Larvicidal and repellent potential of Ageratum houstonianum against Culex pipiens
El-Naggar, H. A. & Hasaballah, A. I. Acute larvicidal toxicity and repellency effect of Octopus cyanea crude extracts against the filariasis vector, Culex pipiens. J. Egypt. Soc. Parasitol. 48(3), 721–728 (2018).Article
Google Scholar
Koenraadt, C. J. M., Möhlmann, T. W. R., Verhulst, N. O., Spitzen, J. & Vogels, C. B. F. Effect of overwintering on survival and vector competence of the West Nile virus vector Culex pipiens. Parasit. Vectors 12, 147. https://doi.org/10.1186/s13071-019-3400-4 (2019).Article
Google Scholar
Vloet, R. P. M. et al. Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes. PLoS Negl. Trop. Dis. 11, e0006145. https://doi.org/10.1371/journal.pntd.0006145 (2017).Article
CAS
Google Scholar
Dyab, A. K., Galal, L. A., Mahmoud, A. E. & Mokhtar, Y. Finding Walachia in filarial larvae and culicidae mosquitoes in upper Egypt governorate. Korean J. Parasitol. 54, 265–272 (2016).Article
CAS
Google Scholar
Clements, A. N. & Harbach, R. E. Controversies over the scientific name of the principal mosquito vector of yellow fever virus—Expediency versus validity. J. Vector Ecol. 43, 1–14. https://doi.org/10.1111/jvec.12277 (2018).Article
Google Scholar
Nchoutpouen, E. et al. Culex species diversity, susceptibility to insecticides and role as potential vector of Lymphatic filariasis in the city of Yaoundé, Cameroon. PLoS Negl. Trop. Dis. 13(4), 7229. https://doi.org/10.1371/journal.pntd.0007229 (2019).Article
Google Scholar
Shah, R. M. et al. Toxicity of 25 synthetic insecticides to the field population of Culex quinquefasciatus Say. Parasitol. Res. 115(11), 4345–4351 (2016).Article
Google Scholar
Senthil-Nathan, S. A review of resistance mechanisms of synthetic insecticides and botanicals, phytochemicals, and essential oils as alternative larvicidal agents against mosquitoes. Front. Physiol. 10, 1591. https://doi.org/10.3389/fphys.2019.01591 (2020).Article
Google Scholar
Pavela, R. et al. Traditional herbal remedies and dietary spices from Cameroon as novel sources of larvicides against filariasis mosquitoes? Parasitol. Res. 115(12), 4617–4626 (2016).Article
Google Scholar
Samuel, T. et al. In vitro antimicrobial activity of Ageratum houstonianum Mill. (Asteraceae). Food Sci. 35, 2897–2900 (2011).
Google Scholar
Boussaada, O. et al. Insecticidal activity of some Asteraceae plant extracts against Tribolium confusum. Bull. Insectol. 61(2), 8435 (2008).
