More stories

  • in

    Multistressor global change drivers reduce hatch and viability of Lingcod embryos, a benthic egg layer in the California Current System

    IPCC Climate Change The physical science basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge University Press, 2021).
    Google ScholarĀ 
    Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Song, H. et al. Thresholds of temperature change for mass extinctions. Nat. Commun. 12, 4694 (2021).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Cheung, W. W. L. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change: Climate change impacts on catch potential. Glob. Change Biol. 16, 24–35 (2010).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Harley, C. D. G. et al. The impacts of climate change in coastal marine systems: Climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Dahlke, F. T., Wohlrab, S., Butzin, M. & Pƶrtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Hodgson, E. E., Essington, T. E. & Kaplan, I. C. Extending vulnerability assessment to include life stages considerations. PLoS ONE 11, e0158917 (2016).ArticleĀ 

    Google ScholarĀ 
    Peck, M. A., Reglero, P., Takahashi, M. & CatalĆ”n, I. A. Life cycle ecophysiology of small pelagic fish and climate-driven changes in populations. Prog. Oceanogr. 116, 220–245 (2013).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Tsoukali, S., Visser, A. W. & MacKenzie, B. R. Functional responses of North Atlantic fish eggs to increasing temperature. Mar. Ecol. Prog. Ser. 555, 151–165 (2016).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Pƶrtner, H. O. & Peck, M. A. Climate change effects on fishes and fisheries: Towards a cause-and-effect understanding. J. Fish Biol. 77, 1745–1779 (2010).ArticleĀ 

    Google ScholarĀ 
    Pankhurst, N. W. & Munday, P. L. Effects of climate change on fish reproduction and early life history stages. Mar. Freshw. Res. 62, 1015–1026 (2011).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Brauner, C. J. Acid-base balance. In Fish Larval physiology (eds Finn, R. N. & Kapoor, B. G.) 185–198 (Science Publishers, 2008).
    Google ScholarĀ 
    Dahlke, F. T. et al. Effects of ocean acidification increase embryonic sensitivity to thermal extremes in Atlantic cod, Gadus morhua. Glob. Chang. Biol. 23, 1499–1510 (2017).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Shelbourne, J. E. Significance of the subdermal space in pelagic fish embryos and larvae. Nature 176, 743–744 (1955).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Sundby, S. & Kristiansen, T. The principles of buoyancy in marine fish eggs and their vertical distributions across the world oceans. PLoS ONE 10, e0138821 (2015).ArticleĀ 

    Google ScholarĀ 
    Shei, M., Mies, M. & Olivotto, I. Other demersal spawners and mouthbrooders. Marine ornamental species aquaculture, 223–250 (2017).Beaudreau, A. H. The predatory role of lingcod (Ophiodon elongatus) in the San Juan Archipelago, Washington. (University of Washington, 2009).Love, M. Certainly More Than You Want to Know About the Fishes of the Pacific Coast: A Postmodern Experience. (Really Big Press, 2011).Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Reum, J. C. et al. Interpretation and design of ocean acidification experiments in upwelling systems in the context of carbonate chemistry co-variation with temperature and oxygen. ICES J. Mar. Sci. 73, 582–595 (2016).ArticleĀ 

    Google ScholarĀ 
    Cheresh, J. & Fiechter, J. Physical and biogeochemical drivers of alongshore pH and oxygen variability in the California Current System. Geophys. Res. Lett. 47, e2020089553 (2020).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Gruber, N. et al. Rapid progression of ocean acidification in the California Current System. Science 337, 220–223 (2012).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Hauri, C. et al. Spatiotemporal variability and long-term trends of ocean acidification in the California Current System. Biogeosciences 10, 193–216 (2013).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Pepin, P. Effect of temperature and size on development, mortality, and survival rates of the pelagic early life history stages of marine fish. Can. J. Fish. Aquat. Sci. 48, 503–518 (1991).ArticleĀ 

    Google ScholarĀ 
    Lauel, B. J. & Blood, D. M. The Effects of Temperature on Hatching and Survival of Northern Rock Sole Larvae (Lepidopsetta polyxystra) (Springer, 2011).
    Google ScholarĀ 
    Guevara-Fletcher, C., Alvarez, P., Sanchez, J. & Iglesias, J. Effect of temperature on the development and mortality of European hake (Merluccius merluccius L.) eggs from southern stock under laboratory conditions. J. Exp. Mar. Biol. Ecol. 476, 50–57 (2016).ArticleĀ 

    Google ScholarĀ 
    Collins, L. A. & Nelson, S. G. Effects of temperature on oxygen consumption, growth, and development of embryos and yolk-sac larvae of Siganus randalli (Pisces: Siganidae). Mar. Biol. 117, 195–204 (1993).ArticleĀ 

    Google ScholarĀ 
    Cook, M. A., Guthrie, K. M., Rust, M. B. & Plesha, P. D. Effects of salinity and temperature during incubation on hatching and development of lingcod Ophiodon elongatus Girard, embryos. Aquac. Res. 36, 1298–1303 (2005).ArticleĀ 

    Google ScholarĀ 
    Pƶrtner, H. Integrating climate-related stressor effects on marine organisms: Unifying principles linking molecule to ecosystem-level changes. Mar. Ecol. Prog. Ser. 470, 273–290 (2012).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Laurel, B. J., Copeman, L. A., Spencer, M. & Iseri, P. Comparative effects of temperature on rates of development and survival of eggs and yolk-sac larvae of Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogrammus). ICES J. Mar. Sci. 75, 2403–2412 (2018).ArticleĀ 

    Google ScholarĀ 
    Jordaan, A., Hayhurst, S. E. & Kling, L. J. The influence of temperature on the stage at hatch of laboratory reared Gadus morhua and implications for comparisons of length and morphology. J. Fish Biol. 68, 7–24 (2006).ArticleĀ 

    Google ScholarĀ 
    PeƱa, R., Dumas, S., Zavala-Leal, I. & Contreras-OlguĆ­n, M. Effect of incubation temperature on the embryonic development and yolk-sac larvae of the Pacific red snapper Lutjanus peru (Nichols & Murphy, 1922). Aquac Res 45, 519–527 (2014).ArticleĀ 

    Google ScholarĀ 
    Breitburg, D. Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries. Estuaries 25, 767–781 (2002).ArticleĀ 

    Google ScholarĀ 
    Hassell, K. L., Coutin, P. C. & Nugegoda, D. Hypoxia impairs embryo development and survival in black bream (Acanthopagrus butcheri). Mar. Pollut. Bull. 57, 302–306 (2008).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Giorgi, A. E. The Environmental Biology of the Embryos, Egg Masses and Nesting Sites of the Lingcod, Ophiodon elongatus. (University of Washington, 1981).Oseid, D. M. & Smith, L. L. Survival and hatching of walleye eggs at various dissolved oxygen levels. Progress. Fish-Cult. 33, 81–85 (1971).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Shumway, D. L., Warren, C. E. & Doudoroff, P. Influence of oxygen concentration and water movement on the growth of steelhead trout and coho salmon embryos. Trans. Am. Fish. Soc. 93, 342–356 (1964).ArticleĀ 

    Google ScholarĀ 
    Baumann, H., Talmage, S. C. & Gobler, C. J. Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nat. Clim Change 2, 38–41 (2012).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Faria, A. M. et al. Effects of high pCO2 on early life development of pelagic spawning marine fish. Mar. Freshw. Res. 68, 2106–2114 (2017).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Frommel, A. Y. et al. Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nat. Clim. Change 2, 42–46 (2012).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Munday, P. L. et al. Effects of elevated CO2 on early life history development of the yellowtail kingfish, Seriola lalandi, a large pelagic fish. ICES J. Mar. Sci. 73, 641–649 (2016).ArticleĀ 

    Google ScholarĀ 
    Hurst, T. P., Fernandez, E. R. & Mathis, J. T. Effects of ocean acidification on hatch size and larval growth of walleye pollock (Theragra chalcogramma). ICES J. Mar. Sci. 70, 812–822 (2013).ArticleĀ 

    Google ScholarĀ 
    Wang, X., Song, L., Chen, Y., Ran, H. & Song, J. Impact of ocean acidification on the early development and escape behavior of marine medaka (Oryzias melastigma). Mar. Environ. Res. 131, 10–18 (2017).ArticleĀ 

    Google ScholarĀ 
    Franke, A. & Clemmesen, C. Effect of ocean acidification on early life stages of Atlantic herring (Clupea harengus L.). Biogeosciences 8, 3697–3707 (2011).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Forsgren, E., Dupont, S., Jutfelt, F. & Amundsen, T. Elevated CO 2 affects embryonic development and larval phototaxis in a temperate marine fish. Ecol. Evol. 3, 3637–3646 (2013).ArticleĀ 

