Recent speciation associated with range expansion and a shift to self-fertilization in North American Arabidopsis
Coyne, J. A. & Orr, H. A. Speciation 83–178 (Sinauer, 2004).Dieckmann, U., Doebeli, M., Metz, J. A. & Tautz, D. Adaptive Speciation (Cambridge University Press, 2004).Butlin, R. K., Galindo, J. & Grahame, J. W. Sympatric, parapatric or allopatric: the most important way to classify speciation? Philos. T. Roy. Soc. B 363, 2997–3007 (2008).Article
Google Scholar
Smadja, C. M. & Butlin, R. K. A framework for comparing processes of speciation in the presence of gene flow. Mol. Ecol. 20, 5123–5140 (2011).Article
Google Scholar
Seehausen, O. et al. Genomics and the origin of species. Nat. Rev. Genet. 15, 176–192 (2014).Article
CAS
Google Scholar
Kulmuni, J., Butlin, R. K., Lucek, K., Savolainen, V. & Westram, A. M. Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers. Philos. T. Roy. Soc. B 375, 20190528 (2020).Article
Google Scholar
Hofreiter, M. & Stewart, J. Ecological change, range fluctuations and population dynamics during the Pleistocene. Curr. Biol. 19, R584–R594 (2009).Article
CAS
Google Scholar
Longman, J., Mills, B. J. W., Manners, H. R., Gernon, T. M. & Palmer, M. R. Late Ordovician climate change and extinctions driven by elevated volcanic nutrient supply. Nat. Geosci. 14, 924–929 (2021).Article
ADS
CAS
Google Scholar
Thomson, R. C., Spink, P. Q. & Shaffer, H. B. A global phylogeny of turtles reveals a burst of climate-associated diversification on continental margins. Proc. Natl Acad. Sci. USA 118, e2012215118 (2021).Article
CAS
Google Scholar
Chaboureau, A. C., Sepulchre, P., Donnadieu, Y. & Franc, A. Tectonic-driven climate change and the diversification of angiosperms. Proc. Natl Acad. Sci. USA 111, 14066–14070 (2014).Article
ADS
CAS
Google Scholar
Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).Article
ADS
CAS
Google Scholar
Schmitt, T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 4, 11 (2007).Article
Google Scholar
Haffer, J. Speciation in Amazonian forest birds. Science 165, 131–137 (1969).Article
ADS
CAS
Google Scholar
Ebdon, S. et al. The Pleistocene species pump past its prime: evidence from European butterfly sister species. Mol. Ecol. 30, 3575–3589 (2021).Article
Google Scholar
Excoffier, L., Foll, M. & Petit, R. J. Genetic consequences of range expansions. Annu. Rev. Ecol. Evol. Syst. 40, 481–501 (2009).Article
Google Scholar
Baker, H. G. Self-compatibility and establishment after ‘long-distance’ dispersal. Evolution 9, 347–349 (1955).
Google Scholar
Fisher, R. The Genetical Theory of Natural Selection 125–129 (Oxford University Press, 1930).Endler, J. A. Geographic Variation, Speciation, and Clines. Monographs in Population Biology Vol. 10, 53–65, 142–150 (Princeton University Press, 1977).Doebeli, M. & Dieckmann, U. Speciation along environmental gradients. Nature 421, 259–264 (2003).Article
ADS
CAS
Google Scholar
Ispolatov, J. & Doebeli, M. Diversification along environmental gradients in spatially structured populations. Evol. Ecol. Res. 11, 295–304 (2009).
Google Scholar
Rettelbach, A., Servedio, M. R. & Hermisson, J. Speciation in peripheral populations: effects of drift load and mating systems. J. Evol. Biol. 29, 1073–1090 (2016).Article
CAS
Google Scholar
Wright, S. I., Kalisz, S. & Slotte, T. Evolutionary consequences of self-fertilization in plants. Proc. R. Soc. Lond. Ser. B 280, 20130133 (2013).
Google Scholar
Hu, X.-S. Mating system as a barrier to gene flow. Evolution 69, 1158–1177 (2015).Article
CAS
Google Scholar
Glémin, S. How are deleterious mutations purged? Drift versus nonrandom mating. Evolution 57, 2678–2687 (2003).
