More stories

  • in

    Larvicidal and repellent potential of Ageratum houstonianum against Culex pipiens

    El-Naggar, H. A. & Hasaballah, A. I. Acute larvicidal toxicity and repellency effect of Octopus cyanea crude extracts against the filariasis vector, Culex pipiens. J. Egypt. Soc. Parasitol. 48(3), 721–728 (2018).Article 

    Google Scholar 
    Koenraadt, C. J. M., Möhlmann, T. W. R., Verhulst, N. O., Spitzen, J. & Vogels, C. B. F. Effect of overwintering on survival and vector competence of the West Nile virus vector Culex pipiens. Parasit. Vectors 12, 147. https://doi.org/10.1186/s13071-019-3400-4 (2019).Article 

    Google Scholar 
    Vloet, R. P. M. et al. Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes. PLoS Negl. Trop. Dis. 11, e0006145. https://doi.org/10.1371/journal.pntd.0006145 (2017).Article 
    CAS 

    Google Scholar 
    Dyab, A. K., Galal, L. A., Mahmoud, A. E. & Mokhtar, Y. Finding Walachia in filarial larvae and culicidae mosquitoes in upper Egypt governorate. Korean J. Parasitol. 54, 265–272 (2016).Article 
    CAS 

    Google Scholar 
    Clements, A. N. & Harbach, R. E. Controversies over the scientific name of the principal mosquito vector of yellow fever virus—Expediency versus validity. J. Vector Ecol. 43, 1–14. https://doi.org/10.1111/jvec.12277 (2018).Article 

    Google Scholar 
    Nchoutpouen, E. et al. Culex species diversity, susceptibility to insecticides and role as potential vector of Lymphatic filariasis in the city of Yaoundé, Cameroon. PLoS Negl. Trop. Dis. 13(4), 7229. https://doi.org/10.1371/journal.pntd.0007229 (2019).Article 

    Google Scholar 
    Shah, R. M. et al. Toxicity of 25 synthetic insecticides to the field population of Culex quinquefasciatus Say. Parasitol. Res. 115(11), 4345–4351 (2016).Article 

    Google Scholar 
    Senthil-Nathan, S. A review of resistance mechanisms of synthetic insecticides and botanicals, phytochemicals, and essential oils as alternative larvicidal agents against mosquitoes. Front. Physiol. 10, 1591. https://doi.org/10.3389/fphys.2019.01591 (2020).Article 

    Google Scholar 
    Pavela, R. et al. Traditional herbal remedies and dietary spices from Cameroon as novel sources of larvicides against filariasis mosquitoes? Parasitol. Res. 115(12), 4617–4626 (2016).Article 

    Google Scholar 
    Samuel, T. et al. In vitro antimicrobial activity of Ageratum houstonianum Mill. (Asteraceae). Food Sci. 35, 2897–2900 (2011).
    Google Scholar 
    Boussaada, O. et al. Insecticidal activity of some Asteraceae plant extracts against Tribolium confusum. Bull. Insectol. 61(2), 8435 (2008).
    Google Scholar 
    Samuel, T., Ravindran, J., Eapen, A. & William, J. Repellent activity of Ageratum houstonianum Mill. (Asteraceae) leaf extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Asian Pac. J. Trop. Dis. 2(6), 478–480 (2012).Article 

    Google Scholar 
    Samuel, T., Ravindran, K. J., Eapen, A. & William, S. J. Effect of Ageratum houstonianum Mill. (Asteraceae) leaf extracts on the oviposition activity of Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol. Res. 111, 2295–2299 (2012).Article 

    Google Scholar 
    Tennyson, S. et al. In vitro antioxidant activity of Ageratum houstonianum Mill. (Asteraceae). Asian Pac. J. Trop. Dis. 2, S712–S714 (2012).Article 

    Google Scholar 
    Sharma, P. D. & Sharma, O. P. Natural products chemistry, and biological properties of the Ageratum plant. Toxicol. Environ. Chem. 50, 213–232 (1995).Article 
    CAS 

    Google Scholar 
    Bodner, C. C. & Gereau, R. E. A contribution of Bontoc ethnobotany. Econ. Bot. 42(3), 307–369 (1988).Article 

    Google Scholar 
    Wiedenfeld, H. & Andrade-Cetto, A. Pyrrolizidine alkaloids from Ageratum houstononiaum Mill.. Phytochemistry 57(8), 1269–1271 (2001).Article 
    CAS 

    Google Scholar 
    Siebertz, R., Proksch, P., Wray, V. & Witte, L. A benzofuran from Ageratum houstononiaum Mill.. Phytochemistry 27(12), 3996–3997 (1988).Article 
    CAS 

    Google Scholar 
    Quijano, L., Calderon, J. S., Garibay, E., Escobar, E. & Rios, T. Further polysubstituted flavones from Ageratum houstononiaum Mill.. Phytochemistry 26(7), 2075–2978 (1987).Article 
    CAS 

    Google Scholar 
    Kundu, A. & Vadassery, J. Chlorogenic acid-mediated chemical defence of plants against insect herbivores. Plant Biol. (Stuttg.) 21(2), 185–189. https://doi.org/10.1111/plb.12947 (2019).Article 
    CAS 

    Google Scholar 
    War, A. R. et al. Effect of plant secondary metabolites on legume pod borer Helicoverpa armigera. J. Pest Sci. 86, 399–408 (2013).Article 

    Google Scholar 
    Cipollini, D., Stevenson, R., Enright, S., Eyles, A. & Bonello, P. Phenolic metabolites in leaves of the invasive shrub, Lonicera maackii, and their potential phytotoxic and anti-herbivore effects. J. Chem. Ecol. 34, 144–152. https://doi.org/10.1007/s10886-008-9426-2 (2008).Article 
    CAS 

    Google Scholar 
    Regnault-Roger, C. et al. Polyphenolic compounds of Mediterranean Lamiaceae and investigation of orientational effects on Acanthoscelides obtectus (Say). J. Stored Prod. Res. 40, 395–408 (2004).Article 
    CAS 

    Google Scholar 
    Khan, S. et al. Bioactivity-guided isolation of rosmarinic acid as the principle bioactive compound from the butanol extract of Isodon rugosus against the pea aphid, Acyrthosiphon pisum. PLoS ONE 14(6), e0215048. https://doi.org/10.1371/journal.pone.0215048 (2019).Article 
    CAS 

    Google Scholar 
    War, A., Sharma, S. P. & Sharma, H. C. Differential induction of flavonoids in groundnut in response to Helicoverpa armigera and Aphis craccivora infestation. Int. J. Insect Sci. 8, 55–64. https://doi.org/10.4137/IJIS.S39619 (2016).Article 

    Google Scholar 
    Al Jabr, A. M., Hussain, A., Rizwan-ul-Haq, M. & Al-Ayedh, H. Toxicity of plant secondary metabolites modulating detoxification genes expression for natural red palm weevil pesticide development. Molecules 22, 169. https://doi.org/10.3390/molecules22010169 (2017).Article 
    CAS 

    Google Scholar 
    Moreira, M. D. et al. Plant compounds insecticide activity against coleoptera pests of stored products. Pesqui. Agropecu. Bras. 42(7), 909–915 (2007).Article 

    Google Scholar 
    Ahuchaogu, A. A. et al. GC-MS analysis of bioactive compounds from whole plant chloroform extract of Ageratum conyzoides. Int. J. Med. Plants Nat. Prod. 4(2), 13–24. https://doi.org/10.20431/2454-7999.0402003 (2018).Article 

    Google Scholar 
    Zhao, P.-L., Li, J. & Yang, G.-F. Synthesis, and insecticidal activity of chromanone and chromone analogues of diacylhydrazines. Bioorg. Med. Chem. 15, 1888–1895 (2007).Article 
    CAS 

    Google Scholar 
    Hussein, M. A. et al. Synthesis, molecular docking and insecticidal activity evaluation of chromones of date palm pits extract against Culex pipiens (Diptera: Culicidae). Int. J. Mosq. Res. 5(4), 22–32 (2018).
    Google Scholar 
    Li, F. et al. Synthesis and pharmacological evaluation of novel chromone derivatives as balanced multifunctional agents against Alzheimer’s disease. Bioorg. Med. Chem. 25(14), 3815–3826. https://doi.org/10.1016/j.bmc.2017.05.027 (2017).Article 
    CAS 

    Google Scholar 
    Feldlaufer, M. F. & Eberle, M. W. Insecticidal effect of precocene II on the human body louse, Pediculus humanus. Trans. R. Soc. Trop. Med. Hyg. 74(3), 398–399. https://doi.org/10.1016/0035-9203(80)90110-8 (1980).Article 
    CAS 

    Google Scholar 
    Lu, X. N., Liu, X. C., Liu, Q. Z. & Liu, Z. L. Isolation of insecticidal constituents from the essential oil of Ageratum houstonianum Mill. against Liposcelis bostrychophila Badonnel. J. Chem. 2014, 6. https://doi.org/10.1155/2014/645687 (2014).Article 
    CAS 

    Google Scholar 
    Pratt, G. & Bowers, W. Precocene II inhibits juvenile hormone biosynthesis by cockroach Corpora allata in vitro. Nature 265, 548–550. https://doi.org/10.1038/265548a0 (1977).Article 
    ADS 
    CAS 

    Google Scholar 
    Kumar, K. G. A. et al. Chemo-profiling and bioassay of phytoextracts from Ageratum conyzoides for acaricidal properties against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) infesting cattle and buffaloes in India. Ticks Tick-Borne Dis. 7(2), 342–349 (2016).Article 

    Google Scholar 
    Fahmi, A. G., Nassar, M., Mansour, E. & Salama, R. Toxicological and biochemical effects of precocene II against cotton leafworm, Spodoptera littoralis (boisd.). Egypt. J. Agric. Res. 97(1), 179–186. https://doi.org/10.21608/ejar.2019.68627 (2019).Article 

    Google Scholar 
    Benelli, G., Pavela, R., Drenaggi, E., Desneux, N. & Maggi, F. Phytol, (E)-nerolidol and spathulenol from Stevia rebaudiana leaf essential oil as effective and eco-friendly botanical insecticides against Metopolophium dirhodum. Ind. Crops Prod. 155, 112844. https://doi.org/10.1016/j.indcrop.2020.112844 (2020).Article 
    CAS 

    Google Scholar 
    Tennyson, S., Ravindran, K. J., Eapen, A. & William, S. J. Ovicidal activity of Ageratum houstonianum Mill. (Asteraceae) leaf extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae. Asian Pac. J. Trop. Dis. 5, 199–203 (2015).Article 

    Google Scholar 
    Tennyson, S., Ravindran, K. J., Eapen, A. & William, S. J. Effect of Ageratum houstonianum Mill. (Asteraceae) leaf extracts on the oviposition activity of Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol. Res. 111, 2295–2299. https://doi.org/10.1007/s00436-012-3083-7 (2012).Article 

    Google Scholar 
    Després, L., David, J. P. & Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22(6), 298–307 (2007).Article 

    Google Scholar 
    Navarro-Roldán, M. A., Bosch, D., Gemeno, C. & Siegwart, M. Enzymatic detoxification strategies for neurotoxic insecticides in adults of three tortricid pests. Bull. Entomol. Res. https://doi.org/10.1017/S0007485319000415 (2020).Article 

    Google Scholar 
    Abdel Haleem, D. R., Gad, A. A. & Farag, S. M. Larvicidal, biochemical and physiological effects of acetamiprid and thiamethoxam against Culex pipiens L. (Diptera: Culicidae). Egypt. J. Aquat. Biol. Fish. 24(3), 271–283. https://doi.org/10.21608/ejabf.2020.91119 (2020).Article 

    Google Scholar 
    Li, X., Schuler, M. A. & Berenbaum, M. R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52, 231–253 (2007).Article 

    Google Scholar 
    Montella, I. R., Schama, R. & Valle, D. The classification of esterases: An important gene family involved in insecticide resistance—A review. Mem. Inst. Oswaldo Cruz. 107(4), 437–449 (2012).Article 
    CAS 

    Google Scholar 
    Vasantha-Srinivasan, P. et al. Comparative analysis of mosquito (Diptera: Culicidae: Aedes aegypti Liston) responses to the insecticide Temephos and plant derived essential oil derived from Piper betle L.. Ecotoxicol. Environ. Saf. 139, 439–446. https://doi.org/10.1016/j.ecoenv.2017.01.026 (2017).Article 
    CAS 

    Google Scholar 
    Ramasamy, V. et al. Chemical characterization of billy goat weed extracts Ageratum conyzoides (Asteraceae) and their mosquitocidal activity against three blood-sucking pests and their non-toxicity against aquatic predators. Environ. Sci. Pollut. Res. 28(22), 28456–28469. https://doi.org/10.1007/s11356-021-12362-6 (2021).Article 

    Google Scholar 
    Shoukat, R. F. et al. Larvicidal, ovicidal, synergistic, and repellent activities of Sophora alopecuroides and its dominant constituents against Aedes albopictus. Insects 11, 246. https://doi.org/10.3390/insects11040246 (2020).Article 

    Google Scholar 
    Boily, M., Sarrasin, B., Deblois, C., Aras, P. & Chagnon, M. Acetylcholinesterase in honey bees (Apis mellifera) exposed to neonicotinoids, atrazine and glyphosate: Laboratory and field experiments. Environ. Sci. Pollut. Res. Int. 20(8), 5603–5614. https://doi.org/10.1007/s11356-013-1568-2 (2013).Article 
    CAS 

    Google Scholar 
    Rajashekar, Y., Raghavendra, A. & Bakthavatsalam, N. Acetylcholinesterase inhibition by biofumigant (Coumaran) from leaves of lantana camara in stored grain and household insect pests. Biomed. Res. Int. 2014, 1–6. https://doi.org/10.1155/2014/187019 (2014).Article 
    CAS 

