More stories

  • in

    Epibiotic fauna of the Antarctic minke whale as a reliable indicator of seasonal movements

    Rice, D. W. Marine mammals of the world: systematics and distribution. In The Society for Marine Mammalogy (ed. Rice, D. W.) 231 (Allen Press, 1998).
    Google Scholar 
    Best, P. B. External characters of southern minke whales and the existence of a diminutive form. Sci. Rep. Whales Res. Inst. 36, 1–33 (1985).
    Google Scholar 
    Acevedo, J. et al. Occurrence of dwarf minke whales (Balaenoptera acutorostrata subsp.) around the Antarctic Peninsula. Polar Biol. 34, 313–318 (2011).Article 

    Google Scholar 
    Risch, D., Norris, T., Curnock, M. & Friedlaender, A. Common and Antarctic minke whales: Conservation status and future research directions. Front. Mar. Sci. 6, 247. https://doi.org/10.3389/fmars.2019.00247 (2019).Article 

    Google Scholar 
    International Whaling Commission (IWC). Report of the scientific committee. J. Cetacean Res. Manag. 14, 102 (2013).
    Google Scholar 
    Matsuoka, K. et al. Overview of minke whale sightings surveys conducted on IWC/IDCR and SOWER Antarctic cruises from 1978/79 to 2000/01. J. Cetacean Res. Manag. 5, 173–201 (2003).
    Google Scholar 
    Glover, K. A. et al. Migration of Antarctic minke whales to the Arctic. PLoS One 5, e15197. https://doi.org/10.1371/journal.pone.0015197 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Williams, R., Brierley, A., Friedlaender, A. & Scheidat, M. Densitiy of Antarctic minke whales in Weddell Sea from helicopter survey data. Ecology 63, IA14 (2011).
    Google Scholar 
    Williams, R. et al. Counting whales in a challenging, changing environment. Sci. Rep. 4, 4170. https://doi.org/10.1038/srep04170 (2014).Article 
    CAS 

    Google Scholar 
    Shabangu, F. W., Findlay, K. & Stafford, K. M. Seasonal acoustic occurrence, diel vocalizing patterns and bioduck call-type composition of Antarctic minke whales off the west coast of South Africa and the Maud Rise Antarctica. Mar. Mamm. Sci. 36, 658–675 (2019).Article 

    Google Scholar 
    Kasamatsu, F., Nishiwaki, S. & Ishikawa, H. Breeding areas and southbound migrations of southern minke whales Balaenoptera acutorostrata. Mar. Ecol. Prog. Ser. 119, 1–10 (1995).Article 
    ADS 

    Google Scholar 
    Tamura, T. & Konishi, K. Food habit and prey consumption of Antarctic minke whale Balaenoptera bonaerensis in the JARPA research area. J. Northwest Atl. Fish. Sci. 42, 13–25 (2009).Article 

    Google Scholar 
    Perrin, W. F., Mallette, S. D. & Brownell, R. L. Minke whales. In Encyclopedia of Marine Mammals (eds Perrin, W. F. et al.) 608–613 (Academic Press, 2018).Chapter 

    Google Scholar 
    Taylor, R. J. F. An unusual record of three species of whale being restricted to pools in Antarctic sea-ice. Proc. R. Soc. Lond. 129, 325–331 (1957).
    Google Scholar 
    Ensor, P. H. Minke whales in the pack ice zone, East Antarctica, during the period of maximum annual ice extent. Rep. Int. Whal. Commn 39, 219–225 (1989).
    Google Scholar 
    Scheidat, M. et al. Cetacean surveys in the Southern Ocean using icebreaker-supported helicopters. Polar Biol. 34, 1513–1522 (2011).Article 

    Google Scholar 
    Meirelles, A. C. O. & Furtado-Neto, M. A. A. Stranding of an Antarctic minke whale, Balaenoptera bonaerensis Burmeister, 1867, on the northern coast of South America. Lat. Am. J. Aquat. Mamm. 3, 81–82 (2004).Article 

    Google Scholar 
    Juri, E., Valdivia, M., Simoes-Lopes, P. C. & Le Bas, A. A note on minke whales (Cetacea: Balaenopteridae) in Uruguay: Strandings review. JCRM 21, 135–140 (2020).Article 

    Google Scholar 
    Williamson, G. R. Minke whales off Brazil. Sci. Rep. Whales Res. Inst. 27, 37–59 (1975).
    Google Scholar 
    Pastene, L. A. & Goto, M. Genetic characterization and population genetic structure of the Antarctic minke whale Balaenoptera bonaerensis in the Indo-Pacific region of the Southern Ocean. Fish Sci. 82, 873–886 (2016).Article 
    CAS 

    Google Scholar 
    Balbuena, J. A., Aznar, F. J., Fernández, M. & Raga, J. A. Parasites as indicators of social structure and stock identity of marine mammals. Dev. Mar. Biol. 4, 133–139 (1995).
    Google Scholar 
    Kuramochi, T., Araki, J., Uchida, Moriyama, N., Takeda, Y., Hayashi, N., Wakao, H., Machida, M. & Nagasawa, K. Summary of parasite and epizoit investigations during JARPN surveys 1994–1999, with reference to stock structure analysis for the western North Pacific minke whales. IWC Scientific Committee Workshop to Review the Japanese Whaling Programme under Special Permit for North Pacific Minke Whales (JARPN) SC/F2K/J19 (2000).Kaliszewska, Z. A. et al. Population histories of right whales (Cetacea: Eubalaena) inferred from mitochondrial sequence diversities and divergences of their whale lice (Amphipoda: Cyamus). Mol. Ecol. 14, 3439–3456 (2005).Article 
    CAS 

    Google Scholar 
    Ólafsdóttir, D. & Shinn, A. P. Epibiotic macrofauna on common minke whales, Balaenoptera acutorostrata Lacépède, 1804 Icelandic waters. Parasit. Vectors 6, 1–10 (2013).Article 

    Google Scholar 
    Matthews, C. J., Ghazal, M., Lefort, K. J. & Inuarak, E. Epizoic barnacles on Arctic killer whales indicate residency in warm waters. Mar. Mamm. Sci. 36, 1010–1014 (2020).Article 

    Google Scholar 
    Flach, L., Van Bressem, M. F., Pitombo, F. & Aznar, F. J. Emergence of the epibiotic barnacle Xenobalanus globicipitis in Guiana dolphins after a morbillivirus outbreak in Sepetiba Bay Brazil. Estuar. Coast. Shelf Sci. 263, 107632. https://doi.org/10.1016/j.ecss.2021.107632 (2021).Article 

    Google Scholar 
    Ten, S., Raga, J. A. & Aznar, F. J. Epibiotic fauna on cetaceans worldwide: A systematic review of records and indicator potential. Front. Mar. Sci. 9, 846558. https://doi.org/10.3389/fmars.2022.846558 (2022).Article 

    Google Scholar 
    Liouville, J. Cétacés de l’Antarctique. Paris: Deuxième Expédition Antarctique Française (1908–1910) (1913).Ohsumi, S., Masaki, Y. & Kawamura, A. Stock of the Antarctic minke whale. Sci. Rep. Whales Res. Inst. 22, 75–125 (1970).
    Google Scholar 
    Ohsumi, S. Find of marlin spear from the Antarctic minke whales. Sci. Rep. Whales Res. Inst. 25, 237–239 (1973).
    Google Scholar 
    Ivashin, M. V. External Parasites on Lesser Rorquals in the Antarctic 125–127 (Naukova Dumka, 1975).
    Google Scholar 
    Berzin, A. A. & Vlasova, L. P. Fauna of the Cetacea Cyamidae (Amphipoda) of the world ocean. Investig. Cet. 13, 149–164 (1982).
    Google Scholar 
    Best, P. B. Seasonal abundance, feeding, reproduction, age and growth in minke whales off Durban (with incidental observations from the Antarctic). Rep. Int. Whal. Commn 32, 759–786 (1982).
    Google Scholar 
    Avdeev, V. V. Parasitic amphipods of the family Cyamidae and the problem of Cetacea origin. Biol. Morja 4, 27–33 (1989).
    Google Scholar 
    Bushuev, S. G. A study of the population structure of the southern minke whale (Balaenoptera acutorostrata Lacepede) based on morphological and ecological variability. Rep. Int. Whal. Commn 40, 317–324 (1990).
    Google Scholar 
    Sedlak-Weinstein, E. Preliminary report of parasitic infestation of the minke whale Balaenoptera acutorostrata taken during the 1988/89 Antarctic expedition. Unpublished paper (1990).Dailey, M. D. & Vogelbein, W. Parasite fauna of 3 species of Antarctic whales with reference to their use as potential stock indicators. Fish. Bull. 89, 355–365 (1991).
    Google Scholar 
    Nemoto, T., Best, P. B., Ishimaru, K. & Takano, H. Diatom films on whales in South African waters. Sci. Rep. Whales Res. Inst. 32, 97–103 (1980).
    Google Scholar 
    Donovan, G. A review of IWC stock boundaries. Rep. Int. Whal. Commn 13, 39–68 (1991).
    Google Scholar 
    Lester, R. J. G. & MacKenzie, K. The use and abuse of parasites as stock markers for fish. Fish. Res. 97, 1–2 (2009).Article 

    Google Scholar 
    Ten, S. et al. Epibiotic barnacles of sea turtles as indicators of habitat use and fishery interactions: an analysis of juvenile loggerhead sea turtles, Caretta caretta, in the western Mediterranean. Ecol. Indic. 107, 105672. https://doi.org/10.1016/j.ecolind.2019.105672 (2019).Article 

    Google Scholar 
    Calman, W. T. A whale-barnacle of the genus Xenobalanus from Antarctic Seas. Ann. Mag. Nat. Hist. 6, 165–166 (1920).Article 

    Google Scholar 
    Kato, H., Hiroyama, H., Fujise, Y. & Ono, K. Preliminary report of the 1987/88 Japanese feasibility study of the special permit proposal for Southern Hemisphere Minke Whales. Rep. int. Whal. Commn 39, 235–248 (1989).
    Google Scholar 
    International Whaling Commission (IWC). Report of the Intersessional Workshop to review data and results from special permit research on minke whales in the Antarctic, Tokyo, 7–8 December 2006. J. Cetacean Res. Manag. 10, 411–445 (2008).
    Google Scholar 
    Bush, A. O., Lafferty, K. D., Lotz, J. M. & Shostak, A. W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83, 575–583 (1997).Article 
    CAS 

    Google Scholar 
    Kim, H., Chan, B., Kang, C., Kim, H. & Kim, W. How do whale barnacles live on their hosts? Functional morphology and mating-group sizes of Coronula diadema (Linnaeus, 1767) and Conchoderma auritum (Linnaeus, 1767) (Cirripedia: Thoracicalcarea). J. Crustac. Biol. 40, 808–824 (2020).Article 

    Google Scholar 
    Reiczigel, J. Confidence intervals for the binomial parameter: Some new considerations. Stat. Med. 22, 611–621 (2003).Article 

    Google Scholar 
    Kato, H. Migration strategy of southern minke whales to maintain high reproductive rate. Dev. Mar. Biol. 4, 465–480 (1995).
    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. In Statistics for Biology and Health (ed. Gail, M.) (Springer, 2009).MATH 

    Google Scholar 
    Fransen, C. H. J. M. & Smeenk, C. Whale-lice (Amphipoda: Cyamidae) recorded from The Netherlands. Zool. Meded. 65, 393–405 (1991).
    Google Scholar 
    Barton, N. A., Farewell, T. S. & Hallett, S. H. Using generalized additive models to investigate the environmental effects on pipe failure in clean water networks. NPJ Clean Water 3, 31. https://doi.org/10.1038/s41545-020-0077-3 (2020).Article 

    Google Scholar 
    Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).Article 
    CAS 

    Google Scholar 
    Kane, E. A., Olson, P. A., Gerrodette, T. & Fiedler, P. Prevalence of the commensal barnacle Xenobalanus globicipitis on cetacean species in the eastern tropical Pacific Ocean, and a review of global occurrence. Fish. Bull. 106, 395–404 (2008).
    Google Scholar 
    Aznar, F. J., Balbuena, J. A. & Raga, J. A. Are epizoites biological indicators of a western Mediterranean striped dolphin die-off?. Dis. Aquat. Organ. 18, 159–163 (1994).Article 

    Google Scholar 
    Carrillo, J. M., Overstreet, R. M., Raga, J. A. & Aznar, F. J. Living on the edge: Settlement patterns by the symbiotic barnacle Xenobalanus globicipitis on small cetaceans. PLoS One 10, e0127367. https://doi.org/10.1371/journal.pone.0127367 (2015).Article 
    CAS 

    Google Scholar 
    Moreno-Colom, P., Ten, S., Raga, J. A. & Aznar, F. J. Spatial distribution and aggregation of Xenobalanus globicipitis on the flukes of striped dolphins, Stenella coeruleoalba: An indicator of host hydrodynamics?. Mar. Mamm. Sci. 36, 897–914 (2020).Article 

    Google Scholar 
    Aznar, F. J. et al. Changes in epizoic crustacean infestations during cetacean die-offs: The mass mortality of Mediterranean striped dolphins Stenella coeruleoalba revisited. Dis. Aquat. Org. 67, 239–247 (2005).Article 
    CAS 

    Google Scholar 
    Wood, S. N. & Augustin, N. H. GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol. Modell. 157, 157–177 (2002).Article 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2017).Book 
    MATH 

    Google Scholar 
    Bloch, D. et al. Short-term movements of long-finned pilot whales Globicephala melas around the Faroe Islands. Wildl. Biol. 9, 47–58 (2003).Article 

    Google Scholar 
    Beasley, I. et al. Stomach contents of long-finned pilot whales, Globicephala melas mass-stranded in Tasmania. PLoS One 14, e0206747. https://doi.org/10.1371/journal.pone.0206747 (2019).Article 
    CAS 

    Google Scholar 
    Ohno, M. & Fujino, K. Biological investigation on the whales caught by the Japanese Antarctic whaling fleets, season 1950/51. Sci. Rep. Whales Res. Inst. 7, 125–188 (1952).
    Google Scholar 
    Clarke, R. The stalked barnacle Conchoderma, ectoparasitic on whales. Norsk Hvalfangst-Tidende 55, 153–168 (1966).
    Google Scholar 
    Christensen, I. First record of gooseneck barnacles (Conchoderma auritum) on a minke whale (Balaenoptera acutorostrata). ICES C. M. 1985/N:9 (1985).Bertulli, C. G., Cecchetti, A., Van Bressem, M. F. & Van Waerebeek, K. Skin disorders in common minke whales and white-beaked dolphins off Iceland, a photographic assessment. J. Mar. Anim. Ecol. 5, 29–40 (2012).
    Google Scholar 
    Knowlton, N. Sibling species in the sea. Annu. Rev. Ecol. Evol. Syst. 24, 189–216 (1993).Article 

    Google Scholar 
    Trontelj, P. & Fišer, C. Perspectives: Cryptic species diversity should not be trivialised. Syst. Biodivers. 7, 1–3 (2009).Article 

    Google Scholar 
    Norris, R. & Hull, P. The temporal dimension of marine speciation. Evol. Ecol. 26, 393–415 (2011).Article 

    Google Scholar 
    Rawson, P., Macnamee, R., Frick, M. & Williams, K. Phylogeography of the coronulid barnacle, Chelonibia testudinaria, from loggerhead sea turtles Caretta caretta. Mol. Ecol. 12, 2697–2706 (2003).Article 
    CAS 

    Google Scholar 
    Cabezas, M. P., Cabezas, P., Machordom, A. & Guerra-García, J. M. Hidden diversity and cryptic speciation refute cosmopolitan distribution in Caprella penantis (Crustacea: Amphipoda: Caprellidae). J. Zool. Syst. Evol. 51, 85–99 (2013).Article 

    Google Scholar 
    Boyd, L. L., Zardus, J. D., Knauer, C. M. & Wood, L. D. Evidence for host selectivity and specialization by epizoic Chelonibia barnacles between hawksbill and green sea turtles. Front. Ecol. Evol. 9, 807237. https://doi.org/10.3389/fevo.2021.807237 (2021).Article 

    Google Scholar 
    Schell, D., Rowntree, V. & Pfeiffer, C. Stable-isotope and electron-microscopic evidence that cyamids (Crustacea: Amphipoda) feed on whale skin. Can. J. Zool. 78, 721–727 (2000).Article 

    Google Scholar 
    Iwasa-Arai, T. & Serejo, C. S. Phylogenetic analysis of the family Cyamidae (Crustacea: Amphipoda): A review based on morphological characters. Zool. J. Linn. Soc. 184, 66–94 (2018).Article 

    Google Scholar 
    Fraija-Fernández, N. et al. Living in a harsh habitat: Epidemiology of the whale louse, Syncyamus aequus (Cyamidae), infecting striped dolphins in the Western Mediterranean. J. Zool. 303, 199–206 (2017).Article 

    Google Scholar 
    Angot, M. Rapport scientifique sur les expeditions baleinieres autour de Madagascar (saisons 1949 et 1950). Mem. Inst. Sci. Madag. Ser. A 6, 439–486 (1951).
    Google Scholar 
    Newman, W. A. & Abbott, D. P. Cirripedia: The barnacles. In Intertidal Invertebrates of California (eds Morris, R. H. et al.) 504–535 (Stanford University Press, 1980).
    Google Scholar 
    Nogata, Y. & Matsumura, K. Larval development and settlement of a whale barnacle. Biol Lett. 2, 92–93 (2006).Article 

