More stories

  • in

    Multistressor global change drivers reduce hatch and viability of Lingcod embryos, a benthic egg layer in the California Current System

    IPCC Climate Change The physical science basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge University Press, 2021).
    Google Scholar 
    Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).Article 
    ADS 

    Google Scholar 
    Song, H. et al. Thresholds of temperature change for mass extinctions. Nat. Commun. 12, 4694 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Cheung, W. W. L. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change: Climate change impacts on catch potential. Glob. Change Biol. 16, 24–35 (2010).Article 
    ADS 

    Google Scholar 
    Harley, C. D. G. et al. The impacts of climate change in coastal marine systems: Climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).Article 
    ADS 

    Google Scholar 
    Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Hodgson, E. E., Essington, T. E. & Kaplan, I. C. Extending vulnerability assessment to include life stages considerations. PLoS ONE 11, e0158917 (2016).Article 

    Google Scholar 
    Peck, M. A., Reglero, P., Takahashi, M. & Catalán, I. A. Life cycle ecophysiology of small pelagic fish and climate-driven changes in populations. Prog. Oceanogr. 116, 220–245 (2013).Article 
    ADS 

    Google Scholar 
    Tsoukali, S., Visser, A. W. & MacKenzie, B. R. Functional responses of North Atlantic fish eggs to increasing temperature. Mar. Ecol. Prog. Ser. 555, 151–165 (2016).Article 
    ADS 

    Google Scholar 
    Pörtner, H. O. & Peck, M. A. Climate change effects on fishes and fisheries: Towards a cause-and-effect understanding. J. Fish Biol. 77, 1745–1779 (2010).Article 

    Google Scholar 
    Pankhurst, N. W. & Munday, P. L. Effects of climate change on fish reproduction and early life history stages. Mar. Freshw. Res. 62, 1015–1026 (2011).Article 
    CAS 

    Google Scholar 
    Brauner, C. J. Acid-base balance. In Fish Larval physiology (eds Finn, R. N. & Kapoor, B. G.) 185–198 (Science Publishers, 2008).
    Google Scholar 
    Dahlke, F. T. et al. Effects of ocean acidification increase embryonic sensitivity to thermal extremes in Atlantic cod, Gadus morhua. Glob. Chang. Biol. 23, 1499–1510 (2017).Article 
    ADS 

    Google Scholar 
    Shelbourne, J. E. Significance of the subdermal space in pelagic fish embryos and larvae. Nature 176, 743–744 (1955).Article 
    ADS 

    Google Scholar 
    Sundby, S. & Kristiansen, T. The principles of buoyancy in marine fish eggs and their vertical distributions across the world oceans. PLoS ONE 10, e0138821 (2015).Article 

    Google Scholar 
    Shei, M., Mies, M. & Olivotto, I. Other demersal spawners and mouthbrooders. Marine ornamental species aquaculture, 223–250 (2017).Beaudreau, A. H. The predatory role of lingcod (Ophiodon elongatus) in the San Juan Archipelago, Washington. (University of Washington, 2009).Love, M. Certainly More Than You Want to Know About the Fishes of the Pacific Coast: A Postmodern Experience. (Really Big Press, 2011).Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).Article 
    ADS 
    CAS 

    Google Scholar 
    Reum, J. C. et al. Interpretation and design of ocean acidification experiments in upwelling systems in the context of carbonate chemistry co-variation with temperature and oxygen. ICES J. Mar. Sci. 73, 582–595 (2016).Article 

    Google Scholar 
    Cheresh, J. & Fiechter, J. Physical and biogeochemical drivers of alongshore pH and oxygen variability in the California Current System. Geophys. Res. Lett. 47, e2020089553 (2020).Article 
    ADS 

    Google Scholar 
    Gruber, N. et al. Rapid progression of ocean acidification in the California Current System. Science 337, 220–223 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Hauri, C. et al. Spatiotemporal variability and long-term trends of ocean acidification in the California Current System. Biogeosciences 10, 193–216 (2013).Article 
    ADS 

    Google Scholar 
    Pepin, P. Effect of temperature and size on development, mortality, and survival rates of the pelagic early life history stages of marine fish. Can. J. Fish. Aquat. Sci. 48, 503–518 (1991).Article 

    Google Scholar 
    Lauel, B. J. & Blood, D. M. The Effects of Temperature on Hatching and Survival of Northern Rock Sole Larvae (Lepidopsetta polyxystra) (Springer, 2011).
    Google Scholar 
    Guevara-Fletcher, C., Alvarez, P., Sanchez, J. & Iglesias, J. Effect of temperature on the development and mortality of European hake (Merluccius merluccius L.) eggs from southern stock under laboratory conditions. J. Exp. Mar. Biol. Ecol. 476, 50–57 (2016).Article 

    Google Scholar 
    Collins, L. A. & Nelson, S. G. Effects of temperature on oxygen consumption, growth, and development of embryos and yolk-sac larvae of Siganus randalli (Pisces: Siganidae). Mar. Biol. 117, 195–204 (1993).Article 

    Google Scholar 
    Cook, M. A., Guthrie, K. M., Rust, M. B. & Plesha, P. D. Effects of salinity and temperature during incubation on hatching and development of lingcod Ophiodon elongatus Girard, embryos. Aquac. Res. 36, 1298–1303 (2005).Article 

    Google Scholar 
    Pörtner, H. Integrating climate-related stressor effects on marine organisms: Unifying principles linking molecule to ecosystem-level changes. Mar. Ecol. Prog. Ser. 470, 273–290 (2012).Article 
    ADS 

    Google Scholar 
    Laurel, B. J., Copeman, L. A., Spencer, M. & Iseri, P. Comparative effects of temperature on rates of development and survival of eggs and yolk-sac larvae of Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogrammus). ICES J. Mar. Sci. 75, 2403–2412 (2018).Article 

    Google Scholar 
    Jordaan, A., Hayhurst, S. E. & Kling, L. J. The influence of temperature on the stage at hatch of laboratory reared Gadus morhua and implications for comparisons of length and morphology. J. Fish Biol. 68, 7–24 (2006).Article 

    Google Scholar 
    Peña, R., Dumas, S., Zavala-Leal, I. & Contreras-Olguín, M. Effect of incubation temperature on the embryonic development and yolk-sac larvae of the Pacific red snapper Lutjanus peru (Nichols & Murphy, 1922). Aquac Res 45, 519–527 (2014).Article 

    Google Scholar 
    Breitburg, D. Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries. Estuaries 25, 767–781 (2002).Article 

    Google Scholar 
    Hassell, K. L., Coutin, P. C. & Nugegoda, D. Hypoxia impairs embryo development and survival in black bream (Acanthopagrus butcheri). Mar. Pollut. Bull. 57, 302–306 (2008).Article 
    CAS 

    Google Scholar 
    Giorgi, A. E. The Environmental Biology of the Embryos, Egg Masses and Nesting Sites of the Lingcod, Ophiodon elongatus. (University of Washington, 1981).Oseid, D. M. & Smith, L. L. Survival and hatching of walleye eggs at various dissolved oxygen levels. Progress. Fish-Cult. 33, 81–85 (1971).Article 
    CAS 

    Google Scholar 
    Shumway, D. L., Warren, C. E. & Doudoroff, P. Influence of oxygen concentration and water movement on the growth of steelhead trout and coho salmon embryos. Trans. Am. Fish. Soc. 93, 342–356 (1964).Article 

    Google Scholar 
    Baumann, H., Talmage, S. C. & Gobler, C. J. Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nat. Clim Change 2, 38–41 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Faria, A. M. et al. Effects of high pCO2 on early life development of pelagic spawning marine fish. Mar. Freshw. Res. 68, 2106–2114 (2017).Article 
    CAS 

    Google Scholar 
    Frommel, A. Y. et al. Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nat. Clim. Change 2, 42–46 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Munday, P. L. et al. Effects of elevated CO2 on early life history development of the yellowtail kingfish, Seriola lalandi, a large pelagic fish. ICES J. Mar. Sci. 73, 641–649 (2016).Article 

    Google Scholar 
    Hurst, T. P., Fernandez, E. R. & Mathis, J. T. Effects of ocean acidification on hatch size and larval growth of walleye pollock (Theragra chalcogramma). ICES J. Mar. Sci. 70, 812–822 (2013).Article 

    Google Scholar 
    Wang, X., Song, L., Chen, Y., Ran, H. & Song, J. Impact of ocean acidification on the early development and escape behavior of marine medaka (Oryzias melastigma). Mar. Environ. Res. 131, 10–18 (2017).Article 

    Google Scholar 
    Franke, A. & Clemmesen, C. Effect of ocean acidification on early life stages of Atlantic herring (Clupea harengus L.). Biogeosciences 8, 3697–3707 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Forsgren, E., Dupont, S., Jutfelt, F. & Amundsen, T. Elevated CO 2 affects embryonic development and larval phototaxis in a temperate marine fish. Ecol. Evol. 3, 3637–3646 (2013).Article 

    Google Scholar 
    Bromhead, D. et al. The potential impact of ocean acidification upon eggs and larvae of yellowfin tuna (Thunnus albacares). Deep Sea Res. II 113, 268–279 (2015).Article 
    CAS 

    Google Scholar 
    Garrido, S. et al. Born small, die young: Intrinsic, size-selective mortality in marine larval fish. Sci. Rep. 5, 17065 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Sampaio, E. et al. Impacts of hypoxic events surpass those of future ocean warming and acidification. Nat. Ecol. Evol. 5, 311–321 (2021).Article 

    Google Scholar 
    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).Article 

    Google Scholar 
    Pörtner, H. O. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: From Earth history to global change. J. Geophys. Res. 110, 0910 (2005).Article 

    Google Scholar 
    Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5, 1538–1547 (2015).Article 

    Google Scholar 
    Boyd, P. W. et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change: A review. Glob. Change Biol 24, 2239–2261 (2018).Article 
    ADS 

    Google Scholar 
    Giorgi, A. E. & Congleton, J. L. Effects of current velocity on development and survival of lingcod, Ophiodon elongatus, embryos. Environ. Biol. Fish 10, 15–27 (1984).Article 

    Google Scholar 
    Liu, G., Zhu, S., Liu, D. & Ye, Z. Effect of the C/N ratio on inorganic nitrogen control and the growth and physiological parameters of tilapia s fingerlings, Oreochromis niloticu reared in biofloc systems. Aquac. Res. 49, 2429–2439 (2018).Article 
    CAS 

    Google Scholar 
    Houde, E. D. Fish early life dynamics and recruitment variability. Am. Fish. Soc. Symp. 2, 17–29 (1987).ADS 

    Google Scholar 
    Miller, T. J., Crowder, L. B., Rice, J. A. & Marschall, E. A. Larval size and recruitment mechanisms in fishes: Toward a conceptual framework. Can. J. Fish. Aquat. Sci. 45, 1657–1670 (1988).Article 

    Google Scholar 
    Doi, H., Akamatsu, F. & González, A. L. Starvation effects on nitrogen and carbon stable isotopes of animals: An insight from meta-analysis of fasting experiments. R. Soc. open sci. 4, 170633 (2017).Article 
    ADS 

    Google Scholar 
    Pimentel, M. S. et al. Defective skeletogenesis and oversized otoliths in fish early stages in a changing ocean. J. Exp. Biol. 1, 092635. https://doi.org/10.1242/jeb.092635 (2014).Article 

    Google Scholar 
    Politis, S. N., Dahlke, F. T., Butts, I. A., Peck, M. A. & Trippel, E. A. Temperature, paternity and asynchronous hatching influence early developmental characteristics of larval Atlantic cod, Gadus morhua. J. Exp. Mar. Biol. Ecol. 459, 70–79 (2014).Article 

    Google Scholar 
    Appelbaum, S. et al. Studies on rearing of lingcod Ophiodon elongatus. Aquaculture 135, 219–227 (1995).Article 

    Google Scholar 
    Hempel, G. Early life history of marine fish: The egg stage. Washington Sea Grant. (University of Washington Press, 1979)Gadomski, D. M. & Caddell, S. M. Effects of temperature on the development and survival of eggs of four coastal California fishes. Fish. Bull. 94, 41–48 (1996).
    Google Scholar 
    Parker, L. M. et al. Adult exposure influences offspring response to ocean acidification in oysters. Glob. Change Biol. 18, 82–92 (2012).Article 
    ADS 

    Google Scholar 
    Rombough, P. The effects of temperature on embryonic and larval development. In Global Warming: Implications for Freshwater and Marine Fish (Society for Experimental Biology Seminar Series) (eds Wood, C. & McDonald, D.) 177–224 (Cambridge University Press, 1997).Chapter 

    Google Scholar 
    Bownds, C., Wilson, R. & Marshall, D. J. Why do colder mothers produce larger eggs? An optimality approach. J. Exp. Biol. 213, 3796–3801 (2010).Article 

    Google Scholar 
    Longo, G. C. et al. Strong population differentiation in lingcod ( Ophiodon elongatus ) is driven by a small portion of the genome. Evol. Appl. 13, 2536–2554 (2020).Article 
    CAS 

    Google Scholar 
    Silberberg, K. R., Laidig, T. E., Adams, P. B. & Albin, D. Analysis of maturity in lingcod, Ophiodon elongatus. California Fish Game 87, 139–152 (2001).
    Google Scholar 
    Palumbi, S. R. Why mothers matter. Nature 430, 621–622 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Berkeley, S. A., Chapman, C. & Sogard, S. M. Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops. Ecology 85, 1258–1264 (2004).Article 

    Google Scholar 
    Miller, D. J., & Geibel, J. J. Summary of Blue Rockfish and Lingcod Life Histories, a Reef Ecology Study, and Giant Kelp, Macrocystis Pyrifera, Experiments in Monterey Bay, California. (State of California, Resources Agency, Department of Fish and Game, 1973).Low, C. J. & Beamish, R. J. A study of the nesting behavior of lingcod (Ophiodon elongatus) in the strait of Georgia, British Columbia. Can. Fish. Mar. Serv. Tech. Rep. 843, 1–10 (1978).
    Google Scholar 
    King, J. R. & Withler, R. E. Male nest site fidelity and female serial polyandry in lingcod (Ophiodon elongatus, Hexagrammidae): Lingcod nest site fidelity. Mol. Ecol. 14, 653–660 (2005).Article 