    Google ScholarĀ 
    Bromhead, D. et al. The potential impact of ocean acidification upon eggs and larvae of yellowfin tuna (Thunnus albacares). Deep Sea Res. II 113, 268–279 (2015).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Garrido, S. et al. Born small, die young: Intrinsic, size-selective mortality in marine larval fish. Sci. Rep. 5, 17065 (2015).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Sampaio, E. et al. Impacts of hypoxic events surpass those of future ocean warming and acidification. Nat. Ecol. Evol. 5, 311–321 (2021).ArticleĀ 

    Google ScholarĀ 
    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).ArticleĀ 

    Google ScholarĀ 
    Pörtner, H. O. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: From Earth history to global change. J. Geophys. Res. 110, 0910 (2005).Article 

    Google ScholarĀ 
    Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5, 1538–1547 (2015).ArticleĀ 

    Google ScholarĀ 
    Boyd, P. W. et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change: A review. Glob. Change Biol 24, 2239–2261 (2018).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Giorgi, A. E. & Congleton, J. L. Effects of current velocity on development and survival of lingcod, Ophiodon elongatus, embryos. Environ. Biol. Fish 10, 15–27 (1984).ArticleĀ 

    Google ScholarĀ 
    Liu, G., Zhu, S., Liu, D. & Ye, Z. Effect of the C/N ratio on inorganic nitrogen control and the growth and physiological parameters of tilapia s fingerlings, Oreochromis niloticu reared in biofloc systems. Aquac. Res. 49, 2429–2439 (2018).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Houde, E. D. Fish early life dynamics and recruitment variability. Am. Fish. Soc. Symp. 2, 17–29 (1987).ADSĀ 

    Google ScholarĀ 
    Miller, T. J., Crowder, L. B., Rice, J. A. & Marschall, E. A. Larval size and recruitment mechanisms in fishes: Toward a conceptual framework. Can. J. Fish. Aquat. Sci. 45, 1657–1670 (1988).ArticleĀ 

    Google ScholarĀ 
    Doi, H., Akamatsu, F. & GonzÔlez, A. L. Starvation effects on nitrogen and carbon stable isotopes of animals: An insight from meta-analysis of fasting experiments. R. Soc. open sci. 4, 170633 (2017).Article 
    ADSĀ 

    Google ScholarĀ 
    Pimentel, M. S. et al. Defective skeletogenesis and oversized otoliths in fish early stages in a changing ocean. J. Exp. Biol. 1, 092635. https://doi.org/10.1242/jeb.092635 (2014).ArticleĀ 

    Google ScholarĀ 
    Politis, S. N., Dahlke, F. T., Butts, I. A., Peck, M. A. & Trippel, E. A. Temperature, paternity and asynchronous hatching influence early developmental characteristics of larval Atlantic cod, Gadus morhua. J. Exp. Mar. Biol. Ecol. 459, 70–79 (2014).ArticleĀ 

    Google ScholarĀ 
    Appelbaum, S. et al. Studies on rearing of lingcod Ophiodon elongatus. Aquaculture 135, 219–227 (1995).ArticleĀ 

    Google ScholarĀ 
    Hempel, G. Early life history of marine fish: The egg stage. Washington Sea Grant. (University of Washington Press, 1979)Gadomski, D. M. & Caddell, S. M. Effects of temperature on the development and survival of eggs of four coastal California fishes. Fish. Bull. 94, 41–48 (1996).
    Google ScholarĀ 
    Parker, L. M. et al. Adult exposure influences offspring response to ocean acidification in oysters. Glob. Change Biol. 18, 82–92 (2012).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Rombough, P. The effects of temperature on embryonic and larval development. In Global Warming: Implications for Freshwater and Marine Fish (Society for Experimental Biology Seminar Series) (eds Wood, C. & McDonald, D.) 177–224 (Cambridge University Press, 1997).ChapterĀ 

    Google ScholarĀ 
    Bownds, C., Wilson, R. & Marshall, D. J. Why do colder mothers produce larger eggs? An optimality approach. J. Exp. Biol. 213, 3796–3801 (2010).ArticleĀ 

    Google ScholarĀ 
    Longo, G. C. et al. Strong population differentiation in lingcod ( Ophiodon elongatus ) is driven by a small portion of the genome. Evol. Appl. 13, 2536–2554 (2020).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Silberberg, K. R., Laidig, T. E., Adams, P. B. & Albin, D. Analysis of maturity in lingcod, Ophiodon elongatus. California Fish Game 87, 139–152 (2001).
    Google ScholarĀ 
    Palumbi, S. R. Why mothers matter. Nature 430, 621–622 (2004).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Berkeley, S. A., Chapman, C. & Sogard, S. M. Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops. Ecology 85, 1258–1264 (2004).ArticleĀ 

    Google ScholarĀ 
    Miller, D. J., & Geibel, J. J. Summary of Blue Rockfish and Lingcod Life Histories, a Reef Ecology Study, and Giant Kelp, Macrocystis Pyrifera, Experiments in Monterey Bay, California. (State of California, Resources Agency, Department of Fish and Game, 1973).Low, C. J. & Beamish, R. J. A study of the nesting behavior of lingcod (Ophiodon elongatus) in the strait of Georgia, British Columbia. Can. Fish. Mar. Serv. Tech. Rep. 843, 1–10 (1978).
    Google ScholarĀ 
    King, J. R. & Withler, R. E. Male nest site fidelity and female serial polyandry in lingcod (Ophiodon elongatus, Hexagrammidae): Lingcod nest site fidelity. Mol. Ecol. 14, 653–660 (2005).ArticleĀ 

    Google ScholarĀ 
    Withler, R. E. et al. Polygamous mating and high levels of genetic variation in lingcod, Ophiodon elongatus of the Strait of Georgia, British Columbia. In Genetics of Subpolar Fish and Invertebrates 345–357 (Springer, 2004).
    Google ScholarĀ 
    Perkins, M. J. et al. Application of nitrogen and carbon stable isotopes (Γ15N and Γ13C) to quantify food chain length and trophic structure. PLoS ONE 9, e93281 (2014).Article 
    ADSĀ 

    Google ScholarĀ 
    Earth Systems Research Laboratory (ESRL). NOAA’s Ocean Climate Change Web Portal. http://www.esrl.noaa.gov/psd/ipcc/ocn/ (2019).Feely, R., Doney, S. & Cooley, S. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22, 36–47 (2009).ArticleĀ 

    Google ScholarĀ 
    Frieder, C. A., Nam, S. H., Martz, T. R. & Levin, L. A. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences 9, 3917–3930 (2012).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Olito, C., White, C. R., Marshall, D. J. & Barneche, D. R. Estimating monotonic rates from biological data using local linear regression. J. Exp. Biol. 1, 148775. https://doi.org/10.1242/jeb.148775 (2017).ArticleĀ 

    Google ScholarĀ 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9(2), 378–400 (2017).ArticleĀ 

