More stories

  • in

    Pronounced differences in heart rate and metabolism distinguish daily torpor and short-term hibernation in two bat species

    Lyman, C. P., Willis, J. S., Malan, A. & Wang, L. C. H. Hibernation and Torpor in Mammals and Birds (Academic Press, 1982).
    Google Scholar 
    Boyles, J. G. et al. A global heterothermic continuum in mammals. Glob. Ecol. Biogeogr. 22, 1029–1039. https://doi.org/10.1111/geb.12077 (2013).Article 

    Google Scholar 
    Geiser, F. Ecological Physiology of Daily Torpor and Hibernation (Springer, 2021). https://doi.org/10.1007/978-3-030-75525-6.Book 

    Google Scholar 
    Buck, C. L. & Barnes, B. M. Effects of ambient temperature on metabolic rate, respiratory quotient and torpor in an arctic hibernator. Am. J. Physiol. Reg. Integr. Comp. Physiol 279, R255–R262. https://doi.org/10.1152/ajpregu.2000.279.1.R255 (2000).Article 
    CAS 

    Google Scholar 
    Ortmann, S. & Heldmaier, G. Regulation of body temperature and energy requirements of hibernating Alpine marmots (Marmota marmota). Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R698–R704. https://doi.org/10.1152/ajpregu.2000.278.3.R698 (2000).Article 
    CAS 

    Google Scholar 
    Swoap, S. J. & Gutilla, M. J. Cardiovascular changes during daily torpor in the laboratory mouse. Am. J. Physiol. Regul. Integr. Comp. Physiol 297, R769–R774. https://doi.org/10.1152/ajpregu.00131.2009 (2009).Article 
    CAS 

    Google Scholar 
    Kirsch, R., Ouarour, A. & Pévet, P. Daily torpor in the Djungarian hamster (Phodopus sungorus): photoperiodic regulation, characteristics and circadian organization. J. Comp. Physiol. A 168, 121–128. https://doi.org/10.1007/BF00217110 (1991).Article 
    CAS 

    Google Scholar 
    Nowack, J., Stawski, C. & Geiser, F. More functions of torpor and their roles in a changing world. J. Comp. Physiol. (B) 187, 889–897. https://doi.org/10.1007/s00360-017-1100-y (2017).Article 

    Google Scholar 
    Nowack, J., Levesque, D. L., Reher, S. & Dausmann, K. H. Variable climates lead to varying phenotypes: “Weird” mammalian torpor and lessons from non-holarctic species. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00060 (2020).Article 

    Google Scholar 
    Hoelzl, F. et al. How to spend the summer? Free-living dormice (Glis glis) can hibernate for 11 months in non-reproductive years. J. Comp. Physiol. B 185, 931–939. https://doi.org/10.1007/s00360-015-0929-1 (2015).Article 

    Google Scholar 
    Geiser, F. Seasonal expression of avian and mammalian daily torpor and hibernation: not a simple summer-winter affair. F. Phys. 11, 436. https://doi.org/10.3389/fphys.2020.00436 (2020).Article 

    Google Scholar 
    Jonasson, K. A. & Willis, C. K. R. Hibernation energetics of free-ranging little brown bats. J. Exp. Biol. 215, 2141–2149. https://doi.org/10.1242/jeb.066514 (2012).Article 

    Google Scholar 
    Dietz, M., Kalko, E. K. V. Seasonal changes in daily torpor patterns of free-ranging female and male Daubenton’s bats (Myotis daubentonii). J. Comp. Physiol. B. 176(3), 223–231. https://doi.org/10.1007/s00360-005-0043-x (2006).Article 

    Google Scholar 
    Kobbe, S., Ganzhorn, J. U. & Dausmann, K. H. Extreme individual flexibility of heterothermy in free-ranging Malagasy mouse lemurs (Microcebus griseorufus). J. Comp. Physiol. B 181, 165–173. https://doi.org/10.1007/s00360-010-0507-5 (2011).Article 

    Google Scholar 
    Ruf, T. & Geiser, F. Daily torpor and hibernation in birds and mammals. Biol. Rev. 90, 891–926. https://doi.org/10.1111/brv.12137 (2015).Article 

    Google Scholar 
    Geiser, F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239–274 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Storey, K. B. & Storey, J. M. Metabolic rate depression: the biochemistry of mammalian hibernation. Adv. Clin. Chem. 52, 77–108 (2010).Article 
    CAS 

    Google Scholar 
    Stawski, C., Willis, C. K. R. & Geiser, F. The importance of temporal heterothermy in bats. J. Zool. 292, 86–100. https://doi.org/10.1111/jzo.12105 (2014).Article 

    Google Scholar 
    Bondarenco, A., Körtner, G. & Geiser, F. Some like it cold: summer torpor by freetail bats in the Australian arid zone. J. Comp. Physiol. (B) 183, 1113–1122. https://doi.org/10.1007/s00360-013-0779-7 (2013).Article 

    Google Scholar 
    O’Mara, M. T. et al. Heart rate reveals torpor at high body temperatures in lowland tropical free-tailed bats. R. Soc. Open Sci. 4, 171359. https://doi.org/10.1098/rsos.171359 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Reher, S., Ehlers, J., Rabarison, H. & Dausmann, K. H. Short and hyperthermic torpor responses in the Malagasy bat Macronycteris commersoni reveal a broader hypometabolic scope in heterotherms. J. Comp. Physiol. B https://doi.org/10.1007/s00360-018-1171-4 (2018).Article 

    Google Scholar 
    Geiser, F. et al. Hibernation and daily torpor in Australian and New Zealand bats: Does the climate zone matter?. Aust. J. Zool https://doi.org/10.1071/ZO20025 (2020).Article 

    Google Scholar 
    Stawski, C., Turbill, C. & Geiser, F. Hibernation by a free-ranging subtropical bat (Nyctophilus bifax). J. Comp. Physiol. (B) 179, 284–292. https://doi.org/10.1007/s00360-008-0328-y (2009).Article 

    Google Scholar 
    Levin, E. et al. Subtropical mouse-tailed bats use geothermally heated caves for winter hibernation. Proc. R. Soc. Lond. B Biol. Sci. 282, 20142781. https://doi.org/10.1098/rspb.2014.2781 (2015).Article 

    Google Scholar 
    Bartholomew, G. A., Dawson, W. R. & Lasiewski, R. C. Thermoregulation and heterothermy in some of the smaller flying foxes (Megachiroptera) of New Guinea. Z. Vergl. Physiol. 70, 196–209 (1970).Article 

    Google Scholar 
    Bartels, W., Law, B. S. & Geiser, F. Daily torpor and energetics in a tropical mammal, the northern blossom-bat Macroglossus minimus (Megachiroptera). J. Comp. Physiol. (B) 168, 233–239. https://doi.org/10.1007/s003600050141 (1998).Article 
    CAS 

    Google Scholar 
    Geiser, F., Coburn, D. K., Körtner, G. & Law, B. S. Thermoregulation, energy metabolism, and torpor in blossom-bats, Syconycteris australis (Megachiroptera). J. Zool. 239, 538–590. https://doi.org/10.1111/j.1469-7998.1996.tb05944.x (1996).Article 

    Google Scholar 
    Geiser, F. & Coburn, D. K. Field metabolic rates and water uptake in the blossom-bat Syconycteris australis (Megachiroptera). J. Comp. Physiol. (B) 169, 133–138. https://doi.org/10.1007/s003600050203 (1999).Article 
    CAS 

    Google Scholar 
    Turbill, C. Roosting and thermoregulatory behaviour of male Gould’s long-eared bats, Nyctophilus gouldi: energetic benefits of thermally unstable tree roosts. Aust. J. Zool. 54, 57–60. https://doi.org/10.1071/ZO05068 (2006).Article 

    Google Scholar 
    Currie, S. E. No effect of season on the electrocardiogram of long-eared bats (Nyctophilus gouldi) during torpor. J. Comp. Physiol. B 188, 695–705. https://doi.org/10.1007/s00360-018-1158-1 (2018).Article 

    Google Scholar 
    Stawski, C. & Geiser, F. Do season and distribution affect thermal energetics of a hibernating bat endemic to the tropics and subtropics?. Am. J. Physiol. Regul. Integr. Comp. Physiol 301, R542–R547. https://doi.org/10.1152/ajpregu.00792.2010 (2011).Article 
    CAS 

    Google Scholar 
    Currie, S. E., Stawski, C. & Geiser, F. Cold-hearted bats: uncoupling of heart rate and metabolism during torpor at subzero temperatures. J. Exp. Biol. https://doi.org/10.1242/jeb.170894 (2018).Article 

    Google Scholar 
    Churchill, S. Australian Bats 2nd edn. (Allen and Unwin, 2008).
    Google Scholar 
    Geiser, F., Law, B. S. & Körtner, G. Daily torpor in relation to photoperiod in a subtropical blossom-bat, Syconycteris australis (Megachiroptera). J. Therm. Biol. 30, 574–579. https://doi.org/10.1016/j.jtherbio.2005.08.002 (2005).Article 

    Google Scholar 
    Coburn, D. K. & Geiser, F. Seasonal changes in energetics and torpor patterns in the subtropical blossom-bat Syconycteris australis (Megachiroptera). Oecologia 113, 467–473 (1998).Article 
    ADS 

    Google Scholar 
    Dietz, M. & Kalko, E. K. V. Seasonal changes in daily torpor patterns of free-ranging female and male Daubenton’s bats (Myotis daubentonii). J. Comp. Physiol. (B) 176, 223–231. https://doi.org/10.1007/s00360-005-0043-x (2006).Article 

    Google Scholar 
    Andrews, M. T. Advances in molecular biology of hibernation in mammals. BioEssays 29, 431–440. https://doi.org/10.1002/bies.20560 (2007).Article 
    CAS 

    Google Scholar 
    Twente, J. W. & Twente, J. Autonomic regulation of hibernation by Citellus and Eptesicus. In Strategies in Cold: Natural Torpidity and Thermogenesis (eds Wang, L. C. H. & Hudson, J. W.) 327–373 (Academic Press, 1978).Chapter 

    Google Scholar 
    Davis, W. H. & Reite, O. B. Responses of bats from temperate regions to changes in ambient temperature. Biol. Bull. 132, 320–328 (1967).Article 
    CAS 

    Google Scholar 
    Alston, J. M., Dillon, M. E., Keinath, D. A., Abernethy, I. M. & Goheen, J. R. Daily torpor reduces the energetic consequences of microhabitat selection for a widespread bat. Ecology 103, e3677. https://doi.org/10.1002/ecy.3677 (2022).Article 

    Google Scholar 
    Humphries, M. M., Thomas, D. W. & Speakman, J. R. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 418, 313–316. https://doi.org/10.1038/nature00828 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Heller, H. C. Hibernation: neural aspects. Annu. Rev. Physiol. 41, 305–321. https://doi.org/10.1038/nature00828 (1979).Article 
    CAS 

    Google Scholar 
    McKechnie, A. E. & Wolf, B. O. The energetics of the rewarming phase of avian torpor. In Life in the Cold: Evolution, Mechanisms, Adaptation and Application (eds Barnes, B. M. & Carey, H. V.) 265–267 (University of Alaska, 2004).

    Google Scholar 
    Geiser, F. & Baudinette, R. V. The relationship between body mass and rate of rewarming from hibernation and daily torpor in mammals. J. Exp. Biol. 151, 349–359. https://doi.org/10.1242/jeb.151.1.349 (1990).Article 
    CAS 

    Google Scholar 
    Voigt, C. C., Kelm, D. H. & visser, G. H.,. Field metabolic rates of phytophagous bats: do pollination strategies of plants make life of nectar-feeders spin faster?. J. Comp. Physiol. (B) 176, 213–222. https://doi.org/10.1007/s00360-005-0042-y (2006).Article 

    Google Scholar 
    Bullen, R. D., McKenzie, N. L., Bullen, K. E. & Williams, M. R. Bat heart mass: correlation with foraging niche and roost preference. Aust. J. Zool. 57, 399–408. https://doi.org/10.1071/ZO09053 (2009).Article 

    Google Scholar 
    Law, B. S. Climatic limitation of the southern distribution of the common blossom bat Syconycteris australis in New South Wales. Aust. J. Ecol. 19, 366–374. https://doi.org/10.1111/j.1442-9993.1994.tb00502.x (1994).Article 

    Google Scholar 
    Bonaccorso, F. J. & McNab, B. K. Plasticity of energetics in blossom bats (Pteropodidae): impact on distribution. J. Mammal. 78, 1073–1088. https://doi.org/10.2307/1383050 (1997).Article 

    Google Scholar 
    Geiser, F. & Brigham, R. M. Torpor, thermal biology and energetics in Australian long-eared bats (Nyctophilus). J. Comp. Physiol. (B) 170, 153–162. https://doi.org/10.1007/s003600050270 (2000).Article 
    CAS 

    Google Scholar 
    Withers, P. C. Metabolic, respiratory and haematological adjustments of the little pocket mouse to circadian torpor cycles. Respir. Physiol. 31, 295–307. https://doi.org/10.1016/0034-5687(77)90073-1 (1977).Article 
    CAS 