    Google Scholar 
    Withler, R. E. et al. Polygamous mating and high levels of genetic variation in lingcod, Ophiodon elongatus of the Strait of Georgia, British Columbia. In Genetics of Subpolar Fish and Invertebrates 345–357 (Springer, 2004).
    Google Scholar 
    Perkins, M. J. et al. Application of nitrogen and carbon stable isotopes (δ15N and δ13C) to quantify food chain length and trophic structure. PLoS ONE 9, e93281 (2014).Article 
    ADS 

    Google Scholar 
    Earth Systems Research Laboratory (ESRL). NOAA’s Ocean Climate Change Web Portal. http://www.esrl.noaa.gov/psd/ipcc/ocn/ (2019).Feely, R., Doney, S. & Cooley, S. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22, 36–47 (2009).Article 

    Google Scholar 
    Frieder, C. A., Nam, S. H., Martz, T. R. & Levin, L. A. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences 9, 3917–3930 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Olito, C., White, C. R., Marshall, D. J. & Barneche, D. R. Estimating monotonic rates from biological data using local linear regression. J. Exp. Biol. 1, 148775. https://doi.org/10.1242/jeb.148775 (2017).Article 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9(2), 378–400 (2017).Article 

    Google Scholar  More

  • in

    Soil fertility analysis in the Republic of Bashkortostan

    Soil studies were carried out on 115,896.2 hectares of agricultural lands in fifteen villages of the municipal district obtained by subtracting from the available area of the village industrial lands, populated areas, forest plots occupied by water, etc.As a result of the land reform and redistribution of land for various purposes for the period from 1972 to 2021, the area of agricultural land decreased by 12.7% compared to the data of the previous survey.In the research area, the largest territories are occupied by black soils, which amount to 52,826.24 ha, including bleached soils—42,605.9 ha, alkaline – 6983.8 ha and shortened – 3236.54 ha. Slightly inferior to the black soils are dark gray forest soils with an area of 37,043.63 hectares, alluvial—12,287.4 hectares, gray forest—6371.96 hectares and forest soils of a rooted profile – 5058.94 hectares. The share of sod-carbonate soils accounts for 7792.7 hectares of land, which is 6.2%. The gradation did not include the soils of the ravine-beam complex, sand and gravel masses, existing ravines and disturbed lands, and quarries that occupy 5,452.4 hectares of territory (4.3%).One of the important indicators of soils, especially used in agricultural production, is the humus state. Thus, over 49 years there has been a slight decrease in the area under obese (high-humus) soils in the hectare ratio, due to a general decrease in the area of farmland, but in the context of the security group, they have increased by 1.3% (Table 1). The remaining levels of security have remained almost at the same level. The increase in the amount of fat chernozems was facilitated by the withdrawal of arable land from circulation and their transfer to perennial plantations. Earlier researches conducted on experimental fields of the Bashkir State Agrarian University identified and revealed changes in the quantitative and qualitative composition of organic matter from 15 to 30% when introducing a land plot for arable land26. To preserve and improve soil fertility, it is recommended to carry out a complex of agrotechnical, agrochemical and reclamation measures and the use of various meliorants, organic and mineral fertilizers27.Studies of the capacity of the humus horizon have shown that low–sized soils have become the most widespread—69,660.2 hectares or 60.1% of the total area of agricultural land (Fig. 2). A smaller area is occupied by medium-sized soils – 38,128.7 hectares (32.9%), not included in the gradation – 8107.3 hectares or 7.0%, respectively. It should be noted that the specific gravity of the soil of the ravine-beam complex, sand and gravel masses, active ravines and disturbed lands, and quarries increased by 2.5%.Figure 2Distribution of soils by humus horizon thickness by region.Full size imageThe granulometric composition of the soil is also of great agronomic importance28. Physical, physico-chemical, physico-mechanical properties and water, air, and nutrient regimes of soils depend on it29,30. In the Salavatskiy district there were practically no changes in soil areas in terms of granulometric composition, mainly clay soil varieties predominate. According to the mechanical composition of the soil there were distributed as follows: light clay – 71,807.38 ha or 62% (in 1972, 86,375 ha or 65.1%) of the total area of agricultural land and heavy loamy – 34,745.24 ha (30%) (in 1972—39,614 ha or 29.8%). The share of medium-loamy varieties accounts for 0.8% (in 1972—0.84%) (Fig. 3).Figure 3Distribution of Salavatskiy district soil areas by granulometric composition, %.Full size imageThe gradation did not include 8362.27 hectares of land. Heavy loamy, medium clay, sandy loam and sandy soils have not been identified.All arable soils of the analyzed territory are slightly susceptible to erosion processes, the processes of water and, to a lesser extent, wind erosion have developed. 67,445.21 hectares of land, or 58.2% (in 1972, 77,702 hectares) of the total area of agricultural lands are occupied under lightly washed soils, the share of medium and heavily washed accounts for 3.9% and 0.1%, respectively. Unwashed soils are distributed on 36,985.46 hectares (31.9%) (Table 2).Table 2 Soil areas by category of erosion feature (Salavatskiy district of the Republic of Bashkortostan).Full size tableAccording to the results of the field research and laboratory agrochemical analyses of soils, land refinements related to agricultural land were carried out. The basis for correcting and digitizing the contours of soil varieties were in the maps made in 1972 (Fig. 4).Figure 4Soil map within the boundaries of the Salavatskiy district of the Republic of Bashkortostan, 1972.Full size imageDigitization included scanning the topographic basis, then assigning coordinates to a raster image, decrypting and digitizing orthophotos (Fig. 5).Figure 5Orthophotoplan within the boundaries of the Salavatskiy district of the Republic of Bashkortostan, 2007.Full size imageAfter the carried-out activities, a soil map was obtained in the digital format of the Mapinfo program, after which it was converted into a raster basis with reference to the local coordinate system MSK 02 zone 1. The digitization of the 1972 soil map was carried out manually by outlining the contours of the topographic base and the scanned map.During digitization, information partially lost due to its wear and distortion during scanning was restored. A necessary condition is the use of the originals of the soil maps of the previous survey (1972).As a planned basis on which the created layers can be opened and information on soils can be obtained, a raster basis was ordinated into a local coordinate system (Fig. 6).Figure 6Completed soil map within the boundaries of the Salavat district of the Republic of Belarus, 2021.Full size imageThe result of the conducted research is the developed electronic digital soil map of the municipal district of Salavatskiy district which unites 15 rural settlements. The electronic soil map is presented in the form of a complex of electronic layers with the names of the type and subtype of soils, soil variety, mechanical or granulometric composition, soil-forming and underlying rocks. It also includes indicators of organic carbon, humus, mobile phosphorus, exchangeable potassium, soil acidity by pH value and the capacity of the humus-accumulative horizon. More

  • in

    Quantification of biological nitrogen fixation by Mo-independent complementary nitrogenases in environmental samples with low nitrogen fixation activity

    Direct injection method for ethylene and acetylene δ13C analyses by GC-C-IRMSFollowing the direct injection approach of classical ISARA12 with a few modifications, ARA samples with high ethylene yield ( > 500 ppmv) in 10% v/v acetylene were manually injected into a Thermo Scientific Trace GC Ultra-Isolink with an Agilent HP-PLOT/Q  capillary GC column (30 m, i.d. = 0.32 mm, f.t. = 20 μm) and a combustion reactor connected to a Thermo Scientific Delta V Plus isotope ratio mass spectrometer (GC-C-IRMS; Fig. 1a). Modifications include the replacement of silver ferrules in the GC oven with Valcon polymide (graphite reinforced polymer) ferrules to limit memory effects from acetylene. The combustion reactor was oxidized with pure oxygen for 1 h before each run and brief (15 min) seed oxidations were performed between measurement batches (i.e., required every ~ 6–8 ethylene injections, ~ 4–6 acetylene injections) to regenerate reactor oxidation capacity and minimize drift of δ13C values. See Supplementary Table S1a online for additional instrument settings.Ethylene Pre-Concentration (EPCon) methodARA samples with  More

  • in

    Global predictions for the risk of establishment of Pierce’s disease of grapevines

    Thermal requirements to develop PDWe examined the response of a wide spectrum of European grapevine varieties to XfPD infection in three independent experiments conducted in 2018, 2019, and 2020. Overall, 86.1% (n = 764) of 886 inoculated plants, comprising 36 varieties and 57 unique scion/rootstock combinations, developed PD symptoms 16 weeks after inoculation. European V. vinifera varieties exhibited significant differences in their susceptibility to XfPD (Supplementary Table S1). All varieties, however, showed PD symptoms to some extent, confirming previous field observations of general susceptibility to XfPD9,12,37. We also found significant differences in virulence (χ2 = 68.73, df = 1, P = 2.2 × 10−16) between two XfPD strains isolated from grapevines in Majorca across grapevine varieties (Supplementary Fig. S1). Full details on the results of the inoculation tests are available in “Methods”, Supplementary Note 1, Supplementary Table S1 and Supplementary Data 1.Growing degree days (GDD) have traditionally been used to describe and predict phenological events of plants and insect pests, but rarely in plant diseases58. We took advantage of data collated in the inoculation trials together with temperature to relate symptom development to the accumulated heat units at weeks eight, 10, 12, 14, and 16 after inoculation (Supplementary Data 1). Rather than counting GDDs linearly above a threshold temperature, we consider Xf ’s specific growth rate in vitro within its cardinal temperatures. The empirical growth rates come from the seminal work by Feil & Purcell38 shown in the inset of Fig. 1a. This Arrhenius plot was transformed, as explained in Supplementary Note 2A, to obtain a a piece-wise function f(T) Eq. (1). Our model and risk maps are based on f(T) (red line in Fig. 1a) because it provides the best fit to the experimental data when compared with the commonly used Beta function (blue line) for representing the thermal response in biological processes59,60. This Modified Growing Degree Day (MGDD) profile Eq. (1) enables to measure the thermal integral from hourly average temperatures, improving the prediction scale of the biological process61. MGDD also provides an excellent metric to link XfPD growth in culture with PD development as, once the pathogen is injected into the healthy vine, symptoms progression mainly depends upon the bacterial load (i.e., multiplication) and the movement through the xylem vessel network, which are fundamentally temperature-dependent processes38,62. Moreover, MGDD can be mathematically related to the exponential or logistic growth of the pathogen within the plant (Supplementary Note 2B).Fig. 1: Climatic and transmission layers composing the epidemiological model.a MGDD profile fitted to the in vitro data of Xf growth rate in Feil & Purcell 200138. The original Arrhenius plot in Kelvin degrees (inset) was converted to Celsius, as explained in (Supplementary Note 2A), to obtain the fit shown in the main plot red line; the blue line represents the fit with a Beta function. b Correlation between CDD and the average ({T}_{min }) of the coldest month between 1981 and 2019. Plotted black dots (worldwide) and yellow dots (main wine-producing zones) depict climatic data from 6,487,200 cells at 0.1∘ × 0.1∘ resolution, spread globally and retrieved from ERA5-Land dataset. The red solid line depicts the fitted exponential function for worldwide data and the blue solid line for main vineyard zones. c Nonlinear relationship between MGDD (red line) and CDD (blue line) and the likelihood of developing chronic infections. Black dots depict the cumulative proportion of grapevine plants in the population of 36 inoculated varieties showing five or more symptomatic leaves at each of the 15 MGDD levels (see Supplementary Information). Vertical bars are the 95% CI. d Combined ranges of MGDD and CDD on the likelihood of developing chronic infection. e Transmission layer in the dynamic equation (1) of the SIR compartmental model. f Relationship between the exponential growth of the number of infected plants with the risk index and their ranks.Full size imageInterannual infection survival in grapevines plays a relevant role when modelling PD epidemiology. In our model, we assumed a threshold of five or more symptomatic leaves for these chronic infections based on the relationship between the timing and severity of the infection during the growing season and the likelihood of winter recovery38,39,42. This five-leaf cut-off was grounded on: (i) the bimodal distribution in the frequency of the number of symptomatic leaves among the population of inoculated grapevines (Supplementary Fig. S1), whereby vines that generally show less than five symptomatic leaves at 12 weeks after inoculation remain so in the following weeks, while those that pass that threshold continue to produce symptomatic leaves, and (ii) the observed correlation between the acropetal and basipetal movement of Xf along the cane (Supplementary Fig. S1). The likelihood of developing chronic infections as a function of accumulated MGDD among the population of grapevine varieties was modelled using survival analysis with data fitted to a logistic distribution ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}})). A minimum window of MGDD = 528 was needed to develop chronic infections (var. Tempranillo), about 975 for a median estimate, while a cumulative MGDD  > 1159 indicate over 90% probability within a growing season (red curve in Fig. 1c and “Methods”).Next, we intended to model the probability of disease recovery by exposure to cold temperatures. Previous works had specifically modelled cold curing on Pinot Noir and Cabernet Sauvignon varieties in California as the effect of temperature and duration39 by assuming a progressive elimination of the bacterial load with cold temperatures42. In the absence of appropriate empirical data to formulate a general average pattern of winter curing among grapevine varieties, we combined the approach of Lieth et al.39 and the empirical observations of Purcell on the distribution of PD in the US related to the average minimum temperature of the coldest month, Tmin, isolines41. To consider the accumulation of cold units in an analogy of the MGDD, we searched for a general correlation between Tmin and the cold degree days (CDDs) with base temperature = 6 ∘C (see “Methods”). We found an exponential relation, ({{{{{rm{CDD}}}}}} sim 230exp (-0.26cdot {T}_{min })), where specifically, CDD ≳ 306 correspond to ({T}_{min } < -1.{1},^{circ }{{{{{rm{C}}}}}}) (Fig. 1b). To transform this exponential relationship to a probabilistic function analogous to ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}})), hereafter denoted ({{{{{{{mathcal{G}}}}}}}}({{{{{rm{CDD}}}}}})), ranging between 0 and 1, we considered the sigmoidal family of functions (f(x)=frac{A}{B+{x}^{C}}) with A = 9 × 106, B = A and C = 3 (Fig. 1c), fulfilling the limit ({{{{{{{mathcal{G}}}}}}}}({{{{{rm{CDD}}}}}}=0)=1), i.e., no winter curing when no cold accumulated, and a conservative 75% of the infected plants recovered at ({T}_{min }=-1.{1},^{circ }{{{{{rm{C}}}}}}) instead of 100% to reflect uncertainties on the effect of winter curing.MGDD/CDD distribution mapsMGDD were used to compute annual risk maps of developing PD during summer for the period 1981–2019 (see “Methods”). The resulting averaged map identifies all known areas with a recent history of severe PD in the US corresponding to ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}}) , > , 90 %) (i.e., high-risk), such as the Gulf Coast states (Texas, Alabama, Mississippi, Louisiana, Florida), Georgia and Southern California sites (e.g., Temecula Valley) (Fig. 2a), while captures areas with a steep gradation of disease endemicity in the north coast of California (({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}} , > , 50 % )). Overall, more than 95% of confirmed PD sites (n = 155) in the US (Supplementary Data 2) fall in grid cells with ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}}) , > , 50 %).Fig. 2: Average thermal-dependent maps for Pierce’s disease (PD) development and recovery in North America and Europe.PD development during the growing season based on average ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}})) estimations between 1981 and 2019 in North America (a) and Europe (b) derived from the results of the inoculation experiments on 36 grapevine varieties. Large differences in the areal extension with favourable MGDDs can be observed between the US and Europe. The winter curing effect is reflected in the distribution of the average ({{{{{{{mathcal{G}}}}}}}}({{{{{rm{CDD}}}}}})) for the 1981–2019 period in the United States (c) and Europe (d). A snapshot of the temperature-driven probability of chronic infection averaged for the 1981–2019 period is obtained from the joint effect of MGDD and CDD in North America (e) and Europe (f). Warmer colours indicate more favourable conditions for chronic PD and the dashed line highlights the threshold of chronic infection probability being 0.5.Full size imageThe average MGDD-projected map for Europe during 1981–2019 spots a high risk for the coast, islands and major river valleys of the Mediterranean Basin, southern Spain, the Atlantic coast from Gibraltar to Oporto, and continental areas of central and southeast Europe (Fig. 2b). Of these, however, only some Mediterranean islands, such as Cyprus and Crete, show ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}}) , > , 99 %) comparable to areas with high disease incidence in the Gulf Coast states of the US and California. Almost all the Atlantic coast from Oporto (Portugal) to Denmark are below suitable MGDD, with an important exception in the Garonne river basin in France (Bordeaux Area) with low to moderate MGDD (Fig. 2b).Figure 2a shows how the area with high-risk MGDD values extends further north of the current known PD distribution in the southeastern US, suggesting that winter temperatures limit the expansion of PD northwards9. A comparison between MGDD and CDD maps (Fig. 2a vs. Fig. 2c, Fig. 2e) further supports the idea that winter curing is restricting PD northward migration from the southeastern US. However, consistent with growing concern among Midwest states winegrowers on PD northward migration led by climate change63, we found a mean increase of 0.12% y−1 in the areal extent with CDD  0.075) in 22.3% of the vineyards in Europe. However, no vineyard is in epidemic-risk zones with a high-risk index and only 2.9% of the vineyard surface is at moderate risk (Supplementary Table S8). The areas with the highest risk index (r(t) between 0.70 and 0.88) are mainly located in the Mediterranean islands of Crete, Cyprus and the Balearic Islands or at pronounced peninsulas like Apulia (Italy) and Peloponnese (Greece) in the continent (Fig. 6a and Supplementary Table S8). Most vineyards are in non-risk zones (42.1%), whereas 35.6% are located in transition zones with presently non-risk but where XfPD could become established in the next decades causing some sporadic outbreaks. In Supplementary Data 4 and Supplementary Table S8, we provide full details of the total vineyard areas currently at risk for each country and region.Fig. 6: Intersection between Corine-land-cover vineyard distribution map and PD-risk maps for 2020 and 2050.Data were obtained from Corine-land-cover (2018) and the layer of climatic suitability forP. spumarius in Europe from35. The surface of the vineyard contour has been enlarged to improve the visualisation of the risk zones and disease-incidence growth-rate ranks. a PD risk map for 2019 and its projection for 2050 (b). Blue colours represent non-risk zones and transient risk zones for chronic PD (R0  More