    Google ScholarĀ  More

  • in

    Soil fertility analysis in the Republic of Bashkortostan

    Soil studies were carried out on 115,896.2 hectares of agricultural lands in fifteen villages of the municipal district obtained by subtracting from the available area of the village industrial lands, populated areas, forest plots occupied by water, etc.As a result of the land reform and redistribution of land for various purposes for the period from 1972 to 2021, the area of agricultural land decreased by 12.7% compared to the data of the previous survey.In the research area, the largest territories are occupied by black soils, which amount to 52,826.24Ā ha, including bleached soils—42,605.9Ā ha, alkaline – 6983.8Ā ha and shortened – 3236.54Ā ha. Slightly inferior to the black soils are dark gray forest soils with an area of 37,043.63 hectares, alluvial—12,287.4 hectares, gray forest—6371.96 hectares and forest soils of a rooted profile – 5058.94 hectares. The share of sod-carbonate soils accounts for 7792.7 hectares of land, which is 6.2%. The gradation did not include the soils of the ravine-beam complex, sand and gravel masses, existing ravines and disturbed lands, and quarries that occupy 5,452.4 hectares of territory (4.3%).One of the important indicators of soils, especially used in agricultural production, is the humus state. Thus, over 49Ā years there has been a slight decrease in the area under obese (high-humus) soils in the hectare ratio, due to a general decrease in the area of farmland, but in the context of the security group, they have increased by 1.3% (Table 1). The remaining levels of security have remained almost at the same level. The increase in the amount of fat chernozems was facilitated by the withdrawal of arable land from circulation and their transfer to perennial plantations. Earlier researches conducted on experimental fields of the Bashkir State Agrarian University identified and revealed changes in the quantitative and qualitative composition of organic matter from 15 to 30% when introducing a land plot for arable land26. To preserve and improve soil fertility, it is recommended to carry out a complex of agrotechnical, agrochemical and reclamation measures and the use of various meliorants, organic and mineral fertilizers27.Studies of the capacity of the humus horizon have shown that low–sized soils have become the most widespread—69,660.2 hectares or 60.1% of the total area of agricultural land (Fig.Ā 2). A smaller area is occupied by medium-sized soils – 38,128.7 hectares (32.9%), not included in the gradation – 8107.3 hectares or 7.0%, respectively. It should be noted that the specific gravity of the soil of the ravine-beam complex, sand and gravel masses, active ravines and disturbed lands, and quarries increased by 2.5%.Figure 2Distribution of soils by humus horizon thickness by region.Full size imageThe granulometric composition of the soil is also of great agronomic importance28. Physical, physico-chemical, physico-mechanical properties and water, air, and nutrient regimes of soils depend on it29,30. In the Salavatskiy district there were practically no changes in soil areas in terms of granulometric composition, mainly clay soil varieties predominate. According to the mechanical composition of the soil there were distributed as follows: light clay – 71,807.38Ā ha or 62% (in 1972, 86,375Ā ha or 65.1%) of the total area of agricultural land and heavy loamy – 34,745.24Ā ha (30%) (in 1972—39,614Ā ha or 29.8%). The share of medium-loamy varieties accounts for 0.8% (in 1972—0.84%) (Fig.Ā 3).Figure 3Distribution of Salavatskiy district soil areas by granulometric composition, %.Full size imageThe gradation did not include 8362.27 hectares of land. Heavy loamy, medium clay, sandy loam and sandy soils have not been identified.All arable soils of the analyzed territory are slightly susceptible to erosion processes, the processes of water and, to a lesser extent, wind erosion have developed. 67,445.21 hectares of land, or 58.2% (in 1972, 77,702 hectares) of the total area of agricultural lands are occupied under lightly washed soils, the share of medium and heavily washed accounts for 3.9% and 0.1%, respectively. Unwashed soils are distributed on 36,985.46 hectares (31.9%) (Table 2).Table 2 Soil areas by category of erosion feature (Salavatskiy district of the Republic of Bashkortostan).Full size tableAccording to the results of the field research and laboratory agrochemical analyses of soils, land refinements related to agricultural land were carried out. The basis for correcting and digitizing the contours of soil varieties were in the maps made in 1972 (Fig.Ā 4).Figure 4Soil map within the boundaries of the Salavatskiy district of the Republic of Bashkortostan, 1972.Full size imageDigitization included scanning the topographic basis, then assigning coordinates to a raster image, decrypting and digitizing orthophotos (Fig.Ā 5).Figure 5Orthophotoplan within the boundaries of the Salavatskiy district of the Republic of Bashkortostan, 2007.Full size imageAfter the carried-out activities, a soil map was obtained in the digital format of the Mapinfo program, after which it was converted into a raster basis with reference to the local coordinate system MSK 02 zone 1. The digitization of the 1972 soil map was carried out manually by outlining the contours of the topographic base and the scanned map.During digitization, information partially lost due to its wear and distortion during scanning was restored. A necessary condition is the use of the originals of the soil maps of the previous survey (1972).As a planned basis on which the created layers can be opened and information on soils can be obtained, a raster basis was ordinated into a local coordinate system (Fig.Ā 6).Figure 6Completed soil map within the boundaries of the Salavat district of the Republic of Belarus, 2021.Full size imageThe result of the conducted research is the developed electronic digital soil map of the municipal district of Salavatskiy district which unites 15 rural settlements. The electronic soil map is presented in the form of a complex of electronic layers with the names of the type and subtype of soils, soil variety, mechanical or granulometric composition, soil-forming and underlying rocks. It also includes indicators of organic carbon, humus, mobile phosphorus, exchangeable potassium, soil acidity by pH value and the capacity of the humus-accumulative horizon. More

  • in

    Quantification of biological nitrogen fixation by Mo-independent complementary nitrogenases in environmental samples with low nitrogen fixation activity

    Direct injection method for ethylene and acetylene Ī“13C analyses by GC-C-IRMSFollowing the direct injection approach of classical ISARA12 with a few modifications, ARA samples with high ethylene yield ( > 500 ppmv) in 10% v/v acetylene were manually injected into a Thermo Scientific Trace GC Ultra-Isolink with an Agilent HP-PLOT/Q Ā capillary GC column (30 m, i.d. =Ā 0.32 mm, f.t. = 20 μm)Ā and aĀ combustion reactor connected to a Thermo Scientific Delta V Plus isotope ratio mass spectrometer (GC-C-IRMS; Fig.Ā 1a). Modifications include the replacement of silver ferrules in the GC oven with Valcon polymide (graphite reinforced polymer) ferrules to limit memory effects from acetylene. The combustion reactor was oxidized with pure oxygen for 1Ā h before each run and brief (15Ā min) seed oxidations were performed between measurement batches (i.e., required every ~ 6–8 ethylene injections, ~ 4–6 acetylene injections) to regenerate reactor oxidation capacity and minimize drift of Ī“13C values. See Supplementary Table S1a online for additional instrument settings.Ethylene Pre-Concentration (EPCon) methodARA samples with  More

  • in

    Global predictions for the risk of establishment of Pierce’s disease of grapevines