    Google Scholar 
    Bartholomew, G. A. & Tucker, V. A. Control of changes in body temperature, metabolism and circulation by the Agamid lizard, Amphibolurus barbatus. Physiol. Zool. 36, 199–218 (1963).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26. https://doi.org/10.18637/jss.v082.i13 (2017).Article 

    Google Scholar 
    Warton, D. I., Duursma, R. A., Falster, D. S. & Taskinen, S. smatr 3- an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 3, 257–259. https://doi.org/10.1111/j.2041-210X.2011.00153.x (2012).Article 

    Google Scholar 
    Halsey, L. G. et al. Flexibility, variability and constraint in energy management patterns across vertebrate taxa revealed by long-term heart rate measurements. Funct. Ecol. 33, 260–272. https://doi.org/10.1111/1365-2435.13264 (2019).Article 

    Google Scholar  More

  • in

    Obscured fishing activity

    Welch and colleagues analysed 3.7 billion AIS messages recorded between 2017 and 2019 in the global Fishing Watch AIS dataset, identifying more than 55,000 suspected intentional disabling events in waters more than 50 nautical miles from shore, amounting to 6% ( >4.9 million hours) of obscured vessel activity. Hotspots of disabling activity were located near several regions of IUU concern and transshipment hotspots, including in the exclusive economic zones of Argentina and West African nations and in the Northwest Pacific. Using individual boosted regression tree models for the four dominant gear types (squid jiggers, trawlers, tuna purse seines and drifting longlines) and a full model that included all suspected disabling events (that is, the four gear types listed above and additional gears such as gillnet and troll), Welch and colleagues found that loitering by transshipment vessels (a proxy for potential transshipment events) was the most important driver in the full model and squid jigger model and more than half of the disabling events by squid jiggers were close enough to undertake transshipment to refrigerated cargo vessels. More

  • in

    Diversity of Trichoderma species associated with soil in the Zoige alpine wetland of Southwest China

