Multistressor global change drivers reduce hatch and viability of Lingcod embryos, a benthic egg layer in the California Current System
IPCC Climate Change The physical science basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge University Press, 2021).
Google ScholarĀ
Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11ā37 (2012).ArticleĀ
ADSĀ
Google ScholarĀ
Song, H. et al. Thresholds of temperature change for mass extinctions. Nat. Commun. 12, 4694 (2021).ArticleĀ
ADSĀ
CASĀ
Google ScholarĀ
Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979ā983 (2019).ArticleĀ
ADSĀ
CASĀ
Google ScholarĀ
Cheung, W. W. L. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change: Climate change impacts on catch potential. Glob. Change Biol. 16, 24ā35 (2010).ArticleĀ
ADSĀ
Google ScholarĀ
Harley, C. D. G. et al. The impacts of climate change in coastal marine systems: Climate change in coastal marine systems. Ecol. Lett. 9, 228ā241 (2006).ArticleĀ
ADSĀ
Google ScholarĀ
Dahlke, F. T., Wohlrab, S., Butzin, M. & Pƶrtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65ā70 (2020).ArticleĀ
ADSĀ
CASĀ
Google ScholarĀ
Hodgson, E. E., Essington, T. E. & Kaplan, I. C. Extending vulnerability assessment to include life stages considerations. PLoS ONE 11, e0158917 (2016).ArticleĀ
Google ScholarĀ
Peck, M. A., Reglero, P., Takahashi, M. & CatalĆ”n, I. A. Life cycle ecophysiology of small pelagic fish and climate-driven changes in populations. Prog. Oceanogr. 116, 220ā245 (2013).ArticleĀ
ADSĀ
Google ScholarĀ
Tsoukali, S., Visser, A. W. & MacKenzie, B. R. Functional responses of North Atlantic fish eggs to increasing temperature. Mar. Ecol. Prog. Ser. 555, 151ā165 (2016).ArticleĀ
ADSĀ
Google ScholarĀ
Pƶrtner, H. O. & Peck, M. A. Climate change effects on fishes and fisheries: Towards a cause-and-effect understanding. J. Fish Biol. 77, 1745ā1779 (2010).ArticleĀ
Google ScholarĀ
Pankhurst, N. W. & Munday, P. L. Effects of climate change on fish reproduction and early life history stages. Mar. Freshw. Res. 62, 1015ā1026 (2011).ArticleĀ
CASĀ
Google ScholarĀ
Brauner, C. J. Acid-base balance. In Fish Larval physiology (eds Finn, R. N. & Kapoor, B. G.) 185ā198 (Science Publishers, 2008).
Google ScholarĀ
Dahlke, F. T. et al. Effects of ocean acidification increase embryonic sensitivity to thermal extremes in Atlantic cod, Gadus morhua. Glob. Chang. Biol. 23, 1499ā1510 (2017).ArticleĀ
ADSĀ
Google ScholarĀ
Shelbourne, J. E. Significance of the subdermal space in pelagic fish embryos and larvae. Nature 176, 743ā744 (1955).ArticleĀ
ADSĀ
Google ScholarĀ
Sundby, S. & Kristiansen, T. The principles of buoyancy in marine fish eggs and their vertical distributions across the world oceans. PLoS ONE 10, e0138821 (2015).ArticleĀ
Google ScholarĀ
Shei, M., Mies, M. & Olivotto, I. Other demersal spawners and mouthbrooders. Marine ornamental species aquaculture, 223ā250 (2017).Beaudreau, A. H. The predatory role of lingcod (Ophiodon elongatus) in the San Juan Archipelago, Washington. (University of Washington, 2009).Love, M. Certainly More Than You Want to Know About the Fishes of the Pacific Coast: A Postmodern Experience. (Really Big Press, 2011).Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255ā257 (1995).ArticleĀ
ADSĀ
CASĀ
Google ScholarĀ
Reum, J. C. et al. Interpretation and design of ocean acidification experiments in upwelling systems in the context of carbonate chemistry co-variation with temperature and oxygen. ICES J. Mar. Sci. 73, 582ā595 (2016).ArticleĀ
Google ScholarĀ
Cheresh, J. & Fiechter, J. Physical and biogeochemical drivers of alongshore pH and oxygen variability in the California Current System. Geophys. Res. Lett. 47, e2020089553 (2020).ArticleĀ
ADSĀ
Google ScholarĀ
Gruber, N. et al. Rapid progression of ocean acidification in the California Current System. Science 337, 220ā223 (2012).ArticleĀ
ADSĀ
CASĀ
Google ScholarĀ
Hauri, C. et al. Spatiotemporal variability and long-term trends of ocean acidification in the California Current System. Biogeosciences 10, 193ā216 (2013).ArticleĀ
ADSĀ
Google ScholarĀ
Pepin, P. Effect of temperature and size on development, mortality, and survival rates of the pelagic early life history stages of marine fish. Can. J. Fish. Aquat. Sci. 48, 503ā518 (1991).ArticleĀ
Google ScholarĀ
Lauel, B. J. & Blood, D. M. The Effects of Temperature on Hatching and Survival of Northern Rock Sole Larvae (Lepidopsetta polyxystra) (Springer, 2011).