    Thermal requirements to develop PDWe examined the response of a wide spectrum of European grapevine varieties to XfPD infection in three independent experiments conducted in 2018, 2019, and 2020. Overall, 86.1% (n = 764) of 886 inoculated plants, comprising 36 varieties and 57 unique scion/rootstock combinations, developed PD symptoms 16 weeks after inoculation. European V. vinifera varieties exhibited significant differences in their susceptibility to XfPD (Supplementary TableĀ S1). All varieties, however, showed PD symptoms to some extent, confirming previous field observations of general susceptibility to XfPD9,12,37. We also found significant differences in virulence (χ2 = 68.73, df = 1, P = 2.2 × 10āˆ’16) between two XfPD strains isolated from grapevines in Majorca across grapevine varieties (Supplementary Fig.Ā S1). Full details on the results of the inoculation tests are available in ā€œMethodsā€, Supplementary NoteĀ 1, Supplementary TableĀ S1 and Supplementary DataĀ 1.Growing degree days (GDD) have traditionally been used to describe and predict phenological events of plants and insect pests, but rarely in plant diseases58. We took advantage of data collated in the inoculation trials together with temperature to relate symptom development to the accumulated heat units at weeks eight, 10, 12, 14, and 16 after inoculation (Supplementary DataĀ 1). Rather than counting GDDs linearly above a threshold temperature, we consider Xf ’s specific growth rate in vitro within its cardinal temperatures. The empirical growth rates come from the seminal work by Feil & Purcell38 shown in the inset of Fig.Ā 1a. This Arrhenius plot was transformed, as explained in Supplementary NoteĀ 2A, to obtain a a piece-wise function f(T) Eq. (1). Our model and risk maps are based on f(T) (red line in Fig.Ā 1a) because it provides the best fit to the experimental data when compared with the commonly used Beta function (blue line) for representing the thermal response in biological processes59,60. This Modified Growing Degree Day (MGDD) profile Eq. (1) enables to measure the thermal integral from hourly average temperatures, improving the prediction scale of the biological process61. MGDD also provides an excellent metric to link XfPD growth in culture with PD development as, once the pathogen is injected into the healthy vine, symptoms progression mainly depends upon the bacterial load (i.e., multiplication) and the movement through the xylem vessel network, which are fundamentally temperature-dependent processes38,62. Moreover, MGDD can be mathematically related to the exponential or logistic growth of the pathogen within the plant (Supplementary NoteĀ 2B).Fig. 1: Climatic and transmission layers composing the epidemiological model.a MGDD profile fitted to the in vitro data of Xf growth rate in Feil & Purcell 200138. The original Arrhenius plot in Kelvin degrees (inset) was converted to Celsius, as explained in (Supplementary NoteĀ 2A), to obtain the fit shown in the main plot red line; the blue line represents the fit with a Beta function. b Correlation between CDD and the average ({T}_{min }) of the coldest month between 1981 and 2019. Plotted black dots (worldwide) and yellow dots (main wine-producing zones) depict climatic data from 6,487,200 cells at 0.1āˆ˜ā€‰Ć—ā€‰0.1∘ resolution, spread globally and retrieved from ERA5-Land dataset. The red solid line depicts the fitted exponential function for worldwide data and the blue solid line for main vineyard zones. c Nonlinear relationship between MGDD (red line) and CDD (blue line) and the likelihood of developing chronic infections. Black dots depict the cumulative proportion of grapevine plants in the population of 36 inoculated varieties showing five or more symptomatic leaves at each of the 15 MGDD levels (seeĀ Supplementary Information). Vertical bars are the 95% CI. d Combined ranges of MGDD and CDD on the likelihood of developing chronic infection. e Transmission layer in the dynamic equation (1) of the SIR compartmental model. f Relationship between the exponential growth of the number of infected plants with the risk index and their ranks.Full size imageInterannual infection survival in grapevines plays a relevant role when modelling PD epidemiology. In our model, we assumed a threshold of five or more symptomatic leaves for these chronic infections based on the relationship between the timing and severity of the infection during the growing season and the likelihood of winter recovery38,39,42. This five-leaf cut-off was grounded on: (i) the bimodal distribution in the frequency of the number of symptomatic leaves among the population of inoculated grapevines (Supplementary Fig.Ā S1), whereby vines that generally show less than five symptomatic leaves at 12 weeks after inoculation remain so in the following weeks, while those that pass that threshold continue to produce symptomatic leaves, and (ii) the observed correlation between the acropetal and basipetal movement of Xf along the cane (Supplementary Fig.Ā S1). The likelihood of developing chronic infections as a function of accumulated MGDD among the population of grapevine varieties was modelled using survival analysis with data fitted to a logistic distribution ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}})). A minimum window of MGDD = 528 was needed to develop chronic infections (var. Tempranillo), about 975 for a median estimate, while a cumulative MGDD  > 1159 indicate over 90% probability within a growing season (red curve in Fig.Ā 1c and ā€œMethodsā€).Next, we intended to model the probability of disease recovery by exposure to cold temperatures. Previous works had specifically modelled cold curing on Pinot Noir and Cabernet Sauvignon varieties in California as the effect of temperature and duration39 by assuming a progressive elimination of the bacterial load with cold temperatures42. In the absence of appropriate empirical data to formulate a general average pattern of winter curing among grapevine varieties, we combined the approach of Lieth et al.39 and the empirical observations of Purcell on the distribution of PD in the US related to the average minimum temperature of the coldest month, Tmin, isolines41. To consider the accumulation of cold units in an analogy of the MGDD, we searched for a general correlation between Tmin and the cold degree days (CDDs) with base temperature = 6ā€‰āˆ˜C (see ā€œMethodsā€). We found an exponential relation, ({{{{{rm{CDD}}}}}} sim 230exp (-0.26cdot {T}_{min })), where specifically, CDD ≳ 306 correspond to ({T}_{min } < -1.{1},^{circ }{{{{{rm{C}}}}}}) (Fig.Ā 1b). To transform this exponential relationship to a probabilistic function analogous to ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}})), hereafter denoted ({{{{{{{mathcal{G}}}}}}}}({{{{{rm{CDD}}}}}})), ranging between 0 and 1, we considered the sigmoidal family of functions (f(x)=frac{A}{B+{x}^{C}}) with A = 9 × 106, B = A and C = 3 (Fig.Ā 1c), fulfilling the limit ({{{{{{{mathcal{G}}}}}}}}({{{{{rm{CDD}}}}}}=0)=1), i.e., no winter curing when no cold accumulated, and a conservative 75% of the infected plants recovered at ({T}_{min }=-1.{1},^{circ }{{{{{rm{C}}}}}}) instead of 100% to reflect uncertainties on the effect of winter curing.MGDD/CDD distribution mapsMGDD were used to compute annual risk maps of developing PD during summer for the period 1981–2019 (see ā€œMethodsā€). The resulting averaged map identifies all known areas with a recent history of severe PD in the US corresponding to ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}}) , > , 90 %) (i.e., high-risk), such as the Gulf Coast states (Texas, Alabama, Mississippi, Louisiana, Florida), Georgia and Southern California sites (e.g., Temecula Valley) (Fig.Ā 2a), while captures areas with a steep gradation of disease endemicity in the north coast of California (({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}} , > , 50 % )). Overall, more than 95% of confirmed PD sites (n = 155) in the US (Supplementary DataĀ 2) fall in grid cells with ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}}) , > , 50 %).Fig. 2: Average thermal-dependent maps for Pierce’s disease (PD) development and recovery in North America and Europe.PD development during the growing season based on average ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}})) estimations between 1981 and 2019 in North America (a) and Europe (b) derived from the results of the inoculation experiments on 36 grapevine varieties. Large differences in the areal extension with favourable MGDDs can be observed between the US and Europe. The winter curing effect is reflected in the distribution of the average ({{{{{{{mathcal{G}}}}}}}}({{{{{rm{CDD}}}}}})) for the 1981–2019 period in the United States (c) and Europe (d). A snapshot of the temperature-driven probability of chronic infection averaged for the 1981–2019 period is obtained from the joint effect of MGDD and CDD in North America (e) and Europe (f). Warmer colours indicate more favourable conditions for chronic PD and the dashed line highlights the threshold of chronic infection probability being 0.5.Full size imageThe average MGDD-projected map for Europe during 1981–2019 spots a high risk for the coast, islands and major river valleys of the Mediterranean Basin, southern Spain, the Atlantic coast from Gibraltar to Oporto, and continental areas of central and southeast Europe (Fig.Ā 2b). Of these, however, only some Mediterranean islands, such as Cyprus and Crete, show ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}}) , > , 99 %) comparable to areas with high disease incidence in the Gulf Coast states of the US and California. Almost all the Atlantic coast from Oporto (Portugal) to Denmark are below suitable MGDD, with an important exception in the Garonne river basin in France (Bordeaux Area) with low to moderate MGDD (Fig.Ā 2b).FigureĀ 2a shows how the area with high-risk MGDD values extends further north of the current known PD distribution in the southeastern US, suggesting that winter temperatures limit the expansion of PD northwards9. A comparison between MGDD and CDD maps (Fig.Ā 2a vs. Fig.Ā 2c, Fig.Ā 2e) further supports the idea that winter curing is restricting PD northward migration from the southeastern US. However, consistent with growing concern among Midwest states winegrowers on PD northward migration led by climate change63, we found a mean increase of 0.12% yāˆ’1 in the areal extent with CDD  0.075) in 22.3% of the vineyards in Europe. However, no vineyard is in epidemic-risk zones with a high-risk index and only 2.9% of the vineyard surface is at moderate risk (Supplementary TableĀ S8). The areas with the highest risk index (r(t) between 0.70 and 0.88) are mainly located in the Mediterranean islands of Crete, Cyprus and the Balearic Islands or at pronounced peninsulas like Apulia (Italy) and Peloponnese (Greece) in the continent (Fig.Ā 6a and Supplementary TableĀ S8). Most vineyards are in non-risk zones (42.1%), whereas 35.6% are located in transition zones with presently non-risk but where XfPD could become established in the next decades causing some sporadic outbreaks. In Supplementary DataĀ 4 and Supplementary TableĀ S8, we provide full details of the total vineyard areas currently at risk for each country and region.Fig. 6: Intersection between Corine-land-cover vineyard distribution map and PD-risk maps for 2020 and 2050.Data were obtained from Corine-land-cover (2018) and the layer of climatic suitability forP. spumarius in Europe from35. The surface of the vineyard contour has been enlarged to improve the visualisation of the risk zones and disease-incidence growth-rate ranks. a PD risk map for 2019 and its projection for 2050 (b). Blue colours represent non-risk zones and transient risk zones for chronic PD (R0  More

  • in

    Out-of-date datasets hamper conservation of species close to extinction

    Scheffers, B. R., Yong, D. L., Harris, J. B. C., Giam, X. & Sodhi, N. S. The world’s rediscovered species: back from the brink? PloS ONE 6, e22531 (2011).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Abeli, T., Albani Rocchetti, G., Barina, Z., Bazos, I. & Draper, D. et al. Seventeen ā€˜extinct’ plant species back to conservation attention in Europe. Nat. Plants 7, 282–286 (2021).ArticleĀ 

    Google ScholarĀ 
    Guidelines for Using the IUCN Red List Categories and Criteria Version 14 (IUCN Standards and Petitions Committee, 2019); http://www.iucnredlist.org/documents/RedListGuidelines.pdfDalrymple, S. E. & Abeli, T. Ex situ seed banks and the IUCN Red List. Nat. Plants 5, 122–123 (2019).ArticleĀ 

    Google ScholarĀ 
    Albani Rocchetti, G. et al. Selecting the best candidates for resurrecting extinct-in-the-wild plants from herbaria. Nat. Plants. https://doi.org/10.1038/s41477-022-01296-7 (2022).The IUCN Red List of Threatened Species Version 2022-1 (IUCN, accessed 264 October 2022); https://www.iucnredlist.orgHumphreys, A. M., Govaerts, R., Ficinski, S. Z., Lughadha, E. N. & Vorontsova, M. S. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evol. 3, 1043–1047 (2019).ArticleĀ 

    Google ScholarĀ 
    Knapp, W. M., Frances, A., Noss, R., Naczi, R. F. & Weakley, A. et al. Vascular plant extinction in the continental United States and Canada. Conserv. Biol. 35, 360–368 (2021).ArticleĀ 

    Google ScholarĀ 
    Sasidharan, N. Cynometra beddomei. The IUCN Red List of Threatened Species 2020 (IUCN, accessed 27 October 2021); https://www.iucnredlist.org/species/31184/115932185Cronk, Q. C. B. A new species and hybrid in the St Helena endemic genus Trochetiopsis. Edinb. J. Bot. 52, 205–213 (1995).ArticleĀ 

    Google ScholarĀ 
    Loizeau, P. A. & Jackson, P. W. World Flora Online mid-term update. Ann. Missouri Bot. Gard. 102, 341–346 (2017).ArticleĀ 