  • in

    Evolution of self-organised division of labour driven by stigmergy in leaf-cutter ants

    Wilson, E. O. Success and dominance in ecosystems: the case of the social insects. Vol. 2 I-XXI (Ecology Institute, 1990).Anderson, C., Franks, N. R. & McShea, D. W. The complexity and hierarchical structure of tasks in insect societies. Anim. Behav. 62, 643–651. https://doi.org/10.1006/anbe.2001.1795 (2001).Article 

    Google Scholar 
    Theraulaz, G. & Deneubourg, J.-L. in The Ethological roots of Culture (eds Gardner RA, Chiarelli AB, Gardner BT, & Ploojd FX) 1–19 (Kluwer Academic Publishers, 1994).Theraulaz, G. & Bonabeau, E. Modelling the collective building of complex architectures in social insects with lattice swarms. J. Theor. Biol. 177, 381–400. https://doi.org/10.1006/jtbi.1995.0255 (1995).Article 
    ADS 

    Google Scholar 
    Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S. & Camazine, S. Self-organization in social insects. Trends Ecol. Evol. 12, 188–193 (1997).Article 

    Google Scholar 
    Gordon, D. M. The organization of work in social insect colonies. Nature 380, 121–124 (1996).Article 
    ADS 

    Google Scholar 
    Gordon, D. M. The evolution of the algorithms for collective behavior. Cell Syst. 3, 514–520 (2016).Article 

    Google Scholar 
    Grüter, C. et al. Negative feedback enables fast and flexible collective decision-making in ants. PLoS ONE 7, e44501. https://doi.org/10.1371/journal.pone.0044501 (2012).Article 
    ADS 

    Google Scholar 
    Wehner, R., Harkness, R. D. & Schmid-Hempel, P. Foraging Strategies in Individually Searching Ants. (Fischer, 1983).Oster, G. F. & Wilson, E. O. Caste and Ecology in the Social Insects. (Princeton University Press, 1978).Anderson, C. & Franks, N. R. Teams in animal societies. Behav. Ecol. 12, 534–540. https://doi.org/10.1093/beheco/12.5.534 (2001).Article 

    Google Scholar 
    Jeanne, R. L. The evolution of the organization of work in social insects. Monitore Zool. Italiano-Ital. J. Zool. 20, 119–133. https://doi.org/10.1080/00269786.1986.10736494 (1986).Article 

    Google Scholar 
    Ratnieks, F. L. & Anderson, C. Task partitioning in insects societies. Insectes Soc. 46, 95–108 (1999).Article 

    Google Scholar 
    Anderson, C., Boomsma, J. J. & Bartholdi, J. J. Task partitioning in insect societies: bucket brigades. Insectes Soc. 49, 171–180. https://doi.org/10.1007/s00040-002-8298-7 (2002).Article 

    Google Scholar 
    Jeanson, R. & Weidenmüller, A. Interindividual variability in social insects–proximate causes and ultimate consequences. Biol. Rev. 89, 671–687 (2014).Article 

    Google Scholar 
    Leighton, G. M., Charbonneau, D. & Dornhaus, A. Task switching is associated with temporal delays in Temnothorax rugatulus ants. Behav. Ecol. 28, 319–327. https://doi.org/10.1093/beheco/arw162 (2017).Article 

    Google Scholar 
    Grassé, P.-P. La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes Soc. 6, 41–80 (1959).Article 

    Google Scholar 
    Theraulaz, G. & Bonabeau, E. A brief history of stigmergy. Artif. Life 5, 97–116. https://doi.org/10.1162/106454699568700 (1999).Article 

    Google Scholar 
    Karsai, I. Decentralized control of construction behavior in paper wasps: an overview of the stigmergy approach. Artif. Life 5, 117–136. https://doi.org/10.1162/106454699568719 (1999).Article 

    Google Scholar 
    Karsai, I. & Penzes, Z. Comb Building in Social Wasps – Self-Organization and Stigmergic Script. J. Theor. Biol. 161, 505–525. https://doi.org/10.1006/jtbi.1993.1070 (1993).Article 
    ADS 

    Google Scholar 
    Dorigo, M., Bonabeau, E. & Theraulaz, G. Ant algorithms and stigmergy. Fut. Gen. Comput. Syst. 16, 851–871 (2000).Article 

    Google Scholar 
    Camazine, S. Self-organizing pattern-formation on the combs of Honey-Bee Colonies. Behav. Ecol. Sociobiol. 28, 61–76. https://doi.org/10.1007/bf00172140 (1991).Article 

    Google Scholar 
    Camazine, S., Sneyd, J., Jenkins, M. J. & Murray, J. D. A Mathematical-model of self-organized pattern-formation on the combs of Honeybee Colonies. J. Theor. Biol. 147, 553–571. https://doi.org/10.1016/S0022-5193(05)80264-4 (1990).Article 
    ADS 

    Google Scholar 
    Deneubourg, J.-L. et al. in Simulation of Adaptive Behavior: From Animals to Animats (eds J.A. Meyer & S.W. Wilson) 356–365 (The MIT Press/Bradford Books, 1991).Franks, N. R. & Sendovafranks, A. B. Brood Sorting by Ants – Distributing the Workload over the Work-Surface. Behav. Ecol. Sociobiol. 30, 109–123 (1992).Article 

    Google Scholar 
    Sendova-Franks, A. B., Scholes, S. R., Franks, N. R. & Melhuish, C. Brood sorting by ants: two phases and differential diffusion. Anim. Behav. 68, 1095–1106. https://doi.org/10.1016/j.anbehav.2004.02.013 (2004).Article 

    Google Scholar 
    Lan, T., Liu, S. & Yang, S. X. in 2006 6th World Congress on Intelligent Control and Automation. 441–445 (IEEE).Renucci, M., Tirard, A. & Provost, E. Complex undertaking behavior in Temnothorax lichtensteini ant colonies: from corpse-burying behavior to necrophoric behavior. Insectes Soc. 58, 9–16 (2011).Article 

    Google Scholar 
    Detrain, C. & Deneubourg, J. L. Collective decision-making and foraging patterns in Ants and Honeybees. Advances in Insect Physiology 35(35), 123–173. https://doi.org/10.1016/S0065-2806(08)00002-7 (2008).Article 

    Google Scholar 
    Couzin, I. D. & Franks, N. R. Self-organized lane formation and optimized traffic flow in army ants. Proc Biol Sci 270, 139–146. https://doi.org/10.1098/rspb.2002.2210 (2003).Article 

    Google Scholar 
    Gulyas, L., Laufer, L. & Szabo, R. in International Workshop on Engineering Self-Organising Applications 50–65 (Springer).Langridge, E. A., Franks, N. R. & Sendova-Franks, A. B. Improvement in collective performance with experience in ants. Behav. Ecol. Sociobiol. 56, 523–529. https://doi.org/10.1007/s00265-004-0824-3 (2004).Article 

    Google Scholar 
    Oberst, S. et al. Revisiting stigmergy in light of multi-functional, biogenic, termite structures as communication channel. Comput. Struct. Biotechnol. J. 18, 2522–2534 (2020).Article 

    Google Scholar 
    Hart, A., Anderson, C. & Ratnieks, F. Task partitioning in leafcutting ants. Acta Ethologica 5, 1–11. https://doi.org/10.1007/s10211-002-0062-5 (2002).Article 

    Google Scholar 
    Hart, A. G. & Ratnieks, F. L. Leaf caching in the leafcutting ant Atta colombica: organizational shift, task partitioning and making the best of a bad job. Anim. Behav. 62, 227–234 (2001).Article 

    Google Scholar 
    Röschard, J. & Roces, F. Sequential load transport in grass-cutting ants (Atta vollenweideri): maximization of plant delivery rate or improved information transfer? Psyche 2011 (2011).Nickele, M. A., Reis Filho, W. & Pie, M. R. Sequential load transport during foraging in Acromyrmex (Hymenoptera: Formicidae) leaf-cutting ants. Myrmecol News 21, 73–82 (2015).Ferrante, E., Turgut, A. E., Duenez-Guzman, E., Dorigo, M. & Wenseleers, T. Evolution of Self-Organized Task Specialization in Robot Swarms. PLoS Comp. Biol. 11, e1004273. https://doi.org/10.1371/journal.pcbi.1004273 (2015).Article 
    ADS 

    Google Scholar 
    Grueter, C. et al. Negative feedback enables fast and flexible collective decision-making in ants. (2012).Holcombe, M. et al. Modelling complex biological systems using an agent-based approach. Integr. Biol. 4, 53–64 (2012).Article 

    Google Scholar 
    Fourcassié, V., Dussutour, A. & Deneubourg, J.-L. Ant traffic rules. J. Exp. Biol. 213, 2357–2363 (2010).Article 

    Google Scholar 
    Modlmeier, A. P., Keiser, C. N., Shearer, T. A. & Pruitt, J. N. Species-specific influence of group composition on collective behaviors in ants. Behav. Ecol. Sociobiol. 68, 1929–1937 (2014).Article 

    Google Scholar 
    Modlmeier, A. P., Liebmann, J. E. & Foitzik, S. Diverse societies are more productive: a lesson from ants. Proc. R. Soc. B 279, 2142–2150 (2012).Article 

    Google Scholar 
    Walsh, J. T., Garnier, S. & Linksvayer, T. A. Ant collective behavior is heritable and shaped by selection. Am. Nat. 196, 541–554 (2020).Article 

    Google Scholar 
    Tannenbaum, E. When does division of labor lead to increased system output?. J. Theor. Biol. 247, 413–425 (2007).Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Wahl, L. M. Evolving the division of labour: Generalists, specialists and task allocation. J. Theor. Biol. 219, 371–388 (2002).Article 
    ADS 
    MathSciNet 

    Google Scholar 
    Wakano, J., Nakata, K. & Yamamura, N. Dynamic model of optimal age polyethism in social insects under stable and fluctuating environments. J. Theor. Biol. 193, 153–165 (1998).Article 
    ADS 

    Google Scholar 
    Goldsby, H. J., Dornhaus, A., Kerr, B. & Ofria, C. Task-switching costs promote the evolution of division of labor and shifts in individuality. Proc. Natl. Acad. Sci. 109, 13686–13691 (2012).Article 
    ADS 