    Trichoderma species collectionEighty strains were obtained from 100 soil samples collected from Zoige alpine wetland ecological regions in China. Details of the strains isolated from soil samples are given in Table 1. All strains were subsequently used for morphological identification, while fifty-seven were used for phylogenetic analysis.Table 1 Details of 80 Trichoderma isolates from the Zoige alpine wetland in this study.Full size tablePhylogenetic analysisThe ITS region used preliminarily as a species identification criterion was applied to TrichOKey at www.ISTH.info70. However, the ITS region has a low number of variable sites and long insertions in certain species; thus, it is unsuitable for a phylogenetic reconstruction of this group41. Our study successfully amplified most fragments of the genes tef1, rpb2, and acl1. We also designed a pair of new primers based on the full-length tef1 gene, 5′-GAGAAGTTCGAGAAGGTGAGC-3′ and 5′-ATGTCACGGACGGCGAAAC-3′, with which a 1.4-kb fragment was amplified for most isolates.All samples analyzed in our study were divided into 4 primary clades based on the gpd gene region, including 49 strains from the T. harzianum complex, 3 T. rossicum strains, 1 T. polysporum strain and one unknown species (4 Trichoderma sp. strains) (Fig. 1). Maximum parsimony analysis was conducted among 101 strains, with Protocrea farinosa (CPK 2472) and P. pallida (CBS 299.78) used as outgroup (Table 2). The dataset for the rpb2, tef1 and acl1 genes contained 3403 characteristics, among which 1152 were parsimony-informative, 988 were variable and parsimony-uninformative, and 1263 were constant. The most parsimonious trees are shown in Fig. 2 (tree length = 5054, consistency index = 0.6005, homoplasy index = 0.3995, retention index = 0.8105, rescaled consistency index = 0.4867).Figure 1Neighbor-joining tree based on partial gpd gene sequences from 57 Trichoderma isolates. Parsimony bootstrap values of more than 50% are shown at nodes.Full size imageTable 2 Trichoderma strain included in the multi-gene sequence analysis, with details of clade, strain number, location, and GenBank accessions of the sequences generated.Full size tableFigure 2Maximum parsimony tree of Trichoderma species inferred from the combined rpb2, tef1 and acl1 partial sequences. Maximum parsimony bootstrap values above 50% are shown at nodes. The tree was rooted with Protocrea farinose and P. pallida Isolates from this study are shown in red (new species in bold).Full size imageThe phylogram showed that 57 stains belonged to the following four clades: Harzianum, Polysporum, Stromaticum, and Longibrachiatum. The strains of the first three clades with neighboring named species were well supported by bootstrap values greater than 90%. The Harzianum clade contained T. alni, T. atrobrunneum, T. harzianum and T. pyramidale of the Trichoderma species complex. The Polysporum clade contained only T. polysporum, and the Stromaticum clade contained T. rossicum. The Longibrachiatum clade contained four strains of Trichoderma sp., T25, T43, T44 and T48, which were separated from any other known taxa of this clade showed a low bootstrap value (MPBP = 62%) with T. citrinoviride and T. saturnisporum. We thus regarded it as a new species and named it Trichoderma zoigense, as described in the next section.Growth ratesAs shown in Fig. 3, the genus Trichoderma from Zoige alpine wetland ecological regions was able to grow in a range from 15 to 35 °C, and the suitable growth temperature for most species ranged from 20 to 30 °C. All seven species identified had normal viability at relatively low temperature (15 °C), and they rarely grew well over 35 °C except for T. zoigense. For T. atrobrunneum, T. harzianum and T. pyramidale, the optimum growth temperature on CMD was 25 to 30 °C. T. alni and T. rossicum preferred a cool growth environment, with an optimum temperature of 25 °C, whereas T. zoigense was more partial to a hot environment, with an optimum temperature of 30 °C, and it even grew well up to 35 °C. T. polysporum was the only slow-growing species that grew with less than 6.0 mm/day between 15 and 30 °C and did not survive at 35 °C. The above results showed that all species had different growth rates but were not completely differentiated from each other on CMD. These species were roughly divided into four groups based on their optimum growth temperature.Figure 3Growth rates of 7 species of Trichoderma on CMD given as mm per day at five temperatures. The values were the means of 3–5 experiments, with 1–3 representative isolates per species.Full size imageRelationship with ecological factorsOur results revealed a substantial disparity in the number and distribution of Trichoderma species among Zoige alpine wetland ecological regions (Tables 3, 4). Table 3 showed that T. harzianum was found in all four soil types, but most isolates of this species were obtained from peat soil. T. rossicum, T. alni and T. zoigense were also present in meadow soil and subalpine meadow soil, whereas T. atrobrunneum was found in aeolian sandy soil and peat soil. T. polysporum was found only in peat soil.Table 3 Isolation frequency of Trichoderma species in different soil types (%).Full size tableTable 4 Isolation frequency of Trichoderma species in different soil layers (%) species.Full size tableIn regard to the different soil layers shown in Table 4, T. harzianum was widely distributed in the five soil layers at depths of 0–100 cm. T. rossicum, T. alni and T. zoigense were isolated mainly from the soil layers at depths of 0–50 cm. Both T. atrobrunneum and T. pyramidale were isolated from depths of 0–10 cm, and T. polysporum was found only in the soil layers at depths of 50–100 cm.Regarding isolation frequency, T. harzianum was the most common of the seven species with a 23% isolation frequency, and it was therefore the dominant species in the zone, while the rare species T. polysporum and T. pyramidale had the lowest isolation frequencies at 1%.TaxonomyNew speciesTrichoderma zoigense G.S. Gong & G.T. Tang, sp. nov. (Fig. 4).Figure 4Cultures and asexual morph of Trichoderma zoigense. (a–d). Cultures at 20 °C [(a) on CMD, 7 days; (b) on MEA, 4 days; (c) on PDA, 4 days; and (d) on SNA, 7 days]. (e) Conidiation tuft (CMD, 4 days). (f–k) Conidiophores and phialides (CMD, 5–7 days). (l) Chlamydospores (PDA, 8 days). (m) Conidia (CMD, 5 days). Scale bars: (e) = 2 mm; (f–m) = 10 μm.Full size imageMycoBank: MB 82114.Typification: CHINA. SICHUAN PROVINCE: Zoige Alpine Wetland, on soil, 29 June 2013, G.S. Gong T44 (holotype CGMCC3.20145). GenBank: ITS = KX632531; TEF = KX632588; RPB2 = KX632645; ACL1 = KX632702; GPD = KX632759.Etymology: zoigense (Latin), the specific epithet about the place where the type was found.Description: Cultures and anamorph: optimal growth at 25 °C on all four media. On CMD after 72 h, growth is 25–28 mm at 20 °C and 28–31 mm at 25 °C. Colony is dense and has a wavy to crenate margin. Surface becomes distinctly zonate and white to grayish-green but celadon to atrovirens later, and it is granular in the center and distinctly radially downy outside and shows whitish surface hyphae and reverse-diffusing croci to pale brown pigment (Fig. 4a). Aerial hyphae are numerous to punctate and long, forming radial strands, with white mycelial patches appearing in aged cultures (Fig. 4e). Autolytic excretions are rare, with no coilings observed. Conidiation was noted after 3–4 d at 25 °C, a yellow or greenish color appears after 7 days, conidiation is effuse, and in intense tufts, erect conidiophores occur around the plug and on aerial hyphae. They are mainly concentrated along the colony center, show a white color that turns green, and then finally degenerate, with conidia often adhering in chains. Conidiophores are short and simple with asymmetric branches. Branches produce phialides directly. Phialides are generally solitary along main axes and side branches and sometimes paired in the terminal position of the main axes, sometimes in whorls of 2–3. Phialides are 4.5–10.5 × 2–5 μm ((overline{x }) = 7.5 ± 1.5 × 3 ± 0.5, n = 50) and 1.5–2.5 μm ((overline{x }) = 2 ± 0.2) wide at the base, lageniform or ampulliform, mostly uncinate or slightly curved, less straight, and often distinctly widened in the middle (Fig. 4f–k). Conidia are 3–4.5 × 2.3–4 μm ((overline{x }) = 3.5 ± 0.3 × 3 ± 0.3, n = 50) and initially hyaline, and they turn green and are oblong or ellipsoidal, almost with constricted sides, and smooth, eguttulate or with minute guttules, with indistinct scars (Fig. 4m).On PDA, after 72 h, growth is 35–41 mm at 20 °C and 50–55 mm at 25 °C; and mycelium covers the plate after 5 days at 25 °C. Colonies are dense with wavy to crenate margins; and mycelia are conspicuously differentiated in width of the primary and secondary hyphae. Surface becomes distinctly zonate, yellowish-green to prasinous in color and celadon to atrovirens later, and it is farinose to granular in the center, distinctly radially downy outside, with whitish of surface hyphae and reverse-diffusing brilliant yellow to fruit-green pigment (Fig. 4c). Aerial hyphae are numerous, long and ascend several millimeters, forming radial strands, with white mycelial patches appearing in aged cultures. Autolytic excretions are rare; and no coilings are observed. Odor is indistinct or fragrant. Chlamydospores examined after 7 days at 4.5–9 × 4.5–7.5 μm ((overline{x }) = 6 ± 1.1 × 6 ± 0.7, n = 50), and they are terminal, intercalary, globose or ellipsoidal, and smooth (Fig. 4l). Conidiation is noted after 3–4 days and yellow or greenish after 7 days. Conidiophores are short and simple with asymmetric branches; conidia are greenish, ellipsoidal, and smooth.On SNA, after 72 h, growth is 13–15 mm at 20 °C and, 16–21 mm at 25 °C; and mycelium covers the plate after 12–13 days at 25 °C. Colony is similar to that on CMD, with a little wave margin, although mycelia are looser and slower on the agar surface. Aerial hyphae are relatively inconspicuous and long along the colony margin. Autolytic activity and coiling are absent or inconspicuous. No diffusing pigment or distinct odor are produced (Fig. 4d). Conidiation was noted after 3–4 days at 25 °C, and many amorphous, loose white or aqua cottony tufts occur, mostly median from the plug outwards, and they are confluent to masses up and white but then turn green. After 4–5 days, conidiation becomes dense within the tufts, which are loose at their white margins with long, straight, or slightly sinuous sterile ends in the periphery. Tufts consisting of a loose reticulum with branches often at right angles, give rise to several main axes. Main axes are regular and tree-like, with few or many paired or unpaired side branches. Branches are flexuous, and phialides are solitary along the main axes and side branches, and they are sometimes paired in the terminal position of the main axes, sometimes in whorls of 2–3 that are often cruciform or in pseudo-whorls up to 4. Phialides and conidia are similar to that on CMD.New records for ChinaTrichoderma atrobrunneum F. B. Rocha et al., Mycologia 107: 571, 2015 (Fig. 5).Figure 5Cultures and asexual morph of Trichoderma atrobrunneum. (a–d) Cultures at 25 °C [(a) on CMD, 7 days; (b) on MEA, 4 days; (c) on PDA, 15 days; and (d) on SNA, 7 days]. (e) Conidiation tuft (SNA, 7 days). (f–i,k,l) Conidiophores and phialides (CMD, 5–7 days). (j) Conidia (CMD, 6 days). (m) Chlamydospores (PDA, 7 days). Scale bars: (e) = 2 mm; (f–m) = 10 μm.Full size imageSpecimen examined: CHINA. SICHUAN PROVINCE: Zoige Alpine Wetland, on soil, 29 June 2013, G.S. Gong T42 (holotype CGMCC.20167). GenBank: ITS = KX632514; TEF = KX632571; RPB2 = KX632628; ACL1 = KX632685; GPD = KX632742.Description: Cultures and anamorph: optimal growth at 25 °C on all media. On CMD, after 72 h, growth is 35–37 mm at 20 °C and 46–53 mm at 25 °C; mycelium covers the plate after 5–6 days at 25 °C. Colonies show distinct zonation. Mycelia are loose and thin; hyphae are narrow, sinuous and often form strands on the margin (Fig. 5a). Aerial hyphae are slight, forming a thin white to green downy fluffy or floccose mat. The light brown or brown pigment is observed, with no distinct odor noted. Conidiophores are pyramidal, often with opposing and somewhat widely spaced branches, with the main axis and each branch terminating in a cruciate, sometimes verticillate, whorl of up to four phialides. Phialides are ampulliform to lageniform and 4.9–7.6 × 2.2–3.0 μm ((overline{x }) = 6 ± 0.7 × 2.5 ± 0.2, n = 50) and 1.5–2.5 μm ((overline{x }) = 1.5 ± 0.3) wide at the base (Fig. 5f–i,k,l). Conidia are 2.5–4 × 2.5–3.5 μm ((overline{x }) = 3 ± 0.3 × 3 ± 0.2, n = 50), yellow to green, smooth, and circular to ellipsoidal (Fig. 5j).On PDA, after 72 h, growth is 41–43 mm at 20 °C and 50–55 mm at 25 °C; and mycelium covers the plate after 5–6 days at 25 °C. Colonies show indistinct zonation. Mycelia are dense, opaque, and thick; hyphae are wide, sinuous and often form strands on the margin (Fig. 5c). Margin is thick and defined. Aerial hyphae are abundant and form a thick green downy mat. Conidiation forms abundantly within 4 days in broad concentric rings. Chlamydospores examined after 7 days are 5–9 × 5.5–8.5 μm ((overline{x }) = 6.5 ± 0.9 × 6.5 ± 0.9, n = 30), globose when terminal, smooth, and intercalary (Fig. 5m).On SNA, after 72 h, growth is 33–35 mm at 20 °C and 38–40 mm at 25 °C; and mycelium covers the plate after 7–8 days at 25 °C. Colonies show distinct zonation. Mycelia are thin and yellow to green; hyphae are wide and sinuous, with indistinct strands on the margin (Fig. 5d). Margin is thin and ill-defined. Aerial hyphae are slight, forming a thin green downy fluff appearing in the colony (Fig. 5e). Diffusing pigment was observed in a ring, and no distinct odor was noted. Conidiation is similar to CMD.Accepted species previously reported in ChinaTrichoderma alni Jaklitsch, Mycologia 100: 799. 2008 (Fig. 6).Figure 6Cultures and asexual morph of Trichoderma alni. (a–d). Cultures after 7 days at 25 °C [(a) on CMD; (b) on MEA; (c) on PDA; and (d) on SNA]. € Coilings of aerial hyphae (PDA, 6 days). (f–j,l). Conidiophores and phialides (CMD, 5–7 days). (k) Conidiation tuft (PDA, 7 days). (m) Conidia (CMD, 6 days). (n,o) Chlamydospores (PDA, 7 days). Scale bars: (e–j,l–o) = 10 μm; (k) = 2 mm.Full size imageDescription: Cultures and anamorph: Optimum growth at 25 °C on all media; no growth at 35 °C. On CMD, after 72 h, growth of 34–36 mm at 20 °C and 50–51 mm at 25 °C; and mycelium covers the plate after 5–6 days at 25 °C. Colonies show distinct zonation. Mycelia are loose and thin; hyphae are narrow and sinuous and often form strands on the margin (Fig. 6a). Aerial hyphae are slight and form a thin white to green downy, fluffy or floccose mat. No diffusing pigment or distinct odor is noted. Conidiophores are hyaline and thick, with side branches on several levels at the base of the elongations that are mostly paired and in right angles with phialides in whorls of 3–5. Phialides are 5.5–11.5 × 2–3.5 μm ((overline{x }) = 8 ± 1.4 × 2.5 ± 0.4, n = 50) and 1.5–2.5 μm ((overline{x }) = 2 ± 0.4) wide at the base, often short and wide, and ampulliform (Fig. 6f–j,l). Conidia are 3–4 × 2.5–3.5 μm ((overline{x }) = 3.5 ± 0.2 × 3 ± 0.2, n = 50), dark green, smooth, and ellipsoidal (Fig. 6m).On PDA, after 72 h, growth is 33–35 mm at 20 °C and 41–43 mm at 25 °C; and mycelium covers the plate after 6–7 days at 25 °C. Colonies show indistinct zonation. Mycelia are dense, opaque, and thick; hyphae are wide, sinuous and often form strands on the margin (Fig. 6c). Margin is thin and ill defined. Aerial hyphae are slight, coiled (Fig. 6e), forming a thin white to green downy, fluffy or floccose mat (Fig. 6k). Chlamydospores examined after 7 days are 6–9.5 × 5–8 μm ((overline{x }) = 7.5 ± 0.9 × 7 ± 0.9, n = 30), globose to oval when terminal, and smooth, and few are intercalary (Fig. 6n,o).On SNA, after 72 h, growth is 18–19 mm at 20 °C and 28–32 mm at 25 °C; and mycelium covers the plate after 6–7 days at 25 °C. Colonies show distinct zonation. Mycelia are thin and yellow to green; hyphae are wide and sinuous and show indistinct strands on the margin (Fig. 6d). Margin is thin and ill-defined. Aerial hyphae are slight and form a thin white downy, fluffy, or floccose mat appearing in distal parts of the colony. No diffusing pigment or distinct odor was noted. Conidiation is similar to CMD.Trichoderma harzianum Rifai, Mycol. Pap. 116: 38, 1969 (Fig. 7).Figure 7Cultures and asexual morph of Trichoderma harzianum. (a–d) Cultures after 7 days at 20 °C [(a) on CMD; (b) on MEA; (c) on PDA; and (d) on SNA]. (e) Conidiation tuft (CMD, 7 days). (f–j) Conidiophores and phialides (CMD, 5–7 days). (k) Conidia (CMD, 5 days). (l,m) Chlamydospores (PDA, 7 days). Scale bars: (e) = 2 mm; (f–m) = 10 μm.Full size imageDescription: Cultures and anamorph: optimal growth at 25 °C on all media. On CMD, after 72 h, growth is 34–38 mm at 20 °C and 46–53 mm at 25 °C; mycelium covers the plate after 5–6 days at 25 °C. Colonies show distinct zonation. Mycelia are loose and thin; hyphae are narrow, sinuous, and often form strands on the margin (Fig. 7a). Aerial hyphae are abundant and radiating and form thick green downy, fluffy, or floccose mats (Fig. 7e). No diffusing pigment, but fragrant odor noted. Conidiophores are pyramidal with opposing branches, with each branch terminating in a cruciate whorl of up to four or five phialides. Phialides are frequently solitary or in a whorl of three or four. Phialides are ampulliform to lageniform and often constricted below the tip to form a narrow neck of 4.5–8 × 2–3.5 μm ((overline{x }) = 6 ± 0.8 × 2.5 ± 0.3, n = 50) and 1–2.5 μm ((overline{x }) = 2 ± 0.3) wide at the base (Fig. 7f–j). Conidia are subglobose to ovoid, 3–4.5 × 2.5–3.3 μm ((overline{x }) = 3.5 ± 0.3 × 3 ± 0.2, n = 50), laurel-green to bright green, smooth, and ellipsoidal (Fig. 7k).On PDA, after 72 h, growth is 41–43 mm at 20 °C and 50–55 mm at 25 °C; and mycelium covers the plate after 5–6 days at 25 °C. Colonies show distinct zonation. Mycelia are dense, opaque, and thick; hyphae are wide and sinuous and often form strands on the margin (Fig. 7c). Margin is thick and ill defined. Aerial hyphae are abundant and radiating and form thick green downy, fluffy or floccose mats. Chlamydospores examined after 7 days are 5.5–9 × 5.5–9.0 μm ((overline{mathrm{x} }) = 7 ± 0.8 × 7 ± 0.8, n = 30), globose to oval when terminal and smooth, showing an almost unobserved intercalary (Fig. 7l,m).On SNA, after 72 h, growth is 33–35 mm at 20 °C and 38–40 mm at 25 °C; and mycelium covers the plate after 7–8 days at 25 °C. Colonies show distinct zonation. Mycelia are thin and green; hyphae are narrow and sinuous and show indistinct strands on the margin (Fig. 7d). Margin is thin and ill defined. Aerial hyphae are slight and form a thick downy, fluffy, or floccose mat appearing in the colony. No diffusing pigment or distinct fragrant odor was noted. Conidiation was similar to CMD.Trichoderma polysporum Rifai, Mycol. Pap. 116: 18, 1969 (Fig. 8).Figure 8Cultures and asexual morph of Trichoderma polysporum. (a–d) Cultures at 20 °C [(a) on CMD, 7 days; (b) on MEA, 15 days; (c) on PDA, 15 days; and (d) on SNA, 15 days]. (i) Conidiation tuft (PDA, 15 days). (e–h,j) Conidiophores and phialides (CMD, 5–7 days). (k) Chlamydospores (CMD, 7 days). (l) Conidia (PDA, 6 days). Scale bars: (i) = 2 mm; (e–h,j) = 10 μm.Full size imageDescription: Cultures and anamorph: optimal growth at 20 °C on all media, no growth at 35 °C. On CMD, after 72 h, growth is 14–16 mm at 20 °C and 9–12 mm at 25 °C; and mycelium covers the plate after 9–10 days at 20 °C. A colony is hyaline, thin and loose, with little mycelium on the agar surface, and it is indistinctly zonate but becomes zonate by conidiation in white tufts after 4–5 d and grass green to green after 6 days (Fig. 8a). Aerial hyphae are long and dense and forming little greenish aggregates that are granular to pulvinate. No pigment or odor. Conidiation noted after 4–5 days, and it is white to greenish, with sterile smooth to rough helical elongations in the distal zones from pustules. Conidiophores are hyaline and thick with side branches on several levels at the base of the elongations that are mostly paired and at right angles with phialides in whorls of 2–5. Phialides are 5–10.5 × 2.5–4 μm ((overline{x }) = 7 ± 1.9 × 3.5 ± 0.4, n = 50) and 2–4 μm ((overline{x }) = 3 ± 0.5) wide at the base, often short and wide and ampulliform (Fig. 8e–h,j). Conidia are 2.5–4 × 2–3 μm ((overline{x }) = 3.5 ± 0.4 × 2.5 ± 0.2, n = 50), hyaline, smooth, and ellipsoidal (Fig. 10l).On PDA, after 72 h, growth is 24–26 mm at 20 °C and 13–16 mm at 25 °C; and mycelium covers the plate after 8–9 days at 20 °C. A colony is densest, distinctly zonate, and grass green to spearmint green; mycelia are conspicuously dense; and surface hyphae form radial strands (Fig. 8c). Aerial hyphae are long and dense and form greenish aggregates that are granular to pulvinate (Fig. 8i). No diffusing pigment and odor. Chlamydospores examined after 7 days are 5.5–9 × 5–7.5 μm ((overline{x }) = 7 ± 0.9 × 6 ± 0.6, n = 30), globose to oval when terminal, and smooth, with an almost unobserved intercalary (Fig. 8k).On SNA, growth is approximately 7 mm/day at 20 °C and 5 mm/day at 25 °C; and mycelium covers the plate after 10 days at 20 °C. A colony is hyaline, thin, and loose, with little mycelium on the agar surface, not or indistinctly zonate, but becomes zonate by conidiation in white tufts after 4–5 days; and the margin is downy by long aerial hyphae, which degenerating/dissolving soon (Fig. 8d).Trichoderma pyramidale W. Jaklitsch & P. Chaverri, Mycologia 107: 581, 2015 (Fig. 9).Figure 9Cultures and asexual morph of Trichoderma pyramidale. (a–d) Cultures at 25 °C [(a) on CMD, 7 days; (b) on MEA, 4 days; (c) on PDA, 4 days; and (d) on SNA, 4 days]. (e) Conidiation tuft (PDA, 7 days). (f–j) Conidiophores and phialides (CMD, 5–7 days). (k) Conidia (CMD, 6 days). (l) Chlamydospores (PDA, 7 days). Scale bars: (e) = 2 mm; (f–l) = 10 μm.Full size imageDescription: Cultures and anamorph: optimal growth at 25 °C on all media, with little growth at 35 °C. On CMD, after 72 h, growth is 29–32 mm at 20 °C and 48–53 mm at 25 °C; and mycelium covers the plate after 5–6 days at 25 °C. Colonies show distinct zonation. Mycelium is loose and thin; hyphae are narrow, sinuous, and often form strands on the margin (Fig. 9a). Aerial hyphae are slight, forming a thin white to green downy, fluffy or floccose mat. Brown pigment is shown, but no distinct odor noted. Conidiophores are hyaline and thick with side branches on several levels at the base of the elongations that are mostly paired and at right angles with phialides in whorls of 3–5. Phialides are 5–9.5 × 2.5–3 μm ((overline{x }) = 7 ± 1.1 × 3 ± 0.3, n = 50) and 1–2.5 μm ((overline{x }) = 1.5 ± 0.3) wide at the base and often short, wide, and ampulliform (Fig. 9f–j). Conidia are 2.5–4 × 2.5–3.5 μm ((overline{x }) = 3.5 ± 0.3 × 3 ± 0.2, n = 50), green, smooth, and ellipsoidal (Fig. 9k).On PDA, after 72 h, growth is 41–43 mm at 20 °C and 50–55 mm at 25 °C; and mycelium covers the plate after 5–6 days at 25 °C. Colonies show indistinct zonation. Mycelia are dense, opaque, and thick; hyphae are wide, sinuous and often form strands on the margin (Fig. 9c). Margin is thin and ill defined. Aerial hyphae are slight and form a thin white to green downy, fluffy or floccose mat (Fig. 9e). Chlamydospores examined after 7 days are 5.5–10 × 5.5–10 μm ((overline{x }) = 7 ± 0.9 × 7 ± 0.9, n = 30), globose to oval when terminal or intercalary, and smooth (Fig. 9l).On SNA, after 72 h, growth is 33–35 mm at 20 °C and 38–40 mm at 25 °C; and mycelium covers the plate after 7–8 days at 25 °C. Colonies show distinct zonation. Mycelium is thin, yellow to green; hyphae are wide, sinuous, with indistinct strands on the margin (Fig. 9d). Margin is thin and ill defined. Aerial hyphae are slight and form a thin white downy, fluffy or floccose mat in distal parts of the colony. No diffusing pigment or distinct odor noted. Conidiation similar to CMD.Trichoderma rossicum Bissett et al., Canad. J. Bot. 81: 578, 2003 (Fig. 10).Figure 10Cultures and asexual morph of Trichoderma rossicum. (a–d) Cultures after 7 days at 25 °C [(a) on CMD; (b) on MEA; (c) on PDA; and (d) on SNA]. € Conidiation tuft (PDA, 7 days). (f–h,j,k) Conidiophores and phialides (CMD, 5–7 days). (i) Elongations (CMD, 6 days). (l,n) Conidia (CMD, 6 days). (m) Chlamydospores (PDA, 7 days). Scale bars: (e) = 2 mm; (f–n) = 10 μm.Full size imageDescription: Cultures and anamorph: optimal growth at 25 °C on all media. On CMD, growth of 10–11 mm/day at 20 °C and 15–17 mm/day at 25 °C; and mycelium covers the plate after 6–7 days at 20 °C. Colony is dense with a wavy margin, and the surface becomes distinctly zonate (Fig. 10a). Aerial hyphae are numerous, long, elongate, and villiform in the plate (Fig. 10i). No diffusing pigment or odor. Autolytic activity is variable, and coilings are scarce or inconspicuous. Conidiation noted after 3–4 days at 20 °C. Conidiation is effuse and in intense tufts that are hemispherical or irregular, and they show wide wheel grain banding that is gray green to deep green. Conidiophores radiate from the reticulum and are broad, straight, sinuous or helically twisted, show distally slightly pointed elongations, taper from the main axes to top branches, and present primary branches arranged in pairs or in whorls of 2–3, with secondary branches to solitary. Phialides are 4.5–14 × 2.5–4 μm ((overline{x }) = 7 ± 1.5 × 3.5 ± 0.3, n = 50) and 2–3.5 μm ((overline{x }) = 3 ± 0.4) wide at the base, ampulliform, and in whorls of 3–6 (Fig. 10f–h,j,k). Conidia are 3.5–5.5 × 2.5–4 μm ((overline{x }) = 4.5 ± 0.5 × 3 ± 0.2, n = 50), short cylindrical, and a gray color when single and pea green to yellow green in a group (Fig. 10l,n).On PDA, growth is 12–15 mm/day at 20 °C, 12–16 mm/day at 25 °C; and mycelium covers the plate after 4–5 days at 25 °C. Colony is denser with a wavy margin than that on CMD, and the surface is distinctly zonate (Fig. 10c). Aerial hyphae are numerous, long, and villiform to pulvinate in the plate. No diffusing pigment and odor (Fig. 10e). Autolytic activity is variable, coilings are scarce or inconspicuous. Chlamydospores examined after 7 days are 6.5–9.5 × 6–9 μm ((overline{x }) = 7 ± 1.0 × 7 ± 0.9, n = 30), terminal and intercalary, globose or ellipsoidal, and smooth (Fig. 10m).On SNA, growth is 8–13 mm/day at 20 °C and 8–12 mm/day at 25 °C; and mycelium covers the plate after 6–7 day at 25 °C. Colony is hyaline, thin and dense; and mycelium degenerate rapidly (Fig. 10d). Aerial hyphae are inconspicuous, autolytic activity is scant, and coilings are distinct. Conidiation noted after approximately 4 days and starts in white fluffy tufts spreading from the center to form concentric zones, and they compact to pustules with a white to greenish color. More