    Google Scholar 
    Yuan, Y., Li, L., Zhao, J. & Chen, M. Effect of tannic acid on nutrition and activities of detoxification enzymes and acetylcholinesterase of the fall webworm (Lepidoptera: Arctiidae). J. Insect Sci. 20(1), 8 (2020).Article 

    Google Scholar 
    Koodalingam, A., Mullainadhan, P. & Arumugam, M. Effects of extract of soapnut Sapindus emarginatus on esterases and phosphatases of the vector mosquito, Aedes aegypti (Diptera: Culicidae). Acta Trop. 118(1), 27–36 (2011).Article 
    CAS 

    Google Scholar 
    Nathan, S. S. et al. Effect of azadirachtin on acetylcholinesterase (AChE) activity and histology of the brown plant hopper Nilaparvata lugens (Stål). Ecotoxicol. Environ. Saf. 70, 244–250 (2008).Article 
    CAS 

    Google Scholar 
    Abdel-Haleem, D. R., Genidy, N. A., Fahmy, A. R., Abu-El Azm, F. S. M. & Ismail, N. S. M. Comparative modeling, toxicological and biochemical studies of imidacloprid and thiamethoxam insecticides on the House Fly, Musca domestica L. (Diptera: Muscidae). Egypt. Acad. J. Biol. Sci. 11(1), 33–42. https://doi.org/10.21608/EAJB.2018.11977 (2018).Article 

    Google Scholar 
    Kliot, A., Kontsedalov, S., Ramsey, J. S., Jande, G. & Ghanim, M. Adaptation to nicotine in the facultative tobacco-feeding hemipteran Bemisia tabaci. Pest Manag. Sci 70, 1595–1603 (2014).Article 
    CAS 

    Google Scholar 
    Silva, T. R. F. B. et al. Effect of the flavonoid rutin on the biology of Spodoptera frugiperda (Lepidoptera: Noctuidae) Fitossanidade. Acta Sci. Agron. 38(2), 165–170. https://doi.org/10.4025/actasciagron.v38i2.27956 (2016).Article 

    Google Scholar 
    Petschenka, G., Wagschal, V., Von Tschirnhaus, M., Donath, A. & Dobler, S. Convergently evolved toxic secondary metabolites in plants drive the parallel molecular evolution of insect resistance. Am. Nat. 190, 29–43 (2017).Article 

    Google Scholar 
    Emam, M. et al. Phytochemical profiling of Lavandula coronopifolia Poir. aerial parts extract and its larvicidal, antibacterial, and antibiofilm activity against Pseudomonas aeruginosa. Molecules 26, 1710. https://doi.org/10.3390/molecules26061710 (2021).Article 
    CAS 

    Google Scholar 
    El Hadidy, D., El Sayed, A. M., El Tantawy, M. & El Alfy, T. Phytochemical analysis and biological activities of essential oils of the leaves and flowers of Ageratum houstonianum Mill. cultivated in Egypt. J. Essent. Oil-Bear. Plants 22(5), 1241–1251. https://doi.org/10.1080/0972060X.2019.1673831 (2019).Article 

    Google Scholar 
    Tennyson, S., Ravindran, J., Eapen, A. & William, J. Repellent activity of Ageratum houstonianum Mill. (Asteraceae) leaf extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Asian Pac. J. Trop. Dis. 2(6), 478–480 (2012).Article 

    Google Scholar 
    Pintong, A. et al. Insecticidal and histopathological effects of Ageratum conyzoides weed extracts against dengue vector, Aedes aegypti. Insects 11, 224 (2020).Article 

    Google Scholar 
    Parveen, S. et al. In vitro evaluation of ethanolic extracts of Ageratum conyzoides and Artemisia absinthium against cattle tick, Rhipicephalus microplus. Sci. World J. 2014, 858973 (2014).Article 
    CAS 

    Google Scholar 
    Ichihara, K. & Fukubayashi, Y. Preparation of fatty acid methyl esters for gas-liquid chromatography. J. Lipid Res. 51(3), 635–640 (2010).Article 
    CAS 

    Google Scholar 
    Mruthunjaya, K. & Hukkeri, V. I. In vitro antioxidant and free radical scavenging potential of Parkinsonia aculeata Linn.. Pharmacogn. Mag. 4(13), 42–52 (2008).
    Google Scholar 
    Atanassova, M., Georgieva, S. & Ivancheva, K. Total phenolic and total flavonoid contents, antioxidant capacity and biological contaminants in medicinal herbs. J. Chem. Technol. Metall. 46(1), 81–88 (2011).CAS 

    Google Scholar 
    Mizzi, L., Chatzitzika, C., Gatt, R. & Valdramidis, V. HPLC analysis of phenolic compounds and flavonoids with overlapping peaks. Food Technol. Biotechnol. 58(1), 12–19. https://doi.org/10.17113/ftb.58.01.20.6395 (2020).Article 
    CAS 

    Google Scholar 
    Kasap, M. & Demirhan, H. The effect of various larval foods on the rate of adult emergence and fecundity of mosquitoes. Turk. Parasitol. Dergisi 161, 87–97 (1992).
    Google Scholar 
    WHO. Guidelines for Laboratory & Field Testing of Mosquito Larvicides 1–4 (Bulletin of the World Health Organization, 2005).
    Google Scholar 
    El-Sheikh, T., Bosly, H. & Shalaby, N. Insecticidal and repellent activities of methanolic extract of Tribulus terrestris L. (Zygophyllaceae) against the malarial vector Anopheles arabiensis (Diptera: Culicidae). Egypt. Acad. J. Biol. Sci. 5(2), 13–22 (2012).
    Google Scholar 
    Abbott, W. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18(2), 256–267 (1952).
    Google Scholar 
    Amin, T. R. Biochemical and Physiological Studies of Some Insect Growth Regulators on the Cotton Leafworm, Spodoptera littoralis (Boisd.). Ph.D. thesis, Faculty of Science, Cairo University (1998).Simpson, D. R., Bulland, D. L. & Linquist, D. A. A semimicrotechnique for estimation of cholinesterase activity in boll weevils. Ann. Entomol. Soc. Am. 57, 367–371 (1964).Article 
    CAS 

    Google Scholar 
    Amaral, M. C., Bonecker, A. C. T. & Ortiz, C. H. D. Activity determination of Na+ K+-ATPase and Mg++-ATPase enzymes in the gill of Poecilia vivpara (Osteichthyes, Cyprinodontiformes) in different salinities. Braz. Arch. Biol. Technol. 44, 1–6 (2001).Article 
    CAS 

    Google Scholar 
    Hansen, I. G. & Hodgson, E. Biochemical characteristics of insect microsomes, N-and o-demethylation. Biochem. Pharmacol. 20, 1569–1578 (1971).Article 
    CAS 

    Google Scholar 
    Finney, D. J. Probit Analysis 3rd edn. (Cambridge University Press, 1971).MATH 

    Google Scholar 
    Duncan, D. B. Multiple range, and multiple F tests. Biometrics 2, 1–42 (1955).Article 
    MathSciNet 

    Google Scholar  More

  • in

    Trioecy is maintained as a time-stable mating system in the pink sea urchin Toxopneustes roseus from the Mexican Pacific