Google Scholar
Samuel, T., Ravindran, J., Eapen, A. & William, J. Repellent activity of Ageratum houstonianum Mill. (Asteraceae) leaf extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Asian Pac. J. Trop. Dis. 2(6), 478–480 (2012).Article
Google Scholar
Samuel, T., Ravindran, K. J., Eapen, A. & William, S. J. Effect of Ageratum houstonianum Mill. (Asteraceae) leaf extracts on the oviposition activity of Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol. Res. 111, 2295–2299 (2012).Article
Google Scholar
Tennyson, S. et al. In vitro antioxidant activity of Ageratum houstonianum Mill. (Asteraceae). Asian Pac. J. Trop. Dis. 2, S712–S714 (2012).Article
Google Scholar
Sharma, P. D. & Sharma, O. P. Natural products chemistry, and biological properties of the Ageratum plant. Toxicol. Environ. Chem. 50, 213–232 (1995).Article
CAS
Google Scholar
Bodner, C. C. & Gereau, R. E. A contribution of Bontoc ethnobotany. Econ. Bot. 42(3), 307–369 (1988).Article
Google Scholar
Wiedenfeld, H. & Andrade-Cetto, A. Pyrrolizidine alkaloids from Ageratum houstononiaum Mill.. Phytochemistry 57(8), 1269–1271 (2001).Article
CAS
Google Scholar
Siebertz, R., Proksch, P., Wray, V. & Witte, L. A benzofuran from Ageratum houstononiaum Mill.. Phytochemistry 27(12), 3996–3997 (1988).Article
CAS
Google Scholar
Quijano, L., Calderon, J. S., Garibay, E., Escobar, E. & Rios, T. Further polysubstituted flavones from Ageratum houstononiaum Mill.. Phytochemistry 26(7), 2075–2978 (1987).Article
CAS
Google Scholar
Kundu, A. & Vadassery, J. Chlorogenic acid-mediated chemical defence of plants against insect herbivores. Plant Biol. (Stuttg.) 21(2), 185–189. https://doi.org/10.1111/plb.12947 (2019).Article
CAS
Google Scholar
War, A. R. et al. Effect of plant secondary metabolites on legume pod borer Helicoverpa armigera. J. Pest Sci. 86, 399–408 (2013).Article
Google Scholar
Cipollini, D., Stevenson, R., Enright, S., Eyles, A. & Bonello, P. Phenolic metabolites in leaves of the invasive shrub, Lonicera maackii, and their potential phytotoxic and anti-herbivore effects. J. Chem. Ecol. 34, 144–152. https://doi.org/10.1007/s10886-008-9426-2 (2008).Article
CAS
Google Scholar
Regnault-Roger, C. et al. Polyphenolic compounds of Mediterranean Lamiaceae and investigation of orientational effects on Acanthoscelides obtectus (Say). J. Stored Prod. Res. 40, 395–408 (2004).Article
CAS
Google Scholar
Khan, S. et al. Bioactivity-guided isolation of rosmarinic acid as the principle bioactive compound from the butanol extract of Isodon rugosus against the pea aphid, Acyrthosiphon pisum. PLoS ONE 14(6), e0215048. https://doi.org/10.1371/journal.pone.0215048 (2019).Article
CAS
Google Scholar
War, A., Sharma, S. P. & Sharma, H. C. Differential induction of flavonoids in groundnut in response to Helicoverpa armigera and Aphis craccivora infestation. Int. J. Insect Sci. 8, 55–64. https://doi.org/10.4137/IJIS.S39619 (2016).Article
Google Scholar
Al Jabr, A. M., Hussain, A., Rizwan-ul-Haq, M. & Al-Ayedh, H. Toxicity of plant secondary metabolites modulating detoxification genes expression for natural red palm weevil pesticide development. Molecules 22, 169. https://doi.org/10.3390/molecules22010169 (2017).Article
CAS
Google Scholar
Moreira, M. D. et al. Plant compounds insecticide activity against coleoptera pests of stored products. Pesqui. Agropecu. Bras. 42(7), 909–915 (2007).Article
Google Scholar
Ahuchaogu, A. A. et al. GC-MS analysis of bioactive compounds from whole plant chloroform extract of Ageratum conyzoides. Int. J. Med. Plants Nat. Prod. 4(2), 13–24. https://doi.org/10.20431/2454-7999.0402003 (2018).Article
Google Scholar
Zhao, P.-L., Li, J. & Yang, G.-F. Synthesis, and insecticidal activity of chromanone and chromone analogues of diacylhydrazines. Bioorg. Med. Chem. 15, 1888–1895 (2007).Article
CAS
Google Scholar
Hussein, M. A. et al. Synthesis, molecular docking and insecticidal activity evaluation of chromones of date palm pits extract against Culex pipiens (Diptera: Culicidae). Int. J. Mosq. Res. 5(4), 22–32 (2018).