  • in

    Global habitat suitability modeling reveals insufficient habitat protection for mangrove crabs

    Valiela, I., Bowen, J. L. & York, J. K. Mangrove Forests: One of the World’s Threatened Major Tropical Environments: At least 35% of the area of mangrove forests has been lost in the past two decades, losses that exceed those for tropical rain forests and coral reefs, two other well-known threatened environments. Bioscience 51, 807–815. https://doi.org/10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2 (2001).Article 

    Google Scholar 
    Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V. & Dech, S. Remote sensing of mangrove ecosystems: A review. Remote Sens. 3, 1. https://doi.org/10.3390/rs3050878 (2011).Article 

    Google Scholar 
    Turschwell, M. P. et al. Multi-scale estimation of the effects of pressures and drivers on mangrove forest loss globally. Biol. Cons. 247, 108637. https://doi.org/10.1016/j.biocon.2020.108637 (2020).Article 

    Google Scholar 
    Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis. (2005).Nagelkerken, I. et al. The habitat function of mangroves for terrestrial and marine fauna: A review. Aquat. Bot. 89, 155–185. https://doi.org/10.1016/j.aquabot.2007.12.007 (2008).Article 

    Google Scholar 
    Hamilton, S. E. & Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25, 729–738. https://doi.org/10.1111/geb.12449 (2016).Article 

    Google Scholar 
    Friess, D. A. et al. The state of the world’s Mangrove forests: Past, present, and future. Annu. Rev. Environ. Resour. 44, 89–115. https://doi.org/10.1146/annurev-environ-101718-033302 (2019).Article 

    Google Scholar 
    Zeng, Y., Friess, D. A., Sarira, T. V., Siman, K. & Koh, L. P. Global potential and limits of mangrove blue carbon for climate change mitigation. Curr. Biol. 31, 1737-1743.e1733. https://doi.org/10.1016/j.cub.2021.01.070 (2021).Article 
    CAS 

    Google Scholar 
    zu Ermgassen, P. S. E. et al. Fishers who rely on mangroves: Modelling and mapping the global intensity of mangrove-associated fisheries. Estuar. Coast. Shelf Sci. 247, 106975. https://doi.org/10.1016/j.ecss.2020.106975 (2020).Article 

    Google Scholar 
    Walters, A. D. et al. Do hotspots fall within protected areas? A geographic approach to planning analysis of regional freshwater biodiversity. Freshw. Biol. 64, 2046–2056. https://doi.org/10.1111/fwb.13394 (2019).Article 

    Google Scholar 
    Blasco, F., Saenger, P. & Janodet, E. Mangroves as indicators of coastal change. CATENA 27, 167–178. https://doi.org/10.1016/0341-8162(96)00013-6 (1996).Article 

    Google Scholar 
    Gilman, E. L., Ellison, J., Duke, N. C. & Field, C. Threats to mangroves from climate change and adaptation options: A review. Aquat. Bot. 89, 237–250. https://doi.org/10.1016/j.aquabot.2007.12.009 (2008).Article 

    Google Scholar 
    Hamilton, S. Assessing the role of commercial aquaculture in displacing mangrove forest. Bull. Mar. Sci. 89, 585–601 (2013).Article 

    Google Scholar 
    Lovelock, C. E. et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526, 559–563. https://doi.org/10.1038/nature15538 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Richards Daniel, R. & Friess Daniel, A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. 113, 344–349. https://doi.org/10.1073/pnas.1510272113 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Appeltans, W. et al. The magnitude of global marine species diversity. Curr. Biol. 22, 2189–2202. https://doi.org/10.1016/j.cub.2012.09.036 (2012).Article 
    CAS 

    Google Scholar 
    Ward, R. D., Friess, D. A., Day, R. H. & MacKenzie, R. A. Impacts of climate change on mangrove ecosystems: A region by region overview. Ecosyst. Health Sustain. 2, e01211. https://doi.org/10.1002/ehs2.1211 (2016).Article 

    Google Scholar 
    Van der Stocken, T., Vanschoenwinkel, B., Carroll, D., Cavanaugh, K. C. & Koedam, N. Mangrove dispersal disrupted by projected changes in global seawater density. Nat. Clim. Chang. 12, 685–691. https://doi.org/10.1038/s41558-022-01391-9 (2022).Article 
    ADS 

    Google Scholar 
    Alongi, D. M. The impact of climate change on Mangrove forests. Curr. Clim. Change Rep. 1, 30–39. https://doi.org/10.1007/s40641-015-0002-x (2015).Article 

    Google Scholar 
    Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159. https://doi.org/10.1111/j.1466-8238.2010.00584.x (2011).Article 

    Google Scholar 
    Kristensen, E. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. J. Sea Res. 59, 30–43. https://doi.org/10.1016/j.seares.2007.05.004 (2008).Article 
    ADS 

    Google Scholar 
    Penha-Lopes, G. et al. Are fiddler crabs potentially useful ecosystem engineers in mangrove wastewater wetlands?. Mar. Pollut. Bull. 58, 1694–1703. https://doi.org/10.1016/j.marpolbul.2009.06.015 (2009).Article 
    CAS 

    Google Scholar 
    Sharifian, S., Kamrani, E. & Saeedi, H. Global biodiversity and biogeography of mangrove crabs: Temperature, the key driver of latitudinal gradients of species richness. J. Therm. Biol 92, 102692. https://doi.org/10.1016/j.jtherbio.2020.102692 (2020).Article 
    CAS 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar 
    Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9 (2000).Article 

    Google Scholar 
    Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435. https://doi.org/10.1111/ele.12189 (2013).Article 

    Google Scholar 
    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R. (Cambridge University Press, 2017).Luan, J., Zhang, C., Xu, B., Xue, Y. & Ren, Y. Modelling the spatial distribution of three Portunidae crabs in Haizhou Bay, China. PLoS ONE 13, e0207457. https://doi.org/10.1371/journal.pone.0207457 (2018).Article 
    CAS 

    Google Scholar 
    Kafash, A. et al. The Gray Toad-headed Agama, Phrynocephalus scutellatus, on the Iranian Plateau: The degree of niche overlap depends on the phylogenetic distance. Zool. Middle East 64, 47–54. https://doi.org/10.1080/09397140.2017.1401309 (2018).Article 

    Google Scholar 
    Yousefi, M., Shabani, A. A. & Azarnivand, H. Reconstructing distribution of the Eastern Rock Nuthatch during the Last Glacial Maximum and Last Interglacial. Avian Biol. Res. 13, 3–9. https://doi.org/10.1177/1758155919874537 (2019).Article 

    Google Scholar 
    De Rock, P. et al. Predicting large-scale habitat suitability for cetaceans off Namibia using MinxEnt. Mar. Ecol. Prog. Ser. 619, 149–167 (2019).Article 
    ADS 

    Google Scholar 
    Saeedi, H., Basher, Z. & Costello, M. J. Modelling present and future global distributions of razor clams (Bivalvia: Solenidae). Helgol. Mar. Res. 70, 23. https://doi.org/10.1186/s10152-016-0477-4 (2016).Article 

    Google Scholar 
    Bosso, L. et al. The rise and fall of an alien: why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biol. Invas. 24, 3169–3187. https://doi.org/10.1007/s10530-022-02838-y (2022).Article 

    Google Scholar 
    Moradmand, M. & Yousefi, M. Ecological niche modelling and climate change in two species groups of huntsman spider genus Eusparassus in the Western Palearctic. Sci. Rep. 12, 4138. https://doi.org/10.1038/s41598-022-08145-9 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Compton, T. J., Leathwick, J. R. & Inglis, G. J. Thermogeography predicts the potential global range of the invasive European green crab (Carcinus maenas). Divers. Distrib. 16, 243–255. https://doi.org/10.1111/j.1472-4642.2010.00644.x (2010).Article 

    Google Scholar 
    Kafash, A., Ashrafi, S. & Yousefi, M. Modeling habitat suitability of bats to identify high priority areas for field monitoring and conservation. Environ. Sci. Pollut. Res. 29, 25881–25891. https://doi.org/10.1007/s11356-021-17412-7 (2022).Article 

