More stories

  • in

    Compound heat and moisture extreme impacts on global crop yields under climate change

    Ray, D. K., Gerber, J. S., Macdonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).Article 

    Google Scholar 
    Frieler, K. et al. Understanding the weather signal in national crop-yield variability. Earths Future 5, 605–616 (2017).Article 

    Google Scholar 
    Vogel, E. et al. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 14, 054010 (2019).Article 

    Google Scholar 
    Zscheischler, J. et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 1, 333–347 (2020).Article 

    Google Scholar 
    Ridder, N. N., Ukkola, A. M., Pitman, A. J. & Perkins-Kirkpatrick, S. E. Increased occurrence of high impact compound events under climate change. npj Clim. Atmos. Sci. 5, 3 (2022).Article 

    Google Scholar 
    Lesk, C. & Anderson, W. Decadal variability modulates trends in concurrent heat and drought over global croplands. Environ. Res. Lett. 16, 055024 (2021).Article 

    Google Scholar 
    Sarhadi, A., Ausín, M. C., Wiper, M. P., Touma, D. & Diffenbaugh, N. S. Multidimensional risk in a nonstationary climate: joint probability of increasingly severe warm and dry conditions. Sci. Adv. 4, eaau3487 (2018).Article 

    Google Scholar 
    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).Article 

    Google Scholar 
    Lobell, D. B., Bänziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1, 42–45 (2011).Article 

    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).Article 

    Google Scholar 
    Buckley, T. N. How do stomata respond to water status? New Phytol. 224, 21–36 (2019).Article 

    Google Scholar 
    Miralles, D. G., Gentine, P., Seneviratne, S. I. & Teuling, A. J. Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann. NY Acad. Sci. 1436, 19–35 (2019).Article 

    Google Scholar 
    Mueller, B. & Seneviratne, S. I. Hot days induced by precipitation deficits at the global scale. Proc. Natl Acad. Sci. USA 109, 12398–12403 (2012).Article 

    Google Scholar 
    Cohen, I., Zandalinas, S. I., Huck, C., Fritschi, F. B. & Mittler, R. Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiol. Plant 171, 66–76 (2021).Article 

    Google Scholar 
    Ostmeyer, T. et al. Impacts of heat, drought, and their interaction with nutrients on physiology, grain yield, and quality in field crops. Plant Physiol. Rep. 25, 549–568 (2020).Article 

    Google Scholar 
    Matiu, M., Ankerst, D. P. & Menzel, A. Interactions between temperature and drought in global and regional crop yield variability during 1961–2014. PLoS ONE 12, e0178339 (2017).Article 

    Google Scholar 
    Scheff, J., Mankin, J. S., Coats, S. & Liu, H. CO2-plant effects do not account for the gap between dryness indices and projected dryness impacts in CMIP6 or CMIP5. Environ. Res. Lett. 16, 034018 (2021).Article 

    Google Scholar 
    Ukkola, A. M., De Kauwe, M. G., Roderick, M. L., Abramowitz, G. & Pitman, A. J. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys. Res. Lett. 47, e2020GL087820 (2020).Article 

    Google Scholar 
    Allan, R. P. et al. Advances in understanding large-scale responses of the water cycle to climate change. Ann. NY Acad. Sci. 1472, 49–75 (2020).Article 

    Google Scholar 
    Ault, T. R. On the essentials of drought in a changing climate. Science 368, 256–260 (2020).Article 

    Google Scholar 
    Fowler, H. J. et al. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ. 2, 107–122 (2021).Article 

    Google Scholar 
    Raymond, C. et al. Understanding and managing connected extreme events. Nat. Clim. Change 10, 611–621 (2020).Article 

    Google Scholar 
    Mills, G. et al. Closing the global ozone yield gap: quantification and cobenefits for multistress tolerance. Glob. Chang. Biol. 24, 4869–4893 (2018).Article 

    Google Scholar 
    Pandey, P., Irulappan, V., Bagavathiannan, M. V. & Senthil-Kumar, M. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front. Plant Sci. 8, 537 (2017).Article 

    Google Scholar 
    Couasnon, A. et al. Measuring compound flood potential from river discharge and storm surge extremes at the global scale. Nat. Hazards Earth Syst. Sci. 20, 489–504 (2020).Article 

    Google Scholar 
    Nguyen, L. T. T. et al. Flooding and prolonged drought have differential legacy impacts on soil nitrogen cycling, microbial communities and plant productivity. Plant Soil 431, 371–387 (2018).Article 

    Google Scholar 
    Medrano, H., Escalona, J. M., Bota, J., Gulías, J. & Flexas, J. Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann. Bot. 89, 895–905 (2002).Article 

    Google Scholar 
    Scafaro, A. P. et al. Responses of leaf respiration to heatwaves. Plant Cell Environ. 44, 2090–2101 (2021).Article 

    Google Scholar 
    Atkin, O. K. & Tjoelker, M. G. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8, 343–351 (2003).Article 

    Google Scholar 
    Lukac, M., Gooding, M. J., Griffiths, S. & Jones, H. E. Asynchronous flowering and within-plant flowering diversity in wheat and the implications for crop resilience to heat. Ann. Bot. 109, 843–850 (2012).Article 

    Google Scholar 
    Coast, O., Murdoch, A. J., Ellis, R. H., Hay, F. R. & Jagadish, K. S. V. Resilience of rice (Oryza spp.) pollen germination and tube growth to temperature stress. Plant. Cell Environ. 39, 26–37 (2016).Article 

    Google Scholar 
    Li, Y., Guan, K., Schnitkey, G. D., Delucia, E. & Peng, B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Chang. Biol. https://doi.org/10.1111/gcb.14628 (2019).Article 

    Google Scholar 
    Tian, L. X. et al. How does the waterlogging regime affect crop yield? A global meta-analysis. Front. Plant Sci. 12, 634898 (2021).Article 

    Google Scholar 
    Langan, P. et al. Phenotyping for waterlogging tolerance in crops: current trends and future prospects. J. Exp. Bot. https://doi.org/10.1093/jxb/erac243 (2022).Article 

    Google Scholar 
    Tong, C. et al. Opportunities for improving waterlogging tolerance in cereal crops — physiological traits and genetic mechanisms. Plants 10, 1560 (2021).Article 

    Google Scholar 
    Colmer, T. D., Cox, M. C. H. & Voesenek, L. A. C. J. Root aeration in rice (Oryza sativa): evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations. New Phytol. 170, 767–778 (2006).Article 

    Google Scholar 
    Hattori, Y. et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460, 1026–1030 (2009).Article 

    Google Scholar 
    Prasad, P. V. V., Pisipati, S. R., Momčilović, I. & Ristic, Z. Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J. Agron. Crop Sci. 197, 430–441 (2011).Article 

    Google Scholar 
    Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. & Mittler, R. Abiotic and biotic stress combinations. New Phytol. 203, 32–43 (2014).Article 

    Google Scholar 
    Hussain, H. A. et al. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci. Rep. 9, 3890 (2019).Article 

    Google Scholar 
    Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15–19 (2006).Article 

    Google Scholar 
    Choudhury, F. K., Rivero, R. M., Blumwald, E. & Mittler, R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 90, 856–867 (2017).Article 

    Google Scholar 
    Van Der Wiel, K., Selten, F. M., Bintanja, R., Blackport, R. & Screen, J. A. Ensemble climate-impact modelling: extreme impacts from moderate meteorological conditions. Environ. Res. Lett. 15, 034050 (2020).Article 

    Google Scholar 
    Moore, C. E. et al. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. J. Exp. Bot. 72, 2822–2844 (2021).Article 

    Google Scholar 
    Fahad, S. et al. Crop production under drought and heat stress: plant responses and management options. Front. Plant Sci. 8, 1147 (2017).Article 

    Google Scholar 
    Zandalinas, S. I., Fritschi, F. B. & Mittler, R. Signal transduction networks during stress combination. J. Exp. Bot. 71, 1734–1741 (2020).Article 

    Google Scholar 
    Zhang, H. & Sonnewald, U. Differences and commonalities of plant responses to single and combined stresses. Plant J. 90, 839–855 (2017).Article 

    Google Scholar 
    Zscheischler, J. & Seneviratne, S. I. Dependence of drivers affects risks associated with compound events. Sci. Adv. 3, e1700263 (2017).Article 

    Google Scholar 
    Horton, R. M., Mankin, J. S., Lesk, C., Coffel, E. & Raymond, C. A review of recent advances in research on extreme heat events. Curr. Clim. Change Rep. 2, 242–259 (2016).Article 