Google Scholar
Li, F. et al. Synthesis and pharmacological evaluation of novel chromone derivatives as balanced multifunctional agents against Alzheimer’s disease. Bioorg. Med. Chem. 25(14), 3815–3826. https://doi.org/10.1016/j.bmc.2017.05.027 (2017).Article
CAS
Google Scholar
Feldlaufer, M. F. & Eberle, M. W. Insecticidal effect of precocene II on the human body louse, Pediculus humanus. Trans. R. Soc. Trop. Med. Hyg. 74(3), 398–399. https://doi.org/10.1016/0035-9203(80)90110-8 (1980).Article
CAS
Google Scholar
Lu, X. N., Liu, X. C., Liu, Q. Z. & Liu, Z. L. Isolation of insecticidal constituents from the essential oil of Ageratum houstonianum Mill. against Liposcelis bostrychophila Badonnel. J. Chem. 2014, 6. https://doi.org/10.1155/2014/645687 (2014).Article
CAS
Google Scholar
Pratt, G. & Bowers, W. Precocene II inhibits juvenile hormone biosynthesis by cockroach Corpora allata in vitro. Nature 265, 548–550. https://doi.org/10.1038/265548a0 (1977).Article
ADS
CAS
Google Scholar
Kumar, K. G. A. et al. Chemo-profiling and bioassay of phytoextracts from Ageratum conyzoides for acaricidal properties against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) infesting cattle and buffaloes in India. Ticks Tick-Borne Dis. 7(2), 342–349 (2016).Article
Google Scholar
Fahmi, A. G., Nassar, M., Mansour, E. & Salama, R. Toxicological and biochemical effects of precocene II against cotton leafworm, Spodoptera littoralis (boisd.). Egypt. J. Agric. Res. 97(1), 179–186. https://doi.org/10.21608/ejar.2019.68627 (2019).Article
Google Scholar
Benelli, G., Pavela, R., Drenaggi, E., Desneux, N. & Maggi, F. Phytol, (E)-nerolidol and spathulenol from Stevia rebaudiana leaf essential oil as effective and eco-friendly botanical insecticides against Metopolophium dirhodum. Ind. Crops Prod. 155, 112844. https://doi.org/10.1016/j.indcrop.2020.112844 (2020).Article
CAS
Google Scholar
Tennyson, S., Ravindran, K. J., Eapen, A. & William, S. J. Ovicidal activity of Ageratum houstonianum Mill. (Asteraceae) leaf extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae. Asian Pac. J. Trop. Dis. 5, 199–203 (2015).Article
Google Scholar
Tennyson, S., Ravindran, K. J., Eapen, A. & William, S. J. Effect of Ageratum houstonianum Mill. (Asteraceae) leaf extracts on the oviposition activity of Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol. Res. 111, 2295–2299. https://doi.org/10.1007/s00436-012-3083-7 (2012).Article
Google Scholar
Després, L., David, J. P. & Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22(6), 298–307 (2007).Article
Google Scholar
Navarro-Roldán, M. A., Bosch, D., Gemeno, C. & Siegwart, M. Enzymatic detoxification strategies for neurotoxic insecticides in adults of three tortricid pests. Bull. Entomol. Res. https://doi.org/10.1017/S0007485319000415 (2020).Article
Google Scholar
Abdel Haleem, D. R., Gad, A. A. & Farag, S. M. Larvicidal, biochemical and physiological effects of acetamiprid and thiamethoxam against Culex pipiens L. (Diptera: Culicidae). Egypt. J. Aquat. Biol. Fish. 24(3), 271–283. https://doi.org/10.21608/ejabf.2020.91119 (2020).Article
Google Scholar
Li, X., Schuler, M. A. & Berenbaum, M. R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52, 231–253 (2007).Article
Google Scholar
Montella, I. R., Schama, R. & Valle, D. The classification of esterases: An important gene family involved in insecticide resistance—A review. Mem. Inst. Oswaldo Cruz. 107(4), 437–449 (2012).Article
CAS
Google Scholar