    Google Scholar 
    Leathwick, J. et al. Novel methods for the design and evaluation of marine protected areas in offshore waters. Conserv. Lett. 1, 91–102. https://doi.org/10.1111/j.1755-263X.2008.00012.x (2008).Article 

    Google Scholar 
    Charrua, A. B., Bandeira, S. O., Catarino, S., Cabral, P. & Romeiras, M. M. Assessment of the vulnerability of coastal mangrove ecosystems in Mozambique. Ocean Coast. Manag. 189, 105145. https://doi.org/10.1016/j.ocecoaman.2020.105145 (2020).Article 

    Google Scholar 
    Khajoei Nasab, F., Mehrabian, A. & Mostafavi, H. Mapping the current and future distributions of Onosma species endemic to Iran. J. Arid Land 12, 1031–1045. https://doi.org/10.1007/s40333-020-0080-z (2020).Article 

    Google Scholar 
    Allyn, A. J. et al. Comparing and synthesizing quantitative distribution models and qualitative vulnerability assessments to project marine species distributions under climate change. PLoS ONE 15, e0231595. https://doi.org/10.1371/journal.pone.0231595 (2020).Article 
    CAS 

    Google Scholar 
    Makki, T., Mostafavi, H., Matkan, A. & Aghighi, H. Modelling Climate-Change Impact on the Spatial Distribution of Garra Rufa (Heckel, 1843) (Teleostei: Cyprinidae). Iran. J. Sci. Technol. Trans. A: Sci. 45, 795–804. https://doi.org/10.1007/s40995-021-01088-2 (2021).Article 

    Google Scholar 
    Bolon, I. et al. What is the impact of snakebite envenoming on domestic animals? A nation-wide community-based study in Nepal and Cameroon. Toxicon: X 9–10, 100068. https://doi.org/10.1016/j.toxcx.2021.100068 (2021).Sharma, A., Dubey, V. K., Johnson, J. A., Rawal, Y. K. & Sivakumar, K. Is there always space at the top? Ensemble modeling reveals climate-driven high-altitude squeeze for the vulnerable snow trout Schizothorax richardsonii in Himalaya. Ecol. Ind. 120, 106900. https://doi.org/10.1016/j.ecolind.2020.106900 (2021).Article 

    Google Scholar 
    Yousefi, M., Naderloo, R. & Keikhosravi, A. Freshwater crabs of the Near East: Increased extinction risk from climate change and underrepresented within protected areas. Glob. Ecol. Conserv. 38, e02266. https://doi.org/10.1016/j.gecco.2022.e02266 (2022).Article 

    Google Scholar 
    Sheykhi Ilanloo, S. et al. Applying opportunistic observations to model current and future suitability of the Kopet Dagh Mountains for a Near Threatened avian scavenger. Avian Biol. Res. 14, 18–26. https://doi.org/10.1177/1758155920962750 (2020).Article 

    Google Scholar 
    Naderloo, R. Grapsoid crabs (Decapoda: Brachyura: Thoracotremata) of the Persian Gulf and the Gulf of Oman. Zootaxa 3048(1), 1. https://doi.org/10.11646/zootaxa.3048.1.1 (2011).Article 

    Google Scholar 
    Naderloo, R. Atlas of crabs of the Persian Gulf. (2017).Innocenti, G., Schubart, C. D. & Fratini, S. Description of Metopograpsus cannicci, new species, a pseudocryptic crab species from East Africa and the Western Indian Ocean (Decapoda: Brachyura: Grapsidae). Raffles Bull. Zool. (RBZ) 68, 619–628 (2020).
    Google Scholar 
    Hemmati, M. R., Shojaei, M. G., Taheri Mirghaed, A., Mashhadi Farahani, M. & Weigt, M. Food sources for camptandriid crabs in an arid mangrove ecosystem of the Persian Gulf: a stable isotope approach. Isotop. Environ. Health Stud. 57, 457–469. https://doi.org/10.1080/10256016.2021.1925665 (2021).Article 
    CAS 

    Google Scholar 
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101. https://doi.org/10.1038/nature09329 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Kordas, R. L., Harley, C. D. G. & O’Connor, M. I. Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems. J. Exp. Mar. Biol. Ecol. 400, 218–226. https://doi.org/10.1016/j.jembe.2011.02.029 (2011).Article 

    Google Scholar 
    Hall, S. & Thatje, S. Temperature-driven biogeography of the deep-sea family Lithodidae (Crustacea: Decapoda: Anomura) in the Southern Ocean. Polar Biol. 34, 363–370. https://doi.org/10.1007/s00300-010-0890-0 (2011).Article 

    Google Scholar 
    Hannah, L. Climate Change Biology. Academic Press (2015).Ali, H. et al. Expanding or shrinking? range shifts in wild ungulates under climate change in Pamir-Karakoram mountains, Pakistan. PLoS ONE 16, e0260031. https://doi.org/10.1371/journal.pone.0260031 (2022).Article 
    CAS 

    Google Scholar 
    Yousefi, M. et al. Climate change is a major problem for biodiversity conservation: A systematic review of recent studies in Iran. Contemp. Probl. Ecol. 12, 394–403. https://doi.org/10.1134/S1995425519040127 (2019).Article 

    Google Scholar 
    Doney, S. C. et al. Climate Change Impacts on Marine Ecosystems. Ann. Rev. Mar. Sci. 4, 11–37. https://doi.org/10.1146/annurev-marine-041911-111611 (2011).Article 

    Google Scholar 
    Worm, B. & Lotze, H. K. in Climate Change (Second Edition) (ed Trevor M. Letcher) 195–212 (Elsevier, 2016).Ramírez, F., Afán, I., Davis, L. S. & Chiaradia, A. Climate impacts on global hot spots of marine biodiversity. Sci. Adv. 3, e1601198. https://doi.org/10.1126/sciadv.1601198 (2017).Article 
    ADS 

    Google Scholar 
    Worm, B. et al. Impacts of Biodiversity Loss on Ocean Ecosystem Services. Science 314, 787–790. https://doi.org/10.1126/science.1132294 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Lester, S. E. et al. Biological effects within no-take marine reserves: a global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46 (2009).Article 
    ADS 

    Google Scholar 
    Daru, B. H. & le Roux, P. C. Marine protected areas are insufficient to conserve global marine plant diversity. Glob. Ecol. Biogeogr. 25, 324–334. https://doi.org/10.1111/geb.12412 (2016).Article 

    Google Scholar 
    Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature https://doi.org/10.1038/s41586-021-03371-z (2021).Article 

    Google Scholar 
    Embling, C. B. et al. Using habitat models to identify suitable sites for marine protected areas for harbour porpoises (Phocoena phocoena). Biol. Cons. 143, 267–279. https://doi.org/10.1016/j.biocon.2009.09.005 (2010).Article 

    Google Scholar 
    Magris, R. A. & Déstro, G. F. G. Predictive modeling of suitable habitats for threatened marine invertebrates and implications for conservation assessment in Brazil. Braz. J. Oceanogr. 58, 57–68 (2010).Article 

    Google Scholar 
    Welch, H., Pressey, R. L. & Reside, A. E. Using temporally explicit habitat suitability models to assess threats to mobile species and evaluate the effectiveness of marine protected areas. J. Nat. Conserv. 41, 106–115. https://doi.org/10.1016/j.jnc.2017.12.003 (2018).Article 

    Google Scholar 
    Rhoden, C. M., Peterman, W. E. & Taylor, C. A. Maxent-directed field surveys identify new populations of narrowly endemic habitat specialists. PeerJ 5, e3632–e3632. https://doi.org/10.7717/peerj.3632 (2017).Article 

    Google Scholar 
    Ancillotto, L., Mori, E., Bosso, L., Agnelli, P. & Russo, D. The Balkan long-eared bat (Plecotus kolombatovici) occurs in Italy—First confirmed record and potential distribution. Mamm. Biol. 96, 61–67. https://doi.org/10.1016/j.mambio.2019.03.014 (2019).
    Article 

    Google Scholar 
    Imtiyaz, B. B., Sweta, P. D., Prakash, K. K. Threats to marine biodiversity. Mar. Biodivers.: Present Status Prospects (2011).Robinson, N. M., Nelson, W. A., Costello, M. J., Sutherland, J. E. & Lundquist, C. J. A systematic review of marine-based species distribution models (SDMs) with recommendations for best practice. Front. Mar. Sci. 4, 421 (2017).Article 

    Google Scholar 
    Fabri-Ruiz, S., Danis, B., David, B. & Saucède, T. Can we generate robust species distribution models at the scale of the Southern Ocean?. Divers. Distrib. 25, 21–37. https://doi.org/10.1111/ddi.12835 (2019).Article 

    Google Scholar 
    Maxwell, D. L., Stelzenmüller, V., Eastwood, P. D. & Rogers, S. I. Modelling the spatial distribution of plaice (Pleuronectes platessa), sole (Solea solea) and thornback ray (Raja clavata) in UK waters for marine management and planning. J. Sea Res. 61, 258–267. https://doi.org/10.1016/j.seares.2008.11.008 (2009).Article 
    ADS 

    Google Scholar 
    Marshall, C. E., Glegg, G. A. & Howell, K. L. Species distribution modelling to support marine conservation planning: The next steps. Mar. Policy 45, 330–332. https://doi.org/10.1016/j.marpol.2013.09.003 (2014).Article 

    Google Scholar 
    GBIF. GBIF Occurrence Download https://doi.org/10.15468/dl.khpu28. GBIF (2021).Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583. https://doi.org/10.1641/B570707 (2007).Article 

    Google Scholar 
    Basher, Z., Bowden, D. A. & Costello, M. J. Global marine environment datasets (GMED). World Wide Web Electron. Publ. 14, 1 (2018).
    Google Scholar 
    Barnes, D. Ecology of subtropical hermit crabs in SW Madagascar: short-range migrations. Mar. Biol. 142, 549–557. https://doi.org/10.1007/s00227-002-0968-5 (2003).Article 

    Google Scholar 
    Naimullah, M. et al. Association of environmental factors in the Taiwan Strait with distributions and habitat characteristics of three swimming crabs. Remote Sens. 12, 1. https://doi.org/10.3390/rs12142231 (2020).Article 

    Google Scholar 
    Malvé, M. E., Rivadeneira, M. M. & Gordillo, S. Northward range expansion of the European green crab Carcinus maenas in the SW Atlantic: a synthesis after ~20 years of invasion history. bioRxiv, 2020.2011.2004.368761, doi:https://doi.org/10.1101/2020.11.04.368761 (2020).Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x (2013).Article 

    Google Scholar 
    Naimi, B. & Araújo, M. B. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 39, 368–375. https://doi.org/10.1111/ecog.01881 (2016).Article 

    Google Scholar 
    Team, R. C. R: A Language and Environment for Statistical Computing (2020).Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49. https://doi.org/10.1017/S0376892997000088 (1997).Article 

    Google Scholar 
    Swets John, A. Measuring the Accuracy of Diagnostic Systems. Science 240, 1285–1293. https://doi.org/10.1126/science.3287615 (1988).Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography 40, 887–893. https://doi.org/10.1111/ecog.03049 (2017).Article 

    Google Scholar 
    Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.3–7 (2020).UNEP-WCMC and IUCN. Protected Planet: The World Database on Protected Areas (WDPA) and World Database on Other Effective Area-based Conservation Measures (WD-OECM). UNEP-WCMC and IUCN (2021). More

  • in

    Improving access to aquatic foods

    Bennett, A. et al. Nat. Food https://doi.org/10.1038/s43016-022-00642-4 (2022).Article 

    Google Scholar 
    Simmance, F. A. et al. Nat. Commun. 3, 174 (2022).
    Google Scholar 
    Kolding, J., van Zwieten, P., Martin, F., Funge-Smith, S. & Poulain, F. Freshwater Small Pelagic Fish and Their Fisheries in the Major African Lakes and Reservoirs in Relation to Food Security and Nutrition (Food and Agriculture Organization of the United Nations, 2019).Pradhan, S. K., Nayak, P. K. & Armitage, D. Curr. Res. Environ. Sustain. 4, 100128 (2022).Article 

    Google Scholar 
    Byrd, K. A., Pincus, L., Pasqualino, M. M., Muzofa, F. & Cole, S. M. Matern. Child Nutr. 17, e13192 (2021).Article 

    Google Scholar 
    Chiwaula, L. S., Chirwa, G. C., Binauli, L. S., Banda, J. & Nagoli, J. Agric. Food Econ. 6, 1–15 (2018).Article 

    Google Scholar 
    Cole, S. M. et al. Ecol. Soc. 23, 18 (2018).Article 

    Google Scholar 
    Manyungwa, C. L., Hara, M. M. & Chimatiro, S. K. Marit. Stud. 18, 275–285 (2019).Article 

    Google Scholar 
    Coates, J. et al. Food Policy 81, 82–94 (2018).Article 

    Google Scholar 
    Stevens, G. A. et al. Lancet Glob. Health 10, e1590–e1599 (2022).Article 

