Nanostructured lipid carrier of oregano essential oil for controlling Tuta absoluta with minimal impact on beneficial organisms
AbstractTuta absoluta is a significant invasive pest, severely impacting the global tomato industry. Prolonged application of chemical insecticides has led to varying degrees of resistance in T. absoluta populations. Additionally, chemical insecticides are causing serious threats to the environment. Aiming to develop a novel bioinsecticide based on Origanum vulgare essential oil (OVE) against T. absoluta, we carried out its nanostructured lipid carrier formulation (OVE-NLC). The obtained OVE-NLC had spherical particles approximately 94.26 nm in size with a uniform size distribution of less than 0.3 and a zeta potential of − 18.75 mV. The formulated NLC also had encapsulation efficiency up to 96% and was stable at 25 °C for 3 months. The FTIR results indicated no significant chemical interaction between EO and NLC components. OVE-NLC demonstrated significant toxicity towards T. absoluta larvae and a remarkable oviposition deterrence for females. The nanoformulation also negatively affected the population growth parameters of T. absoluta, significantly reducing its fecundity by approximately 70% and 42% in contact and topical assays, respectively. Additionally, OVE-NLC had no lethal effects on the generalist predator Macrolophus pygmaeus and pollinator bee Bombus terrestris as non-target organisms. Results suggested that OVE-NLC could be successfully used as a potential tool for tomato integrated pest management programs.
Similar content being viewed by others
Toxicity of Foeniculum vulgare essential oil, its main component and nanoformulation against Phthorimaea absoluta and the generalist predator Macrolophus pygmaeus
Article
Open access
14 May 2025
Enhanced repellent and anti-nutritional activities of polymeric nanoparticles containing essential oils against red flour beetle, Tribolium castaneum
Article
Open access
10 August 2024
Insecticidal activity of essential oils from American native plants against Aedes aegypti (Diptera: Culicidae): an introduction to their possible mechanism of action
Article
Open access
20 February 2023
Data availability
All data supporting this study’s findings are included in the article.
ReferencesKoller, J. et al. A parasitoid Wasp allied with an entomopathogenic virus to control Tuta absoluta. Crop Prot. 179, 106617. https://doi.org/10.1016/j.cropro.2024.106617 (2024).
Google Scholar
Bello, A. S. et al. Tomato (Solanum lycopersicum) yield response to drip irrigation and nitrogen application rates in open-field cultivation in arid environments. Sci. Hortic. 334, 113298. https://doi.org/10.1016/j.scienta.2024.113298 (2024).
Google Scholar
Toni, H. C., Djossa, B. A., Ayenan, M. A. T. & Teka, O. Tomato (Solanum lycopersicum) pollinators and their effect on fruit set and quality. J. Hortic. Sci. Biotechnol. 96 (1), 1–13. https://doi.org/10.1080/14620316.2020.1773937 (2021).
Google Scholar
Demirozer, O., Uzun, A. & Gosterit, A. Lethal and sublethal effects of different biopesticides on Bombus terrestris (Hymenoptera: Apidae). Apidologie 53 (2), 24. https://doi.org/10.1007/s13592-022-00933-6 (2022).
Google Scholar
Kumar, A. et al. Rapid detection of the invasive tomato leaf miner, Phthorimaea absoluta using simple template LAMP assay. Sci. Rep. 15, 573. https://doi.org/10.1038/s41598-024-84288-1 (2025).
Google Scholar
Soleymanzadeh, A., Valizadegan, O., Saber, M. & Hamishehkar, H. Toxicity of Foeniculum vulgare essential oil, its main component and nanoformulation against Phthorimaea absoluta and the generalist predator Macrolophus Pygmaeus. Sci. Rep. 15, 16706. https://doi.org/10.1038/s41598-025-01193-x (2025).
Google Scholar
Konan, K. A. J. et al. Combination of generalist predators, Nesidiocoris tenuis and Macrolophus pygmaeus, with a companion plant, Sesamum indicum: what benefit for biological control of Tuta absoluta? Plos One. 16, 0257925. https://doi.org/10.1371/journal.pone.0257925 (2021).
Google Scholar
Borges, I. et al. Prey consumption and conversion efficiency in females of two feral populations of Macrolophus pygmaeus, a biocontrol agent of Tuta absoluta. Phytoparasitica 52, 31. https://doi.org/10.1007/s12600-024-01130-0 (2024).
