More stories

  • in

    Climate warming has compounded plant responses to habitat conversion in northern Europe

    IPBES. Global assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, 2019).Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    IPCC. Summary for Policymakers. in Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2022).Travis, J. M. J. Climate change and habitat destruction: a deadly anthropogenic cocktail. P. R. Soc. B. 270, 467–473 (2003).Article 
    CAS 

    Google Scholar 
    Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. P. R. Soc. B. 285, 20180792 (2018).Article 

    Google Scholar 
    Anderson, K. J., Allen, A. P., Gillooly, J. F. & Brown, J. H. Temperature-dependence of biomass accumulation rates during secondary succession. Ecol. Lett. 9, 673–682 (2006).Article 

    Google Scholar 
    Fridley, J. D. & Wright, J. P. Temperature accelerates the rate fields become forests. Proc. Natl Acad. Sci. USA 115, 4702–4706 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Auffret, A. G., Kimberley, A., Plue, J. & Waldén, E. Super-regional land-use change and effects on the grassland specialist flora. Nat. Commun. 9, 3464 (2018).Article 
    ADS 

    Google Scholar 
    Auffret, A. G. & Thomas, C. D. Synergistic and antagonistic effects of land use and non-native species on community responses to climate change. Glob. Change Biol. 25, 4303–4314 (2019).Article 
    ADS 

    Google Scholar 
    Hill, M. O. Local frequency as a key to interpreting species occurrence data when recording effort is not known. Methods Ecol. Evol. 3, 195–205 (2012).Article 

    Google Scholar 
    Isaac, N. J. B., Strien, A. J., van, August, T. A., Zeeuw, M. Pde & Roy, D. B. Statistics for citizen science: extracting signals of change from noisy ecological data. Methods Ecol. Evol. 5, 1052–1060 (2014).Article 

    Google Scholar 
    Tyler, T., Herbertsson, L., Olofsson, J. & Olsson, P. A. Ecological indicator and traits values for Swedish vascular plants. Ecol. Indic. 120, 106923 (2021).Article 
    CAS 

    Google Scholar 
    Jiang, M., Bullock, J. M. & Hooftman, D. A. P. Mapping ecosystem service and biodiversity changes over 70 years in a rural English county. J. Appl. Ecol. 50, 841–850 (2013).Article 

    Google Scholar 
    IPCC. Summary for Policymakers. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2021).Van Calster, H. et al. Unexpectedly high 20th century floristic losses in a rural landscape in northern France. J. Ecol. 96, 927–936 (2008).Article 

    Google Scholar 
    Staude, I. R. et al. Replacements of small- by large-ranged species scale up to diversity loss in Europe’s temperate forest biome. Nat. Ecol. Evol. 4, 802–808 (2020).Article 

    Google Scholar 
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 

    Google Scholar 
    Platts, P. J. et al. Habitat availability explains variation in climate-driven range shifts across multiple taxonomic groups. Sci. Rep. 9, 1–10 (2019).Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 
    Macgregor, C. J. et al. Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nat. Commun. 10, 4455 (2019).Article 
    ADS 

    Google Scholar 
    Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622 (2012).Article 
    ADS 

    Google Scholar 
    Svenning, J.-C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).Article 

    Google Scholar 
    Cannone, N. & Pignatti, S. Ecological responses of plant species and communities to climate warming: upward shift or range filling processes? Climatic Change 123, 201–214 (2014).Article 
    ADS 

    Google Scholar 
    Wiens, J. J. Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species. PLOS Biol. 14, e2001104 (2016).Article 

    Google Scholar 
    Hill, M. O. & Preston, C. D. Disappearance of boreal plants in southern Britain: habitat loss or climate change? Biol. J. Linn. Soc. 115, 598–610 (2015).Article 

    Google Scholar 
    Lynn, J. S., Klanderud, K., Telford, R. J., Goldberg, D. E. & Vandvik, V. Macroecological context predicts species’ responses to climate warming. Glob. Change Biol. 27, 2088–2101 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Liu, D. et al. Species selection under long-term experimental warming and drought explained by climatic distributions. N. Phytol. 217, 1494–1506 (2018).Article 

    Google Scholar 
    Buitenwerf, R., Sandel, B., Normand, S., Mimet, A. & Svenning, J.-C. Land surface greening suggests vigorous woody regrowth throughout European semi-natural vegetation. Glob. Change Biol. 24, 5789–5801 (2018).Article 

    Google Scholar 
    Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).Article 
    ADS 

    Google Scholar 
    De Frenne, P. et al. Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J. Ecol. 101, 784–795 (2013).Article 

    Google Scholar 
    Ash, J. D., Givnish, T. J. & Waller, D. M. Tracking lags in historical plant species’ shifts in relation to regional climate change. Glob. Change Biol. 23, 1305–1315 (2017).Article 
    ADS 

    Google Scholar 
    Savage, J. & Vellend, M. Elevational shifts, biotic homogenization and time lags in vegetation change during 40 years of climate warming. Ecography 38, 546–555 (2015).Article 

    Google Scholar 
    Gerstner, K., Dormann, C. F., Stein, A., Manceur, A. M. & Seppelt, R. Effects of land use on plant diversity—a global meta-analysis. J. Appl. Ecol. 51, 1690–1700 (2014).Article 

    Google Scholar 
    Kempel, A. et al. Nationwide revisitation reveals thousands of local extinctions across the ranges of 713 threatened and rare plant species. Conserv. Lett. 13, e12749 (2020).Article 

    Google Scholar 
    Bilz, M., Kell, S. P., Maxted, N. & Lansdown, R. V. European Red List of Vascular Plants (Publications Office of the EU, 2011).Timmermann, A., Damgaard, C., Strandberg, M. T. & Svenning, J.-C. Pervasive early 21st-century vegetation changes across Danish semi-natural ecosystems: more losers than winners and a shift towards competitive, tall-growing species. J. Appl. Ecol. 52, 21–30 (2015).Article 

    Google Scholar 
    Staude, I. R. et al. Directional turnover towards larger-ranged plants over time and across habitats. Ecol. Lett. 25, 466–482 (2022).Article 

    Google Scholar 
    Finderup Nielsen, T., Sand‐Jensen, K., Dornelas, M. & Bruun, H. H. More is less: net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).Article 

    Google Scholar 
    Christiansen, D. M., Iversen, L. L., Ehrlén, J. & Hylander, K. Changes in forest structure drive temperature preferences of boreal understorey plant communities. J. Ecol. 110, 631–643 (2022).Article 

    Google Scholar 
    Gossner, M. M. et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Duprè, C. et al. Changes in species richness and composition in European acidic grasslands over the past 70 years: the contribution of cumulative atmospheric nitrogen deposition. Glob. Change Biol. 16, 344–357 (2010).Article 
    ADS 

    Google Scholar 
    Tyler, T. et al. Climate warming and land‐use changes drive broad‐scale floristic changes in Southern Sweden. Glob. Change Biol. 24, 2607–2621 (2018).Article 
    ADS 

    Google Scholar 
    Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Halley, J. M., Monokrousos, N., Mazaris, A. D., Newmark, W. D. & Vokou, D. Dynamics of extinction debt across five taxonomic groups. Nat. Commun. 7, 12283 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Bertrand, R. et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517–520 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).Article 

    Google Scholar 
    Plue, J. et al. Buffering effects of soil seed banks on plant community composition in response to land use and climate. Glob. Ecol. Biogeogr. 30, 128–139 (2021).Article 

    Google Scholar 
    Honnay, O. & Bossuyt, B. Prolonged clonal growth: escape route or route to extinction? Oikos 108, 427–432 (2005).Article 

    Google Scholar 
    Ozinga, W. A. et al. Dispersal failure contributes to plant losses in NW Europe. Ecol. Lett. 12, 66–74 (2009).Article 

    Google Scholar 
    Svenning, J.-C., Normand, S. & Skov, F. Postglacial dispersal limitation of widespread forest plant species in nemoral Europe. Ecography 31, 316–326 (2008).Article 

    Google Scholar 
    Lenoir, J., Gégout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Warren, R., Price, J., Graham, E., Forstenhaeusler, N. & VanDerWal, J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5 °C rather than 2 °C. Science 360, 791–795 (2018).Article 
    CAS 

    Google Scholar 
    Garrido, P. et al. Experimental rewilding may restore abandoned wood-pastures if policy allows. Ambio 50, 101–112 (2021).Article 

    Google Scholar 
    Kowalczyk, R., Kamiński, T. & Borowik, T. Do large herbivores maintain open habitats in temperate forests? For. Ecol. Manag. 494, 119310 (2021).Article 

    Google Scholar 
    Auffret, A. G., Schmucki, R., Reimark, J. & Cousins, S. A. O. Grazing networks provide useful functional connectivity for plants in fragmented systems. J. Veg. Sci. 23, 970–977 (2012).Article 

    Google Scholar 
    Fricke, E. C., Ordonez, A., Rogers, H. S. & Svenning, J.-C. The effects of defaunation on plants’ capacity to track climate change. Science 375, 210–214 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Blomgren, E., Falk, E. & Herloff, B. Bohusläns Flora (Föreningen Bohusläns Flora, 2011).Fries, H. Göteborgs och Bohus Läns Fanerogamer och Ormbunkar (Elanders Boktryckeri, 1945).Lidberg, R. & Lindström, H. Medelpads Flora (The vascular plants of Medelpad) (SBF Förlaget, 2010).Sterner, R. Flora der insel Öland Vol. IX (Almqvist & Wiksells, 1938).Almquist, E. Upplands vegetation och flora. Acta Phytogeogr. Suec. 1, 1–622 (1929).
    Google Scholar 
    Jonsell, L. Upplands Flora (SBF Förlaget, 2010).Maad, J., Sundberg, S., Stolpe, P. & Jonsell, L. Floraförändringar i Uppland under 1900-talet—en analys från Projekt Upplands flora [Floristic changes during the 20th century in Uppland, east central Sweden; with English summary]. Sven. Botanisk Tidskr. 103, 67–104 (2009).
    Google Scholar 
    Auffret, A. G. et al. HistMapR: Rapid digitization of historical land-use maps in R. Methods Ecol. Evol. 8, 1453–1457 (2017).Article 

    Google Scholar 
    August, T. et al. sparta: Trend analysis for unstructured data. R package version 0.1.44 (2018).Eichenberg, D. et al. Widespread decline in Central European plant diversity across six decades. Glob. Change Biol. 27, 1097–1110 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Redhead, J. W. et al. Potential landscape-scale pollinator networks across Great Britain: structure, stability and influence of agricultural land cover. Ecol. Lett. 21, 1821–1832 (2018).Article 

    Google Scholar 
    Gillings, S. et al. Breeding and wintering bird distributions in Britain and Ireland from citizen science bird atlases. Glob. Ecol. Biogeogr. 28, 866–874 (2019).Article 

    Google Scholar 
    Stroh, P. A., Walker, K. J., Humphrey, T. A., Pescott, O. L. & Burkmar, R. J. Plant Atlas 2020: Mapping Changes in the Distribution of the British and Irish Flora (Princeton, planned publication date: 21/03/2023).Pearce-Higgins, J. W., Ausden, M. A., Beale, C. M., Oliver, T. H. & Crick, H. Q. P. Research on the assessment of risks & opportunities for species in England as a result of climate change – NECR175. Natural England Commissioned Reports Vol. 175 (2015).R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).Telfer, M. G., Preston, C. D. & Rothery, P. A general method for measuring relative change in range size from biological atlas data. Biol. Conserv. 107, 99–109 (2002).Article 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. M. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. http://CRAN.R-project.org/package=lme4 (2014).Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2009).Article 

    Google Scholar 
    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).Article 

    Google Scholar 
    Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).Article 

    Google Scholar 
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    Borcard, D. & Legendre, P. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Model. 153, 51–68 (2002).Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community ecology package. R package version 2.3-5. http://CRAN.R-project.org/package=vegan (2016).Meineri, E. & Hylander, K. Fine-grain, large-domain climate models based on climate station and comprehensive topographic information improve microrefugia detection. Ecography 40, 1003–1013 (2017).Article 

    Google Scholar 
    Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. performance: an R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139 (2021).Article 
    ADS 

    Google Scholar 
    Breheny, P. & Burchett, W. Visualization of regression models using visreg. R. J. 9, 57–71 (2017).Article 