    Google Scholar 
    Hiro, F. The fauna of Akkeshi Bay. II. Cirripedia. J. Fac. Sci. Hokkaido Univ. 4, 213–229 (1935).
    Google Scholar 
    Rice, D. W. Progress report on biological studies of the larger Cetacea in the waters off California. Norsk Hvalfangst-Tid 52, 181–187 (1963).
    Google Scholar 
    Klinkhart, E. G. The beluga whale in Alaska. State Alsk. Dep. Fish 7, 11 (1966).
    Google Scholar 
    Nilsson-Cantell, C. A. Cirripedia Thoracica and Acrothoracica. MIOS 5, 1–133 (1978).
    Google Scholar 
    Scarff, J. E. Occurrence of the barnacles Coronula diadema, C. reginae and Cetopirus complanatus (Cirripedia) on right whales. Sci. Rep. Whales Res. Inst. 37, 129–153 (1986).
    Google Scholar 
    Kakuwa, Z., Kawakami, T. & Iguchi, K. Biological investigation on the whales caught by the Japanese Antarctic whaling fleets in the 1951–52 season. Sci. Rep. Whales Res. Inst. 8, 147–213 (1953).
    Google Scholar 
    Nishiwaki, M. Humpback whales in Ryukyuan waters. Sci. Rep. Whales Res. Inst. 14, 49–87 (1959).
    Google Scholar 
    Best, P. B. The presence of coronuline barnacles on a southern right whale Eubalaena australis. S. Afr. J. Mar. Sci. 11, 585–587 (1991).Article 

    Google Scholar 
    Mackintosh, N. A. & Wheeler, J. F. G. Southern blue and fin whales. Disc. Rep. 1, 257–540 (1929).
    Google Scholar 
    Nilsson-Cantell, C. A. Thoracic cirripedes collected in 1925–1927. Disc. Rep. 2, 223–260 (1930).
    Google Scholar 
    Nishiwaki, M. & Hayashi, K. Biological survey of fin and blue whales taken in the Antarctic season 1947–48 by the Japanese fleet. Sci. Rep. Whales Res. Inst. 3, 132–190 (1950).
    Google Scholar 
    Mizue, K. & Murata, T. Biological investigation on the whales caught by the Japanese Antarctic whaling fleets season 1949–50. Sci. Rep. Whales Res. Inst. 6, 73–131 (1951).
    Google Scholar 
    Nishiwaki, M. & Oye, T. Biological investigation on blue whales (Balaenoptera musculus) and Fin Whales (Balaenoptera physalus) caught by the Japanese Antarctic Whaling Fleets. Sci. Rep. Whales Res. Inst. 5, 91–167 (1951).
    Google Scholar 
    Tomilin, A. G. Cetacea. In Mammals of the U.S.S.R. and Adjacent Countries Vol. 9 (ed. Tomilin, A. G.) 717 (Akademii Nauk SSSR, 1957).
    Google Scholar 
    Cockrill, W. R. Pathology of the cetacea. A veterinary study on whales. Br. Vet. J. 116, 1–28 (1960).
    Google Scholar 
    Kawamura, A. Some consideration on the stock unit of sei whales by the aspect of ectoparasitic organisms on the body. Bull. Jpn. Soc. Fish. Oceanogr. 14, 38–43 (1969).
    Google Scholar 
    Fraija-Fernández, N., Hernández-Hortelano, A., Ahuir-Baraja, A. E., Raga, J. A. & Aznar, F. J. Taxonomic status and epidemiology of the mesoparasitic copepod Pennella balaenoptera in cetaceans from the western Mediterranean. Dis. Aquat. Org. 128, 249–258 (2018).Article 

    Google Scholar 
    Foster, B. A. & Willan, R. C. Foreign barnacles transported to New Zealand on an oil platform. N. Z. J. Mar. Freshw. Res. 13, 143–149 (1979).Article 

    Google Scholar 
    González, J. et al. Cirripedia of the Canary islands: Distribution and ecological notes. J. Mar. Biol. Assoc. U.K. 92, 129–141 (2012).Article 

    Google Scholar 
    Zettler, M. L. An example for transatlantic hitchhiking by macrozoobenthic organisms with a research vessel. Helgol. Mar. Res. 75, 4. https://doi.org/10.1186/s10152-021-00549-w (2021).Article 

    Google Scholar 
    Matthews, L. H. The humpback whale Megaptera novaeangliae. Disc. Rep. 17, 7–92 (1937).
    Google Scholar 
    Scheffer, V. B. Organisms collected from whales in the Aleutian Islands. Murrelet 20, 67–69 (1939).Article 

    Google Scholar 
    Symons, H. W. & Weston, R. D. Studies on the humpback whale (Megaptera nodosa) in the Bellinghausen Sea. Norsk Hvalfangsttid 47, 53–81 (1958).
    Google Scholar 
    Van Waerebeek, K., Reyes, J. C. & Alfaro, J. Helminth parasites and phoronts of dusky dolphins Lagenorhynchus obscurus (Gray, 1828) from Peru. Aquat. Mamm. 19, 159–169 (1993).
    Google Scholar 
    Fertl, D. Barnacles. In Encyclopedia of Marine Mammals (eds Perrin, W. F. et al.) 75–78 (Academic Press, 2002).
    Google Scholar 
    Cornwall, I. E. The barnacles of british Columbia. Br. Col. Prov. Mus. Dept. 7, 5–69 (1955).
    Google Scholar 
    Abaunza, P., Arroyo, N. L. & Preciado, I. A contribution to the knowledge on the morphometry and the anatomical characters of Pennella balaenopterae (Copepoda, Ciphonostomatoida, Pennellidae), with special reference to the buccal complex. Crustaceana 74, 193–210 (2001).Article 

    Google Scholar 
    Marcer, F. et al. Parasitological and pathological findings in fin whales Balaenoptera physalus stranded along Italian coastlines. Dis. Aquat. Org. 133, 25–37 (2019).Article 
    CAS 

    Google Scholar 
    Turner, W. On Pennella balænopteræ: A crustacean, parasitic on a finner whale, Balaenoptera musculus. Earth. Environ. Sci. Trans. R. Soc. Edinb. 41, 409–434 (1905).Article 

    Google Scholar 
    Walker, W. A. & Hanson, M. B. Biological observations on Stejneger’s beaked whale, Mesoplodon stejnegeri, from strandings on Adak Alaska. Mar. Mamm. Sci. 15, 1314–1329 (1999).Article 

    Google Scholar 
    Delaney, M. A., Ford, J. K. B., Tang, K. & Gaydos, J. K. Mesoparasitic copepod (Pennella balaenopterae) infestation of a stranded offshore orca (Orcinus orca) in Southeast Alaska: Review of significance as a health indicator in cetaceans. In IAAAM 21–26 (2016).Suyama, S., Kakehi, S., Yanagimoto, T. & Chow, S. Infection of the pacific saury Cololabis saira (Brevoort, 1856) (Teleostei: Beloniformes: Scomberesocidae) by Pennella sp. (Copepoda: Siphonostomatoida: Pennellidae) south of the Subarctic Front. J. Crust. Biol. 40, 384–389 (2020).Article 

    Google Scholar 
    Rowntree, V. J. Feeding, distribution and reproductive behavior of cyamids (Crustacea: Amphipoda) living on humpback and right whales. Can. J. Zool. 74, 103–109 (1996).Article 

    Google Scholar 
    Leung, Y. M. Life cycle of Cyamus scammoni (Amphipoda: Cyamidae), ectoparasite of gray whale, with a remark on the associated species. Sci. Rep. Whales Res. Inst. 28, 153–160 (1976).
    Google Scholar 
    MacIntyre, R. J. Rapid growth in stalked barnacles. Nature 212, 637–638 (1966).Article 
    ADS 

    Google Scholar 
    Rasmussen, T. Notes on the biology of the shipfouling gooseneck barnacle Conchoderma auritum Linnaeus, 1776 (Cirripedia; Lepadomorpha). Biol. Mar. 2, 37–44 (1980).
    Google Scholar 
    Dalley, R. & Crisp, D. J. Conchoderma: A fouling hazard to ships underway. Mar. Biol. Lett. 2, 141–152 (1981).
    Google Scholar 
    Dalley, R. The larval stages of the oceanic, pedunculate barnacle Conchoderma auritum (L) (Cirripedia, Thoracica). Crustaceana 46, 39–54 (1984).Article 

    Google Scholar 
    Foskolos, I., Provata, M. T. & Frantzis, A. First record of Conchoderma auritum (Cirripedia: Lepadidae) on Ziphius cavirostris (Cetacea: Ziphiidae) in Greece. Ann. Ser. Hist. 27, 29–34 (2017).
    Google Scholar 
    Lee, J. F., Friedlaender, A. S., Oliver, M. J. & DeLiberty, T. L. Behavior of satellite-tracked Antarctic minke whales (Balaenoptera bonaerensis) in relation to environmental factors around the western Antarctic Peninsula. Anim. Biotelem. 5, 23. https://doi.org/10.1186/s40317-017-0138-7 (2017).Article 

    Google Scholar 
    Darwin, C. A Monograph on the Subclass Cirripedia Vol. 1 (The Ray Society, 1851).
    Google Scholar 
    Tsikhon-Lukanina, V. A., Soldatova, I. N., Kuznetsova, I. A. & Il’in, I. I. Macrofouling community in the Strait of Tunisia (Sicily). Oceanology 16, 519–522 (1977).
    Google Scholar 
    Nilsson-Cantell, C. A. Cirripedien von der Stewart Insel und von Südgeorgien. Senckenbergiana 12, 210–213 (1930).
    Google Scholar 
    Slijper, E. J. Whales (Hutchinson, 1962).
    Google Scholar 
    Kaufman, G. D. & Forestell, P. H. Hawaii’s humpback whales, a complete whalewatching guide (Pacific Whale Foundation Press, 1986).
    Google Scholar 
    Dawbin, W. H. Baleen whales. In Whales, Dolphins and Porpoises (eds Harrison, R. & Bryden, M.) 44–65 (Facts on File, 1988).
    Google Scholar 
    Félix, F., Bearson, B. & Falconí, J. Epizoic barnacles removed from the skin of a humpback whale after a period of intense surface activity. Mar. Mamm. Sci. 22, 979–984 (2006).Article 

    Google Scholar 
    Towers, J. R. et al. Seasonal movements and ecological markers as evidence for migration of common minke whales photo-identified in the eastern North Pacific. J. Cetacean Res. Manag. 13, 221–229 (2013).
    Google Scholar 
    Iwasa-Arai, T. et al. The host-specific whale louse (Cyamus boopis) as a potential tool for interpreting humpback whale (Megaptera novaeangliae) migratory routes. J. Exp. Mar. Biol. Ecol. 505, 45–51 (2018).Article 

    Google Scholar 
    Lehnert, K. et al. Whale lice (Isocyamus deltobranchium & Isocyamus delphinii; Cyamidae) prevalence in odontocetes off the German and Dutch coasts – Morphological and molecular characterization and health implications. Int. J. Parasitol. 15, 22–30 (2021).
    Google Scholar 
    Dreyer, N. et al. How whale and dolphin barnacles attach to their hosts and the paradox of remarkably versatile attachment structures in cypris larvae. Org. Divers. Evol. 20, 233–249 (2020).Article 

    Google Scholar 
    Visser, I. N., Cooper, T. E. & Grimm, H. Duration of pseudo-stalked barnacles (Xenobalanus globicipitis) on a New Zealand Pelagic ecotype orca (Orcinus orca), with comments on cookie cutter shark bite marks (Isistius sp.); can they be used as biological tags?. Biol. Divers. 11, 1067–1086 (2020).
    Google Scholar 
    Van Waerebeek, K. & Reyes, J. C. A note on incidental fishery mortality of southern minke whales off western South America. Rep. Int. Whal. Commn 15, 521–523 (1994).
    Google Scholar 
    Félix, F. & Haase, B. A note on the northernmost record of the Antarctic minke whale (Balaenoptera bonaerensis) in the Eastern Pacific. J. Cetacean Res. Manag. 13, 191–194 (2013).
    Google Scholar 
    Esposito, C., Bichet, O. & Petit, M. First sightings of Antarctic minke whale (Balaenoptera bonaerensis) mother–calf pairs in French Polynesia. Aquat. Mamm. 47, 175–180 (2021).Article 

    Google Scholar 
    Karaa, S., Insacco, G., Bradai, M. N. & Scaravelli, D. Records of Xenobalanus globicipitis on Balaenoptera physalus and Stenella coeruleoalba in Tunisian and Sicilian waters. Nat. Rerum 1, 55–59 (2011).
    Google Scholar 
    Oliveira, J. B., Morales, J. A., González-Barrientos, R. C., Hernández-Gamboa, J. & Hernández-Mora, G. Parasites of cetaceans stranded on the Pacific Coast of Costa Rica. Vet. Parasitol. 182, 319–328. https://doi.org/10.1016/j.vetpar.2011.05.014 (2011).Article 
    CAS 

    Google Scholar 
    Dı́az-Gamboa, R. E. Varamiento de orcas pigmeas (Feresa attenuata Gray 1874) en Yucatán: Reporte de caso. Bioagrociencias 8, 36–43 (2015).
    Google Scholar 
    IJsseldijk, L. L. et al. Beached bachelors: An extensive study on the largest recorded sperm whale Physeter macrocephalus mortality event in the north sea. PloS One 13, e0201221. https://doi.org/10.1371/journal.pone.0201221 (2018).Article 
    CAS 

    Google Scholar 
    Guerrero-Ruiz, M. & Urbán, J. R. First report of remoras on two killer whales (Orcinus orca) in the Gulf of California Mexico. Aquat. Mamm. 26, 148–150 (2000).
    Google Scholar 
    Kautek, G., Van Bressem, M. F. & Ritter, F. External body conditions in cetaceans from La Gomera, Canary Islands Spain. J. Marine Anim. Ecol. 11, 4–17 (2008).
    Google Scholar 
    Bearzi, M. & Patonai, K. Occurrence of the barnacle (Xenobalanus globicipitis) on coastal and offshore common bottlenose dolphins (Tursiops truncatus) in Santa Monica Bay and adjacent areas California. Bull. S. Calif. Acad. Sci. 109, 37–44. https://doi.org/10.3160/0038-3872-109.2.37 (2010).Article 

    Google Scholar 
    Foote, A. D. et al. Genetic differentiation among North Atlantic killer whale populations. Mol. Ecol. 20, 629–641. https://doi.org/10.1111/j.1365-294X.2010.04957.x (2011).Article 

    Google Scholar 
    Toth, J. L., Hohn, A. A., Able, K. W. & Gorgone, A. M. Defining bottlenose dolphin (Tursiops truncatus) stocks based on environmental, physical and behavioral characteristics. Mar. Mamm. Sci. 28, 461–478. https://doi.org/10.1111/j.1748-7692.2011.00497.x (2012).Article 

    Google Scholar 
    Urian, K. W., Kaufmann, R., Waples, D. M. & Read, A. J. The prevalence of ectoparasitic barnacles discriminates stocks of Atlantic common bottlenose dolphins (Tursiops truncatus) at risk of entanglement in coastal gill net fisheries. Mar. Mamm. Sci. 35, 290–299. https://doi.org/10.1111/mms.12522 (2019).Article 

    Google Scholar 
    Siciliano, S. et al. Epizoic barnacle (Xenobalanus globicipitis) infestations in several cetacean species in South-Eastern Brazil. Mar. Biol. Res. 16, 1–13. https://doi.org/10.1080/17451000.2020.1783450 (2020).Article 

    Google Scholar 
    Whitehead, T. O., Rollinson, D. P. & Reisinger, R. R. Pseudostalked barnacles Xenobalanus globicipitis attached to killer whales Orcinus orca in South African waters. Mar. Biodivers. Rec. 45, 873–876. https://doi.org/10.1007/s12526-014-0296-2 (2014).Article 

    Google Scholar 
    Methion, S. & Dı́az López, B. First record of atypical pigmentation pattern in fin whale Balaenoptera physalus in the Atlantic ocean. Dis. Aquat. Org. 135, 121–125. https://doi.org/10.3354/dao03385 (2019).Article 

    Google Scholar 
    Herr, H., Burkhardt-Holm, P., Heyer, K., Siebert, U. & Selling, J. Injuries, malformations and epidermal conditions in cetaceans of the strait of Gibraltar. Aquat. Mamm. 46, 215–235. https://doi.org/10.1578/AM.46.2.2020.215 (2020).Article 

    Google Scholar 
    Herr, H. et al. Return of large fin whale feeding aggregations to historical whaling grounds in the southern ocean. Sci. Rep. 12, 9458. https://doi.org/10.1038/s41598-022-13798-7 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Gruvel, J. A. Cirrhipèdes Provenant Des Campagnes Scientifiques De S.A.S. Le Prince De Monaco, (1885– 1913). In Résultas Des Campagnes Scientifiques Accomplies Sur Son Yacht Par Albert Ler (Monaco: Prince Souverain de Monaco) 1-88 (1920).Annandale, N. The rate of growth in Conchoderma and Lepas. Rec. Indian Mus. 3, 295 (1909).
    Google Scholar 
    Il’in, I. I., Kuznetsova, L. A. & Starostin, I. V. Oceanic fouling in the equatorial Atlantic. Oceanology 18, 597–599 (1978).
    Google Scholar 
    Eckert, K. L. & Eckert, S. A. Growth rate and reproductive condition of the barnacle Conchoderma virgatum on gravid leatherback sea turtles in Caribbean waters. J. Crust. Biol. 7, 682–690. https://doi.org/10.2307/1548651 (1987).Article 