    Google Scholar 
    Trenberth, K. E. & Shea, D. J. Relationships between precipitation and surface temperature. Geophys. Res. Lett. 32, L14703 (2005).Article 

    Google Scholar 
    Miralles, D. G., Teuling, A. J., Van Heerwaarden, C. C. & De Arellano, J. V. G. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 7, 345–349 (2014).Article 

    Google Scholar 
    Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).Article 

    Google Scholar 
    Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).Article 

    Google Scholar 
    Koster, R. D., Chang, Y., Wang, H. & Schubert, S. D. Impacts of local soil moisture anomalies on the atmospheric circulation and on remote surface meteorological fields during boreal summer: a comprehensive analysis over North America. J. Clim. 29, 7345–7364 (2016).Article 

    Google Scholar 
    Zhou, S. et al. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Change 11, 38–44 (2021).Article 

    Google Scholar 
    Berg, A., Lintner, B., Findell, K. & Giannini, A. Soil moisture influence on seasonality and large-scale circulation in simulations of the West African monsoon. J. Clim. 30, 2295–2317 (2017).Article 

    Google Scholar 
    Lesk, C. et al. Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields. Nat. Food 2, 683–691 (2021).Article 

    Google Scholar 
    Wei, Z. et al. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys. Res. Lett. 44, 2792–2801 (2017).Article 

    Google Scholar 
    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).Article 

    Google Scholar 
    Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).Article 

    Google Scholar 
    Teuling, A. J. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722–727 (2010).Article 

    Google Scholar 
    Raymond, C. et al. Increasing spatiotemporal proximity of heat and precipitation extremes in a warming world quantified by a large model ensemble. Environ. Res. Lett. 17, 035005 (2022).Article 

    Google Scholar 
    Raymond, C. et al. On the controlling factors for globally extreme humid heat. Geophys. Res. Lett. 48, e2021GL096082 (2021).Article 

    Google Scholar 
    Speizer, S., Raymond, C., Ivanovich, C. & Horton, R. M. Concentrated and intensifying humid heat extremes in the IPCC AR6 regions. Geophys. Res. Lett. 49, e2021GL097261 (2022).Article 

    Google Scholar 
    Ning, G. et al. Rising risks of compound extreme heat‐precipitation events in China. Int. J. Climatol. https://doi.org/10.1002/joc.7561 (2022).Article 

    Google Scholar 
    Thiery, W. et al. Warming of hot extremes alleviated by expanding irrigation. Nat. Commun. 11, 290 (2020).Article 

    Google Scholar 
    Mueller, N. D. et al. Global relationships between cropland intensification and summer temperature extremes over the last 50 years. J. Clim. 30, 7505–7528 (2017).Article 

    Google Scholar 
    Siebert, S., Ewert, F., Eyshi Rezaei, E., Kage, H. & Graß, R. Impact of heat stress on crop yield — on the importance of considering canopy temperature. Environ. Res. Lett. 9, 044012 (2014).Article 

    Google Scholar 
    Singh, D. et al. Distinct influences of land cover and land management on seasonal climate. J. Geophys. Res. Atmos. 123, 12017–12039 (2018).Article 

    Google Scholar 
    Luan, X. & Vico, G. Canopy temperature and heat stress are increased by compound high air temperature and water stress and reduced by irrigation — a modeling analysis. Hydrol. Earth Syst. Sci. 25, 1411–1423 (2021).Article 

    Google Scholar 
    Siebert, S., Webber, H., Zhao, G. & Ewert, F. Heat stress is overestimated in climate impact studies for irrigated agriculture. Environ. Res. Lett. 12, 054023 (2017).Article 

    Google Scholar 
    Sinha, R. et al. Differential regulation of flower transpiration during abiotic stress in annual plants. New Phytol. https://doi.org/10.1111/nph.18162 (2022).Article 

    Google Scholar 
    He, Y., Lee, E. & Mankin, J. S. Seasonal tropospheric cooling in Northeast China associated with cropland expansion. Environ. Res. Lett. 15, 034032 (2020).Article 

    Google Scholar 
    Alter, R. E., Douglas, H. C., Winter, J. M. & Eltahir, E. A. B. Twentieth century regional climate change during the summer in the Central United States attributed to agricultural intensification. Geophys. Res. Lett. 45, 1586–1594 (2018).Article 

    Google Scholar 
    Sánchez, B., Rasmussen, A. & Porter, J. R. Temperatures and the growth and development of maize and rice: a review. Glob. Chang. Biol. 20, 408–417 (2014).Article 

    Google Scholar 
    Prasad, P. V. V., Bheemanahalli, R. & Jagadish, S. V. K. Field crops and the fear of heat stress — opportunities, challenges and future directions. Field Crops Res. 200, 114–121 (2017).Article 

    Google Scholar 
    Schauberger, B. et al. Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun. 8, 13931 (2017).Article 

    Google Scholar 
    Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).Article 

    Google Scholar 
    Sadok, W. & Jagadish, S. V. K. The hidden costs of nighttime warming on yields. Trends Plant Sci. 25, 644–651 (2020).Article 

    Google Scholar 
    Troy, T. J., Kipgen, C. & Pal, I. The impact of climate extremes and irrigation on US crop yields. Environ. Res. Lett. 10, 054013 (2015).Article 

    Google Scholar 
    Cook, B. I., Shukla, S. P., Puma, M. J. & Nazarenko, L. S. Irrigation as an historical climate forcing. Clim. Dyn. 44, 1715–1730 (2015).Article 

    Google Scholar 
    Li, Y. et al. Quantifying irrigation cooling benefits to maize yield in the US Midwest. Glob. Chang. Biol. 26, 3065–3078 (2020).Article 

    Google Scholar 
    Entekhabi, B. D. et al. The Soil Moisture Active Passive (SMAP). IEEE Proc. 98, 704–716 (2010).Article 

    Google Scholar 
    Ortiz-Bobea, A., Wang, H., Carrillo, C. M. & Ault, T. R. Unpacking the climatic drivers of US agricultural yields. Environ. Res. Lett. 14, 064003 (2019).Article 

    Google Scholar 
    Rigden, A. J., Mueller, N. D., Holbrook, N. M., Pillai, N. & Huybers, P. Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields. Nat. Food 1, 127–133 (2020).Article 

    Google Scholar 
    Proctor, J., Rigden, A., Chan, D. & Huybers, P. Accurate specification of water availability shows its importance for global crop production. Preprint at EarthArXiv https://doi.org/10.31223/X5ZS7P (2021).Article 

    Google Scholar 
    Carter, E. K., Melkonian, J., Riha, S. J. & Shaw, S. B. Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize. Environ. Res. Lett. 11, 094012 (2016).Article 

    Google Scholar 
    Hamed, R., Van Loon, A. F., Aerts, J. & Coumou, D. Impacts of compound hot-dry extremes on US soybean yields. Earth Syst. Dyn. 12, 1371–1391 (2021).Article 

    Google Scholar 
    Feng, S., Hao, Z., Zhang, X. & Hao, F. Probabilistic evaluation of the impact of compound dry-hot events on global maize yields. Sci. Total Environ. 689, 1228–1234 (2019).Article 

    Google Scholar 
    Haqiqi, I., Grogan, D. S., Hertel, T. W. & Schlenker, W. Quantifying the impacts of compound extremes on agriculture. Hydrol. Earth Syst. Sci. 25, 551–564 (2021).Article 

    Google Scholar 
    Zhu, P., Zhuang, Q., Archontoulis, S. V., Bernacchi, C. & Müller, C. Dissecting the nonlinear response of maize yield to high temperature stress with model-data integration. Glob. Chang. Biol. 25, 2470–2484 (2019).Article 

    Google Scholar 
    Jin, Z. et al. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches. Glob. Chang. Biol. 22, 3112–3126 (2016).Article 

    Google Scholar 
    Filipa Silva Ribeiro, A., Russo, A., Gouveia, C. M., Páscoa, P. & Zscheischler, J. Risk of crop failure due to compound dry and hot extremes estimated with nested copulas. Biogeosciences 17, 4815–4830 (2020).Article 

    Google Scholar 
    Hsiao, J., Swann, A. L. S. & Kim, S. H. Maize yield under a changing climate: the hidden role of vapor pressure deficit. Agric. For. Meteorol. 279, 107692 (2019).Article 

    Google Scholar 
    Heinicke, S., Frieler, K., Jägermeyr, J. & Mengel, M. Global gridded crop models underestimate yield responses to droughts and heatwaves. Environ. Res. Lett. 17, 044026 (2022).Article 

    Google Scholar 
    Cook, B. I. et al. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earths Future 8, e2019EF001461 (2020).Article 