Google Scholar
Mohammadi, R., Valizadegan, O. & Soleymanzadeh, A. Lethal and sublethal effects of matrine (Rui agro®) on the tomato leaf miner, Tuta absoluta and the predatory bug macrolophus Pygmaeus. J. App Res. Plant. Prot. 14 (2), 111–125. https://doi.org/10.22034/arpp.2022.15200 (2025).
Google Scholar
Mesri, H., Valizadegan, O. & Soleymanzade, A. Laboratory assessment of some chemical insecticides toxicity on Brevicoryne brassicae (Hemiptera: Aphididae) and their selectivity for its predator, Hippodamia variegata (Coleoptera: Coccinellidae). Iran. J. Plant. Prot. Sci. 54 (1), 165–186. https://doi.org/10.22059/IJPPS.2023.360644.1007032 (2023).
Google Scholar
Soleymanzade, A., Valizadegan, O. & Askari Saryazdi, G. Biochemical mechanisms and cross resistance patterns of Chlorpyrifos resistance in a laboratory-selected strain of Diamondback Moth, Plutella Xylostella (Lepidoptera: Plutellidae). J. Agric. Sci. Technol. 21 (7), 1859–1870 (2019a).
Google Scholar
Soleymanzade, A., Khorrami, F. & Forouzan, M. Insecticide toxicity, synergism and resistance in Plutella Xylostella (Lepidoptera: plutellidae. Acta Phytopathol. Entomol. Hung. 54 (1), 147–154. https://doi.org/10.1556/038.54.2019.013 (2019b).
Google Scholar
Tortorici, S. et al. Nanostructured lipid carriers of essential oils as potential tools for the sustainable control of insect pests. Ind. Crops Prod. 181, 114766. https://doi.org/10.1016/j.indcrop.2022.114766 (2022).
Google Scholar
Modafferi, A. et al. Bioactivity of Allium sativum essential oil-based nano-emulsion against Planococcus citri and its predator Cryptolaemus Montrouzieri. Ind. Crops Prod. 208, 117837. https://doi.org/10.1016/j.indcrop.2023.117837 (2024).
Google Scholar
Angellotti, G., Riccucci, C., Di Carlo, G., Pagliaro, M. & Ciriminna, R. Towards sustainable pest management of broad scope: sol-gel microencapsulation of Origanum vulgare essential oil. J. Sol-Gel Sci. Technol. 112 (1), 230–239. https://doi.org/10.1007/s10971-024-06512-8 (2024).
Google Scholar
Werdin González, J. O., Gutiérrez, M. M., Murray, A. P. & Ferrero, A. A. Composition and biological activity of essential oils from labiatae against Nezara viridula (Hemiptera: Pentatomidae) soybean pest. Pest Manag Sci. 67 (8), 948–955. https://doi.org/10.1002/ps.2138 (2011).
Google Scholar
Múnera-Echeverri, A., Múnera-Echeverri, J. L. & Segura-Sánchez, F. Bio-pesticidal potential of nanostructured lipid carriers loaded with thyme and Rosemary essential oils against common ornamental flower pests. Colloids Interfaces. 8 (5), 55. https://doi.org/10.3390/colloids8050055 (2024).
Google Scholar
Tortorici, S. et al. Toxicity and repellent activity of a Carlina oxide nanoemulsion toward the South American tomato pinworm, Tuta absoluta. J. Pest Sci. 98, 309–320. https://doi.org/10.1007/s10340-024-01785-y (2025).
Google Scholar
Sivalingam, S. et al. Encapsulation of essential oil to prepare environment friendly nanobio-fungicide against Fusarium oxysporum f. sp. lycopersici: an experimental and molecular dynamics approach. Colloids Surf. A: Physicochem Eng. Asp. 681, 132681. https://doi.org/10.1016/j.colsurfa.2023.132681 (2024).
Google Scholar
Piran, P., Kafil, H. S., Ghanbarzadeh, S., Safdari, R. & Hamishehkar, H. Formulation of menthol-loaded nanostructured lipid carriers to enhance its antimicrobial activity for food preservation. Adv. Pharm. Bull. 7 (2), 261. https://doi.org/10.15171/apb.2017.031 (2017).