    According to the information that exists so far regarding reproduction in echinoderms, this is the first work in which the occurrence of trioecy in sea urchins is reported. This is also the first report of trioecy among members of the phylum Echinodermata, one of the most widespread taxa, both latitudinally and bathymetrically. Our results show that trioecy in this population of T. roseus is temporally stable, since the three sexes were observed together throughout the year in each month of sampling. Hermaphroditic individuals also presented the same gametogenic developmental pattern as females and males. Finally, during the spawning period of the population they contributed to the reproductive process by releasing mature gametes, which evidenced their full functionality within the studied population.We were unable to obtain evidence of self-fertilization in the studied hermaphrodites; but self- fertilization in the gonads and gonadal ducts of a hermaphrodite individual of Echinocardium cordatum was recorded in 193543. However, the embryos produced did not complete development successfully, probably due to the premature fertilization within the gonad43. Also, the cases of fully functional hermaphrodites of Arbacia punctulata have been reported44,45. The gametes of the hermaphrodites were fertilized as soon as they were released into seawater and the development of self-fertilized eggs was absolutely normal in time and morphology. After nine days, typical pluteus larvae were obtained and both the eggs and sperm of the hermaphrodites functioned ordinarily with gametes from other males and females.Therefore, we consider that there are no reasons to think that in the case of Toxopneustes roseus hermaphrodites cannot carry out self-fertilization. According to the analysis of the gonad developmental stages, their gametes were released into seawater. Theoretically, those gametes would be able to follow the normal course of fertilization, interacting among them and with gametes of females and males.The trioecic condition has been recorded so far only in some animals, such as a few nematode species and a hydra9,10,14,46,47,48. In marine invertebrates, it has been reported in one anemone under laboratory conditions and in one bivalve mollusk15,16. The coexistence of males, females and hermaphrodites has been considered an evolutionarily transitory state; for example, androdioecy (male / hermaphrodite) in nematodes such as Caenorhabditis elegans is believed to have evolved from dioecy (male / female) through a trioic intermediate. Consequently, it is very difficult to find the ecological or evolutionary causes that lead a species or population to present three sexes simultaneously49.In the species in which trioecy has been studied and monitored, it is noticeable that their populations are subjected to strong environmental stress in situ or under laboratory manipulation50,51,52. For example, some nematodes of the genus Tokorhabditis are extremophilic species that live in the Californian Mono Lake, which is characterized by being hypersaline and exhibiting high levels of arsenic10,50. In the case of Auanema freiburgensis the flexible sex determination and mating system and, consequently, its trioecy can be critical for resilience at the population level in patchy, resource-limited environments49. These results thus demonstrate that life-history, ecology and environment can play defining roles in the development of sexual systems and determine the continued presence of trioecy in the nematode. In the case of Hydra viridissima, it unlike most European species, is a “warm crisis” hydra, since it usually reproduces asexually, but when the temperatures rise to, or are maintained at high levels (≥ 20 °C), it reproduces sexually14,53. In experimental conditions, the population studied essentially behaved as androdioecic and only at the end of the research period, when the temperature was the highest (~ 25 °C), a few females appeared and joined the other existing sexes, thus generating the condition of trioecy14. Trioecy has been identified in another non-described species (e.g., Rhabditis sp. JU1783) isolated from star fruit, although it is closely related to A. rhodensis and A. freiburgensis and likely to belong to the same genus11,12. Little is known about the ecology of Auanema, as A. rhodensis has been isolated from a tick and a beetle, and A. freiburgensis from dung and a rotting plant of the genus Petasites12,47,51.Regarding the sea anemone Aiptasia diaphana, it is mainly found in isolated fouling communities, and no hermaphrodites exist in natural populations that could reproduce asexually or sexually54. However, under laboratory conditions, a single founder individual (asexual clone) produced not only males and females, but also hermaphroditic individuals. In addition, A. diaphana can fertilize within and between cloning lines, producing larval-swimming planules, which could explain the success of the species as an invader of artificial marine substrates. The condition of trioecy was also identified in individuals of this anemone manipulated in the laboratory, to create age-homogeneous populations of asexual propagules (pedal lacerations) and ontogenetic patterns of sexual differentiation were documented15.In the case of the marine bivalve Semimytilus algosus, there was not an obvious explanation for the occurrence of its trioecy, despite the intense analyses of factors such as motility versus a sessile way of life or reproductive density within a population, which could have relevance for gamete interactions16. In many respects, S. algosus is a “typical” marine intertidal mussel, since it is sessile in adulthood, occurs at high densities in wild populations, and has a very large population. S. algosus also co-occurs with other species that are close relatives within the Mytilidae family and have evolved and conserved their dioecy16.Toxopneustes roseus is another typical species of sea urchin, which has a wide latitudinal distribution throughout the tropical eastern Pacific and co-inhabits with other species of sea urchins and echinoderms that have a similar distribution and in which hermaphroditism has not been reported40,55,56,57. Regarding its population density, T. roseus is not considered among the most abundant species in the study area and its densities are relatively low (between 0.04 and 1.2 ind.m2). However, it cannot be considered a rare species in terms of abundance58,59.All of the above makes it difficult to clearly explain the reasons for the occurrence of trioecy in this species; however, certain aspects of its early development are known that could indicate the factors behind the development of this reproductive mating system in the pink sea urchin. In recent experiments carried out with gametes, larvae, and embryos of a population of T. roseus from the same area as our study, it was found that the increase in temperature above the normal values of its habitat has a deleterious effect on the success of early development60. There exists experimental evidence that at an increase of temperature to 32 °C, which is 2 °C above the maximum values registered in the study area, fertilization occurred at a very low percentage. There was also a deleterious effect on embryos, resulting in abnormal development and the lowest percentage of larval survival also occurred at 32 °C60. The same kind of experiments has been performed on other species from the study area, such as the irregular sea urchin Ryncholampas pacificus and the intertidal Echinometra vanbrunti. The deleterious effects on these species were observed only at 34 °C, which was the highest temperature tested (unpublished data). At 32 °C, however, there was no evidence of negative effects in the case on E. vanbrunti, and there was just arrested development, but no abnormalities in the case of R. pacificus. These results indicate that T. roseus is much more sensitive to the rise in temperature than other cohabiting sea urchins, and probably lives near its upper thermal limit. In that context, the continuous ocean warming could threaten the permanence of the species in the study area, since the early stages of development constitute a bottleneck for successful recruitment and later population maintenance in populations that carry out reproduction by means of external fertilization.Within the phylum Echinodermata, when stressful conditions appear in the habitat or the environment becomes hostile, the species can generally resort to asexual reproduction by fission (ophiuroids) or fission and autotomy (holothuroids and asteroids) to increase the abundance of populations in a relatively short time or counteract a threat with numbers61. This does not apply to sea urchins since they are unable to reproduce asexually. The only way for sea urchins to reproduce asexually would be by cloning larvae, but this process would also require that sexual reproduction occurs first62. Therefore, any reproductive strategy that a sea urchin population could develop to respond to drastic changes in their area must involve sexual reproduction. In this regard, in an experimental evolution study with the nematode Caenorhabditis elegans, in which partial selfing, exclusive selfing, and predominant outcrossing were compared, it was evidenced that monoecious populations only have hermaphrodites and, therefore, reproduction is carried out exclusively by self-fertilization. However, in trioic populations that have males, females, and a small number of hermaphrodites, reproduction is predominantly carried out by external crossing49. Also populations that underwent some degree of interbreeding during the evolutionary experiments (trioic and androdioic populations), maintained more genetic diversity than expected solely under genetic drift or under genetic drift and directional selection49. In this sense, it is possible that high levels of interbreeding, such as that which occurs in trioic populations, develop with populations that have sufficient deleterious recessive alleles to avoid extinction, since selection is less efficient to purge them. Trioecy, therefore, becomes an efficient system to select characteristics of the genome that allows a population that only reproduces sexually to adequately cope with significant changes in the environment that could threaten the permanence of the species in that habitat. Interbreeding (gonochorism, self-incompatible hermaphroditism) also favors genetic diversity and offers greater potential to adapt to changing environments63. The costs and advantages of crossing over selfing depend on environmental factors and, therefore, selection may favor transitions between mating systems. Androdioecy, gynodioecy, and trioecy are evolutionarily unstable intermediate strategies, but they offer important systems for testing models of the causes and consequences of the mating system in the evolution of populations63.However, the question remains why T. roseus has developed trioecy, when in the same habitat there are other sea urchins with very similar life-histories that only maintain dioecy. In the case of the bivalve Semimytilus algosus; which presents the same situation as we have with T. roseus, it was proposed that the trioecy of the species may be related to the sex determination mechanism, considering what it is known about the nematodes of the genus Auanema10,16,46. In Auanema, the male versus non-male (hermaphrodite or female) decision is determined genetically (XO for males, and XX for females and hermaphrodites)9,64. The hermaphrodite versus female decision, however, is determined by the environment of the mother. For A. freiburgensis the maternal social environment is determinant, whereas for A. rhodensis it is the age of the mother9,12,51,65. Therefore, in Auanema, environmental sex determination and genetic sex determination interact to produce trioecy.Although there is apparently no clear cause of strong, stressful conditions in the habitat of T. roseus that could threaten the survival of this species, according to the United States Environmental Protection Agency (EPA, 2021), sea surface temperature increased during the twentieth century and continues to rise. From 1901 to 2020, the global temperature rose at an average rate of 0.004 °C per decade, resulting in a total increase of 0.5 °C to date. Additionally, regional studies based on continuous monitoring, which have not yet been published, have shown that between 2002 and 2020 there has been an increase of approximately 1 °C above the historical average of the sea surface temperature in the study area.The foregoing discussion leads us to speculate that the studied population of T. roseus lives at the limit of its thermal tolerance, and the constant increase in ocean temperature due to global warming constitutes a threat to its survival and a constant source of stress for the population. This is because its early-development stages are more vulnerable to high temperature than other sea urchins that live in the same area and its population density is also significantly lower58.Phylogenetically T. roseus belongs to Family Toxopneustidae and although no other species within the genus Toxopneustes has shown hermaphroditism, this condition was reported in Tripneustes gratilla, which belongs to the same family36. Toxopneustids belong to the Order Camarodonta, and almost all the species of sea urchins in which hermaphroditism has been reported belong to this Order except for a couple that belong to the Arbacioida. At the same time, this order is contained in the Superorder Echinacea along with Camarodonta, according to the last exhaustive analysis resolving the position of the clades within Echinoidea66. In this context, theoretically T. roseus at some point underwent the environmental pressure of its early stage living under constantly rising temperatures, along with its low population densities in the study area. Consequently, it was able to develop hermaphroditism and, therefore, trioecy, similarly to what occurred to Hydra viridissima under conditions of extreme high temperature14. We hypothesize that these permanent conditions generate a constant source of strong environmental stress, which is the determining factor that keeps trioecy stable in the species in which it has been studied, and, thus, trioecy remains stable in this population of T. roseus.The mechanism of sex determination in echinoids, as well as in other echinoderms, is still unknown, although the sex ratio, which is generally close to 1:1, suggests that it occurs through sex chromosomes67. It is known that in mammals, sex determination is dictated by the presence or absence of the Y-chromosomal gene SRY. SRY functions as the primary sex-determining gene by activating testis formation, and in its absence, the embryo will form ovaries. SRY only exists in mammals; however it evolved as a duplication of the Sox gene family, which exists in all metazoans68.In vertebrates, Sox genes are involved in sex determination, neurogenesis, skeletonogenesis, eye development, pituitary development, pancreas formation, and neural crest and notochord formation69. In invertebrates, they are involved in processes such as metamorphosis, eye development, neural crest formation, and ectoderm formation70. In the sea urchin Strongylocentrotus purpuratus, SoxB1 was determined to be expressed in the primordial gut during development and is closely related in sequence to Sox genes of the mouse embryo71. An investigation of sex determination was carried out in the sea urchin Strongylocentrotus purpuratus using RNA-seq and quantitative mRNA measurements, but the mechanisms that govern sexual determination of the species could not be clearly established72. However; the results show that the male fate factors Dmrt and SoxH are expressed early and meiosis initiates early. Also, gonad-specific transcripts involved in egg and sperm biology, are first activated before rudiment formation in the larvae of this sea urchin. The study provided additional evidence for the hypothesis that in sea urchins, sex determination occurs genetically72. Another research with the sea cucumber Apostichopus japonicus, which integrated genome-wide association study and analyzes of sex-specific variations evidenced that the species exhibits genetic sexual determination73. Furthermore, analysis of homozygous and heterozygous genotypes of abundant sex-specific SNPs in females and males, confirmed that A.japonicus might have a XX/XY sex determination system73.On the other hand, it has been proposed that a deviation from the 1:1 sex ratio in echinoids could reflect environmental conditions that influence sex determination67. For example, a relatively large proportion of Lytechinus variegatus and Tripneustes ventricosus (as Tripneustes esculentus) hermaphrodites was recorded in southern Florida during an unusually cold winter, suggesting that adverse winter conditions in some way affected sex determination in juveniles74,75. Also relatively large number of Strongylocentrotus purpuratus hermaphrodites was reported in Bahía de Todos los Santos, Mexico, where extreme seasonal fluctuations in temperature (from about 12–24 °C) are recorded76. However, posterior studies did not find a single hermaphrodite of Strongylocentrotus purpuratus in more than 500 individuals analyzed77,78.Considering that sex determination in sea urchins is highly probable to occur genetically and the possibility that the environment may also influence sex determination, we think that in the case of Toxopneustes roseus, genetic sex determination and environmental sex determination are interacting to maintain the condition of trioecy stable. We propose that, especially because the cases in which environmental conditions have assumed to influence sex determination, extreme temperatures are invoked as the main affecting factor. However, more detailed studies are needed in terms of sexual determination and experimental evolution to be able to verify our assumption.In general, the efforts that have been made to explain the evolution of the sexes and the origin of hermaphroditism and trioecy are still scarce, and critical questions remain to be answered. The case of trioecy detected in T. roseus may constitute an important model to seek these answers about the evolution of sexual systems and the environmental mechanisms that trigger trioecy in marine macroinvertebrates and, in particular, in echinoderms. More

  • in

    Suicidal chemotaxis in bacteria

    Surface-attached bacteria move towards antibiotics via twitching motilityWe used microfluidic devices and automated cell tracking to quantify the movement of P. aeruginosa cells as they are exposed to well-defined spatial gradients of antibiotics in developing biofilms (Fig. 1). We began with the antibiotic ciprofloxacin, which is widely used to treat P. aeruginosa infections27,28. To set a baseline, we first determined the minimum inhibitory concentration (hereafter MIC) of ciprofloxacin for P. aeruginosa (strain PAO1) in shaking cultures, which agrees with the published MIC of this strain (Fig. S129). We then exposed surface-attached cells to an antibiotic gradient in a microfluidic device where the antibiotic concentration ranged from zero to 10 times the MIC (Fig. 1A, B, Methods). After approximately 5 h of unbiased movement, we were surprised to see that twitching cells began to bias their movement towards increasing concentrations of ciprofloxacin (Fig. 1B, D, Movie 1). The movement bias, β, defined as the number of cells moving up the gradient divided by the number of cells moving down the gradient, peaks after approximately 10 h and then decays as the surface becomes crowded with cells (Movie 1) and tracking becomes difficult (Methods). The flow through the device also has a small influence on the direction of cell movement because it tends to pull cells in the downstream direction (Fig. 1B, C, E). However, this fluid flow is orthogonal to the direction of the antibiotic gradient, and so does not explain the movement towards antibiotics.Fig. 1: Twitching P. aeruginosa cells bias their motility towards increasing antibiotic concentrations.A A dual-inlet microfluidic device generates steady antibiotic gradients (e.g. ciprofloxacin, CMAX = 10X MIC) via molecular diffusion. Isocontours were calculated using mathematical modelling (Methods) and background shading shows approximate ciprofloxacin distribution visualised using fluorescein. B Red (blue) cell trajectories are moving towards (away from) increasing [ciprofloxacin]. Inset: A circular histogram of cell movement direction reveals movement bias towards increasing [ciprofloxacin]. A two-sided binomial test rejects the null hypothesis that trajectories are equally likely to be directed up or down the [ciprofloxacin] gradient (p  More

  • in

    Ecological study of ambient air pollution exposure and mortality of cardiovascular diseases in elderly

    Franchini, M. & Mannucci, P. M. Air pollution and cardiovascular disease. Thromb. Res. 129, 230–234 (2012).Article 
    CAS 

    Google Scholar 
    Langrish, J. P. et al. Reducing personal exposure to particulate air pollution improves cardiovascular health in patients with coronary heart disease. Environ. Health Perspect. 120, 367–372 (2012).Article 
    CAS 

    Google Scholar 
    Tanwar, V., Katapadi, A., Adelstein, J. M., Grimmer, J. A. & Wold, L. E. Cardiac pathophysiology in response to environmental stress: A current review. Curr. Opin. Physiol. 1, 198–205 (2018).Article 

    Google Scholar 
    Franchini, M. & Mannucci, P. M. Particulate air pollution and cardiovascular risk: short-term and long-term effects. in Seminars in Thrombosis and Hemostasis. Vol. 35. 665–670 (© Thieme Medical Publishers, 2009).Shah, A. S. V. et al. Global association of air pollution and heart failure: A systematic review and meta-analysis. Lancet 382, 1039–1048 (2013).Article 
    CAS 

    Google Scholar 
    Cesaroni, G. et al. Long term exposure to ambient air pollution and incidence of acute coronary events: Prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project. BMJ 348, f7412 (2014).Article 

    Google Scholar 
    Brook, R. D. et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 121, 2331–2378 (2010).Article 
    CAS 

    Google Scholar 
    Héroux, M.-E. et al. Quantifying the health impacts of ambient air pollutants: Recommendations of a WHO/Europe project. Int. J. Public Health 60, 619–627 (2015).Article 

    Google Scholar 
    An, Z., Jin, Y., Li, J., Li, W. & Wu, W. Impact of particulate air pollution on cardiovascular health. Curr. Allergy Asthma Rep. 18, 1–7 (2018).Article 
    CAS 

    Google Scholar 
    Zanobetti, A., Baccarelli, A. & Schwartz, J. Gene-air pollution interaction and cardiovascular disease: A review. Prog. Cardiovasc. Dis. 53, 344–352 (2011).Article 
    CAS 

    Google Scholar 
    Liang, R. et al. Effect of exposure to PM2.5 on blood pressure: A systematic review and meta-analysis. J. Hypertens. 32, 2130–2141 (2014).Article 
    CAS 

    Google Scholar 
    Jerrett, M. et al. Traffic-related air pollution and obesity formation in children: A longitudinal, multilevel analysis. Environ. Heal. 13, 49 (2014).Article 

    Google Scholar 
    McConnell, R. et al. A longitudinal cohort study of body mass index and childhood exposure to secondhand tobacco smoke and air pollution: The Southern California Children’s Health Study. Environ. Health Perspect. 123, 360–366 (2015).Article 

    Google Scholar 
    Renzi, M. et al. Air pollution and occurrence of type 2 diabetes in a large cohort study. Environ. Int. 112, 68–76 (2018).Article 
    CAS 

    Google Scholar 
    Jomova, K. et al. Arsenic: Toxicity, oxidative stress and human disease. J. Appl. Toxicol. 31, 95–107 (2011).CAS 

    Google Scholar 
    Al-Kindi, S. G., Brook, R. D., Biswal, S. & Rajagopalan, S. Environmental determinants of cardiovascular disease: Lessons learned from air pollution. Nat. Rev. Cardiol. 17, 656–672 (2020).Article 

    Google Scholar 
    Noroozian, M. The elderly population in iran: An ever growing concern in the health system. Iran. J. Psychiatry Behav. Sci. 6, 1 (2012).
    Google Scholar 
    Chokshi, D. A. & Farley, T. A. The cost-effectiveness of environmental approaches to disease prevention. N. Engl. J. Med. 367, 295–297 (2012).Article 
    CAS 

    Google Scholar 
    Nieuwenhuijsen, M. J. Influence of urban and transport planning and the city environment on cardiovascular disease. Nat. Rev. Cardiol. 15, 432–438 (2018).Article 

    Google Scholar 
    Barnett, A. G. et al. The effects of air pollution on hospitalizations for cardiovascular disease in elderly people in Australian and New Zealand cities. Environ. Health Perspect. 114, 1018–1023 (2006).Article 
    CAS 