    Google Scholar 
    He, Y., Hu, X., Xu, W., Fang, J. & Shi, P. Increased probability and severity of compound dry and hot growing seasons over world’s major croplands. Sci. Total Environ. 824, 153885 (2022).Article 

    Google Scholar 
    Wu, Y. et al. Global observations and CMIP6 simulations of compound extremes of monthly temperature and precipitation. GeoHealth 5, e2021GH000390 (2021).Article 

    Google Scholar 
    Zhang, Y., Hao, Z., Zhang, X. & Hao, F. Anthropogenically forced increases in compound dry and hot events at the global and continental scales. Environ. Res. Lett. 17, 024018 (2022).Article 

    Google Scholar 
    Chen, Y., Liao, Z., Shi, Y., Tian, Y. & Zhai, P. Detectable increases in sequential flood-heatwave events across China during 1961–2018. Geophys. Res. Lett. 48, e2021GL092549 (2021).
    Google Scholar 
    Raymond, C., Matthews, T. & Horton, R. M. The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 6, eaaw1838 (2020).Article 

    Google Scholar 
    Vogel, M. M. et al. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture–temperature feedbacks. Geophys. Res. Lett. 44, 1511–1519 (2017).Article 

    Google Scholar 
    Garcia-Herrera, R., Díaz, J., Trigo, R. M., Luterbacher, J. & Fischer, E. M. A review of the European summer heat wave of 2003. Crit. Rev. Environ. Sci. Technol. 40, 267–306 (2010).Article 

    Google Scholar 
    Wegren, S. Food security and Russia’s 2010 drought. Eurasian Geogr. Econ. 52, 140–156 (2011).Article 

    Google Scholar 
    Christian, J. I., Basara, J. B., Hunt, E. D., Otkin, J. A. & Xiao, X. Flash drought development and cascading impacts associated with the 2010 Russian heatwave. Environ. Res. Lett. 15, 094078 (2020).Article 

    Google Scholar 
    Glotter, M. & Elliott, J. Simulating US agriculture in a modern Dust Bowl drought. Nat. Plants 3, 16193 (2016).Article 

    Google Scholar 
    Yuan, X., Wang, L. & Wood, E. F. Anthropogenic intensification of southern African flash droughts as exemplified by the 2015/16 season. Bull. Am. Meteorol. Soc. 99, S86–S90 (2018).Article 

    Google Scholar 
    Ben-Ari, T. et al. Causes and implications of the unforeseen 2016 extreme yield loss in the breadbasket of France. Nat. Commun. 9, 1627 (2018).Article 

    Google Scholar 
    Gampe, D. et al. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Change 11, 772–779 (2021).Article 

    Google Scholar 
    Iizumi, T. & Ramankutty, N. Changes in yield variability of major crops for 1981–2010 explained by climate change. Environ. Res. Lett. 11, 034003 (2016).Article 

    Google Scholar 
    Brás, T. A., Seixas, J., Carvalhais, N. & Jagermeyr, J. Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environ. Res. Lett. 16, 065012 (2021).Article 

    Google Scholar 
    Lobell, D. B., Deines, J. M. & Di Tommaso, S. Changes in the drought sensitivity of US maize yields. Nat. Food 1, 729–735 (2020).Article 

    Google Scholar 
    Seneviratne, S. I. et al. Climate extremes, land–climate feedbacks and land-use forcing at 1.5 °C. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20160450 (2018).Article 

    Google Scholar 
    Pfleiderer, P., Schleussner, C. F., Kornhuber, K. & Coumou, D. Summer weather becomes more persistent in a 2 °C world. Nat. Clim. Change 9, 666–671 (2019).Article 

    Google Scholar 
    Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).Article 

    Google Scholar 
    Dai, A., Zhao, T. & Chen, J. Climate change and drought: a precipitation and evaporation perspective. Curr. Clim. Chang. Rep. 4, 301–312 (2018).Article 

    Google Scholar 
    Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).Article 

    Google Scholar 
    Lesk, C., Coffel, E. & Horton, R. Net benefits to US soy and maize yields from intensifying hourly rainfall. Nat. Clim. Change 10, 819–822 (2020).Article 

    Google Scholar 
    Goulart, H. M. D., Van Der Wiel, K., Folberth, C., Balkovic, J. & Van Den Hurk, B. Weather-induced crop failure events under climate change: a storyline approach. Earth Syst. Dyn. https://doi.org/10.5194/esd-2021-40 (2021).Article 

    Google Scholar 
    Franke, J. A. et al. Agricultural breadbaskets shift poleward given adaptive farmer behavior under climate change. Glob. Chang. Biol. 28, 167–181 (2022).Article 

    Google Scholar 
    Jägermeyr, J. et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2, 873–885 (2021).Article 

    Google Scholar 
    Waha, K. et al. Multiple cropping systems of the world and the potential for increasing cropping intensity. Glob. Environ. Chang. 64, 102131 (2020).Article 

    Google Scholar 
    Zhu, T., Fonseca De Lima, C. F. & De Smet, I. The heat is on: how crop growth, development, and yield respond to high temperature. J. Exp. Bot. 72, 7359–7373 (2021).
    Google Scholar 
    Lizaso, J. I. et al. Impact of high temperatures in maize: phenology and yield components. Field Crops Res. 216, 129–140 (2018).Article 

    Google Scholar 
    Rezaei, E. E., Siebert, S. & Ewert, F. Intensity of heat stress in winter wheat — phenology compensates for the adverse effect of global warming. Environ. Res. Lett. 10, 024012 (2015).Article 

    Google Scholar 
    Liu, K. et al. Climate change shifts forward flowering and reduces crop waterlogging stress. Environ. Res. Lett. 16, 094017 (2021).Article 

    Google Scholar 
    Bagley, J. et al. The influence of photosynthetic acclimation to rising CO2 and warmer temperatures on leaf and canopy photosynthesis models. Global Biogeochem. Cycles https://doi.org/10.1002/2014GB004848 (2015).Article 

    Google Scholar 
    Hossain, M. A. et al. Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms. Protoplasma 255, 399–412 (2018).Article 

    Google Scholar 
    Wolz, K. J., Wertin, T. M., Abordo, M., Wang, D. & Leakey, A. D. B. Diversity in stomatal function is integral to modelling plant carbon and water fluxes. Nat. Ecol. Evol. 1, 1292–1298 (2017).Article 

    Google Scholar 
    Ainsworth, E. A. & Long, S. P. 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Glob. Chang. Biol. 27, 27–49 (2021).Article 

    Google Scholar 
    Toreti, A. et al. Narrowing uncertainties in the effects of elevated CO2 on crops. Nat. Food 1, 775–782 (2020).Article 

    Google Scholar 
    Myers, S. S. et al. Climate change and global food systems: potential impacts on food security and undernutrition. Annu. Rev. Public Health 38, 259–277 (2017).Article 

    Google Scholar 
    Skinner, C. B., Poulsen, C. J. & Mankin, J. S. Amplification of heat extremes by plant CO2 physiological forcing. Nat. Commun. 9, 1094 (2018).Article 

    Google Scholar 
    Houshmandfar, A., Fitzgerald, G. J., Armstrong, R., Macabuhay, A. A. & Tausz, M. Modelling stomatal conductance of wheat: an assessment of response relationships under elevated CO2. Agric. For. Meteorol. 214–215, 117–123 (2015).Article 

    Google Scholar 
    Chavan, S. G., Duursma, R. A., Tausz, M. & Ghannoum, O. Elevated CO2 alleviates the negative impact of heat stress on wheat physiology but not on grain yield. J. Exp. Bot. 70, 6447–6459 (2019).Article 

    Google Scholar 
    Gray, S. B. et al. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat. Plants 2, 16132 (2016).Article 

    Google Scholar 
    Coffel, E. D. et al. Future hot and dry years worsen Nile basin water scarcity despite projected precipitation increases. Earths Future 7, 967–977 (2019).Article 

    Google Scholar 
    Mishra, V., Thirumalai, K., Singh, D. & Aadhar, S. Future exacerbation of hot and dry summer monsoon extremes in India. npj Clim. Atmos. Sci. 3, 10 (2020).Article 

    Google Scholar 
    Bevacqua, E., Zappa, G., Lehner, F. & Zscheischler, J. Precipitation trends determine future occurrences of compound hot–dry events. Nat. Clim. Change 12, 350–355 (2022).Article 

    Google Scholar 
    Seager, R. et al. Climate variability and change of Mediterranean-type climates. J. Clim. 32, 2887–2915 (2019).Article 