    Google Scholar 
    Hijmans, R. J. raster: Geographic data analysis and modeling. R package version 2.5-8. http://CRAN.R-project.org/package=raster (2016). More

  • in

    Environmentally driven phenotypic convergence and niche conservatism accompany speciation in hoary bats

    Orr, M. R. & Smith, T. B. Ecology and speciation. Trends Ecol. Evol. 13, 502–506 (1998).Article 
    CAS 

    Google Scholar 
    Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, 2004).
    Google Scholar 
    Gillespie, R. G. Adaptive radiation: Convergence and non-equilibrium. Curr. Biol. 23, R71–R74 (2013).Article 
    CAS 

    Google Scholar 
    Price, T. Speciation in Birds (Roberts and Company Publishers, 2008).
    Google Scholar 
    Schluter, D. Evidence for ecological speciation and its alternative. Science 323, 737–741 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Stroud, J. T. & Losos, J. B. Ecological opportunity and adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 47, 507–532 (2016).Article 

    Google Scholar 
    Jønsson, K. A. et al. Ecological and evolutionary determinants for the adaptive radiation of the Madagascan vangas. Proc. Natl. Acad. Sci. 109, 6620–6625 (2012).Article 
    ADS 

    Google Scholar 
    Wiens, J. J. Speciation and ecology revisited: Phylogenetic niche conservatism and the origin of species. Evolution 58, 193–197 (2004).
    Google Scholar 
    Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).Article 

    Google Scholar 
    Wiens, J. J. & Graham, C. H. Niche Conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).Article 

    Google Scholar 
    Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Winger, B. M., Barker, F. K. & Ree, R. H. Temperate origins of long-distance seasonal migration in New World songbirds. Proc. Natl. Acad. Sci. 111, 12115–12120 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: Evolution and determinants. Oikos 103, 247–260 (2003).Article 

    Google Scholar 
    Gómez, C., Tenorio, E. A., Montoya, P. & Cadena, C. D. Niche-tracking migrants and niche-switching residents: Evolution of climatic niches in New World warblers (Parulidae). Proc. R. Soc. B Biol. Sci. 283, 20152458 (2016).Article 

    Google Scholar 
    Menchaca, A., Arteaga, M. C., Medellin, R. A. & Jones, G. Conservation units and historical matrilineal structure in the tequila bat (Leptonycteris yerbabuenae). Glob. Ecol. Conserv. 23, e01164 (2020).Article 

    Google Scholar 
    Medellín, R. A. et al. Follow me: Foraging distances of Leptonycteris yerbabuenae (Chiroptera: Phyllostomidae) in Sonora determined by fluorescent powder. J. Mammal. 99, 306–311 (2018).Article 

    Google Scholar 
    Broennimann, O. et al. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10, 701–709 (2007).Article 
    CAS 

    Google Scholar 
    Martínez-Meyer, E., Peterson, A. T. & Hargrove, W. W. Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Glob. Ecol. Biogeogr. 13, 305–314 (2004).Article 

    Google Scholar 
    Soto-Centeno, J. A. & Steadman, D. W. Fossils reject climate change as the cause of extinction of Caribbean bats. Sci. Rep. 5, 7971 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Avise, J. C. Phylogeography: The History and Formation of Species (Harvard University Press, 2000).Book 

    Google Scholar 
    Hickerson, M. J. et al. Phylogeography’s past, present, and future: 10 years after Avise, 2000. Mol. Phylogenet. Evol. 54, 291–301 (2010).Article 
    CAS 

    Google Scholar 
    Pahad, G., Montgelard, C. & Jansen van Vuuren, B. Phylogeography and niche modelling: Reciprocal enlightenment. Mammalia 84, 10–25 (2019).Article 

    Google Scholar 
    Flanders, J. et al. Phylogeography of the greater horseshoe bat, Rhinolophus ferrumequinum: Contrasting results from mitochondrial and microsatellite data. Mol. Ecol. 18, 306–318 (2009).Article 
    CAS 

    Google Scholar 
    Machado, A. F. et al. Integrating phylogeography and ecological niche modelling to test diversification hypotheses using a Neotropical rodent. Evol. Ecol. 33, 111–148 (2019).Article 

    Google Scholar 
    Kalkvik, H. M., Stout, I. J., Doonan, T. J. & Parkinson, C. L. Investigating niche and lineage diversification in widely distributed taxa: Phylogeography and ecological niche modeling of the Peromyscus maniculatus species group. Ecography 35, 54–64 (2012).Article 

    Google Scholar 
    Wang, Y. et al. Ring distribution patterns—diversification or speciation? Comparative phylogeography of two small mammals in the mountains surrounding the Sichuan Basin. Mol. Ecol. 30, 2641–2658 (2021).Article 

    Google Scholar 
    Soto-Centeno, J. A., Barrow, L. N., Allen, J. M. & Reed, D. L. Reevaluation of a classic phylogeographic barrier: New techniques reveal the influence of microgeographic climate variation on population divergence. Ecol. Evol. 3, 1603–1613 (2013).Article 

    Google Scholar 
    Amador, L. I., Moyers Arévalo, R. L., Almeida, F. C., Catalano, S. A. & Giannini, N. P. Bat systematics in the light of unconstrained analyses of a comprehensive molecular supermatrix. J. Mamm. Evol. 25, 37–70 (2018).Article 

    Google Scholar 
    Rojas, D., Warsi, O. M. & Dávalos, L. M. Bats (Chiroptera: Noctilionoidea) challenge a recent origin of extant neotropical diversity. Syst. Biol. 65, 432–448 (2016).Article 

    Google Scholar 
    Shi, J. J. & Rabosky, D. L. Speciation dynamics during the global radiation of extant bats. Evolution 69, 1528–1545 (2015).Article 

    Google Scholar 
    Dumont, E. R. et al. Morphological innovation, diversification and invasion of a new adaptive zone. Proc. Biol. Sci. 279, 1797–1805 (2012).
    Google Scholar 
    Leiser-Miller, L. B. & Santana, S. E. Morphological diversity in the sensory system of phyllostomid bats: Implications for acoustic and dietary ecology. Funct. Ecol. 34, 1416–1427 (2020).Article 

    Google Scholar 
    Hedrick, B. P. & Dumont, E. R. Putting the leaf-nosed bats in context: A geometric morphometric analysis of three of the largest families of bats. J. Mammal. 99, 1042–1054 (2018).Article 

    Google Scholar 
    Clare, E. L. Cryptic species? Patterns of maternal and paternal gene flow in eight neotropical bats. PLoS One 6, e21460 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Chaverri, G. et al. Unveiling the hidden bat diversity of a neotropical montane forest. PLoS One 11, e0162712 (2016).Article 

    Google Scholar 
    Calahorra-Oliart, A., Ospina-Garcés, S. M. & León-Paniagua, L. Cryptic species in Glossophaga soricina (Chiroptera: Phyllostomidae): Do morphological data support molecular evidence?. J. Mammal. 102, 54–68 (2021).Article 

    Google Scholar 
    Lim, B. K., Loureiro, L. O. & Garbino, G. S. T. Cryptic diversity and range extension in the big-eyed bat genus Chiroderma (Chiroptera, Phyllostomidae). Zookeys 918, 41–63 (2020).Article 

    Google Scholar 
    Loureiro, L. O., Engstrom, M., Lim, B., González, C. L. & Juste, J. Not all Molossus are created equal: Genetic variation in the mastiff bat reveals diversity masked by conservative morphology. Acta Chiropterologica 21, 51 (2019).Article 

    Google Scholar 
    Morales, A., Villalobos, F., Velazco, P. M., Simmons, N. B. & Piñero, D. Environmental niche drives genetic and morphometric structure in a widespread bat. J. Biogeogr. 43, 1057–1068 (2016).Article 

    Google Scholar 
    Hedrick, B. P. et al. Morphological diversification under high integration in a hyper diverse mammal clade. J. Mamm. Evol. 27, 563–575 (2020).Article 

    Google Scholar 
    Morales, A. E. & Carstens, B. C. Evidence that myotis lucifugus “subspecies” are five nonsister species, despite gene flow. Syst. Biol. 67, 756–769 (2018).Article 

    Google Scholar 
    Simmons, N. B. & Cirranello, A. L. Bat species of the world: A taxonomic and geographic database. https://batnames.org.Russell, A. L., Pinzari, C. A., Vonhof, M. J., Olival, K. J. & Bonaccorso, F. J. Two tickets to paradise: Multiple dispersal events in the founding of hoary bat populations in Hawai’i. PLoS One 10, 1–13 (2015).
    Google Scholar 
    Shump, K. A. & Shump, A. U. Lasiurus cinereus. Mamm. Species 185, 1–5 (1982).
    Google Scholar 
    Ziegler, A. C., Howarth, F. G. & Simmons, N. B. A second endemic land mammal for the Hawaiian Islands: A new genus and species of fossil bat (Chiroptera: Vespertilionidae). Am. Museum Novit. 1–52 (2016).Bonaccorso, F. J. & McGuire, L. P. Modeling the colonization of Hawaii by hoary bats (Lasiurus cinereus). In Bat Evolution, Ecology, and Conservation (eds Adams, R. A. & Pedersen, S. C.) 187–205 (Springer, 2013).Chapter 

    Google Scholar 
    Baird, A. B. et al. Molecular systematic revision of tree bats (Lasiurini): Doubling the native mammals of the Hawaiian Islands. J. Mammal. 96, 1255–1274 (2015).Article 

    Google Scholar 
    Jacobs, D. S. Morphological divergence in an insular bat, Lasiurus cinereus semotus. Funct. Ecol. 10, 622–630 (1996).Article 

    Google Scholar 
    Baird, A. B. et al. Nuclear and mtDNA phylogenetic analyses clarify the evolutionary history of two species of native Hawaiian bats and the taxonomy of Lasiurini (Mammalia: Chiroptera). PLoS One 12, e0186085 (2017).Article 

    Google Scholar 
    Kumar, S. & Subramanian, S. Mutation rates in mammalian genomes. Proc. Natl. Acad. Sci. U.S.A. 99, 803–808 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Gillespie, R. G. et al. Comparing adaptive radiations across space, time, and taxa. J. Hered. 111, 1–20 (2020).Article 

    Google Scholar 
    Fišer, C., Robinson, C. T. & Malard, F. Cryptic species as a window into the paradigm shift of the species concept. Mol. Ecol. 27, 613–635 (2018).Article 

    Google Scholar 
    Espíndola, A. et al. Identifying cryptic diversity with predictive phylogeography. Proc. R. Soc. B Biol. Sci. 283, 20161529 (2016).Article 

    Google Scholar 
    Padial, J. M., Miralles, A., De la Riva, I. & Vences, M. The integrative future of taxonomy. Front. Zool. 7, 1–14 (2010).Article 

    Google Scholar 
    Fujita, M. K., Leaché, A. D., Burbrink, F. T., McGuire, J. A. & Moritz, C. Coalescent-based species delimitation in an integrative taxonomy. Trends Ecol. Evol. 27, 480–488 (2012).Article 

    Google Scholar 
    Solari, S., Sotero-Caio, C. G. & Baker, R. J. Advances in systematics of bats: Towards a consensus on species delimitation and classifications through integrative taxonomy. J. Mammal. 100, 838–851 (2018).Article 

    Google Scholar 
    Mayr, E. Geographical character gradients and climatic adaptation. Evolution 10, 105–108 (1956).
    Google Scholar 
    Morales, A. E., De-la-Mora, M. & Piñero, D. Spatial and environmental factors predict skull variation and genetic structure in the cosmopolitan bat Tadarida brasiliensis. J. Biogeogr. 45, 1529–1540 (2018).Article 

    Google Scholar 
    Pavan, A. C. & Marroig, G. Integrating multiple evidences in taxonomy: Species diversity and phylogeny of mustached bats (Mormoopidae: Pteronotus). Mol. Phylogenet. Evol. 103, 184–198 (2016).Article 

    Google Scholar 
    Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).Article 
    CAS 

    Google Scholar 
    Robinson, D. & Foulds, L. Comparison of phylogenetic trees. Math. Biosci. 53, 131–147 (1981).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Pattengale, N. D., Alipour, M., Bininda-Emonds, O. R., Moret, B. M. & Stamatakis, A. How many bootstrap replicates are necessary?. J. Comput. Biol. 17, 337–354 (2010).Article 
    MathSciNet 
    CAS 