    Google Scholar 
    Arroyo, N. L., Abaunza, P. & Preciado, I. The first naupliar stage of Pennella balaenopterae Koren and Danielssen 1877 (Copepoda: Siphonostomatoida, Pennellidae). Sarsia 87, 333–337. https://doi.org/10.1080/0036482021000155785 (2002).Article 

    Google Scholar  More

  • in

    Dung beetles prefer used land over natural greenspace in urban landscape

    Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    McDonald, R. I., Marcotullio, P. J. & Güneralp, B. Urbanization and global trends in biodiversity and ecosystem services. in Urbanization, Biodiversity and Ecosystem Services: Challenges And Opportunities, 31–52 (Springer, 2013).McDonald, R. I., Kareiva, P. & Forman, R. T. T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 141, 1695–1703 (2008).Article 

    Google Scholar 
    Müller, N., Ignatieva, M., Nilon, C. H., Werner, P. & Zipperer, W. C. Patterns and trends in urban biodiversity and landscape design. In Urbanization, Biodiversity and Ecosystem Services: Challenges And Opportunities, 123–174 (Springer, 2013).Lahr, E. C., Dunn, R. R. & Frank, S. D. Getting ahead of the curve: Cities as surrogates for global change. Proc. R. Soc. B. 285, 20180643 (2018).Article 

    Google Scholar 
    Cadotte, M. W., Yasui, S. L. E., Livingstone, S. & MacIvor, J. S. Are urban systems beneficial, detrimental, or indifferent for biological invasion?. Biol. Invasions. 19, 3489–3503 (2017).Article 

    Google Scholar 
    Thompson, K. A., Rieseberg, L. H. & Schluter, D. Speciation and the city. Trends Ecol. Evol. 33, 815–826 (2018).Article 

    Google Scholar 
    Borden, J. B. & Flory, S. L. Urban evolution of invasive species. Front. Ecol. Environ. 19, 184–191 (2021).Article 

    Google Scholar 
    Melliger, R. L., Braschler, B., Rusterholz, H. P. & Baur, B. Diverse effects of degree of urbanisation and forest size on species richness and functional diversity of plants, and ground surface-active ants and spiders. PLoS ONE 13, e0199245 (2018).Article 

    Google Scholar 
    McKinney, M. L. Urbanization, biodiversity, and conservation: The impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. Bioscience 52, 883–890 (2002).Article 

    Google Scholar 
    Roshnath, R. & Sinu, P. A. Nesting tree characteristics of heronry birds of urban ecosystems in peninsular India: Implications for habitat management. Curr. Zool. 63, 599–605 (2017).Article 

    Google Scholar 
    Roshnath, R., Athira, K. & Sinu, P. A. Does predation pressure drive heronry birds to nest in the urban landscape?. J. Asia Pac. Biodivers. 12, 311–315 (2019).Article 

    Google Scholar 
    Fenoglio, M. S., Rossetti, M. R. & Videla, M. Negative effects of urbanization on terrestrial arthropod communities: A meta-analysis. Glob. Ecol. Biogeogr. 29, 1412–1429 (2020).Article 

    Google Scholar 
    Saari, S. et al. Urbanization is not associated with increased abundance or decreased richness of terrestrial animals-dissecting the literature through meta-analysis. Urban Ecosyst. 19, 1251–1264 (2016).Article 

    Google Scholar 
    Lessard, J. P. & Buddle, C. M. The effects of urbanization on ant assemblages (Hymenoptera: Formicidae) associated with the Molson Nature Reserve. Quebec. Can. Entomol. 137, 215–225 (2005).Article 

    Google Scholar 
    Uno, S., Cotton, J. & Philpott, S. M. Diversity, abundance, and species composition of ants in urban green spaces. Urban Ecosyst. 13, 425–441 (2010).Article 

    Google Scholar 
    Fortel, L. et al. Decreasing abundance, increasing diversity and changing structure of the wild bee community (Hymenoptera: Anthophila) along an urbanization gradient. PLoS ONE 9, e104679 (2014).Article 
    ADS 

    Google Scholar 
    Baldock, K. C. et al. Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. R. Soc. B. 282, 20142849 (2015).Article 

    Google Scholar 
    Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).Article 

    Google Scholar 
    Rocha, E. A. & Fellowes, M. D. Urbanisation alters ecological interactions: Ant mutualists increase and specialist insect predators decrease on an urban gradient. Sci. Rep. 10, 1–8 (2020).Article 
    ADS 

    Google Scholar 
    Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 1–13 (2020).Article 

    Google Scholar 
    Carvalho, R. L. et al. Understanding what bioindicators are actually indicating: Linking disturbance responses to ecological traits of dung beetles and ants. Ecol. Indic. 108, 105764 (2020).Article 

    Google Scholar 
    Asha, G., Manoj, K., Megha, P. P. & Sinu, P. A. Spatiotemporal effects on dung beetle activities in island forests-home garden matrix in a tropical village landscape. Sci. Rep. 11, 1–13 (2021).Article 

    Google Scholar 
    Correa, C. M. A., da Silva, P. G., Ferreira, K. R. & Puker, A. Residential sites increase species loss and cause high temporal changes in functional diversity of dung beetles in an urbanized Brazilian Cerrado landscape. J. Insect Conserv. 25, 417–428 (2021).Article 

    Google Scholar 
    Correa, C. M. A., Ferreira, K. R., Puker, A., Audino, L. D. & Korasaki, V. Greenspace sites conserve taxonomic and functional diversity of dung beetles in an urbanized landscape in the Brazilian Cerrado. Urban Ecosyst. 24, 1023–1034 (2021).Article 

    Google Scholar 
    Beiroz, W. et al. Spatial and temporal shifts in functional and taxonomic diversity of dung beetle in a human-modified tropical forest landscape. Ecol. Indic. 95, 418–526 (2018).Article 

    Google Scholar 
    Fuzessy, L. F. et al. Identifying the anthropogenic drivers of declines in tropical dung beetle communities and functions. Biol. Conserv. 256, 109063 (2021).Article 

    Google Scholar 
    Barragan, F., Moreno, C. E., Escobar, F., Halffter, G. & Navarrete, D. Negative impacts of human land use on dung beetle functional diversity. PLoS ONE 6, e17976 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Salomão, R. P. et al. Urbanization effects on dung beetle assemblages in a tropical city. Ecol. Indic. 103, 665–675 (2019).Article 

    Google Scholar 
    Filgueiras, B. K. C., Liberal, C. N., Aguiar, C. D. M., Hernández, M. I. M. & Iannuzzi, L. Attractivity of omnivore, carnivore and herbivore mammalian dung to Scarabaeinae (Coleoptera: Scarabaeidae) in a tropical Atlantic rainforest remnant. Rev. Bras. Entomol. 53, 422–427 (2009).Article 

    Google Scholar 
    Ramírez-Restrepo, L. & Halffter, G. Copro-necrophagous beetles (Coleoptera: Scarabaeinae) in urban areas: A global review. Urban Ecosyst. 19, 1179–1195 (2016).Article 

    Google Scholar 
    Krell, F. T. et al. Human influence on the dung fauna in Afrotropical grasslands (Insecta: Coleoptera). In African Biodiversity: Molecules Organisms Ecosystems (eds Huber, B. A. et al.) 133–139 (Springer, 2005).Chapter 

    Google Scholar 
    Jiménez-Ferbans, L., Mendieta-Otálora, W., García, H. & Amat-García, G. Notes on dung beetles (Coleoptera: Scarabaeinae) in dry environments of the Santa Marta region, Colombia. Acta Biol. Colomb. 13, 203–208 (2008).
    Google Scholar 
    Costa, F. C. et al. What is the importance of open habitat in a predominantly closed forest area to the dung beetle (Coleoptera, Scarabaeinae) assemblage?. Rev. Bras. Entomol. 57, 329–334 (2013).Article 

    Google Scholar 
    Korasaki, V., Lopes, J., Gardner, B. G. & Louzada, J. Using dung beetles to evaluate the effects of urbanization on Atlantic Forest biodiversity. Insect Sci. 20, 393–406 (2013).Article 

    Google Scholar 
    Audino, L., Louzada, J. & Comita, L. Dung beetles as indicators of tropical forest restoration success: Is it possible to recover species and functional diversity?. Biol. Conserv. 169, 248–257 (2014).Article 

    Google Scholar 
    Gómez-Cifuentez, A., Munevar, A., Gimenez, V. C., Gatti, M. G. & Zurita, G. A. Influence of land use on the taxonomic and functional diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic Forest of Argentina. J. Insect. Conserv. 21, 147–156 (2017).Article 

    Google Scholar 
    Gómez-Cifuentes, A., Gómez, V. C. G., Moreno, C. E. & Zurita, G. A. Tree retention in cattle ranching systems partially preserves dung beetle diversity and functional groups in the semideciduous Atlantic forest: The role of microclimate and soil conditions. Basic Appl. Ecol. 34, 64–74 (2019).Article 

    Google Scholar 
    Magnano, L. F. S. et al. Functional attributes change but functional richness is unchanged after fragmentation of Brazilian Atlantic forests. J. Ecol. 102, 475–485 (2014).Article 

    Google Scholar 
    GiménezGómez, V. C., Verdú, J. R., Casanoves, F. & Zurita, G. A. Functional responses to anthropogenic disturbance and the importance of selected traits: a study case using dung beetles. Ecol. Entomol. 1, 1–12 (2022).
    Google Scholar 
    Lobo, J. M. Decline of roller dung beetle (Scarabaeinae) populations in the Iberian Peninsula during the 20th century. Biol. Conserv. 97, 43–50 (2001).Article 

    Google Scholar 
    Ballullaya, U. P. et al. Stakeholder motivation for the conservation of sacred groves in south India: An analysis of environmentalperceptions of rural and urban neighbourhood communities. Land Use Policy 89, 104213 (2019).Article 

    Google Scholar 
    Lowman, M. D. & Sinu, P. A. Can the spiritual values of forests inspire effective conservation?. Bioscience 67, 688–690 (2017).Article 

    Google Scholar 
    Bhagwat, S. A., Kushalappa, C. G., Williams, P. H. & Brown, N. D. The role of informal protected areas in maintaining biodiversity in the Western Ghats of India. Ecol. Soc 10, 108 (2005).Article 

    Google Scholar 
    Rajesh, T. P., Prashanth Ballullaya, U., Unni, A. P., Parvathy, S. & Sinu, P. A. Interactive effects of urbanization and year on invasive and native ant diversity of sacred groves of South India. Urban Ecosyst. 23, 1335–1348 (2020).Article 

    Google Scholar 
    Asha, G., Navya, K. K., Rajesh, T. P. & Sinu, P. A. Roller dung beetles of dung piles suggest habitats are alike, but that of guarding pitfall traps suggest habitats are different. J. Trop. Ecol. 37, 209–213 (2021).Article 

    Google Scholar 
    Arrow, G. J. The Fauna Of British India Including Ceylon And Burma, Coleoptera: Lamellicornia (Coprinae) (Taylor and Francis, 1931).
    Google Scholar 
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: Interpolation and extrapolation for species diversity. R package version 2.0.20. http://chao.stat.nthu.edu.tw/wordpress/software-download/ (2020).Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Fox, J. et al. Package ‘car’, Vol. 16, (R Foundation for Statistical Computing, 2012).Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn (2020).Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan (2020).Hartig, F. & Hartig, M. F. Package ‘DHARMa’. R package (2017).Warnes, G. R. et al. gplots: Various R Programming Tools for Plotting Data. R package version 3.1.1. https://CRAN.R-project.org/package=gplots (2020).R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2021).Venugopal, K. S., Thomas, S. K. & Flemming, A. T. Diversity and community structure of dung beetles (Coleoptera: Scarabaeinae) associated with semi-urban fragmented agricultural land in the Malabar coast in southern India. J. Threat. Taxa. 4, 2685–2692 (2012).Article 

    Google Scholar 
    Sabu, T. K. & Nithya, S. Comparison of the arboreal dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) of the wet and dry forests of the western Ghats. India. Coleopt. Bull. 70, 144–148 (2016).Article 

    Google Scholar 
    Sabu, T. K., Vinod, K. V. & Vineesh, P. J. Guild structure, diversity and succession of dung beetles associated with Indian elephant dung in South Western Ghats forests. J. Insect Sci. 6, 6–17 (2006).Article 

    Google Scholar 
    Rodrigues, M. M., Uchôa, M. A. & Ide, S. Dung beetles (Coleoptera: Scarabaeoidea) in three landscapes in Mato Grosso do Sul, Brazil. Braz. J. Biol. 73, 211–220 (2013).Article 
    CAS 

    Google Scholar 
    Rios-Diaz, C. L. et al. Sheep herding in small grasslands promotes dung beetle diversity in a mountain forest landscape. J. Insect. Conserv. 25, 13–26 (2020).Article 

    Google Scholar 
    Carrión-Paladines, V. et al. Effects of land-use change on the community structure of the dung beetle (Scarabaeinae) in an altered ecosystem in Southern Ecuador. Insects. 12, 306 (2021).Article 

    Google Scholar 
    Gómez, V. C. G., Verdú, J. R. & Zurita, G. A. Thermal niche helps to explain the ability of dung beetles to exploit disturbed habitats. Sci. Rep. 10, 1–14 (2020).ADS 

    Google Scholar 
    Slade, E. M., Mann, D. J., Villanueva, J. F. & Lewis, O. T. Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. J. Anim. Ecol. 76, 1094–1104 (2007).Article 

    Google Scholar 
    Vinod, K. V. & Sabu, T. K. Species composition and community structure of dung beetles attracted to dung of gaur and elephant in the moist forests of South Western Ghats. J. Insect. Sci. 7, 1–14 (2007).Article 
    CAS 

    Google Scholar 
    Milotić, T. et al. Functionally richer communities improve ecosystem functioning: Dung removal and secondary seed dispersal by dung beetles in the Western Palaearctic. J. Biogeogr. 46, 70–82 (2019).Article 

    Google Scholar 
    Braga, R. F., Korasaki, V., Andresen, E. & Louzada, J. Dung beetle community and functions along a habitat-disturbance gradient in the amazon: A rapid assessment of ecological functions associated to biodiversity. PLoS ONE 8, e57786 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Nichols, E. et al. Trait-dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology 94, 180–189 (2013).Article 

    Google Scholar 
    Gardner, T. A. et al. The cost-effectiveness of biodiversity surveys in tropical forests. Ecol. Lett. 11, 139–150 (2008).Article 

    Google Scholar  More

  • in

    Artificial intelligence convolutional neural networks map giant kelp forests from satellite imagery

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).Article 
    ADS 

    Google Scholar 
    Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).Article 

    Google Scholar 
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).Article 

    Google Scholar 
    Assis, J., Serrão, E. A., Duarte, C. M., Fragkopoulou, E. & Krause-Jensen, D. Major expansion of marine forests in a warmer Arctic. Front. Mar. Sci. 9, 850368 (2022).Article 

    Google Scholar 
    Assis, J. et al. Major shifts at the range edge of marine forests: The combined effects of climate changes and limited dispersal. Sci. Rep. 7(44348), 1–10 (2017).CAS 

    Google Scholar 
    O’Leary, J. K. et al. The resilience of marine ecosystems to climatic disturbances. BioScience. https://doi.org/10.1093/biosci/biw161 (2017).Article 

    Google Scholar 
    Steneck, R. S. et al. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).Article 

    Google Scholar 
    Filbee-Dexter, K. & Scheibling, R. E. Detrital kelp subsidy supports high reproductive condition of deep-living sea urchins in a sedimentary basin. Aquat. Biol. 23, 71–86 (2014).Article 

    Google Scholar 
    Filbee-Dexter, K. Ocean forests hold unique solutions to our current environmental crisis. One Earth https://doi.org/10.1016/j.oneear.2020.05.004 (2020).Article 

    Google Scholar 
    Krumhansl, K. A. & Scheibling, R. E. Production and fate of kelp detritus. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps09940 (2012).Article 

    Google Scholar 
    Edwards, M. S. & Hernández-Carmona, G. Delayed recovery of giant kelp near its southern range limit in the North Pacific following El Niño. Mar. Biol. 147, 273–279 (2005).Article 

    Google Scholar 
    Cavanaugh, K. C., Reed, D. C., Bell, T. W., Castorani, M. C. N. & Beas-Luna, R. Spatial variability in the resistance and resilience of giant kelp in southern and Baja California to a multiyear heatwave. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00413 (2019).Article 

    Google Scholar 
    Butler, C. L., Lucieer, V. L., Wotherspoon, S. J. & Johnson, C. R. Multi-decadal decline in cover of giant kelp Macrocystis pyrifera at the southern limit of its Australian range. Mar. Ecol. Prog. Ser. 653, 1–18 (2020).Article 
    ADS 

    Google Scholar 
    Martínez, B. et al. Distribution models predict large contractions of habitat-forming seaweeds in response to ocean warming. Divers. Distrib. 24, 1350–1366 (2018).Article 

    Google Scholar 
    Bell, T. W., Allen, J. G., Cavanaugh, K. C. & Siegel, D. A. Three decades of variability in California’s giant kelp forests from the Landsat satellites. Remote Sens. Environ. 238, 110811 (2020).Article 
    ADS 

    Google Scholar 
    Mann, M. E. & Emanuel, K. A. Atlantic Hurricane trends linked to climate change. Eos 87, 233–241 (2006).Article 
    ADS 