    Google Scholar 
    Vogel, M. M., Hauser, M. & Seneviratne, S. I. Projected changes in hot, dry and wet extreme events’ clusters in CMIP6 multi-model ensemble. Environ. Res. Lett. 15, 094021 (2020).Article 

    Google Scholar 
    Zhou, S. et al. Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl Acad. Sci. USA 116, 18848–18853 (2019).Article 

    Google Scholar 
    Byrne, M. P. Amplified warming of extreme temperatures over tropical land. Nat. Geosci. 14, 837–841 (2021).Article 

    Google Scholar 
    McDermid, S. S. et al. Disentangling the regional climate impacts of competing vegetation responses to elevated atmospheric CO2. J. Geophys. Res. Atmos. 126, e2020JD034108 (2021).Article 

    Google Scholar 
    Swann, A. L. S., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).Article 

    Google Scholar 
    Ali, H., Fowler, H. J., Lenderink, G., Lewis, E. & Pritchard, D. Consistent large-scale response of hourly extreme precipitation to temperature variation over land. Geophys. Res. Lett. https://doi.org/10.1029/2020GL090317 (2021).Article 

    Google Scholar 
    Dai, A., Rasmussen, R. M., Liu, C., Ikeda, K. & Prein, A. F. A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations. Clim. Dyn. 55, 343–368 (2020).Article 

    Google Scholar 
    Fishman, R. More uneven distributions overturn benefits of higher precipitation for crop yields. Environ. Res. Lett. 11, 024004 (2016).Article 

    Google Scholar 
    Shortridge, J. Observed trends in daily rainfall variability result in more severe climate change impacts to agriculture. Clim. Chang. 157, 429–444 (2019).Article 

    Google Scholar 
    Guan, K., Sultan, B., Biasutti, M., Baron, C. & Lobell, D. B. What aspects of future rainfall changes matter for crop yields in West Africa? Geophys. Res. Lett. 42, 8001–8010 (2015).Article 

    Google Scholar 
    Byrne, M. P. & O’Gorman, P. A. Trends in continental temperature and humidity directly linked to ocean warming. Proc. Natl Acad. Sci. USA 115, 4863–4868 (2018).Article 

    Google Scholar 
    Coffel, E. D., Horton, R. M. & De Sherbinin, A. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century. Environ. Res. Lett. 13, 014001 (2018).Article 

    Google Scholar 
    Matthews, T. Humid heat and climate change. Prog. Phys. Geogr. 42, 391–405 (2018).Article 

    Google Scholar 
    McKinnon, K. A. & Poppick, A. Estimating changes in the observed relationship between humidity and temperature using noncrossing quantile smoothing splines. J. Agric. Biol. Environ. Stat. 25, 292–314 (2020).Article 

    Google Scholar 
    Parsons, L. A. et al. Global labor loss due to humid heat exposure underestimated for outdoor workers. Environ. Res. Lett. 17, 014050 (2022).Article 

    Google Scholar 
    Ridder, N. N., Pitman, A. J. & Ukkola, A. M. Do CMIP6 climate models simulate global or regional compound events skillfully? Geophys. Res. Lett. 48, e2020GL091152 (2021).Article 

    Google Scholar 
    Hao, Z., Aghakouchak, A. & Phillips, T. J. Changes in concurrent monthly precipitation and temperature extremes. Environ. Res. Lett. 8, 034014 (2013).Article 

    Google Scholar 
    Zhang, B. & Soden, B. J. Constraining climate model projections of regional precipitation change. Geophys. Res. Lett. 46, 10522–10531 (2019).Article 

    Google Scholar 
    Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).Article 

    Google Scholar 
    Butler, E. E., Mueller, N. D. & Huybers, P. Peculiarly pleasant weather for US maize. Proc. Natl Acad. Sci. USA 115, 11935–11940 (2018).Article 

    Google Scholar 
    Lombardozzi, D. L. et al. Simulating agriculture in the Community Land Model Version 5. J. Geophys. Res. Biogeosci. 125, e2019JG005529 (2020).Article 

    Google Scholar 
    Puma, M. J. & Cook, B. I. Effects of irrigation on global climate during the 20th century. J. Geophys. Res. Atmos. 115, D16120 (2010).Article 

    Google Scholar 
    Coffel, E. D., Lesk, C., Winter, J. M., Osterberg, E. C. & Mankin, J. S. Crop–climate feedbacks boost US maize and soy yields. Environ. Res. Lett. 17, 024012 (2022).Article 

    Google Scholar 
    Mueller, N. D. et al. Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Clim. Change 6, 317–322 (2016).Article 

    Google Scholar 
    Zaveri, E. & B. Lobell, D. The role of irrigation in changing wheat yields and heat sensitivity in India. Nat. Commun. 10, 4144 (2019).Article 

    Google Scholar 
    DeLucia, E. H. et al. Are we approaching a water ceiling to maize yields in the United States? Ecosphere 10, e02773 (2019).Article 

    Google Scholar 
    Cook, B. I. et al. Divergent regional climate consequences of maintaining current irrigation rates in the 21st century. J. Geophys. Res. Atmos. 125, e2019JD031814 (2020).Article 

    Google Scholar 
    Tigchelaar, M., Battisti, D. S., Naylor, R. L. & Ray, D. K. Future warming increases probability of globally synchronized maize production shocks. Proc. Natl Acad. Sci. USA 115, 6644–6649 (2018).Article 

    Google Scholar 
    Liu, W. et al. Future climate change significantly alters interannual wheat yield variability over half of harvested areas. Environ. Res. Lett. 16, 094045 (2021).Article 

    Google Scholar 
    Wang, X. et al. Global irrigation contribution to wheat and maize yield. Nat. Commun. 12, 1235 (2021).Article 

    Google Scholar 
    Rosa, L., Chiarelli, D. D., Rulli, M. C., Dell’Angelo, J. & D’Odorico, P. Global agricultural economic water scarcity. Sci. Adv. 6, eaaz6031 (2020).Article 

    Google Scholar 
    Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).Article 

    Google Scholar 
    Livneh, B. & Badger, A. M. Drought less predictable under declining future snowpack. Nat. Clim. Change 10, 452–458 (2020).Article 

    Google Scholar 
    Elliott, J. et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl Acad. Sci. USA 111, 3239–3244 (2014).Article 

    Google Scholar 
    Jägermeyr, J. et al. Integrated crop water management might sustainably halve the global food gap. Environ. Res. Lett. 11, 025002 (2016).Article 

    Google Scholar 
    Rosa, L. et al. Potential for sustainable irrigation expansion in a 3 °C warmer climate. Proc. Natl Acad. Sci. USA 117, 29526–29534 (2020).Article 

    Google Scholar 
    Gleeson, T., Wada, Y., Bierkens, M. F. P. & Van Beek, L. P. H. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).Article 

    Google Scholar 
    Bhattarai, N. et al. The impact of groundwater depletion on agricultural production in India. Environ. Res. Lett. 16, 085003 (2021).Article 

    Google Scholar 
    Nie, W. et al. Irrigation water demand sensitivity to climate variability across the contiguous United States. Water Resour. Res. 57, e2020WR027738 (2021).Article 

    Google Scholar 
    Wu, W.-Y. et al. Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nat. Commun. 11, 3710 (2020).Article 

    Google Scholar 
    Jain, M. et al. Groundwater depletion will reduce cropping intensity in India. Sci. Adv. 7, eabd2849 (2021).Article 

    Google Scholar 
    Kerr, R. B., Hasegawa, T. & Lasco, R. Food, fibre and other ecosystem products. In IPCC WGII Sixth Assessment Report 11–13 Ch. 5 (IPCC, 2022).Zandalinas, S. I. & Mittler, R. Plant responses to multifactorial stress combination. New Phytol. 234, 1161–1167 (2022).Article 

    Google Scholar 
    Barrett, C. B. et al. Bundling innovations to transform agri-food systems. Nat. Sustain. 3, 974–976 (2020).Article 

    Google Scholar 
    Peng, B. & Guan, K. Harmonizing climate-smart and sustainable agriculture. Nat. Food 2, 853–854 (2021).Article 

    Google Scholar 
    Zabel, F. et al. Large potential for crop production adaptation depends on available future varieties. Glob. Chang. Biol. 27, 3870–3882 (2021).Article 

    Google Scholar 
    Challinor, A. J., Koehler, A.-K., Ramirez-Villegas, J., Whitfield, S. & Das, B. Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat. Clim. Change 6, 954–958 (2016).Article 

    Google Scholar 
    Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).Article 