    Google Scholar 
    Hicks, C. C. et al. Nat. Food 3, 851–861 (2022).Article 

    Google Scholar  More

  • in

    Silent gene clusters encode magnetic organelle biosynthesis in a non-magnetotactic phototrophic bacterium

    The phototrophic species Rhodovastum atsumiense G2-11 acquired MGCs from an unknown alphaproteobacterial MTB by recent HGTIn a systematic database search for novel MGCs, we identified several orthologs of known magnetosome genes in the recently released draft genome sequence of the culturable anoxygenic phototroph Rhodovastum atsumiense G2-11 [25]. This finding was unexpected as, after isolation of G2-11 from a paddy field more than 20 years ago, no magnetosome formation has been reported [26]. Furthermore, no MTB has been identified so far among phototrophs or within the Acetobacteraceae family to which G2-11 belongs [26] (Fig. 1a).Fig. 1: Phylogeny, chromosome, and MGCs organization of G2-11.a The maximum likelihood phylogenetic tree based on ribosomal proteins demonstrates the position of G2-11 (highlighted in red) within family Acetobacteraceae (highlighted in the yellow box). The Azospirillaceae family was used as an outgroup based on the latest Alphaproteobacteria phylogeny. Branch length represents the number of base substitutions per site. Values at nodes indicate branch support calculated from 500 replicates using non-parametric bootstrap analysis. Bootstrap values 20 genes with no homology to known magnetosome genes (Fig. 1c). In contrast, the compact MGCs in G2-11 include only a few genes that could not be associated with magnetosome biosynthesis.Tetranucleotide usage patterns are frequently employed as a complementary tool to group organisms since they bear a reliable phylogenetic signal [32]. Likewise, deviations of tetranucleotide usage in a certain fragment from the flanking genome regions can indicate HGT [21]. Comparison of the z-normalized tetranucleotide frequencies of the MGCs (27.5 kb) with the flanking upstream (117.7 kb) and downstream (79.5 kb) fragments showed a considerably lower correlation between them (Pearson’s r = 0.88 with both flanking fragments) than between the flanking fragments themselves (Pearson’s r = 0.97, Fig. 1e). This indicates a significant difference in the tetranucleotide composition of the MGCs compared to the flanking genomic regions and supports a foreign origin of the magnetosome genes in G2-11 suggested by the phylogenetic analysis. Besides, the presence of a mobile element (transposase) and position of the MGCs directly downstream of a tRNA gene, a common hotspot for integration of genomic islands [33,34,35], suggests that the MGCs of G2-11 are indeed located on a genomic island, i.e., represent MAI, like in many other MTB [20, 21]. Unfortunately, the lack of other representatives of the genus Rhodovastum makes it impossible to infer whether the MAI was transferred directly to G2-11 or the last common ancestor of the genus. Nonetheless, its compact organization and conspicuous tetranucleotide usage suggest a relatively recent HGT event.G2-11 does not form magnetosomes under laboratory conditionsAlthough magnetosome genes discovered in G2-11 comply with the minimal set required for magnetosome biomineralization in MSR-1 [36], no magnetosomes have been detected in this organism. It might have several explanations: (i) the strain might switch to the magnetotactic lifestyle only under very specific, yet not tested, conditions; (ii) it once was able to synthesize magnetosomes in its natural environment but lost this ability upon subcultivation due to mutations before its characterization; (iii) the strain might naturally not exploit magnetotaxis as its genes might be non-functional or not actively expressed. To clarify which of these explanations is most likely, we first tested whether G2-11 can form magnetosomes under different laboratory conditions. To this end, the strain was cultivated photoheterotrophically, anoxic or microoxic, in a complex medium with potassium lactate and soybean peptone, as commonly used for MSR-1 (FSM) [37], as well as in minimal media with different C-sources previously shown to support growth in G2-11 (glucose, pyruvate, L-glutamine, and ethanol) [26]. All media were supplied with 50 μM ferric citrate to provide sufficient iron for magnetite biomineralization. Since magnetosome biosynthesis is possible only under low oxygen tension, aerobic chemoheterotrophic growth of G2-11 was not tested. The best growth was observed in the complex FSM medium and a minimal medium with glucose or pyruvate, whereas L-glutamine and ethanol supported only weak growth (Supplementary Fig. S3). Irrespective of the growth stage, none of the tested cultures demonstrated magnetic response as measured by a magnetically induced differential light scattering assay (Cmag) [38]. Consistently, micrographs of cells collected from stationary phase cultures did not show any magnetosome-like particles (Supplementary Fig. S3). This confirmed that G2-11 indeed cannot biosynthesize magnetosomes, at least under the conditions available for the laboratory tests. During cultivation, we also noticed that G2-11 cells did not move at any growth stage despite the initial description of this organism as motile using a single polar flagellum [26], and containing several flagellum synthesis operons and other motility-related genes. Moreover, the cells tended to adhere to glass surfaces under all tested conditions and formed a dense clumpy biofilm immersed in a thick extracellular matrix (Supplementary Fig. S3a-ii).Considering that G2-11 generally lacks magnetosomes and appears to have a stationary lifestyle, which is not consistent with magnetotaxis, we assessed whether the maintenance of MGCs comes at fitness costs for the organism. To this end, we deleted the entire region containing the magnetosome genes (in the following, referred to as the MAI region) using the genetic tools we established for G2-11 in this work (Supplementary Fig. S4a, see Materials and Methods for details). After PCR screening, replica plating test, and genome re-sequencing, two of G2-11 ΔMAI mutants were selected for further analysis (Supplementary Fig. S5). These mutants showed no significant differences in the growth behavior compared to the wildtype (WT) when incubated in minimal media supplied with acetate or pyruvate as a sole carbon source (Supplementary Fig. S4b). This finding suggests that the presence of the magnetosome genes neither provides benefits nor poses any substantial metabolic burden for G2-11, at least under the given experimental conditions.RNAseq reveals poor expression levels and antisense transcription in the MGCs of G2-11We set on to determine whether the magnetosome genes are transcribed in G2-11. To this end, we analyzed its whole transcriptome for the photoheterotrophic conditions, under which the best growth was observed, in two biological replicates. The expression levels of all the encoded genes calculated as TPM (transcripts per million) demonstrated a high correlation between the two replicates (Pearson’s r = 0.98). Most genes of the (mms6-like1)(mmsF-like1)mamH1IEKLMOH2 cluster were only poorly or not transcribed at all (Fig. 2a, Supplementary dataset). Transcription of mms6-like1, mamF-like1, mamL, mamH1, mamI, and mamK, for example, did not pass the noise background threshold (TPM ≤ 2) in both replicates and were unlikely to be expressed, whereas mamE, mamM, mamH2, feoAm, and feoBm slightly exceeded the threshold in at least one replicate and might be weakly transcribed (Fig. 2a). Although the TPM of mamO (TPM = 5.67–6.10, Supplementary dataset) exceeded the background threshold, the coverage plot reveals that the number of mapped reads sharply rises at its 3’-end, whereas the 5’-end has low read coverage (Fig. 2b). This indicates the presence of an internal transcription start site (TSS) and its associated promoter within the coding sequence of mamO instead of the full transcription of the gene. Localization of an active promoter within mamO was recently described in MSR-1, suggesting that the transcriptional organization of MGCs may be more broadly conserved across MTB than assumed previously [39].Fig. 2: Transcription of the magnetosome genes in G2-11.a Log10 of the transcript abundances for all genes in the G2-11 genome presented as TPM (transcripts per million). Red dots represent the magnetosome genes. Red rectangle shows genes with TPM below the threshold, and blue rectangle shows genes with expression levels above median. R1 and R2: biological replicates. Pearson’s r and the p value is presented on the graph. b RNAseq coverage of reads mapped on the positive (red) and negative (blue) strands of the genome in the MAI region. The gray balk shows the gene map: genes encoded on the negative strand are colored in black, on the positive – in green. Red arrows indicate the anti-sense transcription in the mamPAQRBST operon. Green arrows indicate the intragenic TSS within mamO. TSS are indicated with dashed lines and black arrowheads that show the direction of transcription.Full size imageTranscription of genes within the mag123, (mms6-like2)(mmsF-like2), and mamAPQRBST clusters significantly exceeded the threshold, with the expression levels of mag1, mamT, and mamS being above the overall median. At the same time, antisense transcription was detected in the mamAPQRBST region, with the coverage considerably exceeding the sense transcription (Fig. 2b). This antisense RNA (asRNA) likely originated from a promoter controlling the tRNA gene positioned on the negative strand downstream of mamT. Such long asRNAs have the potential to interfere with sense transcripts, thereby significantly decreasing the expression of genes encoded on the opposite strand [40].In summary, the RNAseq data revealed extremely low or lack of transcription of several genes that are known to be essential for magnetosome biosynthesis (mamL, mamI, mamM, mamE, and mamO) [27, 41]. Additionally, the detected antisense transcription can potentially attenuate expression of the mamAPQRBST cluster that also comprises essential genes, i.e., mamQ and mamB. Although other factors, like the absence of several accessory genes mentioned above and the potential accumulation of point mutations, might also be involved, the lack or insufficient transcription of the essential magnetosome genes appears to be the primary reason for the absence of magnetosome biosynthesis in G2-11.Magnetosome proteins from G2-11 are functional in a model magnetotactic bacteriumAlthough visual inspection of the G2-11 magnetosome genes did not reveal any frameshifts or other apparent mutations, accumulation of non-obvious functionally deleterious point substitutions in the essential genes could not be excluded. Therefore, we next tested whether at least some of the magnetosome genes from G2-11 still encode functional proteins that can complement isogenic mutants of the model magnetotactic bacterium MSR-1. In addition, we analyzed the intracellular localization of their products in both MSR-1 and G2-11 by fluorescent labeling.One of the key proteins for magnetosome biosynthesis in MSR-1 is MamB, as its deletion mutant is severely impaired in magnetosome vesicle formation and is entirely devoid of magnetite crystals [42, 43]. Here, we observed that expression of MamB[G2-11] partially restored magnetosome chain formation in MSR-1 ΔmamB (Fig. 3a, b-i, b-ii). Consistently, MamB[G2-11] tagged with mNeonGreen (MamB[G2-11]-mNG) was predominantly localized to magnetosome chains in MSR-1, suggesting that the magnetosome vesicle formation was likely restored to the WT levels (Fig. 3b-iii).Fig. 3: Genetic complementation and intracellular localization of magnetosome proteins from G2-11 in MSR-1 isogenic mutants.a TEM micrograph of MSR-1 wildtype (WT). b MSR-1 ΔmamB::mamB[G2-11]. b-i TEM micrograph and b-ii magnetosome chain close-up; b-iii) 3D-SIM Z-stack maximum intensity projection of MSR-1 ΔmamB::mamB[G2-11]-mNG. c MSR-1ΔmamQ::mamQ[G2-11]. c-i TEM micrograph and c-ii close-up of the particles; c-iii 3D-SIM Z-stack maximum intensity projection. d MSR-1 ΔmamK::mamK[G2-11]. d-i TEM micrograph of MSR-1 ΔmamK; d-ii TEM micrograph of MSR-1 ΔmamK::mamK[G2-11]; d-iii 3D-SIM Z-stack maximum intensity projection of MSR-1 ΔmamK::mNG-mamK[G2-11]. e MSR-1 ΔmamKY::mamK[G2-11]. e-i-ii Representative cells of MSR-1 ΔmamKY mutant showing examples of a short chain, cluster (e-i), and ring-shaped chain (e-ii); (e-iii) TEM micrograph of MSR ΔmamKY::mamK[G2-11] mutant showing the complemented phenotype; e-iv distribution of cells with different phenotypes in the populations of MSR-1 ΔmamKY and MSR-1 ΔmamKY::mamK[G2-11] mutants (N  > 50 cells for each strain population); e-v 3D-SIM Z-stack maximum intensity projection of MSR-1 ΔmamKY::mNG-mamK[G2-11]. f MSR-1 ΔmamJ::mamJ-like[G2-11]. f-i TEM micrograph of MSR-1 ΔmamJ; f-ii TEM micrograph of MSR-1 ΔmamJ::mamJ-like[G2-11]; f-iii 3D-SIM Z-stack maximum intensity projection of MSR-1 ΔmamJ::mamJ-like[G2-11]-gfp. g MSR-1 ΔF3::mmsF-like1[G2-11] and ΔF3::mmsF-like2[G2-11]. g-i TEM micrograph of MSR-1 ΔF3; g-ii TEM micrograph of MSR-1 ΔF3::mmsF-like1[G2-11]; g-iii TEM micrograph of MSR-1 ΔF3::mmsF-like2[G2-11]; g-iv magnetosome diameter distribution in MSR-1 ΔF3 and the mutants complemented with mmsF-like1/mmsF-like2. Asterisks indicate points of significance calculated using Kruskal–Wallis test (****p 50 cells for each of two randomly selected insertion mutants MSR-1 ΔmamKY::mamK[G2-11] revealed that the long magnetosome chains were restored in 35-40% of the population (Fig. 3e-iv). Of note, mNG-MamK[G2-11] formed slightly shorter filaments in MSR-1 ΔmamKY than in ΔmamK, which were also characteristically displaced to the outer cell curvature due to the lack of mamY [46] (Fig. 3e-v).MamJ attaches magnetosomes to the MamK filament in MSR-1, mediating their chain-like arrangement. Elimination of mamJ disrupts this linkage, causing magnetosomes to aggregate owing to magnetic interactions [47] (Fig. 3f-i). In MSR-1, MamJ is encoded within the mamAB operon, between mamE and mamK. Within the (mms6-like1)(mmsF-like1)mamH1IEKLMOH2 cluster of G2-11, there is an open reading frame (ORF) encoding a hypothetical protein that is located in a syntenic locus (Fig. 1c). Although the hypothetical protein from G2-11 and MamJ from MSR-1 differ considerably in length (563 vs. 426 aa), share only a low overall sequence similarity (31%), and are not identified as orthologues by reciprocal blast analyses, multiple sequence alignments revealed a few conserved amino acids at their N- and C-termini (Supplementary Fig. S6). Moreover, in both proteins, these conserved residues are separated by a large region rich in acidic residues (pI 3.3 and 3.2) suggesting that the G2-11 protein might be a distant MamJ homolog. To test if it implements the same function as MamJ, we transferred this gene to MSR-1 ΔmamJ. Interestingly, it indeed restored chain-like magnetosome arrangement, which, however, often appeared as closed rings rather than linear chains (Fig. 3f-ii). Despite this difference, it indicated the ability of the hypothetical protein (hereafter referred to as MamJ-like[G2-11]) to attach magnetosomes to MamK, suggesting that in the native context, it can have a function identical to MamJ. Consistently, its fluorescently labeled version was often observed in ring-like structures within the cytoplasm of MSR-1 ΔmamJ, suggesting that it is indeed localized to magnetosomes (Fig. 3f-iii).In magnetospirilla, magnetosome proteins MmsF, MamF, and MmxF share an extensive similarity. Their individual and collective elimination gradually reduces the magnetite crystal size and disrupts the chain formation in MSR-1 (Fig. 3g-i; Paulus, manuscript in preparation). The MAI of G2-11 includes two genes, whose products have high similarity to these proteins, designated here as MmsF-like1[G2-11] and MmsF-like2[G2-11]. Expression of each of them in the MSR-1 ΔmmsFΔmamFΔmmxF triple mutant (ΔF3) partially restored the magnetosome size and led to the formation of short magnetosome chains in MSR ΔF3::mmsF-like1[G2-11] (Fig. 3g-ii) or clusters in MSR-1 ΔF3::mmsF-like2[G2-11] (Fig. 3g-iii, iv). Consistently, fluorescently tagged mNG-MmsF-like1[G2-11] and mNG-MmsF-like2[G2-11] localized to magnetosomes in the pattern resembling that in the TEM micrographs of the complemented corresponding mutants (Fig. 3g-v, vii), or were perfectly targeted to the magnetosome chains in MSR-1 WT (Fig. 3g-vi, viii).In G2-11, MamB[G2-11]-mNG, mNG-MamQ[G2-11], MamJ-like[G2-11]-GFP, mNG-MmsF-like1[G2-11], and mNG-MmsF-like2[G2-11] were patchy-like or evenly distributed in the inner and intracellular membranes (Supplementary Fig. S7). No linear structures that would indicate the formation of aligned magnetosome vesicles were observed in these mutants. As expected, mNG-MamK[G2-11] formed filaments in G2-11 (Supplementary Fig. S7c).Expression of MamM, MamO, MamE, and MamL failed to complement the corresponding deletion mutants of MSR-1 (not shown). Although detrimental mutations in the genes cannot be excluded, this result can be attributed to the lack of their native, cognate interaction partners, likely due to the large phylogenetic distances between the respective orthologues.Transfer of MGCs from MSR-1 endows G2-11 with magnetosome biosynthesis that is rapidly lost upon subcultivationHaving demonstrated the functionality of several G2-11 magnetosome genes in the MSR-1 background, we wondered whether, conversely, the G2-11 background is permissive for magnetosome biosynthesis. To this end, we transferred the well-studied MGCs from MSR-1 into G2-11, thereby mimicking an HGT event under laboratory conditions. The magnetosome genes from MSR-1 were previously cloned on a single vector pTpsMAG1 to enable the one-step transfer and random insertion into the genomes of foreign organisms [23]. Three G2-11 mutants with different positions of the integrated magnetosome cassette were incubated under anoxic phototrophic conditions with iron concentrations (50 μM) sufficient for biomineralization in the donor organism MSR-1. The obtained transgenic strains indeed demonstrated a detectable magnetic response (Cmag = 0.38 ± 0.11) [38], and TEM confirmed the presence of numerous electron-dense particles within the cells (Fig. 4), which, however, were significantly smaller than magnetosome crystals of MSR-1 (ranging 18.5 ± 4.3 nm to 19.9 ± 5.0 nm in three G2-11 MAG insertion mutants vs 35.4 ± 11.5 nm in MSR-1 WT, Fig. 4b) and formed only short chains or were scattered throughout the cells (Fig. 4a, c-i). Mapping of the particle elemental compositions with energy-dispersive X-ray spectroscopy (EDS) in STEM mode revealed iron- and oxygen-dominated compositions, suggesting they were iron oxides. High-resolution TEM (HRTEM) images and their FFT (Fast Fourier Transform) patterns were consistent with the structure of magnetite (Fig. 4c). Thus, G2-11 was capable of genuine magnetosome formation after acquisition of the MGCs from MSR-1.Fig. 4: Magnetosome biosynthesis by G2-11 upon transfer of the MGCs from MSR-1.a A cell with magnetosomes (i) and a close-up of the area with magnetosome chains (ii). Scale bars: 1 µm. b Violin plots displaying magnetosome diameter in three MAG insertion mutants of G2-11 in comparison to MSR-1. Asterisks indicate points of significance calculated using the Kruskal–Wallis test (**** designates p  More