    Google ScholarĀ 
    Edwards, C., Bassüner, B., Birkinshaw, C., Camara, C. & Lehavana, A. et al. A botanical mystery solved by phylogenetic analysis of botanical garden collections: the rediscovery of the presumed-extinct Dracaena umbraculifera. Oryx 52, 427–436 (2018).ArticleĀ 

    Google ScholarĀ 
    MosaChristas, K., Karthick, R., Kowsalya, E. & Jaquline, C. R. I. Musa kattuvazhana (Musaceae): rediscovery and additional notes on a critically endangered species from Western Ghats of Tamil Nadu, India. Feddes Repert. 132, 263–268 (2021).ArticleĀ 

    Google ScholarĀ 
    Van Hoi, Q. U. A. C. H., Doudkin, R. V., Cuong, T. Q., Le Van, S. O. N. & Van Dung, L. U. O. N. G. et al. Rediscovery of Camellia langbianensis (Theaceae) in Vietnam. Phytotaxa 480, 85–90 (2021).ArticleĀ 

    Google ScholarĀ 
    Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G. & Axton, M. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).Costello, M. J. & Wieczorek, J. Best practice for biodiversity data management and publication. Biol. Conserv. 173, 68–73 (2014).ArticleĀ 

    Google ScholarĀ 
    Wieczorek, J., Bloom, D., Guralnick, R., Blum, S., Döring, M., Giovanni, R., Robertson, T. & Vieglais, D. Darwin Core: an evolving community-developed biodiversity data standard. PloS ONE 7, e29715 (2012).Article 
    CASĀ 

    Google ScholarĀ 
    de Lange, P.J. Lepidium obtusatum Fact Sheet (content continuously updated) (New Zealand Plant Conservation Network, accessed 16 December 2021); https://www.nzpcn.org.nz/flora/species/lepidium-obtusatum/Knapp, W.M., Poindexter, D.B. & Weakley, A.S. The true identity of Marshallia grandiflora an extinct species and the description of Marshallia pulchra (Asteraceae Helenieae Marshalliinae). Phytotaxa 447, 1–15 (2020).ArticleĀ 