    Google Scholar 
    Vogel, E. & Meyer, R. Climate Change, Climate Extremes, and Global Food Production — Adaptation in the Agricultural Sector. Resilience: The Science of Adaptation to Climate Change (Elsevier Inc., 2018).Lal, R. Soil health and carbon management. Food Energy Secur. 5, 212–222 (2016).Article 

    Google Scholar 
    Davis, K. F., Downs, S. & Gephart, J. A. Towards food supply chain resilience to environmental shocks. Nat. Food 2, 54–65 (2021).Article 

    Google Scholar 
    Baldos, U. L. C. & Hertel, T. W. The role of international trade in managing food security risks from climate change. Food Secur. 7, 275–290 (2015).Article 

    Google Scholar 
    Deguines, N. et al. Large-scale trade-off between agricultural intensification and crop pollination services. Front. Ecol. Environ. 12, 212–217 (2014).Article 

    Google Scholar 
    Vyas, S., Dalhaus, T., Kropff, M., Aggarwal, P. & Meuwissen, M. P. M. Mapping global research on agricultural insurance. Environ. Res. Lett. 16, 103003 (2021).Article 

    Google Scholar 
    Hazell, P. & Varangis, P. Best practices for subsidizing agricultural insurance. Glob. Food Sec. 25, 100326 (2020).Article 

    Google Scholar 
    Funk, C. et al. Recognizing the famine early warning systems network over 30 years of drought early warning science advances and partnerships promoting global food security. Bull. Am. Meteorol. Soc. 100, 1011–1027 (2019).Article 

    Google Scholar 
    Reichstein, M., Riede, F. & Frank, D. More floods, fires and cyclones — plan for domino effects on sustainability goals. Nature 592, 347–349 (2021).Article 

    Google Scholar 
    Müller, C. et al. Exploring uncertainties in global crop yield projections in a large ensemble of crop models and CMIP5 and CMIP6 climate scenarios. Environ. Res. Lett. 16, 034040 (2021).Article 

    Google Scholar 
    Hao, Z., Hao, F., Xia, Y., Singh, V. P. & Zhang, X. A monitoring and prediction system for compound dry and hot events. Environ. Res. Lett. 14, 114034 (2019).Article 

    Google Scholar 
    Benami, E. et al. Uniting remote sensing, crop modelling and economics for agricultural risk management. Nat. Rev. Earth Environ. 2, 140–159 (2021).Article 

    Google Scholar 
    Famine Early Warning System Network. East Africa seasonal monitor. FEWS https://fews.net/sites/default/files/documents/reports/EAST_AFRICA_Seasonal_Monitor_20_May_2022_1.pdf (2022).Becker-Reshef, I. et al. The GEOGLAM crop monitor for AMIS: assessing crop conditions in the context of global markets. Glob. Food Sec. 23, 173–181 (2019).Article 

    Google Scholar 
    GEOGLAM Crop Monitor. Special report: unprecedented 4th consecutive poor rainfall season for the Horn of Africa. Crop Monitor https://cropmonitor.org/documents/SPECIAL/reports/Special_Report_20220523_East_Africa.pdf (2022).Geange, S. R. et al. The thermal tolerance of photosynthetic tissues: a global systematic review and agenda for future research. New Phytol. 229, 2497–2513 (2021).Article 

    Google Scholar 
    Reynolds, M. P. et al. Harnessing translational research in wheat for climate resilience. J. Exp. Bot. 72, 5134–5157 (2021).Article 

    Google Scholar 
    Makondo, C. C. & Thomas, D. S. G. Climate change adaptation: linking indigenous knowledge with western science for effective adaptation. Environ. Sci. Policy 88, 83–91 (2018).Article 

    Google Scholar 
    Sharafi, L., Zarafshani, K., Keshavarz, M., Azadi, H. & Van Passel, S. Farmers’ decision to use drought early warning system in developing countries. Sci. Total Environ. 758, 142761 (2021).Article 

    Google Scholar 
    Fischer, K. Why new crop technology is not scale-neutral — A critique of the expectations for a crop-based African Green Revolution. Res. Policy 45, 1185–1194 (2016).Article 

    Google Scholar 
    Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).Article 

    Google Scholar 
    Glauber, J., Baldwin, K., Antón, J. & Ziebinska, U. Design principles for agricultural risk management policies. OECD Food Agric. Fish. Pap. https://doi.org/10.1787/1048819f-en (2021).Article 

    Google Scholar 
    Annan, F. & Schlenker, W. Federal crop insurance and the disincentive to adapt to extreme heat. Am. Econ. Rev. 105, 262–266 (2015).Article 

    Google Scholar 
    Deryugina, T. & Konar, M. Impacts of crop insurance on water withdrawals for irrigation. Adv. Water Resour. 110, 437–444 (2017).Article 

    Google Scholar 
    Agrimonti, C., Lauro, M. & Visioli, G. Smart agriculture for food quality: facing climate change in the 21st century. Crit. Rev. Food Sci. Nutr. 61, 971–981 (2021).Article 

    Google Scholar 
    Sloat, L. L. et al. Climate adaptation by crop migration. Nat. Commun. 11, 1243 (2020).Article 

    Google Scholar 
    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).Article 

    Google Scholar 
    Willmott, C. J. & Matsuura, K. Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950–1999). University of Delaware http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts.html (2000).Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations — the CRU TS3.10 dataset. Int. J. Clim. 34, 623–642 (2014).Article 

    Google Scholar 
    Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).Article 

    Google Scholar 
    Beyer, R. M., Hua, F., Martin, P. A., Manica, A. & Rademacher, T. Relocating croplands could drastically reduce the environmental impacts of global food production. Commun. Earth Environ. 3, 49 (2022).Article 

    Google Scholar  More

  • in

    Prioritize gender equality to meet global biodiversity goals

    Parties to the Convention on Biological Diversity will meet this month to finalize the post-2020 Global Biodiversity Framework and the text for the stand-alone target on gender equality (Target 22). This target aims to reshape conservation policy and practice to make them more inclusive, equitable and effective.
    Competing Interests
    The authors declare no competing interests. More

  • in

    The evolutionary process of invasion in the fall armyworm (Spodoptera frugiperda)

    Pimentel, D. et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 84, 1–20 (2001).Article 

    Google Scholar 
    Hulme, P. E. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).Article 

    Google Scholar 
    Bebber, D. P., Holmes, T. & Gurr, S. J. The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 23, 1398–1407 (2014).Article 

    Google Scholar 
    Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576 (2021).Article 

    Google Scholar 
    McNeely, J. A. As the world gets smaller, the chances of invasion grow. Euphytica 148, 5–15 (2006).Article 

    Google Scholar 
    Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl. Acad. Sci. USA 115, E2264–E2273 (2018).Article 

    Google Scholar 
    Roques, A. et al. Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200 years. Biol. Invasions 18, 907–920 (2016).Article 

    Google Scholar 
    de Poorter, M. & Browne, M. The Global Invasive Species Database (GISD) and international information exchange: Using global expertise to help in the fight against invasive alien species. Plant Prot. Plant Health Eur. 9–11, 49–54 (2005).
    Google Scholar 
    Tay, W. T. & Gordon, K. H. J. Going global: Genomic insights into insect invasions. Curr. Opin. Insect Sci. 31, 123–130 (2019).Article 

    Google Scholar 
    Paini, D. R. et al. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. USA 113, 7575–7579 (2016).Article 

    Google Scholar 
    Prentis, P. J., Wilson, J. R. U., Dormontt, E. E., Richardson, D. M. & Lowe, A. J. Adaptive evolution in invasive species. Trends Plant Sci. 13, 288–294 (2008).Article 

    Google Scholar 
    Bertelsmeier, C. Globalization and the anthropogenic spread of invasive social insects. Curr. Opin. Insect Sci. 46, 16–23 (2021).Article 

    Google Scholar 
    Crawley, M. J. et al. The population biology of invaders. Philos. Trans. R. Soc. Lond. B 314, 711–731 (1986).Article 

    Google Scholar 
    Petren, K. & Case, T. J. An experimental demonstration of exploitation competition in an ongoing invasion. Ecology 77, 118–132 (1996).Article 

    Google Scholar 
    Kowarik, I. Time lags in biological invasions with regard to the success and failure of alien species. Plant Invasions Gen. Asp. Spec. Probl. 1, 15–38 (1995).
    Google Scholar 
    Andrews, K. L. The whorlworm, Spodoptera frugiperda. Cent. Am. Neighb. Areas Fla. Entomol. 63, 456–467 (1980).Article 

    Google Scholar 
    Sparks, A. N. A review of the biology of the fall armyworm. Fla. Entomol. 1, 82–87 (1979).Article 