    Google Scholar 
    Rueffler, C., Hermisson, J. & Wagner, G. P. Evolution of functional specialization and division of labor. Proc. Natl. Acad. Sci. 109, E326–E335 (2012).Article 
    ADS 

    Google Scholar 
    Lopes, J. F., Forti, L. C., Camargo, R. S., Matos, C. A. & Verza, S. S. The effect of trail length on task partitioning in three Acromyrmex species (Hymenoptera: Formicidae). Sociobiology 42, 87–92 (2003).
    Google Scholar 
    Duarte, A., Weissing, F. J., Pen, I. & Keller, L. An evolutionary perspective on self-organized division of labor in social insects. Annu. Rev. Ecol. Evol. Syst. 42(42), 91–110. https://doi.org/10.1146/annurev-ecolsys-102710-145017 (2011).Article 

    Google Scholar 
    Duarte, A., Pen, I., Keller, L. & Weissing, F. J. Evolution of self-organized division of labor in a response threshold model. Behav. Ecol. Sociobiol. 66, 947–957. https://doi.org/10.1007/s00265-012-1343-2 (2012).Article 

    Google Scholar 
    Floreano, D. & Keller, L. Evolution of adaptive behaviour in robots by means of Darwinian selection. PLoS Biol. 8, e1000292 (2010).Article 

    Google Scholar 
    Floreano, D., Mitri, S., Magnenat, S. & Keller, L. Evolutionary conditions for the emergence of communication in robots. Curr. Biol. 17, 514–519 (2007).Article 

    Google Scholar 
    Mitri, S., Floreano, D. & Keller, L. The evolution of information suppression in communicating robots with conflicting interests. Proc. Natl. Acad. Sci. 106, 15786–15790 (2009).Article 
    ADS 

    Google Scholar 
    Abiodun, O. I. et al. State-of-the-art in artificial neural network applications: A survey. Heliyon 4, e00938 (2018).Article 

    Google Scholar 
    Dingemanse, N. J., Kazem, A. J., Réale, D. & Wright, J. Behavioural reaction norms: Animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81–89 (2010).Article 

    Google Scholar 
    Van den Berg, P. & Weissing, F. J. The importance of mechanisms for the evolution of cooperation. Proc. R. Soc. B 282, 20151382 (2015).Article 

    Google Scholar 
    Wetterer, J. K. Ontogenetic changes in forager polymorphism and foraging ecology in the leaf-cutting ant Atta cephalotes. Oecologia 98, 235–238. https://doi.org/10.1007/BF00341478 (1994).Article 
    ADS 

    Google Scholar 
    Wetterer, J. K. Forager size and ecology of Acromyrmex coronatus and other leaf-cutting ants in Costa Rica. Oecologia 104, 409–415. https://doi.org/10.1007/BF00341337 (1995).Article 
    ADS 

    Google Scholar 
    Evison, S. E. F. & Hughes, W. O. Genetic caste polymorphism and the evolution of polyandry in Atta leaf-cutting ants. Naturwissenschaften 98, 643–649 (2011).Article 
    ADS 

    Google Scholar 
    Hughes, W. O., Oldroyd, B. P., Beekman, M. & Ratnieks, F. L. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320, 1213–1216 (2008).Article 
    ADS 

    Google Scholar 
    Villesen, P., Murakami, T., Schultz, T. R. & Boomsma, o. J. Identifying the transition between single and multiple mating of queens in fungus-growing ants. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 269, 1541–1548 (2002).Mueller, U. G. & Rabeling, C. A breakthrough innovation in animal evolution. Proc. Natl. Acad. Sci. 105, 5287–5288 (2008).Article 
    ADS 

    Google Scholar 
    Schultz, T. R. & Brady, S. G. Major evolutionary transitions in ant agriculture. Proc. Natl. Acad. Sci. 105, 5435–5440 (2008).Article 
    ADS 

    Google Scholar 
    Fowler, H. G. Latitudinal gradients and diversity of the leaf-cutting ants (Atta and Acromyrmex)(Hymenoptera: Formicidae). Rev. Biol. Trop. 31, 213–216 (1983).
    Google Scholar 
    Jackson, D. E. & Ratnieks, F. L. Communication in ants. Curr. Biol. 16, R570–R574 (2006).Article 

    Google Scholar 
    Roces, F. & Hölldobler, B. Vibrational communication between hitchhikers and foragers in leaf-cutting ants (Atta cephalotes). Behav. Ecol. Sociobiol. 37, 297–302 (1995).Article 

    Google Scholar 
    Hubbell, S. P., Johnson, L. K., Stanislav, E., Wilson, B. & Fowler, H. Foraging by bucket-brigade in leaf-cutter ants. Biotropica 1, 210–213 (1980).Article 

    Google Scholar 
    Boi, S., Couzin, I. D., Buono, N. D., Franks, N. & Britton, N. Coupled oscillators and activity waves in ant colonies. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266, 371–378 (1999).Cole, B. J. Short-term activity cycles in ants: generation of periodicity by worker interaction. Am. Nat. 137, 244–259 (1991).Article 

    Google Scholar 
    Cornejo, A., Dornhaus, A., Lynch, N. & Nagpal, R. in International Symposium on Distributed Computing. 46–60 (Springer).Franks, N. R., Bryant, S., Griffiths, R. & Hemerik, L. Synchronization of the behaviour within nests of the antleptothorax acervorum (fabricius)—I. Discovering the phenomenon and its relation to the level of starvation. Bull. Math. Biol. 52, 597–612 (1990).Pagliara, R., Gordon, D. M. & Leonard, N. E. Regulation of harvester ant foraging as a closed-loop excitable system. PLoS Comp. Biol. 14, e1006200 (2018).Article 
    ADS 

    Google Scholar 
    Schmickl, T. & Karsai, I. Integral feedback control is at the core of task allocation and resilience of insect societies. Proc. Natl. Acad. Sci. 115, 13180–13185 (2018).Article 
    ADS 

    Google Scholar 
    Solé, R. V., Miramontes, O. & Goodwin, B. C. Oscillations and chaos in ant societies. J. Theor. Biol. 161, 343–357 (1993).Article 
    ADS 

    Google Scholar 
    Gordon, D. M., Goodwin, B. C. & Trainor, L. E. A parallel distributed model of the behaviour of ant colonies. J. Theor. Biol. 156, 293–307 (1992).Article 
    ADS 

    Google Scholar 
    Aoki, S. K. et al. A universal biomolecular integral feedback controller for robust perfect adaptation. Nature 570, 533–537 (2019).Article 

    Google Scholar 
    Ma, W., Trusina, A., El-Samad, H., Lim, W. A. & Tang, C. Defining network topologies that can achieve biochemical adaptation. Cell 138, 760–773 (2009).Article 

    Google Scholar 
    Niemeyer, N., Schleimer, J.-H. & Schreiber, S. Biophysical models of intrinsic homeostasis: Firing rates and beyond. Curr. Opin. Neurobiol. 70, 81–88 (2021).Article 

    Google Scholar 
    Rombouts, J., Vandervelde, A. & Gelens, L. Delay models for the early embryonic cell cycle oscillator. PLoS ONE 13, e0194769 (2018).Article 

    Google Scholar 
    Tyson, J. J., Chen, K. C. & Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221–231 (2003).Article 

    Google Scholar 
    Bryant, B. D. & Miikkulainen, R. Foundations of Trusted Autonomy 87–115 (Springer, 2018).
    Google Scholar 
    Masad, D. & Kazil, J. in 14th PYTHON in Science Conference. 53–60 (Citeseer).Knaden, M. & Graham, P. The sensory ecology of ant navigation: from natural environments to neural mechanisms. Annu. Rev. Entomol. 61, 63–76 (2016).Article 

    Google Scholar  More

  • in

    Urban population structure and dispersal of an Australian mosquito (Aedes notoscriptus) involved in disease transmission

    Aguillon SM, Fitzpatrick JW, Bowman R, Schoech SJ, Clark AG, Coop G, Chen N (2017) Deconstructing isolation-by-distance: The genomic consequences of limited dispersal. PLoS Genet 13:e1006911Article 

    Google Scholar 
    Browning BL, Browning SR (2016) Genotype imputation with millions of reference samples. Am J Hum Genet 98:116–126Article 

    Google Scholar 
    Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140Article 

    Google Scholar 
    Carvajal TM, Ogiski K, Yaegeshi S, Hernandez LFT, Viacrusis KM, Ho HT, Amalin DM, Watanable K (2020) Fine-scale population genetic structure of dengue mosquito vector, Aedes aegypti, in metropolitan manila, Philippines. PLOS Neglected Tropical Dis 14:e0008279Article 

    Google Scholar 
    Christophers SR. 1960. Aedes aegypti: the yellow fever mosquito. CUP Archive.Combs M, Puckett EE, Richardson J, Mims D, Munshi-South J (2018) Spatial population genomics of the brown rat (Rattus norvegicus) in New York City. Mol Ecol 27:83–98Article 

    Google Scholar 
    Conomos MP, Reiner AP, Weir BS, Thornton TA (2016) Model-free estimation of recent genetic relatedness. Am J Hum Genet 98:127–148Article 

    Google Scholar 
    Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO et al. (2021) Twelve years of SAMtools and BCFtools. GigaScience 10:1–4Article 

    Google Scholar 
    Doak DF, Marino PC, Kareiva PM (1992) Spatial scale mediates the influence of habitat fragmentation on dispersal success: Implications for conservation. Theor Popul Biol 41:315–336Article 

    Google Scholar 
    Dobrotworsky NV (1965) The mosquitoes of Victoria (Diptera, Culicidae). Melbourne University Press, London
    Google Scholar 
    Doggett SL, Russell RC (1997) Aedes notoscriptus can transmit inland and coastal isolates of Ross River and Barmah Forest viruses from New South Wales. Arbovirus Asutrlian Reg 7:79–81
    Google Scholar 
    Dray S, Dufour A-B (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20Article 

    Google Scholar 
    Edland T (1983) Attacks by the winter moth group (Operophtera brumata, Agriopis aurantiaria, Erannis defoliaria) in orchards. A system for forecasting the expected attack degree. Gartneryrket 73:208–212
    Google Scholar 
    Endersby NM, White WL, Chan J, Hust T, Rašić G, Miller A, Hoffmann AA (2013) Evidence of cryptic genetic lineages within Aedes notoscriptus (Skuse). Infect, Genet Evolution 18:191–201Article 

    Google Scholar 
    Feria-Arroyo T, Aguilar C, Vazquez CQ, Santos-Luna R, Roman-Perez S, Oraby T et al. (2020) A tale of two cities: Aedes Mosquito surveillance across the Texas-Mexico Border. Subtropical Agriculture Environ 71:12
    Google Scholar 
    Fountain T, Husby A, Nonaka E, DiLeo MF, Korhonen JH, Rastas P et al. (2018) Inferring dispersal across a fragmented landscape using reconstructed families in the Glanville fritillary butterfly. Evolut Appl 11:287–297Article 

    Google Scholar 
    Goldberg EE, Lande R (2015) Species’ borders and dispersal barriers. Am Naturalist 170:297–304Article 

    Google Scholar 
    Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19Article 

    Google Scholar 
    Guan D, McCarthy SA, Wood J, Howe K, Wang Y, Durbin R (2020) Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics 36(9):2896–2898Article 

    Google Scholar 
    Guerra CA, Reiner RC, Perkins TA, Lindsay SW, Midega JT, Brady OJ et al. (2014) A global assembly of adult female mosquito mark-release-recapture data to inform the control of mosquito-born pathogens. Parasites Vectors 7(1):1–15Article 

    Google Scholar 
    Hardy OJ, Vekemans X (2002) spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620Article 

    Google Scholar 
    Harrington LC, Edman JD, Scott TW (2001) Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood? J Med Entomol 38:411–422Article 

    Google Scholar 
    Harrington LC, Scott TW, Lerdthusnee K, Coleman RC, Costero A, Clark GG et al. (2005) Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am J tropical Med Hyg 72(2):209–220Article 

    Google Scholar 
    Harris AF, McKemey AR, Nimmo D, Curtis Z, Black I, Morgan SA et al. (2012) Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes. Nat Biotechnol 30:828–830Article 

    Google Scholar 
    Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F et al. (2011) Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 2011 476 7361 476:454–457
    Google Scholar 
    Honório AN, da Costa Silva W, José Leite P, Monteiro Gonçalves J, Philip Lounibos L, Lourenço-de-Oliveira R (2003) Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an Urban Endemic dengue Area in the State of Rio de Janeiro, Brazil. Memórias do Inst Oswaldo Cruz, Rio de Jan 98:191–198Article 

    Google Scholar 
    Jasper M, Schmidt TL, Ahmad NW, Sinkins SP, Hoffmann AA (2019) A genomic approach to inferring kinship reveals limited intergenerational dispersal in the yellow fever mosquito. Mol Ecol Resour 22.3:1200–1212Jasper M, Schmidt TL, Hoffmann AA (2022) Estimating dispersal using close kin dyads: The KINDISPERSE R package. Mol Ecol Resour 22:1200–1212Article 

    Google Scholar 
    Jeger MJ (1999) Improved understanding of dispersal in crop pest and disease management: current status and future directions. Agric For Meteorol 97:331–349Article 

    Google Scholar 
    Johnson MTJ, Munshi-South J (2017) Evolution of life in urban environments. Science 358Juarez JG, Chaves LF, Garcia-Luna SM, Martin E, Badillo-Vargas I, Medeiros MCI, Hamer GL (2021) Variable coverage in an Autocidal Gravid Ovitrap intervention impacts efficacy of Aedes aegypti control. J Appl Ecol 58:2075–2086Article 

    Google Scholar 
    Kay BH, Watson TM, Ryan PA (2008) Definition of productive Aedes notoscriptus (Diptera: Culicidae) habitats in western Brisbane, and a strategy for their control. Aust J Entomol 47:142–148Article 

    Google Scholar 
    Kolmogorov M, Yuan J, Lin Y, Pevzner P (2019) Assembly of long error-prone reads using repeat graphs. Nat Biotechnol 37.5:540–546Article 