Google Scholar
Khezri, K., Farahpour, M. R. & Mounesi Rad, S. Efficacy of Mentha pulegium essential oil encapsulated into nanostructured lipid carriers as an in vitro antibacterial and infected wound healing agent. Colloids Surf. A: Physicochem Eng. Asp. 589, 124414. https://doi.org/10.1016/j.colsurfa.2020.124414 (2020).
Google Scholar
Bashiri, S., Ghanbarzadeh, B., Ayaseh, A., Dehghannya, J. & Ehsani, A. Preparation and characterization of chitosan-coated nanostructured lipid carriers (CH-NLC) containing cinnamon essential oil for enriching milk and anti-oxidant activity. LWT-Food Sci. Technol. 119, 108836. https://doi.org/10.1016/j.lwt.2019.108836 (2020).
Google Scholar
Khosh Manzar, M., Pirouzifard, M. K., Hamishehkar, H. & Pirsa, S. Cocoa butter and cocoa butter substitute as a lipid carrier of Cuminum cyminum L. essential oil; physicochemical properties, physical stability and controlled release study. J. Mol. Liq. 319, 114303. https://doi.org/10.1016/j.molliq.2020.113638 (2020).
Google Scholar
de Figueiredo, K. G. et al. Toxicity of cinnamomum spp. Essential oil to Tuta absoluta and to predatory Mirid. J. Pest Sci. 97 (3), 1569–1585. https://doi.org/10.1007/s10340-023-01719-0 (2024).
Google Scholar
Piri, A. et al. Toxicity and physiological effects of Ajwain (Carum copticum, Apiaceae) essential oil and its major constituents against Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Chemosphere 256, 127103. https://doi.org/10.1016/j.chemosphere.2020.127103 (2020).
Google Scholar
Martinou, A. F., Seraphides, N. & Stavrinides, M. C. Lethal and behavioral effects of pesticides on the insect predator Macrolophus Pygmaeus. Chemosphere 96, 167–173. https://doi.org/10.1016/j.chemosphere.2013.10.024 (2014).
Google Scholar
Besard, L., Mommaerts, V., Abdu-Alla, G. & Smagghe, G. Lethal and sublethal side‐effect assessment supports a more benign profile of Spinetoram compared with spinosad in the bumblebee Bombus terrestris. Pest Manag Sci. 67 (5), 541–547. https://doi.org/10.1002/ps.2093 (2011).
Google Scholar
Chi, H. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. Accessed on 25 May (2005). (2005).Chi, H. & Liu, H. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sin. 24 (2), 225–240 (1985).
Google Scholar
Chi, H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 17, 26–34. https://doi.org/10.1093/ee/17.1.26 (1988).
Google Scholar
Effron, B., Tibshirani, R. J. & Probability An introduction to the bootstrap. ChapmanHall/CRC, Monographs on Statistics and Applied New York. (1993).Xie, Y., Huang, Q., Rao, Y., Hong, L. & Zhang, D. Efficacy of Origanum vulgare essential oil and carvacrol against the housefly, musca domestica L. (Diptera: Muscidae). Environ. Sci. Pollut Res. 26, 23824–23831. https://doi.org/10.1007/s11356-019-05671-4 (2019).
Google Scholar
De Souza, G. T. et al. Effects of the essential oil from Origanum vulgare L. on survival of pathogenic bacteria and starter lactic acid bacteria in semihard cheese broth and slurry. J. Food Prot. 79 (2), 246–252. https://doi.org/10.4315/0362-028X.JFP-15-172 (2016).
Google Scholar
Goyal, S., Tewari, G., Pandey, H. K. & Kumari, A. Exploration of productivity, chemical composition, and antioxidant potential of Origanum vulgare L. grown at different geographical locations of Western himalaya. India J Chem. 1, 6683300. https://doi.org/10.1155/2021/6683300 (2021).
Google Scholar
Khan, M. et al. The composition of the essential oil and aqueous distillate of Origanum vulgare L. growing in Saudi Arabia and evaluation of their antibacterial activity. Arab. J. Chem. 11 (8), 1189–1200. https://doi.org/10.1016/j.arabjc.2018.02.008 (2018).
