498 (2020).Article
CAS
Google Scholar
Brink, G. E., Casler, M. D. & Martin, N. P. Meadow Fescue, Tall Fescue, and Orchardgrass response to defoliation management. Agronomy J 102, 667–674. https://doi.org/10.2134/agronj2009.0376 (2010).Article
Google Scholar
Conant, R. T., Cerri, C. E. P., Osborne, B. B. & Paustian, K. Grassland management impacts on soil carbon stocks: A new synthesis. Ecol. Appl. 27, 662–668. https://doi.org/10.1002/eap.1473 (2017).Article
Google Scholar
Trlica, M. J. Distribution and utilization of carbohydrate reserves in range plants. In (ed Sosebee, R. E.) 73–96 (Rangeland Plant Physiology, 1977).Faeth, S. H. & Sullivan, T. J. Mutualistic asexual endophytes in a native grass are usually parasitic. Am. Nat. 161, 310–325. https://doi.org/10.1086/345937 (2003).Article
Google Scholar
Saikkonen, K., Saari, S. & Helander, M. Defensive mutualism between plants and endophytic fungi?. Fungal Divers. 41, 101–113. https://doi.org/10.1007/s13225-010-0023-7 (2010).Article
Google Scholar
Clay, K. & Schardl, C. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am. Nat. 160, 99–127. https://doi.org/10.1086/342161 (2002).Article
Google Scholar
Rozpądek, P. et al. The fungal endophyte Epichloë typhina improves photosynthesis efficiency of its host orchard grass (Dactylis glomerata). Planta 242, 1025–1035. https://doi.org/10.1007/s00425-015-2337-x (2015).Article
CAS
Google Scholar
Xia, C. et al. An Epichloë endophyte improves photosynthetic ability and dry matter production of its host Achnatherum inebrians infected by Blumeria graminis under various soil water conditions. Fungal Ecol. 22, 26–34. https://doi.org/10.1016/j.funeco.2016.04.002 (2016).Article
Google Scholar
Malinowski, D., Leuchtmann, A., Schmidt, D. & Nosberger, J. Symbiosis with Neotyphodium uncinatum endophyte may increase the competitive ability of meadow fescue. Agron. J. 89, 833–839 (1997).Article
Google Scholar
Schardl, C. L., Leuchtmann, A. & Spiering, M. J. Symbioses of grasses with seedborne fungal endophytes. Ann. Rev. Plant Biol. 55, 315–340. https://doi.org/10.1146/annurev.arplant.55.031903.141735 (2004).Article
CAS
Google Scholar
Chen, Z. et al. Fungal endophyte improves survival of Lolium perenne in low fertility soils by increasing root growth, metabolic activity and absorption of nutrients. Plant Soil 452, 185–206. https://doi.org/10.1007/s11104-020-04556-7 (2020).Article
CAS
Google Scholar
Franz, J. E., Mao, M.K. and Sikorski, J.A. (1997). Uptake, transport and metabolism of glyphosate in plants, in Glyphosate: A unique global herbicide, ed by Franz JE, ACS Monograph No 189, American Chemical Society, Washington, DC, pp 143–181.Pline, W. A., Wilcut, J. W., Edmisten, K. L. & Wells, R. Physiological and morphological response of glyphosate-resistant and non-glyphosate-resistant cotton seedlings to root-absorbed glyphosate. Pestic. Biochem. Phys. 73, 48–58. https://doi.org/10.1016/S0048-3575(02)00014-7 (2002).Article
CAS
Google Scholar
Johansson, G. Carbon distribution in grass (Festuca pratensis L.) during regrowth after cutting—utilization of stored and newly assimilated carbon. Plant Soil 151, 11–20. https://doi.org/10.1007/BF00010781 (1993).Article
ADS
CAS
Google Scholar
Ergon, Å. et al. How can forage production in Nordic and Mediterranean Europe adapt to the challenges and opportunities arising from climate change?. Euro J. Agron. 92, 97–106. https://doi.org/10.1016/j.eja.2017.09.016 (2018).Article
Google Scholar
Niemelainen, O. et al. Increase in perennial forage yields driven by climate change, at Apukka Research Station, Rovaniemi, 1980–2017. Agric. Food Sci. 29, 139–153 (2020).Article
Google Scholar
Anwar, M. R., Liu, D. L., Macadam, I. & Kelly, G. Adapting agriculture to climate change: A review. Theor. Appl. Climatol. 113, 225–245. https://doi.org/10.1007/s00704-012-0780-1 (2013).Article
ADS
Google Scholar
Farmit. Nurmea yli kymppitonni hehtaarilta. Farmit.net. (accessed 28 June 2022); https://www.farmit.net/nurmikasvit-lypsylehma/2016/05/24/nurmea-yli-kymppitonni-hehtaarilta (2016).Peltonen, S., Aalto, K., Hennola, I. & Anttila, S. (Eds.). Peltojen kunnostus. (Tieto Tuottamaan; No. 145), (ProAgria Keskusten Liiton julkaisuja; No. 1163). ProAgria maaseutukeskusten liitto (2019).Laihonen, M., Saikkonen, K., Helander, M. & Tammaru, T. Insect oviposition preference between Epichloë-symbiotic and Epichloë-free grasses does not necessarily reflect larval performance. Ecol. Evol. 10, 7242–7249. https://doi.org/10.1002/ece3.6450 (2020).Article
Google Scholar More