Google ScholarĀ
Guevara-Fletcher, C., Alvarez, P., Sanchez, J. & Iglesias, J. Effect of temperature on the development and mortality of European hake (Merluccius merluccius L.) eggs from southern stock under laboratory conditions. J. Exp. Mar. Biol. Ecol. 476, 50ā57 (2016).ArticleĀ
Google ScholarĀ
Collins, L. A. & Nelson, S. G. Effects of temperature on oxygen consumption, growth, and development of embryos and yolk-sac larvae of Siganus randalli (Pisces: Siganidae). Mar. Biol. 117, 195ā204 (1993).ArticleĀ
Google ScholarĀ
Cook, M. A., Guthrie, K. M., Rust, M. B. & Plesha, P. D. Effects of salinity and temperature during incubation on hatching and development of lingcod Ophiodon elongatus Girard, embryos. Aquac. Res. 36, 1298ā1303 (2005).ArticleĀ
Google ScholarĀ
Pƶrtner, H. Integrating climate-related stressor effects on marine organisms: Unifying principles linking molecule to ecosystem-level changes. Mar. Ecol. Prog. Ser. 470, 273ā290 (2012).ArticleĀ
ADSĀ
Google ScholarĀ
Laurel, B. J., Copeman, L. A., Spencer, M. & Iseri, P. Comparative effects of temperature on rates of development and survival of eggs and yolk-sac larvae of Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogrammus). ICES J. Mar. Sci. 75, 2403ā2412 (2018).ArticleĀ
Google ScholarĀ
Jordaan, A., Hayhurst, S. E. & Kling, L. J. The influence of temperature on the stage at hatch of laboratory reared Gadus morhua and implications for comparisons of length and morphology. J. Fish Biol. 68, 7ā24 (2006).ArticleĀ
Google ScholarĀ
PeƱa, R., Dumas, S., Zavala-Leal, I. & Contreras-OlguĆn, M. Effect of incubation temperature on the embryonic development and yolk-sac larvae of the Pacific red snapper Lutjanus peru (Nichols & Murphy, 1922). Aquac Res 45, 519ā527 (2014).ArticleĀ
Google ScholarĀ
Breitburg, D. Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries. Estuaries 25, 767ā781 (2002).ArticleĀ
Google ScholarĀ
Hassell, K. L., Coutin, P. C. & Nugegoda, D. Hypoxia impairs embryo development and survival in black bream (Acanthopagrus butcheri). Mar. Pollut. Bull. 57, 302ā306 (2008).ArticleĀ
CASĀ
Google ScholarĀ
Giorgi, A. E. The Environmental Biology of the Embryos, Egg Masses and Nesting Sites of the Lingcod, Ophiodon elongatus. (University of Washington, 1981).Oseid, D. M. & Smith, L. L. Survival and hatching of walleye eggs at various dissolved oxygen levels. Progress. Fish-Cult. 33, 81ā85 (1971).ArticleĀ
CASĀ
Google ScholarĀ
Shumway, D. L., Warren, C. E. & Doudoroff, P. Influence of oxygen concentration and water movement on the growth of steelhead trout and coho salmon embryos. Trans. Am. Fish. Soc. 93, 342ā356 (1964).ArticleĀ
Google ScholarĀ
Baumann, H., Talmage, S. C. & Gobler, C. J. Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nat. Clim Change 2, 38ā41 (2012).ArticleĀ
ADSĀ
CASĀ
Google ScholarĀ
Faria, A. M. et al. Effects of high pCO2 on early life development of pelagic spawning marine fish. Mar. Freshw. Res. 68, 2106ā2114 (2017).ArticleĀ
CASĀ
Google ScholarĀ
Frommel, A. Y. et al. Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nat. Clim. Change 2, 42ā46 (2012).ArticleĀ
ADSĀ
CASĀ
Google ScholarĀ
Munday, P. L. et al. Effects of elevated CO2 on early life history development of the yellowtail kingfish, Seriola lalandi, a large pelagic fish. ICES J. Mar. Sci. 73, 641ā649 (2016).ArticleĀ
Google ScholarĀ
Hurst, T. P., Fernandez, E. R. & Mathis, J. T. Effects of ocean acidification on hatch size and larval growth of walleye pollock (Theragra chalcogramma). ICES J. Mar. Sci. 70, 812ā822 (2013).ArticleĀ
Google ScholarĀ
