Half-millennium evidence suggests that extinction debts of global vertebrates started in the Second Industrial Revolution
Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. Habitat destruction and the extinction debt. Nature 371, 65–66 (1994).Article
Google Scholar
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).Article
CAS
PubMed
Google Scholar
Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).Article
CAS
PubMed
Google Scholar
Fonseca, C. R. et al. Conservation biology: four decades of problem- and solution-based research. Perspect. Ecol. Conserv. 19, 121–130 (2021).
Google Scholar
Smits, P. & Finnegan, S. How predictable is extinction? Forecasting species survival at million-year timescales. Philos. Trans. R. Soc. B Biol. Sci. 374, 20190392 (2019).Article
Google Scholar
Hanski, I. & Ovaskainen, O. Extinction debt at extinction threshold. Conserv. Biol. 16, 666–673 (2002).Article
Google Scholar
Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).Article
PubMed
Google Scholar
Ridding, L. E. et al. Inconsistent detection of extinction debts using different methods. Ecography 44, 33–43 (2021).Article
Google Scholar
Berglund, H. & Jonsson, B. G. Verifying an extinction debt among lichens and fungi in northern Swedish boreal forests. Conserv. Biol. 19, 338–348 (2005).Article
Google Scholar
Jones, I. L., Bunnefeld, N., Jump, A. S., Peres, C. A. & Dent, D. H. Extinction debt on reservoir land-bridge islands. Biol. Conserv. 199, 75–83 (2016).Article
Google Scholar
Triantis, K. et al. Extinction debt on oceanic islands. Ecography 33, 285–294 (2010).
Google Scholar
Wearn, O. R., Reuman, D. C. & Ewers, R. M. Extinction debt and windows of conservation opportunity in the Brazilian Amazon. Science 337, 228–232 (2012).Article
CAS
PubMed
Google Scholar
Pan, Y. et al. Spatial and temporal scales of landscape structure affect the biodiversity-landscape relationship across ecologically distinct species groups. Landsc. Ecol. 37, 2311–2325 (2022).Article
Google Scholar
Soga, M. & Koike, S. Mapping the potential extinction debt of butterflies in a modern city: Implications for conservation priorities in urban landscapes. Anim. Conserv. 16, 1–11 (2013).Article
Google Scholar
Knapp, S., Winter, M. & Klotz, S. Increasing species richness but decreasing phylogenetic richness and divergence over a 320-year period of urbanization. J. Appl. Ecol. 54, 1152–1160 (2017).Article
Google Scholar
McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the anthropocene. Trends Ecol. Evol. 30, 104–113 (2015).Article
PubMed
Google Scholar
Chen, Y. & Peng, S. Evidence and mapping of extinction debts for global forest-dwelling reptiles, amphibians and mammals. Sci. Rep. 7, 1–10 (2017).
Google Scholar
Krauss, J. et al. Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol. Lett. 13, 597–605 (2010).Article
PubMed
PubMed Central
Google Scholar
Cowlishaw, G. Predicting the pattern of decline of African primate diversity: An extinction debt from historical deforestation. Conserv. Biol. 13, 1183–1193 (1999).Article
Google Scholar
Figueiredo, L., Krauss, J., Steffan-Dewenter, I. & Sarmento Cabral, J. Understanding extinction debts: spatio–temporal scales, mechanisms and a roadmap for future research. Ecography 42, 1973–1990 (2019).Article
Google Scholar
Aerts, R. & Honnay, O. Forest restoration, biodiversity and ecosystem functioning. BMC Ecol. 11, 1–21 (2011).Article
Google Scholar
Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).Article
PubMed
PubMed Central
Google Scholar
Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).Article
CAS
PubMed
Google Scholar
IUCN. The IUCN Red List of Threatened Species, Version 2019-1. https://www.iucnredlist.org. Downloaded on 23 February 2022. (2019).Brown, J. L. et al. Spatial biodiversity patterns of Madagascar’s amphibians and reptiles. PLoS ONE 11, e0144076 (2016).Article
PubMed
PubMed Central
Google Scholar
Powney, G. D., Grenyer, R., Orme, C. D. L., Owens, I. P. F. & Meiri, S. Hot, dry and different: Australian lizard richness is unlike that of mammals, amphibians and birds. Glob. Ecol. Biogeogr. 19, 386–396 (2010).Article
Google Scholar
Pianka, E. R. Desert lizard diversity: additional comments and some data. Am. Nat. 134, 344–364 (1989).Article