    Google Scholar 
    Kotsakiozi P, Evans BR, Gloria-Soria A, Kamgang B, Mayanja M, Lutwama J et al. (2018) Population structure of a vector of human diseases: Aedes aegypti in its ancestral range, Africa. Ecol Evolution 8:7835–7848Article 

    Google Scholar 
    Krueger F (2021) Trimgalore. GitHub repository, https://github.com/FelixKrueger/TrilGalore.Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat methods 9:357Article 

    Google Scholar 
    Lee DJ, Hicks MM, Griffiths M, Debenham ML, Bryan JH, Russel RC et al. (1987) The Culicidae of the Australasian Region: Genus Anopheles (Anopheles, Cellia). Australian Government Publishing Service: 315.Liew CCFC, Curtis CF (2004) Horizontal and vertical dispersal of dengue vector mosquitoes, Aedes aegypti and Aedes albopictus, in Singapore. Med Vetenary Enetomology 18.4:351–360Article 

    Google Scholar 
    Malinsky M, Trucchi E, Lawson DJ, Falush D (2018) RADpainter and fineRADstructure: Population Inference from RADseq Data. Mol Biol Evolution 35:1284–1290Article 

    Google Scholar 
    McCarroll L, Paton MG, Karunaratne SHPP, Jayasuryia HTR, Kalpage KSP, Hemingway J (2000) Insecticides and mosquito-borne disease. Nature 407:961–962. 6807 407Article 

    Google Scholar 
    Metzger ME, Wekesa JW, Kluh S, Fujioka KK, Saviskas R, Arugay A et al. (2021) Detection and establishment of Aedes notoscriptus (Diptera: Culicidae) mosquitoes in Southern California, United States. J Med Entomol 59.1:67–77
    Google Scholar 
    Muir LE, Kay BH (1998) Aedes aegypti survival and dispersal estimated by mark-release-recapture in northern Australia. Am J Tropical Med Hyg 58:277–282Article 

    Google Scholar 
    Palsøll P, Zachariah MP, Bérubé M (2010) Detecting populations in the ‘ambiguous’ zone: Kinship-based estimation of population structure at low genetic divergence. Mol Ecol Resourses 10:797–805Article 

    Google Scholar 
    Rasheed SB, Boots M, Frantz AC, Butlin RK (2013) Population structure of the mosquito Aedes aegypti (Stegomyia aegypti) in Pakistan. Med Vet Entomol 27:430–440Article 

    Google Scholar 
    Rašić G, Filipović I, Weeks AR, Hoffmann AA (2014) Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti. BMC genomics 15(1):1–12Article 

    Google Scholar 
    Reiter P, Amador MA, Anderson RA, Clark GG (1995) Short report: dispersal of Aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs. Am J Tropical Med Hyg 52:177–179Article 

    Google Scholar 
    Ribeiro Jr JP, Diggle PJ (2001) geoR: a package for geostatistical analysis. R N. 1.2:14–18
    Google Scholar 
    Ritchie SA (2001) Effect of some animal feeds and oviposition substrates on Aedes oviposition in ovitraps in Cairns. Aust J Am Mosq Contol Assoc 11:2
    Google Scholar 
    Rousset (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62Article 

    Google Scholar 
    RStudio Team (2021) RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA, http://www.rstudio.com/Russell RC, Geary MJ (1992) The susceptibility of the mosquitoes Aedes notoscriptus and Culex annulirostris to infection with dog heartworm Dirofilaria immitis and their vector efficiency. Med Vet Entomol 6:154–158Article 

    Google Scholar 
    Schmidt TL, Filipović I, Hoffmann AA, Rašić G (2018) Fine-scale landscape genomics helps explain the slow spatial spread of Wolbachia through the Aedes aegypti population in Cairns, Australia. Heredity 120:386–395Article 

    Google Scholar 
    Schmidt TL, Swan T, Chung J, Karl S, Demok S, Yang Q et al. (2021) Spatial population genomics of a recent mosquito invasion. Mol Ecol 30:1174–1189Article 

    Google Scholar 
    Schmidt TL, Elfekih S, Cao LJ, Wie SJ, Al-Fageeh MB, Nassar M, et al. (2022) Close kin dyads indicate intergenerational dispersal and barriers. The American Naturalist.Shirk AJ, Cushman SA (2011) sGD: software for estimating spatially explicit indices of genetic diversity. Mol Ecol Resour 11:922–934Article 

    Google Scholar 
    Shirk AJ, Cushman SA (2014) Spatially-explicit estimation of Wright’s neighborhood size in continuous populations. Front Ecol Evolution 2:62Article 

    Google Scholar 
    Sumner J, Rousset F, Estoup A, Moritz C (2001) ‘Neighbourhood’ size, dispersal and density estimates in the prickly forest skink (Gnypetoscincus queenslandiae) using individual genetic and demographic methods. Mol Ecol 10:1917–1927Article 

    Google Scholar 
    Sunahara T, Mogi M (2004) Searching clusters of community composition along multiple spatial scales: a case study on aquatic invertebrate communities in bamboo stumps in West Timor. Popul Ecol 46:149–158Article 

    Google Scholar 
    Tantowijoyo W, Arguni E, Johnson P, Budiwati N, Nurhayati PI, Fitriana I et al. (2016) Spatial and temporal variation in Aedes aegypti and Aedes albopictus (Diptera: Culicidae) numbers in the Yogyakarta area of Java, Indonesia, with implications for Wolbachia Releases. J Med Entomol 53:188–198Article 

    Google Scholar 
    Trense D, Schmidt TL, Yang Q, Chung J, Hoffmann AA, Fischer K (2021) Anthropogenic and natural barriers affect genetic connectivity in an Alpine butterfly. Mol Ecol 30:114–130Article 

    Google Scholar 
    Trewin B, Pagendam DE, Darbro JM, Health Q, Devine GJ (2019) Urban Landscape Features Influence the Movement and Distribution of the Australian Container-Inhabiting Mosquito Vectors Aedes aegypti (Diptera: Culicidae) and Aedes notoscriptus (Epidemiology of Ross River virus in South East Queensland, Australia. J Med Entomol 57.2:443–453Verdonschot PFM, Besse-Lototskaya AA (2014) Flight distance of mosquitoes (Culicidae): A metadata analysis to support the management of barrier zones around rewetted and newly constructed wetlands. Limnologica 45:69–79Article 

    Google Scholar 
    Wallace JR, Mangas KM, Porter JL, Marcsisin R, Pidot SJ, Howden B et al. (2017) Mycobacterium ulcerans low infectious dose and mechanical transmission support insect bites and puncturing injuries in the spread of Buruli ulcer. PLoS Neglected Tropical Dis 11(4):e0005553Article 

    Google Scholar 
    Watson TM, Kay BH (1999) Vector competence of Aedes notoscriptus (Diptera: Culicidae) for Barmah Forest virus and of this species and Aedes aegypti (Diptera: Culicidae) for dengue 1-4 viruses in Queensland, Australia. J Med Entomol 36:508–514Article 

    Google Scholar 
    Watson TM, Saul A, Kay BH (2000) Aedes notoscriptus (Diptera: Culicidae) Survival and Dispersal Estimated by Mark-Release-Recapture in Brisbane, Queensland, Australia. J Med Entomol 37:380–384Article 

    Google Scholar 
    Wright S (1946) Isolation by distance under diverse systems of mating. Genetics 31:39Article 

    Google Scholar 
    Ye C, Ma ZS, Cannon CH, Pop M, Douglas WV (2012) Exploiting sparseness in de novo genome assembly. BMC Bioinforma 13:1–8Article 

    Google Scholar 
    Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA (2013) The MaSuRCA genome assembler. Bioinformatics 21:2669–77Article 

    Google Scholar  More

  • in

    Potential negative effects of the installation of video surveillance cameras in raptors’ nests

    Ribic, C. A., Thompson, F. R. & Pietz, P. J. Video Surveillance of Nesting Birds (University of California Press, 2012).Book 

    Google Scholar 
    O’Brien, T. G. & Kinnaird, M. F. A picture is worth a thousand words: The application of camera trapping to the study of birds. Bird Conserv. Int. 18, S144–S162 (2008).Article 

    Google Scholar 
    Kristan, D. M., Golightly Jr, R. T. & Tomkiewicz Jr, S. M. A solar-powered transmitting video camera for monitoring raptor nests. Wildl. Soc. Bull. 24, 284–290 (1996).
    Google Scholar 
    Grubb, T. An infrared video camera system for monitoring diurnal and nocturnal raptors. J. Raptor Res. 32, 290–296 (1998).
    Google Scholar 
    Margalida, A. et al. A solar-powered transmitting video camera for monitoring cliff-nesting raptors. J. Field Ornithol. 77, 7–12 (2006).Article 

    Google Scholar 
    Bolton, M., Butcher, N., Sharpe, F., Stevens, D. & Fisher, G. Remote monitoring of nests using digital camera technology. J. Field Ornithol. 78, 213–220 (2007).Article 

    Google Scholar 
    Pierce, A. J. & Pobprasert, K. A portable system for continuous monitoring of bird nests using digital video recorders. J. Field Ornithol. 78, 322–328 (2007).Article 

    Google Scholar 
    Benson, T. J., Brown, J. D. & Bednarz, J. C. Identifying predators clarifies predictors of nest success in a temperate passerine. J. Anim. Ecol. 79, 225–234 (2010).Article 

    Google Scholar 
    Lewis, S. B., Fuller, M. R. & Titus, K. A comparison of 3 methods for assessing raptor diet during the breeding season. Wildl. Soc. Bull. 32, 373–385 (2004).Article 

    Google Scholar 
    Rogers, A. S. Quantifying Northern Goshawk diets using remote cameras and observations from blinds. J. Raptor Res. 39, 303–309 (2005).ADS 

    Google Scholar 
    Tornberg, R. & Reif, V. Assessing the diet of birds of prey: A comparison of prey items found in nests and images. Ornis Fenn. 84, 21 (2007).
    Google Scholar 
    López-López, P. & Urios, V. Use of digital trail cameras to study Bonelli’s eagle diet during the nestling period. Ital. J. Zool. 77, 289–295 (2010).Article 

    Google Scholar 
    Harrison, J. T., Kochert, M. N., Pauli, B. P. & Heath, J. A. Using motion-activated trail cameras to study diet and productivity of cliff-nesting Golden Eagles. J. Raptor Res. 53, 26–37 (2019).Article 

    Google Scholar 
    McRae, S. B., Weatherhead, P. J. & Montgomerie, R. American robin nestlings compete by jockeying for position. Behav. Ecol. Sociobiol. 33, 101–106 (1993).Article 

    Google Scholar 
    Nathan, A., Legge, S. & Cockburn, A. Nestling aggression in broods of a siblicidal kingfisher, the laughing kookaburra. Behav. Ecol. 12, 716–725 (2001).Article 

    Google Scholar 
    Grivas, C. et al. An audio–visual nest monitoring system for the study and manipulation of siblicide in bearded vultures Gypaetus barbatus on the island of Crete (Greece). J. Ethol. 27, 105–116 (2009).Article 

    Google Scholar 
    Gula, R., Theuerkauf, J., Rouys, S. & Legault, A. An audio/video surveillance system for wildlife. Eur. J. Wildl. Res. 56, 803–807 (2010).Article 

    Google Scholar 
    Sanaiotti, T. M., Seixas, G. H., Duleba, S. & Martins, F. D. Camera trapping at harpy eagle nests: Interspecies interactions under predation risk. J. Raptor Res. 51, 72–78 (2017).Article 

    Google Scholar 
    Allen, M. L., Inagaki, A. & Ward, M. P. Cannibalism in raptors: A review. J. Raptor Res. 54, 424–430 (2020).Article 

    Google Scholar 
    Academia, M. H. & Dalgleish, H. J. Use of nest web cameras and citizen science to quantify osprey prey delivery rate and nest success. J. Raptor Res. 56, 212–219 (2022).Article 

    Google Scholar 
    Gysel, L. W. & Davis, E. M. A simple automatic photographic unit for wildlife research. J. Wildl. Manag. 20, 451–453 (1956).Article 

    Google Scholar 
    Royama, T. A device of an auto-cinematic food-recorder. Jpn. J. Ornithol. 15, 172–176 (1959).Article 

    Google Scholar 
    Cox, W. A. et al. Development of camera technology for monitoring nests. In Chapter 15. Video Surveill. Nesting Birds Stud. Avian Biol. (eds Ribic, C. A. et al.) 185–210 (Univ. Calif. Press, 2012).Sanders, M. D. & Maloney, R. F. Causes of mortality at nests of ground-nesting birds in the Upper Waitaki Basin, South Island, New Zealand: A 5-year video study. Biol. Conserv. 106, 225–236 (2002).Article 

    Google Scholar 
    Reif, V. & Tornberg, R. Using time-lapse digital video recording for a nesting study of birds of prey. Eur. J. Wildl. Res. 52, 251–258 (2006).Article 

    Google Scholar 
    McKinnon, L. & Bêty, J. Effect of camera monitoring on survival rates of High-Arctic shorebird nests. J. Field Ornithol. 80, 280–288 (2009).Article 

    Google Scholar 
    Powell, L. A., Giovanni, M. D., Groepper, S. R., Reineke, M. & Schacht, W. H. Attendance Patterns and Survival of Western Meadowlark Nests (University of California Press, 2012).Book 

    Google Scholar 
    Herranz, J., Yanes, M. & Suárez, F. Does Photo-Monitoring Affect Nest Predation? J. Field Ornithol. 73, 97–101 (2002).Article 

    Google Scholar 
    Richardson, T. W., Gardali, T. & Jenkins, S. H. Review and meta-analysis of camera effects on avian nest success. J. Wildl. Manag. 73, 287–293 (2009).Article 

    Google Scholar 
    Cain, S. L. Nesting activity time budgets of Bald Eagles in southeast Alaska. (1985).García-Salgado, G. et al. Evaluation of trail-cameras for analyzing the diet of nesting raptors using the Northern Goshawk as a model. PLoS ONE 10, e0127585 (2015).Article 