    Google Scholar 
    Jensen, J. R., Estes, J. E. & Tinney, L. Remote sensing techniques for kelp surveys. Photogramm. Eng Remote Sens. 46, 743–755 (1980).
    Google Scholar 
    Cavanaugh, K. C. et al. A review of the opportunities and challenges for using remote sensing for management of surface-canopy forming kelps. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.753531 (2021).Article 

    Google Scholar 
    Cavanaugh, K. C., Siegel, D. A., Reed, D. C. & Dennison, P. E. Environmental controls of giant-kelp biomass in the Santa Barbara Channel, California. Mar. Ecol. Prog. Ser. 429, 1–17 (2011).Article 
    ADS 

    Google Scholar 
    Kadhim, M. A. & Abed, M. H. Convolutional neural network for satellite image classification. Stud. Comput. Intell. 830, 165–178 (2020).Article 

    Google Scholar 
    Segal-Rozenhaimer, M., Li, A., Das, K. & Chirayath, V. Cloud detection algorithm for multi-modal satellite imagery using convolutional neural-networks (CNN). Remote Sens. Environ. 237, 111446 (2020).Article 
    ADS 

    Google Scholar 
    Canonico, G. et al. Global observational needs and resources for marine biodiversity. Front. Mar. Sci. 6, 367 (2019).Article 

    Google Scholar 
    LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Yu, L. & Gong, P. Google Earth as a virtual globe tool for Earth science applications at the global scale: Progress and perspectives. Int. J. Remote Sens. 33, 3966–3986 (2012).Article 

    Google Scholar 
    Guirado, E., Tabik, S., Rivas, M. L., Alcaraz-Segura, D. & Herrera, F. Whale counting in satellite and aerial images with deep learning. Sci. Rep. 9, 14259 (2019).Article 
    ADS 

    Google Scholar 
    Borowicz, A. et al. Aerial-trained deep learning networks for surveying cetaceans from satellite imagery. PLoS ONE 14, 1–15 (2019).Article 

    Google Scholar 
    Lorencin, I., Anđelić, N., Mrzljak, V. & Car, Z. Marine objects recognition using convolutional neural networks. Nase More 66, 112–119 (2019).Article 

    Google Scholar 
    Ridge, J. T., Gray, P. C., Windle, A. E. & Johnston, D. W. Deep learning for coastal resource conservation: Automating detection of shellfish reefs. Remote Sens. Ecol. Conserv. 6, 431–440 (2020).Article 

    Google Scholar 
    Wang, Y. et al. Machine learning-based ship detection and tracking using satellite images for maritime surveillance. J. Ambient Intell. Smart Environ. 13, 361–371 (2021).Article 

    Google Scholar 
    Han, Q., Yin, Q., Zheng, X. & Chen, Z. Remote sensing image building detection method based on Mask R-CNN. Complex Intell. Syst. https://doi.org/10.1007/s40747-021-00322-z (2021).Article 

    Google Scholar 
    Girshick, R. Fast R-CNN. In 2015 IEEE International Conference on Computer Vision (ICCV) 1440–1448. https://doi.org/10.1109/ICCV.2015.169 (2015).Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal. Mach. Intell. 39, 28 (2017).Article 

    Google Scholar 
    Shelhamer, E., Long, J. & Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 3431–3440 (2017).Article 

    Google Scholar 
    He, K., Gkioxari, G., Dollár, P. & Girshick, R. Mask R-CNN. In Proceedings of the IEEE international Conference on Computer Vision (2017).Arafeh-Dalmau, N. et al. Extreme Marine Heatwaves alter kelp forest community near its equatorward distribution limit. Front. Mar. Sci. 6, 1–18 (2019).Article 
    ADS 

    Google Scholar 
    Nie, X., Duan, M., Ding, H., Hu, B. & Wong, E. K. Attention Mask R-CNN for ship detection and segmentation from remote sensing images. IEEE Access 8, 9325–9334 (2020).Article 

    Google Scholar 
    Abdulla, W. Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow. GitHub Repository (2017).Fragkopoulou, E. et al. Global biodiversity patterns of marine forests of brown macroalgae. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13450 (2022).Article 

    Google Scholar 
    Markham, B. L., Storey, J. C., Williams, D. L. & Irons, J. R. Landsat sensor performance: History and current status. IEEE Trans. Geosci. Remote Sens. https://doi.org/10.1109/TGRS.2004.840720 (2004).Article 

    Google Scholar 
    Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article 
    ADS 

    Google Scholar 
    Aghamohamadnia, M. & Abedini, A. A morphology-stitching method to improve Landsat SLC-off images with stripes. Geodesy Geodyn. 5, 27–33 (2014).Article 

    Google Scholar 
    Houskeeper, H. F. et al. Automated satellite remote sensing of giant kelp at the Falkland Islands (Islas Malvinas). PLoS ONE 17, e0257933 (2022).Article 
    CAS 

    Google Scholar 
    Mantha, K. B. et al. From Fat Droplets to Floating Forests: Cross-Domain Transfer Learning Using a PatchGAN-Based Segmentation Model (2022).Finger, D. J. I., McPherson, M. L., Houskeeper, H. F. & Kudela, R. M. Mapping bull kelp canopy in northern California using Landsat to enable long-term monitoring. Remote Sens. Environ. 254, 112243 (2021).Article 
    ADS 

    Google Scholar 
    Siegel, D. A., Wang, M., Maritorena, S. & Robinson, W. Atmospheric correction of satellite ocean color imagery: The black pixel assumption. Appl. Opt. 39, 3582–3591 (2000).Article 
    ADS 
    CAS 

    Google Scholar 
    Loisel, H., Nicolas, J. M., Sciandra, A., Stramski, D. & Poteau, A. Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean. J. Geophys. Res. Oceans https://doi.org/10.1029/2005JC003367 (2006).Article 

    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Dutta, A. & Zisserman, A. The VIA annotation software for images, audio and video. In MM 2019: Proceedings of the 27th ACM International Conference on Multimedia. https://doi.org/10.1145/3343031.3350535 (2019).Pfister, C. A., Berry, H. D. & Mumford, T. The dynamics of Kelp Forests in the Northeast Pacific Ocean and the relationship with environmental drivers. J. Ecol. 106, 1520–1533 (2018).Article 

    Google Scholar 
    Cavanaugh, K. C., Cavanaugh, K. C., Bell, T. W. & Hockridge, E. G. An automated method for mapping giant kelp canopy dynamics from UAV. Front. Environ. Sci. 8, 587354 (2021).Article 

    Google Scholar 
    Castorani, M. C. N. et al. Connectivity structures local population dynamics: A long-term empirical test in a large metapopulation system. Ecology 96, 3141–3152 (2015).Article 

    Google Scholar 
    Irmak, E. Implementation of convolutional neural network approach for COVID-19 disease detection. Physiol. Genom. 52, 590–601 (2020).Article 
    CAS 

    Google Scholar 
    Assis, J., Araújo, M. B. & Serrão, E. A. Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic. Glob. Change Biol. 24, 1365–2486 (2017).
    Google Scholar 
    Cao, C. et al. An improved faster R-CNN for small object detection. IEEE Access 7, 106838–106846 (2019).Article 

    Google Scholar 
    Konar, J., Khandelwal, P. & Tripathi, R. Comparison of various learning rate scheduling techniques on convolutional neural network. In 2020 IEEE International Students’ Conference on Electrical, Electronics and Computer Science, SCEECS 2020. https://doi.org/10.1109/SCEECS48394.2020.94 (2020).LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).Article 

    Google Scholar 
    Johnson, J. W. Automatic nucleus segmentation with mask-RCNN. Adv. Intell. Syst. Comput. 944, 399–407 (2020).
    Google Scholar 
    Lin, T. Y. et al. Microsoft COCO: Common objects in context. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 8693 LNCS (2014).McKnight, P. E. & Najab, J. Mann-Whitney U Test. Corsini Encycl. Psychol. https://doi.org/10.1002/9780470479216.corpsy0524 (2010).Article 

    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
    Google Scholar 
    Haklay, M. & Weber, P. OpenStreet map: User-generated street maps. IEEE Pervasive Comput. 7, 12–18 (2008).Article 

    Google Scholar 
    Wäldchen, J. & Mäder, P. Machine learning for image based species identification. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13075 (2018).Article 
    MATH 

    Google Scholar 
    Weinstein, B. G. A computer vision for animal ecology. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.12780 (2018).Article 

    Google Scholar 
    Chilson, C. et al. Automated detection of bird roosts using NEXRAD radar data and Convolutional Neural Networks. Remote Sens. Ecol. Conserv. 5, 20–32 (2019).Article 

    Google Scholar 
    O’Gara, S. & McGuinness, K. Comparing data augmentation strategies for deep image classification. Ir. Mach. Vis. Image Process. Conf. https://doi.org/10.21427/148b-ar75 (2019).Article 

    Google Scholar 
    Li, W., Chen, C., Zhang, M., Li, H. & Du, Q. Data augmentation for hyperspectral image classification with deep CNN. IEEE Geosci. Remote Sens. Lett. 16, 593–597 (2019).Article 
    ADS 

    Google Scholar 
    Bharati, P. & Pramanik, A. Deep learning techniques—R-CNN to Mask R-CNN: A survey. In Computational Intelligence in Pattern Recognition (eds Das, A. K. et al.) 657–668 (Springer, 2020).Chapter 

    Google Scholar 
    Li, A. S., Chirayath, V., Segal-Rozenhaimer, M., Torres-Perez, J. L. & van den Bergh, J. NASA NeMO-Net’s convolutional neural network: Mapping marine habitats with spectrally heterogeneous remote sensing imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 5115–5133 (2020).Article 
    ADS 

    Google Scholar 
    Hamilton, S. L., Bell, T. W., Watson, J. R., Grorud-Colvert, K. A. & Menge, B. A. Remote sensing: generation of long-term kelp bed data sets for evaluation of impacts of climatic variation. Ecology 101, e03031 (2020).Article 

    Google Scholar 
    Bell, T. W., Cavanaugh, K. C. & Siegel, D. A. Remote monitoring of giant kelp biomass and physiological condition: An evaluation of the potential for the Hyperspectral Infrared Imager (HyspIRI) mission. Remote Sens. Environ. 167, 218–228 (2015).Article 
    ADS 

    Google Scholar 
    Schroeder, S. B., Dupont, C., Boyer, L., Juanes, F. & Costa, M. Passive remote sensing technology for mapping bull kelp (Nereocystis luetkeana): A review of techniques and regional case study. Glob. Ecol. Conserv. https://doi.org/10.1016/j.gecco.2019.e00683 (2019).Article 

    Google Scholar 
    Kristollari, V. & Karathanassi, V. Convolutional neural networks for detecting challenging cases in cloud masking using Sentinel-2 imagery. Remote Sens. Geoinf. Environ. https://doi.org/10.1117/12.2571111 (2020).Article 

    Google Scholar 
    Wilson, M. J. & Oreopoulos, L. Enhancing a simple MODIS cloud mask algorithm for the landsat data continuity mission. IEEE Trans. Geosci. Remote Sens. 51, 723–731 (2013).Article 
    ADS 

    Google Scholar 
    Zhuge, X. Y., Zou, X. & Wang, Y. A fast cloud detection algorithm applicable to monitoring and nowcasting of daytime cloud systems. IEEE Trans. Geosci. Remote Sens. 55, 6111–6119 (2017).Article 
    ADS 

    Google Scholar 
    Lin, T. Y. et al. Feature pyramid networks for object detection. In Proceedings: 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 (2017).Jacox, M. G. et al. Impacts of the 2015–2016 El Niño on the California Current System: Early assessment and comparison to past events. Geophys. Res. Lett. https://doi.org/10.1002/2016GL069716 (2016).Article 

    Google Scholar 
    Chavez, F. P. et al. Biological and chemical consequences of the 1997–1998 El Niño in central California waters. Prog. Oceanogr. https://doi.org/10.1016/S0079-6611(02)00050-2 (2002).Article 

    Google Scholar 
    Tegner, M. J. & El Dayton, P. K. Niño effects on Southern California kelp forest communities. Adv. Ecol. Res. 17, 243–279 (1987).Article 

    Google Scholar 
    Bartsch, I. et al. Changes in kelp forest biomass and depth distribution in Kongsfjorden, Svalbard, between 1996–1998 and 2012–2014 reflect Arctic warming. Polar Biol. 39, 2021–2036 (2016).Article 

    Google Scholar 
    Simonson, E. J., Scheibling, R. E. & Metaxas, A. Kelp in hot water: I. Warming seawater temperature induces weakening and loss of kelp tissue. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps11438 (2015).Article 

    Google Scholar 
    Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00734 (2019).Article 

    Google Scholar  More

  • in

    2-D sex images elicit mate copying in fruit flies

    Bovet, D. & Vauclair, J. Picture recognition in animals and humans. Behav. Brain. Res. 109, 143–165 (2000).Article 
    CAS 

    Google Scholar 
    Anonymous. Tinder for Orangutans. Dublin Zoo. https://www.dublinzoo.ie/news/tinder-for-orangutans (2020).Henley, J. “Tinder for Orangutans”: Dutch zoo to let female choose mate on a tablet. The Guardian. https://www.theguardian.com/environment/2017/jan/31/tinder-for-orangutans-dutch-zoo-to-let-female-choose-mate-on-a-tablet (2017).Gierszewski, S. et al. The virtual lover: variable and easily guided 3D fish animations as an innovative tool in mate-choice experiments with sailfin mollies-II validation. Curr. Zool. 6, 65–74 (2017).Article 

    Google Scholar 
    Dolins, F. L., Klimowicz, C., Kelley, J. & Menzel, C. R. Using virtual reality to investigate comparative spatial cognitive abilities in chimpanzees and humans. Am. J. Primat. 76, 496–513 (2014).Article 

    Google Scholar 
    Faria, J. J. et al. A novel method for investigating the collective behaviour of fish: Introducing ‘Robofish’. Behav. Ecol. Sociobiol. 64, 1211–1218 (2010).Article 

    Google Scholar 
    Kozak, E. C. & Uetz, G. W. Male courtship signal modality and female mate preference in the wolf spider Schizocosa ocreata: results of digital multimodal playback studies. Curr. Zool. 65, 705–711 (2019).Article 

    Google Scholar 
    Loukola, O. J., Perry, C. J., Coscos, L. & Chittka, L. Bumblebees show cognitive flexibility by improving on an observed complex behavior. Science 355, 833–836 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    MacLaren, R. D. Evidence of an emerging female preference for an artificial male trait and the potential for spread via mate choice copying in Poecilia latipinna. Ethology 125, 575–586 (2019).
    Google Scholar 
    Rönkä, K. et al. Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth. Ecol. Lett. 23, 1654–1663 (2020).Article 

    Google Scholar 
    Rosenthal, G. G., Rand, A. S. & Ryan, M. J. The vocal sac as a visual cue in anuran communication: An experimental analysis using video playback. Anim. Behav. 68, 55–58 (2004).Article 

    Google Scholar 
    Thurley, K. & Ayaz, A. Virtual reality systems for rodents. Curr. Zool. 63, 109–119 (2017).Article 

    Google Scholar 
    Ware, E. L., Saunders, D. R. & Troje, N. F. Social interactivity in pigeon courtship behavior. Curr. Zool. 63, 85–95 (2017).Article 

    Google Scholar 
    Wang, D. et al. The influence of model quality on self-other mate choice copying. Pers. Ind. Diff. 17, 110481 (2021).Article 

    Google Scholar 
    Gray, J. R., Pawlowski, V. & Willis, M. A. A method for recording behavior and multineuronal CNS activity from tethered insects flying in virtual space. J. Neurosci. Meth. 120, 211–223 (2002).Article 

    Google Scholar 
    Strauss, R., Schuster, S. & Götz, K. G. Processing of artificial visual feedback in the walking fruit fly Drosophila melanogaster. J. Exp. Biol. 200, 1281–1296 (1997).Article 
    CAS 

    Google Scholar 
    Kemppainen, J. et al. Binocular mirror-symmetric microsaccadic sampling enables Drosophila hyperacute 3D vision. PNAS 119, e2109717119 (2022).Article 
    CAS 

    Google Scholar 
    Bowers, R. I., Place, S. S., Todd, P. M., Penke, L. & Asendorpf, J. B. Generalization in mate-choice copying in humans. Behav. Ecol. 23, 112–124 (2012).Article 

    Google Scholar 
    Pruett-Jones, S. Independent versus nonindependent mate choice: do females copy each other? Am. Nat. 140, 1000–1006 (1992).Article 
    CAS 

    Google Scholar 
    Dagaeff, A.-C., Pocheville, A., Nöbel, S., Isabel, G. & Danchin, E. Drosophila mate copying correlates with atmospheric pressure in a speed learning situation. Anim. Behav. 121, 163–174 (2016).Article 

    Google Scholar 
    Mery, F. et al. Public versus personal information for mate copying in an invertebrate. Curr. Biol. 19, 730–734 (2009).Article 
    CAS 

    Google Scholar 
    Danchin, E. et al. Cultural flies: Conformist social learning in fruitflies predicts long-lasting mate-choice traditions. Science 362, 1025–1030 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Monier, M., Nöbel, S., Isabel, G. & Danchin, E. Effects of a sex ratio gradient on female mate-copying and choosiness in Drosophila melanogaster. Curr. Zool. 64, 251–258 (2018).Article 

    Google Scholar 
    Monier, M., Nöbel, S., Danchin, E. & Isabel, G. Dopamine and serotonin are both required for mate-copying in Drosophila melanogaster. Front. Behav. Neurosci. 12, 334 (2019).Article 

    Google Scholar 
    Nöbel, S., Allain, M., Isabel, G. & Danchin, E. Mate copying in Drosophila melanogaster males. Anim. Behav. 141, 9–15 (2018).Article 

