Dynamics of rumen microbiome in sika deer (Cervus nippon yakushimae) from unique subtropical ecosystem in Yakushima Island, Japan
Gruninger, R. J., Ribeiro, G. O., Cameron, A. & McAllister, T. A. Invited review: Application of meta-omics to understand the dynamic nature of the rumen microbiome and how it responds to diet in ruminants. Animal 13, 1843–1854 (2019).CAS
Google Scholar
Morgavi, D. P., Kelly, W. J., Janssen, P. H. & Attwood, G. T. Rumen microbial (meta)genomics and its application to ruminant production. Animal 7, 184–201 (2013).CAS
Google Scholar
Bergman, E. N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70, 567–590 (1990).CAS
Google Scholar
Flint, H. J. The rumen microbial ecosystem—Some recent developments. Trends Microbiol. 5, 483–488 (1997).CAS
Google Scholar
Hobson, P. N. & Stewart, C. S. The Rumen Microbial Ecosystem. (Springer, 2012).Moraïs, S. & Mizrahi, I. The road not taken: The rumen microbiome, functional groups, and community states. Trends Microbiol. 27, 538–549 (2019).
Google Scholar
Cheng, K. J., Forsberg, C. W., Minato, H. & Costerton, J. W. in Physiological Aspects of Digestion and Metabolism in Ruminants (eds T. Tsuda, Y. Sasaki, & R. Kawashima) 595–624 (Academic Press, 1991).McSweeney, C. S., Palmer, B., McNeill, D. M. & Krause, D. O. Microbial interactions with tannins: Nutritional consequences for ruminants. Anim. Feed Sci. Technol. 91, 83–93 (2001).CAS
Google Scholar
Skene, I. K. & Brooker, J. D. Characterization of tannin acylhydrolase activity in the ruminal bacterium Selenomonas ruminantium. Anaerobe 1, 321–327 (1995).CAS
Google Scholar
Khanbabaee, K. & van Ree, T. Tannins: Classification and definition. Nat. Prod. Rep. 18, 641–649 (2001).CAS
Google Scholar
Makkar, H. P. S. & Becker, K. Isolation of tannins from leaves of some trees and shrubs and their properties. J. Agric. Food Chem. 42, 731–734 (1994).CAS
Google Scholar
Bhat, T. K., Kannan, A., Singh, B. & Sharma, O. P. Value addition of feed and fodder by alleviating the antinutritional effects of tannins. Agr. Res. 2, 189–206 (2013).CAS
Google Scholar
Shimada, T. Salivary proteins as a defense against dietary tannins. J. Chem. Ecol. 32, 1149–1163 (2006).CAS
Google Scholar
Zhu, J., Filippich, L. J. & Alsalami, M. T. Tannic acid intoxication in sheep and mice. Res. Vet. Sci. 53, 280–292 (1992).CAS
Google Scholar
Kohl, K. D., Stengel, A. & Dearing, M. D. Inoculation of tannin-degrading bacteria into novel hosts increases performance on tannin-rich diets. Environ. Microbiol. 18, 1720–1729 (2016).CAS
Google Scholar
Kumar, K., Chaudhary, L. C., Agarwal, N. & Kamra, D. N. Isolation and characterization of tannin-degrading bacteria from the rumen of goats fed oak (Quercus semicarpifolia) leaves. Agr. Res. 3, 377–385 (2014).
Google Scholar
Odenyo, A. A. et al. Characterization of tannin-tolerant bacterial isolates from East African ruminants. Anaerobe 7, 5–15 (2001).CAS
Google Scholar
Grilli, D. J. et al. Analysis of the rumen bacterial diversity of goats during shift from forage to concentrate diet. Anaerobe 42, 17–26 (2016).
Google Scholar
Tong, J. et al. Illumina sequencing analysis of the ruminal microbiota in high-yield and low-yield lactating dairy cows. PLoS ONE 13, e0198225 (2018).
Google Scholar
Pope, P. B. et al. Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS ONE 7, e38571 (2012).ADS
CAS
Google Scholar
Østbye, K., Wilson, R. & Rudi, K. Rumen microbiota for wild boreal cervids living in the same habitat. FEMS Microbiol. Lett. 363, fnw233 (2016).