  • in

    Adaptations by the coral Acropora tenuis confer resilience to future thermal stress

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).Article 
    CAS 

    Google Scholar 
    Frolicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).Article 
    CAS 

    Google Scholar 
    Riegl, B. & Purkis, S. Coral population dynamics across consecutive mass mortality events. Glob. Chang Biol. 21, 3995–4005 (2015).Article 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373−+ (2017).Article 

    Google Scholar 
    Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).
    Google Scholar 
    van Hooidonk, R., Maynard, J. A. & Planes, S. Temporary refugia for coral reefs in a warming world. Nat. Clim. Change 3, 508–511 (2013).Article 

    Google Scholar 
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).Article 
    CAS 

    Google Scholar 
    Frieler, K. et al. Limiting global warming to 2 degrees C is unlikely to save most coral reefs. Nat. Clim. Change 3, 165–170 (2013).Article 

    Google Scholar 
    Guest, J. R. et al. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS ONE 7, https://doi.org/10.1371/journal.pone.0033353 (2012).Oliver, T. A. & Palumbi, S. R. Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30, 429–440 (2011).Article 

    Google Scholar 
    Howells, E. J. et al. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat. Clim. Change 2, 116–120 (2012).Article 

    Google Scholar 
    Bay, R. A., Rose, N. H., Logan, C. A. & Palumbi, S. R. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Sci. Adv. 3, https://doi.org/10.1126/sciadv.1701413 (2017).Loya, Y. et al. Coral bleaching: the winners and the losers. Ecol. Lett. 4, 122–131 (2001).Article 

    Google Scholar 
    Edmunds, P. J., Gates, R. D. & Gleason, D. F. The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances. Mar. Biol. 139, 981–989 (2001).Article 

    Google Scholar 
    Lager, C. V. A., Hagedorn, M., Rodgers, K. S. & Jokiel, P. L. The impact of short-term exposure to near shore stressors on the early life stages of the reef building coral Montipora capitata. Peerj 8, https://doi.org/10.7717/peerj.9415 (2020).Ross, C., Ritson-Williams, R., Olsen, K. & Paul, V. J. Short-term and latent post-settlement effects associated with elevated temperature and oxidative stress on larvae from the coral Porites astreoides. Coral Reefs 32, 71–79 (2013).Article 

    Google Scholar 
    Putnam, H. M. & Gates, R. D. Preconditioning in the reef-building coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions. J. Exp. Biol. 218, 2365–2372 (2015).Article 

    Google Scholar 
    Baird, A. H. & Marshall, P. A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133–141 (2002).Article 

    Google Scholar 
    Fisch, J., Drury, C., Towle, E. K., Winter, R. N. & Miller, M. W. Physiological and reproductive repercussions of consecutive summer bleaching events of the threatened Caribbean coral Orbicella faveolata. Coral Reefs 38, 863–876 (2019).Article 

    Google Scholar 
    Michalek-Wagner, K. & Willis, B. L. Impacts of bleaching on the soft coral Lobophytum compactum. I. Fecundity, fertilization and offspring viability. Coral Reefs 19, 231–239 (2001).Article 

    Google Scholar 
    Paxton, C. W., Baria, M. V. B., Weis, V. M. & Harii, S. Effect of elevated temperature on fecundity and reproductive timing in the coral Acropora digitifera. Zygote 24, 511–516 (2016).Article 

    Google Scholar 
    Nozawa, Y. & Harrison, P. L. Effects of elevated temperature on larval settlement and post-settlement survival in scleractinian corals, Acropora solitaryensis and Favites chinensis. Mar. Biol. 152, 1181–1185 (2007).Article 

    Google Scholar 
    Hughes, T. P. & Tanner, J. E. Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81, 2250–2263 (2000).Article 

    Google Scholar 
    Edmunds, P. J. Juvenile coral population dynamics track rising seawater temperature on a Caribbean reef. Mar. Ecol. Prog. Ser. 269, 111–119 (2004).Article 

    Google Scholar 
    Davis, K. & Marshall, D. J. Offspring size in a resident species affects community assembly. J. Anim. Ecol. 83, 322–331 (2014).Article 

    Google Scholar 
    Chua, C. M., Leggat, W., Moya, A. & Baird, A. H. Temperature affects the early life history stages of corals more than near future ocean acidification. Mar. Ecol. Prog. Ser. 475, 85–92 (2013).Article 

    Google Scholar 
    Schnitzler, C. E., Hollingsworth, L. L., Krupp, D. A. & Weis, V. M. Elevated temperature impairs onset of symbiosis and reduces survivorship in larvae of the Hawaiian coral, Fungia scutaria. Mar. Biol. 159, 633–642 (2012).Article 

    Google Scholar 
    Ward, S., Harrison, P. & Hoegh-Guldberg, O. in: Proceedings of the Ninth International Coral Reef Symposium, Bali, 23–27 October 2000. 1123–1128 (2000).Foster, T. & Gilmour, J. Egg size and fecundity of biannually spawning corals at Scott Reef. Sci Rep-Uk 10, https://doi.org/10.1038/s41598-020-68289-4 (2020).Negri, A. P., Marshall, P. A. & Heyward, A. J. Differing effects of thermal stress on coral fertilization and early embryogenesis in four Indo Pacific species. Coral Reefs 26, 759–763 (2007).Article 

    Google Scholar 
    Randall, C. J. & Szmant, A. M. Elevated temperature affects development, survivorship, and settlement of the Elkhorn Coral, Acropora palmata (Lamarck 1816). Biol. Bull. 217, 269–282 (2009).Article 

    Google Scholar 
    Anlauf, H., D’Croz, L. & O’Dea, A. A corrosive concoction: the combined effects of ocean warming and acidification on the early growth of a stony coral are multiplicative. J. Exp. Mar. Biol. Ecol. 397, 13–20 (2011).Article 

    Google Scholar 
    Foster, T., Gilmour, J. P., Chua, C. M., Falter, J. L. & McCulloch, M. T. Effect of ocean warming and acidification on the early life stages of subtropical Acropora spicifera. Coral Reefs 34, 1217–1226 (2015).Article 

    Google Scholar 
    Randall, C. J. & Szmant, A. M. Elevated temperature reduces survivorship and settlement of the larvae of the Caribbean scleractinian coral, Favia fragum (Esper). Coral Reefs 28, 537–545 (2009).Article 

    Google Scholar 
    Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an isolated coral reef system following severe disturbance. Science 340, 69–71 (2013).Article 

    Google Scholar 
    Doropoulos, C., Ward, S., Roff, G., Gonzalez-Rivero, M. & Mumby, P. J. Linking Demographic Processes of Juvenile Corals to Benthic Recovery Trajectories in Two Common Reef Habitats. PLoS ONE 10, https://doi.org/10.1371/journal.pone.0128535 (2015).Donelson, J. M., Munday, P. L., McCormick, M. I. & Pitcher, C. R. Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat. Clim. Change 2, 30–32 (2012).Article 

    Google Scholar 
    Yuyama, I., Nakamura, T., Higuchi, T. & Hidaka, M. Different stress tolerances of juveniles of the Coral Acropora tenuis associated with clades C1 and D symbiodinium. Zool. Stud. 55, https://doi.org/10.6620/Zs.2016.55-19 (2016).Mumby, P. J. Can Caribbean coral populations be modelled at metapopulation scales? Mar. Ecol. Prog. Ser. 180, 275–288 (1999).Article 