Vasantha-Srinivasan, P. et al. Comparative analysis of mosquito (Diptera: Culicidae: Aedes aegypti Liston) responses to the insecticide Temephos and plant derived essential oil derived from Piper betle L.. Ecotoxicol. Environ. Saf. 139, 439–446. https://doi.org/10.1016/j.ecoenv.2017.01.026 (2017).Article
CAS
Google Scholar
Ramasamy, V. et al. Chemical characterization of billy goat weed extracts Ageratum conyzoides (Asteraceae) and their mosquitocidal activity against three blood-sucking pests and their non-toxicity against aquatic predators. Environ. Sci. Pollut. Res. 28(22), 28456–28469. https://doi.org/10.1007/s11356-021-12362-6 (2021).Article
Google Scholar
Shoukat, R. F. et al. Larvicidal, ovicidal, synergistic, and repellent activities of Sophora alopecuroides and its dominant constituents against Aedes albopictus. Insects 11, 246. https://doi.org/10.3390/insects11040246 (2020).Article
Google Scholar
Boily, M., Sarrasin, B., Deblois, C., Aras, P. & Chagnon, M. Acetylcholinesterase in honey bees (Apis mellifera) exposed to neonicotinoids, atrazine and glyphosate: Laboratory and field experiments. Environ. Sci. Pollut. Res. Int. 20(8), 5603–5614. https://doi.org/10.1007/s11356-013-1568-2 (2013).Article
CAS
Google Scholar
Rajashekar, Y., Raghavendra, A. & Bakthavatsalam, N. Acetylcholinesterase inhibition by biofumigant (Coumaran) from leaves of lantana camara in stored grain and household insect pests. Biomed. Res. Int. 2014, 1–6. https://doi.org/10.1155/2014/187019 (2014).Article
CAS
Google Scholar
Yuan, Y., Li, L., Zhao, J. & Chen, M. Effect of tannic acid on nutrition and activities of detoxification enzymes and acetylcholinesterase of the fall webworm (Lepidoptera: Arctiidae). J. Insect Sci. 20(1), 8 (2020).Article
Google Scholar
Koodalingam, A., Mullainadhan, P. & Arumugam, M. Effects of extract of soapnut Sapindus emarginatus on esterases and phosphatases of the vector mosquito, Aedes aegypti (Diptera: Culicidae). Acta Trop. 118(1), 27–36 (2011).Article
CAS
Google Scholar
Nathan, S. S. et al. Effect of azadirachtin on acetylcholinesterase (AChE) activity and histology of the brown plant hopper Nilaparvata lugens (Stål). Ecotoxicol. Environ. Saf. 70, 244–250 (2008).Article
CAS
Google Scholar
Abdel-Haleem, D. R., Genidy, N. A., Fahmy, A. R., Abu-El Azm, F. S. M. & Ismail, N. S. M. Comparative modeling, toxicological and biochemical studies of imidacloprid and thiamethoxam insecticides on the House Fly, Musca domestica L. (Diptera: Muscidae). Egypt. Acad. J. Biol. Sci. 11(1), 33–42. https://doi.org/10.21608/EAJB.2018.11977 (2018).Article
Google Scholar
Kliot, A., Kontsedalov, S., Ramsey, J. S., Jande, G. & Ghanim, M. Adaptation to nicotine in the facultative tobacco-feeding hemipteran Bemisia tabaci. Pest Manag. Sci 70, 1595–1603 (2014).Article
CAS
Google Scholar
Silva, T. R. F. B. et al. Effect of the flavonoid rutin on the biology of Spodoptera frugiperda (Lepidoptera: Noctuidae) Fitossanidade. Acta Sci. Agron. 38(2), 165–170. https://doi.org/10.4025/actasciagron.v38i2.27956 (2016).Article
Google Scholar
Petschenka, G., Wagschal, V., Von Tschirnhaus, M., Donath, A. & Dobler, S. Convergently evolved toxic secondary metabolites in plants drive the parallel molecular evolution of insect resistance. Am. Nat. 190, 29–43 (2017).Article
Google Scholar
Emam, M. et al. Phytochemical profiling of Lavandula coronopifolia Poir. aerial parts extract and its larvicidal, antibacterial, and antibiofilm activity against Pseudomonas aeruginosa. Molecules 26, 1710. https://doi.org/10.3390/molecules26061710 (2021).Article
CAS
Google Scholar