Google Scholar
Gruninger, R. J., Sensen, C. W., McAllister, T. A. & Forster, R. J. Diversity of rumen bacteria in Canadian cervids. PLoS ONE 9, e89682 (2014).ADS
Google Scholar
Henderson, G. et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5, 14567 (2015).CAS
Google Scholar
Reese, A. T. & Kearney, S. M. Incorporating functional trade-offs into studies of the gut microbiota. Curr. Opin. Microbiol. 50, 20–27 (2019).CAS
Google Scholar
Moeller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997 (2016).ADS
Google Scholar
Okano, T. & Matsuda, H. Biocultural diversity of Yakushima Island: Mountains, beaches, and sea. J. Mar. Isl. Cult. 2, 69–77 (2013).
Google Scholar
Agetsuma, N., Agetsuma-Yanagihara, Y. & Takafumi, H. Food habits of Japanese deer in an evergreen forest: Litter-feeding deer. Mamm. Biol. 76, 201–207 (2011).
Google Scholar
Higashi, Y., Hirota, S. K., Suyama, Y. & Yahara, T. Geographical and seasonal variation of plant taxa detected in faces of Cervus nippon yakushimae based on plant DNA analysis in Yakushima Island. Ecol. Res. 37, 582–597 (2022).CAS
Google Scholar
Kuroiwa, A. Nutritional ecology of the Yakushika (Cervus nippon yakushimae) population under high density Ph.D. thesis, Kyushu University, (2017).Koda, R., Agetsuma, N., Agetsuma-Yanagihara, Y., Tsujino, R. & Fujita, N. A proposal of the method of deer density estimate without fecal decomposition rate: A case study of fecal accumulation rate technique in Japan. Ecol. Res. 26, 227–231 (2011).
Google Scholar
Yahara, T. in Deer eats world heritages: Ecology of deer and forets (eds T. Yumoto & H. Matsuda) 168–187 (Bunichi-Sogo-Shuppan, 2006).Onoda, Y. & Yahara, T. in Challenges for Conservation Ecology in Space and Time. (eds T. Miyashita & J. Nishihiro) 126–149 (University of Tokyo Press, 2015).Kagoshima Prefecture Nature Conservation Division. The current status of Yakusika in FY 2020, available at https://www.rinya.maff.go.jp/kyusyu/fukyu/shika/attach/pdf/yakushikaWG_R3_2-23.pdf (2020).Kuroiwa, A., Kuroe, M. & Yahara, T. Effects of density, season, and food intake on sika deer nutrition on Yakushima Island, Japan. Ecol. Res. 32, 369–378 (2017).
Google Scholar
Hiura, T., Hashidoko, Y., Kobayashi, Y. & Tahara, S. Effective degradation of tannic acid by immobilized rumen microbes of a sika deer (Cervus nippon yesoensis) in winter. Anim. Feed Sci. Technol. 155, 1–8 (2010).CAS
Google Scholar
Kawarai, S. et al. Seasonal and geographical differences in the ruminal microbial and chloroplast composition of sika deer (Cervus nippon) in Japan. Sci. Rep. 12, 6356 (2022).ADS
CAS
Google Scholar
Li, Z. et al. Response of the rumen microbiota of sika deer Cervus nippon fed different concentrations of tannin rich plants. PLoS ONE 10, e0123481 (2015).
Google Scholar
McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).CAS
Google Scholar
Kim, M., Morrison, M. & Yu, Z. Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol. Ecol. 76, 49–63 (2011).CAS
Google Scholar
Weimer, P. J. Redundancy, resilience, and host specificity of the ruminal microbiota: Implications for engineering improved ruminal fermentations. Front. Microbiol. 6, 296 (2015).
Google Scholar
Scott, K. P., Gratz, S. W., Sheridan, P. O., Flint, H. J. & Duncan, S. H. The influence of diet on the gut microbiota. Pharmacol. Res. 69, 52–60 (2013).CAS
Google Scholar
Tapio, I. et al. Taxon abundance, diversity, co-occurrence and network analysis of the ruminal microbiota in response to dietary changes in dairy cows. PLoS ONE 12, e0180260 (2017).
Google Scholar
Ohara, M. in Agriculture in Hokkaido v2 (ed K. Iwama, Ohara, M., Araki, H., Yamada, T., Nakatsuji, H., Kataoka, T., Yamamoto, Y.) 1–18(Faculty of Agriculture, Hokkaido Univ., 2009).Igota, H., Sakuragi, M. & Uno, H. in Sika Deer: Biology and Management of Native and Introduced Populations (eds. Dale R. McCullough, Seiki Takatsuki, & Koichi Kaji) 251–272 (Springer Japan, 2009).Fernando, S. C. et al. Rumen microbial population dynamics during adaptation to a high-grain diet. Appl. Environ. Microbiol. 76, 7482–7490 (2010).ADS
CAS
Google Scholar
Hu, X. et al. High-throughput analysis reveals seasonal variation of the gut microbiota composition within forest musk deer (Moschus berezovskii). Front. Microbiol. 9, (2018).Artzi, L., Morag, E., Shamshoum, M. & Bayer, E. A. Cellulosomal expansion: Functionality and incorporation into the complex. Biotechnol. Biofuels 9, 61 (2016).