    Google Scholar 
    Koken, P. J. M. et al. Temperature, air pollution, and hospitalization for cardiovascular diseases among elderly people in Denver. Environ. Health Perspect. 111, 1312–1317 (2003).Article 

    Google Scholar 
    Institute for Health Metrics and Evaluation. GBD 2019. (University of Washington, 2022).IHME. GBD 2019 Data and Tools Overview. (University of Washington, 2020).Dicker, D. et al. Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1684–1735 (2018).Article 

    Google Scholar 
    Miller, D. C. & Salkind, N. J. Handbook of Research Design and Social Measurement (Sage, 2002).Book 

    Google Scholar 
    Rosenthal, F. S., Carney, J. P. & Olinger, M. L. Out-of-hospital cardiac arrest and airborne fine particulate matter: A case–crossover analysis of emergency medical services data in Indianapolis, Indiana. Environ. Health Perspect. 116, 631–636 (2008).Article 

    Google Scholar 
    Ensor, K. B., Raun, L. H. & Persse, D. A case-crossover analysis of out-of-hospital cardiac arrest and air pollution. Circulation 127, 1192–1199 (2013).Article 
    CAS 

    Google Scholar 
    Forastiere, F. et al. A case-crossover analysis of out-of-hospital coronary deaths and air pollution in Rome, Italy. Am. J. Respir. Crit. Care Med. 172, 1549–1555 (2005).Article 

    Google Scholar 
    Levy, D. et al. A case-crossover analysis of particulate matter air pollution and out-of-hospital primary cardiac arrest. Epidemiology 12, 193–199 (2001).Article 
    CAS 

    Google Scholar 
    Silverman, R. A. et al. Association of ambient fine particles with out-of-hospital cardiac arrests in New York City. Am. J. Epidemiol. 172, 917–923 (2010).Article 

    Google Scholar 
    Naghavi, M. et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 390, 1151–1210 (2017).Article 

    Google Scholar 
    Berend, N. Contribution of air pollution to COPD and small airway dysfunction. Respirology 21, 237–244 (2016).Article 

    Google Scholar 
    Vahedian, M., Khanjani, N., Mirzaee, M. & Koolivand, A. Associations of short-term exposure to air pollution with respiratory hospital admissions in Arak, Iran. J. Environ. Health Sci. Eng. 15, 17 (2017).Yaser, H. S., Narges, K., Yaser, S. & Rasoul, M. Air pollution and cardiovascular mortality in Kerman from 2006 to 2011. Am. J. Cardiovasc. Dis. Res. 2, 27–30 (2014).
    Google Scholar 
    Khaefi, M. et al. Association of particulate matter impact on prevalence of chronic obstructive pulmonary disease in Ahvaz, southwest Iran during 2009–2013. Aerosol Air Qual. Res. 17, 230–237 (2017).Article 
    CAS 

    Google Scholar 
    Khaniabadi, Y. O. et al. Exposure to PM10, NO2, and O3 and impacts on human health. Environ. Sci. Pollut. Res. Int. 24, 2781–2789 (2017).Article 
    CAS 

    Google Scholar 
    Momtazan, M. et al. An investigation of particulate matter and relevant cardiovascular risks in Abadan and Khorramshahr in 2014–2016. Toxin Rev. 38, 1–8 (2018).Martinelli, N., Olivieri, O. & Girelli, D. Air particulate matter and cardiovascular disease: A narrative review. Eur. J. Intern. Med. 24, 295–302 (2013).Article 
    CAS 

    Google Scholar 
    Khaniabadi, Y. O. et al. Mortality and morbidity due to ambient air pollution in Iran. Clin. Epidemiol. Glob. Health 7, 222–227 (2019).Article 

    Google Scholar 
    Almeida-Silva, M. et al. Exposure and dose assessment to particle components among an elderly population. Atmos. Environ. 102, 156–166 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Suh, H. H., Zanobetti, A., Schwartz, J. & Coull, B. A. Chemical properties of air pollutants and cause-specific hospital admissions among the elderly in Atlanta, Georgia. Environ. Health Perspect. 119, 1421–1428 (2011).Article 

    Google Scholar 
    Chien, L.-C., Yang, C.-H. & Yu, H.-L. Estimated effects of Asian dust storms on spatiotemporal distributions of clinic visits for respiratory diseases in Taipei children (Taiwan). Environ. Health Perspect. 120, 1215–1220 (2012).Article 

    Google Scholar 
    Khaniabadi, Y. O. et al. Chronic obstructive pulmonary diseases related to outdoor PM10, O3, SO2, and NO2 in a heavily polluted megacity of Iran. Environ. Sci. Pollut. Res. 25, 17726–17734 (2018).Article 
    CAS 

    Google Scholar 
    Omidi Khaniabadi, Y. et al. Air quality modeling for health risk assessment of ambient PM10, PM2.5 and SO2 in Iran. Hum. Ecol. Risk Assess. Int. J. 25, 1298–1310 (2019).Newell, K., Kartsonaki, C., Lam, K. B. H. & Kurmi, O. P. Cardiorespiratory health effects of particulate ambient air pollution exposure in low-income and middle-income countries: A systematic review and meta-analysis. Lancet Planet. Health 1, e368–e380 (2017).Article 

    Google Scholar 
    Dominici, F. et al. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 295, 1127–1134 (2006).Article 
    CAS 

    Google Scholar 
    Qiu, H. et al. Inflammatory and oxidative stress responses of healthy elders to solar-assisted large-scale cleaning system (SALSCS) and changes in ambient air pollution: A quasi-interventional study in Xi’an, China. Sci. Total Environ. 806, 151217 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Fiordelisi, A. et al. The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Fail. Rev. 22, 337–347 (2017).Article 
    CAS 

    Google Scholar 
    Yang, D., Yang, X., Deng, F. & Guo, X. Ambient air pollution and biomarkers of health effect. Ambient Air Pollut. Health Impact China 1017, 59–102 (2017).Lim, S. S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).Article 

    Google Scholar 
    Newby, D. E. et al. Expert position paper on air pollution and cardiovascular disease. Eur. Heart J. 36, 83–93 (2015).Article 
    CAS 

    Google Scholar 
    Brook, R. D., Newby, D. E. & Rajagopalan, S. Air pollution and cardiometabolic disease: An update and call for clinical trials. Am. J. Hypertens. 31, 1–10 (2018).Article 
    CAS 

    Google Scholar 
    Kang, S.-H. et al. Ambient air pollution and out-of-hospital cardiac arrest. Int. J. Cardiol. 203, 1086–1092 (2016).Article 

    Google Scholar 
    Thurston, G. D. et al. Ambient particulate matter air pollution exposure and mortality in the NIH-AARP diet and health cohort. Environ. Health Perspect. 124, 484–490 (2016).Article 

    Google Scholar 
    Gallagher, L. G. et al. Applying a moving total mortality count to the cities in the NMMAPS database to estimate the mortality effects of particulate matter air pollution. Circulation 172, 872–879 (2010).
    Google Scholar 
    Rodopoulou, S., Samoli, E., Chalbot, M.-C.G. & Kavouras, I. G. Air pollution and cardiovascular and respiratory emergency visits in Central Arkansas: A time-series analysis. Sci. Total Environ. 536, 872–879 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Teng, T.-H.K. et al. A systematic review of air pollution and incidence of out-of-hospital cardiac arrest. J. Epidemiol. Commun. Health 68, 37–43 (2014).Article 

    Google Scholar 
    Brook, R. D. et al. Air pollution and cardiovascular disease: A statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. Circulation 109, 2655–2671 (2004).Article 

    Google Scholar 
    Raza, A. et al. Short-term effects of air pollution on out-of-hospital cardiac arrest in Stockholm. Eur. Heart J. 35, 861–868 (2014).Article 
    CAS 

    Google Scholar 
    Baccarelli, A. et al. Effects of exposure to air pollution on blood coagulation. J. Thromb. Haemost. 5, 252–260 (2007).Article 
    CAS 

    Google Scholar 
    Franchini, M. & Mannucci, P. M. Thrombogenicity and cardiovascular effects of ambient air pollution. Blood 118, 2405–2412 (2011).Article 
    CAS 

    Google Scholar 
    Yin, F. et al. Diesel exhaust induces systemic lipid peroxidation and development of dysfunctional pro-oxidant and pro-inflammatory high-density lipoprotein. Arterioscler. Thromb. Vasc. Biol. 33, 1153–1161 (2013).Article 
    CAS 

    Google Scholar 
    Chirinos, J. A. et al. Elevation of endothelial microparticles, platelets, and leukocyte activation in patients with venous thromboembolism. J. Am. Coll. Cardiol. 45, 1467–1471 (2005).Article 
    CAS 

    Google Scholar 
    Adar, S. D. et al. Fine particulate air pollution and the progression of carotid intima-medial thickness: A prospective cohort study from the multi-ethnic study of atherosclerosis and air pollution. PLoS Med. 10, e1001430 (2013).Article 

    Google Scholar 
    Kampfrath, T. et al. Chronic fine particulate matter exposure induces systemic vascular dysfunction via NADPH oxidase and TLR4 pathways. Circ. Res. 108, 716–726 (2011).Article 
    CAS 

    Google Scholar 
    Sun, Q. et al. Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. JAMA 294, 3003–3010 (2005).Article 
    CAS 

    Google Scholar 
    Dennekamp, M. et al. Outdoor air pollution as a trigger for out-of-hospital cardiac arrests. Epidemiology 21, 494–500 (2010).Straney, L. et al. Evaluating the impact of air pollution on the incidence of out-of-hospital cardiac arrest in the Perth Metropolitan Region: 2000–2010. J. Epidemiol. Commun. Health 68, 6–12 (2014).Article 

    Google Scholar 
    Sullivan, J. et al. Exposure to ambient fine particulate matter and primary cardiac arrest among persons with and without clinically recognized heart disease. Am. J. Epidemiol. 157, 501–509 (2003).Article 
    CAS 

    Google Scholar 
    Barton, T. J. et al. Traditional cardiovascular risk factors strongly underestimate the 5-year occurrence of cardiovascular morbidity and mortality in spinal cord injured individuals. Arch. Phys. Med. Rehabil. 102, 27–34 (2021).Article 

    Google Scholar 
    Burg, M. M. et al. Risk for incident hypertension associated with PTSD in military veterans, and the effect of PTSD treatment. Psychosom. Med. 79, 181 (2017).Article 

    Google Scholar 
    Hinojosa, R. Veterans’ likelihood of reporting cardiovascular disease. J. Am. Board Fam. Med. 32, 50–57 (2019).Article 

    Google Scholar 
    Rush, T., LeardMann, C. A. & Crum-Cianflone, N. F. Obesity and associated adverse health outcomes among US military members and veterans: Findings from the millennium cohort study. Obesity 24, 1582–1589 (2016).Article 

    Google Scholar 
    Stefanovics, E. A., Potenza, M. N. & Pietrzak, R. H. Smoking, obesity, and their co-occurrence in the US military veterans: Results from the national health and resilience in veterans study. J. Affect. Disord. 274, 354–362 (2020).Article 

    Google Scholar 
    Brook, R. D. et al. Insights into the mechanisms and mediators of the effects of air pollution exposure on blood pressure and vascular function in healthy humans. Hypertension 54, 659–667 (2009).Article 
    CAS 

    Google Scholar 
    Rajagopalan, S. & Brook, R. D. Air pollution and type 2 diabetes: Mechanistic insights. Diabetes 61, 3037–3045 (2012).Article 
    CAS 

    Google Scholar 
    Franklin, S. S. & Wong, N. D. Hypertension and cardiovascular disease: Contributions of the Framingham Heart Study. Glob. Heart 8, 49–57 (2013).Article 

    Google Scholar 
    Gu, D. et al. Blood pressure and risk of cardiovascular disease in Chinese men and women. Am. J. Hypertens. 21, 265–272 (2008).Article 

    Google Scholar 
    Wang, H. et al. Blood pressure, body mass index and risk of cardiovascular disease in Chinese men and women. BMC Public Health 10, 189 (2010).Article 

    Google Scholar 
    O’Brien, E. The Lancet Commission on hypertension: Addressing the global burden of raised blood pressure on current and future generations. J. Clin. Hypertens. 19, 564–568 (2017).Article 

    Google Scholar 
    Cai, Y. et al. Associations of short-term and long-term exposure to ambient air pollutants with hypertension: A systematic review and meta-analysis. Hypertension 68, 62–70 (2016).Article 
    CAS 

    Google Scholar 
    Zhang, Z., Laden, F., Forman, J. P. & Hart, J. E. Long-term exposure to particulate matter and self-reported hypertension: A prospective analysis in the Nurses’ Health Study. Environ. Health Perspect. 124, 1414–1420 (2016).Article 

    Google Scholar 
    Cosselman, K. E., Navas-Acien, A. & Kaufman, J. D. Environmental factors in cardiovascular disease. Nat. Rev. Cardiol. 12, 627 (2015).Article 
    CAS 

    Google Scholar 
    Baccarelli, A. et al. Effects of particulate air pollution on blood pressure in a highly exposed population in Beijing, China: A repeated-measure study. Environ. Heal. 10, 108 (2011).Article 

    Google Scholar 
    Mordukhovich, I. et al. Black carbon exposure, oxidative stress genes, and blood pressure in a repeated-measures study. Environ. Health Perspect. 117, 1767–1772 (2009).Article 
    CAS 

    Google Scholar 
    Chen, H. et al. Spatial association between ambient fine particulate matter and incident hypertension. Circulation 129, 562–569 (2014).Article 
    CAS 

    Google Scholar 
    Honjo, K. et al. The effects of smoking and smoking cessation on mortality from cardiovascular disease among Japanese: Pooled analysis of three large-scale cohort studies in Japan. Tob. Control 19, 50–57 (2010).Article 