    Google ScholarĀ  More

  • in

    Wood structure explained by complex spatial source-sink interactions

    Overall frameworkCells in our model are arranged along independent radial files, with each cell in one of either the proliferation, enlargement-only, wall thickening, or mature zones, depending on the distance of the cell’s centre from the inside edge of the phloem and the time of year. Only cells that contribute to the formation of xylem tracheids are treated explicitly. A daily timestep is used, on which cells in the proliferation and enlargement-only zones can enlarge in the radial direction if these zones are non-dormant, and on which secondary-wall thickening can occur in the wall thickening zone. Cells in the proliferation zone divide periclinally if they reach a threshold radial length. Cell-size control at division is intermediate between a critical size and a critical increment22. Mother cells divide asymmetrically, with the subsequent relative growth rates of the daughters inversely proportional to their relative sizes. Size at division and asymmetry of division are computed with added statistical noise22, and therefore the model is run for an ensemble of independent radial files with perturbed initial conditions.Equations and parametersCell enlargement and divisionCells in the proliferation and enlargement-only zones, when not dormant, enlarge in the radial direction at a rate dependent on temperature and relative sibling birth size. A Boltzmann-Arrhenius approach is used for the temperature dependence30:$$mu={mu }_{0}{e}^{frac{{E}_{a}}{k}left(frac{1}{{T}_{0}}-frac{1}{T}right)}$$
    (1)
    where μ is the relative rate of radial cell growth at temperature T (μm μmāˆ’1 dayāˆ’1), μ0 is μ at temperature T0 (=283.15 K), Ea is the effective activation energy for cell enlargement, k is the Boltzmann constant (i.e. 8.617 x 10āˆ’5 eV Kāˆ’1), and T is temperature (K). μ0 was calibrated to an observed mean radial file length at the end of the elongation period dataset23 (TableĀ 1; see ā€œObservationsā€), and Ea was calibrated to an observed temperature dependence of annual ring width dataset31 (TableĀ 1; Supplementary Fig.Ā 4; see ā€œObservationsā€).Table 1 Model parameters calibrated to observationsFull size tableRadial length of an individual cell then increases according to:$${{Delta }}{L}_{r}={L}_{r}({e}^{epsilon mu }-1)$$
    (2)
    where Ī”Lr is the radial increment of the cell (μm dayāˆ’1), Lr is the radial length of the cell (μm), and ϵ is the cell’s growth dependence on relative birth size, given by22:$$epsilon=1-{g}_{asym}{alpha }_{b}$$
    (3)
    where gasym is the strength of the dependence of relative growth rate on asymmetric division (TableĀ 2; unitless), and αb is the degree of asymmetry relative to the cell’s sister22 (scalar):$${alpha }_{b}=frac{{L}_{r}{,}_{b}-{L}_{r}{,}_{b}^{sis}}{{L}_{r}{,}_{b}+{L}_{r}{,}_{b}^{sis}}$$
    (4)
    where Lr,b is the radial length of the cell at birth (μm) and ({L}_{r}{,}_{b}^{sis}) is the radial length of its sister at birth (μm), which are calculated stochastically22:$${L}_{r}{,}_{b}={L}_{r}{,}_{d}(0.5-{Z}_{a})$$
    (5)
    $${L}_{r}{,}_{b}^{sis}={L}_{r}{,}_{d}(0.5+{Z}_{a})$$
    (6)
    where Lr,d is the length of the mother cell when it divides (μm) and Za is Gaussian noise with mean zero and standard deviation σa (TableĀ 2;Ā āˆ’0.49 ≤Za≤ 0.49 for numerical stability).Table 2 Parameters used in the model that are taken directly from literatureFull size tableLength at division is derived as22:$${L}_{r}{,}_{d}=f{L}_{r}{,}_{b}+{chi }_{b}(2-f+Z)$$
    (7)
    where f is the mode of cell-size regulation (TableĀ 2; unitless), χb is the mean cell birth size (TableĀ 3; μm), and Z is Gaussian noise with mean zero and standard deviation σ (TableĀ 2).Table 3 Parameters used in the model that are calculated from observationsFull size tableThe first cell in each radial file is an initial, which produces phloem mother cells outwards and xylem mother cells inwards. It grows and divides as other cells in the proliferation zone, but on division one of the daughters is stochastically assigned to phloem or xylem, the other remaining as the initial. The probability of the daughter being on the phloem side is fphloem (TableĀ 3).Cell-wall growthBoth primary and secondary cell-wall growth are influenced by temperature, carbohydrate concentration, and lumen volume. A Michaelis-Menten equation is used to relate the rate of wall growth to the concentration of carbohydrates in the cytoplasm:$${{Delta }}M=frac{{{Delta }}{M}_{max}theta }{theta+{K}_{m}}$$
    (8)
    where Ī”M is the rate of cell-wall growth (mg cellāˆ’1 dayāˆ’1), Ī”Mmax is the carbohydrate-saturated rate of wall growth (mg cellāˆ’1 dayāˆ’1), Īø is the concentration of carbohydrates in the cell’s cytoplasm (mg mlāˆ’1), and Km is the effective Michaelis constant (mg mlāˆ’1; TableĀ 1).The maximum rate of cell-wall growth, Ī”Mmax, is assumed to depend linearly on lumen volume (a proxy for the amount of machinery for wall growth), and on temperature as in Eq. (1):$${{Delta }}{M}_{max}=omega {V}_{l}{e}^{frac{{E}_{aw}}{k}left(frac{1}{{T}_{0}}-frac{1}{T}right)}$$
    (9)
    where ω is the normalised rate of cell-wall mass growth (i.e. the rate at T0; TableĀ 1; mg mlāˆ’1 dayāˆ’1), Vl is the cell lumen volume (ml cellāˆ’1), and Eaw is the effective activation energy for wall building (eV; TableĀ 1). ω and Km were calibrated to an observed distribution of carbohydrates23 (see next section). Eaw was calibrated to an observed temperature dependence of maximum density31 (TableĀ 1; see ā€œObservationsā€).Lumen volume is given by:$${V}_{l}={V}_{c}-{V}_{w}$$
    (10)
    where Vc is total cell volume (ml cellāˆ’1) and Vw is total wall volume (ml cellāˆ’1). Cells are assumed cuboid and therefore Vc is given by:$${V}_{c}={L}_{a}{L}_{t}{L}_{r}/1{0}^{12}$$
    (11)
    where La is axial length (μm; Table 2) and Lt is tangential length (μm; Table 3). Vw is given by:$${V}_{w}=M/rho$$
    (12)
    where M is wall mass (mg cellāˆ’1) and ρ is wall-mass density (TableĀ 2; mg[DM] mlāˆ’1).Cells in the proliferation and enlargement-only zones only have primary cell walls. Ī”Mmax (Eq. (9)) is therefore given the following limit:$${{Delta }}{M}_{max}=min ({{Delta }}{M}_{max},rho {V}_{{w}_{p}}-M)$$
    (13)
    where ({V}_{{w}_{p}}) is the required primary wall volume:$${V}_{{w}_{p}}={V}_{c}-({L}_{a}-2{W}_{p})({L}_{t}-2{W}_{p})({L}_{r}-2{W}_{p})/1{0}^{12}$$
    (14)
    where Wp is primary cell-wall thickness (TableĀ 3; μm).Carbohydrate distributionThe distribution of carbohydrates across each radial file is calculated independently from the balance of diffusion from the phloem and the uptake into primary and secondary cell walls. The carbohydrate concentration in the phloem is prescribed at the mean value observed across the three observational dates in23, as described below in ā€œObservationsā€, and the resulting concentration in the cytoplasm of the furthest living cell from the phloem is solved numerically. The inside wall of this cell is assumed to be impermeable to carbohydrates and therefore provides the inner boundary to the solution. It is assumed that the rate of diffusion across each file is rapid relative to the rate of cell-wall building, and therefore concentrations are assumed to be in equilibrium on each day. Carbohydrate diffusion between living cells is assumed to be proportional to the concentration gradient:$${q}_{i}=({theta }_{i-1}-{theta }_{i})/eta$$
    (15)
    where qi is the rate of carbohydrate diffusion from cell iā€‰āˆ’ā€‰1 to cell i (mg dayāˆ’1) and Ī· is the resistance to flow between cells (calibrated to the observed distribution of carbohydrates23, see next section; TableĀ 1; day mlāˆ’1).As it is assumed that carbohydrates cannot diffuse between radial files, at equilibrium the flux into a given cell must equal the rate of wall growth in that cell plus the wall growth in all cells further along the radial file away from the phloem. From this it can be shown that the equilibrium carbohydrate concentration in the furthest living cell from the phloem in each radial file is given by:$${theta }_{n}={theta }_{p}-eta mathop{sum }limits_{i=1}^{n}mathop{sum }limits_{j=i}^{n}{{Delta }}{M}_{j}$$
    (16)
    where Īøp is the concentration of carbohydrates in the phloem (TableĀ 3; mg mlāˆ’1) and n is the number of living cells in the file (phloem mother cells are ignored for simplicity). The rate of wall growth in each cell depends on the concentration of carbohydrates (Eq. (8)), and therefore Īøn must be found that results in an equilibrium flow across the radial file. This is done using Brent’s method41 as implemented in the ā€œZBRENTā€ function42.Zone widthsThe widths of the proliferation, enlargement-only, and secondary wall thickening zones vary through the year, and are fitted to observations on three dates23 (see Supplementary Fig.Ā 2 and ā€œObservationsā€). Linear responses to daylength were found, which are therefore used to determine widths for the observational period and later days:$${z}_{k}={a}_{k}+{b}_{k}{{{{{{{rm{dl}}}}}}}};{{mathrm{DOY}}}ge 185$$
    (17)
    where zk is the distance of the inner edge of the zone from the inner edge of the phloem (μm), k is proliferation (p), secondary wall thickening (t), or enlargement-only (e), ak and bk are constants (TableĀ 3), dl is daylength (s), and DOY is day-of-year. The proliferation zone width on earlier days when non-dormant was fixed at its DOY 185 width (assuming this to be its maximum, and that it would reach its maximum very soon after cambial dormancy is broken in the spring). During dormancy, the proliferation zone width is fixed at its value on DOY 231 (the first day of dormancy23). The enlargement-only zone width prior to DOY 185, the first observational day, is assumed to be a linear extension of the rate of change after DOY 185. The wall-thickening zone width plays little role prior to DOY 185 at the focal site, and so was set to its Eq. (17) value each earlier day. On all days the condition zt≄ze≄zp is imposed, and zone widths cannot exceed their values at 24 h daylength (necessary for sites north of the Arctic circle). Supplementary FigureĀ 2 shows the resulting progression of zone widths through the year, together with the observed values.DormancyProliferation was observed to be finished by DOY 23123, and so the proliferation and enlargement-only zones are assumed to enter dormancy then. Release from dormancy in the spring is calculated using an empirical thermal time/chilling model33. It was necessary to adjust the asymptote and temperature threshold of the published model because the heat sum on the day of release calculated from observations in Sweden (see ā€œObservationsā€) was much lower than reported for Sitka spruce buds in Britain in the original work:$${{{{{{{{rm{dd}}}}}}}}}_{req}=15+4401.8{e}^{-0.042{{{{{{{rm{cd}}}}}}}}}$$
    (18)
    where ddreq is the required sum of degree-days (°C) from DOY 32 for dormancy release and cd is the chill-day sum from DOY 306. The degree-day sum is the sum of daily mean temperatures above 0 °C, and the chill-day sum is the number of days with mean temperatures below 0 °C. Dormancy can only be released during the first half of the year.Simulation protocolsEach simulation consisted of an ensemble of 100 independent radial files. Each radial file was initialised by producing a file of 100 cells with radial lengths χb(1+Za), allowing these to divide once, ignoring the second daughter from each division, and then limiting the remaining daughters to only those falling inside the proliferation zone on DOY 1. Values for ϵ (the relative growth of daughter cells) and Lr,d (the radial length at division) were derived for each cell. The main simulations were conducted at the observation site in boreal Sweden (64.35°N, 19.77°E) over 1951–1995 to capture the growth period of the observed trees23. Results are mostly presented for 1995 when the observations were made. Simulations for calibration of the effective activation energies (i.e. Ea and Eaw) were performed at 68.26°N, 19.63°E in Arctic Sweden over 1901–200431. Daily mean temperatures for both sites were derived from the appropriate gridbox in a 6 h 1/2 degree global-gridded dataset43.ObservationsObservations of cellular characteristics and carbohydrate concentrations23 were used to derive a number of model parameters, and to test model output (model calibration and testing were performed using different outputs). According to the published study we used, samples were cut from three 44 yr old Scots pine trees growing in Sweden (64°21’ N; 19°46’ E) at different times during the growing season. 30 μm thick longitudinal tangential sections of the cambial region were made, and the radial distributions of soluble carbohydrates measured using microanalytical techniques23. Cell sizes, wall thicknesses, and positions in their Fig.Ā 123, an image of transverse sections on three sampling dates, were digitised using ā€œWebPlotDigitizerā€44. These, together with the numbers of cells in each zone and their sizes given in the text of that paper, were used to estimate zone widths, which were then regressed against daylength to give the parameters for Eq. (17) (TableĀ 3), mean cell size in the proliferation zone on the first sampling date (used to derive χb; TableĀ 3), mean cell tangential length (TableĀ 3), and final ring width (used to calibrate μ0; TableĀ 1). The thickness of the primary cell wall (TableĀ 3) was derived by plotting cell-wall thickness against time and taking the low asymptote.The distributions of carbohydrates along the radial files on the last sampling date for ā€œTree 1ā€ and ā€œTree 3ā€ (results for ā€œTree 2ā€ were not shown for this date) shown in Fig.Ā 2 of the observational paper23 were calculated. The masses for each of sucrose, glucose, and fructose in each 30 μm section were digitised using the same method as for cell properties and then summed and converted to concentrations, with the results shown in Supplementary FigureĀ 5. Mean observed carbohydrate concentrations and cell masses at four points were used to calibrate values for the Ī·, ω, and Km parameters in TableĀ 1. Calibration was performed by minimising the summed relative error across the observations.The calibration target for the effective activation energy for wall deposition (i.e. Eaw) was the observed relationship between maximum density and mean June-July-August temperature over 1901-2004 in northern Sweden31 (Supplementary Fig.Ā 3), and for the effective activation energy for cell enlargement the relationship between ring width and temperature (i.e. Ea) target was the same study (Supplementary Fig.Ā 4). These observations were made on living and subfossil Scots pine sample material from the Lake TornestrƤsk area (68.21–68.31°N; 19.45–19.80°E; 350–450 m a.s.l.) using X-ray densitometry for maximum density, and standardised to remove non-climatic information31.Reporting summaryFurther information on research design is available in theĀ Nature Portfolio Reporting Summary linked to this article. More

  • in

    Nations forge historic deal to save species: what’s in it and what’s missing

    National negotiators inked a deal to protect nature in the early hours of 19 December in Montreal.Credit: Julian Haber/UN Biodiversity (CC BY 2.0)