    Google Scholar 
    Swann, D. E., Kawanishi, K. & Palmer, J. Evaluating types and features of camera traps in ecological studies: a guide for researchers. In Camera Traps in Animal Ecology 27–43 (Springer, 2011).Dykstra, C., Meyer, M. & Warnke, D. Bald Eagle reproductive performance following video camera placement. J. Raptor Res. 36, 136–139 (2002).
    Google Scholar 
    Del Moral, J. C. & Molina, B. El águila perdicera en España, población reproductora en 2018 y método de censo (SEO/BirdLife, 2018).
    Google Scholar 
    Generalitat Valenciana. Orden 2/2022, de 16 de febrero, de la Conselleria de Agricultura, Desarrollo Rural, Emergencia Climática y Transición Ecológica, por la que se actualizan los listados valencianos de especies protegidas de flora y fauna (2022).Real, J. & Mañosa, S. Demography and conservation of western European Bonelli’s eagle Hieraaetus fasciatus populations. Biol. Conserv. 79, 59–66 (1997).Article 

    Google Scholar 
    Hernández-Matías, A. et al. From local monitoring to a broad-scale viability assessment: A case study for the Bonelli’s Eagle in western Europe. Ecol. Monogr. 83, 239–261 (2013).Article 

    Google Scholar 
    Rollan, A. et al. Guiding local-scale management to improve the conservation of endangered populations: The example of Bonelli’s Eagle Aquila fasciata. Bird Conserv. Int. 31, 395–409 (2021).Article 

    Google Scholar 
    López-López, P., García-Ripollés, C. & Urios, V. Population size, breeding performance and territory quality of Bonelli’s Eagle Hieraaetus fasciatus in eastern Spain. Bird Study 54, 335–342 (2007).Article 

    Google Scholar 
    López-López, P. Informe científico valoración de la inclusión del águila perdicera como especie en peligro de extinción en el Catálogo Valenciano de Especies de Fauna Amenazadahttps://doi.org/10.13140/RG.2.2.32806.04166 (2021).López-López, P., Perona, A., Egea-Casas, O., Morant, J. & Urios, V. Tri-axial accelerometry shows differences in energy expenditure and parental effort throughout the breeding season in long-lived raptors. Curr. Zool. 68, 57–67 (2022).Article 

    Google Scholar 
    Perona, A. M., Urios, V. & López-López, P. Holidays? Not for all Eagles have larger home ranges on holidays as a consequence of human disturbance. Biol. Conserv. 231, 59–66 (2019).Article 

    Google Scholar 
    Morollón, S., Urios, V. & López-López, P. Fifteen days are enough to estimate home-range size in some long-lived resident eagles. J. Ornithol. 163, 849–854 (2022).Article 

    Google Scholar 
    Stewart-Oaten, A., Murdoch, W. W. & Parker, K. R. Environmental impact assessment:” Pseudoreplication” in time?. Ecology 67, 929–940 (1986).Article 

    Google Scholar 
    Underwood, A. Beyond BACI: The detection of environmental impacts on populations in the real, but variable, world. J. Exp. Mar. Biol. Ecol. 161, 145–178 (1992).Article 

    Google Scholar 
    López-López, P., García-Ripollés, C., García-López, F., Aguilar, J. M. & Verdejo, J. Patrón de distribución del águila real Aquila chrysaetos y del águila-azor perdicera Hieraaetus fasciatus en la provincia de Castellón. Ardeola 51, 275–283 (2004).
    Google Scholar 
    López-López, P., García-Ripollés, C., Aguilar, J. M., Garcia-López, F. & Verdejo, J. Modelling breeding habitat preferences of Bonelli’s eagle (Hieraaetus fasciatus) in relation to topography, disturbance, climate and land use at different spatial scales. J. Ornithol. 147, 97–106 (2006).Article 

    Google Scholar 
    Gil-Sánchez, J. Effects of altitude and prey availability on the laying date of Bonelli’s Eagles (Hieraaetus fasciatus) in Granada (SE Spain). Ardeola 47, 1–8 (2000).
    Google Scholar 
    Forsman, D. Flight Identification of Raptors of Europe, North Africa and the Middle East (Bloomsbury Publishing, 2016).
    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R Vol. 574 (Springer, 2009).Book 
    MATH 

    Google Scholar 
    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).Article 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    Barton, K. MuMIn: Multi-Model Inference. R package version 1.46.0. (2022).Cutler, T. L. & Swann, D. E. Using remote photography in wildlife ecology: A review. Wildl. Soc. Bull. 27, 571–581 (1999).
    Google Scholar 
    Richardson, C. T. & Miller, C. K. Recommendations for protecting raptors from human disturbance: A review. Wildl. Soc. Bull. 25, 634–638 (1997).
    Google Scholar 
    Balbontin, J., Penteriani, V. & Ferrer, M. Variations in the age of mates as an early warning signal of changes in population trends? The case of Bonelli’s eagle in Andalusia. Biol. Conserv. 109, 417–423 (2003).Article 

    Google Scholar 
    Martinez, J. A. et al. Breeding performance, age effects and territory occupancy in a Bonelli’s eagle Hieraaetus fasciatus population. Ibis 150, 223–233 (2008).Article 

    Google Scholar 
    Sánchez-Zapata, J., Calvo, J., Carrete, M. & Martínez, J. Age and breeding success of a Golden Eagle Aquila chrysaetos population in southeastern Spain. Bird Study 47, 235–237 (2000).Article 

    Google Scholar 
    Ferrer, M., Penteriani, V., Balbontin, J. & Pandolfi, M. The proportion of immature breeders as a reliable early warning signal of population decline: Evidence from the Spanish imperial eagle in Donana. Biol. Conserv. 114, 463–466 (2003).Article 

    Google Scholar 
    Cano, A. & Parrinder, E. Studies of less familiar birds, Bonelli’s Eagle. Br. Birds 54, 422–427 (1961).
    Google Scholar 
    Blondel, J., Coulon, L., Girerd, B. & Hortigue, M. Deux cents heures d’observation aupre‘s de l’aire de l’Aigle de Bonelli Hieraaetus fasciatus. Nos Oiseaux 30, 37–60 (1969).
    Google Scholar 
    Vaucher, C. Notes sur 1’ethologie de I’Aigle de Bonelli. Nos Oiseaux 31, 101–111 (1971).
    Google Scholar 
    Elósegui, J. Informe preliminar sobre alimentación de aves rapaces en Navarra y provincias limítrofes. Ardeola 19, 249–256 (1974).
    Google Scholar 
    Cheylan, G. L. place trophique de l’Aigle de Bonelli Hieraaetus fasciatus dans les biocénoses méditerranéennes. Alauda 45, 1–15 (1977).
    Google Scholar 
    Palma, L., Cancela da Fonseca, L. & Oliveira, L. L’alimentation de l’aigle de Bonelli Hieraaetus fasciatus dans la coˆte portugaise. Rapinyaires Mediterranis 2, 87–96 (1984).
    Google Scholar 
    Real, J. Biases in diet study methods in the Bonelli’s eagle. J. Wildl. Manag. 60, 632–638 (1996).Article 

    Google Scholar 
    Gil-Sánchez, J. M., Molino, F., Valenzuela, G. & Moleón, M. Demografía y alimentación del Águila-azor Perdicera (Hieraaetus fasciatus) en la provincia de Granada. Ardeola 47, 69–75 (2000).
    Google Scholar 
    Ontiveros, D., Pleguezuelos, J. M. & Caro, J. Prey density, prey detectability and food habits: The case of Bonelli’s eagle and the conservation measures. Biol. Conserv. 123, 19–25 (2005).Article 

    Google Scholar 
    Moleón, M. et al. Large-scale spatio-temporal shifts in the diet of a predator mediated by an emerging infectious disease of its main prey. J. Biogeogr. 36, 1502–1515 (2009).Article 

    Google Scholar 
    Resano-Mayor, J. et al. Diet–demography relationships in a long-lived predator: From territories to populations. Oikos 125, 262–270 (2016).Article 

    Google Scholar 
    Di Vittorio, M. et al. Long-term changes in the breeding period diet of Bonelli’s eagle (Aquila fasciata) in Sicily, Italy. Wildl. Res. 46, 409–414 (2019).Article 

    Google Scholar  More

  • in

    Neolithic dental calculi provide evidence for environmental proxies and consumption of wild edible fruits and herbs in central Apennines

    Asevedo, L. et al. Palynological analysis of dental calculus from Pleistocene proboscideans of southern Brazil: a new approach for paleodiet and paleoenvironmental reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 540, 109523 (2020).Article 

    Google Scholar 
    Cristiani, E. et al. Wild cereal grain consumption among Early Holocene foragers of the Balkans predates the arrival of agriculture. Elife 10, e72976 (2021).Article 
    CAS 

    Google Scholar 
    Nava, A. et al. Multipronged dental analyses reveal dietary differences in last foragers and first farmers at Grotta Continenza, central Italy (15,500–7000 BP). Sci. Rep. 11, 1–14 (2021).Article 

    Google Scholar 
    Ottoni, C. et al. Tracking the transition to agriculture in Southern Europe through ancient DNA analysis of dental calculus. Proc. Natl. Acad. Sci. USA 118, e2102116118 (2021).Article 
    CAS 

    Google Scholar 
    Cammidge, T. S., Kooyman, B. & Theodor, J. M. Diet reconstructions for end-Pleistocene Mammut americanum and Mammuthus based on comparative analysis of mesowear, microwear, and dental calculus in modern Loxodonta africana. Palaeogeogr. Palaeoclimatol. Palaeoecol. 538, 109403 (2020).Article 

    Google Scholar 
    de Oliveira, K. et al. From oral pathology to feeding ecology: the first dental calculus paleodiet study of a South American native megamammal. J. S. Am. Earth Sci. 109, 103281 (2021).Article 

    Google Scholar 
    Mothé, D. et al. The micro from mega: dental calculus description and the first record of fossilized oral bacteria from an extinct proboscidean. Int. J. Paleopathol. 33, 55–60 (2021).Article 

    Google Scholar 
    Eglinton, G. & Logan, G. A. Molecular preservation. Philosophical Transactions of the Royal Society of London. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 333, 315–328 (1991).CAS 

    Google Scholar 
    Romanowski, G., Lorenz, M. G. & Wackernagel, W. Adsorption of plasmid DNA to mineral surfaces and protection against Dnase I. Appl. Environ. Microbiol. 57, 1057–1061 (1991).Article 
    CAS 

    Google Scholar 
    Milanesi, C. et al. Ultrastructural study of archaeological Vitis vinifera L. seeds using rapid-freeze fixation and substitution. Tissue Cell 41, 443–447 (2009).Article 
    CAS 

    Google Scholar 
    Power, R. C., Salazar-García, D. C., Wittig, R. M., Freiberg, M., & Henry, A. G. Dental calculus evidence of Taï Forest chimpanzee plant consumption and life history transitions. Sci. Rep. 5, 15161 (2015).Goude, G. et al. A multidisciplinary approach to Neolithic life reconstruction. J. Archaeol. Method Theory 26, 537–560 (2019).Article 

    Google Scholar 
    Farrer, A. G. et al. Effectiveness of decontamination protocols when analyzing ancient DNA preserved in dental calculus. Sci. Rep. 11, 1–14 (2021).Article 

    Google Scholar 
    Weyrich, L. S., Dobney, K. & Cooper, A. Ancient DNA analysis of dental calculus. J. Hum. Evol. 79, 119–124 (2015).Article 

    Google Scholar 
    Ozga, A. T. et al. Successful enrichment and recovery of whole mitochondrial genomes from ancient human dental calculus. Am. J. Phys. Anthropol. 160, 220–228 (2016).Article 

    Google Scholar 
    Mann, A. E. et al. Do I have something in my teeth? The trouble with genetic analyses of diet from archaeological dental calculus. Quat. Int. https://doi.org/10.1016/j.quaint.2020.11.019 (2020).Wright, S. L., Dobney, K. & Weyrich, L. S. Advancing and refining archaeological dental calculus research using multiomic frameworks. Sci. Technol. Archaeol. Res. 7, 13–30 (2021).
    Google Scholar 
    Sawafuji, R., Saso, A., Suda, W., Hattori, M. & Ueda, S. Ancient DNA analysis of food remains in human dental calculus from the Edo period, Japan. PLoS One 15, e0226654 (2020).Article 
    CAS 

    Google Scholar 
    Weyrich, L. S. et al. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544, 357–361 (2017).Article 
    CAS 

    Google Scholar 
    Ottoni, C. et al. Metagenomic analysis of dental calculus in ancient Egyptian baboons. Sci. Rep. 9, 1–10 (2019).Article 

    Google Scholar 
    Hollingsworth, P. M., Graham, S. W. & Little, D. P. Choosing and using a Plant DNA barcode. PLoS One 6, 1–13 (2011).Article 

    Google Scholar 
    Gismondi, A., Fanali, F., Labarga, J. M. M., Caiola, M. G. & Canini, A. Crocus sativus L. genomics and different DNA barcode applications. Plant Syst. Evol. 299, 1859–1863 (2013).Article 
    CAS 

    Google Scholar 
    ICSN. The international code for starch nomenclature, accessed 15 September 2021; http://fossilfarm.org/ICSN/Code.html (2011).Gismondi, A. et al. Starch granules: a data collection of 40 food species. Plant Biosyst. 153, 273–279 (2019).Article 

    Google Scholar 
    Henry, A. G., Brooks, A. S. & Piperno, D. R. Plant foods and the dietary ecology of Neanderthals and early modern humans. J. Hum. Evol. 69, 44–54 (2014).Article 

    Google Scholar 
    PalDat. A palynological database (2000 onwards), accessed 19 January 2022; https://www.paldat.org/ (2019).Berglund, B. E. & Ralska-Jasiewiczowa, M. Pollen analysis and pollen diagrams. In Handbook of Holocene Palaeoecology and Palaeohydrology (ed. Berglund, B. E.) 455–484 (Wiley, 1986).Faegri, K. & Iversen, J. Textbook of Pollen analysis, 4th edn (eds Faegri, K. et al.) (John Wiley and Sons-Chichester, 1989).Grímsson, F. et al. Fagaceae pollen from the early Cenozoic of West Greenland: revisiting Engler’s and Chaney’s Arcto-Tertiary hypotheses. Plant Syst. Evol. 301, 809–832 (2015).Article 