    Google Scholar 
    Lawlor, D. A., Song, Y.-M., Sung, J., Ebrahim, S. & Smith, G. D. The association of smoking and cardiovascular disease in a population with low cholesterol levels: A study of 648 346 men from the Korean national health system prospective cohort study. Stroke 39, 760–767 (2008).Article 
    CAS 

    Google Scholar 
    Wold, L. E. et al. Cardiovascular remodeling in response to long-term exposure to fine particulate matter air pollution. Circ. Hear. Fail. 5, 452–461 (2012).Article 
    CAS 

    Google Scholar 
    Zoeller, R. T. et al. Endocrine-disrupting chemicals and public health protection: A statement of principles from The Endocrine Society. Endocrinology 153, 4097–4110 (2012).Article 
    CAS 

    Google Scholar 
    Ruiz, D., Becerra, M., Jagai, J. S., Ard, K. & Sargis, R. M. Disparities in environmental exposures to endocrine-disrupting chemicals and diabetes risk in vulnerable populations. Diabetes Care 41, 193–205 (2018).Article 
    CAS 

    Google Scholar 
    Taylor, D. Toxic Communities: Environmental Racism, Industrial Pollution, and Residential Mobility (NYU Press, 2014).
    Google Scholar 
    Newbold, R. R., Padilla-Banks, E. & Jefferson, W. N. Environmental estrogens and obesity. Mol. Cell. Endocrinol. 304, 84–89 (2009).Article 
    CAS 

    Google Scholar 
    Szyszkowicz, M., Rowe, B. H. & Brook, R. D. Even low levels of ambient air pollutants are associated with increased emergency department visits for hypertension. Can. J. Cardiol. 28, 360–366 (2012).Article 
    CAS 

    Google Scholar 
    van den Hooven, E. H. et al. Air pollution, blood pressure, and the risk of hypertensive complications during pregnancy: The generation R study. Hypertension 57, 406–412 (2011).Article 

    Google Scholar 
    Vali, M. et al. Effect of meteorological factors and Air Quality Index on the COVID-19 epidemiological characteristics: An ecological study among 210 countries. Environ. Sci. Pollut. Res. 38, 1–11 (2021).Kiani, B. et al. Association between heavy metals and colon cancer: An ecological study based on geographical information systems in North-Eastern Iran. BMC Cancer 21, 1–12 (2021).Article 

    Google Scholar 
    Cyranoski, D. China tests giant air cleaner to combat smog. Nature 555, 152–154 (2018).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Uptrend in global managed honey bee colonies and production based on a six-decade viewpoint, 1961–2017

    Neumann, P. & Carreck, N. L. Honey bee colony losses. J. Apic. Res. 49(1), 1–6 (2010).Article 

    Google Scholar 
    Osterman, J. et al. Global trends in the number and diversity of managed pollinator species. Agr. Ecosyst. Environ. 322, 107653. https://doi.org/10.1016/j.agee.2021.107653 (2021).Article 

    Google Scholar 
    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).Article 

    Google Scholar 
    Hristov, P., Shumkova, R., Palova, N. & Neov, B. Factors associated with honey bee colony losses: A mini-review. Vet. Sci. 7(4), 166 (2020).Article 

    Google Scholar 
    Dukas, R. Mortality rates of honey bees in the wild. Insectes Soc. 55, 252–255 (2008).Article 

    Google Scholar 
    Ellis, J. D., Evans, J. D. & Pettis, J. Colony losses, managed colony population decline, and colony collapse disorder in the United States. J. Apic. Res. 49, 134–136 (2010).Article 

    Google Scholar 
    Vanengelsdorp, D. & Meixner, M. D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 103(Suppl 1), S80-95 (2010).Article 

    Google Scholar 
    Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).Article 

    Google Scholar 
    Patel, V., Pauli, N., Biggs, E., Barbour, L. & Boruff, B. Why bees are critical for achieving sustainable development. Ambio 50, 49–59 (2021).Article 

    Google Scholar 
    Aylanc, V., Falcão, S. I., Ertosun, S. & Vilas-Boas, M. From the hive to the table: Nutrition value, digestibility and bioavailability of the dietary phytochemicals present in the bee pollen and bee bread. Trends Food Sci. Tech. 109, 464–481 (2021).Article 
    CAS 

    Google Scholar 
    Kieliszek, M. et al. Pollen and bee bread as new health-oriented products: A review. Trends Food Sci. Tech. 71, 170–180 (2018).Article 
    CAS 

    Google Scholar 
    Bixby, M. et al. Honey bee queen production: Canadian costing case study and profitability analysis. J. Econ. Entomol. 113, 1618–1627 (2020).Article 

    Google Scholar 
    Ghosh, S., Jung, C. & Meyer-Rochow, V. B. Nutritional value and chemical composition of larvae, pupae, and adults of worker honey bee, Apis mellifera ligustica as a sustainable food source. J. Asia-Pac. Entomol. 19, 487–495 (2016).Article 
    CAS 

    Google Scholar 
    Ulmer, M., Smetana, S. & Heinz, V. Utilizing honeybee drone brood as a protein source for food products: Life cycle assessment of apiculture in Germany. Resour. Conser. Recy. 154, 104576. https://doi.org/10.1016/j.resconrec.2019.104576 (2020).Article 

    Google Scholar 
    FAO. Value-added products from beekeeping. FAO Agricultural Services Bulletin. https://www.fao.org/publications/card/en/c/a76265ff-7440-57a6-82da-21976b9fde8d (1996).FAO. Beekeeping and sustainable livelihoods. Diversification booklet 1. https://www.fao.org/3/y5110e/y5110e00.htm (2004).Halvorson, K., Baumung, R., Leroy, G., Chen, C. & Boettcher, P. Protection of honeybees and other pollinators: One global study. Apidologie 52, 535–547 (2021).Article 

    Google Scholar 
    Moritz, R. F. A. & Erler, S. Lost colonies found in a data mine: Global honey trade but not pests or pesticides as a major cause of regional honeybee colony declines. Agr. Ecosyst. Environ. 216, 44–50 (2016).Article 

    Google Scholar 
    Naug, D. Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biol. Conserv. 142, 2369–2372 (2009).Article 

    Google Scholar 
    Pohorecka, K., Szczęsna, T., Witek, M., Miszczak, A. & Sikorski, P. The exposure of honey bees to pesticide residues in the hive environment with regard to winter colony losses. J. Apicult. Sci. 61, 105 (2017).Article 
    CAS 

    Google Scholar 
    Van Dooremalen, C. et al. Winter survival of individual honey bees and honey bee colonies depends on level of Varroa destructor infestation. PLoS ONE 7, e36285. https://doi.org/10.1371/journal.pone.0036285 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Steinhauer, N. et al. Drivers of colony losses. Curr. Opin. Insect Sci. 26, 142–148 (2018).Article 

    Google Scholar 
    Brodschneider, R. et al. Multi-country loss rates of honey bee colonies during winter 2016/2017 from the COLOSS survey. J. Apic. Res. 57, 452–457 (2018).Article 

    Google Scholar 
    Degrandi-Hoffman, G., Graham, H., Ahumada, F., Smart, M. & Ziolkowski, N. The economics of honey bee (Hymenoptera: Apidae) management and overwintering strategies for colonies used to pollinate almonds. J. Econ. Entomol. 112(6), 2524–2533 (2019).Article 
    CAS 

    Google Scholar 
    Porto, R. G. et al. Pollination ecosystem services: A comprehensive review of economic values, research funding and policy actions. Food Sec. 12, 1425–1442 (2020).Article 

    Google Scholar 
    Kielmanowicz, M. G. et al. Prospective large-scale field study generates predictive model identifying major contributors to colony losses. PLoS Pathog. 11, e1004816. https://doi.org/10.1371/journal.ppat.1004816 (2015).Article 
    CAS 

    Google Scholar 
    Kulhanek, et al. A national survey of managed honey bee 2015–2016 annual colony losses in the USA. J. Apic. Res. 56(4), 328–340 (2017).Article 

    Google Scholar 
    van Engelsdorp, D. & Meixner, M. D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 103, S80–S95 (2010).Article 

    Google Scholar 
    Caron, D. M., Burgett, M., Rucker, R. & Thurman, W. Honey bee colony mortality in the Pacific Northwest winter 2008/2009. Am. Bee J. 150, 265–269 (2010).
    Google Scholar 
    Mashilingi, S. K., Zhang, H., Garibaldi, L. A. & An, J. Honeybees are far too insufficient to supply optimum pollination services in agricultural systems worldwide. Agric. Ecosyst. Environ. 335, 108003. https://doi.org/10.1016/j.agee.2022.108003 (2022).Article 

    Google Scholar 
    Kohsaka, R., Park, M. S. & Uchiyama, Y. Beekeeping and honey production in Japan and South Korea: Past and present. J. Ethn. Foods 4(2), 72–79 (2017).Article 

    Google Scholar 
    Walker, M. J., Cowen, S., Gray, K., Hancock, P. & Burns, D. T. Honey authenticity: The opacity of analytical reports – part 1 defining the problem. npj Sci. Food 6(1), 1–9 (2022).
    Google Scholar 
    Fakhlaei, R. et al. The toxic impact of honey adulteration: A review. Foods 9(11), 1538. https://doi.org/10.3390/foods9111538 (2020).Article 
    CAS 

    Google Scholar 
    Rogers, R., Hassler, E., Carey, Q. & Cazier, J. More time to fly: With a warming climate the Western honey bee (Apis mellifera, Linnaeus) now has more temperature-eligible flight hours than 40 years ago. J. Apic. Res. https://doi.org/10.1080/00218839.2022.2073633 (2022).Article 

    Google Scholar 
    Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19(11), 915–918 (2009).Article 
    CAS 

    Google Scholar 
    FAO. Data collection. Food and Agriculture Statistics. https://www.fao.org/food-agriculture-statistics/data-collection/en/ (2022).Le Conte, Y. & Navajas, M. Climate change: Impact on honey bee populations and diseases. Rev. Sci. Tech. 27(2), 499–510 (2008).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2022).FAO. Crops and livestock products. FAOSTAT. https://www.fao.org/faostat/en/#data/QCL (2022).Global Change Data Lab. Global and regional population estimates (US Census Bureau vs. UN), World. Our World in Data. https://ourworldindata.org/grapher/global-and-regional-population-estimates-us-census-bureau-vs-un (2021).van Brakel, J. Peak signal detection in realtime timeseries data: Robust peak detection algorithm (using z-scores). Stack Overflow. https://stackoverflow.com/questions/22583391/ (2014).Rykov, Y., Thach, T.-Q., Bojic, I., Christopoulos, G. & Car, J. Digital biomarkers for depression screening with wearable devices: Cross-sectional study with machine learning modeling. JMIR Mhealth Uhealth 9, e24872 (2021).Article 

    Google Scholar  More

  • in

    Urinary neopterin reflects immunological variation associated with age, helminth parasitism, and the microbiome in a wild primate

    Schneider-Crease, I. et al. Identifying wildlife reservoirs of neglected taeniid tapeworms: Non-invasive diagnosis of endemic Taenia serialis infection in a wild primate population. PLoS Negl Trop Dis 11, e0005709 (2017).Article 

    Google Scholar 
    Schneider-Crease, I. et al. Ecology eclipses phylogeny as a major driver of nematode parasite community structure in a graminivorous primate. Funct. Ecol. 34, 1898–1906 (2020).Article 

    Google Scholar 
    Gillespie, T. R. Noninvasive assessment of gastrointestinal parasite infections in free-ranging primates. Int. J. Primatol. 27, 1129 (2006).Article 

    Google Scholar 
    Budischak, S. A., Hoberg, E. P., Abrams, A., Jolles, A. E. & Ezenwa, V. O. A combined parasitological molecular approach for noninvasive characterization of parasitic nematode communities in wild hosts. Mol. Ecol. Resour. 15, 1112–1119 (2015).Article 

    Google Scholar 
    Ghalehnoei, H., Bagheri, A., Fakhar, M. & Mishan, M. A. Circulatory microRNAs: promising non-invasive prognostic and diagnostic biomarkers for parasitic infections. Eur. J. Clin. Microbiol. Infect. Dis. 39, 395–402 (2020).Article 
    CAS 

    Google Scholar 
    Hing, S., Narayan, E. J., Andrew Thompson, R. C. & Godfrey, S. S. The relationship between physiological stress and wildlife disease: consequences for health and conservation. Wildl Res. 43, 51–60 (2016).Article 

    Google Scholar 
    Kersey, D. C. & Dehnhard, M. The use of noninvasive and minimally invasive methods in endocrinology for threatened mammalian species conservation. Gen. Comp. Endocrinol. 203, 296–306 (2014).Article 
    CAS 

    Google Scholar 
    Behringer, V. & Deschner, T. Non-invasive monitoring of physiological markers in primates. Horm. Behav. 91, 3–18 (2017).Article 
    CAS 

    Google Scholar 
    Higham, J. P., Stahl-Hennig, C. & Heistermann, M. Urinary suPAR: A non-invasive biomarker of infection and tissue inflammation for use in studies of large free-ranging mammals. R Soc Open Sci. 7, 191825 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Heistermann, M. & Higham, J. P. Urinary neopterin, a non-invasive marker of mammalian cellular immune activation, is highly stable under field conditions. Sci Rep. 5, 16308 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Higham, J. P. et al. Evaluating noninvasive markers of nonhuman primate immune activation and inflammation. Am. J. Phys. Anthropol. 158, 673–684 (2015).Article 

    Google Scholar 
    Behringer, V. et al. Elevated neopterin levels in wild, healthy chimpanzees indicate constant investment in unspecific immune system. BMC Zool. 4, 1–7 (2019).Article 

    Google Scholar 
    Dibakou, S. E., Basset, D., Souza, A., Charpentier, M. & Huchard, E. Determinants of variations in fecal neopterin in free-ranging mandrills. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00368 (2019).Article 