Wang, X., Song, L., Chen, Y., Ran, H. & Song, J. Impact of ocean acidification on the early development and escape behavior of marine medaka (Oryzias melastigma). Mar. Environ. Res. 131, 10ā18 (2017).ArticleĀ
Google ScholarĀ
Franke, A. & Clemmesen, C. Effect of ocean acidification on early life stages of Atlantic herring (Clupea harengus L.). Biogeosciences 8, 3697ā3707 (2011).ArticleĀ
ADSĀ
CASĀ
Google ScholarĀ
Forsgren, E., Dupont, S., Jutfelt, F. & Amundsen, T. Elevated CO 2 affects embryonic development and larval phototaxis in a temperate marine fish. Ecol. Evol. 3, 3637ā3646 (2013).ArticleĀ
Google ScholarĀ
Bromhead, D. et al. The potential impact of ocean acidification upon eggs and larvae of yellowfin tuna (Thunnus albacares). Deep Sea Res. II 113, 268ā279 (2015).ArticleĀ
CASĀ
Google ScholarĀ
Garrido, S. et al. Born small, die young: Intrinsic, size-selective mortality in marine larval fish. Sci. Rep. 5, 17065 (2015).ArticleĀ
ADSĀ
CASĀ
Google ScholarĀ
Sampaio, E. et al. Impacts of hypoxic events surpass those of future ocean warming and acidification. Nat. Ecol. Evol. 5, 311ā321 (2021).ArticleĀ
Google ScholarĀ
Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304ā1315 (2008).ArticleĀ
Google ScholarĀ
Pƶrtner, H. O. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: From Earth history to global change. J. Geophys. Res. 110, 0910 (2005).ArticleĀ
Google ScholarĀ
Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5, 1538ā1547 (2015).ArticleĀ
Google ScholarĀ
Boyd, P. W. et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change: A review. Glob. Change Biol 24, 2239ā2261 (2018).ArticleĀ
ADSĀ
Google ScholarĀ
Giorgi, A. E. & Congleton, J. L. Effects of current velocity on development and survival of lingcod, Ophiodon elongatus, embryos. Environ. Biol. Fish 10, 15ā27 (1984).ArticleĀ
Google ScholarĀ
Liu, G., Zhu, S., Liu, D. & Ye, Z. Effect of the C/N ratio on inorganic nitrogen control and the growth and physiological parameters of tilapia s fingerlings, Oreochromis niloticu reared in biofloc systems. Aquac. Res. 49, 2429ā2439 (2018).ArticleĀ
CASĀ
Google ScholarĀ
Houde, E. D. Fish early life dynamics and recruitment variability. Am. Fish. Soc. Symp. 2, 17ā29 (1987).ADSĀ
Google ScholarĀ
Miller, T. J., Crowder, L. B., Rice, J. A. & Marschall, E. A. Larval size and recruitment mechanisms in fishes: Toward a conceptual framework. Can. J. Fish. Aquat. Sci. 45, 1657ā1670 (1988).ArticleĀ
Google ScholarĀ
Doi, H., Akamatsu, F. & GonzĆ”lez, A. L. Starvation effects on nitrogen and carbon stable isotopes of animals: An insight from meta-analysis of fasting experiments. R. Soc. open sci. 4, 170633 (2017).ArticleĀ
ADSĀ
Google ScholarĀ
Pimentel, M. S. et al. Defective skeletogenesis and oversized otoliths in fish early stages in a changing ocean. J. Exp. Biol. 1, 092635. https://doi.org/10.1242/jeb.092635 (2014).ArticleĀ
Google ScholarĀ
Politis, S. N., Dahlke, F. T., Butts, I. A., Peck, M. A. & Trippel, E. A. Temperature, paternity and asynchronous hatching influence early developmental characteristics of larval Atlantic cod, Gadus morhua. J. Exp. Mar. Biol. Ecol. 459, 70ā79 (2014).ArticleĀ
Google ScholarĀ
Appelbaum, S. et al. Studies on rearing of lingcod Ophiodon elongatus. Aquaculture 135, 219ā227 (1995).ArticleĀ
Google ScholarĀ
Hempel, G. Early life history of marine fish: The egg stage. Washington Sea Grant. (University of Washington Press, 1979)Gadomski, D. M. & Caddell, S. M. Effects of temperature on the development and survival of eggs of four coastal California fishes. Fish. Bull. 94, 41ā48 (1996).