    Google Scholar 
    Lemoine, F. et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556, 452–456 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).Article 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).Article 
    CAS 

    Google Scholar 
    Kapli, P. et al. Multi-rate Poisson Tree Processes for single-locus species delimitation under Maximum Likelihood and Markov Chain Monte Carlo. Bioinformatics 33, 1630–1638 (2017).CAS 

    Google Scholar 
    Yang, Z. & Rannala, B. Unguided species delimitation using DNA sequence data from multiple loci. Mol. Biol. Evol. 31, 3125–3135 (2014).Article 
    CAS 

    Google Scholar 
    Flouri, T., Jiao, X., Rannala, B. & Yang, Z. Species tree inference with BPP using genomic sequences and the multispecies coalescent. Mol. Biol. Evol. 35, 2585–2593 (2018).Article 
    CAS 

    Google Scholar 
    Van Buuren, S. & Groothuis-Oudshoorn, K. Multivariate imputation by chained equations. J. Stat. Softw. 45, 1–67 (2011).Article 

    Google Scholar 
    Penone, C. et al. Imputation of missing data in life-history trait datasets: Which approach performs the best?. Methods Ecol. Evol. 5, 961–970 (2014).Article 

    Google Scholar 
    Berner, D. Size correction in biology: How reliable are approaches based on (common) principal component analysis?. Oecologia 166, 961–971 (2011).Article 
    ADS 

    Google Scholar 
    Simmons, N. B. Order Chiroptera. In Mammal Species of the World: A Taxonomic and Geographic Reference (eds Wilson, D. E. & Reeder, D. M.) 312–529 (The John Hopkins University Press, 2005).
    Google Scholar 
    Wilson, D. E. & Mittermeier, R. A. Handbook of the Mammals of the World. Vol. 9. Bats (Lynx Editions, 2019).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing (2022).Kuhn, M. caret: Classification and Regression Training. R package version 6.0-86. https://CRAN.R-project.org/package=caret (2020).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).Book 
    MATH 

    Google Scholar 
    Kuhn, M. & Johnson, K. Applied Predictive Modeling (Springer, 2013).Book 
    MATH 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Hijmans, R. J. raster: Geographic Data Analysis and Modeling (2022).Barker, B. S., Rodríguez-Robles, J. A. & Cook, J. A. Climate as a driver of tropical insular diversity: Comparative phylogeography of two ecologically distinctive frogs in Puerto Rico. Ecography 38, 769–781 (2015).Article 

    Google Scholar 
    Petitpierre, B., Broennimann, O., Kueffer, C., Daehler, C. & Guisan, A. Selecting predictors to maximize the transferability of species distribution models: Lessons from cross-continental plant invasions. Glob. Ecol. Biogeogr. 26, 275–287 (2017).Article 

    Google Scholar 
    Akinwande, M. O., Dikko, H. G. & Samson, A. Variance inflation factor: As a condition for the inclusion of suppressor variable(s) in regression analysis. Open J. Stat. 05, 754–767 (2015).Article 

    Google Scholar 
    Izenman, A. J. Linear discriminant analysis. in Modern Multivariate Statistical Techniques 237–280 (2013).Lever, J., Krzywinski, M. & Altman, N. Points of significance: Principal component analysis. Nat. Methods 14, 641–642 (2017).Article 
    CAS 

    Google Scholar 
    Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. Unifying niche shift studies: Insights from biological invasions. Trends Ecol. Evol. 29, 260–269 (2014).Article 

    Google Scholar 
    Di Cola, V. et al. ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).Article 

    Google Scholar 
    Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).Article 

    Google Scholar 
    Liu, C., Wolter, C., Xian, W. & Jeschke, J. M. Most invasive species largely conserve their climatic niche. Proc. Natl. Acad. Sci. 117, 23643–23651 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).Article 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 33, 607–611 (2010).
    Google Scholar  More

  • in

    Number of simultaneously acting global change factors affects composition, diversity and productivity of grassland plant communities

    Study species and pre-cultivationTo create the mesocosm communities, we selected nine herbaceous grassland species that are native to and widespread in Central Europe (Supplementary Table 9), where they can also co-occur. The species were Alopecurus pratensis L., Diplotaxis tenuifolia (L.) DC., Lolium perenne L., Poa pratensis L., Prunella vulgaris L., Sinapis arvensis L., Sonchus oleraceus L., Vicia cracca L., Vicia sativa L. To increase generalizability54, the species were selected from three functional groups (grasses, annual forbs, perennial forbs), and they represent five families.Seeds were obtained from different sources (Supplementary Table 9). For the transplanted-seedling community (see section ‘Experimental lay-out), seedlings were pre-cultivated in a greenhouse of the Botanical Garden of the University of Konstanz. As the species require different times for germination, they were sown on different dates (Supplementary Table 10) to ensure that seedlings of all species were at a similar developmental stage at transplantation. Seeds were sown separately per species in plastic trays filled with potting soil (Einheitserde®, Pikiererde CL P). The greenhouse had a regular day-night rhythm of c. 16:8 hours, and its ventilation windows automatically opened at 21 °C during the day and at 18 °C during the night. Two days before transplanting, the seedlings were placed outdoors to acclimatize. For the sown community, we sowed a seed mixture of the nine study species directly into the outdoor mesocosm pots.Experimental setupGlobal change treatmentsWe imposed six global change treatments: climate warming, light pollution, microplastic pollution, soil salinization, eutrophication, and fungicide accumulation, all of which frequently occur in the environment. These GCFs were chosen because they differ in their nature (i.e., physical, chemical), are likely to differ in their mode of action and effect direction21, and can be easily implemented. Each of the six GCFs have been shown to impact plants and their environment when applied on their own10,13,17,19,20,55,56,57,58,59,60. Furthermore, all of the chosen GCFs are likely to continue to increase in magnitude or extent in the near future61,62,63,64,65. For the climate-warming treatment, we used infrared-heater lamps (HS-2420; 240 V, 2000 W; Kalglo Electronics Co., Bethlehem, USA) set to 70% of their maximum capacity to achieve an average temperature increase of 2.0 °C (±SD = 0.2 °C) at plant level. This is within the range of temperature increases predicted by the RCP 4.5 scenario for the year 2100 [+1.1 − 2.6 °C; 63]. For the light-pollution treatment, we used LED spotlights (LED-Strahler Flare 10 W, IP 65, 900 lm, cool white 6500 K; REV Ritter GmbH, Mömbris, Germany), which were switched on daily from 9 pm to 5 am, corresponding to the times of sunset and -rise. The average light intensity was 24.5 lx at ground level, which is within the range of light intensities found below street lights, and matches the light intensities used in other light-pollution experiments14,56. For the microplastic pollution treatment, we used granules (1.0–2.5 mm diameter) of the synthetic rubber ethylene propylene diene monomer (EPDM Granulat, Gummi Appel GmbH + Co. KG, Kahl am Main, Germany) at a concentration of 1% (w/w, granules/dry soil, approximately corresponding to 1.5% v/v). EPDM granules are, for example, used in artificial sport turfs, from where they easily spread into the surroundings, and have been used previously to investigate the effects of microplastics on plants18. The chosen concentration is well within the range of concentrations used in previous studies18,66,67, and is at the low to intermediate range of concentrations found in sites polluted with plastics68. For the soil-salinization treatment, dissolved NaCl was added to the soil. Soil salinity is commonly measured as electrical conductivity, with a conductivity between 4 and 8 dS m−1 considered to be moderately saline69. For the experiment, we used a salinity of 6 dS m−1. To maintain a more or less constant salinity level, electrical conductivity was measured weekly, and, if required, adjusted by adding dissolved NaCl. For the eutrophication treatment, 3 g of a dissolved NPK fertilizer (Universol® blue oxide, ICL SF Germany & Austria, Nordhorn, Germany) was added per pot. For N, this corresponds to an input of 100 kg N ha−1, comparable to the yearly amounts of atmospheric N deposition in large parts of Europe52 and the yearly nitrogen input on agricultural field in the European Union70. To ensure a more or less constant nutrient availability during the experiments, we split total fertilizer input into three applications (directly after, 3 weeks after, and 6 weeks after starting the experiments) of 1 g fertilizer per pot per application. In addition, to avoid severe nutrient limitation in the other pots, all pots (irrespective of the eutrophication treatment) received basic fertilization. This was applied four times to the transplanted-seedling-community pots and five times to the sown community pots, with 0.2 g fertilizer per pot per application. For the pesticide treatment, we used the fungicide Landor® CT (Syngenta Agro GmbH, Maintal, Germany). This fungicide was chosen because it contains three azoles as active agents, which belong to the most widely used class of antifungal agents71. To each pot in this treatment, we added 1.5 μl fungicide dissolved in water (1‰). This corresponds to 60% of the maximum amount that should be used per hectare of cropland. A summary of the levels of the individual GCFs used in our experiment is provided in Supplementary Table 8.Combinations of simultaneously acting GCFsTo examine the potential effects of the numbers of simultaneously acting GCFs, we created five levels of increasing GCF numbers. These levels were: zero (i.e., the control without any GCF application), one (single), two, four and six GCFs. For the one-, two- and four-GCF levels, there were six different combinations, so that each of these levels included either six different GCFs in case of the one-factor, or six different GCF combinations in case of the two- and four-GCF levels. In the six-GCF level, all six factors were combined, so that there was only one combination. To avoid potential biases due to unequal representation of the different GCFs in each GCF-number level, we created the GCF combinations randomly but with the restriction that each GCF was present in an equal number of combinations for each GCF-number level (i.e., each GCF was included once in GCF-number levels 1 and 6, respectively, twice in GCF-number level 2, and four times in GCF-number level 4; Supplementary Table 11).Experimental lay-outThe experiment was conducted outdoors in the climate-warming-simulation facility of the Botanical Garden of the University of Konstanz, Germany (N: 47°69’19.56”, E: 9°17’78.42”). Twenty of the 2 m × 2 m plots of this facility were used for our experiment. As the climate-warming and light-pollution treatments could not be applied to each individual pot separately, we applied those treatments at the plot level. Therefore, we assigned four of the 20 plots to the climate-warming treatment, four plots to the light-pollution treatment and four plots to both climate-warming and light-pollution treatment combination. Each plot had a 145 cm high metal frame. The eight plots assigned to the climate-warming treatment were equipped with a 1.80 m long, horizontally hanging infrared-heating lamp at the top of the metal frame (i.e., at 145 cm above soil level). The heating lamp slowly oscillated along its longitudinal axis to ensure uniform heating of the whole 2 m × 2 m plot. The eight plots assigned to the light-pollution treatment, each had a LED spotlight attached to one of the sides of the metal frame at a height of 120 cm. To reduce illumination of the neighboring plots, light-pollution was only applied to the outer plots of the climate-warming-simulation facility (Supplementary Fig. 5), and LEDs were pointing away from the inner plots and were equipped with lamp shades made of black plastic pots (18 cm × 18 cm × 25.5 cm). Furthermore, to reduce the light intensity to a realistic light-pollution level (24.5 lx) as found below street lights, we covered the spotlight with a layer of white cloth (Supplementary Fig. 6). For further details on the artificial light treatment, see Supplementary Fig. 7.To create mesocosms with the transplanted-seedling and sown communities, we filled 10-L pots (CEP- Container, 10.0 F, Burger GmbH, Renningen-Malmsheim, Germany) with a mixture of 40% potting soil (see above), 40% quartz sand (0.5–0.8 mm), and—to inoculate the substrate with a natural soil community—20% top soil excavated from a seminatural grassland patch in the botanical garden. In total, the experiments with the transplanted-seedling and sown communities, each included 120 pots (i.e., 20 treatment combinations × six replicates × 2 experiments = 240 pots in total; see Supplementary Table 11), which were distributed across the 20 plots. To prevent leakage of fertilizer or salt solutions, each pot was placed onto a plastic dish. To reduce differences due to environmental variation within plots, the positions of pots within each plot were re-randomized every 14 days. Plants were watered regularly to avoid drought stress and to avoid differences in soil moisture due to application of fertilizer- and salt-solutions.For the sown community, we randomly distributed five seeds of each of the nine species on the substrate in each pot on 3 July 2020. For the transplanted-seedling community, two seedlings of each of the nine species were transplanted into each pot (i.e., 18 seedlings per pot) according to a fixed pattern (Supplementary Fig. 8) on 6 July 2020. Since there were a few seedlings missing for S. arvensis (six seedlings) and V. cracca (four seedlings), we re-sowed these species in germination trays on 6 July 2020. On 13 July 2020, dead seedlings, and the missing seedlings for S. arvensis were replaced. Since V. cracca took longer to germinate, the missing seedlings were transplanted on 17 July 2020.MeasurementsTo investigate the effects of single-GCFs and their number on the sown and transplanted-seedling communities, we used plant biomass as an indicator for plant performance72. As it was impossible to disentangle the roots, we only used aboveground biomass. On 14 and 15 September 2020, i.e., 10 weeks after transplanting, we harvested the transplanted-seedling communities. On 28 and 29 September, i.e., twelve weeks after sowing, we harvested the sown communities. For both community types, we harvested the plants separately by species. The harvested plants were stored in paper bags, dried at 70 °C for at least 72 hours and weighed.Statistical analysisAll analyses were done in R 3.6.273. As the transplanted-seedling and sown communities were harvested at different times, we treated them as separate experiments, and therefore analyzed them separately (but see the subsection “Community type specific responses” below).Community aboveground biomassTo analyze the effects GCF number on plant-community productivity, we fitted linear mixed-effects models separately for the transplanted-seedling and sown communities, using the lmer function in the “lme4” package74. Total aboveground biomass per pot was the response variable. To improve normality of the residuals, biomass of the transplanted-seedling and sown communities was square-root- and natural-log-transformed, respectively. We included GCF number as a continuous fixed variable. To account for non-independence of pots in the same GCF combination and of pots in the same plot, GCF combination and plot were included as random effects. The effects of the individual GCFs on biomass production were also assessed by fitting linear mixed-effects models, using only the data of the control and single-GCF treatments, and including GCF identity as fixed effect.Community compositionTo assess potential effects of single-GCFs and GCF number on the final composition of the transplanted-seedling and sown communities, we first assessed variation in species composition, based on biomass proportions, among pots using principal component analysis (PCA) [rda function of the “vegan” package75,]. For each PCA (Supplementary Fig. 1), we extracted the PC1 and PC2 values, which together explained more than 65% of the variation in community composition and included them as response variables in separate linear mixed models, as described above for community biomass.To evaluate whether GCF number affects the diversity and evenness of plant communities, we calculated the Shannon index (H)76, using the diversity function in the “vegan” package, and evenness index (J)77 based on species biomass proportions. Subsequently, the single-GCF and GCF-number effects on diversity and evenness of the sown and transplanted-seedling communities were analyzed using linear mixed-effects models, or—if adding random effects did not improve the model—more parsimonious linear models78,79. For all models, we used type II analysis of variance (ANOVA) tests (Anova function in the “car” package) to assess the significance of fixed effects.Hierarchical diversity-interaction modelingWhen there is a significant GCF-number effect, this could reflect that with increasing numbers of co-acting GCFs, there is a higher chance that it will include a GCF with a strong and dominant effect (i.e., sampling or selection effects). However, it could also be that the GCF-number effect is driven by interactions among the GCFs, and the effects of these interactions could be GCF-specific or general. As our experiment does not include all possible combinations of GCFs, it does not allow to test the contributions of each possible multi-way GCF interaction. Therefore, to gain insights into whether the GCF identities and specific or general GCF interactions underlie the significant GCF-number effects, we applied the hierarchical diversity-interaction modeling framework of Kirwan et al.80. This framework was originally developed for estimating contributions of species identities and their interactions to ecosystem functions, but we here applied it to GCF identities and interactions. For each of the response variables showing a significant GCF-number effect, we ran five hierarchical models specifying different assumptions about the potential contributions of individual GCFs and their interactions to the GCF-number effect, and compared them using likelihood ratio tests (Fig. 4). For these analyses, the data of the control treatment (i.e., GCF number zero) was excluded. Each of the five models specified different assumptions about the potential contributions of individual GCFs and their interactions to the GCF-number effect. The first model is the null model, which assumed that there were no GCF-specific contributions (i.e., all GCFs contributed equally) and that there were no contributions of GCF interactions. Therefore, the null model only included the centered sum of the GCFs of each treatment (M) as fixed effect. M accounts for differences in ‘initial abundances’ of GCFs—meaning that the other model terms are interpreted based on the average initial abundance—and was also included in the four other models80. This way, we could include the GCFs’ relative proportions in each GCF combination, instead of just considering GCF presence, while taking into account that, with increasing GCF number, the relative proportion of each individual GCF is automatically reduced. In the second model, the GCF identities (i.e., their proportions in the respective GCF combination) were added, assuming that individual GCFs contribute differently to the effect of GCF number. In the third model, separate-pairwise interactions between the GCFs were added, considering that, in addition to contributions of individual GCFs, specific pairwise interactions contributed to the GCF-number effect. In the fourth model, the average GCF-interaction model (which is also called the evenness model in Kirwan et al. 2009), the separate-pairwise GCF interactions were replaced by an average interaction effect. Thus, the average GCF-interaction model assumed equivalent contributions of all pairwise GCF interactions. In the fifth model, the additive GCF-specific interaction contributions model, the average interaction effect of the fourth model was replaced by average GCF-specific interaction effects. This model assumed that each GCF’s contribution to a pairwise interaction remains constant. For the calculation of the average GCF-specific and average interaction effect, we used the equations provided by Kirwan et al.80. For each of the response variables, we generally included the same random terms as in the main analyses of the GCF-number effect. However, as this resulted in singularity warnings for some of the hierarchical diversity-interaction models, e.g., those for species diversity and evenness measures, we used for these cases linear models instead of linear mixed models.Fig. 4: Hierarchical diversity-interaction-modeling framework to assess contributions of GCF identities and GCF interactions to GCF-number effects.The framework was adapted from Kirwan et al.80. The null model assumes equivalent contributions of all GCFs and no interactions between them. The subsequent models assume more complex effects of how the individual GCFs and their interactions determine the GCF-number effects. The questions that can be answered by comparing specific models are depicted next to the arrows connecting the two models.Full size imageCommunity type-specific responsesAs the transplanted-seedling and sown communities were harvested at different times, we treated them as separate experiments, and therefore analyzed them separately. However, to test explicitly whether both community types differed in their responses to single-GCFs and GCF number, we also analyzed them jointly. To this end, we fitted linear mixed-effects models for each response variable including GCF number (or single-factor treatments), community type and their interaction as fixed effects (Supplementary Table 5).Final number of plants per speciesTo test for effects of individual GCFs and GCF number on species presence, i.e., the number of individuals per species present at harvest, we fitted generalized linear mixed-effects models for the transplanted-seedling and sown communities separately. We included the survival rate (number of individuals present at harvest divided by the number of planted/sown individuals) as response variables. For the models testing the effects of GCF number, we included GCF combination, species, pot, and plot as random effects. For the models testing the effects of single-GCFs, the same random effects were included, except for GCF combination. Specific random effects were removed from the model if their incorporation resulted in singular fit warnings due to low variation. We assessed the effects of individual GCFs or GCF number using type III ANOVA tests (Anova function in the “car” package, Supplementary Table 7).Eutrophication effectsIn addition to the general assessment of individual GCF effects in the hierarchical diversity-interaction models, we specifically assessed the effects of eutrophication. This was done because eutrophication had the strongest effect on productivity as individual GCF, and this might also have dominated the GCF-number effect, indicating a sampling effect. To this end, we added a binary-coded variable to include information on whether eutrophication was included in the different GCF combinations. Subsequently, we fitted linear mixed-effects models for all response traits that were affected by GCF number. In these models, we included GCF number, community type, eutrophication, and the respective two-way interactions as fixed effects, and plot and GCF combination as random effects. Effects of fixed factors were assessed using type III ANOVA tests (Anova function in the “car” package; Supplementary Table 6).Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article. More