    Google Scholar 
    Löhrich, T., Behringer, V., Wittig, R. M., Deschner, T. & Leendertz, F. H. The use of neopterin as a noninvasive marker in monitoring diseases in wild chimpanzees. EcoHealth 15, 792–803 (2018).Article 

    Google Scholar 
    Behringer, V., Stevens, J. M. G., Leendertz, F. H., Hohmann, G. & Deschner, T. Validation of a method for the assessment of urinary neopterin levels to monitor health status in nonhuman primate species. Front Physiol. 8, 51 (2017).Article 

    Google Scholar 
    Negrey, J. D., Behringer, V., Langergraber, K. E. & Deschner, T. Urinary neopterin of wild chimpanzees indicates that cell-mediated immune activity varies by age, sex, and female reproductive status. Sci. Rep. 11, 9298 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Behringer, V. et al. Cell-mediated immune ontogeny is affected by sex but not environmental context in a long-lived primate species. Front. Ecol. Evol. 9, 272 (2021).Article 

    Google Scholar 
    Müller, N., Heistermann, M., Strube, C., Schülke, O. & Ostner, J. Age, but not anthelmintic treatment, is associated with urinary neopterin levels in semi-free ranging Barbary macaques. Sci. Rep. 7, 41973 (2017).Article 
    ADS 

    Google Scholar 
    Dibakou, S. E. et al. Ecological, parasitological and individual determinants of plasma neopterin levels in a natural mandrill population. Int. J. Parasitol. Parasites Wildl. 11, 198–206 (2020).Article 

    Google Scholar 
    Eisenhut, M. Neopterin in diagnosis and monitoring of infectious diseases. J. Biomark. 2013, 196432 (2013).Article 

    Google Scholar 
    Franceschi, C. & Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol. A Biol. Sci. Med Sci. 69(Suppl 1), S4–9 (2014).Article 

    Google Scholar 
    Basha, S., Surendran, N. & Pichichero, M. Immune responses in neonates. Expert. Rev. Clin. Immunol. 10, 1171–1184 (2014).Article 
    CAS 

    Google Scholar 
    Werner, E. R. et al. Determination of neopterin in serum and urine. Clin. Chem. 33, 62–66 (1987).Article 
    CAS 

    Google Scholar 
    Lucore, J. M., Marshall, A. J., Brosnan, S. F. & Benítez, M. E. Validating urinary neopterin as a biomarker of immune response in captive and wild capuchin monkeys. Front. Vet. Sci. 9, 918036. https://doi.org/10.3389/fvets.2022.918036 (2022).Article 

    Google Scholar 
    Berdowska, A. & Zwirska-Korczala, K. Neopterin measurement in clinical diagnosis. J. Clin. Pharm. Ther. 26, 319–329 (2001).Article 
    CAS 

    Google Scholar 
    Denz, H. et al. Value of urinary neopterin in the differential diagnosis of bacterial and viral infections. Klin. Wochenschr. 68, 218–222 (1990).Article 
    CAS 

    Google Scholar 
    Reibnegger, G. et al. Urinary neopterin reflects clinical activity in patients with rheumatoid arthritis. Arthritis Rheum. 29, 1063–1070 (1986).Article 
    CAS 

    Google Scholar 
    Huber, C. et al. Immune response-associated production of neopterin. Release from macrophages primarily under control of interferon-gamma. J. Exp. Med. 160, 310–316 (1984).Article 
    CAS 

    Google Scholar 
    Horak, E., Gassner, I., Sölder, B., Wachter, H. & Fuchs, D. Neopterin levels and pulmonary tuberculosis in infants. Lung 176, 337–344 (1998).Article 
    CAS 

    Google Scholar 
    Fendrich, C. et al. Urinary neopterin concentrations in rhesus monkeys after infection with simian immunodeficiency virus (SIVmac 251). AIDS 3, 305–307 (1989).Article 
    CAS 

    Google Scholar 
    Chan, C. P. Y. et al. Detection of serum neopterin for early assessment of dengue virus infection. J. Infect. 53, 152–158 (2006).Article 

    Google Scholar 
    Wu, D. F., Behringer, V., Wittig, R. M., Leendertz, F. H. & Deschner, T. Urinary neopterin levels increase and predict survival during a respiratory outbreak in wild chimpanzees (Taï National Park, Côte d’Ivoire). Sci. Rep. 8, 13346 (2018).Article 
    ADS 

    Google Scholar 
    Maizels, R. M. & McSorley, H. J. Regulation of the host immune system by helminth parasites. J. Allergy Clin. Immunol. 138, 666–675 (2016).Article 
    CAS 

    Google Scholar 
    Maizels, R. M. & Yazdanbakhsh, M. Immune regulation by helminth parasites: Cellular and molecular mechanisms. Nat. Rev. Immunol. 3, 733–744 (2003).Article 
    CAS 

    Google Scholar 
    Yazdanbakhsh, M., Kremsner, P. G. & van Ree, R. Allergy, parasites, and the hygiene hypothesis. Science 296, 490–494 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Faz-López, B., Morales-Montor, J. & Terrazas, L. I. Role of macrophages in the repair process during the tissue migrating and resident helminth infections. Biomed. Res. Int. 2016, 8634603 (2016).Article 

    Google Scholar 
    Garcia, H. H., Rodriguez, S., Friedland, J. S. Cysticercosis Working Group in Peru. Immunology of Taenia solium taeniasis and human cysticercosis. Parasite Immunol. 36, 388–396. https://doi.org/10.1111/pim.12126 (2014)Article 
    CAS 

    Google Scholar 
    Thaiss, C. A., Zmora, N., Levy, M. & Elinav, E. The microbiome and innate immunity. Nature 535, 65–74 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Schneider-Crease, I. A., Griffin, R. H., Gomery, M. A., Bergman, T. J. & Beehner, J. C. High mortality associated with tapeworm parasitism in geladas (Theropithecus gelada) in the Simien Mountains National Park, Ethiopia. Am. J. Primatol. https://doi.org/10.1002/ajp.22684 (2017).Article 

    Google Scholar 
    Nguyen, N. et al. Fitness impacts of tapeworm parasitism on wild gelada monkeys at Guassa, Ethiopia. Am. J. Primatol. 77, 579–594 (2015).Article 

    Google Scholar 
    Schneider-Crease, I. A. et al. Helminth infection is associated with dampened cytokine responses to viral and bacterial stimulations in Tsimane forager-horticulturalists. Evol. Med. Public Health 9, 349–359 (2021).Article 

    Google Scholar 
    Roberts, E. K., Lu, A., Bergman, T. J. & Beehner, J. C. Female reproductive parameters in wild geladas (Theropithecus gelada). Int. J. Primatol. 38, 1–20 (2017).Article 

    Google Scholar 
    Beehner, J. C. et al. Corrigendum to “Testosterone related to age and life-history stages in male baboons and geladas” [Horm. Behav. 56/4 (2009) 472-480]. Horm Behav. 80, 149 (2016).Article 

    Google Scholar 
    Erb, R. E., Tillson, S. A., Hodgen, G. D. & Plotka, E. D. Urinary creatinine as an index compound for estimating rate of excretion of steroids in the domestic sow. J. Anim. Sci. 30, 79–85 (1970).Article 
    CAS 

    Google Scholar 
    Tinsley Johnson, E., Snyder-Mackler, N., Lu, A., Bergman, T. J. & Beehner, J. C. Social and ecological drivers of reproductive seasonality in geladas. Behav. Ecol. 29, 574–588 (2018).Article 

    Google Scholar 
    Kaushik, S. & Kaur, J. Effect of chronic cold stress on intestinal epithelial cell proliferation and inflammation in rats. Stress 8, 191–197 (2005).Article 
    CAS 

    Google Scholar 
    Jarvey, J. C., Low, B. S., Pappano, D. J. & Bergman, T. J. Graminivory and fallback foods: annual diet profile of geladas (Theropithecus gelada) living in the Simien Mountains National Park, Ethiopia. Int. J. Primatol. https://doi.org/10.1007/s10764-018-0018-x (2018).Article 

    Google Scholar 
    Gowda, C., Hadley, C. & Aiello, A. E. The association between food insecurity and inflammation in the US adult population. Am. J. Public Health. 102, 1579–1586 (2012).Article 

    Google Scholar 
    Becker, D. J. et al. Macroimmunology: The drivers and consequences of spatial patterns in wildlife immune defence. J. Anim. Ecol. 89, 972–995 (2020).Article 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. R package version 1, 1–7 (2014).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2021. https://www.R-project.org/.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Simon, A. K., Hollander, G. A. & McMichael, A. Evolution of the immune system in humans from infancy to old age. Proc. Biol. Sci. 282, 20143085 (2015).
    Google Scholar 
    Heinonen, S. et al. Infant immune response to respiratory viral infections. Immunol. Allergy Clin. North Am. 39, 361–376 (2019).Article 

    Google Scholar 
    Teran, R. et al. Immune system development during early childhood in tropical Latin America: Evidence for the age-dependent down regulation of the innate immune response. Clin. Immunol. 138, 299–310 (2011).Article 
    CAS 

    Google Scholar 
    van de Pol, M. & Verhulst, S. Age-dependent traits: a new statistical model to separate within- and between-individual effects. Am. Nat. 167, 766–773 (2006).Article 

    Google Scholar 
    Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).Article 
    CAS 

    Google Scholar 
    Petrovsky, N., McNair, P. & Harrison, L. C. Diurnal rhythms of pro-inflammatory cytokines: regulation by plasma cortisol and therapeutic implications. Cytokine 10, 307–312 (1998).Article 
    CAS 

    Google Scholar 
    Lasselin, J., Rehman, J.-U., Åkerstedt, T., Lekander, M. & Axelsson, J. Effect of long-term sleep restriction and subsequent recovery sleep on the diurnal rhythms of white blood cell subpopulations. Brain Behav. Immun. 47, 93–99 (2015).Article 

    Google Scholar 
    Auzéby, A., Bogdan, A., Krosi, Z. & Touitou, Y. Time-dependence of urinary neopterin, a marker of cellular immune activity. Clin Chem. 34, 1866–1867 (1988).Article 

    Google Scholar 
    Ansari, A. & Williams, J. F. The eosinophilic response of the rat to infection with Taenia taeniaeformis. J. Parasitol. 62, 728–736 (1976).Article 
    CAS 

    Google Scholar 
    Schneider-Crease, I. A., Snyder-Mackler, N., Jarvey, J. C. & Bergman, T. J. Molecular identification of Taenia serialis coenurosis in a wild Ethiopian gelada (Theropithecus gelada). Vet. Parasitol. 198, 240–243 (2013).Article 
    CAS 

    Google Scholar 
    Terrazas, L. I., Bojalil, R., Govezensky, T. & Larralde, C. Shift from an early protective Th1-type immune response to a late permissive Th2-type response in murine cysticercosis (Taenia crassiceps). J. Parasitol. 84, 74–81 (1998).Article 
    CAS 

    Google Scholar 
    Toenjes, S. A., Spolski, R. J., Mooney, K. A. & Kuhn, R. E. The systemic immune response of BALB/c mice infected with larval Taenia crassiceps is a mixed Th1/Th2-type response. Parasitology 118(Pt 6), 623–633 (1999).Article 
    CAS 

    Google Scholar 
    Gaze, S. et al. Characterising the mucosal and systemic immune responses to experimental human hookworm infection. PLoS Pathog. 8, e1002520 (2012).Article 
    CAS 

    Google Scholar 
    Johnston, M. J. G., MacDonald, J. A. & McKay, D. M. Parasitic helminths: a pharmacopeia of anti-inflammatory molecules. Parasitology 136, 125–147 (2009).Article 
    CAS 

    Google Scholar 
    Cortés, A., Muñoz-Antoli, C., Esteban, J. G. & Toledo, R. Th2 and Th1 responses: Clear and hidden sides of immunity against intestinal helminths. Trends Parasitol. 33, 678–693 (2017).Article 

    Google Scholar 
    White, M. P. J., McManus, C. M. & Maizels, R. M. Regulatory T-cells in helminth infection: induction, function and therapeutic potential. Immunology 160, 248–260 (2020).Article 
    CAS 

    Google Scholar 
    Maizels, R. M. & Holland, M. J. Parasite immunity: Pathways for expelling intestinal helminths. Curr Biol. 8, R711–R714 (1998).Article 
    CAS 

    Google Scholar 
    Zhang, D. & Frenette, P. S. Cross talk between neutrophils and the microbiota. Blood 133, 2168–2177 (2019).Article 
    CAS 

    Google Scholar 
    Wang, J., Chen, W.-D. & Wang, Y.-D. The relationship between gut microbiota and inflammatory diseases: The role of macrophages. Front. Microbiol. 11, 1065 (2020).Article 

    Google Scholar 
    Pallikkuth, S. et al. Age associated microbiome and microbial metabolites modulation and its association with systemic inflammation in a rhesus macaque model. Front. Immunol. 12, 748397 (2021).Article 
    CAS 

    Google Scholar 
    Pierce, Z. et al. The infant gut microbiome is associated with stool markers of macrophage and neutrophil activity. FASEB J. 30, 668–9 (2016).
    Google Scholar 
    Levast, B. et al. Impact on the gut microbiota of intensive and prolonged antimicrobial therapy in patients with bone and joint infection. Front. Med. https://doi.org/10.3389/fmed.2021.586875 (2021).Article 

    Google Scholar 
    Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).Article 
    CAS 

    Google Scholar 
    Libertucci, J. & Young, V. B. The role of the microbiota in infectious diseases. Nat. Microbiol. 4, 35–45 (2019).Article 
    CAS 

    Google Scholar 
    Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Blaser, M. J. & Falkow, S. What are the consequences of the disappearing human microbiota?. Nat. Rev. Microbiol. 7, 887–894 (2009).Article 
    CAS 