Google Scholar
Warwick, S. I., Francis, A. & Al-Shehbaz, I. A. Brassicaceae: species checklist and database on CD-Rom. Plant Syst. Evol. 259, 249–258 (2006).Article
Google Scholar
Warwick, S. I., Al-Shehbaz, I. A. & Sauder, C. A. Phylogenetic position of Arabis arenicola and generic limits of Aphragmus and Eutrema (Brassicaceae) based on sequences of nuclear ribosomal DNA. Can. J. Bot. 84, 269–281 (2006).Article
CAS
Google Scholar
Hohmann, N. et al. Taming the wild: resolving the gene pools of non-model Arabidopsis lineages. BMC Evol. Biol. 14, e224 (2014).Article
Google Scholar
Novikova, P. Y. et al. Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism. Nat. Genet. 48, 1077–1082 (2016).Article
CAS
Google Scholar
Perrier, A. & Willi, Y. Intraspecific variation in reproductive barriers between two recently-diverged, allopatric Arabidopsis species. J. Evol. Biol. https://doi.org/10.1111/jeb.14122 (2022). (in press).Griffin, P. C. & Willi, Y. Evolutionary shifts to self-fertilisation restricted to geographic range margins in North American Arabidopsis lyrata. Ecol. Lett. 17, 484–490 (2014).Article
CAS
Google Scholar
Willi, Y., Fracassetti, M., Zoller, S. & Van Buskirk, J. Accumulation of mutational load at the edges of a species range. Mol. Biol. Evol. 35, 781–791 (2018).Article
CAS
Google Scholar
Schmickl, R., Jørgensen, M. H., Brysting, A. K. & Koch, M. A. The evolutionary history of the Arabidopsis lyrata complex: a hybrid in the Amphi-Beringian area closes a large distribution gap and builds up a genetic barrier. BMC Evol. Biol. 10, e98 (2010).Article
Google Scholar
Pyhäjärvi, T., Aalto, E. & Savolainen, O. Time scales of divergence and speciation among natural populations and subspecies of Arabidopsis lyrata (Brassicaceae). Am. J. Bot. 99, 1314–1322 (2012).Article
Google Scholar
Dyke, A. S. in Quaternary Glaciations – Extent and Chronology, Part II: North America (Elsevier, Amsterdam, 2004).Kirkpatrick, M. & Ravigné, V. Speciation by natural and sexual selection: models and experiments. Am. Nat. 159, S22–S35 (2002).Article
Google Scholar
Igic, B., Lande, R. & Kohn, J. R. Loss of self‐incompatibility and its evolutionary consequences. Int. J. Plant Sci. 169, 93–104 (2008).Article
Google Scholar
Willi, Y. & Määttänen, K. Evolutionary dynamics of mating system shifts in Arabidopsis lyrata. J. Evol. Biol. 23, 2123–2131 (2010).Article
CAS
Google Scholar
Lucek, K. & Willi, Y. Drivers of linkage disequilibrium across a species’ geographic range. PLoS Genet. 17, e1009477 (2021).Article
CAS
Google Scholar
Pironon, S. et al. Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm: the centre-periphery hypothesis. Biol. Rev. 92, 1877–1909 (2017).Article
Google Scholar
Encinas-Viso, F., Young, A. G. & Pannell, J. R. The loss of self-incompatibility in a range expansion. J. Evol. Biol. 33, 1235–1244 (2020).Article
Google Scholar
Jarne, P. & Auld, J. R. Animals mix it up too: the distribution of self-fertilization among hermaphroditic animals. Evolution 60, 1816–1824 (2006).
Google Scholar
Foxe, J. P. et al. Reconstructing origins of loss of self-incompatibility and selfing in North American Arabidopsis lyrata: a population genetic context. Evolution 64, 3495–3510 (2010).Article
Google Scholar
Koski, M. H., Layman, N. C., Prior, C. J., Busch, J. W. & Galloway, L. F. Selfing ability and drift load evolve with range expansion. Evol. Lett. 3, 500–512 (2019).Article
Google Scholar
Prior, C. J. & Busch, J. W. Selfing rate variation within species is unrelated to life‐history traits or geographic range position. Am. J. Bot. 108, 2294–2308 (2021).Article
Google Scholar
Skeels, A. & Cardillo, M. Reconstructing the geography of speciation from contemporary biodiversity data. Am. Nat. 193, 240–254 (2019).Article
Google Scholar
Sánchez-Castro, D., Perrier, A. & Willi, Y. Reduced climate adaptation at range edges in North American Arabidopsis lyrata. Glob. Ecol. Biogeogr. 31, 1066–1077 (2022).Article
Google Scholar
Roessler, K. et al. The genome-wide dynamics of purging during selfing in maize. Nat. Plants 5, 980–990 (2019).Article
CAS
Google Scholar
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).Hu, T. T. et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 43, 476–481 (2011).Article
Google Scholar
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article
Google Scholar
McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).Article
CAS
Google Scholar
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).Article
CAS
Google Scholar
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).Article
CAS
Google Scholar
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).Article
CAS
Google Scholar
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).Article
CAS
Google Scholar
Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).Article
CAS
Google Scholar
Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. & Foll, M. Robust demographic inference from genomic and SNP data. PLoS Genet. 9, e1003905 (2013).Article
Google Scholar
Marchi, N. et al. The genomic origins of the world’s first farmers. Cell 185, 1842–1859 (2022).Article
CAS
Google Scholar
Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).Article
CAS
Google Scholar
Genete, M., Castric, V. & Vekemans, X. Genotyping and de novo discovery of allelic variants at the Brassicaceae self-incompatibility locus from short-read sequencing data. Mol. Biol. Evol. 7, 1193–1201 (2020).Article
Google Scholar
Lynch, M. et al. Genome-wide linkage-disequilibrium profiles from single individuals. Genetics 198, 269–281 (2014).Article
Google Scholar
R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2021).Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).Article
CAS
Google Scholar
Nychka, D., Furrer, R., Paige, J. & Sain, S. fields: tools for spatial data. R package version 14.1 https://github.com/dnychka/fieldsRPackage (2021).Asquith, W. lmomco—L-moments, censored L-moments, trimmed L-moments, L-comoments, and many distributions. R package version 2.4.7 (2022).Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article
Google Scholar
Lemon, J. Plotrix: a package in the red light district of R. R. N. 6, 8–12 (2006).
Google Scholar
Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R. N. 5, 9–13 (2005).
Google Scholar
Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied Spatial Data Analysis with R Second edition (Springer, 2013). More