  • in

    Vitality as a measure of animal welfare during purse seine pumping related crowding of Atlantic mackerel (Scomber scrombrus)

    Huntingford, F. A. et al. Current issues in fish welfare. J. Fish Biol. 68, 332–372 (2006).Article 

    Google Scholar 
    Kaiser, M. J. & Huntingford, F. A. Introduction to papers on fish welfare in commercial fisheries. J. Fish Biol. 75, 2852–2854 (2009).Article 
    CAS 

    Google Scholar 
    Veldhuizen, L. J. L., Berentsen, P. B. M., de Boer, I. J. M., van de Vis, J. W. & Bokkers, E. A. M. Fish welfare in capture fisheries: A review of injuries and mortality. Fish. Res. 204, 41–48 (2018).Article 

    Google Scholar 
    Breen, M. et al. Catch welfare in commercial fisheries. In The Welfare of Fish (eds Kristiansen, T. S. et al.) 401–437 (Springer, 2020).Chapter 

    Google Scholar 
    Diggles, B. K., Cooke, S. J., Rose, J. D. & Sawynok, W. Ecology and welfare of aquatic animals in wild capture fisheries. Rev. Fish. Biol. Fish. 21, 739–765 (2011).Article 

    Google Scholar 
    Korte, S. M., Olivier, B. & Koolhaas, J. M. A new animal welfare concept based on allostasis. Physiol. Behav. 92, 422–428 (2007).Article 
    CAS 

    Google Scholar 
    Broom, D. M. The scientific assessment of animal welfare. Appl. Anim. Behav. Sci. 20, 5–19 (1988).Article 

    Google Scholar 
    Broom, D. M. Animal welfare: Concepts and measurement. J. Anim. Sci. 69, 4167–4175 (1991).Article 
    CAS 

    Google Scholar 
    Tveit, G. M., Anders, N., Bondø, M. S., Mathiassen, J. R. & Breen, M. Atlantic mackerel (Scomber scombrus) change skin colour in response to crowding stress. J. Fish Biol. 100, 738–747 (2022).Article 
    CAS 

    Google Scholar 
    Noble, C. et al. Welfare Indicators for Farmed Atlantic Salmon: Tools for Assessing Fish Welfare (Nofima, 2018).
    Google Scholar 
    Sopinka, N. M., Donaldson, M. R., O’Connor, C. M., Suski, C. D. & Cooke, S. J. Stress indicators in fish. In Fish Physiology vol 35 405–462 (Elsevier, 2016).
    Google Scholar 
    Lawrence, M. J. et al. Are 3 minutes good enough for obtaining baseline physiological samples from teleost fish?. Can. J. Zool. 96, 774–786 (2018).Article 
    CAS 

    Google Scholar 
    Lawrence, M. J. et al. Best practices for non-lethal blood sampling of fish via the caudal vasculature. J. Fish Biol. 97, 4–15 (2020).Article 

    Google Scholar 
    Clark, T. D. et al. The efficacy of field techniques for obtaining and storing blood samples from fishes. J. Fish Biol. 79, 1322–1333 (2011).Article 
    CAS 

    Google Scholar 
    Davis, M. W., Olla, B. L. & Schreck, C. B. Stress induced by hooking, net towing, elevated sea water temperature and air in sablefish: Lack of concordance between mortality and physiological measures of stress. J. Fish Biol. 58, 1–15 (2001).Article 

    Google Scholar 
    Rushen, J. Problems associated with the interpretation of physiological data in the assessment of animal welfare. Appl. Anim. Behav. Sci. 28, 381–386 (1991).Article 

    Google Scholar 
    Dawkins, M. Using behaviour to assess animal welfare. Anim. Welf. 13, 3–7 (2004).
    Google Scholar 
    Moberg, G. P. & Mench, J. A. The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare (CABI, 2000).Book 

    Google Scholar 
    Wedemeyer, G. A. Effects of rearing conditions on the health and physiological quality of fish in intensive culture. In Fish Stress and Health in Aquaculture vol 278 (Cambridge University Press, 1997).
    Google Scholar 
    Botreau, R. et al. Aggregation of measures to produce an overall assessment of animal welfare. Part 1: A review of existing methods. Animal 1, 1179–1187 (2007).Article 
    CAS 

    Google Scholar 
    Turnbull, J., Bell, A., Adams, C., Bron, J. & Huntingford, F. Stocking density and welfare of cage farmed Atlantic salmon: Application of a multivariate analysis. Aquaculture 243, 121–132 (2005).Article 

    Google Scholar 
    North, B. P. et al. The impact of stocking density on the welfare of rainbow trout (Oncorhynchus mykiss). Aquaculture 255, 466–479 (2006).Article 