    Google Scholar 
    Nöbel, S., Danchin, E. & Isabel, G. Mate-copying for a costly variant in Drosophila melanogaster females. Behav. Ecol. 29, 1150–1156 (2018).Article 

    Google Scholar 
    Dukas, R. Natural history of social and sexual behavior in fruit flies. Sci. rep. 10, 1–11 (2020).Article 

    Google Scholar 
    Chouinard-Thuly, L. et al. Technical and conceptual considerations for using animated stimuli in studies of animal behavior. Curr. Zool. 63, 5–19 (2017).Article 

    Google Scholar 
    Nöbel, S. et al. Female fruit flies copy the acceptance, but not the rejection, of a mate. Behav. Ecol. 33, 1018–1024 (2022)Article 

    Google Scholar 
    Bretman, A., Westmancoat, J. D., Gage, M. J. G. & Chapman, T. Males use multiple, redundant cues to detect mating rivals. Curr. Biol. 21, 617–622 (2011).Article 
    CAS 

    Google Scholar 
    Greenspan, R. J. & Ferveur, J. F. Courtship in drosophila. Ann. Rev. Gen. 34, 205 (2000).Article 
    CAS 

    Google Scholar 
    Grillet, M., Dartevelle, L. & Ferveur, J. F. A Drosophila male pheromone affects female sexual receptivity. Proc. Roy. Soc. B. 273, 315–323 (2006).Article 
    CAS 

    Google Scholar 
    Borst, A. Drosophila’s view on insect vision. Curr. Biol. 19, R36–R47 (2009).Article 
    CAS 

    Google Scholar 
    Paulk, A., Millard, S. & van Swinderen, B. Vision in Drosophila: Seeing the world through a model´s eye. Ann. Rev. Entomol. 58, 313–332 (2013).Article 
    CAS 

    Google Scholar 
    Antony, C. & Jallon, J. M. The chemical basis for sex recognition in Drosophila melanogaster. J. Insect. Physiol. 28, 873–880 (1982).Article 
    CAS 

    Google Scholar 
    Keesey, I. W. et al. Adult frass provides a pheromone signature for Drosophila feeding and aggregation. J. Chem. Ecol. 42, 739–747 (2016).Article 
    CAS 

    Google Scholar 
    Talyn, B. C. & Bowse, H. B. The role of courtship song in sexual selection and species recognition by female Drosophila melanogaster. Anim. Behav. 68, 1165–1180 (2004).Article 

    Google Scholar 
    von Schilcher, F. The function of pulse song and sine song in the courtship of Drosophila melanogaster. Anim. Behav. 24, 622–6251976 (1976).Article 

    Google Scholar 
    McGregor, P. K. et al. Design of playback experiments: The Thornbridge hall NATO ARW consensus. In Playback and Studies of Animal Communication (ed. McGregor, P.) 1–9 (Plenum Press, New York, 1992).Chapter 

    Google Scholar 
    Richmond, J. The three Rs. In The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals (eds Hubrecht, R. & Kirkwood, J.) 5–22 (Wiley-Blackwell, Hoboken, 2002).
    Google Scholar 
    Russell, W. M. S. & Burch, R. L. The Principles of Humane Experimental Technique (Methuen & Co Ltd, 1959).
    Google Scholar 
    Schlupp, I., Ryan, M. & Waschulewski, M. Female preferences for naturally-occurring novel male traits. Behaviour 136, 519–527 (1999).Article 

    Google Scholar 
    Witte, K. & Klink, K. No pre-existing bias in sailfin molly females, Poecilia latipinna, for a sword in males. Behaviour 142, 283–303 (2005).Article 

    Google Scholar 
    Gerlai, R. Animated images in the analysis of zebrafish behavior. Curr. Zool. 63, 35–44 (2017).Article 

    Google Scholar 
    Ioannou, C. C., Guttal, V. & Couzin, I. D. Predatory fish select for coordinated collective motion in virtual prey. Science 337, 1212–1215 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Little, A. C., Jones, B. C. & DeBruine, L. M. Preferences for variation in masculinity in real male faces change across the menstrual cycle: Women prefer more masculine faces when they are more fertile. Pers. Ind. Diff. 45, 478–482 (2008).Article 

    Google Scholar 
    Little, A. C., Jones, B. C. & DeBruine, L. M. Facial attractiveness: Evolutionary based research. Phil. Trans. R. Soc. B. 366, 1638–1659 (2011).Article 

    Google Scholar 
    Morrison, E. R., Clark, A. P., Tiddeman, B. P. & Penton-Voak, I. S. Manipulating shape cues in dynamic human faces: Sexual dimorphism is preferred in female but not male faces. Ethology 116, 1234–1243 (2010).Article 

    Google Scholar 
    Kacsoh, B. Z., Bozler, J., Ramaswami, M. & Bosco, G. Social communication of predator-induced changes in Drosophila behavior and germ line physiology. eLife. 4, e07423 (2015).Article 

    Google Scholar 
    Caruana, N. & Seymour, K. Objects that induce face pareidolia are prioritized by the visual system. Brit. J. Psychol. 113, 496–507 (2022).Article 

    Google Scholar 
    Agrawal, S., Safarik, S. & Dickinson, M. The relative roles of vision and chemosensation in mate recognition of Drosophila melanogaster. J. Exp. Biol. 217, 2796–2805 (2014).
    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing (Austria, Vienna, 2021).
    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Fox, J. & Weisberg, S. An {R} Companion to Applied Regression 2nd edn. (Sage Publishing, London, 2001).
    Google Scholar  More

  • in

    The widely distributed soft coral Xenia umbellata exhibits high resistance against phosphate enrichment and temperature increase

    Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).Article 

    Google Scholar 
    Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J. & Graham, N. A. J. Coral reef ecosystem services in the Anthropocene. Funct. Ecol. 33, 1023–1034 (2019).
    Google Scholar 
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Hughes, T. P., Kerry, J. T. & Simpson, T. Large-scale bleaching of corals on the Great Barrier Reef. Ecology 99, 501 (2017).Article 

    Google Scholar 
    Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S. & Hoegh-Guldberg, O. Ocean acidification causes bleaching and productivity loss in coral reef builders. PNAS 105, 17442–17446 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Courtial, L., Roberty, S., Shick, J. M., Houlbrèque, F. & Ferrier-Pagès, C. Interactive effects of ultraviolet radiation and thermal stress on two reef-building corals. Limnol. Oceanogr. 62, 1000–1013 (2017).Article 
    ADS 

    Google Scholar 
    Jessen, C. et al. In-situ effects of eutrophication and overfishing on physiology and bacterial diversity of the Red Sea Coral Acropora hemprichii. PLoS ONE 8, e62091 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Jessen, C., Roder, C., Villa Lizcano, J. F., Voolstra, C. R. & Wild, C. In-situ effects of simulated overfishing and eutrophication on benthic coral reef algae growth, succession, and composition in the Central Red Sea. PLoS ONE 8, e66992 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis. Mar. Pollut. Bull. 50, 125–146 (2005).Article 
    CAS 

    Google Scholar 
    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Fabricius, K. E., Cséke, S., Humphrey, C. & De’ath, G. Does trophic status enhance or reduce the thermal tolerance of scleractinian corals? A review, experiment and conceptual framework. PLoS ONE 8, e54399 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    McLachlan, R. H., Price, J. T., Solomon, S. L. & Grottoli, A. G. Thirty years of coral heat-stress experiments: A review of methods. Coral Reefs 39, 885–902 (2020).Article 

    Google Scholar 
    Fabricius, K. E. Factors determining the resilience of coral reefs to eutrophication: A review and conceptual model. In Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) (Springer, 2011).
    Google Scholar 
    Tilstra, A. et al. Light induced intraspecific variability in response to thermal stress in the hard coral Stylophora pistillata. PeerJ. https://doi.org/10.7717/PEERJ.3802/ (2017).Article 

    Google Scholar 
    Connolly, S. R., Lopez-Yglesias, M. A. & Anthony, K. R. N. Food availability promotes rapid recovery from thermal stress in a scleractinian coral. Coral Reefs 31, 951–960 (2012).Article 
    ADS 

    Google Scholar 
    Coles, S. L. & Brown, B. E. Coral bleaching—Capacity for acclimatization and adaptation. Adv. Mar. Biol. 46, 183 (2003).Article 
    CAS 

    Google Scholar 
    Rosenberg, E., Koren, O., Reshef, L., Efrony, R. & Zilber-Rosenberg, I. The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 5, 355–362 (2007).Article 
    CAS 

    Google Scholar 
    Szmant, A. M. Nutrient enrichment on coral reefs: Is it a major cause of coral reef decline? Estuaries 25, 743–766 (2002).Article 
    CAS 

    Google Scholar 
    Atkinson, M. J., Carlson, B. & Crow, G. L. Coral growth in high-nutrient, low-pH seawater: A case study of corals cultured at the Waikiki Aquarium, Honolulu, Hawaii. Coral Reefs 14, 215–223 (1995).Article 
    ADS 

    Google Scholar 
    Bongiorni, L., Shafir, S., Angel, D. & Rinkevich, B. Survival, growth and gonad development of two hermatypic corals subjected to in situ fish-farm nutrient enrichment. Mar. Ecol. Prog. Ser. 253, 137–144 (2003).Article 
    ADS 

    Google Scholar 
    Grigg, R. W. Coral reefs in an urban embayment in Hawaii: A complex case history controlled by natural and anthropogenic stress. Coral Reefs 14, 253–266 (1995).Article 
    ADS 

    Google Scholar 
    Fabricius, K. E. & De’ath, G. Identifying ecological change and its causes: A case study on coral reefs. Ecol. Appl. 14, 1448–1465 (2004).Article 

    Google Scholar 
    Ferrier-Pagès, C., Gattuso, J. P., Dallot, S. & Jaubert, J. Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19, 103–113 (2000).Article 

    Google Scholar 
    Rosset, S., Wiedenmann, J., Reed, A. J. & D’Angelo, C. Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Mar. Pollut. Bull. 118, 180–187 (2017).Article 
    CAS 

    Google Scholar 
    Ban, S. S., Graham, N. A. J. & Connolly, S. R. Evidence for multiple stressor interactions and effects on coral reefs. Glob. Change Biol. 20, 681–697 (2014).Article 
    ADS 

    Google Scholar 
    Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 160–164 (2012).Article 
    ADS 

    Google Scholar 
    Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. PNAS. https://doi.org/10.1073/pnas.2022653118 (2021).Article 

    Google Scholar 
    LaJeunesse, T. C. et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580 (2018).Article 
    CAS 

    Google Scholar 
    Falkowski, P. G., Dubinsky, Z., Muscatine, L. & McCloskey, L. Population control in symbiotic corals—Ammonium ions and organic materials maintain the density of zooxanthellae. Bioscience 43, 606–611 (1993).Article 

    Google Scholar 
    Muscatine, L. & Pool, R. R. Regulation of numbers of intracellular algae. Proc. R. Soc. Lond. Ser. B Biol. Sci. 204, 131–139 (1979).ADS 
    CAS 

    Google Scholar 
    Muller-Parker, G., D’Elia, C. F. & Cook, C. B. Interactions between corals and their symbiotic algae. Coral Reefs Anthr. https://doi.org/10.1007/978-94-017-7249-5_5 (2015).Article 

    Google Scholar 
    Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: The key to understanding holobiont functioning? Trends Microbiol. 23, 490–497 (2015).Article 

    Google Scholar 
    Steinberg, R. K., Dafforn, K. A., Ainsworth, T. & Johnston, E. L. Know thy anemone: A review of threats to octocorals and anemones and opportunities for their restoration. Front. Mar. Sci. 7, 590 (2020).Article 

    Google Scholar 
    Inoue, S., Kayanne, H., Yamamoto, S. & Kurihara, H. Spatial community shift from hard to soft corals in acidified water. Nat. Clim. Change 3, 683–687 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Wild, C. & Naumann, M. S. Effect of active water movement on energy and nutrient acquisition in coral reef-associated benthic organisms. PNAS 110, 8767–8768 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Fox, H. E., Pet, J. S., Dahuri, R. & Caldwell, R. L. Recovery in rubble fields: Long-term impacts of blast fishing. Mar. Pollut. Bull. 46, 1024–1031 (2003).Article 
    CAS 

    Google Scholar 
    Benayahu, Y. & Loya, Y. Settlement and recruitment of a soft coral: Why is Xenia macrospiculata a successful colonizer? Bull. Mar. Sci. 36, 177–188 (1985).
    Google Scholar 
    Norström, A. V., Nyström, M., Lokrantz, J. & Folke, C. Alternative states on coral reefs: Beyond coral-macroalgal phase shifts. Mar. Ecol. Prog. Ser. 376, 293–306 (2009).Article 
    ADS 

    Google Scholar 
    Reverter, M., Helber, S. B., Rohde, S., De Goeij, J. M. & Schupp, P. J. Coral reef benthic community changes in the Anthropocene: Biogeographic heterogeneity, overlooked configurations, and methodology. Glob. Change Biol. 28, 1956–1971 (2022).Article 

    Google Scholar 
    Karcher, D. B. et al. Nitrogen eutrophication particularly promotes turf algae in coral reefs of the central Red Sea. PeerJ 2020, 1–25 (2020).
    Google Scholar 
    El-Khaled, Y. C. et al. Nitrogen fixation and denitrification activity differ between coral- and algae-dominated Red Sea reefs. Sci. Rep. 11, 1–15 (2021).Article 

    Google Scholar 
    Ruiz-Allais, J. P., Benayahu, Y. & Lasso-Alcalá, O. M. The invasive octocoral Unomia stolonifera (Alcyonacea, Xeniidae) is dominating the benthos in the Southeastern Caribbean Sea. Mem. la Fund La Salle Ciencias Nat. 79, 63–80 (2021).
    Google Scholar 
    Ruiz Allais, J. P., Amaro, M. E., McFadden, C. S., Halász, A. & Benayahu, Y. The first incidence of an alien soft coral of the family Xeniidae in the Caribbean, an invasion in eastern Venezuelan coral communities. Coral Reefs 33, 287 (2014).Article 
    ADS 

    Google Scholar 
    Baum, G., Januar, I., Ferse, S. C. A., Wild, C. & Kunzmann, A. Abundance and physiology of dominant soft corals linked to water quality in Jakarta Bay, Indonesia. PeerJ 2016, 1–29 (2016).
    Google Scholar 
    Menezes, N. M. et al. New non-native ornamental octocorals threatening a South-west Atlantic reef. J. Mar. Biol. Assoc. U.K. https://doi.org/10.1017/S0025315421000849 (2022).Article 

    Google Scholar 
    Mantelatto, M. C., da Silva, A. G., dos Louzada, T. S., McFadden, C. S. & Creed, J. C. Invasion of aquarium origin soft corals on a tropical rocky reef in the southwest Atlantic. Brazil. Mar. Pollut. Bull. 130, 84–94 (2018).Article 
    CAS 

    Google Scholar 
    Simancas-Giraldo, S. M. et al. Photosynthesis and respiration of the soft coral Xenia umbellata respond to warming but not to organic carbon eutrophication. PeerJ 9, e11663 (2021).Article 

    Google Scholar 
    Vollstedt, S., Xiang, N., Simancas-Giraldo, S. M. & Wild, C. Organic eutrophication increases resistance of the pulsating soft coral Xenia umbellata to warming. PeerJ 2020, 1–16 (2020).
    Google Scholar 
    Thobor, B. et al. The pulsating soft coral Xenia umbellata shows high resistance to warming when nitrate concentrations are low. Sci. Rep. https://doi.org/10.1038/s41598-022-21110-w (2022).Article 

    Google Scholar 
    Costa, O. S., Leão, Z. M. A. N., Nimmo, M. & Attrill, M. J. Nutrification impacts on coral reefs from northern Bahia, Brazil. Hydrobiologia 440, 307–315 (2000).Article 
    CAS 

    Google Scholar 
    Fleury, B. G., Coll, J. C., Tentori, E., Duquesne, S. & Figueiredo, L. Effect of nutrient enrichment on the complementary (secondary) metabolite composition of the soft coral Sarcophyton ebrenbergi (Cnidaria: Octocorallia: Alcyonaceae) of the Great Barrier Reef. Mar. Biol. 136, 63–68 (2000).Article 
    CAS 

    Google Scholar 
    Bednarz, V. N., Naumann, M. S., Niggl, W. & Wild, C. Inorganic nutrient availability affects organic matter fluxes and metabolic activity in the soft coral genus Xenia. J. Exp. Biol. 215, 3672–3679 (2012).CAS 

    Google Scholar 
    Bruno, J. F., Petes, L. E., Harvell, C. D. & Hettinger, A. Nutrient enrichment can increase the severity of coral diseases. Ecol. Lett. 6, 1056–1061 (2003).Article 

    Google Scholar 
    Ezzat, L., Maguer, J.-F.F., Grover, R. & Ferrier-Pagès, C. Limited phosphorus availability is the Achilles heel of tropical reef corals in a warming ocean. Sci. Rep. 6, 1–11 (2016).Article 

    Google Scholar 
    Tanaka, Y., Grottoli, A. G., Matsui, Y., Suzuki, A. & Sakai, K. Effects of nitrate and phosphate availability on the tissues and carbonate skeleton of scleractinian corals. Mar. Ecol. Prog. Ser. 570, 101–112 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Liu, G., Strong, A. E., Skirving, W. & Arzayus, L. F. Overview of NOAA coral reef watch program’s near-real time satellite global coral bleaching monitoring activities. In Proc. 10th International Coral Reef Symposium, 1783–1793 (2006).Bellworthy, J. & Fine, M. Beyond peak summer temperatures, branching corals in the Gulf of Aqaba are resilient to thermal stress but sensitive to high light. Coral Reefs 36, 1071–1082 (2017).Article 
    ADS 