Google Scholar
Moazeni, M. et al. Lesson from nature: Zataria multiflora nanostructured lipid carrier topical gel formulation against Candida-associated onychomycosis, a randomized double-blind placebo-controlled clinical trial. Med. Drug Discov. 22, 100187. https://doi.org/10.1016/j.medidd.2024.100187 (2024).
Google Scholar
Hoseini, B. et al. Application of ensemble machine learning approach to assess the factors affecting size and polydispersity index of liposomal nanoparticles. Sci. Rep. 13 (1), 18012. https://doi.org/10.1038/s41598-023-43689-4 (2023).
Google Scholar
Apostolou, M., Assi, S., Fatokun, A. A. & Khan, I. The effects of solid and liquid lipids on the physicochemical properties of nanostructured lipid carriers. J. Pharm. Sci. 110 (8), 2859–2872. https://doi.org/10.1016/j.xphs.2021.04.012 (2021).
Google Scholar
Pezeshki, A. et al. Nanostructured lipid carriers as a favorable delivery system for β-carotene. Food Biosci. 27, 11–17. https://doi.org/10.1016/j.fbio.2018.11.004 (2019).
Google Scholar
Fitriani, E. W., Avanti, C., Rosana, Y. & Surini, S. Development of nanostructured lipid carrier containing tea tree oil: physicochemical properties and stability. J. Pharm. Pharmacog Res. 11 (3), 391–400. https://doi.org/10.56499/jppres23.1581_11.3.391 (2023).
Google Scholar
Chura, S. S. D. et al. Red Sacaca essential oil-loaded nanostructured lipid carriers optimized by factorial design: cytotoxicity and cellular reactive oxygen species levels. Front. Pharmacol. 14, 1176629. https://doi.org/10.3389/fphar.2023.1176629 (2023).
Google Scholar
Jbilou, R., Matteo, R., Bakrim, A., Bouayad, N. & Rharrabe, K. Potential use of Origanum vulgare in agricultural pest management control: a systematic review. J. Plant. Dis. Prot. 131 (2), 347–363. https://doi.org/10.1007/s41348-023-00839-0 (2024). hHadley Centre for Climate, Met Officettp:.
Google Scholar
Abdelgaleil, S. A. M., Gad, H. A., Ramadan, G. R. M., El-Bakry, A. M. & El-Sabrout, A. Monoterpenes for management of field crop insect Hadley centre for Climate, Met officepests. J. Agric. Sci. Technol. 25 (4), 769–784 (2023).
Google Scholar
Allsopp, E., Prinsloo, G. J., Smart, L. E. & Dewhirst, S. Y. Methyl salicylate, thymol and carvacrol as oviposition deterrents for Frankliniella occidentalis (Pergande) on Plum blossoms. Arthropod Plant. Interac. 8, 421–427. https://doi.org/10.1007/s11829-014-9323-2 (2014).
Google Scholar
Yarou, B. B. et al. Oviposition deterrent activity of Basil plants and their essentials oils against Tuta absoluta (Lepidoptera: Gelechiidae). Environ. Sci. Pollut Res. 25, 29880–29888. https://doi.org/10.1007/s11356-017-9795-6 (2017).
Google Scholar
Lo Pinto, M., Vella, L. & Agrò, A. Oviposition deterrence and repellent activities of selected essential oils against Tuta absoluta meyrick (Lepidoptera: Gelechiidae): laboratory and greenhouse investigations. Int. J. Trop. Insect Sci. 42 (5), 3455–3464. https://doi.org/10.1007/s42690-022-00867-7 (2022).
Google Scholar
Ricupero, M. et al. Bioactivity and physico-chemistry of Garlic essential oil nanoemulsion in tomato. Entomol. Gen. 42, 921–930. https://doi.org/10.1127/entomologia/2022/1553 (2022).
Google Scholar
Carbone, C. et al. Mediterranean essential oils as precious matrix components and active ingredients of lipid nanoparticles. Int. J. Pharm. 548 (1), 217–226. https://doi.org/10.1016/j.ijpharm.2018.06.064 (2018).
Google Scholar
Ghodrati, M., Farahpour, M. R. & Hamishehkar, H. Encapsulation of peppermint essential oil in nanostructured lipid carriers: In-vitro antibacterial activity and accelerative effect on infected wound healing. Coll. Surf. A: Physicochem. Eng. Asp. 564, 161–169. https://doi.org/10.1016/j.colsurfa.2018.12.043 (2019).