    Google Scholar 
    Spoolder, H., De Rosa, G., Hörning, B., Waiblinger, S. & Wemelsfelder, F. Integrating parameters to assess on-farm welfare. Anim. Welf. 12, 529–534 (2003).CAS 

    Google Scholar 
    Walker, J. K., Dale, A. R., D’Eath, R. B. & Wemelsfelder, F. Qualitative Behaviour Assessment of dogs in the shelter and home environment and relationship with quantitative behaviour assessment and physiological responses. Appl. Anim. Behav. Sci. 184, 97–108 (2016).Article 

    Google Scholar 
    Brscic, M. et al. Welfare assessment: Correlations and integration between a Qualitative Behavioural Assessment and a clinical health protocol applied in veal calves farms. Ital. J. Anim. Sci. 8, 601–603 (2009).Article 

    Google Scholar 
    Andreasen, S. N., Wemelsfelder, F., Sandøe, P. & Forkman, B. The correlation of Qualitative Behavior Assessments with Welfare Quality® protocol outcomes in on-farm welfare assessment of dairy cattle. Appl. Anim. Behav. Sci. 143, 9–17 (2013).Article 

    Google Scholar 
    Phythian, C. J., Michalopoulou, E., Cripps, P. J., Duncan, J. S. & Wemelsfelder, F. On-farm qualitative behaviour assessment in sheep: Repeated measurements across time, and association with physical indicators of flock health and welfare. Appl. Anim. Behav. Sci. 175, 23–31 (2016).Article 

    Google Scholar 
    Davis, M. W., Benoît, H. P., Breen, M., Kopp, D. & Depestele, J. Vitality Assessments. In ICES guidelines for estimating discard survival, ICES Cooperative Research Reports No. 351. 219 (International Council for the Exploration of the Sea, 2021). https://doi.org/10.17895/ices.pub.8006.Stoner, A. W. Assessing stress and predicting mortality in economically significant crustaceans. Rev. Fish. Sci. 20, 111–135 (2012).Article 

    Google Scholar 
    Humborstad, O.-B., Davis, M. W. & Løkkeborg, S. Reflex impairment as a measure of vitality and survival potential of Atlantic cod (Gadus morhua). Fish. Bull. 107, 395–402 (2009).
    Google Scholar 
    Campbell, M. D., Tolan, J., Strauss, R. & Diamond, S. L. Relating angling-dependent fish impairment to immediate release mortality of red snapper (Lutjanus campechanus). Fish. Res. 106, 64–70 (2010).Article 

    Google Scholar 
    Davis, M. W. Fish stress and mortality can be predicted using reflex impairment. Fish Fish. 11, 1–11 (2010).Article 

    Google Scholar 
    Barkley, A. S. & Cadrin, S. X. Discard mortality estimation of yellowtail flounder using reflex action mortality predictors. Trans. Am. Fish. Soc. 141, 638–644 (2012).Article 

    Google Scholar 
    Raby, G. D. et al. Validation of reflex indicators for measuring vitality and predicting the delayed mortality of wild coho salmon bycatch released from fishing gears. J. Appl. Ecol. 49, 90–98 (2012).Article 

    Google Scholar 
    LeDain, M. R. K. et al. Assisted recovery following prolonged submergence in fishing nets can be beneficial to turtles: An assessment with blood physiology and reflex impairment. Chelonian Conserv. Biol. 12, 172–177 (2013).Article 

    Google Scholar 
    Watson, R. A. & Tidd, A. Mapping nearly a century and a half of global marine fishing: 1869–2015. Mar. Policy 93, 171–177 (2018).Article 

    Google Scholar 
    Ben-Yami, M. Purse seining manual. (1994).Marçalo, A. et al. Mitigating slipping-related mortality from purse seine fisheries for small pelagic fish: Case studies from European Atlantic Waters. In The European Landing Obligation 297–318 (Springer, 2019).Chapter 

    Google Scholar 
    Digre, H., Tveit, G. M., Solvang-Garten, T., Eilertsen, A. & Aursand, I. G. Pumping of mackerel (Scomber scombrus) onboard purse seiners, the effect on mortality, catch damage and fillet quality. Fish. Res. 176, 65–75 (2016).Article 

    Google Scholar 
    Tenningen, M., Vold, A. & Olsen, R. E. The response of herring to high crowding densities in purse-seines: Survival and stress reaction. ICES J. Mar. Sci. 69, 1523–1531 (2012).Article 

    Google Scholar 
    Anders, N., Roth, B. & Breen, M. Physiological response and survival of Atlantic mackerel exposed to simulated purse seine crowding and release. Conserv. Physiol. 9, 25 (2021).Article 

    Google Scholar 
    Anders, N. et al. Effects on individual level behaviour in mackerel (Scomber scombrus) of sub-lethal capture related stressors: Crowding and hypoxia. PLoS One 14, e0213709 (2019).Article 
    CAS 

    Google Scholar 
    Marçalo, A. et al. Behavioural responses of sardines Sardina pilchardus to simulated purse-seine capture and slipping. J. Fish Biol. 83, 480–500 (2013).Article 

    Google Scholar 
    Anders, N., Eide, I., Lerfall, J., Roth, B. & Breen, M. Physiological and flesh quality consequences of pre-mortem crowding stress in Atlantic mackerel (Scomber scombrus). PLoS One 15, e0228454 (2020).Article 
    CAS 

    Google Scholar 
    Olsen, R. E., Oppedal, F., Tenningen, M. & Vold, A. Physiological response and mortality caused by scale loss in Atlantic herring. Fish. Res. 129–130, 21–27 (2012).Article 

    Google Scholar 
    Marçalo, A. et al. Fishing simulation experiments for predicting the effects of purse-seine capture on sardine (Sardina pilchardus). ICES J. Mar. Sci. 67, 334–344 (2010).Article 

    Google Scholar 
    Roth, B. & Skåra, T. Pre mortem capturing stress of Atlantic herring (Clupea harengus) in purse seine and subsequent effect on welfare and flesh quality. Fish. Res. 244, 106124 (2021).Article 

    Google Scholar 
    Marçalo, A. et al. Sardine (Sardina pilchardus) stress reactions to purse seine fishing. Mar. Biol. 149, 1509–1518 (2006).Article 

    Google Scholar 
    ICES. Working Group on Widely Distributed Stocks (WGWIDE). 1019 https://doi.org/10.17895/ices.pub.7475 (2020).Lockwood, S. J., Pawson, M. G. & Eaton, D. R. The effects of crowding on mackerel (Scomber scombrus L)— physical condition and mortality. Fish. Res. 2, 129–147 (1983).Article 

    Google Scholar 
    Huse, I. & Vold, A. Mortality of mackerel (Scomber scombrus L.) after pursing and slipping from a purse seine. Fish. Res. 20, 54–59 (2010).Article 

    Google Scholar 
    Sone, I., Skåra, T. & Olsen, S. H. Factors influencing post-mortem quality, safety and storage stability of mackerel species: A review. Eur. Food Res. Technol. 245, 775–791 (2019).Article 
    CAS 

    Google Scholar 
    Handegard, N. O. et al. Effects on schooling function in mackerel of sub-lethal capture related stressors: Crowding and hypoxia. PLoS One 12, e0190259 (2017).Article 

    Google Scholar 
    Percie du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. J. Cereb. Blood Flow Metab. 40, 1769–1777 (2020).Article 

    Google Scholar 
    Koolhaas, J. M. et al. Stress revisited: A critical evaluation of the stress concept. Neurosci. Biobehav. Rev. 35, 1291–1301 (2011).Article 
    CAS 

    Google Scholar 
    Tenningen, M., Pobitzer, A., Handegard, N. O. & de Jong, K. Estimating purse seine volume during capture: Implications for fish densities and survival of released unwanted catches. ICES J. Mar. Sci. 76, 2481–2488 (2019).Article 

    Google Scholar 
    Fulton, T. W. The Rate of Growth of Fishes. 141–241 (1904).Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).Book 
    MATH 

    Google Scholar 
    Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11, 54–71 (2006).Article 

    Google Scholar 
    Dray, S. & Dufour, A.-B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).Article 

    Google Scholar 
    Tenningen, M., Peña, H. & Macaulay, G. J. Estimates of net volume available for fish shoals during commercial mackerel (Scomber scombrus) purse seining. Fish. Res. 161, 244–251 (2015).Article 

    Google Scholar 
    Johnston, R., Jones, K. & Manley, D. Confounding and collinearity in regression analysis: A cautionary tale and an alternative procedure, illustrated by studies of British voting behaviour. Qual. Quant. 52, 1957–1976 (2018).Article 

    Google Scholar 
    Burnham, K. & Anderson, D. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: Challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).Article 
    CAS 

    Google Scholar 
    Hartig, F. & Lohse, L. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. (2022).Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Speers-Roesch, B., Mandic, M., Groom, D. J. E. & Richards, J. G. Critical oxygen tensions as predictors of hypoxia tolerance and tissue metabolic responses during hypoxia exposure in fishes. J. Exp. Mar. Biol. Ecol. 449, 239–249 (2013).Article 
    CAS 

    Google Scholar 
    Rogers, N. J., Urbina, M. A., Reardon, E. E., McKenzie, D. J. & Wilson, R. W. A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (Pcrit). Conserv. Physiol. 4, cow012 (2016).Article 

    Google Scholar 
    Domenici, P., Herbert, N. A., Lefrançois, C., Steffensen, J. F. & McKenzie, D. J. The Effect of Hypoxia on Fish Swimming Performance and Behaviour. In Swimming Physiology of Fish: Towards Using Exercise to Farm a Fit Fish in Sustainable Aquaculture (eds Palstra, A. P. & Planas, J. V.) 129–159 (Springer, 2013).Chapter 

    Google Scholar 
    Johnstone, A. D. F., Wardle, C. S. & Almatar, S. M. Routine respiration rates of Atlantic mackerel, Scomber scombrus L., and herring, Clupea harengus L., at low activity levels. J. Fish Biol. 42, 149–151 (1993).Article 

    Google Scholar 
    Peña, H., Macaulay, G. J., Ona, E., Vatnehol, S. & Holmin, A. J. Estimating individual fish school biomass using digital omnidirectional sonars, applied to mackerel and herring. ICES J. Mar. Sci. 78, 940–951 (2021).Article 

    Google Scholar 
    Kieffer, J. D. Limits to exhaustive exercise in fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 126, 161–179 (2000).Article 
    CAS 

    Google Scholar 
    Wardle, C. S. & He, P. Burst swimming speeds of mackerel, Scomber scombrus L. J. Fish Biol. 32, 471–478 (1988).Article 

    Google Scholar 
    Anders, N., Breen, M., Skåra, T., Roth, B. & Sone, I. Effects of capture-related stress and pre-freezing holding in refrigerated sea water (RSW) on the muscle quality and storage stability of Atlantic mackerel (Scomber scombrus) during subsequent frozen storage. Food Chem. https://doi.org/10.1016/j.foodchem.2022.134819 (2022).Article 

    Google Scholar 
    Sogn-Grundvåg, G., Zhang, D. & Iversen, A. Large buyers at a fish auction: The case of the Norwegian pelagic auction. Mar. Policy 104, 232–238 (2019).Article 

    Google Scholar 
    Breen, M. et al. Behaviour & Welfare of Mackerel & Herring During Capture in Purse Seine. 134 https://www.fhf.no/prosjekter/prosjektbasen/901350/ (2021). More

  • in

    Out-of-date datasets hamper conservation of species close to extinction

    Scheffers, B. R., Yong, D. L., Harris, J. B. C., Giam, X. & Sodhi, N. S. The world’s rediscovered species: back from the brink? PloS ONE 6, e22531 (2011).Article 
    CAS 

    Google Scholar 
    Abeli, T., Albani Rocchetti, G., Barina, Z., Bazos, I. & Draper, D. et al. Seventeen ‘extinct’ plant species back to conservation attention in Europe. Nat. Plants 7, 282–286 (2021).Article 

    Google Scholar 
    Guidelines for Using the IUCN Red List Categories and Criteria Version 14 (IUCN Standards and Petitions Committee, 2019); http://www.iucnredlist.org/documents/RedListGuidelines.pdfDalrymple, S. E. & Abeli, T. Ex situ seed banks and the IUCN Red List. Nat. Plants 5, 122–123 (2019).Article 