    Google Scholar 
    Denk, T. & Tekleva, M. V. Pollen morphology and ultrastructure of Quercus with focus on Group Ilex (= Quercus Subgenus Heterobalanus (Oerst.) Menitsky): Implications for oak systematics and evolution. Grana 53, 255–282 (2014).Article 

    Google Scholar 
    Grímsson, F. & Zetter, R. Combined LM and SEM study of the middle Miocene (Sarmatian) palynofora from the Lavanttal Basin, Austria: Part II. Pinophyta (Cupressaceae, Pinaceae and Sciadopityaceae). Grana 50, 262–310 (2011).Article 

    Google Scholar 
    Mohanty, R. P., Buchheim, M. A., Portman, R. & Levetin, E. Molecular and ultrastructural detection of plastids in Juniperus (Cupressaceae) pollen. Phytologia 98, 298–310 (2016).
    Google Scholar 
    Martin, A. C. & Harvey, W. J. The Global Pollen Project: a new tool for pollen identifcation and the dissemination of physical reference collections. Methods Ecol. Evol. 8, 892–897 (2017).Article 

    Google Scholar 
    Maciejewska-Rutkowska, I., Bocianowski, J. & Wrońska-Pilarek, D. Pollen morphology and variability of Polish native species from genus Salix L. PLoS One 16, e0243993 (2021).Article 
    CAS 

    Google Scholar 
    Abreu, I., Costa, I., Oliveira, M., Cunha, M. & De Castro, R. Ultrastructure and germination of Vitis vinifera cv. Loureiro pollen. Protoplasma 228, 131–135 (2006).Article 
    CAS 

    Google Scholar 
    Nagels, A. et al. Palynological diversity and major evolutionary trends in Cyperaceae. Plant Syst. Evol. 277, 117 (2009).Article 

    Google Scholar 
    El Ghazali, G. E. Pollen morphological studies in Amaranthaceae s. lat. (incl. Chenopodiaceae) and their taxonomic significance: a review. Grana 61, 1–7 (2022).Article 

    Google Scholar 
    Petraco, N., & Kubic, T. Color Atlas and Manual of Microscopy for Criminalists, Chemists, and Conservators (Boca Raton-CRC Press, 2003).D’Agostino, A. et al. Environmental implications and evidence of natural products from dental calculi of a Neolithic–Chalcolithic community (central Italy). Sci. Rep. 11, 1–13 (2021).Article 

    Google Scholar 
    Frangiote-Pallone, S. & de Souza, L. A. Pappus and cypsela ontogeny in Asteraceae: structural considerations of the tribal category. Rev. Mex. Biodivers. 85, 62–77 (2014).Article 

    Google Scholar 
    Eglinton, G., Gonzalez, A. G., Hamilton, R. J. & Raphael, R. A. Hydrocarbon constituents of the wax coatings of plant leaves: a taxonomic survey. Phytochemistry 1, 89–102 (1962).Article 
    CAS 

    Google Scholar 
    Buckley, S. A., Stott, A. W. & Evershed, R. P. Studies of organic residues from ancient Egyptian mummies using high temperature-gas chromatography-mass spectrometry and sequential thermal desorption-gas chromatography-mass spectrometry and pyrolysis-gas chromatography-mass spectrometry. Analyst 124, 443–452 (1999).Article 
    CAS 

    Google Scholar 
    Hardy, K. et al. Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften 99, 617–626 (2012).Article 
    CAS 

    Google Scholar 
    Luong, S., Tocheri, M. W., Sutikna, T., Saptomo, E. W. & Roberts, R. G. Incorporating terpenes, monoterpenoids and alkanes into multiresidue organic biomarker analysis of archaeological stone artefacts from Liang Bua (Flores, Indonesia). J. Archaeol. Sci. Rep. 19, 189–199 (2018).
    Google Scholar 
    Luong, S. et al. Combined organic biomarker and use-wear analyses of stone artefacts from Liang Bua, Flores, Indonesia. Sci. Rep. 9, 1–17 (2019).Article 
    CAS 

    Google Scholar 
    Dabney, J., Meyer, M. & Pääbo, S. Ancient DNA damage. Cold Spring Harb. Perspect. Biol. 5, a012567 (2013).Article 

    Google Scholar 
    Mann, A. E. et al. Differential preservation of endogenous human and microbial DNA in dental calculus and dentin. Sci. Rep. 8, 1–15 (2018).Article 

    Google Scholar 
    Horrocks, M., Nieuwoudt, M. K., Kinaston, R., Buckley, H. & Bedford, S. Microfossil and Fourier Transform InfraRed analyses of Lapita and post-Lapita human dental calculus from Vanuatu, Southwest Pacific. J. R. Soc. N. Z. 44, 17–33 (2014).Article 

    Google Scholar 
    Radini, A., Nikita, E., Buckley, S., Copeland, L. & Hardy, K. Beyond food: the multiple pathways for inclusion of materials into ancient dental calculus. Am. J. Phys. Anthropol. 162, 71–83 (2017).Article 

    Google Scholar 
    Henry, A. G. Other microparticles: volcanic glass, minerals, insect remains, feathers, and other plant parts. In Handbook for the Analysis of Micro-Particles in Archaeological Samples 289–295 (Springer, Cham, 2020).MacKenzie, L., Speller, C. F., Holst, M., Keefe, K., & Radini, A. Dental calculus in the industrial age: human dental calculus in the Post-Medieval period, a case study from industrial Manchester. Quat. Int. https://doi.org/10.1016/j.quaint.2021.09.020 (2021).Radini, A., & Nikita, E. Beyond dirty teeth: Integrating dental calculus studies with osteoarchaeological parameters. Quat. Int. https://doi.org/10.1016/j.quaint.2022.03.003 (2022).Dobney, K. & Brothwell, D. A scanning electron microscope study of archaeological dental calculus. In Scanning Electron Microscopy in Archaeology BAR International Series (ed. & Olsen S), vol. 452, pp. 372–385 (Oxford, UK: BAR, 1988).Henry, A. G. & Piperno, D. R. Using plant microfossils from dental calculus to recover human diet: a case study from Tell al-Raqā’i, Syria. J. Archaeol. Sci. 35, 1943–1950 (2008).Article 

    Google Scholar 
    Wesolowski, V., de Souza, S. M. F. M., Reinhard, K. J. & Ceccantini, G. Evaluating microfossil content of dental calculus from Brazilian sambaquis. J. Archaeol. Sci. 37, 1326–1338 (2010).Article 

    Google Scholar 
    González-Guarda, E. et al. Multiproxy evidence for leaf-browsing and closed habitats in extinct proboscideans (Mammalia, Proboscidea) from Central Chile. Proc. Natl. Acad. Sci. USA 115, 9258–9263 (2018).Article 

    Google Scholar 
    Radley, J. A. Starch and its Derivatives (Chapman and Hall, London, 1968).Power, R. C., Salazar-García, D. C., Wittig, R. M. & Henry, A. G. Assessing use and suitability of scanning electron microscopy in the analysis of micro remains in dental calculus. J. Archaeol. Sci. 49, 160–169 (2014).Article 
    CAS 

    Google Scholar 
    Rottoli, M. & Castiglioni, E. Prehistory of plant growing and collecting in northern Italy, based on seed remains from the early Neolithic to the Chalcolithic (c. 5600–2100 cal BC). Veg. Hist. Archaeobot. 18, 91–103 (2009).Article 

    Google Scholar 
    Fiorentino, G. et al. Climate changes and human–environment interactions in the Apulia region of southeastern Italy during the Neolithic period. Holocene 23, 1297–1316 (2013).Article 

    Google Scholar 
    Rottoli, M., & Pessina, A. Neolithic agriculture in Italy: an update of archaeobotanical data with particular emphasis on northern settlements. In The Origins and Spread of Domestic Plants in Southwest Asia and Europe 157–170 (Routledge, 2016).Arobba, D., Panelli, C., Caramiello, R., Gabriele, M. & Maggi, R. Cereal remains, plant impressions and 14C direct dating from the Neolithic pottery of Arene Candide Cave (Finale Ligure, NW Italy). J. Archaeol. Sci. Rep. 12, 395–404 (2017).
    Google Scholar 
    Ucchesu, M., Sau, S. & Lugliè, C. Crop and wild plant exploitation in Italy during the Neolithic period: New data from Su Mulinu Mannu, Middle Neolithic site of Sardinia. J. Archaeol. Sci. Rep. 14, 1–11 (2017).
    Google Scholar 
    Scorrano, G. et al. Effect of Neolithic transition on an Italian community: Mora Cavorso (Jenne, Rome). Archaeol. Anthropol. Sci. 11, 1443–1459 (2019).Article 

    Google Scholar 
    De Angelis, F. et al. Exploring mobility in Italian Neolithic and Copper Age communities. Sci. Rep. 11, 1–14 (2021).Article 

    Google Scholar 
    Oxilia, G. et al. Exploring late Paleolithic and Mesolithic diet in the Eastern Alpine region of Italy through multiple proxies. Am. J. Phys. Anthropol. 174, 232–253 (2021).Article 

    Google Scholar 
    Fahmy, A. G. E. Palaeoethnobotanical studies of the Neolithic settlement in Hidden Valley, Farafra Oasis, Egypt. Veg. Hist. Archaeobot. 10, 235–246 (2001).Article 

    Google Scholar 
    Reed, K. From the field to the hearth: plant remains from Neolithic Croatia (ca. 6000–4000 cal bc). Veg. Hist. Archaeobot. 24, 601–619 (2015).Article 

    Google Scholar 
    Lucarini, G., Radini, A., Barton, H. & Barker, G. The exploitation of wild plants in Neolithic North Africa. Use-wear and residue analysis on non-knapped stone tools from the Haua Fteah cave, Cyrenaica, Libya. Quat. Int. 410, 77–92 (2016).Article 

    Google Scholar 
    García-Granero, J. J., Urem-Kotsou, D., Bogaard, A. & Kotsos, S. Cooking plant foods in the northern Aegean: microbotanical evidence from Neolithic Stavroupoli (Thessaloniki, Greece). Quat. Int. 496, 140–151 (2018).Article 

    Google Scholar 
    Bouby, L. et al. Early Neolithic (ca. 5850-4500 cal BC) agricultural diffusion in the Western Mediterranean: an update of archaeobotanical data in SW France. PLoS One 15, e0230731 (2020).Article 
    CAS 

    Google Scholar 
    Delhon, C., Binder, D., Verdin, P. & Mazuy, A. Phytoliths as a seasonality indicator? The example of the Neolithic site of Pendimoun, south-eastern France. Veg. Hist. Archaeobot. 29, 229–240 (2020).Article 

    Google Scholar 
    Lu, H. et al. Phytoliths analysis for the discrimination of foxtail millet (Setaria italica) and common millet (Panicum miliaceum). PLoS One 4, e4448 (2009).Article 

    Google Scholar 
    Celant, A. Indagini paleobotaniche su macroresti vegetali dai siti neo-eneolitici del territorio di Roma. In Roma prima del mito. Abitati e necropoli dal Neolitico alla prima età dei Metalli nel territorio di Roma (VI-III millennio a.C.) (eds Anzidei, A. P. & Carboni, C.) Vol. 2, 687–704 (Archaeopress Archaeol., 2020).Carra, M. et al. Plant foods in the Late Palaeolithic of Southern Italy and Sicily: Integrating carpological and dental calculus evidence. Quat. Int. https://doi.org/10.1016/j.quaint.2022.06.007 (2022) .Bednar, G. E. et al. Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine model. J. Nutr. 131, 276–286 (2001).Article 
    CAS 

    Google Scholar 
    Hoover, R., Hughes, T., Chung, H. J. & Liu, Q. Composition, molecular structure, properties, and modification of pulse starches: a review. Food Res. Int. 43, 399–413 (2010).Article 
    CAS 

    Google Scholar 
    Wani, I. A. et al. Isolation, composition, and physicochemical properties of starch from legumes: a review. Starch‐Stärke 68, 834–845 (2016).Article 
    CAS 

    Google Scholar 
    Tayade, R., Kulkarni, K. P., Jo, H., Song, J. T. & Lee, J. D. Insight into the prospects for the improvement of seed starch in legume—a review. Front. Plant Sci. 10, 1213 (2019).Article 

    Google Scholar 
    Stafford, H. A. Distribution of tartaric acid in the leaves of certain angiosperms. Am. J. Bot. 46, 347–352 (1959).Article 
    CAS 

    Google Scholar 
    DeBolt, S., Cook, D. R. & Ford, C. M. L-Tartaric acid synthesis from vitamin C in higher plants. Proc. Natl. Acad. Sci. USA 103, 5608–5613 (2006).Article 
    CAS 

    Google Scholar 
    Fernández-García, E. et al. Carotenoids bioavailability from foods: from plant pigments to efficient biological activities. Food Res. Int. 46, 438–450 (2012).Article 

    Google Scholar 
    Gliszczyńska, A. & Brodelius, P. E. Sesquiterpene coumarins. Phytochem. Rev. 11, 77–96 (2012).Article 

    Google Scholar 
    Eerkens, J. The preservation and identification of Piñon resins by GC‐MS in pottery from the Western Great Basin. Archaeometry 44, 95–105 (2002).Article 
    CAS 

    Google Scholar 
    Barnard, H. et al. Mixed results of seven methods for organic residue analysis applied to one vessel with the residue of a known foodstuff. J. Archaeol. Sci. 34, 28–37 (2007).Article 

    Google Scholar 
    Wysocka, W., Przybył, A. & Brukwicki, T. The structure of angustifoline, an alkaloid of Lupinus angustifolius, in solution. Monatsh. Chem. 125, 1267–1272 (1994).Article 
    CAS 

    Google Scholar 
    Ohmiya, S., Saito, K., & Murakoshi, I. Lupine alkaloids. In The alkaloids: Chemistry and Pharmacology Vol. 47, 1–114) (Academic Press, 1995).Mancinotti, D., Frick, K. M. & Geu-Flores, F. Biosynthesis of quinolizidine alkaloids in lupins: mechanistic considerations and prospects for pathway elucidation. Nat. Prod. Rep. 39, 1423–1437 (2022).Article 
    CAS 

    Google Scholar 
    Silvestri, L., Achino, K. F., Gatta, M., Rolfo, M. F. & Salari, L. Grotta Mora Cavorso: physical, material and symbolic boundaries of life and death practices in a Neolithic cave of central Italy. Quat. Int. 539, 29–38 (2020).Article 