    Google Scholar 
    Raymundo, L. J. & Maypa, A. P. Getting bigger faster: mediation of size-specific mortality via fusion in jevenile coral transplants. Ecol. Appl. 14, 281–295 (2004).Article 

    Google Scholar 
    Heyward, A. J. & Negri, A. P. Plasticity of larval pre-competency in response to temperature: observations on multiple broadcast spawning coral species. Coral Reefs 29, 631–636 (2010).Article 

    Google Scholar 
    Figueiredo, J., Baird, A. H., Harii, S. & Connolly, S. R. Increased local retention of reef coral larvae as a result of ocean warming. Nat. Clim. Change 4, 498–502 (2014).Article 

    Google Scholar 
    Ward, S. & Harrison, P. Changes in gametogenesis and fecundity of acroporid corals that were exposed to elevated nitrogen and phosphorus during the ENCORE experiment. J. Exp. Mar. Biol. Ecol. 246, 179–221 (2000).Article 
    CAS 

    Google Scholar 
    Jones, A. M. & Berkelmans, R. Tradeoffs to thermal acclimation: energetics and reproduction of a reef coral with heat tolerant Symbiodinium type-D. J. Mar. Biol. 2011, 185890 (2011).Harriott, V. Reproductive ecology of four scleratinian species at Lizard Island, Great Barrier Reef. Coral Reefs 2, 9–18 (1983).Article 

    Google Scholar 
    Hall, V. R. & Hughes, T. P. Reproductive strategies of modular organisms: Comparative studies of reef-building corals. Ecology 77, 950–963 (1996).Article 

    Google Scholar 
    Smith, C. C. & Fretwell, S. D. The optimal balance between size and number of offspring. Am. Naturalist 108, 499–506 (1974).Article 

    Google Scholar 
    Hoegh-Guldberg, O. & Smith, G. J. Influence of the population density of zooxanthellae and supply of ammonium on the biomass and metabolic characteristics of the reef corals Seriatopora hystrix and Stylophora pistillata. Mar. Ecol. Prog. Ser. 57, 173–186 (1989).Lesser, M. P. Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in ymbiotic dinoflagellates. Limnol. Oceanogr. 41, 271–283 (1996).Article 
    CAS 

    Google Scholar 
    Jones, R. J., Hoegh-Guldberg, O., Larkum, A. W. D. & Schreiber, U. Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ. 21, 1219–1230 (1998).Article 
    CAS 

    Google Scholar 
    Warner, M. E., Fitt, W. K. & Schmidt, G. W. Damage to photosystem II in symbiotic dinoflagellates: A determinant of coral bleaching. Proc. Natl Acad. Sci. USA 96, 8007–8012 (1999).Article 
    CAS 

    Google Scholar 
    McRae, C. J., Huang, W. B., Fan, T. Y. & Côté, I. M. Effects of thermal conditioning on the performance of Pocillopora acuta adult coral colonies and their offspring. Coral Reefs 40, 1491–1503 (2021).Article 

    Google Scholar 
    Howells, E. J. et al. Species-specific trends in the reproductive output of corals across environmental gradients and bleaching histories. Mar. Pollut. Bull. 105, 532–539 (2016).Article 
    CAS 

    Google Scholar 
    Galanto, N., Sartor, C., Moscato, V., Lizama, M. & Lemer, S. Effects of elevated temperature on reproduction and larval settlement in Leptastrea purpurea. Coral Reefs 41, 293–302 (2022).Article 

    Google Scholar 
    Hazraty-Kari, S., Masaya, M., Kawachi, M. & Harii, S. The early acquisition of symbiotic algae benefits larval survival and juvenile growth in the coral Acropora tenuis. J. Exp. Zool. A Ecol. Integr. Physiol. https://doi.org/10.1002/jez.2589 (2022).Moran, A. L. & Manahan, D. T. Energy metabolism during larval development of green and white abalone, Haliotis fulgens and H. sorenseni. Biol. Bull. 204, 270–277 (2003).Article 

    Google Scholar 
    Sewell, M. A. Utilization of lipids during early development of the sea urchin Evechinus chloroticus. Mar. Ecol. Prog. Ser. 304, 133–142 (2005).Article 
    CAS 

    Google Scholar 
    Alexander, G., Hancock, J., Huffmyer, A. & Matsuda, S. Larval thermal conditioning does not improve post-settlement thermal tolerance in the dominant reef-building coral, Montipora capitata. Coral Reefs 41, 333–342 (2022).Rivest, E. B., Chen, C. S., Fan, T. Y., Li, H. H. & Hofmann, G. E. Lipid consumption in coral larvae differs among sites: a consideration of environmental history in a global ocean change scenario. Proc. Biol. Sci. 284, https://doi.org/10.1098/rspb.2016.2825 (2017).Graham, E. M., Baird, A. H., Connolly, S. R., Sewell, M. A. & Willis, B. L. Uncoupling temperature-dependent mortality from lipid depletion for scleractinian coral larvae. Coral Reefs 36, 97–104 (2017).Article 

    Google Scholar 
    Graham, E. M., Baird, A. H., Connolly, S. R., Sewell, M. A. & Willis, B. L. Rapid declines in metabolism explain extended coral larval longevity. Coral Reefs 32, 539–549 (2013).Article 

    Google Scholar 
    Reid, E. C. et al. Internal waves influence the thermal and nutrient environment on a shallow coral reef. Limnol. Oceanogr. 64, 1949–1965 (2019).Article 

    Google Scholar 
    Maynard, J. A., Anthony, K. R. N., Marshall, P. A. & Masiri, I. Major bleaching events can lead to increased thermal tolerance in corals. Mar. Biol. 155, 173–182 (2008).Article 

    Google Scholar 
    Siebeck, U. E., Marshall, N. J., Kluter, A. & Hoegh-Guldberg, O. Monitoring coral bleaching using a colour reference card. Coral Reefs 25, 453–460 (2006).Article 

    Google Scholar 
    Veal, C. J., Holmes, G., Nunez, M., Hoegh-Guldberg, O. & Osborn, J. A comparative study of methods for surface area and three-dimensional shape measurement of coral skeletons. Limnol. Oceanogr.-Meth 8, 241–253 (2010).Article 

    Google Scholar 
    Jeffrey, S. W. & Humphrey, G. F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 167, 191–194 (1975).Article 
    CAS 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).Article 
    CAS 

    Google Scholar 
    R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria 2021). More

  • in

    Marine phytoplankton community data and corresponding environmental properties from eastern Norway, 1896–2020

    Sampling strategies and dataThe inner Oslofjorden phytoplankton dataset is a compilation of data mostly assembled from the monitoring program, financed since 1978 by a cooperation between the municipalities around the fjord, united in the counsel for technical water and sewage cooperation called “Fagrådet for Vann- og avløpsteknisk samarbeid i Indre Oslofjord”. The monitoring program started in 1973 and is ongoing. The program has sampled environmental parameters and chlorophyll since 1973, but for the first 25 years, phytoplankton data is only reported for the years 1973, 1974, 1988/9, 1990, 1994 and 1995. Since 1998, yearly sampling has been conducted, and from 2006 to 2019, the sampling frequency was approximately monthly. In addition, we have compiled research and monitoring data from researchers at the University of Oslo from 1896 and 1916, 1933–34 and 1962–1965.The records from 1896 and 1897 were collected using zoo-plankton net13. The phytoplankton collection in 1916–1917 used buckets or Nansen flasks for sampling. From 1933 to 1984, phytoplankton samples were collected using Nansen bottles and then from 1985–2020 with Niskin bottles from research vessels. The exception is the period from 2006 to 2018 when samples were also collected with FerryBox- equipped ships of opportunity14 with refrigerated autosamplers (Table 2).Since the 1990s, quantitative phytoplankton samples have mostly been preserved in Lugol’s solution, except for spring and autumn samples in the period 1990–2000 that were preserved in formalin. The records from 1896, 1897 and 1916 were preserved in ethanol, and between 1933 and 1990, samples were preserved in formalin. Sampling strategies and methods are listed in Table 2.The records from 1896 and 1897 were quantified by weight, and taxon abundance is categorised as “rare” (r), “rather common” (+), “common” (c) and “very common” (cc)13. In 1916 and 1917, Grans filtration method15 was used, and the number was given in cell counts per litre. From 1916 to 1993, the data is reported only as phytoplankton abundance (N, number of cells per litre). For most years after 1994, the dataset includes both abundance and biomass (μg C per litre), except for 2003, 2004, 2017 and 2018. Phytoplankton was identified and quantified using the sedimentation method of Utermöhl (1958)16. Biovolume for each species is calculated according to HELCOM 200617 and converted to biomass (μg C) following Menden-Deuer & Lessards (2000)18.Data inventoryThe inner Oslofjorden Phytoplankton dataset was compiled in 2020, comprising quantitative phytoplankton cell counts from inner Oslofjorden since 1896. Previously, parts of the data have been available as handwritten or printed tables in reports and published sources19,20,21 (Fig. 2). All sources are digitally available from the University of Oslo Library, the website for “Fagrådet” (http://www.indre-oslofjord.no/) or the NIVA online report database (https://www.niva.no/rapporter). Data from 1994 and onwards have been accessed digitally from the NIVA’s databases. They are also available from client reports from the monitoring project for inner Oslofjorden from the online sites listed above.The first known, published investigation of hydrography and plankton in the upper water column of the inner Oslofjorden was by Hjort & Gran (1900)13. Samples were collected during a hydrographical and biological investigation covering both the Skagerrak and Oslofjorden. There is only one sampling event from Steilene (Dk 1), but some phytoplankton data were obtained at Drøbak, just south of the shallow sill separating the inner and outer Oslofjorden, from winter 1896 to autumn 1897. Twenty years later, Gran and Gaarder (1927)22 conducted a study that included culture experiments at Drøbak field station (at the border between the inner and outer Oslofjorden) in March – April 1916 and August – September 1917. A higher frequency investigation was carried out from June 1933 to May 1934, covering 12 stations in inner and outer Oslofjorden where phytoplankton was analysed by microscopic examination23. The extensive program (the Oslofjord Project) conducted from 1962–1964 covered many parameters, and we have extracted the data for phytoplankton. From 1973 and onward, the research vessel-based monitoring program was financed by the municipalities around the fjord, and since 2006 NIVA has supplemented the monitoring program using FerryBox ships of opportunity. Samples from 4 m depth were collected using a refrigerated autosampler system (Teledyne ISCO) connected to a FerryBox system on M/S Color Festival and M/S Color Fantasy through cooperation between NIVA and Color Line A/S. Since 2018, the FerryBox has been part of the Norwegian Ships of Opportunity Program research infrastructure funded by the Research Council of Norway.The indicated depth of 3.5–4 m is an estimated average, as the actual sampling depth depends on shipload and sea conditions.Several other research projects have sampled from inner Oslofjorden between 1886 and 2000 with different aims. Data from relevant projects reporting on the whole phytoplankton community have also been included in this database.Data compilationThe data already digitalised were compiled from MS Excel files, and other data were manually entered into the standard format in MS Excel files. All collected data were then integrated into one MS Excel database, and this file was used for upload into GBIF. Data can be downloaded from GBIF in different formats and be linked together by the measurementsorfacts table.Quality control and standardisationAfter compilation, the data were checked for errors that could occur during manual digitalisation or just the compilation process. Duplicates and zero values were removed (Fig. 2). The major quantitative unit is phytoplankton abundance in cells per litre. Due to varying scopes of sampling and the development of gear and instruments, the number of species identified may vary between projects. Some of the earliest records were registered as “present”, indicating the amount in comments.Metadata, such as geographical reference, depth and methodology accessed from papers and reports, were accessible from the data source. When data was accessed from the NIVA internal databases, the metadata information was provided by the database owners/researchers.TaxonomyThe taxonomy of microalgae is in constant revision as new knowledge and techniques for identification are developing. Several historical species names recorded in this database are synonyms of accepted names in 2021. We have used the original names in our database and matched them to accepted names and Aphia ID using the taxon match tool available in the open-access reference system; World Register of Marine Species (Worms)24. The taxon match was conducted in March 2021.The nomenclature in Worms is quality assured by a wide range of taxonomic specialists. The Aphia ID is a unique and stable identifier for each available name in the database24. We also cross-checked the last updated nomenclature in Algaebase25 (March 2022) to assign species to a valid taxon name. When Algaebase and Worms were not in accordance, Algaebase taxonomy was usually chosen except in the case of Class Bacillariophyceae.Before matching the species list, the original species names were cleaned from spelling mistakes or just spelling mismatches like spaces, commas, etc. The original name is, however, left in one column in the database. For registrations where a species identification is uncertain, e.g. Alexandrium cf. tamarense, we used only Alexandrium. For registrations where the full name is uncertain, e.g. cf. Alexandrium tamarense, we used the name and Aphia ID for higher taxa, in this case, order. For others, e.g. “pennate diatoms” or “centric diatoms“, we used the name and Aphia ID for class. When names for, e.g. order and class were not recognised automatically by the matching tool in World Register of Marine Species (WoRMS), these were matched manually. Only very few records, mostly “cysts” and “unidentified monads”, could not be matched neither automatically nor manually but were assigned to general “protists” with affiliated ID. More