    Google Scholar 
    Albani Rocchetti, G. et al. Selecting the best candidates for resurrecting extinct-in-the-wild plants from herbaria. Nat. Plants. https://doi.org/10.1038/s41477-022-01296-7 (2022).The IUCN Red List of Threatened Species Version 2022-1 (IUCN, accessed 264 October 2022); https://www.iucnredlist.orgHumphreys, A. M., Govaerts, R., Ficinski, S. Z., Lughadha, E. N. & Vorontsova, M. S. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evol. 3, 1043–1047 (2019).Article 

    Google Scholar 
    Knapp, W. M., Frances, A., Noss, R., Naczi, R. F. & Weakley, A. et al. Vascular plant extinction in the continental United States and Canada. Conserv. Biol. 35, 360–368 (2021).Article 

    Google Scholar 
    Sasidharan, N. Cynometra beddomei. The IUCN Red List of Threatened Species 2020 (IUCN, accessed 27 October 2021); https://www.iucnredlist.org/species/31184/115932185Cronk, Q. C. B. A new species and hybrid in the St Helena endemic genus Trochetiopsis. Edinb. J. Bot. 52, 205–213 (1995).Article 

    Google Scholar 
    Loizeau, P. A. & Jackson, P. W. World Flora Online mid-term update. Ann. Missouri Bot. Gard. 102, 341–346 (2017).Article 

    Google Scholar 
    Edwards, C., Bassüner, B., Birkinshaw, C., Camara, C. & Lehavana, A. et al. A botanical mystery solved by phylogenetic analysis of botanical garden collections: the rediscovery of the presumed-extinct Dracaena umbraculifera. Oryx 52, 427–436 (2018).Article 

    Google Scholar 
    MosaChristas, K., Karthick, R., Kowsalya, E. & Jaquline, C. R. I. Musa kattuvazhana (Musaceae): rediscovery and additional notes on a critically endangered species from Western Ghats of Tamil Nadu, India. Feddes Repert. 132, 263–268 (2021).Article 

    Google Scholar 
    Van Hoi, Q. U. A. C. H., Doudkin, R. V., Cuong, T. Q., Le Van, S. O. N. & Van Dung, L. U. O. N. G. et al. Rediscovery of Camellia langbianensis (Theaceae) in Vietnam. Phytotaxa 480, 85–90 (2021).Article 

    Google Scholar 
    Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G. & Axton, M. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).Costello, M. J. & Wieczorek, J. Best practice for biodiversity data management and publication. Biol. Conserv. 173, 68–73 (2014).Article 

    Google Scholar 
    Wieczorek, J., Bloom, D., Guralnick, R., Blum, S., Döring, M., Giovanni, R., Robertson, T. & Vieglais, D. Darwin Core: an evolving community-developed biodiversity data standard. PloS ONE 7, e29715 (2012).Article 
    CAS 

    Google Scholar 
    de Lange, P.J. Lepidium obtusatum Fact Sheet (content continuously updated) (New Zealand Plant Conservation Network, accessed 16 December 2021); https://www.nzpcn.org.nz/flora/species/lepidium-obtusatum/Knapp, W.M., Poindexter, D.B. & Weakley, A.S. The true identity of Marshallia grandiflora an extinct species and the description of Marshallia pulchra (Asteraceae Helenieae Marshalliinae). Phytotaxa 447, 1–15 (2020).Article 

    Google Scholar  More

  • in

    Biodiversity stabilizes plant communities through statistical-averaging effects rather than compensatory dynamics

    Empirical dataWe applied our theory to two datasets (Table 1): the plant survey dataset and the biodiversity-manipulated experiment dataset. The plant survey dataset contains nine sites of long-term grassland experiments across the United States (see also Hallett et al.10, and Zhao et al.23). Five of nine sites are from the Long Term Ecological Research (LTER) network (see Table 1). Plant abundances were measured either as biomass or as percent cover. In percent-cover cases, summed values can exceed 100% due to vertically overlapping canopies. All sites were sampled annually and were spatially replicated. We only used data of the plant survey dataset from unmanipulated control plots. Methods for data collection were constant over time.The biodiversity-manipulated experimental dataset comprises two long-term grassland experiments, BigBio and BioCON, at the Cedar Creek Ecosystem Science Reserve. Both experiments directly manipulated plant species number (1, 2, 4, 8, 16 for BigBio; and 1, 4, 9, 16 for BioCON). BioCON also contains different treatment levels for nitrogen and atmospheric CO2, but here only data from the ambient CO2 and ambient N treatments were used. We excluded plots with only one species. BigBio comprises 125 plots over 17 years, and BioCON comprises 59 plots over 22 years (Table 1).TheoryLet xi(t) denote the biomass of species i = 1, …, S at time t = 1, …, t and let μi = mean (xi (t)), σi = ({{mbox{sd}}})(xi (t)), and ({v}_{i}={sigma }_{i}^{2}) be the mean, standard deviation and variance of species i, computed through time. Let vij = cov (({x}_{i}left(tright),, {x}_{j}left(tright))) be the covariance, through time, of the dynamics of species i and j. Let xtot (left(tright)={sum }_{i}{x}_{i}(t)), ({mu }_{{{mbox{tot}}}}={sum }_{i}{mu }_{i}), ({v}_{{{mbox{tot}}}}={sum }_{i,j}{v}_{{ij}}), and ({{{{{{rm{sigma }}}}}}}_{{{{{{rm{tot}}}}}}}=sqrt{{v}_{{{{{{rm{tot}}}}}}}}). When population time series are uncorrelated, ({v}_{{{{{{rm{tot}}}}}}}={sum }_{i}{v}_{i}).As defined previously10,15, community stability is the inverse coefficient of variation of ({x}_{{{mbox{tot}}}}left(tright)), ({S}_{{{{{{rm{com}}}}}}}={mu }_{{{{{{rm{tot}}}}}}}/{sigma }_{{{{{{rm{tot}}}}}}}). Population stability is the inverse of weighted-average population variability9, ({sum }_{i}frac{{mu }_{i}}{{mu }_{{{{{{rm{tot}}}}}}}}{{CV}}_{i}={sum }_{i}frac{{mu }_{i}}{{mu }_{{{{{{rm{tot}}}}}}}}frac{{sigma }_{i}}{{mu }_{i}}={sum }_{i}frac{{sigma }_{i}}{{mu }_{{{{{{rm{tot}}}}}}}}), i.e, ({S}_{{pop}}={mu }_{{{{{{rm{tot}}}}}}}/{sum }_{i}{sigma }_{i}). The ratio of community stability over population stability is the Loreau-de Mazancourt asynchrony index14, Φ = ({sum }_{i}{sigma }_{i}/{sigma }_{{{{{{rm{tot}}}}}}}), so that$${S}_{{{{{{rm{com}}}}}}}=varPhi {S}_{{{{{{rm{pop}}}}}}}.$$
    (1)
    Now we suppose a hypothetical community with the same species-level variances and means as the original community but with species covariances equal to zero. Then, (1) becomes Scom_ip = (SAE)Spop, where ({S}_{{{{{{rm{com}}}}}}_{{{{{rm{ip}}}}}}}=frac{{mu }_{{{{{{rm{tot}}}}}}}}{sqrt{{sum }_{i}{v}_{i}}}=frac{{mu }_{{{{{{rm{tot}}}}}}}}{sqrt{{sum }_{i}{sigma }_{i}^{2}}}) is the value of community stability in the case of uncorrelated or independent populations and SAE is the component of Φ due to statistical averaging (here, “ip” stands for “independent populations”). The equation Scom_ip = (SAE)Spop can be interpreted as a definition of SAE. We then have$$SAE=frac{{S}_{{{{{{rm{com}}}}}}_{{{{{rm{ip}}}}}}}}{{S}_{{{{{{rm{pop}}}}}}}}=frac{{sum }_{i}{sigma }_{i}}{sqrt{{sum }_{i}{sigma }_{i}^{2}}}.$$
    (2)
    The compensatory effect is then the rest of Φ, i.e.,$$CPE=frac{{S}_{{{{{{rm{com}}}}}}}}{{S}_{{{{{{rm{pop}}}}}}}times SAE}=frac{{sum }_{i}{sigma }_{i}}{{sigma }_{{{{{{rm{tot}}}}}}}left({sum }_{i}{sigma }_{i}/sqrt{{sum }_{i}{sigma }_{i}^{2}}right)}=frac{sqrt{{sum }_{i}{sigma }_{i}^{2}}}{{sigma }_{{{{{{rm{tot}}}}}}}}.$$
    (3)
    Considering the classic variance ratio ({{{{{rm{varphi }}}}}}=frac{{V}_{{{{{{rm{tot}}}}}}}}{{sum }_{i}{V}_{i}}=frac{{sigma }_{{{{{{rm{tot}}}}}}}^{2}}{{sum }_{i}{sigma }_{i}^{2}}), our CPE is (1/sqrt{varphi }). Values CPE  > 1 (respectively, More

  • in

    Predicting potential global distribution and risk regions for potato cyst nematodes (Globodera rostochiensis and Globodera pallida)

    Evans, K., Franco, J. & De Scurrah, M. M. Distribution of species of potato cyst-nematodes in South America. Nematologica 21, 365–369. https://doi.org/10.1163/187529275×00103 (1975).Article 

    Google Scholar 
    Plantard, O. et al. Origin and genetic diversity of Western European populations of the potato cyst nematode (Globodera pallida) inferred from mitochondrial sequences and microsatellite loci. Mol. Ecol. 17, 2208–2218. https://doi.org/10.1111/j.1365-294X.2008.03718.x (2008).Article 
    CAS 

    Google Scholar 
    Price, J. A., Coyne, D., Blok, V. C. & Jones, J. T. Potato cyst nematodes Globodera rostochiensis and G. pallida. Mol. Plant Pathol. 22, 495–507. https://doi.org/10.1111/mpp.13047 (2021).Article 
    CAS 

    Google Scholar 
    CABI. Globodera rostochiensis (yellow potato cyst nematode). https://www.cabi.org/isc/datasheet/27034 (2021).CABI. Globodera pallida (white potato cyst nematode). https://www.cabi.org/isc/datasheet/27033 (2021).Ruthes, A. C. & Dahlin, P. The impact of management strategies on the development and status of potato cyst nematode populations in Switzerland: An overview from 1958 to present. Plant Dis. 106, 1096–1104. https://doi.org/10.1094/pdis-04-21-0800-sr (2021).Article 

    Google Scholar 
    Minnis, S. T. et al. Potato cyst nematodes in England and Wales—Occurrence and distribution. Ann. Appl. Biol. 140, 187–195. https://doi.org/10.1111/j.1744-7348.2002.tb00172.x (2002).Article 

    Google Scholar 
    Djebroune, A. et al. Integrative morphometric and molecular approach to update the impact and distribution of potato cyst nematodes Globodera rostochiensis and Globodera pallida (Tylenchida: Heteroderidae) in Algeria. Pathogens 10, 216. https://doi.org/10.3390/pathogens10020216 (2021).Article 

    Google Scholar 
    Vallejo, D. et al. Occurrence and molecular characterization of cyst nematode species (Globodera spp.) associated with potato crops in Colombia. PLoS One 16, e0241256. https://doi.org/10.1371/journal.pone.0241256 (2021).Article 
    CAS 

    Google Scholar 
    Hajjaji, A., Mhand, R. A., Rhallabi, N. & Mellouki, F. First report of morphological and molecular characterization of Moroccan populations of Globodera pallida. J. Nematol. 53, e2021-07. https://doi.org/10.21307/jofnem-2021-007 (2021).Article 
    CAS 

    Google Scholar 
    Camacho, M. J. et al. Potato cyst nematodes: Geographical distribution, phylogenetic relationships and integrated pest management outcomes in Portugal. Front. Plant Sci. 11, 9. https://doi.org/10.3389/fpls.2020.606178 (2020).Article 

    Google Scholar 
    Handayani, N. D. et al. Distribution, DNA barcoding and genetic diversity of potato cyst nematodes in Indonesia. Eur. J. Plant Pathol. 158, 363–380. https://doi.org/10.1007/s10658-020-02078-7 (2020).Article 
    CAS 

    Google Scholar 
    Bairwa, A. et al. Morphological and molecular characterization of potato cyst nematode populations from the Nilgiris. Indian J. Agric. Sci. 90, 273–278 (2020).Article 
    CAS 