    Google Scholar 
    Westbrook, J. K., Nagoshi, R. N., Meagher, R. L., Fleischer, S. J. & Jairam, S. Modeling seasonal migration of fall armyworm moths. Int. J. Biometeorol. 60, 255–267 (2016).Article 

    Google Scholar 
    Gutiérrez-Moreno, R. et al. Field-evolved resistance of the Fall Armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico. J. Econ. Entomol. 112, 792–802 (2019).Article 

    Google Scholar 
    Blanco, C. A. et al. Susceptibility of isofamilies of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Cry1Ac and Cry1Fa proteins of Bacillus thuringiensis. Southw. Entomol. 35, 409–416 (2010).Article 

    Google Scholar 
    Storer, N. P. et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J. Econ. Entomol. 103, 1031–1038 (2010).Article 

    Google Scholar 
    Chandrasena, D. I. et al. Characterization of field-evolved resistance to Bacillus thuringiensis-derived Cry1F δ-endotoxin in Spodoptera frugiperda populations from Argentina. Pest Manag. Sci. 74, 746–754 (2018).Article 

    Google Scholar 
    Pashley, D. P. Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): A sibling species complex?. Ann. Entomol. Soc. Am. 79, 898–904 (1986).Article 

    Google Scholar 
    Pashley, D. P. & Martin, J. A. Reproductive incompatibility between host strains of the Fall Armyworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 80, 731–733 (1987).Article 

    Google Scholar 
    Dumas, P. et al. Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: Two host strains or two distinct species?. Genetica 143, 305–316 (2015).Article 

    Google Scholar 
    Lu, Y. J., Kochert, G. D., Isenhour, D. J. & Adang, M. J. Molecular characterization of a strain-specific repeated DNA sequence in the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). Insect Mol. Biol. 3, 123–130 (1994).Article 

    Google Scholar 
    Pashley, D. P. Host-associated differentiation in armyworms (Lepidoptera: Noctuidae): An allozymic and mtDNA perspective. in Electrophoretic Studies on Agricultural Pests, vol. 39, 103–114 (Clarendon Press, 1989).Nagoshi, R. N. The fall armyworm Triosephosphate Isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann. Entomol. Soc. Am. 103, 283–292 (2010).Article 

    Google Scholar 
    Dumas, P. et al. Phylogenetic molecular species delimitations unravel potential new species in the pest genus Spodoptera Guenée, 1852 (Lepidoptera, Noctuidae). PLoS ONE 10, e0122407 (2015).Article 

    Google Scholar 
    Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A. & Tamò, M. First report of outbreaks of the Fall Armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 11, e0165632 (2016).Article 

    Google Scholar 
    Day, R. et al. Fall armyworm: impacts and implications for Africa. Outlooks Pest Manag. 28, 196–201 (2017).Article 

    Google Scholar 
    Nuss, E. T. & Tanumihardjo, S. A. Maize: A paramount staple crop in the context of global nutrition. Compr. Rev. Food Sci. Food Saf. 9, 417–436 (2010).Article 

    Google Scholar 
    Zhang, L. et al. Genetic structure and insecticide resistance characteristics of fall armyworm populations invading China. Mol. Ecol. Resour. 20, 1682–1696 (2020).Article 

    Google Scholar 
    Zhang, D. et al. Insecticide resistance monitoring for the invasive populations of fall armyworm, Spodoptera frugiperda in China. J. Integr. Agric. 20, 783–791 (2021).Article 

    Google Scholar 
    Gui, F. et al. Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda. Protein Cell 1, 1–19 (2020).
    Google Scholar 
    Schlum, K. A. et al. Whole genome comparisons reveal panmixia among fall armyworm (Spodoptera frugiperda) from diverse locations. BMC Genomics 22, 179 (2021).Article 

    Google Scholar 
    Stokstad, E. New crop pest takes Africa at lightning speed. Science 356, 473–474 (2017).Article 

    Google Scholar 
    Nagoshi, R. N. et al. The fall armyworm strain associated with most rice, millet, and pasture infestations in the Western Hemisphere is rare or absent in Ghana and Togo. PLoS ONE 16, e0253528 (2021).Article 

    Google Scholar 
    Caniço, A., Mexia, A. & Santos, L. Farmers’ knowledge, perception and management practices of fall armyworm (Spodoptera frugiperda Smith) in Manica province, Mozambique. NeoBiota 68, 127 (2021).Article 

    Google Scholar 
    Nagoshi, R. N. et al. Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the Greater Antilles. PLoS ONE 12, e0181982 (2017).Article 

    Google Scholar 
    Nagoshi, R. N., Goergen, G., Plessis, H. D., van den Berg, J. & Meagher, R. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci. Rep. 9, 8311 (2019).Article 

    Google Scholar 
    Create your own Custom Map. MapChart https://mapchart.net/index.html.Sharanabasappa, S. et al. First report of the Fall armyworm, Spodoptera frugiperda (J E Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manag. Hortic. Ecosyst. 24, 23–29 (2018).
    Google Scholar 
    Liu, H. et al. Chromosome level draft genomes of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), an alien invasive pest in China. BioRxiv https://doi.org/10.1101/671560 (2019).Article 

    Google Scholar 
    Gimenez, S. et al. Adaptation by copy number variation increases insecticide resistance in the fall armyworm. Commun. Biol. 3, 664 (2020).Article 

    Google Scholar 
    Gouin, A. et al. Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci. Rep. 7, 11816 (2017).Article 

    Google Scholar 
    Nam, K. et al. Positive selection alone is sufficient for whole genome differentiation at the early stage of speciation process in the fall armyworm. BMC Evol. Biol. 20, 152 (2020).Article 

    Google Scholar 
    Fiteni, E. et al. Host-plant adaptation as a driver of incipient speciation in the fall armyworm (Spodoptera frugiperda). BMC Ecol. Evol. 22, 133 (2022).Article 

    Google Scholar 
    Tay, W. T. et al. Global population genomic signature of Spodoptera frugiperda (fall armyworm) supports complex introduction events across the Old World. Commun. Biol. 5, 1–15 (2022).Article 

    Google Scholar 
    Guan, F. et al. Whole-genome sequencing to detect mutations associated with resistance to insecticides and Bt proteins in Spodoptera frugiperda. Insect Sci. https://doi.org/10.1111/1744-7917.12838 (2020).Article 

    Google Scholar 
    Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).Article 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).Article 

    Google Scholar 
    Cruickshank, T. E. & Hahn, M. W. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol. Ecol. 23, 3133–3157 (2014).Article 

    Google Scholar 
    Pavlidis, P., Živković, D., Stamatakis, A. & Alachiotis, N. SweeD: likelihood-based detection of selective sweeps in thousands of genomes. Mol. Biol. Evol. 30, 2224–2234 (2013).Article 

    Google Scholar 
    Charlesworth, B., Morgan, M. T. & Charlesworth, D. The effect of deleterious mutations on neutral molecular variation. Genetics 134, 1289–1303 (1993).Article 

    Google Scholar 
    Aikio, S., Duncan, R. P. & Hulme, P. E. Lag-phases in alien plant invasions: separating the facts from the artefacts. Oikos 119, 370–378 (2010).Article 

    Google Scholar 
    Morimoto, N., Kiritani, K., Yamamura, K. & Yamanaka, T. Finding indications of lag time, saturation and trading inflow in the emergence record of exotic agricultural insect pests in Japan. Appl. Entomol. Zool. 54, 437–450 (2019).Article 

    Google Scholar 
    Aagaard, K. & Lockwood, J. Exotic birds show lags in population growth. Divers. Distrib. 20, 547–554 (2014).Article 

    Google Scholar 
    Azzurro, E., Maynou, F., Belmaker, J., Golani, D. & Crooks, J. A. Lag times in Lessepsian fish invasion. Biol. Invasions 18, 2761–2772 (2016).Article 

    Google Scholar 
    McDonnell, A. M. & Dang, C. H. Basic review of the cytochrome P450 system. J. Adv. Pract. Oncol. 4, 263–268 (2013).
    Google Scholar 
    Giraudo, M. et al. Cytochrome P450s from the fall armyworm (Spodoptera frugiperda): responses to plant allelochemicals and pesticides. Insect Mol. Biol. 24, 115–128 (2015).Article 

    Google Scholar 
    Cao, W. et al. Multi-faceted epigenetic dysregulation of gene expression promotes esophageal squamous cell carcinoma. Nat. Commun. 11, 3675 (2020).Article 

    Google Scholar 
    Yainna, S. et al. Geographic monitoring of insecticide resistance mutations in native and invasive populations of the Fall Armyworm. Insects 12, 468 (2021).Article 