    Despite earlier signals of possible failure, countries around the world have cemented a deal to safeguard nature — and for the first time, the agreement sets quantitative biodiversity targets akin to the one that nations set seven years ago to limit global warming to 1.5–2 ĀŗC above pre-industrial levels.In the early hours of 19 December, more than 190 countries eked out the deal, known as the Kunming-Montreal Global Biodiversity Framework, during the COP15 international biodiversity summit in Montreal, Canada. A key target it sets is for nations to protect and restore 30% of the world’s land and seas globally by 2030, while also respecting the rights of Indigenous peoples who depend on and steward much of Earth’s remaining biodiversity. Another target is for nations to reduce the extinction rate by 10-fold for all species by 2050.
    10 startling images of nature in crisis — and the struggle to save it
    Steven Guilbeault, the Canadian environment minister, described COP15 as the most significant biodiversity conference ever held. ā€œWe have taken a great step forward in history,ā€ he said at a plenary session where the framework was adopted.At several points during the United Nations summit, which ran from 7–19 December, arguments over details threatened to derail a deal. In the final hours of negotiations, the Democratic Republic of the Congo (DRC) objected to how the framework would be funded. Nonetheless, Huang Runqiu, China’s environment minister and president of COP15, brought the gavel down on the agreement.Negotiators from several African countries, which are home to biodiversity hotspots but say they need funding to preserve those areas, thought that China’s presidency strong-armed the deal. Uganda called it ā€œfraudā€. A source who spoke to Nature from the African delegation, and who asked not to be named to maintain diplomacy, said the negotiating process was not equitable towards developing countries and that the deal will not enable significant progress towards stemming biodiversity loss. ā€œIt was a coup d’état,ā€ they say. However, a legal expert for the Convention on Biological Diversity — the treaty within which the framework now sits — told COP15 attendees that the adoption of the framework is legitimate.Concerns and disappointmentsScientists and conservation groups have welcomed the deal, emphasizing that there has never been an international agreement to protect nature on this scale. Kina Murphy, an ecologist and chief scientist at the Campaign for Nature, a conservation group, says, ā€œIt’s a historic moment for biodiversity.ā€

    Huang Runqiu, China’s environment minister and president of COP15, brought the gavel down on the biodiversity deal, despite objections from representatives of the Democratic Republic of the Congo.Credit: Julian Haber/UN Biodiversity (CC BY 2.0)

    But some concerns and disappointments remain. For one, the deal lacks a mandatory requirement for companies to track and disclose their impact on biodiversity. ā€œVoluntary action is not enough,ā€ says Eva Zabey, executive director of Business for Nature, a global coalition of 330 businesses seeking such a requirement so that firms can compete on a level playing field. Nevertheless, it sends a powerful signal to industry that it will need to reduce negative impacts over time, says Andrew Deutz, an environmental law and finance specialist at the Nature Conservancy, a conservation group in Arlington, Virginia.In addition, the deal is weak on tackling the drivers of biodiversity loss, because it does not specifically call out the most ecologically damaging industries, such as commercial fishing and agriculture, or set precise targets for them to put biodiversity conservation at the centre of their operations, researchers say.
    Can the world save a million species from extinction?
    ā€œI would have liked more ambition and precision in the targetsā€ to address those drivers, says Sandra Diaz, an ecologist at the National University of Córdoba, in Argentina.The deal is not legally binding, but countries will have to demonstrate progress towards achieving the framework’s goals through national and global reviews. Countries failed to meet the previous Aichi Biodiversity Targets, which were set in 2010 and expired in 2020; scientists have suggested that this failure occurred because of a lack of an accountability mechanism.With the reviews included, the framework ā€œis a very good start, with clear quantitative targetsā€ that will allow us to understand progress and the reasons for success and failure, says Stuart Pimm, an ecologist at Duke University in Durham, North Carolina, and head of Saving Nature, a non-profit conservation organization.A long time comingScientists have estimated that one million species are under threat because of habitat loss, mainly through converting land for agriculture. And they have warned that this biodiversity loss could threaten the health of ecosystems on which humans depend for clean water and disease prevention, and called for a new international conservation effort.
    Crucial biodiversity summit will go ahead in Canada, not China: what scientists think
    The new agreement took 4 years to resolve, in part because of delays caused by the COVID-19 pandemic (the summit was supposed to take place in Kunming, China, in 2020), but also because of arguments over how to finance conservation efforts. Nations finally agreed that by 2030, funding for biodiversity from all public and private sources must rise to at least US$200 billion per year. This includes at least $30 billion per year, contributed from wealthy to low-income nations. These figures fall short of the approximately $700 billion that researchers say is needed to fully safeguard and restore nature, but represents a tripling of existing donations.Low- and middle-income countries (LMICs), including the DRC, had called for a brand-new, independent fund for biodiversity financing. Lee White, environment minister from Gabon, told Nature that biodiversity-rich LMICs have difficulty accessing the Global Environment Facility (GEF), the current fund held by the World Bank in Washington DC, and that it is slow to distribute funds.But France and the European Union strongly objected to a new fund, arguing it would take too long to set up. The framework instead compromises by establishing a trust fund by next year under the GEF. The final agreement also calls on the GEF to reform its process to address the concerns of LMICs.Progress without drastic changeAnother sticking point during negotiations was how to fairly and equitably share the benefits of ā€˜digital sequence information’ — genetic data collected from plants, animals and other organisms. Communities in biodiversity-rich regions where genetic material is collected have little control over the commercialization of the data, and no way to recoup financial or other benefits from them. But countries came to an agreement to set up a mechanism to share profits, the details of which will be worked out by the next international biodiversity summit, COP16, in 2024.Overall, the deal marks progress toward tackling biodiversity loss, but it is not the drastic change scientists say they were hoping for. ā€œI am not so sure that it has enough teeth to curb the activities that do most of the harm,ā€ Diaz says. More

  • in

    Water motion and pH jointly impact the availability of dissolved inorganic carbon to macroalgae

    Duggins, D. O., Simenstad, C. A. & Estes, J. A. Magnification of secondary producition by kelp detritus in coastal marine ecosystems. Science 1979(245), 170–173 (1989).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Hill, R. et al. Can macroalgae contribute to blue carbon? An Australian perspective. Limnol. Oceanogr. 60, 1689–1706 (2015).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Mann, K. H. Seaweeds: Their productivity and strategy for growth. Science 1979(182), 975–981 (1973).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Steneck, R. S. et al. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).ArticleĀ 

    Google ScholarĀ 
    Giordano, M., Beardall, J. & Raven, J. A. CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 56, 99–131 (2005).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Raven, J. A. & Beardall, J. The ins and outs of CO2. J. Exp. Bot. 67, 1–13 (2016).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Raven, J. A. et al. Seaweeds in cold seas: Evolution and carbon acquisition. Ann. Bot. 90, 525–536. https://doi.org/10.1093/aob/mcf171 (2002).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Raven, J. et al. Ocean Acidification due to Increasing Atmospheric Carbon Dioxide 1–68 (The Royal Society, 2005).
    Google ScholarĀ 
    Kübler, J. E. & Dudgeon, S. R. Predicting effects of ocean acidification and warming on algae lacking carbon concentrating mechanisms. PLoS ONE 10, 1–19 (2015).ArticleĀ 

    Google ScholarĀ 
    FernĆ”ndez, P. A., Hurd, C. L. & Roleda, M. Y. Bicarbonate uptake via an anion excange protein is the main mechanism of inorganic carbon acquisition by the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) under variable pH1. J. Phycol. 50, 1–11 (2014).ArticleĀ 

    Google ScholarĀ 
    Raven, J. A. et al. Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Funct. Plant Biol. 29, 355 (2002).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Raven, J. A., Cockell, C. S. & De La Rocha, C. L. The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philos. Trans. R. Soc. B 363, 2641–2650 (2008).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Bidwell, R. G. S. S. & McLachlan, J. Carbon nutrition of seaweeds: Photosynthesis, photorespiration and respiration. J. Exp. Mar. Biol. Ecol. 86, 15–46 (1985).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Hurd, C. L. Water motion, marine macroalgal physiology and production. J. Phycol. 36, 453–472. https://doi.org/10.1046/j.1529-8817.2000.99139.x (2000).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Hurd, C. L., Stevens, C. L., Laval, B. E., Lawrence, G. A. & Harrison, P. J. Visualization of seawater flow around morphologically distinct forms of the giant kelp Macrocystis integrifolia from wave-sheltered and exposed sites. Limnol. Oceanogr. 42, 156–163. https://doi.org/10.4319/lo.1997.42.1.0156 (1997).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Smith, F. A. A. & Walker, N. A. A. Photosynthesis by aquatic plants: Effects of unstirred layers in relation to assimilation of CO2 and HCO3- to carbon isotope discrimination. N. Phytol. 86, 245–259 (1980).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Wheeler, W. N. Effect of boundary layer transport on the fixation of carbon by the giant kelp Macrocystis pyrifera. Mar. Biol. 56, 103–110 (1980).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Hurd, C. L., Lenton, A., Tilbrook, B. & Boyd, P. W. Current understanding and challenges for oceans in a higher-CO2 world. Nat. Clim. Chang. 8, 686–694 (2018).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Stocker, T. F. et al. Technical Summary. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 33–115 (2013).Hepburn, C. D. et al. Diversity of carbon use strategies in a kelp forest community: Implications for a high CO2 ocean. Glob. Chang. Biol. 17, 2488–2497 (2011).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Beer, S. & Koch, E. Photosynthesis of marine macroalgae and seagrasses in globally changing CO2 environments. Mar. Ecol. Prog. Ser. 141, 199–204 (1996).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Ihnken, S., Roberts, S. & Beardall, J. Differential responses of growth and photosynthesis in the marine diatom Chaetoceros muelleri to CO2 and light availability. Phycologia 50, 182–193 (2011).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Gerard, V. A. In situ water motion and nutrient uptake by the giant kelp Macrocystis pyrifera. Mar. Biol. 69, 51–54 (1982).ArticleĀ 