El Hadidy, D., El Sayed, A. M., El Tantawy, M. & El Alfy, T. Phytochemical analysis and biological activities of essential oils of the leaves and flowers of Ageratum houstonianum Mill. cultivated in Egypt. J. Essent. Oil-Bear. Plants 22(5), 1241–1251. https://doi.org/10.1080/0972060X.2019.1673831 (2019).Article
Google Scholar
Tennyson, S., Ravindran, J., Eapen, A. & William, J. Repellent activity of Ageratum houstonianum Mill. (Asteraceae) leaf extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Asian Pac. J. Trop. Dis. 2(6), 478–480 (2012).Article
Google Scholar
Pintong, A. et al. Insecticidal and histopathological effects of Ageratum conyzoides weed extracts against dengue vector, Aedes aegypti. Insects 11, 224 (2020).Article
Google Scholar
Parveen, S. et al. In vitro evaluation of ethanolic extracts of Ageratum conyzoides and Artemisia absinthium against cattle tick, Rhipicephalus microplus. Sci. World J. 2014, 858973 (2014).Article
CAS
Google Scholar
Ichihara, K. & Fukubayashi, Y. Preparation of fatty acid methyl esters for gas-liquid chromatography. J. Lipid Res. 51(3), 635–640 (2010).Article
CAS
Google Scholar
Mruthunjaya, K. & Hukkeri, V. I. In vitro antioxidant and free radical scavenging potential of Parkinsonia aculeata Linn.. Pharmacogn. Mag. 4(13), 42–52 (2008).
Google Scholar
Atanassova, M., Georgieva, S. & Ivancheva, K. Total phenolic and total flavonoid contents, antioxidant capacity and biological contaminants in medicinal herbs. J. Chem. Technol. Metall. 46(1), 81–88 (2011).CAS
Google Scholar
Mizzi, L., Chatzitzika, C., Gatt, R. & Valdramidis, V. HPLC analysis of phenolic compounds and flavonoids with overlapping peaks. Food Technol. Biotechnol. 58(1), 12–19. https://doi.org/10.17113/ftb.58.01.20.6395 (2020).Article
CAS
Google Scholar
Kasap, M. & Demirhan, H. The effect of various larval foods on the rate of adult emergence and fecundity of mosquitoes. Turk. Parasitol. Dergisi 161, 87–97 (1992).
Google Scholar
WHO. Guidelines for Laboratory & Field Testing of Mosquito Larvicides 1–4 (Bulletin of the World Health Organization, 2005).
Google Scholar
El-Sheikh, T., Bosly, H. & Shalaby, N. Insecticidal and repellent activities of methanolic extract of Tribulus terrestris L. (Zygophyllaceae) against the malarial vector Anopheles arabiensis (Diptera: Culicidae). Egypt. Acad. J. Biol. Sci. 5(2), 13–22 (2012).
Google Scholar
Abbott, W. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18(2), 256–267 (1952).
Google Scholar
Amin, T. R. Biochemical and Physiological Studies of Some Insect Growth Regulators on the Cotton Leafworm, Spodoptera littoralis (Boisd.). Ph.D. thesis, Faculty of Science, Cairo University (1998).Simpson, D. R., Bulland, D. L. & Linquist, D. A. A semimicrotechnique for estimation of cholinesterase activity in boll weevils. Ann. Entomol. Soc. Am. 57, 367–371 (1964).Article
CAS
Google Scholar
Amaral, M. C., Bonecker, A. C. T. & Ortiz, C. H. D. Activity determination of Na+ K+-ATPase and Mg++-ATPase enzymes in the gill of Poecilia vivpara (Osteichthyes, Cyprinodontiformes) in different salinities. Braz. Arch. Biol. Technol. 44, 1–6 (2001).Article
CAS
Google Scholar
Hansen, I. G. & Hodgson, E. Biochemical characteristics of insect microsomes, N-and o-demethylation. Biochem. Pharmacol. 20, 1569–1578 (1971).Article
CAS
Google Scholar
Finney, D. J. Probit Analysis 3rd edn. (Cambridge University Press, 1971).MATH
Google Scholar
Duncan, D. B. Multiple range, and multiple F tests. Biometrics 2, 1–42 (1955).Article
MathSciNet
Google Scholar More