    Google Scholar 
    Brown, E. M., Kenny, D. J. & Xavier, R. J. Gut microbiota regulation of T cells during inflammation and autoimmunity. Annu. Rev. Immunol. 37, 599–624 (2019).Article 
    CAS 

    Google Scholar 
    Gollwitzer, E. S. & Marsland, B. J. Impact of early-life exposures on immune maturation and susceptibility to disease. Trends Immunol. 36, 684–696 (2015).Article 
    CAS 

    Google Scholar 
    Ravi, A. et al. Loss of microbial diversity and pathogen domination of the gut microbiota in critically ill patients. Microbial. Genomics https://doi.org/10.1099/mgen.0.000293 (2019).McLaren, M. R. & Callahan, B. J. Pathogen resistance may be the principal evolutionary advantage provided by the microbiome. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190592 (2020).Article 

    Google Scholar 
    Ragonnaud, E. & Biragyn, A. Gut microbiota as the key controllers of “healthy” aging of elderly people. Immun Ageing 18, 2 (2021).Article 

    Google Scholar 
    Wilmanski, T. et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat. Metab. 3, 274–286 (2021).Article 

    Google Scholar 
    Cattadori, I. M. et al. Impact of helminth infections and nutritional constraints on the small intestine microbiota. PLoS ONE 11, e0159770 (2016).Article 

    Google Scholar 
    Houlden, A. et al. Chronic Trichuris muris infection in C57BL/6 mice causes significant changes in host microbiota and metabolome: Effects reversed by pathogen clearance. PLoS ONE 10, e0125945 (2015).Article 

    Google Scholar 
    Holm, J. B. et al. Chronic Trichuris muris infection decreases diversity of the intestinal microbiota and concomitantly increases the abundance of Lactobacilli. PLoS ONE 10, e0125495 (2015).Article 

    Google Scholar 
    Peachey, L. E., Jenkins, T. P. & Cantacessi, C. This gut ain’t big enough for both of us. Or is it? Helminth–microbiota interactions in veterinary species. Trends Parasitol. 33, 619–632 (2017).Article 

    Google Scholar  More

  • in

    Visual threats reduce blood-feeding and trigger escape responses in Aedes aegypti mosquitoes

    World Health Organization. World Health Statistics 2018. (WHO, 2018).Wynne, N. E., Lorenzo, M. G. & Vinauger, C. Mechanism and plasticity of vectors’ host-seeking behavior. Curr. Opin. Insect Sci. 40, 1–5 (2020).Article 

    Google Scholar 
    Carlile, P. A., Peters, R. A. & Evans, C. S. Detection of a looming stimulus by the Jacky dragon: Selective sensitivity to characteristics of an aerial predator. Anim. Behav. 72, 553–562 (2006).Article 

    Google Scholar 
    Ingle, D. J. Visually elicited evasive behavior in frogs. Bioscience 40, 284–291 (1990).Article 

    Google Scholar 
    Yilmaz, M. & Meister, M. Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23, 2011–2015 (2013).Article 
    CAS 

    Google Scholar 
    Temizer, I., Donovan, J. C., Baier, H. & Semmelhack, J. L. A visual pathway for looming-evoked escape in larval zebrafish. Curr. Biol. 25, 1823–1834 (2015).Article 
    CAS 

    Google Scholar 
    Scarano, F., Tomsic, D. & Sztarker, J. Direction selective neurons responsive to horizontal motion in a crab reflect an adaptation to prevailing movements in flat environments. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.0372-20.2020 (2020).Article 

    Google Scholar 
    Scarano, F. & Tomsic, D. Escape response of the crab Neohelice to computer generated looming and translational visual danger stimuli. J. Physiol. Paris 108, 141–147 (2014).Article 

    Google Scholar 
    Santer, R. D., Rind, F. C., Stafford, R. & Simmons, P. J. Role of an identified looming-sensitive neuron in triggering a flying locust’s escape. J. Neurophysiol. 95, 3391–3400 (2006).Article 

    Google Scholar 
    Simmons, P. J., Rind, F. C. & Santer, R. D. Escapes with and without preparation: The neuroethology of visual startle in locusts. J. Insect Physiol. 56, 876–883 (2010).Article 
    CAS 

    Google Scholar 
    Dupuy, F., Casas, J., Body, M. & Lazzari, C. R. Danger detection and escape behaviour in wood crickets. J. Insect Physiol. 57, 865–871 (2011).Article 
    CAS 

    Google Scholar 
    Muijres, F. T., Elzinga, M. J., Melis, J. M. & Dickinson, M. H. Flies evade looming targets by executing rapid visually directed banked turns. Science 344, 172–177 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Ache, J. M. et al. Neural basis for looming size and velocity encoding in the Drosophila giant fiber escape pathway. Curr. Biol. 29, 1073-1081.e4 (2019).Article 
    CAS 

    Google Scholar 
    Domenici, P., Booth, D., Blagburn, J. M. & Bacon, J. P. Cockroaches keep predators guessing by using preferred escape trajectories. Curr. Biol. 18, 1792–1796 (2008).Article 
    CAS 

    Google Scholar 
    Smolka, J., Zeil, J. & Hemmi, J. M. Natural visual cues eliciting predator avoidance in fiddler crabs. Proc. Biol. Sci. 278, 3584–3592 (2011).
    Google Scholar 
    Card, G. & Dickinson, M. Performance trade-offs in the flight initiation of Drosophila. J. Exp. Biol. 211, 341–353 (2008).Article 

    Google Scholar 
    Sun, Y. A. & Wyman, R. J. Neurons of the Drosophila giant fiber system: I. Dorsal longitudinal motor neurons. J. Comp. Neurol. 387, 157–166 (1997).Article 
    CAS 

    Google Scholar 
    von Reyn, C. R. et al. Feature integration drives probabilistic behavior in the Drosophila escape response. Neuron 94, 1190-1204.e6 (2017).Article 

    Google Scholar 
    Fotowat, H., Fayyazuddin, A., Bellen, H. J. & Gabbiani, F. A novel neuronal pathway for visually guided escape in Drosophila melanogaster. J. Neurophysiol. 102, 875–885 (2009).Article 

    Google Scholar 
    Card, G. & Dickinson, M. H. Visually mediated motor planning in the escape response of Drosophila. Curr. Biol. 18, 1300–1307 (2008).Article 
    CAS 

    Google Scholar 
    Matherne, M. E., Cockerill, K., Zhou, Y., Bellamkonda, M. & Hu, D. L. Mammals repel mosquitoes with their tails. J. Exp. Biol. 221, 178905 (2018).Article 

    Google Scholar 
    Cribellier, A. et al. Diurnal and nocturnal mosquitoes escape looming threats using distinct flight strategies. Curr. Biol. 32, 1232-1246.e5 (2022).Article 
    CAS 

    Google Scholar 
    Cribellier, A., Spitzen, J., Straw, A. D., van Leeuwen, J. L. & Muijres, F. T. Escape flight performances of night-active malaria mosquitoes: the role of visual and airflow cues of an approaching object. in Integrative and Comparative Biology. Vol. 61. E170–E171 (Oxford University Press Inc Journals Dept, 2021).Reid, J. A. Anopheline Mosquitoes of Malaya and Borneo. Studies from the Institute for Medical Research, Malaysia. (1968).Clements, A. N. The Biology of Mosquitoes. Volume 2: Sensory Reception and Behaviour (CABI Publishing, 1999).
    Google Scholar 
    Tuno, N., Tsuda, Y., Takagi, M. & Swonkerd, W. Pre- and postprandial mosquito resting behavior around cattle hosts. J. Am. Mosq. Control Assoc. 19, 211–219 (2003).
    Google Scholar 
    Day, J. F. & Edman, J. D. Mosquito engorgement on normally defensive hosts depends on host activity Patterns. J. Med. Entomol. 21, 732–740 (1984).Article 
    CAS 

    Google Scholar 
    Edman, J. D., Webber, L. A. & Kale, H. W. Effect of mosquito density on the interrelationship of host behavior and mosquito feeding success. Am. J. Trop. Med. Hyg. 21, 487–491 (1972).Article 
    CAS 

    Google Scholar 
    Christophers, S. R. Aedes aegypti: The Yellow Fever Mosquito. (1960).Ponlawat, A. & Harrington, L. C. Blood feeding patterns of Aedes aegypti and Aedes albopictus in Thailand. J. Med. Entomol. 42, 844–849 (2005).Article 

    Google Scholar 
    Walilko, T. J., Viano, D. C. & Bir, C. A. Biomechanics of the head for Olympic boxer punches to the face. Br. J. Sports Med. 39, 710–719 (2005).Article 
    CAS 

    Google Scholar 
    Reiser, M. B. & Dickinson, M. H. A modular display system for insect behavioral neuroscience. J. Neurosci. Methods 167, 127–139 (2008).Article 

    Google Scholar 
    Cribellier, A. Biomechanics of Flying Mosquitoes During Capture and Escape. Doctoral Dissertation. (Wageningen University, 2021).Hu, X., Leming, M. T., Whaley, M. A. & O’Tousa, J. E. Rhodopsin coexpression in UV photoreceptors of Aedes aegypti and Anopheles gambiae mosquitoes. J. Exp. Biol. 217, 1003–1008 (2014).
    Google Scholar 
    Tammero, L. F., Frye, M. A. & Dickinson, M. H. Spatial organization of visuomotor reflexes in Drosophila. J. Exp. Biol. 207, 113–122 (2004).Article 

    Google Scholar 
    Tammero, L. F. & Dickinson, M. H. Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster. J. Exp. Biol. 205, 2785–2798 (2002).Article 

    Google Scholar 
    Muijres, F. T. et al. Escaping blood-fed malaria mosquitoes minimize tactile detection without compromising on take-off speed. J. Exp. Biol. 220, 3751–3762 (2017).Article 
    CAS 

    Google Scholar 
    van Veen, W. G., van Leeuwen, J. L. & Muijres, F. T. Malaria mosquitoes use leg push-off forces to control body pitch during take-off. J. Exp. Zool. A Ecol. Integr. Physiol. 333, 38–49 (2020).Article 

    Google Scholar 
    Caro, T. et al. Benefits of zebra stripes: Behaviour of tabanid flies around zebras and horses. PLoS ONE 14, e0210831 (2019).Article 
    CAS 

    Google Scholar 
    Edman, J. D., Webber, L. A. & Schmid, A. A. Effect of host defenses on the feeding pattern of Culex nigripalpus when offered a choice of blood sources. J. Parasitol. 60, 874–883 (1974).Article 
    CAS 

    Google Scholar 
    Walker, E. D. & Edman, J. D. The influence of host defensive behavior on mosquito (Diptera: Culicidae) biting persistence1. J. Med. Entomol. 22, 370–372 (1985).Article 
    CAS 

    Google Scholar 
    Warnes, M. L. & Finlayson, L. H. Effect of host behaviour on host preference in Stomoxys calcitrans. Med. Vet. Entomol. 1, 53–57 (1987).Article 
    CAS 

    Google Scholar 
    Vinauger, C. et al. Modulation of host learning in Aedes aegypti mosquitoes. Curr. Biol. 28, 333-344.e8 (2018).Article 
    CAS 

    Google Scholar 
    Wolff, G. H. & Riffell, J. A. Olfaction, experience and neural mechanisms underlying mosquito host preference. J. Exp. Biol. 221, 157131 (2018).Article 

    Google Scholar 
    Alonso San Alberto, D. et al. The olfactory gating of visual preferences to human skin and visible spectra in mosquitoes. Nat. Commun. 13, 1–14 (2022).Article 

    Google Scholar 
    van Breugel, F., Riffell, J., Fairhall, A. & Dickinson, M. H. Mosquitoes use vision to associate odor plumes with thermal targets. Curr. Biol. 25, 2123–2129 (2015).Article 

    Google Scholar 
    Vinauger, C. et al. Visual-olfactory integration in the human disease vector mosquito, Aedes aegypti. Curr. Biol. 29, 2509-2516.e5 (2019).Article 
    CAS 

    Google Scholar 
    Grant, A. J. & O’Connell, R. J. Age-related changes in female mosquito carbon dioxide detection. J. Med. Entomol. 44, 617–623 (2007).Article 
    CAS 

    Google Scholar 
    Tallon, A. K., Hill, S. R. & Ignell, R. Sex and age modulate antennal chemosensory-related genes linked to the onset of host seeking in the yellow-fever mosquito, Aedes aegypti. Sci. Rep. 9, 43 (2019).Article 
    ADS 

    Google Scholar 
    Eilerts, D. F., VanderGiessen, M., Bose, E. A., Broxton, K. & Vinauger, C. Odor-specific daily rhythms in the olfactory sensitivity and behavior of Aedes aegypti mosquitoes. Insects 9, 147 (2018).Article 

    Google Scholar 
    Taylor, B. & Jones, M. D. The circadian rhythm of flight activity in the mosquito Aedes aegypti (L). The phase-setting effects of light-on and light-off. J. Exp. Biol. 51, 59–70 (1969).Article 
    CAS 

    Google Scholar 
    Peirce, J. et al. PsychoPy2: Experiments in behavior made easy. Behav. Res. Methods 51, 195–203 (2019).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. arXiv [stat.CO] (2014).Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Lund, U., & Agostinelli, C. Package “Circular”. Repository CRAN (2017).Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).Article 

    Google Scholar 
    Walker, J. A. Estimating velocities and accelerations of animal locomotion: A simulation experiment comparing numerical differentiation algorithms. J. Exp. Biol. 201, 981–995 (1998).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).Book 
    MATH 

    Google Scholar  More

  • in

    Differences in fish herbivory among tropical and temperate seaweeds and annual patterns in kelp consumption influence the tropicalisation of temperate reefs

    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4(8), 1044–1059 (2020).Article 