Google ScholarĀ
Parker, L. M. et al. Adult exposure influences offspring response to ocean acidification in oysters. Glob. Change Biol. 18, 82ā92 (2012).ArticleĀ
ADSĀ
Google ScholarĀ
Rombough, P. The effects of temperature on embryonic and larval development. In Global Warming: Implications for Freshwater and Marine Fish (Society for Experimental Biology Seminar Series) (eds Wood, C. & McDonald, D.) 177ā224 (Cambridge University Press, 1997).ChapterĀ
Google ScholarĀ
Bownds, C., Wilson, R. & Marshall, D. J. Why do colder mothers produce larger eggs? An optimality approach. J. Exp. Biol. 213, 3796ā3801 (2010).ArticleĀ
Google ScholarĀ
Longo, G. C. et al. Strong population differentiation in lingcod ( Ophiodon elongatus ) is driven by a small portion of the genome. Evol. Appl. 13, 2536ā2554 (2020).ArticleĀ
CASĀ
Google ScholarĀ
Silberberg, K. R., Laidig, T. E., Adams, P. B. & Albin, D. Analysis of maturity in lingcod, Ophiodon elongatus. California Fish Game 87, 139ā152 (2001).
Google ScholarĀ
Palumbi, S. R. Why mothers matter. Nature 430, 621ā622 (2004).ArticleĀ
ADSĀ
CASĀ
Google ScholarĀ
Berkeley, S. A., Chapman, C. & Sogard, S. M. Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops. Ecology 85, 1258ā1264 (2004).ArticleĀ
Google ScholarĀ
Miller, D. J., & Geibel, J. J. Summary of Blue Rockfish and Lingcod Life Histories, a Reef Ecology Study, and Giant Kelp, Macrocystis Pyrifera, Experiments in Monterey Bay, California. (State of California, Resources Agency, Department of Fish and Game, 1973).Low, C. J. & Beamish, R. J. A study of the nesting behavior of lingcod (Ophiodon elongatus) in the strait of Georgia, British Columbia. Can. Fish. Mar. Serv. Tech. Rep. 843, 1ā10 (1978).
Google ScholarĀ
King, J. R. & Withler, R. E. Male nest site fidelity and female serial polyandry in lingcod (Ophiodon elongatus, Hexagrammidae): Lingcod nest site fidelity. Mol. Ecol. 14, 653ā660 (2005).ArticleĀ
Google ScholarĀ
Withler, R. E. et al. Polygamous mating and high levels of genetic variation in lingcod, Ophiodon elongatus of the Strait of Georgia, British Columbia. In Genetics of Subpolar Fish and Invertebrates 345ā357 (Springer, 2004).
Google ScholarĀ
Perkins, M. J. et al. Application of nitrogen and carbon stable isotopes (Ī“15N and Ī“13C) to quantify food chain length and trophic structure. PLoS ONE 9, e93281 (2014).ArticleĀ
ADSĀ
Google ScholarĀ
Earth Systems Research Laboratory (ESRL). NOAAās Ocean Climate Change Web Portal. http://www.esrl.noaa.gov/psd/ipcc/ocn/ (2019).Feely, R., Doney, S. & Cooley, S. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22, 36ā47 (2009).ArticleĀ
Google ScholarĀ
Frieder, C. A., Nam, S. H., Martz, T. R. & Levin, L. A. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences 9, 3917ā3930 (2012).ArticleĀ
ADSĀ
CASĀ
Google ScholarĀ
Olito, C., White, C. R., Marshall, D. J. & Barneche, D. R. Estimating monotonic rates from biological data using local linear regression. J. Exp. Biol. 1, 148775. https://doi.org/10.1242/jeb.148775 (2017).ArticleĀ
Google ScholarĀ
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9(2), 378ā400 (2017).ArticleĀ
Google ScholarĀ More