    Google Scholar 
    Rex, A., Montebon, F. & Yap, H. T. Metabolic responses of the scleractinian coral Porites cylindrica Dana to water motion. I. Oxygen flux studies. J. Exp. Mar. Biol. Ecol. 186, 33–52 (1995).Article 

    Google Scholar 
    Long, M. H., Berg, P., de Beer, D. & Zieman, J. C. In situ coral reef oxygen metabolism: An eddy correlation study. PLoS ONE 8, e58581 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Fabricius, K. E. & Klumpp, D. W. Widespread mixotrophy in reef-inhabiting soft corals: The influence of depth, and colony expansion and contraction on photosynthesis. Mar. Ecol. Prog. Ser. 125, 195–204 (1995).Article 
    ADS 

    Google Scholar 
    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).Article 
    CAS 

    Google Scholar 
    Raimonet, M., Guillou, G., Mornet, F. & Richard, P. Macroalgae δ15N values in well-mixed estuaries: Indicator of anthropogenic nitrogen input or macroalgae metabolism? Estuar. Coast. Shelf Sci. 119, 126–138 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Furla, P., Galgani, I., Durand, I. & Allemand, D. Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J. Exp. Biol. 203, 3445–3457 (2000).Article 
    CAS 

    Google Scholar 
    Hughes, A. D., Grottoli, A. G., Pease, T. K. & Matsui, Y. Acquisition and assimilation of carbon in non-bleached and bleached corals. Mar. Ecol. Prog. Ser. 420, 91–101 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Rau, G. H., Takahashi, T. & Des Marais, D. J. Latitudinal variations in plankton delta C-13—Implications for CO2 and productivity in past oceans. Nature 341, 516–518 (1989).Article 
    ADS 
    CAS 

    Google Scholar 
    McMahon, K. W., Hamady, L. L. & Thorrold, S. R. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol. Oceanogr. 58, 697–714 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Muscatine, L., Porter, J. W. & Kaplan, I. R. Resource partitioning by reef corals as determined from stable isotope composition. Mar. Biol. 100, 185–193 (1989).Article 

    Google Scholar 
    Swart, P. K. et al. The isotopic composition of respired carbon dioxide in scleractinian corals: Implications for cycling of organic carbon in corals. Geochim. Cosmochim. Acta 69, 1495–1509 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodrigues, L. J. & Grottoli, A. G. Calcification rate and the stable carbon, oxygen, and nitrogen isotopes in the skeleton, host tissue, and zooxanthellae of bleached and recovering Hawaiian corals. Geochim. Cosmochim. Acta 70, 2781–2789 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Grottoli, A. G. & Rodrigues, L. J. Bleached Porites compressa and Montipora capitata corals catabolize δ13C-enriched lipids. Coral Reefs 30, 687–692 (2011).Article 
    ADS 

    Google Scholar 
    Levas, S. J., Grottoli, A. G., Hughes, A., Osburn, C. L. & Matsui, Y. Physiological and biogeochemical traits of bleaching and recovery in the mounding species of coral porites lobata: Implications for resilience in mounding corals. PLoS ONE 8, 32–35 (2013).Article 

    Google Scholar 
    Schoepf, V. et al. Annual coral bleaching and the long-term recovery capacity of coral. Proc. R. Soc. B Biol. Sci. 282, 20151887 (2015).Article 

    Google Scholar 
    Lesser, M. P. et al. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar. Ecol. Prog. Ser. 346, 143–152 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Carpenter, E. J., Harvey, H. R., Brian, F. & Capone, D. G. Biogeochemical tracers of the marine cyanobacterium Trichodesmium. Deep Sea Res. I Oceanogr. Res. Pap. 44, 27–38 (1997).Article 
    ADS 
    CAS 

    Google Scholar 
    Lachs, L. et al. Effects of tourism-derived sewage on coral reefs: Isotopic assessments identify effective bioindicators. Mar. Pollut. Bull. 148, 85–96 (2019).Article 
    CAS 

    Google Scholar 
    Kürten, B. et al. Influence of environmental gradients on C and N stable isotope ratios in coral reef biota of the Red Sea, Saudi Arabia. J. Sea Res. 85, 379–394 (2014).Article 
    ADS 

    Google Scholar 
    Core Team, R. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).Article 
    ADS 

    Google Scholar 
    Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R Package Version 0.4.0 (2020).Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R Package Version 0.7.0 (2021).Contreras-Silva, A. I. et al. A meta-analysis to assess long-term spatiotemporal changes of benthic coral and macroalgae cover in the Mexican Caribbean. Sci. Rep. 10, 1–12 (2020).Article 

    Google Scholar 
    Ledlie, M. H. et al. Phase shifts and the role of herbivory in the resilience of coral reefs. Coral Reefs 26, 641–653 (2007).Article 
    ADS 

    Google Scholar 
    Kuffner, I. B. & Toth, L. T. A geological perspective on the degradation and conservation of western Atlantic coral reefs. Conserv. Biol. 30, 706–715 (2016).Article 

    Google Scholar 
    Hughes, T. P. Catastrophes, phase shifts, and large-scale degradation of a Caribbean Coral Reef. Science 265, 1547–1551 (1994).Article 
    ADS 
    CAS 

    Google Scholar 
    de Bakker, D. M., Meesters, E. H., Bak, R. P. M., Nieuwland, G. & van Duyl, F. C. Long-term shifts in coral communities on shallow to deep reef slopes of Curaçao and Bonaire: Are there any winners? Front. Mar. Sci. 3, 247 (2016).Article 

    Google Scholar 
    Mergner, H. & Svoboda, A. Productivity and seasonal changes in selected reef areas in the Gulf of Aqaba (Red Sea). Helgoländer Meeresun. 30, 383–399 (1977).Article 

    Google Scholar 
    Schlichter, D., Svoboda, A. & Kremer, B. P. Functional autotrophy of Heteroxenia fuscescens (Anthozoa: Alcyonaria): Carbon assimilation and translocation of photosynthates from symbionts to host. Mar. Biol. 78, 29–38 (1983).Article 
    CAS 

    Google Scholar 
    Al-Sofyani, A. A. & Niaz, G. R. A comparative study of the components of the hard coral Seriatopora hystrix and the soft coral Xenia umbellata along the Jeddah coast, Saudi Arabia. Rev. Biol. Mar. Oceanogr. 42, 207–219 (2007).Article 

    Google Scholar 
    McCloskey, L. R., Wethey, D. S. & Porter, J. W. Measurement and interpretation of photosynthesis and respiration in reef corals. In Coral Reefs: Research Methods (eds Stoddart, D. R. & Johannes, R. E.) 379–396 (United Nations Educational, Scientific and Cultural Organization, 1978).
    Google Scholar 
    Baker, D. M., Freeman, C. J., Wong, J. C. Y., Fogel, M. L. & Knowlton, N. Climate change promotes parasitism in a coral symbiosis. ISME J. 12, 921–930 (2018).Article 
    CAS 

    Google Scholar 
    Hoegh-Guldberg, O. & Smith, G. J. The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J. Exp. Mar. Biol. Ecol. 129, 279–303 (1989).Article 

    Google Scholar 
    Iglesias-Prieto, R., Matta, J. L., Robins, W. A. & Trench, R. K. Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proc. Natl. Acad. Sci. 89, 10302–10305 (1992).Article 
    ADS 
    CAS 

    Google Scholar 
    Béraud, E., Gevaert, F., Rottier, C. & Ferrier-Pagès, C. The response of the scleractinian coral Turbinaria reniformis to thermal stress depends on the nitrogen status of the coral holobiont. J. Exp. Biol. 216, 2665–2674 (2013).
    Google Scholar 
    Kremien, M., Shavit, U., Mass, T. & Genin, A. Benefit of pulsation in soft corals. Proc. Natl. Acad. Sci. U.S.A. 110, 8978–8983 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Grover, R. et al. Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pH. PLoS ONE 6, 1–10 (2011).
    Google Scholar 
    Cardini, U. et al. Microbial dinitrogen fixation in coral holobionts exposed to thermal stress and bleaching. Environ. Microbiol. 18, 2620–2633 (2016).Article 
    CAS 

    Google Scholar 
    Cardini, U. et al. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proc. R. Soc. B Biol. Sci. 282, 20152257 (2015).Article 

    Google Scholar 
    Santos, H. F. et al. Climate change affects key nitrogen-fixing bacterial populations on coral reefs. ISME J. 8, 2272–2279 (2014).Article 

    Google Scholar 
    Tilstra, A. et al. Relative diazotroph abundance in symbiotic red sea corals decreases with water depth. Front. Mar. Sci. 6, 372 (2019).Article 

    Google Scholar 
    Klinke, A. et al. Impact of phosphate enrichment on the susceptibility of the pulsating soft coral Xenia umbellata to ocean warming. Front. Mar. Sci. 9, 1026321 (2022).Article 

    Google Scholar 
    Rädecker, N. et al. Heat stress reduces the contribution of diazotrophs to coral holobiont nitrogen cycling. ISME J. https://doi.org/10.1038/s41396-021-01158-8 (2021).Article 

    Google Scholar 
    Swart, P. K., Saied, A. & Lamb, K. Temporal and spatial variation in the δ15N and δ13C of coral tissue and zooxanthellae in Montastraea faveolata collected from the Florida reef tract. Limnol. Oceanogr. 50, 1049–1058 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Grottoli, A. G., Tchernov, D. & Winters, G. Physiological and biogeochemical responses of super-corals to thermal stress from the Northern Gulf of Aqaba, Red Sea. Front. Mar. Sci. 4, 215 (2017).Article 

    Google Scholar 
    Dubinsky, Z. & Stambler, N. Marine pollution and coral reefs. Glob. Change Biol. 2, 511–526 (1996).Article 
    ADS 

    Google Scholar 
    Loya, Y., Lubinevsky, H., Rosenfeld, M. & Kramarsky-Winter, E. Nutrient enrichment caused by in situ fish farms at Eilat, Red Sea is detrimental to coral reproduction. Mar. Pollut. Bull. 49, 344–353 (2004).Article 
    CAS 

    Google Scholar 
    Costa, O. S., Nimmo, M. & Attrill, M. J. Coastal nutrification in Brazil: A review of the role of nutrient excess on coral reef demise. J. S. Am. Earth Sci. 25, 257–270 (2008).Article 

    Google Scholar 
    Tait, D. R. et al. The influence of groundwater inputs and age on nutrient dynamics in a coral reef lagoon. Mar. Chem. 166, 36–47 (2014).Article 
    CAS 

    Google Scholar 
    Guan, Y., Hohn, S., Wild, C. & Merico, A. Vulnerability of global coral reef habitat suitability to ocean warming, acidification and eutrophication. Glob. Change Biol. 26, 5646–5660 (2020).Article 
    ADS 

    Google Scholar 
    Hall, E. R. et al. Eutrophication may compromise the resilience of the Red Sea coral Stylophora pistillata to global change. Mar. Pollut. Bull. 131, 701–711 (2018).Article 
    CAS 

    Google Scholar 
    Naumann, M. S. et al. Organic matter release by dominant hermatypic corals of the Northern Red Sea. Coral Reefs 29, 649–659 (2010).Article 
    ADS 

    Google Scholar 
    Wild, C. et al. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428, 66–70 (2004).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    High capacity for a dietary specialist consumer population to cope with increasing cyanobacterial blooms

    Johannesson, K., Smolarz, K., Grahn, M. & André, C. The future of baltic sea populations: Local extinction or evolutionary rescue?. Ambio 40, 179–190 (2011).Article 
    CAS 

    Google Scholar 
    Reusch, T. B. H. et al. The Baltic Sea as a time machine for the future coastal ocean. Sci. Adv. 4, eaar8195 (2018).Article 
    ADS 

    Google Scholar 
    Kahru, M. & Elmgren, R. Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea. Biogeosciences 11, 3619–3633 (2014).Article 
    ADS 

    Google Scholar 
    Kahru, M., Elmgren, R. & Savchuk, O. P. Changing seasonality of the Baltic Sea. Biogeosciences 13, 1009–1018 (2016).Article 
    ADS 

    Google Scholar 
    Hjerne, O., Hajdu, S., Larsson, U., Downing, A. S. & Winder, M. Climate driven changes in timing, composition and magnitude of the Baltic Sea phytoplankton spring bloom. Front. Mar. Sci. 6, 482 (2019).Article 

    Google Scholar 
    Bianchi, T. S. et al. Cyanobacterial blooms in the Baltic Sea: Natural or human-induced?. Limnol. Oceanogr. 45, 716–726 (2000).Article 
    ADS 
    CAS 

    Google Scholar 
    Poutanen, E.-L. & Nikkilä, K. Carotenoid pigments as tracers of cyanobacterial blooms in recent and post-glacial sediments of the Baltic Sea. Ambio 30, 179–183 (2001).Article 
    CAS 

    Google Scholar 
    Andersson, A., Höglander, H., Karlsson, C. & Huseby, S. Key role of phosphorus and nitrogen in regulating cyanobacterial community composition in the northern Baltic Sea. Estuar. Coast. Shelf Sci. 164, 161–171 (2015).Article 
    CAS 

    Google Scholar 
    Olofsson, M., Suikkanen, S., Kobos, J., Wasmund, N. & Karlson, B. Basin-specific changes in filamentous cyanobacteria community composition across four decades in the Baltic Sea. Harmful Algae 91, 101685 (2020).Article 
    CAS 

    Google Scholar 
    Rolff, C. & Elfwing, T. Increasing nitrogen limitation in the Bothnian Sea, potentially caused by inflow of phosphate-rich water from the Baltic Proper. Ambio 44, 601–611 (2015).Article 
    CAS 

    Google Scholar 
    Eriksson Wiklund, A.-K., Dahlgren, K., Sundelin, B. & Andersson, A. Effects of warming and shifts of pelagic food web structure on benthic productivity in a coastal marine system. Mar. Ecol. Prog. Ser. 396, 13–25 (2009).Article 
    ADS 

    Google Scholar 
    Wikner, J. & Andersson, A. Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea. Glob. Change Biol. 18, 2509–2519 (2012).Article 
    ADS 

    Google Scholar 
    Gulati, R. D. & Demott, W. R. The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshw. Biol. 38, 16 (1997).Article 

    Google Scholar 
    Martin-Creuzburg, D., von Elert, E. & Hoffmann, K. H. Nutritional constraints at the cyanobacteria- Daphnia magna interface: The role of sterols. Limnol. Oceanogr. 53, 456–468 (2008).Article 
    ADS 

    Google Scholar 
    Hedberg, P., Albert, S., Nascimento, F. J. A. & Winder, M. Effects of changing phytoplankton species composition on carbon and nitrogen uptake in benthic invertebrates. Limnol. Oceanogr. 66, 469–480 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Gorokhova, E. Toxic cyanobacteria Nodularia spumigena in the diet of Baltic mysids: Evidence from molecular diet analysis. Harmful Algae 8, 264–272 (2009).Article 
    CAS 

    Google Scholar 
    Karlson, A. M. L., Gorokhova, E. & Elmgren, R. Nitrogen fixed by cyanobacteria is utilized by deposit-feeders. PLoS ONE 9, e104460 (2014).Article 
    ADS 

    Google Scholar 
    Karlson, A. M. L. et al. Nitrogen fixation by cyanobacteria stimulates production in Baltic food webs. Ambio 44, 413–426 (2015).Article 
    CAS 

    Google Scholar 
    Lesutienė, J., Bukaveckas, P. A., Gasiūnaitė, Z. R., Pilkaitytė, R. & Razinkovas-Baziukas, A. Tracing the isotopic signal of a cyanobacteria bloom through the food web of a Baltic Sea coastal lagoon. Estuar. Coast. Shelf Sci. 138, 47–56 (2014).Article 
    ADS 

    Google Scholar 
    Rolff, C. Seasonal variation in d13C and d15N of size-fractionated plankton at a coastal station in the northern Baltic proper. Mar. Ecol. Prog. Ser. 203, 47–65 (2000).Article 
    ADS 
    CAS 

    Google Scholar 
    Koski, M., Engström, J. & Viitasalo, M. Reproduction and survival of the calanoid copepod Eurytemora affinis fed with toxic and non-toxic cyanobacteria. Mar. Ecol. Prog. Ser. 186, 187–197 (1999).Article 
    ADS 

    Google Scholar 
    Koski, M. et al. Calanoid copepods feed and produce eggs in the presence of toxic cyanobacteria Nodularia spumigena. Limnol. Oceanogr. 47, 878–885 (2002).Article 
    ADS 

    Google Scholar 
    Schmidt, K. & Jónasdóttir, S. Nutritional quality of two cyanobacteria: How rich is ‘poor’ food?. Mar. Ecol. Prog. Ser. 151, 1–10 (1997).Article 
    ADS 

    Google Scholar 
    Kankaanpää, H., Vuorinen, P. J., Sipiä, V. & Keinänen, M. Acute effects and bioaccumulation of nodularin in sea trout (Salmo trutta m. trutta L.) exposed orally to Nodularia spumigena under laboratory conditions. Aquat. Toxicol. 61, 155–168 (2002).Article 

    Google Scholar 
    Persson, K.-J., Bergström, K., Mazur-Marzec, H. & Legrand, C. Differential tolerance to cyanobacterial exposure between geographically distinct populations of Perca fluviatilis. Toxicon 76, 178–186 (2013).Article 
    CAS 