Google Scholar
Biddle, A., Stewart, L., Blanchard, J. & Leschine, S. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity 5, (2013).Eisenhauer, N., Scheu, S. & Jousset, A. Bacterial diversity stabilizes community productivity. PLoS ONE 7, e34517 (2012).ADS
CAS
Google Scholar
Miller, A. W., Oakeson, K. F., Dale, C. & Dearing, M. D. Effect of dietary oxalate on the gut microbiota of the mammalian herbivore Neotoma albigula. Appl. Environ. Microbiol. 82, 2669–2675 (2016).ADS
CAS
Google Scholar
Adams, J. M., Rehill, B., Zhang, Y. & Gower, J. A test of the latitudinal defense hypothesis: Herbivory, tannins and total phenolics in four North American tree species. Ecol. Res. 24, 697–704 (2009).CAS
Google Scholar
Nabeshima, E., Murakami, M. & Hiura, T. Effects of herbivory and light conditions on induced defense in Quercus crispula. J. Plant Res. 114, 403–409 (2001).
Google Scholar
Yang, C.-M., Yang, M.-M., Hsu, J.-M. & Jane, W.-N. Herbivorous insect causes deficiency of pigment–protein complexes in an oval-pointed cecidomyiid gall of Machilus thunbergii leaf. Bot. Bull. Acad. Sin. 44, 315–321 (2003).
Google Scholar
Agetsuma, N., Agetsuma-Yanagihara, Y., Takafumi, H. & Nakaji, T. Plant constituents affecting food selection by sika deer. J. Wildl. Manag. 83, 669–678 (2019).
Google Scholar
Couch, C. E. et al. Diet and gut microbiome enterotype are associated at the population level in African buffalo. Nat. Commun. 12, 2267 (2021).ADS
CAS
Google Scholar
Goel, G., Puniya, A. K. & Singh, K. Tannic acid resistance in ruminal streptococcal isolates. J. Basic Microbiol. 45, 243–245 (2005).CAS
Google Scholar
Jiménez, N. et al. Genetic and biochemical approaches towards unravelling the degradation of gallotannins by Streptococcus gallolyticus. Microb. Cell Fact. 13, 154 (2014).
Google Scholar
Nelson, K. E., Thonney, M. L., Woolston, T. K., Zinder, S. H. & Pell, A. N. Phenotypic and phylogenetic characterization of ruminal tannin-tolerant bacteria. Appl. Environ. Microbiol. 64, 3824–3830 (1998).ADS
CAS
Google Scholar
Selwal, M. K. et al. Optimization of cultural conditions for tannase production by Pseudomonas aeruginosa IIIB 8914 under submerged fermentation. World J. Microbiol. Biotechnol. 26, 599–605 (2010).CAS
Google Scholar
Kohl, K. D., Weiss, R. B., Cox, J., Dale, C. & Denise Dearing, M. Gut microbes of mammalian herbivores facilitate intake of plant toxins. Ecol. Lett. 17, 1238–1246 (2014).
Google Scholar
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Method 7, 335–336 (2010).CAS
Google Scholar
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS
Google Scholar
Caporaso, J. G. et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267 (2009).
Google Scholar
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).ADS
Google Scholar
R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).Osawa, R. Formation of a clear zone on tannin-treated brain heart infusion agar by a Streptococcus sp. isolated from feces of koalas. Appl. Environ. Microbiol. 56, 829–831 (1990).ADS
CAS
Google Scholar
Hamamura, N., Olson, S. H., Ward, D. M. & Inskeep, W. P. Diversity and functional analysis of bacterial communities associated with natural hydrocarbon seeps in acidic soils at Rainbow Springs, Yellowstone National Park. Appl. Environ. Microbiol. 71, 5943–5950 (2005).ADS
CAS
Google Scholar
Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–D42 (2012).ADS
Google Scholar
Chen, I.-M. A. et al. The IMG/M data management and analysis system v.6.0: new tools and advanced capabilities. Nucleic Acids Res. 49, D751–D763 (2020)Suzuki, M. T., Taylor, L. T. & Delong, E. F. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5 ’-nuclease assays. Appl. Environ. Microbiol. 66, 4605–4614 (2000).ADS
CAS
Google Scholar More