    Google Scholar 
    Steele, V. J., Stern, B. & Stott, A. W. Olive oil or lard?: distinguishing plant oils from animal fats in the archaeological record of the eastern Mediterranean using gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 24, 3478–3484 (2010).Article 
    CAS 

    Google Scholar 
    Buonasera, T. Investigating the presence of ancient absorbed organic residues in groundstone using GC–MS and other analytical techniques: a residue study of several prehistoric milling tools from central California. J. Archaeol. Sci. 34, 1379–1390 (2007).Article 

    Google Scholar 
    Luong, S. et al. Development and application of a comprehensive analytical workflow for the quantification of non-volatile low molecular weight lipids on archaeological stone tools. Anal. Met. 9, 4349–4362 (2017).Article 
    CAS 

    Google Scholar 
    Baeten, J., Jervis, B., De Vos, D. & Waelkens, M. Molecular evidence for the mixing of Meat, Fish and Vegetables in Anglo‐Saxon coarseware from Hamwic, UK. Archaeometry 55, 1150–1174 (2013).Article 
    CAS 

    Google Scholar 
    Evershed, R. P. Chemical composition of a bog body adipocere. Archaeometry 34, 253–265 (1992).Article 
    CAS 

    Google Scholar 
    Garnier, N., Bernal-Casasola, D., Driard, C. & Pinto, I. V. Looking for ancient fish products through invisible biomolecular residues in the roman production vats from the Atlantic. Coast J. Marit. Archaeol. 13, 285–328 (2018).Article 

    Google Scholar 
    Copley, M. S., Bland, H. A., Rose, P., Horton, M. & Evershed, R. P. Gas chromatographic, mass spectrometric and stable carbon isotopic investigations of organic residues of plant oils and animal fats employed as illuminants in archaeological lamps from Egypt. Analyst 130, 860–871 (2005).Article 
    CAS 

    Google Scholar 
    Reber, E. A. & Hart, J. P. Pine resins and pottery sealing: analysis of absorbed and visible pottery residues from central New York State. Archaeometry 50, 999–1017 (2008).Article 
    CAS 

    Google Scholar 
    Simopoulos, A. P. Omega‐3 fatty acids in wild plants, nuts and seeds. Asia Pac. J. Clin. Nutr. 11, S163–S173 (2002).Article 
    CAS 

    Google Scholar 
    Harris, W. S. et al. Stearidonic acid-enriched soybean oil increased the omega-3 index, an emerging cardiovascular risk marker. Lipids 43, 805–811 (2008).Article 
    CAS 

    Google Scholar 
    Gismondi, A., Rolfo, M. F., Leonardi, D., Rickards, O. & Canini, A. Identification of ancient Olea europaea L. and Cornus mas L. seeds by DNA barcoding. C. R. Biol. 335, 472–479 (2012).Article 
    CAS 

    Google Scholar 
    Steffens, W. & Wirth, M. Freshwater fish-an important source of n-3 polyunsaturated fatty acids: a review. Fish. Aquat. Sci. 13, 5–16 (2005).
    Google Scholar 
    Swanson, D., Block, R. & Mousa, S. A. Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv. Nutr. 3, 1–7 (2012).Article 
    CAS 

    Google Scholar 
    Wiermann, R., & Gubatz, S. Pollen wall and sporopollenin. In International Review of Cytology 35–72 (Academic Press, 1992).Cristiani, E., Radini, A., Edinborough, M. & Borić, D. Dental calculus reveals Mesolithic foragers in the Balkans consumed domesticated plant foods. Proc. Natl. Acad. Sci. USA 113, 10298–10303 (2016).Article 
    CAS 

    Google Scholar 
    Hardy, K. et al. Dental calculus reveals potential respiratory irritants and ingestion of essential plant-based nutrients at Lower Palaeolithic Qesem Cave Israel. Quat. Int. 398, 129–135 (2016).Article 

    Google Scholar 
    Radini, A. et al. Neanderthals, trees and dental calculus: new evidence from El Sidrón. Antiquity 90, 290–301 (2016).Article 

    Google Scholar 
    Lippi, M. M., Pisaneschi, L., Sarti, L., Lari, M. & Moggi-Cecchi, J. Insights into the Copper-Bronze Age diet in central Italy: plant microremains in dental calculus from Grotta dello Scoglietto (Southern Tuscany, Italy). J. Archaeol. Sci. Rep. 15, 30–39 (2017).
    Google Scholar 
    Modi, A. et al. Combined metagenomic and archaeobotanical analyses on human dental calculus: a cross-section of lifestyle conditions in a Copper Age population of central Italy. Quat. Int. https://doi.org/10.1016/j.quaint.2021.12.003 (2021).Warinner, C. et al. Pathogens and host immunity in the ancient human oral cavity. Nat. Genet. https://doi.org/10.1038/ng.2906 (2014).Lieverse, A. R. Diet and the aetiology of dental calculus. Int. J. Osteoarchaeol. 9, 219–232 (1999).Article 

    Google Scholar 
    Lukacs, J. R. & Largaespada, L. L. Explaining sex differences in dental caries prevalence: saliva, hormones, and “life‐history” etiologies. Am. J. Hum. Biol. 18, 540–555 (2006).Article 

    Google Scholar 
    Moore, P. D., Webb, J. A., & Collison, M. E. Pollen Analysis (Blackwell Scientific Publications, 1991).Borojević, K., Forenbaher, S., Kaiser, T. & Berna, F. Plant use at Grapčeva cave and in the eastern Adriatic Neolithic. J. Field Archaeol. 33, 279–303 (2008).Article 

    Google Scholar 
    Martin, L., Jacomet, S. & Tiebault, S. Plant economy during the Neolithic in a mountain context: the case of “Le Chenet des Pierres” in the French Alps (Bozel-Savoie, France). Veg. Hist. Archaeobot. 17, 113–122 (2008).Article 

    Google Scholar 
    Moser, D., Di Pasquale, G., Scarciglia, F. & Nelle, O. Holocene mountain forest changes in central Mediterranean: soil charcoal data from the Sila Massif (Calabria, southern Italy). Quat. Int. 457, 113–130 (2017).Article 

    Google Scholar 
    D’Agostino, A. et al. Pollen record of the Late Pleistocene–Holocene stratigraphic sequence and current plant biodiversity from Grotta Mora Cavorso (Simbruini Mountains, Central Italy). Ecol. Evol. 12, e9486 (2022).Radaeski, J. N., Bauermann, S. G. & Pereira, A. B. Poaceae pollen from Southern Brazil: distinguishing grasslands (campos) from forests by analyzing a diverse range of Poaceae species. Front. Plant Sci. 7, 1833 (2016).Article 

    Google Scholar 
    Turner, S. D. & Brown, A. G. Vitis pollen dispersal in and from organic vineyards: I. Pollen trap and soil pollen data. Rev. Palaeobot. Palynol. 129, 117–132 (2004).Article 

    Google Scholar 
    Marvelli, S., De’Siena, S., Rizzoli, E. & Marchesini, M. The origin of grapevine cultivation in Italy: the archaeobotanical evidence. Ann. Bot. 3, 155–163 (2013).
    Google Scholar 
    Riaz, S. et al. Genetic diversity analysis of cultivated and wild grapevine (Vitis vinifera L.) accessions around the Mediterranean basin and Central Asia. BMC Plant Biol. 18, 1–14 (2018).Article 

    Google Scholar 
    Arnold, C., Gillet, F., & Gobat, J. M. Situation de la vigne sauvage Vitis vinifera subsp. silvestris en Europe. Vitis 159–170 (1998).Terral, J. F. et al. Evolution and history of grapevine (Vitis vinifera) under domestication: new morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Ann. Bot. 105, 443–455 (2010).Article 

    Google Scholar 
    Buckley, S., Usai, D., Jakob, T., Radini, A. & Hardy, K. Dental calculus reveals unique insights into food items, cooking and plant processing in prehistoric central Sudan. PLoS One 9, e100808 (2014).Article 

    Google Scholar 
    Petrov, P. R., Popova, E. D. & Zlatanova, D. P. Niche partitioning among the red fox Vulpes vulpes (L.), stone marten Martes foina (Erxleben) and pine marten Martes martes (L.) in two mountains in Bulgaria. Acta Zool. Bulg. 68, 375–390 (2016).
    Google Scholar 
    Mikrjukov, K. A. Revision of genera and species composition of lower Centroheliozoa. II. Family Raphidiophryidae n. tam. Arch. Protistenkd. 147, 205–212 (1996).Article 

    Google Scholar 
    Cavalier-Smith, T. & von der Heyden, S. Molecular phylogeny, scale evolution and taxonomy of centrohelid heliozoa. Mol. Phylogen. Evol. 44, 1186–1203 (2007).Article 
    CAS 

    Google Scholar 
    Mertens, K. N., Rengefors, K., Moestrup, Ø. & Ellegaard, M. A review of recent freshwater dinoflagellate cysts: taxonomy, phylogeny, ecology and palaeocology. Phycologia 51, 612–619 (2012).Article 

    Google Scholar 
    Zlatogursky, V. V. Raphidiophrys heterophryoidea sp. nov. (Centrohelida: Raphidiophryidae), the first heliozoan species with a combination of siliceous and organic skeletal elements. Eur. J. Protist. 48, 9–16 (2012).Article 

    Google Scholar 
    Prokina, K. I. & Mylnikov, A. P. Centrohelid heliozoans from freshwater habitats of different types of South Patagonia and Tierra del Fuego, Chile. Inland Water Biol. 12, 10–20 (2019).Article 

    Google Scholar 
    Siemensma, F. J. & Roijackers, M. M. A study of new and little- known acanthocystid heliozoans, and a proposed division of the genus Acanthocystis (Actinopoda, Heliozoea). Arch. Protistenkd. 135, 197 (1988a).Article 

    Google Scholar 
    Siemensma, F. J. & Roijackers, M. M. The genus Raphidiophrys (Actinopoda, Heliozoea): scale morphology and species distinctions. Arch. Protistenkd. 136 237–248 (1988).Taylor, W.D. & Sanders, R. W. PROTOZOA. In Ecology and Classification of North American Freshwater Invertebrates (eds Thorp, J. H. & Covich, A. P.) 43–96 (Academic Press, 2001).Manconi, R., & Pronzato, R. Global diversity of sponges (Porifera: Spongillina) in freshwater. In Freshwater Animal Diversity Assessment 27–33 (Springer, Dordrecht, 2007).Malone, C. & Stoddart, S. The neolithic site of San Marco, Gubbio (Perugia), Umbria: survey and excavation 1985–7. Pap. Br. Sch. Rome 60, 1–69 (1992).Article 

    Google Scholar 
    Rottoli, M. La Marmotta, Anguillara Sabazia (RM). Scavi 1989. Analisi paletnobotaniche: prime risultanze, Appendice 1 M.A. In La Marmotta” (Anguillara Sabazia, RM). Scavi 1989. Un abitato perilacustre di età neolitica (eds. Fugazzola Delpino, M. A., D’Eugenio, G. & Pessina, A.) Bullettino di Paletnologia Italiana 84, 305–315 (1993).Pini, R. Late Neolithic vegetation history at the pile‐dwelling site of Palù di Livenza (northeastern Italy). J. Quat. Sci. 19, 769–781 (2004).Article 

    Google Scholar 
    Tinner, W. et al. Holocene environmental and climatic changes at Gorgo Basso, a coastal lake in southern Sicily, Italy. Quat. Sci. Rev. 28, 1498–1510 (2009).Article 

    Google Scholar 
    Bieniek, A. Archaeobotanical analysis of some early Neolithic settlements in the Kujawy region, central Poland, with potential plant gathering activities emphasized. Veg. Hist. Archaeobot. 11, 33–40 (2002).Article 

    Google Scholar 
    Tolar, T., Jacomet, S., Velušček, A. & Čufar, K. Plant economy at a late Neolithic lake dwelling site in Slovenia at the time of the Alpine Iceman. Veg. Hist. Archaeobot. 20, 207–222 (2011).Article 

    Google Scholar 
    D’Agostino, A. et al. Investigating plant micro-remains embedded in dental calculus of the Phoenician inhabitants of Motya (Sicily, Italy). Plants 9, 1395 (2020).Article 

    Google Scholar 
    Mercader, J. et al. Exaggerated expectations in ancient starch research and the need for new taphonomic and authenticity criteria. Facets 3, 777–798 (2018).Article 

    Google Scholar 
    Adojoh, O., Fabienne, M., Duller, R. & Osterloff, P. Taxonomy and phytoecology of palynomorphs and non-pollen palynomorphs: a refined compendium from the West Africa Margin. Biodivers. Int. J. 3, 188–200 (2019).Article 

    Google Scholar 
    Knapp, M., Clarke, A. C., Horsburgh, K. A. & Matisoo-Smith, E. A. Setting the stage building and working in an ancient DNA laboratory. Ann. Anat. 194, 3 (2012).Article 
    CAS 

    Google Scholar 
    Knapp, M., Lalueza-Fox, C. & Hofreiter, M. Re-inventing ancient human DNA. Investig. Genet. 6, 1 (2015).Article 

    Google Scholar 
    Gismondi, A. et al. Grapevine carpological remains revealed the existence of a Neolithic domesticated Vitis vinifera L. specimen containing ancient DNA partially preserved in modern ecotypes. J. Archaeol. Sci. 69, 75–84 (2016).Article 
    CAS 

    Google Scholar 
    Llamas, B. et al. From the field to the laboratory: controlling DNA contamination in human ancient DNA research in the high-throughput sequencing era. Sci. Technol. Archaeol. Res. 3, 1–14 (2017).Le Moyne, C. & Crowther, A. Effects of chemical pre-treatments on modified starch granules: recommendations for dental calculus decalcification for ancient starch research. J. Archaeol. Sci. Rep. 35, 102762 (2021).
    Google Scholar 
    Rolfo, M. F., Achino, K. F., Fusco, I., Salari, L. & Silvestri, L. Reassessing human occupation patterns in the inner central Apennines in prehistory: the case-study of Grotta Mora Cavorso. J. Archaeol. Sci. Rep. 7, 358–367 (2016).
    Google Scholar  More