    Google Scholar 
    Mburu, H. et al. Potato cyst nematodes: A new threat to potato production in East Africa. Front. Plant Sci. 11, 13. https://doi.org/10.3389/fpls.2020.00670 (2020).Article 

    Google Scholar 
    Altas, A., Evlice, E., Ozer, G., Dababat, A. & Imren, M. Identification, distribution and genetic diversity of Globodera rostochiensis (Wollenweber, 1923) Skarbilovich, 1959 (Tylenchida: Heteroderidae) populations in Turkey. Turk. Entomol. Derg. Turk. J. Entomol. 44, 385–397. https://doi.org/10.16970/entoted.740223 (2020).Article 

    Google Scholar 
    Dandurand, L.-M., Zasada, I. A., Wang, X. & Mimee, B. Current status of potato cyst nematodes in North America. Annu. Rev. Phytopathol. 57, 117–133. https://doi.org/10.1146/annurev-phyto-082718-100254 (2019).Article 
    CAS 

    Google Scholar 
    Blacket, M. J. et al. Molecular assessment of the introduction and spread of potato cyst nematode, Globodera rostochiensis, in Victoria, Australia. Phytopathology 109, 659–669. https://doi.org/10.1094/phyto-06-18-0206-r (2019).Article 
    CAS 

    Google Scholar 
    Sullivan, M. J., Inserra, R. N., Franco, J., Moreno-Leheude, I. & Greco, N. Potato cyst nematodes: Plant host status and their regulatory impact. Nematropica 37, 193–201 (2007).
    Google Scholar 
    Hodda, M. & Cook, D. C. Economic impact from unrestricted spread of potato cyst nematodes in Australia. Phytopathology 99, 1387–1393. https://doi.org/10.1094/phyto-99-12-1387 (2009).Article 
    CAS 

    Google Scholar 
    Koirala, S., Watson, P., McIntosh, C. S. & Dandurand, L. M. Economic impact of Globodera pallida on the Idaho economy. Am. J. Potato Res. 97, 214–220. https://doi.org/10.1007/s12230-020-09768-2 (2020).Article 

    Google Scholar 
    Trudgill, D. L., Elliott, M. J., Evans, K. & Phillips, M. S. The white potato cyst nematode (Globodera pallida)—A critical analysis of the threat in Britain. Ann. Appl. Biol. 143, 73–80. https://doi.org/10.1111/j.1744-7348.2003.tb00271.x (2003).Article 

    Google Scholar 
    Duan, Y. X. Plant Nematology (Science Press, 2011).
    Google Scholar 
    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644. https://doi.org/10.5194/hess-11-1633-2007 (2007).Article 
    ADS 

    Google Scholar 
    Li, J. Suitable Risk Assessment for Six Potential Invasive Nematodes in China, Master thesis (Jilin Agriculture University, 2008).
    Google Scholar 
    Contina, J. B., Dandurand, L. M. & Knudsen, G. R. A spatiotemporal analysis and dispersal patterns of the potato cyst nematode Globodera pallida in Idaho. Phytopathology 110, 379–392. https://doi.org/10.1094/phyto-04-19-0113-r (2020).Article 
    CAS 

    Google Scholar 
    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models with Applications in R (Cambridge University Press, 2017). https://doi.org/10.1017/9781139028271.Book 

    Google Scholar 
    Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning 83. https://doi.org/10.1145/1015330.1015412 (Association for Computing Machinery, 2004).Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x (2008).Article 

    Google Scholar 
    Wan, J. et al. Predicting the potential geographic distribution of Bactrocera bryoniae and Bactrocera neohumeralis (Diptera: Tephritidae) in China using MaxEnt ecological niche modeling. J. Integr. Agric. 19, 2072–2082. https://doi.org/10.1016/S2095-3119(19)62840-6 (2020).Article 
    CAS 

    Google Scholar 
    Midmore, D. J. Potato production in the tropics. In The Potato Crop: The Scientific Basis for Improvement 728–793 (Springer Netherlands, 1992).Chapter 

    Google Scholar 
    Naika, S., de Jeude, J. V. L., de Goffau, M., Hilmi, M. & van Dam, B. Cultivation of Tomato: Production, Processing and Marketing (Digigrafi, 2005).
    Google Scholar 
    Chapman, M. A. Eggplant breeding and improvement for future climates. In Genomic Designing of Climate-Smart Vegetable Crops 257–276 (Springer, 2020).Chapter 

    Google Scholar 
    Management, D. o. C. List of National Agricultural Plant Quarantine Pests Distribution Administrative Areas. https://www.moa.gov.cn/nybgb/2019/201906/201907/t20190701_6320036.htm (Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2021).Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x (2011).Article 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 33, 607–611. https://doi.org/10.1111/j.1600-0587.2009.06142.x (2010).Article 

    Google Scholar 
    Foot, M. A. The Ecology of Globodera pallida (Stone) Mulvey & Stone (Nematoda, Heteroderidae) at Pukekohe, New Zealand, Doctoral thesis (The University of Auckland, 1978).
    Google Scholar 
    Phillips, S. J., Dudík, M., & Schapire, R. E. Maxent software for modeling species niches and distributions (Version 3.4.1) [Internet]. http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 24-10-2020.Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x (2013).Article 

    Google Scholar 
    Wan, J., Wang, R., Ren, Y. & McKirdy, S. Potential distribution and the risks of Bactericera cockerelli and its associated plant pathogen Candidatus Liberibacter solanacearum for global potato production. Insects 11, 298. https://doi.org/10.3390/insects11050298 (2020).Article 

    Google Scholar 
    Cobos, M. E., Peterson, A. T., Barve, N. & Osorio-Olvera, L. kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 7, e6281. https://doi.org/10.7717/peerj.6281 (2019).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/. Accessed 30-10-2020.Peterson, A. T., Papeş, M. & Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model. 213, 63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008 (2008).Article 

    Google Scholar 
    Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342. https://doi.org/10.1890/10-1171.1 (2011).Article 

    Google Scholar 
    ESRI. ArcGIS Desktop: Release 10 (Version 10.4.1) (Environmental Systems Research Institute). Accessed 24-10-2020.Kong, W., Li, X. & Zou, H. Optimizing MaxEnt model in the prediction of species distribution. J. Appl. Ecol. 30, 2116–2128. https://doi.org/10.13287/j.1001-9332.201906.029 (2019).Article 

    Google Scholar 
    Fischer, G. et al. Global Agro-ecological Zones (GAEZ v3.0). http://pure.iiasa.ac.at/id/eprint/13290/ (2012).Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893. https://doi.org/10.1111/ecog.03049 (2017).Article 

    Google Scholar 
    da Silva, J. C. P., de Medeiros, F. H. V. & Campos, V. P. Building soil suppressiveness against plant-parasitic nematodes. Biocontrol Sci. Technol. 28, 423–445. https://doi.org/10.1080/09583157.2018.1460316 (2018).Article 

    Google Scholar 
    Kim, E., Seo, Y., Kim, Y. S., Park, Y. & Kim, Y. H. Effects of soil textures on infectivity of root-knot nematodes on carrot. Plant Pathol. J. 33, 66–74. https://doi.org/10.5423/ppj.Oa.07.2016.0155 (2017).Article 
    CAS 

    Google Scholar 
    Duyck, P.-F. et al. Niche partitioning based on soil type and climate at the landscape scale in a community of plant-feeding nematodes. Soil Biol. Biochem. 44, 49–55. https://doi.org/10.1016/j.soilbio.2011.09.014 (2012).Article 
    CAS 

    Google Scholar 
    Stanton, J. C., Pearson, R. G., Horning, N., Ersts, P. & ReşitAkçakaya, H. Combining static and dynamic variables in species distribution models under climate change. Methods Ecol. Evol. 3, 349–357. https://doi.org/10.1111/j.2041-210X.2011.00157.x (2012).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Multimodel inference understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304. https://doi.org/10.1177/0049124104268644 (2004).Article 
    MathSciNet 

    Google Scholar 
    Din, A. U. et al. The impact of COVID-19 on the food supply chain and the role of e-commerce for food purchasing. Sustainability 14, 3074. https://doi.org/10.3390/su14053074 (2022).Article 
    CAS 

    Google Scholar 
    Lang, T. & McKee, M. The reinvasion of Ukraine threatens global food supplies. BMJ https://doi.org/10.1136/bmj.o676,o676,10.1136/bmj.o676 (2022).Article 

    Google Scholar 
    Hijmans, R. J. Global distribution of the potato crop. Am. J. Potato Res. 78, 403–412. https://doi.org/10.1007/bf02896371 (2001).Article 

    Google Scholar 
    Motti, R. The Solanaceae family: Botanical features and diversity. In The Wild Solanums Genomes 1–9 (Springer International Publishing, 2021).
    Google Scholar 
    Chytrý, M. et al. Projecting trends in plant invasions in Europe under different scenarios of future land-use change. Glob. Ecol. Biogeogr. 21, 75–87. https://doi.org/10.1111/j.1466-8238.2010.00573.x (2012).Article 

    Google Scholar 
    Lin, W., Cheng, X. & Xu, R. Impact of different economic factors on biological invasions on the global scale. PLoS One 6, e18797. https://doi.org/10.1371/journal.pone.0018797 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Jones, L. M. et al. Climate change is predicted to alter the current pest status of Globodera pallida and G. rostochiensis in the United Kingdom. Glob. Change Biol. 23, 4497–4507. https://doi.org/10.1111/gcb.13676 (2017).Article 
    ADS 
    MathSciNet 

    Google Scholar 
    Kaczmarek, A., MacKenzie, K., Kettle, H. & Blok, V. C. Influence of soil temperature on Globodera rostochiensis and Globodera pallida. Phytopathol. Mediterr. 53, 396–405. https://doi.org/10.14601/Phytopathol_Mediterr-13512 (2014).Article 
    CAS 

    Google Scholar 
    Hearne, R., Lettice, E. P. & Jones, P. W. Interspecific and intraspecific competition in the potato cyst nematodes Globodera pallida and G. rostochiensis. Nematology 19, 463–475. https://doi.org/10.1163/15685411-00003061 (2017).Article 
    CAS 

    Google Scholar 
    Skelsey, P., Kettle, H., Mackenzie, K. & Blok, V. Potential impacts of climate change on the threat of potato cyst nematode species in Great Britain. Plant. Pathol. 67, 909–919. https://doi.org/10.1111/ppa.12807 (2018).Article 

    Google Scholar 
    Carlton, J. & Ruiz, G. M. Invasive Species: Vectors and Management Strategies (Island Press, 2003).
    Google Scholar 
    Singh, S. K., Paini, D. R., Ash, G. J. & Hodda, M. Prioritising plant-parasitic nematode species biosecurity risks using self organising maps. Biol. Invasions 16, 1515–1530. https://doi.org/10.1007/s10530-013-0588-7 (2014).Article 

    Google Scholar 
    Jiang, D., Chen, S., Hao, M. M., Fu, J. Y. & Ding, F. Y. Mapping the Potential global codling moth (Cydia pomonella L.) distribution based on a machine learning method. Sci. Rep. 8, 8. https://doi.org/10.1038/s41598-018-31478-3 (2018).Article 
    CAS 

    Google Scholar 
    Simberloff, D. et al. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 28, 58–66. https://doi.org/10.1016/j.tree.2012.07.013 (2013).Article 

    Google Scholar 
    Ravichandra, N. Nematodes of quarantine importance. In Horticultural Nematology 369–385 (Springer, 2014).
    Google Scholar  More

  • in

    Effects of diversity on thermal niche variation in bird communities under climate change

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).Article 

    Google Scholar 
    Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Chang. 2, 121–124 (2012).Article 
    ADS 

    Google Scholar 
    Princé, K. & Zuckerberg, B. Climate change in our backyards: The reshuffling of North America’s winter bird communities. Glob. Change Biol. 21, 572–585 (2015).Article 
    ADS 

    Google Scholar 
    Brotons, L., Jiguet, F., Herando, S. & Lehikoinen, A. Bird communities and climate change. In Effects of Climate Change on Birds (eds Dunn, P. O. & Møller, A. P.) 221–235 (Oxford University Press, 2019).Chapter 

    Google Scholar 
    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 

    Google Scholar 
    Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).Article 

    Google Scholar 
    Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. R. Soc. B Biol. Sci. 275, 2743–2748 (2008).Article 

    Google Scholar 
    Lehikoinen, A. et al. Wintering bird communities are tracking climate change faster than breeding communities. J. Anim. Ecol. 90, 1085–1095 (2021).Article 