    Google Scholar 
    Tapadia, M. G. & Lakhotia, S. C. Expression of mdr49 and mdr65 multidrug resistance genes in larval tissues of Drosophila melanogaster under normal and stress conditions. Cell Stress Chaperones 10, 7–11 (2005).Article 

    Google Scholar 
    Lin, H. et al. Characterization and expression profiling of serine protease inhibitors in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). BMC Genomics 18, 162 (2017).Article 

    Google Scholar 
    de Fouchier, A. et al. Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire. Nat. Commun. 8, 15709 (2017).Article 

    Google Scholar 
    Tataroglu, O. & Emery, P. The molecular ticks of the Drosophila circadian clock. Curr. Opin. Insect Sci. 7, 51–57 (2015).Article 

    Google Scholar 
    Hänniger, S. et al. Genetic basis of allochronic differentiation in the fall armyworm. BMC Evol. Biol. 17, 68 (2017).Article 

    Google Scholar 
    Schöfl, G., Heckel, D. G. & Groot, A. T. Time-shifted reproductive behaviours among fall armyworm (Noctuidae: Spodoptera frugiperda) host strains: Evidence for differing modes of inheritance. J. Evol. Biol. 22, 1447–1459 (2009).Article 

    Google Scholar 
    Haenniger, S. et al. Sexual communication of Spodoptera frugiperda from West Africa: Adaptation of an invasive species and implications for pest management. Sci. Rep. 10, 2892 (2020).Article 

    Google Scholar 
    Feder, J. L. et al. Genome-wide congealing and rapid transitions across the speciation continuum during speciation with gene flow. J. Hered. 105, 810–820 (2014).Article 

    Google Scholar 
    Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: Rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article 

    Google Scholar 
    McKenna, A. et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).Article 

    Google Scholar 
    Lu, Y. & Adang, M. J. Distinguishing fall armyworm (Lepidoptera: Noctuidae) strains using a diagnostic mitochondrial DNA marker. Fla. Entomol. 1, 48–55 (1996).Article 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article 

    Google Scholar 
    Meng, G., Li, Y., Yang, C. & Liu, S. MitoZ: A toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 47, e63–e63 (2019).Article 

    Google Scholar 
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).Article 

    Google Scholar 
    Tamura, K. et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).Article 

    Google Scholar 
    Li, H. Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics 27, 718–719 (2011).Article 

    Google Scholar 
    Rentería, M. E., Cortes, A. & Medland, S. E. Using PLINK for genome-wide association studies (GWAS) and data analysis. Methods Mol. Biol. 1019, 193–213 (2013).Article 

    Google Scholar 
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).
    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).Article 

    Google Scholar 
    Ernst, M. D. Permutation methods: a basis for exact inference. Stat. Sci. 4, 676–685 (2004).MathSciNet 
    MATH 

    Google Scholar 
    Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).Article 

    Google Scholar 
    Kergoat, G. J. et al. A novel reference dated phylogeny for the genus Spodoptera Guenée (Lepidoptera: Noctuidae: Noctuinae): New insights into the evolution of a pest-rich genus. Mol. Phylogenet. Evol. 161, 107161 (2021).Article 

    Google Scholar 
    Lefort, V., Desper, R. & Gascuel, O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32, 2798–2800 (2015).Article 

    Google Scholar 
    Plotree, D. & Plotgram, D. PHYLIP-phylogeny inference package (version 3.2). Cladistics 5, 163–166 (1989).
    Google Scholar 
    Nelson, D. R. The cytochrome p450 homepage. Hum. Genomics 4, 1–7 (2009).Article 

    Google Scholar  More

  • in

    Exploring the response of a key Mediterranean gorgonian to heat stress across biological and spatial scales

    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change. 9, 306–312 (2019).Article 

    Google Scholar 
    Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Global Change Biol. 15, 1090–1103 (2009).Article 

    Google Scholar 
    Hoeksema, B. W. & Matthews, J. L. Contrasting bleaching patterns in mushroom coral assemblages at Koh Tao Gulf of Thailand. Coral Reefs 30, 95 (2011).Article 

    Google Scholar 
    Coleman, M. A., Minne, A. J. P., Vranken, S. & Wernberg, T. Genetic tropicalisation following a marine heatwave. Sci. Rep. 10, 12726 (2020).Article 

    Google Scholar 
    Hutchinson G. E. Concluding remarks. – Cold Spring Harb. Symp. Quant. Biol. 22: 415–427 (1957).Lavergne, S., Mouquet, N., Thuiller, W. & Ronce, O. Biodiversity and climate change: Integrating evolutionary and ecological responses of species and communities. Ann. Rev. Ecol. Evol. Syst. 41, 321–350 (2010).Article 

    Google Scholar 
    King, N. G., McKeown, N. J., Smale, D. A. & Moore, P. J. The importance of phenotypic plasticity and local adaptation in driving intraspecific variability in thermal niches of marine macrophytes. Ecography 41(9), 1469–1484 (2018).Article 

    Google Scholar 
    Thomas, L. et al. Mechanisms of thermal tolerance in reef-building corals across a fine-grained environmental mosaic: Lessons from Ofu American Samoa. Front. Mar. Sci. 4, 434 (2018).Article 

    Google Scholar 
    Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Phil. Trans. R. Soc. B. 37420180174 (2019).Howells, E. et al. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat. Clim. Change 2, 116–120 (2012).Article 

    Google Scholar 
    Haguenauer, A., Zuberer, F., Ledoux, J.-B. & Aurelle, D. Adaptive abilities of the Mediterranean red coral Corallium rubrum in a heterogeneous and changing environment: from population to functional genetics. J. Exp. Mar. Biol. Ecol. 449, 349–357 (2013).Article 

    Google Scholar 
    Linares, C., Cebrian, E., Kipson, S. & Garrabou, J. Does thermal history influence the tolerance of temperate gorgonians to future warming?. Mar. Environ. Res. 89, 45–52 (2013).Article 

    Google Scholar 
    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).Article 

    Google Scholar 
    Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).Article 

    Google Scholar 
    Chakravarti, L. J., Beltran, V. H. & van Oppen, M. J. Rapid thermal adaptation in photosymbionts of reefbuilding corals. Glob. Chang. Biol. 23, 4675–4688 (2017).Article 

    Google Scholar 
    Krueger, T. et al. Common reef-building coral in the northern Red Sea resistant to elevated temperature and acidification. R. Soc. Open Sci. 4, 170038 (2017).Article 

    Google Scholar 
    Middlebrook, R., Hoegh-Guldberg, O. & Leggat, W. The effect of thermal history on the susceptibility of reef building corals to thermal stress. J. Exp. Biol. 211, 1050–1056 (2008).Article 

    Google Scholar 
    Bellantuono, A. J., Granados-Cifuentes, C., Miller, D. J., Hoegh-Guldberg, O. & Rodriguez-Lanetty, M. Coral thermal tolerance: Tuning gene expression to resist thermal stress. PLoS ONE 7, e50685 (2012).Article 

    Google Scholar 
    Hawkins, T. D. & Warner, M. E. Warm preconditioning protects against acute heat-induced respiratory dysfunction and delays bleaching in a symbiotic sea anemone. J. Exp. Biol. 220, 969–983 (2017).
    Google Scholar 
    Williams, D. E., Miller, M. W., Bright, A. J., Pausch, R. E. & Valdivia, A. Thermal stress exposure, bleaching response, and mortality in the threatened coral Acropora palmata. Bull. Mar. Poll. 124, 189–197 (2017).Article 

    Google Scholar 
    Hughes, T. P. et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Change 9, 40–43 (2019).Article 

    Google Scholar 
    Ferrier-Pagès, C. et al. Physiological response of the symbiotic gorgonian Eunicella singularis to a long-term temperature increase. J. Exp. Biol. 212, 3007–3015 (2009).Article 

    Google Scholar 
    Rodolfo-Metalpa, R. et al. Thermally tolerant corals have limited capacity to acclimatize to future warming. Global Change Biol. 20, 3036–3049 (2014).Article 

    Google Scholar 
    Ledoux, J-B., Aurelle, D., Bensoussan, N, Marschal, C., Feral & Garrabou, J. Potential for adaptive evolution at species range margins: contrasting interactions between red coral populations and their environment in a changing ocean. Ecol. Evol. 5, 1178–1192 (2015).Crisci, C. et al. Regional and local environmental conditions do not shape the response to warming of a marine habitat-forming species. Sci. Rep. 7, 5069 (2017).Article 