    Google Scholar 
    Hobbs, R. J., Valentine, L. E., Standish, R. J. & Jackson, S. T. Movers and stayers: Novel assemblages in changing environments. Trends Ecol. Evol. 33, 116–128 (2017).Article 

    Google Scholar 
    Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).Article 

    Google Scholar 
    Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: Altered species interactions are more important than direct effects. Glob. Change Biol. 20, 2221–2229 (2014).Article 
    ADS 

    Google Scholar 
    Gómez-Aparicio, L., García-Valdés, R., Ruíz-Benito, P. & Zavala, M. A. Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: Implications for forest management under global change. Glob. Change Biol. 17, 2400–2414 (2011).Article 
    ADS 

    Google Scholar 
    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science https://doi.org/10.1126/science.aai9214 (2017).Article 

    Google Scholar 
    Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671. https://doi.org/10.1126/science.aaf7671 (2016).Article 
    CAS 

    Google Scholar 
    Vergés, A. et al. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B-Biol. Sci. 281, 20140846. https://doi.org/10.1098/rspb.2014.0846 (2014).Article 

    Google Scholar 
    Poore, A. G. B. et al. Global patterns in the impact of marine herbivores on benthic primary producers. Ecol. Lett. 15, 912–922. https://doi.org/10.1111/j.1461-0248.2012.01804.x (2012).Article 

    Google Scholar 
    Bennett, S., Wernberg, T., Harvey, E. S., Santana-Garcon, J. & Saunders, B. J. Tropical herbivores provide resilience to a climate-mediated phase shift on temperate reefs. Ecol. Lett. 18, 714–723 (2015).Article 

    Google Scholar 
    Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory and loss of kelp. Proc. Natl. Acad. Sci. 113(48), 13791–13796 (2016).Article 
    ADS 

    Google Scholar 
    Vergés, A. et al. Tropical rabbitfish and the deforestation of a warming temperate sea. J. Ecol. 102, 1518–1527. https://doi.org/10.1111/1365-2745.12324 (2014).Article 

    Google Scholar 
    Kumagai, N. H. et al. Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming. Proc. Natl. Acad. Sci. 115, 8990–8995 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Demko, A. M. et al. Declines in plant palatability from polar to tropical latitudes depend on herbivore and plant identity. Ecology 98, 2312–2321. https://doi.org/10.1002/ecy.1918 (2017).Article 

    Google Scholar 
    Floeter, S. R., Behrens, M. D., Ferreira, C. E. L., Paddack, M. J. & Horn, M. H. Geographical gradients of marine herbivorous fishes: Patterns and processes. Mar Biol 147, 1435–1447 (2005).Article 

    Google Scholar 
    Longo, G. O., Hay, M. E., Ferreira, C. E. L. & Floeter, S. R. Trophic interactions across 61 degrees of latitude in the Western Atlantic. Glob. Ecol. Biogeogr. 28, 107–117. https://doi.org/10.1111/geb.12806 (2019).Article 

    Google Scholar 
    Bolser, R. & Hay, M. Are tropical plants better defended? Palatability and defenses of temperate versus tropical seaweeds. Ecology 77, 2269–2286 (1996).Article 

    Google Scholar 
    Borer, E. T. et al. Global biogeography of autotroph chemistry: is insolation a driving force?. Oikos 122, 1121–1130. https://doi.org/10.1111/j.1600-0706.2013.00465.x (2013).Article 
    CAS 

    Google Scholar 
    Miranda, T. et al. Convictfish on the move: Variation in growth and trophic niche space along a latitudinal gradient. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsz098%JICESJournalofMarineScience (2019).Article 

    Google Scholar 
    Linton, S. M. The structure and function of cellulase (endo-β-1, 4-glucanase) and hemicellulase (β-1, 3-glucanase and endo-β-1, 4-mannase) enzymes in invertebrates that consume materials ranging from microbes, algae to leaf litter. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 240, 110354 (2020).Article 
    CAS 

    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925. https://doi.org/10.1038/nclimate1958 (2013).Article 
    ADS 

    Google Scholar 
    Nakamura, Y., Feary, D. A., Kanda, M. & Yamaoka, K. Tropical fishes dominate temperate reef fish communities within western Japan. PLoS ONE 8, e81107 (2013).Article 
    ADS 

    Google Scholar 
    Tanaka, K., Taino, S., Haraguchi, H., Prendergast, G. & Hiraoka, M. Warming off southwestern Japan linked to distributional shifts of subtidal canopy-forming seaweeds. Ecol. Evol. 2, 2854–2865. https://doi.org/10.1002/ece3.391 (2012).Article 

    Google Scholar 
    Pessarrodona, A. et al. Homogenization and miniaturization of habitat structure in temperate marine forests. Glob. Change Biol. 27, 5262–5275 (2021).Article 
    CAS 

    Google Scholar 
    Yamano, H., Sugihara, K. & Nomura, K. Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys. Res. Lett. 38, L04601. https://doi.org/10.1029/2010gl046474 (2011).Article 
    ADS 

    Google Scholar 
    Mezaki, T. & Kubota, S. Changes of hermatypic coral community in coastal sea area of Kochi, high-latitude Japan. Aquabiology 201, 332–337 (2012).
    Google Scholar 
    Serisawa, Y., Imoto, Z., Ishikawa, T. & Ohno, M. Decline of the Ecklonia cava population associated with increased seawater temperatures in Tosa Bay, southern Japan. Fish Sci 70, 189–191. https://doi.org/10.1111/j.0919-9268.2004.00788.x (2004).Article 
    CAS 

    Google Scholar 
    Kiriyama, T., Mitsunaga, N., Yasumoto, S., Fujii, A. & Yotsui, T. Undergrown phenomenon of brown alga, Hizikia fusiformis, thought to be caused by grazing of herbivores at Tsutsuura, Tsushima Islands [Japan]. Bulletin of Nagasaki Prefectural Institute of Fisheries (Japan) (1999).Kiriyama, T., Fujii, A. & Fujita, Y. Feeding and characteristic bite marks on Sargassum fusiforme by several herbivorous fishes. Aquac. Sci. 53, 355–365 (2005).
    Google Scholar 
    Yatsuya, K., Kiriyama, T., Kiyomoto, S., Taneda, T. & Yoshimura, T. On the deterioration process of Ecklonia and Eisenia beds observed in 2013 at Gounoura, Iki Island, Nagasaki Prefecture, Japan.-Initiation of the bed degradation due to high water temperature in summer and subsequent cascading effect by the grazing of herbivorous fish in autumn. Algal Resour. 7, 79–94 (2014).
    Google Scholar 
    Noda, M., Ohara, H., Murase, N., Ikeda, I. & Yamamoto, K. The grazing of Eisenia bicyclis and several species of Sargassaceous and Cystoseiraceous seaweeds by Siganus fuscescens in relation to the differences of species composition of their seaweed beds. Nippon Suisan Gakkaishi 80, 201–213 (2014).Article 

    Google Scholar 
    Noda, M., Kinoshita, J., Tanada, N. & Murase, N. Characteristics of bite scars observed in kelp forests of Lessoniaceae denuded by short-term foraging damages of the herbivorous fish Siganus fuscecens. J. Natl. Fish. Univ. 66, 111–122 (2018).
    Google Scholar 
    Wernberg, T. et al. Seaweed communities in retreat from ocean warming. Curr. Biol. 21, 1828–1832. https://doi.org/10.1016/j.cub.2011.09.028 (2011).Article 
    CAS 

    Google Scholar 
    Terazono, Y., Nakamura, Y., Imoto, Z. & Hiraoka, M. Fish response to expanding tropical Sargassum beds on the temperate coasts of Japan. Mar. Ecol. Prog. Ser. 464, 209–220. https://doi.org/10.3354/meps09873 (2012).Article 
    ADS 

    Google Scholar 
    Duffy, J. E. & Hay, M. E. Seaweed adaptations to herbivory – chemical, structural, and morphological defenses are often adjusted to spatial or temporal patterns of attack. Bioscience 40, 368–375 (1990).Article 

    Google Scholar 
    Endo, H., Suehiro, K., Kinoshita, J. & Agatsuma, Y. Combined effects of temperature and nutrient enrichment on palatability of the brown alga Sargassum yezoense (Yamada) Yoshida & T. Konno. Am. J. Plant Sci. 6, 275 (2015).Article 
    CAS 

    Google Scholar 
    Clements, K. D., German, D. P., Piché, J., Tribollet, A. & Choat, J. H. Integrating ecological roles and trophic diversification on coral reefs: Multiple lines of evidence identify parrotfishes as microphages. Biol. J. Linn. Soc. 120, 729–751. https://doi.org/10.1111/bij.12914 (2017).Article 

    Google Scholar 
    Wang, Y., Naumann, U., Wright, S. T. & Warton, D. I. mvabund–an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474 (2012).Article 

    Google Scholar 
    Wilson, S. K., Bellwood, D. R., Choat, J. H. & Furnas, M. J. Detritus in the epilithic algal matrix and its use by coral reef fishes. Oceanogr. Mar. Biol. Annu. Rev. 41, 279–309 (2003).
    Google Scholar 
    Helfman, G. S. in The Behaviour of Teleost Fishes 366–387 (Springer, 1986).Prince, J., LeBlanc, W. & Maciá, S. Design and analysis of multiple choice feeding preference data. Oecologia 138, 1–4 (2004).Article 
    ADS 

    Google Scholar 
    Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3 3 (2020).Ohno, M. & Ishikawa, M. Physiological ecology of brown alga, Ecklonia on coast of Tosa Bay, southern Japan. I. Seasonal variation of Ecklonia bed. Rep. USA Marine Biol. Inst. Kochi Univ. 4, 59–73 (1982).
    Google Scholar 
    Agostini, S. et al. Simplification, not “tropicalization”, of temperate marine ecosystems under ocean warming and acidification. Glob. Change Biol. 27, 4771–4784 (2021).Article 
    CAS 

    Google Scholar 
    Clements, K. & Choat, J. Influence of season, ontogeny and tide on the diet of the temperate marine herbivorous fish Odax pullus (Odacidae). Mar. Biol. 117, 213–220 (1993).Article 

    Google Scholar 
    Mizuta, H., Hayasaki, J. & Yamamoto, H. Relationship between nitrogen content and sorus formation in the brown alga Laminaria japonica cultivated in southern Hokkaido, Japan. Fish. Sci. 64, 909–913 (1998).Article 
    CAS 

    Google Scholar 
    Kumura, T., Yasui, H. & Mizuta, H. Nutrient requirement for zoospore formation in two alariaceous plants Undaria pinnatifida (Harvey) Suringar and Alaria crassifolia Kjellman (Phaeophyceae: Laminariales). Fish. Sci. 72, 860–869 (2006).Article 
    CAS 

    Google Scholar 
    Qiu, Z. et al. Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp. Proc. R. Soc. B 286, 20181887 (2019).Article 

    Google Scholar 
    Hoey, A. S. & Bellwood, D. R. Limited functional redundancy in a high diversity system: Single species dominates key ecological process on coral reefs. Ecosystems 12, 1316–1328. https://doi.org/10.1007/s10021-009-9291-z (2009).Article 

    Google Scholar 
    Streit, R. P., Hoey, A. S. & Bellwood, D. R. Feeding characteristics reveal functional distinctions among browsing herbivorous fishes on coral reefs. Coral Reefs 34, 1037–1047 (2015).Article 
    ADS 

    Google Scholar 
    Van Alstyne, K. L. & Paul, V. J. The biogeography of polyphenolic compounds in marine macroalgae – Temperate brown algal defenses deter feeding by tropical herbivorous fishes. Oecologia 84, 158–163 (1990).Article 
    ADS 

    Google Scholar 
    Targett, N. M., Boettcher, A. A., Targett, T. E. & Vrolijk, N. H. Tropical marine herbivore assimilation of phenolic-rich plants. Oecologia 103, 170–179 (1995).Article 
    ADS 

    Google Scholar 
    Prado, P. & Heck, K. L. Seagrass selection by omnivorous and herbivorous consumers: Determining factors. Mar. Ecol. Prog. Ser. 429, 45–55. https://doi.org/10.3354/meps09076 (2011).Article 
    ADS 

    Google Scholar 
    Montgomery, W. L. & Gerking, S. D. Marine macroalgae as foods for fishes: an evaluation of potential food quality. Environ. Biol. Fish. 5, 143–153 (1980).Article 

    Google Scholar 
    Duffy, J. & Paul & V.J.,. Prey nutritional quality and the effectiveness of chemical defenses against tropical reef fishes. Oecologia 90, 333–339 (1992).Article 
    ADS 
    CAS 

    Google Scholar 
    Michael, P. J., Hyndes, G. A., Vanderklift, M. A. & Vergés, A. Identity and behaviour of herbivorous fish influence large-scale spatial patterns of macroalgal herbivory in a coral reef. Mar. Ecol. Prog. Ser. 482, 227–240 (2013).Article 
    ADS 

    Google Scholar 
    Bennett, S. & Bellwood, D. R. Latitudinal variation in macroalgal consumption by fishes on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 426, 241–252 (2011).Article 
    ADS 

    Google Scholar 
    Zarco-Perello, S., Wernberg, T., Langlois, T. J. & Vanderklift, M. A. Tropicalization strengthens consumer pressure on habitat-forming seaweeds. Sci. Rep. 7, 820. https://doi.org/10.1038/s41598-017-00991-2 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Smith, S. M. et al. Tropicalisation and kelp loss shift trophic composition and lead to more winners than losers in fish communities. Glob. Change Biol. 27(11), 2537–2548 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Zarco-Perello, S. et al. Range-extending tropical herbivores increase diversity, intensity and extent of herbivory functions in temperate marine ecosystems. Funct. Ecol. 34, 2411–2421. https://doi.org/10.1111/1365-2435.13662 (2020).Article 

    Google Scholar  More