Google Scholar
Radwan, I. T., Baz, M. M., Khater, H. & Selim, A. M. Nanostructured lipid carriers (NLC) for biologically active green tea and fennel natural oils delivery: Larvicidal and adulticidal activities against Culex pipiens. Molecules. 27(6), 1939. https://doi.org/10.3390/molecules27061939 (2022).Goane, L. et al. Antibiotic treatment reduces fecundity and nutrient content in females of Anastrepha fraterculus (Diptera: Tephritidae) in a diet dependent way. J. Insect Physiol. 139, 104396. https://doi.org/10.1016/j.jinsphys.2022.104396 (2022).
Google Scholar
Ouabou, M. et al. Insecticidal, antifeedant, and repellent effect of Lavandula mairei var. Antiatlantica essential oil and its major component carvacrol against Sitophilus oryzae. J. Stored Prod. Res. 107, 102338. https://doi.org/10.1016/j.jspr.2024.102338 (2024).
Google Scholar
Ding, W. et al. Lethal and sublethal effects of Afidopyropen and Flonicamid on life parameters and physiological responses of the tobacco whitefly, bemisia tabaci MEAM1. Agronomy 14 (8), 1774. https://doi.org/10.3390/agronomy14081774 (2024).
Google Scholar
Arnó, J. & Gabarra, R. Side effects of selected insecticides on the Tuta absoluta (Lepidoptera: Gelechiidae) predators Macrolophus Pygmaeus and Nesidiocoris tenuis (Hemiptera: Miridae). J. Pest. Sci.. 84, 513–520. https://doi.org/10.1007/s10340-011-0384-z (2011).
Google Scholar
Stanley, J., Sah, K., Jain, S. K., Bhatt, J. C. & Sushil, S. N. Evaluation of pesticide toxicity at their field recommended doses to honeybees, apis Cerana and A. mellifera through laboratory, semi-field and field studies. Chemosphere 119, 668–674. https://doi.org/10.1016/j.chemosphere.2014.07.039 (2015).
Google Scholar
Jeon, H. & Tak, J. H. Gustatory habituation to essential oil induces reduced feeding deterrence and neuronal desensitization in Spodoptera Litura. J. Pest Sci. 98, 321–336. https://doi.org/10.1007/s10340-024-01794-x (2024).
Google Scholar
Abbes, K. et al. Combined non-target effects of insecticide and high temperature on the parasitoid Bracon nigricans. PloS One. 10 (9), 0138411. https://doi.org/10.1371/journal.pone.0138411 (2015).
Google Scholar
Download referencesAcknowledgementsFinancial support from the Deputy of Research and Technology of Urmia University, Urmia, Iran (Number: 10/1352) is acknowledged.FundingThis study was funded by Urmia University, Iran (Number: 10/1352).Author informationAuthors and AffiliationsDepartment of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, IranAsmar Soleymanzadeh & Orouj ValizadeganDrug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, IranHamed HamishehkarResearch Center of New Material and Green Chemistry, Khazar University, Baku, AzerbaijanHamed HamishehkarAuthorsAsmar SoleymanzadehView author publicationsSearch author on:PubMed Google ScholarOrouj ValizadeganView author publicationsSearch author on:PubMed Google ScholarHamed HamishehkarView author publicationsSearch author on:PubMed Google ScholarContributionsAS, OV, and HH conceived and designed the experiments. AS collected data and carried out the bioassays. AS and OV analyzed the data. AS wrote the first draft of the manuscript, and OV and HH revised and improved it. All authors read and approved the manuscript.Corresponding authorCorrespondence to
Orouj Valizadegan.Ethics declarations
Competing interests
The authors declare no competing interests.
Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Reprints and permissionsAbout this articleCite this articleSoleymanzadeh, A., Valizadegan, O. & Hamishehkar, H. Nanostructured lipid carrier of oregano essential oil for controlling Tuta absoluta with minimal impact on beneficial organisms.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-33492-8Download citationReceived: 24 August 2025Accepted: 19 December 2025Published: 30 December 2025DOI: https://doi.org/10.1038/s41598-025-33492-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
Provided by the Springer Nature SharedIt content-sharing initiative
KeywordsBioinsecticide
Tuta absoluta
NanotechnologySide effectPollinatorPredator More