    Google Scholar 
    McNaughton, S. J. Diversity and stability of ecological communities: A comment on the role of empiricism in ecology. Am. Nat. 111, 515–525 (1977).Article 

    Google Scholar 
    Loreau, M. et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science (80-. ) 294, 804–808 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Loreau, M. & de Mazancourt, C. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013).Article 

    Google Scholar 
    Fonseca, C. R. & Ganade, G. Species functional redundancy, random extinctions and the stability of ecosystems. J. Ecol. 89, 118–125 (2001).Article 

    Google Scholar 
    Hodgson, D., McDonald, J. L. & Hosken, D. J. What do you mean, ‘resilient’?. Trends Ecol. Evol. 30, 503–506 (2015).Article 

    Google Scholar 
    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).Article 
    CAS 

    Google Scholar 
    Oksanen, J. et al. Community ecology package vegan, R package version 2.0-7 (2013).Laliberté, E., Legendre, P. & Shipley, B. FD: Measuring functional diversity from multiple traits, and other tools for functional ecology. R package (2014).García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity-ecosystem stability relationship globally. Proc. Natl. Acad. Sci. U. S. A. 115, 8400–8405 (2018).Article 
    ADS 

    Google Scholar 
    De Boeck, H. J. et al. Patterns and drivers of biodiversity-stability relationships under climate extremes. J. Ecol. 106, 890–902 (2018).Article 

    Google Scholar 
    Fridley, J. D. et al. The invasion paradox: Reconciling pattern and process in species invasions. Ecology 88, 3–17 (2007).Article 
    CAS 

    Google Scholar 
    Elton, C. S. The Ecology of Invasions by Plants and Animals (Methuen, 1958).Book 

    Google Scholar 
    Pigot, A. L., Trisos, C. H. & Tobias, J. A. Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds. Proc. R. Soc. B Biol. Sci. 283, 20152013 (2016).Article 

    Google Scholar 
    Pellissier, V., Barnagaud, J. Y., Kissling, W. D., Şekercioǧlu, Ç. H. & Svenning, J. C. Niche packing and expansion account for species richness–productivity relationships in global bird assemblages. Glob. Ecol. Biogeogr. 27, 604–615 (2018).Article 

    Google Scholar 
    Schipper, A. M. et al. Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010. Glob. Change Biol. 22, 3948–3959 (2016).Article 
    ADS 

    Google Scholar 
    Jarzyna, M. A. & Jetz, W. A near half-century of temporal change in different facets of avian diversity. Glob. Change Biol. 23, 2999–3011 (2017).Article 
    ADS 

    Google Scholar 
    Catano, C. P., Fristoe, T. S., LaManna, J. A. & Myers, J. A. Local species diversity, β-diversity and climate influence the regional stability of bird biomass across North America. Proc. R. Soc. B Biol. Sci. 287, 20192520 (2020).Article 

    Google Scholar 
    Wang, S. et al. An invariability-area relationship sheds new light on the spatial scaling of ecological stability. Nat. Commun. 8, 1–8 (2017).ADS 

    Google Scholar 
    Pimm, S. L. & Redfearn, A. The variability of population densities. Nature 334, 613–614 (1988).Article 
    ADS 

    Google Scholar 
    Santangeli, A. & Lehikoinen, A. Are winter and breeding bird communities able to track rapid climate change? Lessons from the high North. Divers. Distrib. 23, 308–316 (2017).Article 

    Google Scholar 
    Sauer, J. R. et al. The first 50 years of the North American Breeding Bird Survey. Condor 119, 576–593 (2017).Article 

    Google Scholar 
    Meehan, T. D., Michel, N. L. & Rue, H. Spatial modeling of Audubon Christmas Bird Counts reveals fine-scale patterns and drivers of relative abundance trends. Ecosphere 10, e020707 (2019).Article 
    ADS 

    Google Scholar 
    Meller, K., Piha, M., Vähätalo, A. V. & Lehikoinen, A. A positive relationship between spring temperature and productivity in 20 songbird species in the boreal zone. Oecologia 186, 883–893 (2018).Article 
    ADS 

    Google Scholar 
    Lefcheck, J. S. & Duffy, J. E. Multitrophic functional diversity predicts ecosystem functioning in experimental assemblages of estuarine consumers. Ecology 96, 2973–2983 (2015).Article 

    Google Scholar 
    Alerstam, T. & Högstedt, G. Bird migration and reproduction in relation to habitats for survival and breeding. Scand. J. Ornithol. 13, 25–37 (1982).
    Google Scholar 
    Dingle, H. Migration: The Biology of Life on the Move (Oxford University Press, 1996).
    Google Scholar 
    Jones, P. D. et al. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD017139 (2012).Article 
    ADS 

    Google Scholar 
    Rosenfeld, J. S. Functional redundancy in ecology and conservation. Oikos 98, 156–162 (2002).Article 

    Google Scholar 
    Bartley, T. J. et al. Food web rewiring in a changing world. Nat. Ecol. Evol. 3, 345–354 (2019).Article 

    Google Scholar 
    Thébault, E. & Loreau, M. Trophic interactions and the relationship between species diversity and ecosystem stability. Am. Nat. 166, E95–E114 (2005).Article 

    Google Scholar 
    Kokkoris, G. D., Jansen, V. A. A., Loreau, M. & Troumbis, A. Y. Variability in interaction strength and implications for biodiversity. J. Anim. Ecol. 71, 362–371 (2002).Article 

    Google Scholar 
    Vázquez, D. P. & Simberloff, D. Ecological specialization and susceptibility to disturbance: Conjectures and refutations. Am. Nat. 159, 606–623 (2002).Article 

    Google Scholar 
    Carvalheiro, L. G. et al. The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness. Ecol. Lett. 17, 1389–1399 (2014).Article 

    Google Scholar 
    Morris, R. J., Lewis, O. T. & Godfray, H. C. J. Experimental evidence for apparent competition in a tropical forest food web. Nature 428, 310–313 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Pace, M. L., Cole, J. J., Carpenter, S. R. & Kitchell, J. F. Trophic cascades revealed in diverse ecosystems. Trends Ecol. Evol. 14, 483–488 (1999).Article 
    CAS 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the Anthropocene. Science (80-. ) 345, 401–406 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Lindström, Å., Green, M., Paulson, G., Smith, H. G. & Devictor, V. Rapid changes in bird community composition at multiple temporal and spatial scales in response to recent climate change. Ecography (Cop.) 36, 313–322 (2013).Article 

    Google Scholar 
    Pearce-Higgins, J. W., Eglington, S. M., Martay, B. & Chamberlain, D. E. Drivers of climate change impacts on bird communities. J. Anim. Ecol. 84, 943–954 (2015).Article 

    Google Scholar 
    Socolar, J. B., Epanchin, P. N., Beissinger, S. R. & Tingley, M. W. Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts. Proc. Natl. Acad. Sci. 114, 12976–12981 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Pollock, H. S., Brawn, J. D. & Cheviron, Z. A. Heat tolerances of temperate and tropical birds and their implications for susceptibility to climate warming. Funct. Ecol. https://doi.org/10.1111/1365-2435.13693 (2020).Article 

    Google Scholar 
    Wu, J. X., Wilsey, C. B., Taylor, L. & Schuurman, G. W. Projected avifaunal responses to climate change across the U.S. National Park System. PLoS ONE 13, 1–18 (2018).
    Google Scholar 
    Root, T. Environmental factors associated with avian distributional boundaries. J. Biogeogr. 15, 489 (1988).Article 

    Google Scholar 
    Zuckerberg, B. et al. Climatic constraints on wintering bird distributions are modified by urbanization and weather. J. Anim. Ecol. 80, 403–413 (2011).Article 

    Google Scholar 
    Newton, I. The Migration Ecology of Birds (Academic Press Inc., 2008).
    Google Scholar 
    La Sorte, F. A., Johnston, A. & Ault, T. R. Global trends in the frequency and duration of temperature extremes. Clim. Change 166, 1–14 (2021).Article 
    ADS 

    Google Scholar 
    Faurby, S. & Araújo, M. B. Anthropogenic range contractions bias species climate change forecasts. Nat. Clim. Change 8, 252–256 (2018).Article 
    ADS 

    Google Scholar 
    Jiguet, F., Brotons, L. & Devictor, V. Community responses to extreme climatic conditions. Curr. Zool. 57, 406–413 (2011).Article 

    Google Scholar 
    Tayleur, C. et al. Swedish birds are tracking temperature but not rainfall: Evidence from a decade of abundance changes. Glob. Ecol. Biogeogr. 24, 859–872 (2015).Article 

    Google Scholar 
    Clements, C. F. & Ozgul, A. Indicators of transitions in biological systems. Ecol. Lett. 21, 905–919 (2018).Article 

    Google Scholar 
    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Fischer, J. et al. Functional richness and relative resilience of bird communities in regions with different land use intensities. Ecosystems 10, 964–974 (2007).Article 

    Google Scholar 
    Olivier, T., Thébault, E., Elias, M., Fontaine, B. & Fontaine, C. Urbanization and agricultural intensification destabilize animal communities differently than diversity loss. Nat. Commun. 11, 1–9 (2020).Article 
    ADS 

    Google Scholar 
    Michel, N. L. et al. Metrics for conservation success: Using the “Bird‐Friendliness Index” to evaluate grassland and aridland bird community resilience across the Northern Great Plains ecosystem. Divers. Distrib. 26, 1687–1702 (2020).National Audubon Society. The Christmas bird count historical results [online]. http://www.christmasbirdcount.org (2019).BirdLife International & NatureServe. Bird species distribution maps of the world. Version 4.0 (2015).Billerman, S. M., Keeney, B. K., Rodewald, P. G. & Schulenberg, T. S. Birds of the world (2020).BirdLife International. IUCN red list for birds. http://www.birdlife.org (2020).De Magalhães, J. P. & Costa, J. A database of vertebrate longevity records and their relation to other life-history traits. J. Evol. Biol. 22, 1770–1774 (2009).Article 

    Google Scholar 
    Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).Article 

    Google Scholar 
    IUCN. The IUCN red list of threatened species. Version 2019-2. http://www.iucnredlist.org (2019).Morelli, F., Benedetti, Y., Møller, A. P. & Fuller, R. A. Measuring avian specialization. Ecol. Evol. 9, 8378–8386 (2019).Article 

    Google Scholar 
    MacLean, S. A. & Beissinger, S. R. Species’ traits as predictors of range shifts under contemporary climate change: A review and meta-analysis. Glob. Change Biol. 23, 4094–4105 (2017).Article 
    ADS 

    Google Scholar 
    Jiguet, F., Gadot, A. S., Julliard, R., Newson, S. E. & Couvet, D. Climate envelope, life history traits and the resilience of birds facing global change. Glob. Change Biol. 13, 1672–1684 (2007).Article 
    ADS 

    Google Scholar 
    Julliard, R., Jiguet, F. & Couvet, D. Common birds facing global changes: What makes a species at risk?. Glob. Change Biol. 10, 148–154 (2004).Article 
    ADS 

    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Grimm, A. et al. Earlier breeding, lower success: Does the spatial scale of climatic conditions matter in a migratory passerine bird?. Ecol. Evol. 5, 5722–5734 (2015).Article 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).Article 

    Google Scholar 
    Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).Article 

    Google Scholar 
    Barnagaud, J. Y. et al. Biogeographical, environmental and anthropogenic determinants of global patterns in bird taxonomic and trait turnover. Glob. Ecol. Biogeogr. 26, 1190–1200 (2017).Article 

    Google Scholar 
    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).Article 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effects model (2019).Barton, K. MuMIn: Multi-model inference. R package (2020).R Core Team. R: A language and environment for statistical computing. Version 3.5.3. http://www.r-project.org/ (2019).Devictor, V. et al. Functional biotic homogenization of bird communities in disturbed landscapes. Glob. Ecol. Biogeogr. 17, 252–261 (2008).Article 

    Google Scholar 
    Neutel, A. M., Heesterbeek, J. A. P. & De Ruiter, P. C. Stability in real food webs: weak links in long loops. Science (80-. ) 296, 1120–1123 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Wallach, A. D. et al. Trophic cascades in 3D: Network analysis reveals how apex predators structure ecosystems. Methods Ecol. Evol. 8, 135–142 (2017).Article 

    Google Scholar  More