    Google ScholarĀ 
    Hepburn, C. D., Holborow, J. D., Wing, S. R., Frew, R. D. & Hurd, C. L. Exposure to waves enhances the growth rate and nitrogen status of the giant kelp Macrocystis pyrifera. Mar. Ecol. Prog. Ser. 339, 99–108 (2007).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Hurd, C. L. Shaken and stirred: The fundamental role of water motion in resource acquisition and seaweed productivity. Persp. Phycol. 4, 73–81 (2017).ADSĀ 

    Google ScholarĀ 
    Sültemeyer, D. F., Miller, A. G., Espie, G. S., Fock, H. P. & Canvin, D. T. Active CO2 transport by the green alga Chlamydomonas reinhardtii. Plant Physiol. 89, 1213–1219 (1989).ArticleĀ 

    Google ScholarĀ 
    Koch, M., Bowes, G., Ross, C. & Zhang, X. H. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Chang. Biol. 19, 103–132 (2013).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Britton, D., Cornwall, C. E., Revill, A. T., Hurd, C. L. C. L. & Johnson, C. R. Ocean acidification reverses the positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat-forming kelp Ecklonia radiata. Sci. Rep. 6, 1–10 (2016).ArticleĀ 

    Google ScholarĀ 
    Cornwall, C. E. et al. Carbon-use strategies in macroalgae: Differential responses to lowered ph and implications for ocean acidification. J. Phycol. 48, 137–144 (2012).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Kram, S. L. et al. Variable responses of temperate calcified and fleshy macroalgae to elevated pCO2 and warming. ICES J. Mar. Sci. 73, 693–703 (2016).ArticleĀ 

    Google ScholarĀ 
    Kübler, J. E., Johnston, A. M. & Raven, J. A. The effects of reduced and elevated CO2 and O2 on the seaweed Lomentaria articulata. Plant Cell Environ. 22, 1303–1310 (1999).ArticleĀ 

    Google ScholarĀ 
    van der Loos, L. M. et al. Responses of macroalgae to CO2 enrichment cannot be inferred solely from their inorganic carbon uptake strategy. Ecol. Evol. 9, 125–140 (2019).ArticleĀ 

    Google ScholarĀ 
    Cornwall, C. E. & Hurd, C. L. Variability in the benefits of ocean acidification to photosynthetic rates of macroalgae without CO2-concentrating mechanisms. Mar. Freshw. Res. 71, 275–280 (2019).ArticleĀ 

    Google ScholarĀ 
    Cornwall, C. E., Revill, A. T. & Hurd, C. L. High prevalence of diffusive uptake of CO2 by macroalgae in a temperate subtidal ecosystem. Photosynth. Res. 124, 181–190 (2015).
    ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Lovelock, C. E., Reef, R., Raven, J. A. & Pandolfi, J. M. Regional variation in Ī“13C of coral reef macroalgae. Limnol. Oceanogr. 65, 2291–2302 (2020).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Fischer, G. & Wiencke, C. Stable carbon isotope composition, depth distribution and fate of macroalgae from the Antarctic Peninsula region. Polar. Biol. 12, 341–348 (1992).ArticleĀ 

    Google ScholarĀ 
    Stephens, T. A. & Hepburn, C. D. Mass-transfer gradients across kelp beds influence Macrocystis pyrifera growth over small spatial scales. Mar. Ecol. Prog. Ser. 515, 97–109 (2014).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Kregting, L. T., Hepburn, C. D. & Savidge, G. Seasonal differences in the effects of oscillatory and uni-directional flow on the growth and nitrate-uptake rates of juvenile Laminaria digitata (Phaeophyceae). J. Phycol. 51, 1116–1126 (2015).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Parker, H. S. Influence of relative water motion on the growth, ammonium uptake and carbon and nitrogen composition of Ulva lactuca (Chlorophyta). Mar. Biol. 63, 309–318 (1981).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Bergstrom, E. et al. Inorganic carbon uptake strategies in coralline algae: Plasticity across evolutionary lineages under ocean acidification and warming. Mar. Environ. Res. 161, 105107 (2020).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Maberly, S. C., Raven, J. A. & Johnston, A. M. Discrimination between C-12 and C-13 by marine plants. Oecologia 91, 481–492 (1992).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Gattuso, J. P. et al. Package ā€˜Seacarb ’. Preprint at http://cran.r-project.org/package=seacarb (2015).Raven, J. A., Beardall, J. & Giordano, M. Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynth. Res. 121, 111–124 (2014).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Raven, J. A., Walker, D. I., Johnston, A. M., Handley, L. L. & Kübler, J. E. Implications of 13C natural abundance measurements for photosynthetic performance by marine macrophytes in their natural environment. Mar. Ecol. Prog. Ser. 123, 193–205 (1995).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Raven, J. A. Inorganic carbon acquisition by marine autotrophs. Adv. Bot. Res. 27, 85–209 (1997).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    FernĆ”ndez, P. A., Roleda, M. Y. & Hurd, C. L. Effects of ocean acidification on the photosynthetic performance, carbonic anhydrase activity and growth of the giant kelp Macrocystis pyrifera. Photosynth. Res. 124, 293–304 (2015).ArticleĀ 

    Google ScholarĀ 
    Bailly, J. & Coleman, J. R. Effect of CO(2) concentration on protein biosynthesis and carbonic anhydrase expression in Chlamydomonas reinhardtii. Plant Physiol. 87, 833–840 (1988).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Dionisio-Sese, M. L., Fukuzawa, H. & Miyachi, S. Light-induced carbonic anhydrase expression in Chlamydomonas reinhardtii. Plant Physiol. 94, 1103–1110 (1990).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Pollock, S. V., Colombo, S. L., Prout, D. L., Godfrey, A. C. & Moroney, J. V. Rubisco activase is required for optimal photosynthesis in the green alga Chlamydomonas reinhardtii in a low-CO2 atmosphere. Plant Physiol. 133, 1854–1861 (2003).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Carlberg, S., Axelsson, L., Larsson, C., Ryberg, H. & Uusitalo, J. Inducible CO2 concentrating mechanisms in green seaweeds I. Taxonomical and physiological aspects. In Current Research in Photosynthesis (ed. Baltscheffsky, M.) (Springer, 1990). https://doi.org/10.1007/978-94-009-0511-5_749.ChapterĀ 

    Google ScholarĀ 
    Wheeler, W. N. Effect of boundary-layer transport on the fixation of carbon by the giant-kelp Macrocystis pyrifera. Mar. Biol. 56, 103–110 (1980).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Johnston, A. M. & Raven, J. A. Effects of culture in high CO2 on the photosynthetic physiology of Fucus serratus. Br. J. Phycol. 25, 75–82 (1990).ArticleĀ 

    Google ScholarĀ 
    Connell, S. D., Kroeker, K. J., Fabricius, K. E., Kline, D. I. & Russell, B. D. The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Philos. Trans. R. Soc. Lond. 368, 20120442 (2013).ArticleĀ 

    Google ScholarĀ 
    Porter, E. T., Sanford, L. P. & Suttles, S. E. Gypsum dissolution is not a universal integrator of water motion. Limnol. Oceanogr. 45, 145–158 (2000).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Gerard, V. A. & Mann, K. H. Growth and production of Laminaria longicruris (Phaeophyta) populations exposed to different intensities of water movement. J. Phycol. 15, 33–41 (1979).ArticleĀ 

    Google ScholarĀ 
    Bivand, R., Keitt, T. & Rowlingson, B. Package ā€˜rgdal’. R Package https://doi.org/10.1353/lib.0.0050 (2016).ArticleĀ 

    Google ScholarĀ 
    LINZ. LINZ Data Service. https://data.linz.govt.nz/layer/50258-nz-coastlines-topo-150k/history/ Accessed July 2021 (2021).Kirk, J. T. Characteristics of the light field in highly turbid waters: A Monte Carlo study. Limnol. Oceanogr. 39, 702–706 (1994).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Strickland, J. D. H. & Parsons, T. R. A Practical Handbook of Seawater Analysis (Fisheries Research Board of Canada, 1968).
    Google ScholarĀ 
    Kohler, K. E. & Gill, S. M. Coral Point Count with Excel extensions (CPCe): A visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32, 1259–1269 (2006).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Axelsson, L., Mercado, J. & Figueroa, F. Utilization of HCO3āˆ’ at high ph by the brown macroalga laminaria saccharina. Eur. J. Phycol. 35, 53–59 (2000).ArticleĀ 

    Google ScholarĀ 
    R Core Team. R: A language and environment for statistical computing. Preprint at (2017).Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).ArticleĀ 

    Google ScholarĀ 
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).ArticleĀ 
    MathSciNetĀ 
    MATHĀ 

    Google ScholarĀ  More