Google Scholar
Chen, Y. H. Combining the species-area-habitat relationship and environmental cluster analysis to set conservation priorities: A study in the Zhoushan Archipelago, China. Conserv. Biol. 23, 537–545 (2009).Article
PubMed
Google Scholar
Ricklefs, R. E. & Lovette, I. J. The roles of island area per se and habitat diversity in the species-area relationships of four Lesser Antillean faunal groups. J. Anim. Ecol. 68, 1142–1160 (1999).Article
Google Scholar
Souza, F. L., Martins, F. I. & Raizer, J. Habitat heterogeneity and anuran community of an agroecosystem in the Pantanal of Brazil. Phyllomedusa 13, 41–50 (2014).Article
Google Scholar
Kelt, D. A. & Van Vuren, D. H. The ecology and macroecology of mammalian home range area. Am. Nat. 157, 637–645 (2001).Article
CAS
PubMed
Google Scholar
McNab, B. K. Bioenergetics and the determination of home range size. Am. Nat. 97, 133–140 (1963).Article
Google Scholar
Powell, R. A. & Mitchell, M. S. What is a home range? J. Mammal. 93, 948–958 (2012).Article
Google Scholar
Hoffmann, S., Irl, S. D. H. & Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun. 10, 1–10 (2019).Article
Google Scholar
Giam, X. et al. Reservoirs of richness: least disturbed tropical forests are centres of undescribed species diversity. Proc. R. Soc. B 279, 67–76 (2012).Article
PubMed
Google Scholar
Pillay, R. et al. Tropical forests are home to over half of the world’s vertebrate species. Front. Ecol. Environ. 20, 10–15 (2022).Article
PubMed
Google Scholar
Li, H. et al. Large numbers of vertebrates began rapid population decline in the late 19th century. Proc. Natl Acad. Sci. USA 113, 14079–14084 (2016).Article
CAS
PubMed
PubMed Central
Google Scholar
Pringle, R. M. Upgrading protected areas to conserve wild biodiversity. Nature 546, 91–99 (2017).Article
CAS
PubMed
Google Scholar
Forzieri, G., Dakos, V., McDowell, N. G., Ramdane, A. & Cescatti, A. Emerging signals of declining forest resilience under climate change. Nature 608, 534–539 (2022).Article
CAS
PubMed
PubMed Central
Google Scholar
Diamond, J. M. Biogeographic kinetics: estimation of relaxation times for Avifaunas of southwest Pacific islands. Proc. Natl Acad. Sci. USA 69, 3199–3203 (1972).Article
CAS
PubMed
PubMed Central
Google Scholar
Jackson, S. T. & Sax, D. F. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25, 153–160 (2010).Article
PubMed
Google Scholar
Foley, J. A. et al. Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 5, 25–32 (2007).Article
Google Scholar
Asamoah, E. F., Beaumont, L. J. & Maina, J. M. Climate and land-use changes reduce the benefits of terrestrial protected areas. Nat. Clim. Chang. 11, 1105–1110 (2021).Article
Google Scholar
Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).Article
Google Scholar
Peng, S. et al. Sensitivity of land use change emission estimates to historical land use and land cover mapping. Glob. Biogeochem. Cycles 31, 626–643 (2017).Article
CAS
Google Scholar
Jain, A. K., Meiyappan, P., Song, Y. & House, J. I. CO2 emissions from land-use change affected more by nitrogen cycle, than by the choice of land-cover data. Glob. Chang. Biol. 19, 2893–2906 (2013).Article
PubMed
Google Scholar
Poulter, B. et al. Plant functional type classification for earth system models: results from the European Space Agency’s Land Cover Climate Change Initiative. Geosci. Model Dev. 8, 2315–2328 (2015).Article
Google Scholar
Pongratz, J., Reick, C., Raddatz, T. & Claussen, M. A reconstruction of global agricultural areas and land cover for the last millennium. Global Biogeochem. Cycles 22, (2008).Dietz, F. C. The industrial revolution. In the Hands of a Child (1970).Gütschow, J., Jeffery, L. & Gieseke, R. The PRIMAP-hist national historical emissions time series (1850-2016). V. 2.0. GFZ Data Services (2019).Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).Article
PubMed
PubMed Central
Google Scholar
Protected Planet: The World Database on Protected Areas (UNEP-WCMC and IUCN, accessed 9 January 2022); www.protectedplanet.net.Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).Article
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing Version 4.0.2 (2020). More