    Google Scholar 
    Monserrat, J. M., Yunes, J. O. S. & Bianchini, A. Effects of Anabaena Spiroides (cyanobacteria) aqueous extracts on the acetylcholinesteraseactivity of aquatic species. Environ. Toxicol. Chem. 20, 1228–1235 (2001).Article 
    CAS 

    Google Scholar 
    Lehtonen, K. K. et al. Accumulation of nodularin-like compounds from the cyanobacterium Nodularia spumigena and changes in acetylcholinesterase activity in the clam Macoma balthica during short-term laboratory exposure. Aquat. Toxicol. 64, 461–476 (2003).Article 
    CAS 

    Google Scholar 
    Fulton, M. H. & Key, P. B. Acetylcholinesterase inhibition in esturai fish and invertebrates as an indicator of organophoshorus insecticide exposure and effects. Environ. Toxicol. Chem. 20, 37–45 (2001).Article 
    CAS 

    Google Scholar 
    DeMott, W. R., Zhang, Q.-X. & Carmichael, W. W. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnol. Oceanogr. 36, 1346–1357 (1991).Article 
    ADS 
    CAS 

    Google Scholar 
    Hogfors, H. et al. Bloom-forming cyanobacteria support copepod reproduction and development in the Baltic Sea. PLoS ONE 9, e112692 (2014).Article 
    ADS 

    Google Scholar 
    Motwani, N. H., Duberg, J., Svedén, J. B. & Gorokhova, E. Grazing on cyanobacteria and transfer of diazotrophic nitrogen to zooplankton in the Baltic Sea: Cyanobacteria blooms support zooplankton growth. Limnol. Oceanogr. 63, 672–686 (2018).Article 
    ADS 

    Google Scholar 
    Gorokhova, E., El-Shehawy, R., Lehtiniemi, M. & Garbaras, A. How copepods can eat toxins without getting sick: Gut bacteria help zooplankton to feed in cyanobacteria blooms. Front. Microbiol. 11, 589816 (2021).Article 

    Google Scholar 
    Elmgren, R. Structure and dynamics of Baltic benthos communities, with particular reference to the relationship between macro- and meiofauna. Kieler Meeresforsch. Sonderh. 4, 1–22 (1978).
    Google Scholar 
    Laine, A. O. Distribution of soft-bottom macrofauna in the deep open Baltic Sea in relation to environmental variability. Estuar. Coast. Shelf Sci. 57, 87–97 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Hill, C., Quigley, M. A., Cavaletto, J. F. & Gordon, W. Seasonal changes in lipid content and composition in the benthic amphipods Monoporeia afinis and Pontoporeia femorata. Limnol. Oceanogr. 37, 1280–1289 (1992).Article 
    ADS 
    CAS 

    Google Scholar 
    Lehtonen, K. K. Ecophysiology of the benthic amphipod Monoporeia affinis in an open-sea area of the northern Baltic Sea: Seasonal variations in body composition, with bioenergetic considerations. Mar. Ecol. Prog. Ser. 143, 87–98 (1996).Article 
    ADS 

    Google Scholar 
    Karlson, A. M. L., Nascimento, F. J. A. & Elmgren, R. Incorporation and burial of carbon from settling cyanobacterial blooms by deposit-feeding macrofauna. Limnol. Oceanogr. 53, 2754–2758 (2008).Article 
    ADS 

    Google Scholar 
    Karlson, A. M. L. & Mozūraitis, R. Deposit-feeders accumulate the cyanobacterial toxin nodularin. Harmful Algae 12, 77–81 (2011).Article 
    CAS 

    Google Scholar 
    Savage, C. Tracing the influence of sewage nitrogen in a coastal ecosystem using stable nitrogen isotopes. Ambio 34, 145–150 (2005).Article 

    Google Scholar 
    Newsome, S. D., Del Rio, C. M., Bearhop, S. & Phillips, D. L. A niche for isotopic ecology. Front. Ecol. Environ. 5, 429–436 (2007).Article 

    Google Scholar 
    Layman, C. A., Arrington, D. A., Montaña, C. G. & Post, D. M. Can stable isotope ratio provide for community-wide mesures of trophic structure?. Ecology 88, 42–48 (2007).Article 

    Google Scholar 
    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable isotope Bayesian ellipses in R: Bayesian isotopic niche metrics. J. Anim. Ecol. 80, 595–602 (2011).Article 

    Google Scholar 
    Blomqvist, S. & Lundgren, L. A benthic sled for sampling soft bottoms. Helgol. Meeresunters. 50, 453–456 (1996).Article 

    Google Scholar 
    Karlson, A. M. L., Nascimento, F. J. A., Näslund, J. & Elmgren, R. Higher diversity of deposit-feeding macrofauna enhances phytodetritus processing. Ecology 91, 1414–1423 (2010).Article 

    Google Scholar 
    Mazur-Marzec, H., Tymińska, A., Szafranek, J. & Pliński, M. Accumulation of nodularin in sediments, mussels, and fish from the Gulf of Gdańsk, southern Baltic Sea. Environ. Toxicol. 22, 101–111 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    van de Bund, W., Ólafsson, E., Modig, H. & Elmgren, R. Effects of the coexisting Baltic amphipods Monoporeia affinis and Pontoporeia femorata on the fate of a simulated spring diatom bloom. Mar. Ecol. Prog. Ser. 212, 107–115 (2001).Article 
    ADS 

    Google Scholar 
    Larsson, U., Hobro, R. & Wulff, F. Dynamics of a Phytoplankton Spring Bloom in a Coastal Area of the Northern Baltic Proper (University of Stockholm, 1986).
    Google Scholar 
    Heiskanen, A.-S. Factors Governing Sedimentation and Pelagic Nutrient Cycles in the Northern Baltic Sea: = Sedimentaatioon ja Ravinteiden Kiertoon Vaikuttavat Tekijät Pohjoisen Ltämeren Ulapaekosysteemissä (Finnish Environment Institute, 1998).
    Google Scholar 
    Nadon, M.-O. & Himmelman, J. H. Stable isotopes in subtidal food webs: Have enriched carbon ratios in benthic consumers been misinterpreted?. Limnol. Oceanogr. 51, 2828–2836 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Gorokhova, E. Shifts in rotifer life history in response to stable isotope enrichment: Testing theories of isotope effects on organismal growth. Methods Ecol. Evol. 9, 269–277 (2017).Article 

    Google Scholar 
    Karlson, A. M. L., Reutgard, M., Garbaras, A. & Gorokhova, E. Isotopic niche reflects stress-induced variability in physiological status. R. Soc. Open Sci. 5, 171398 (2018).Article 
    ADS 

    Google Scholar 
    del Rio, C. M., Wolf, N., Carleton, S. A. & Gannes, L. Z. Isotopic ecology 10 years after a call for more laboratory experiments. Biol. Rev. 84, 91–111 (2009).Article 

    Google Scholar 
    Ledesma, M., Gorokhova, E., Holmstrand, H., Garbaras, A. & Karlson, A. M. L. Nitrogen isotope composition of amino acids reveals trophic partitioning in two sympatric amphipods. Ecol. Evol. 10, 10773–10784 (2020).Article 

    Google Scholar 
    Bocquené, G. & Galgani, F. Biological Effects of Contaminants: Cholinesterase Inhibitation by Organophosphate and Carbamate Compounds (ICES Techniques in Marine Environmental Science (TIMES). Report., 1998). https://doi.org/10.17895/ices.pub.5048.
    Book 

    Google Scholar 
    Ellman, G. L., Courtney, K. D., Andres, V. & Featherstone, R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88–95 (1961).Article 
    CAS 

    Google Scholar 
    Jarek, S. mvnormtest: Normality test for multivariate variables. (2012). R package version 0.1-9. https://CRAN.R-project.org/package=mvnormtestR Core Team. R: A Language and Environment for Statistical Computing. (2021).Nascimento, F. J. A., Karlson, A. M. L., Näslund, J. & Gorokhova, E. Settling cyanobacterial blooms do not improve growth conditions for soft bottom meiofauna. J. Exp. Mar. Biol. Ecol. 368, 138–146 (2009).Article 

    Google Scholar 
    Roche-Mayzaud, O., Mayzaud, P. & Biggs, D. Medium-term acclimation of feeding and of digestive and metabolic enzyme activity in the neritic copepod Acartia clause. I. Evidence from laboratory experiments. Mar. Ecol. Prog. Ser. 69, 25–40 (1991).Article 
    ADS 
    CAS 

    Google Scholar 
    Stuart, V., Head, E. J. H. & Mann, K. H. Seasonal changes in the digestive enzyme levels of the amphipod Corophium volutator (Pallas) in relation to diet. J. Exp. Mar. Biol. Ecol. 88, 243–256 (1985).Article 
    CAS 

    Google Scholar 
    Schwarzenberger, A., Ilić, M. & Von Elert, E. Daphnia populations are similar but not identical in tolerance to different protease inhibitors. Harmful Algae 106, 102062 (2021).Article 
    CAS 

    Google Scholar 
    Schwarzenberger, A. & Fink, P. Gene expression and activity of digestive enzymes of Daphnia pulex in response to food quality differences. Comp. Biochem. Physiol. B 218, 23–29 (2018).Article 
    CAS 

    Google Scholar 
    Sipiä, V. O. et al. Bioaccumulation and detoxication of nodularin in tissues of flounder (Platichthys flesus), mussels (Mytilus edulis, Dreissena polymorpha), and clams (Macoma balthica) from the Northern Baltic Sea. Ecotoxicol. Environ. Saf. 53, 305–311 (2002).Article 

    Google Scholar 
    Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).Article 
    MathSciNet 

    Google Scholar 
    MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966).Article 

    Google Scholar 
    Wiklund, A.-K.E., Sundelin, B. & Rosa, R. Population decline of amphipod Monoporeia affinis in Northern Europe: Consequence of food shortage and competition?. J. Exp. Mar. Biol. Ecol. 367, 81–90 (2008).Article 

    Google Scholar 
    Leonardsson, K., Sörlin, T., Samberg, H. & Sorlin, T. Does Pontoporeia affinis (Amphipoda) optimize age at reproduction in the Gulf of Bothnia?. Oikos 52, 328 (1988).Article 

    Google Scholar 
    Eriksson Wiklund, A.-K. & Andersson, A. Benthic competition and population dynamics of Monoporeia affinis and Marenzelleria sp. in the northern Baltic Sea. Estuar. Coast. Shelf Sci. 144, 46–53 (2014).Article 
    ADS 

    Google Scholar 
    Karlson, A. M. L. et al. Linking consumer physiological status to food-web structure and prey food value in the Baltic Sea. Ambio 49, 391–406 (2020).Article 
    CAS 

    Google Scholar 
    Olofsson, M. Nitrogen fixation estimates for the Baltic Sea indicate high rates for the previously overlooked Bothnian Sea. Ambio https://doi.org/10.1007/s13280-020-01331-x (2021).Article 

    Google Scholar  More

  • in

    Nation-wide mapping of tree-level aboveground carbon stocks in Rwanda

    Aerial imagesWe use publicly available aerial images of Rwanda at 0.25 × 0.25 m2 resolution, collected in June–August of 2008 and 2009. The images were acquired from 3,000 m altitude above ground level, originally with a mean ground resolution of 0.22 × 0.22 m2 pixel size then resampled to 0.25 × 0.25 m2, using a Vexcel UltraCam-X aerial digital photography camera34. The images exhibit a red, green and blue band stored under 8 bit unsigned integer format. The aerial images cover 96% of the country and the remaining 4% was filled with satellite images from WorldView-2, Ikonos, Spot and QuickBird satellite sensors which are part of the publicly available dataset.Environmental dataWe use locally available climate data: mean annual rainfall, mean annual temperature and elevation data (10 × 10 m2 resolution) to assess relationships between tree density, crown cover and environmental gradients. We also use land cover data to extract the spatial extent of plantations, forest, farmland, and urban and built-up areas for our landscape stratification. Climate data were obtained from the Rwanda Meteorological Agency as daily records from 1971 to 2017. The national forest map was manually created in 2012 using on-screen digitizing techniques over the 2008 aerial images35. A forest was defined as ‘a group of trees higher than 7 m and a tree cover of more than 10% or trees able to reach these thresholds in situ on a land of about 0.25 ha or more’51. A shrub was defined as ‘a group of perennial trees smaller than 7 m at maturity and a canopy cover of more than 10% on a land of about 0.25 ha or more’. The forest dataset was composed of 105,690 forest polygons, classified as either natural forest (closed natural forest, degraded natural forest, bamboo stand, wooded savanna and shrubland) or ‘forest plantations’ (Eucalyptus spp., eucalyptus; Pinus spp., pine; Callitris spp., callitris; Cupressus spp., cypress; Acacia mearnsii, black wattle; Acacia melanoxylon, melanoxylon; Grevillea robusta, grevillea; Maesopsis eminii, maesopsis; Alnus acuminata, alnus; Jacaranda mimosifolia, jacaranda; mixed species, mixed; and others) (Extended Data Fig. 7i). We separate shrubland from natural forest and merged it with savanna into the class ‘savannas and shrublands’. We further separated tree plantations and grouped them into Eucalyptus and non-Eucalyptus plantations. Then, a farmland map was acquired from the Rwanda Land Management and Use Authority (RLMUA)52 and overlaid with the 2012 forest cover map as a reference to clean the overlapping parts, under an assumption that the overlap is due to land use dynamics. Finally, a layer marking urban and built-up areas was acquired from RLMUA as well and the same preprocessing step as done for farmlands was applied. The combination of the land cover datasets resulted in our stratification scheme with six classes: natural forests, savannas and shrublands, Eucalyptus plantations, non-Eucalyptus plantations, farmland and urban and built-up.Mapping of individual trees using deep learningWe used the open-source framework developed by ref. 17 to map individual tree crowns. The framework uses a deep neural network based on the U-Net architecture53,54. We trained the network using 97,574 manually delineated tree crowns spread over 103 areas/bounding boxes representing the full range of biogeographical conditions found across Rwanda. To cope with the challenge of separating touching tree crowns, we used a higher weight for boundary areas between crowns, as suggested in refs. 17,53. Crown sizes in the predictions were found to be 27% smaller as compared to the manual delineations within the 103 training areas, due to the applied boundary weight that emphasizes gaps between tree crowns. Therefore, to calculate the real canopy cover, we extended each predicted tree crown by 27% and dissolved the touching crowns into continuous features. We counted single tree crowns for each hectare presented here as tree density and the percentage of each hectare covered by the extended tree crowns as canopy cover.We developed a postprocessing method that separates clumped tree crowns and fills any gap inside a single crown (Extended Data Fig. 2). Our postprocessing method, which we refer to as detect centre and relabel (DCR), determines the crown centres in the model predictions assuming that tree crowns have a round shape and then relabels the model predictions on the basis of weighted distances to the identified crown centres. First, DCR performs a distance transform, computing for each pixel the Euclidean distance to the nearest pixel predicted as background. Let the transformed image be distance-transformed (DT). Then an m × m maximum filter is applied to DT, where m depends on the size of the smallest object to be separated. We store all pixels for which the original DT value is the same before and after max-filtering. These pixels are the instance centres as they are furthest away from the boundary and have the highest distance values within the area defined by m. In the case of several connected instance centres in regions where multiple connected pixels have the same distance from the background, only a single instance centre is kept. Finally, each pixel x predicted as a crown in the original image is assigned to its nearest instance centre, where the distance function penalizes background pixels on the connecting line between the instance centre and x.Allometry for biomass and carbon stock estimationGenerally, allometric equations define a statistical relationship between structural properties of a tree and its biomass55,56. In our case, we assume a relationship between the crown area and aboveground biomass (AGB), which varies between biomes36. Since destructive AGB measurements are rare, we established biome-specific relationships between crown diameter (CD) derived from the crown area (CD = 2√(crown area/π)) and stem diameter at breast height (DBH) (equations (3) and (6)). DBH has been shown to be highly correlated with AGB36,37,38,39,40. We then used established relationships from literature to derive AGB from DBH for savannas and shrublands (equation (4)), tree plantations (equation (5)) and natural forests (equation (7)). AGB was predicted for each tree and summed for 1 ha grids to derive AGB in the unit Mg per ha. Values were multiplied by 0.47 (refs. 57,58) to derive aboveground carbon (AGC). Summed numbers over land cover classes are considered as carbon stocks. The bias as reported here was calculated following the approach from ref. 36 reporting the relative systematic error in per cent:$$mathrm {bias} = frac{1}{N}mathop {sum}limits_{i = 1}^N {frac{{(Y_{mathrm {obs}} – Y_{mathrm {pred}})}}{{Y_{mathrm {obs}}}}}times 100$$
    (1)
    The error for the evaluation with NFI data was defined by:$$mathrm{bias} = frac{{left| {mathop {sum}nolimits_N {(Y_{mathrm{obs}} – Y_{mathrm{pred}})} } right|}}{{left| {mathop {sum}nolimits_N {Y_{mathrm{obs}}} } right|}}$$
    (2)
    For trees outside natural forests, we used the database from ref. 36 including 10,591 field-measured trees from woodlands and savanna plus 952 samples from agroforestry landscapes in Kenya37 to establish a linear relationship between CD and DBH (Extended Data Fig. 3a). The Kenyan dataset is compatible with the trees in Rwanda. To ensure compatibility, the Kenya data contained open-grown trees most of which are of the same families or genus as in Rwanda grown under the same conditions, the latter factor shown to be important for generalizing37.A major axis regression (average of four runs each 50% of the data) led to equation (3):$${{{mathrm{DBH}}}}_{{{{mathrm{predicted}}}}},{{{mathrm{in}}}},{{{mathrm{cm}}}} = – 4.665 + 5.102 times {{{mathrm{CD}}}}$$
    (3)
    Equation (3) showed a reasonable performance with a very low bias (average of four runs on the 50% not used to establish the equation (3)): r² = 0.71; slope = 0.95; root mean square error (RMSE) = 6.2 cm; relative RMSE (rRMSE) = 42%; bias = 1%). We tested equation (3) on an independent dataset from Kenya consisting of 93 trees where AGB was destructively measured (Fig. 3b). The Kenyan database provides an uncommon opportunity to use destructive samples in which the carbon mass is not estimated indirectly and the relationship between crown area and carbon is direct: we do not need to invoke a second allometry to derive the dependent variable. All trees were open-grown trees in the same growing conditions as the agricultural areas of Rwanda. On these 93 trees, DBH can be predicted reasonably well from CD using equation (3) (r² = 0.84; slope = 0.86; RMSE = 8 cm; rRMSE = 25%; bias = 6%). We then applied an allometric equation from literature37 established for non-forest trees in East Africa to estimate AGB from DBHpredicted and compared the predicted AGB with the destructively measured AGB (r² = 0.81; RMSE = 511 kg; rRMSE = 55%; bias = 25%) showing an acceptable performance (Extended Data Fig. 3c) but indicating a systematic bias, which will be further tested with biome-specific field data (next section). We apply equation (4) to estimate AGB for trees outside forests in Rwanda in savannas and shrublands:$${{{mathrm{AGB}}}}_{{{{mathrm{predicted}}}}},{{{mathrm{in}}}},{{{mathrm{kg}}}} = 0.091 times {{mathrm{DBH}}_{{mathrm{predicted}}}}^{2.472}$$
    (4)
    Given the different structure of trees in farmlands, urban and built-up areas and plantations as compared to trees in natural forests and in natural non-forest areas, we used a different equation for trees in these areas. It was established in Rwanda using destructive samples from tree plantations39:$${{{mathrm{AGB}}}}_{{{{mathrm{predicted}}}}},{{{mathrm{in}}}},{{{mathrm{kg}}}} = 0.202 times {{mathrm{DBH}}_{{mathrm{predicted}}}}^{2.447}$$
    (5)
    A different CD–DBH relationship was established for natural forests. Here, we conducted a field campaign in December 2021 sampling 793 overstory trees in Rwanda’s protected natural forest. We measured both CD and DBH and established a logarithmic major axis regression model with a Baskerville correction59 between the two variables to predict DBH from CD (Extended Data Fig. 3d). We did four runs each using 50% of the data to establish equation (6) (average of the four runs) and the other 50% to test the performance also averaged over the four runs (r² = 0.71; slope = 0.99; RMSE = 13 cm; rRMSE = 45%; bias = 19%). Note that CD is extended by 27% to account for underestimations of touching crowns in dense forests (see previous section):$$begin{array}{l}{mathrm{DBH}}_{{mathrm{predicted}}},{mathrm{in}},{mathrm{cm}} = left({mathrm{exp}}left(1.154 + 1.248 times {mathrm{ln}}({mathrm{CD}} times 1.27) right)right.\left. times left({mathrm{exp}}(0.3315^2/2) right) right)end{array}$$
    (6)
    We then used a state-of-the-art allometric equation established for tropical forests38 to predict AGB from DBH for natural forests in Rwanda:$$begin{array}{l}{{{mathrm{AGB}}}}_{{{{mathrm{predicted}}}}},{{{mathrm{in}}}},{{{mathrm{kg}}}} = {{{mathrm{exp}}}}Big[ {1.803 – 0.976{{{E}}} + 0.976,{{{mathrm{ln}}}}left( rho right)}\+ 2.673;{{{mathrm{ln}}}}left( {{{{mathrm{DBH}}}}} right) – 0.0299left[ {{{{mathrm{ln}}}}left( {{{mathrm{DBH}}}} right)} right]^2 Big]end{array}$$
    (7)
    where E measures the environmental stress38 (a gridded layer is accessible via https://chave.ups-tlse.fr/pantropical_allometry.htm) and ρ is the wood density. Here, we used a fixed number (0.54), which is the average wood density for 6,161 trees from ref. 40, weighted according to the abundance of the species in the plots. The relative error was calculated by the quadratic mean of the intraplot and interplot variations, which is 18.2% (Extended Data Table 1b). No destructive AGB measurements were found that showed a similar CD–DBH relationship as we measured during the field trip in Rwanda’s forest. We could thus not evaluate the performance for natural forests at tree level but had to rely on plot-level comparisons (next section).Evaluation and uncertainties of the allometryBiomass estimations without direct measurements of height or DBH inevitably include a relatively high level of uncertainty at tree level38,60. Uncertainty does not only originate from the CD to DBH conversion but also the equation converting DBH to AGB. As shown in the previous section, no strong systematic bias could be detected for the CD to DBH conversion but the evaluation of the CD-based AGB prediction with an independent dataset from destructively measured AGB revealed a bias of 25%. However, this comparison (Extended Data Fig. 3c) may not be representative for an entire country having a variety of landscapes and tree species, so a systematic propagation is unlikely. We also did not have sufficient field data to evaluate the conversions in natural forests. Here, we used data from 15 natural forest plots with 6,161 trees published by ref. 40 and ref. 41 and directly compared the summed biomass of the trees we predicted over their plots. The median measured biomass for the plots is 121 MgC ha−1 and we predict a median biomass of 81 MgC ha−1 (plot-based rRMSE = 54%; bias = 11%; bias on summed plots = 26%). The overall underestimation by our prediction is not necessarily a model bias but may be partly explained by the contribution of the understory trees, which cannot be captured by aerial images. Interestingly, our C stock estimates are in the same range of magnitude as global biomass products43,44,45,61 (Extended Data Fig. 4), indicating that overstory tree-level carbon stock assessments are possible from optical very high resolution images, even in tropical forests. Several global products overestimated biomass for non-forest areas like savannas or croplands, which is probably because they are calibrated in denser forests. The most recent products of ref. 42 and ref. 61 are much closer to the estimates from our results and the NFI. This is also seen in the grid-based correlation matrix where ref. 42 correlates best with our map, followed by ref. 61.We further use NFI data from 2014 to measure the uncertainty of the final carbon stock estimates and evaluate if systematic differences between AGB predictions and field assessments can be found for different land cover classes (Extended Data Table 1). For the NFI data, a total of 373 plots with 2,415 trees were measured and species-specific allometric equations applied62. To identify systematic errors at landscape scale, we extracted averaged values for areas around the plots from our predictions and calculated statistics on averages over all plots. Interestingly, our predictions for farmlands only show a bias of 5.9%: we estimate on average 2.46 MgC ha−1 and the inventories measure 2.37 MgC ha−1 on their 150 plots. For savanna and shrublands, we estimate 4.16 MgC ha−1 while inventories measure 3.31 MgC ha−1 (bias = 18.9%). For plantations, we estimate lower values (8.16 compared to 16.79 MgC ha−1; bias = 52.6%). To calculate the total uncertainty on country-wide C stock estimates, we weighted the bias from the different classes according to their relative area. We estimate a total uncertainty on the carbon stock predictions of 16.9% at the national scale (Extended Data Table 1).We found a very low bias for estimated C density in farmlands (5.9% bias) which make up most of the areas outside natural forests in Rwanda (Extended Data Table 1, Extended Data Fig. 6). The high bias for plantations can be explained by three factors: large bare areas considered part of plantations by the manual delineation of plantation areas (Extended Data Fig. 1); regular harvesting and continual thinning which keep many plantation trees young and small; and the fact that our aerial images are from 2008 while plantation trees have grown until 2014 with a few new NFI plots initiated after 2008. The bias in savannas and shrublands can be explained by the following factors: the presence of multistemed trees with large crowns such as Acacia spp. and Ficus spp. among others; the fact that a crown-based method overestimates C stocks of shrubs with a small height; and presence of shrub trees with both small height and small (multiple) stems. If tree-level based carbon stock assessments derived from crown diameter as presented here should become standard to complement national inventories, a database with sufficient samples to evaluate for systematic errors needs to be established for each biome and inventory and satellite/aerial image-based methods need to be further harmonized.To further quantify the error propagation of the CD to DBH conversion for our application, we established four equations each randomly using 50% of the dataset and predicted the carbon stock for each tree in Rwanda with each equation. We did this separately for natural forests and trees outside natural forests. We calculated the rRMSE between the aggregated carbon stocks for each hectare. We averaged the rRMSE for each land cover class and show that the uncertainty for all classes does not exceed 5% (Extended Data Table 2a).Evaluation and uncertainties of tree crown mappingWe created an independent test dataset, which was never seen during training and was also not used to optimize hyperparameters. The test set consists of 6,591 manually labelled trees located in 15 random 1 ha plots (Extended Data Fig. 5). Thanks to the size of the country, the plots represent all rainfall zones and three major landscapes of the country. The plot-level comparison yielded very high correlations between the predictions and the labels and is shown in Extended Data Fig. 5. We also calculated a confusion matrix showing an overall per pixel accuracy of 96.2%, a true positive rate of 79.6% and a false positive rate of 6.8% (Extended Data Table 2b). Trees outside natural forests are easy to spot and count for the human eye, so we have confidence in the plot-based evaluation. However, it is often challenging in natural forests. Here, we used again the field measurements from 15 plots with 6,161 trees40,41. We find that we underestimate the total tree count by 22.6%, which may, at least partly, be explained by understory trees hidden by overstory trees and which are, therefore, not visible in our images. New field campaigns are needed to better understand and calibrate our results and possibly correct for systematic bias.Application and evaluation beyond RwandaWe acquired 83 Skysat scenes at 80 cm for Tanzania, Burundi, Uganda, Rwanda and Kenya. The model trained on the 25 cm resolution aerial images of Rwanda from 2008 was directly applied on the Skysat images. Forest and non-forest areas were manually delineated to decide which allometric equation to use for the carbon stock conversion. We randomly selected 150 1 × 1 km2 patches and aggregated the predicted carbon density per patch and compared the results with previously published maps42,43,44,45. Results show that the model can directly be applied to comparable landscapes on different datasets. Note, however, that accurate carbon stock predictions need local adjustments with field data. We then tested the tree crown model transferability on aerial images from California (NAIP; 60 cm) and France (20 cm) and found that the model delivers realistic results without any local training or calibration (Extended Data Figure 8).Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article. More

  • in

    Laboratory and semi-field efficacy evaluation of permethrin–piperonyl butoxide treated blankets against pyrethroid-resistant malaria vectors

    All methods were performed in accordance with the relevant guidelines and regulations.Study siteThe laboratory experiments on regeneration and wash resistance were conducted at the KCMUCo-PAMVERC Insecticide Testing Facility; while experimental hut study was carried out at Harusini, the facility’s field site located at Mabogini village (S03˚22.764’ E03˚720.793’), adjacent to Lower Moshi rice irrigation scheme in north-eastern Tanzania. The dominant vector at this site is An. arabiensis with moderate level of resistance to pyrethroids conferred by both oxidase and esterase activities32. In this study, pyrethroid-resistant laboratory reared An. gambiae Muleba-Kis mosquitoes were released into the huts for the release-recapture experiment.Test systemsNon-blood fed, 2–5 day old females of susceptible An. gambiae s.s. Kisumu strain and pyrethroid resistant An. gambiae s.s Muleba-Kis strain were used for the evaluation of efficacy in the laboratory (phase I). The Muleba-Kis strain has been colonized for more than 8 years and it is resistant to permethrin with fixed L1014S kdr frequency and metabolic resistance through increased oxidase activity has also been reported21. Only An. gambiae s.s Muleba-Kis were used in release-recapture experiments. The Kisumu strain is fully susceptible to insecticides and free of any detectable insecticide resistance mechanisms. The strain originated from Kisumu, Kenya and has been colonized for many years in laboratory. At the KCMUCo-PAMVERC Moshi insectary, the adult Kisumu strain mosquitoes are reared at a temperature of 24–27 °C, 75 ± 10% relative humidity (RH) and maintained under a dark:light regime of 12:12 h. The Muleba-Kis mosquitoes used for the release-recapture experiments were reared in the field insectary under ambient temperature and relative humidity and treated as previously explained21. The susceptibility status of these colonies is checked every three months using WHO susceptibility test33 and, CDC bottle bioassay test34. The colonies are regularly genotyped for kdr mutations using TaqMan assays35. To maintain the resistance of Muleba-Kis, larvae are frequently selected with alpha-cypermethrin.Regeneration timeTo determine the regeneration time of the insecticide-treated blankets, blankets were cut into 25 × 25 cm pieces and tested before washing and then washed and dried three times consecutively following WHO recommended procedures for LLINs36. The pieces were then re-tested after one, two, three, six and seven days post-washing using WHO cylinders against susceptible An. gambiae s.s (Kisumu).Graphs for 24-h mortality and 60 min knock down (KD) correlating to insecticide bioavailability, as measured by 3 min exposure in cylinder bioassays, were established before and after washing blanket pieces three times consecutively in a day, and tested within a maximum of seven days post-washing. The time in days required to reach initial mortality or 60 min KD plateau is the period required for full regeneration of insecticide-treated blanket.Wash resistanceWHO cylinder bioassays36 were used to assess the wash resistance for the blanket pieces washed 0, 5, 10, 15 and 20 times at the intervals equivalent to the regeneration time. Four pieces cut from 4 permethrin and 4 untreated blankets were used as positive and negative control respectively, against 4 pieces cut from 4 PBO–permethrin blankets.Bioassay proceduresFive, non-blood fed, 2–5 day old An. gambiae Kisumu or An. gambiae Muleba-Kis mosquitoes were exposed for 3 min or 30 min to blanket pieces in WHO cylinder. Bioassays were carried out at 27 ± 2 °C and 75 ± 10% RH. Knock-down was scored after 60 min post-exposure and mortality after 24 h. Fifty mosquitoes (5 mosquitoes per cylinder) were used on each 25 × 25 cm piece of blanket sample. After exposure, the mosquitoes were held for 24 h with access to 10% glucose solution in the paper cups covered with a net material. Mosquitoes exposed to untreated blanket were referred as a negative control.WHO tunnel test methodBlanket pieces which recorded ≤ 80% mortality in cylinder bioassay were tested in the tunnel assay using WHO guidelines. The tunnel was made of an acrylic square cylinder (25 cm in height, 25 cm in width, and 60 cm in length) divided into two sections using a blanket-covered frame fitted into a slot across the tunnel. During the assays a guinea pig was held in a small wooden cage (as a bait) in one of the sections and 50, non-blood fed, female An. gambiae Kisumu or An. gambiae Muleba-Kis aged 5–8 days were released in the other section at dusk and left overnight (13 h) for experimentation at 27 ± 2 °C and 75 ± 10% RH. The blanket surface was deliberately holed (nine 1-cm holes) to allow mosquitoes to contact the blanket material and penetrate to the baited chamber. Treated blankets were tested concurrently together with an untreated blanket. Scoring for the numbers of mosquitoes found alive or dead, fed or unfed, in each section were done in the morning. Mosquitoes found alive were removed and held in paper cups with labels corresponding to each tunnel sections under controlled conditions (25–27 °C and 75–85% RH) and fed on 10% glucose solution to monitor for delayed mortality post exposurely. Outcomes recorded were: mosquito penetration, blood feeding and mortality.Washing of blankets and whole nets for hut trialBlankets and whole nets were separately washed following WHOPES guidelines. In brief, each blanket/net was washed in Savon de Marseilles soap solution (2 g/L) for 10 min: 3 min stirring, 4 min soaking, then another 3 min stirring. This was followed by 2 rinse cycles of the same duration with water only. The water pH was 6 for all washes. The mean water hardness was within the WHOPES limit of ≤ 89 ppm. All nets used in the experimental hut study were cut with holes (4 cm × 4 cm) to simulate the conditions of a torn net. While nets were washed 20 times as per guidelines, blankets were only washed 10 times. To simulate a situation in emergence situations where washing is less frequent due to water scarcity30,31.Experimental hut trial:experimental hut designExperimental hut study was done in Lower Moshi using typical East African experimental huts design as described in the WHOPES35. Huts were constructed with brick walls and featured with cement plaster on the inside and a ceiling board, a metal iron sheet roof, open eaves with window and veranda traps on each side and window traps. Slight modifications from the original structure were made by installing metal eave baffles on two sides. The baffles allow mosquito entry but prevent exits. The window traps were used to collect mosquitoes that tend to exit the huts.Test item labelling, washing and perforatingBoth blankets and LLINs for the trial were distinctively labelled with fabric labels that withstand washes. For wash resistance, the blankets and nets were separately washed according to a protocol adapted from the standard WHO washing procedure36 at the interval equivalent to the regeneration time established in the laboratory for blanket and LLIN respectively. Before testing in the experimental huts, all nets were deliberately holed i.e. 30 holes measuring 4 × 4 cm were made in each net, 9 holes in each of the long side panels, and 6 holes at each short side (head- and foot-side panels) to enhance blood-feeding on the control arm.Test items packagingEach blanket and net were sealed in a plastic bag and then packed in the large plastic container. Each container was labelled for a single treatment to avoid cross contamination between test items.Experimental hut decontaminationA cone assay with 10 susceptible mosquitoes was performed on one wall per hut to rule out any contamination of the wall surface. Only huts with 24 h mortality of susceptible mosquitoes  More