    Google Scholar 
    Jurriaans, S. & Hoogenboom M. O. Thermal performance of scleractinian corals along a latitudinal gradient on the Great Barrier Reef. Phil. Trans. R. Soc. B. 37420180546 (2019).Cerrano, C. et al. Catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-western Mediterranean), Summer 1999. Ecol. Lett. 3, 284–293 (2000).Article 

    Google Scholar 
    Garrabou, J., Gómez-Gras, D., Medrano, A., Cerrano, C., Ponti, M., et al. Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea. Global. Chang. Biol. (in press).Rossi, S. et al. Temporal variation in protein, carbohydrate, and lipid concentrations in Paramuricea clavata (Anthozoa, Octocorallia): evidence for summer–autumn feeding constraints. Mar Biol. 149, 643–651 (2006).Article 

    Google Scholar 
    Coma, R. et al. Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc. Natl. Acad. Sci. U.S.A. 106, 6176–6181 (2009).Article 

    Google Scholar 
    Kipson, S. Ecology of gorgonian dominated communities in the Eastern Adriatic Sea. PhD thesis. University of Zagreb, Zagreb, 160 pp. (2013).Bally, M. & Garrabou, J. Thermodependent bacterial pathogens and mass mortalities in temperate benthic communities: a new case of emerging disease linked to climate change. Global Change Biol. 13, 2078–2088 (2007).Article 

    Google Scholar 
    Vezzulli, L., Previati, M., Pruzzo, C., Marchese, A., Bourne. D. G. & Cerrano C. Vibrio infections triggering mass mortality events in a warming Mediterranean Sea. Environ. Microbiol. 12, 2007–2019 (2010).Corinaldesi, C. et al. Changes in coral forest microbiomes predict the impact of marine heatwaves on habitat-forming species down to mesophotic depths. Sci. Total Environ. 823, 153701 (2022).Article 

    Google Scholar 
    Tignat-Perrier, R. et al. The effect of thermal stress on the physiology and bacterial communities of two key Mediterranean gorgonians. Appl. Environ. Microbiol. 88(6), e0234021 (2022).Article 

    Google Scholar 
    Arizmendi-Mejía, R. et al. Demographic responses to warming: reproductive maturity and sex influence vulnerability in an octocoral. Coral Reefs 34, 1207–1216 (2015).Article 

    Google Scholar 
    Arizmendi-Mejía, R. et al. Combining genetic and demographic data for the conservation of a mediterranean marine habitat-forming species. PLoS ONE 10, e0119585 (2015).Article 

    Google Scholar 
    Ponti, M. et al. Ecological shifts in Mediterranean coralligenous assemblages related to gorgonian forest loss. PLoS ONE 9(7), e102782 (2014).Article 

    Google Scholar 
    Ponti, M., Turicchia, E., Ferro, F., Cerrano, C. & Abbiati, M. The understorey of gorgonian forests in mesophotic temperate reefs. Aquat. Conserv. Mar. Freshw. Ecosyst. 28(5), 1153–1166 (2018).Gómez-Gras, D. et al. Climate change transforms the functional identity of Mediterranean coralligenous assemblages. Ecol. Lett. 24(5), 1038–1051 (2021).Article 

    Google Scholar 
    Boavida, J., Assis, J., Silva, I., & Serrão, E. A. Overlooked habitat of a vulnerable gorgonian revealed in the Mediterranean and Eastern Atlantic by ecological niche modelling. Sci. Rep. 6(1) (2016).Linares, C., Doak, D., Coma, R., Diaz, D. & Zabala, M. Life history and viability of a long-lived marine invertebrate: The octocoral Paramuricea clavata. Ecology 88, 918–928 (2007).Article 

    Google Scholar 
    Coma, R., Ribes, M., Zabala, M. & Gili, J. M. Growth in a modular colonial marine invertebrates. Estuar. Coast. Shef Sci. 47, 459–470 (1998).Article 

    Google Scholar 
    Linares, C. et al. Early life history of the Mediterranean gorgonian Paramuricea clavata: Implication for population dynamics. Invertebr. Biol. 127, 1–11 (2008).Article 

    Google Scholar 
    Mokhtar-Jamaï, K. et al. From global to local genetic structuring in the red gorgonian Paramuricea clavata: The interplay between oceanographic conditions and limited larval dispersal. Mol. Ecol. 20, 3291–3305 (2011).Article 

    Google Scholar 
    Ledoux, J. et al. Postglacial range expansion shaped the spatial genetic structure in a marine habitat-forming species: Implications for conservation plans in the Eastern Adriatic Sea. J. Biogeogr. 45, 2645–2657 (2018).Article 

    Google Scholar 
    Dias, V. et al. High coral bycatch in bottom-set gillnet coastal fisheries reveals rich coral habitats in Southern Portugal. Front. Mar. Sci. 7, 1–16 (2020).Article 

    Google Scholar 
    Cebrian, E., Linares, C., Marshall, C. & Garrabou, J. Exploring the effects of invasive algae on the persistence of gorgonian populations. Biol. Invas. 14, 2647–2656 (2012).Article 

    Google Scholar 
    Mateos-Molina, D. et al. Assessing consequences of land cover changes on sediment deliveries to coastal waters at regional level over the last two decades in the northwestern Mediterranean Sea. Ocean Coast. Manag. 116, 435–442 (2015).Article 

    Google Scholar 
    Gómez-Gras, D. et al. Population collapse of habitat-forming species in the Mediterranean: a long-term study of gorgonian populations affected by recurrent marine heatwaves. Proc. R. Soc. B. 288, 20212384 (2021).Article 

    Google Scholar 
    Otero, M. M., Numa, C., Bo, M., Orejas, C., Garrabou, J. et al., Overview of the conservation status of Mediterranean anthozoans. IUCN, Malaga, Spain, 73 (2017).Bensoussan, N., Cebrian, E., Dominici, J. M., Kersting, D. K., Kipson, S., et al. Using CMEMS and the Mediterranean Marine protected Area sentinel network to track ocean warming effects in coastal areas. In: Copernicus Marine Service Ocean State Report. J. Oper. Oceanogr. 3 (2019).Garrabou, J. et al. Collaborative database to track mass mortality events in the Mediterranean Sea. Front. Mar. Sci. 6, 707 (2019).Article 

    Google Scholar 
    Gómez-Gras, D. et al. Response diversity in Mediterranean coralligenous assemblages facing climate change: insights from a multi-specific thermotolerance experiment. Ecol. Evol. 9(7), 4168–4180 (2019).Article 

    Google Scholar 
    Cox, D. R. Regression models and life tables (with discussion). J. R. Stat. Soc. Series B 34, 187–220 (1972).MATH 

    Google Scholar 
    Kaplan, E. L. & Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 (1958).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Mantel, N. Evaluation of survival data and two new rank order statistics arising in its consideration. C. Chemoth. Rep. 50(3), 163–170 (1966).
    Google Scholar 
    Galli, G., Solidoro, C. & Lovato, T. Marine heat waves hazard 3D maps and the risk for low motility organisms in a warming Mediterranean Sea. Fronts Mar. Sci. 4 (2017).Darmaraki, S. et al. Future evolution of marine heatwaves in the mediterranean sea. Clim. Dyn. 53, 1371–1392 (2019).Article 

    Google Scholar 
    Coles, S. L., Jokiel, P. L. & Lewis, C. R. Thermal tolerance in tropical versus subtropical Pacific reef corals. Pac. Sci. 30, 156–166 (1976).
    Google Scholar 
    Bay, R. A. & Palumbi, S. R. Rapid acclimation ability mediated by transcriptome changes in reef-building corals. Genome Biol. Evol. 7, 1602–1612 (2015).Article 

    Google Scholar 
    Fangue, N. A., Hofmeister, M. & Schulte, P. M. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish Fundulus heteroclitus. J. Exp. Biol. 209, 2859–2872 (2006).Article 

    Google Scholar 
    Jensen, L. F. et al. Local adaptation in brown trout early life-history traits: Implications for climate change adaptability. Proc. R. Soc. B Biol. Sci. 275, 2859–2868 (2008).Article 

    Google Scholar 
    Kuo, E. S. L. & Sanford, E. Geographic variation in the upper thermal limits of an intertidal snail: implications for climate envelope models. Mar. Ecol.: Prog. Ser. 388, 137–146 (2009).Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9, 1671 (2018).Article 

    Google Scholar 
    Thompson, D. M. & van Woesik, R. Corals escape bleaching in regions that recently and historically experienced frequent thermal stress. Proc. R. Soc. Biol. Sci. B 276, 2893–2901 (2009).Article 

    Google Scholar 
    Gates, R. D. & Edmunds, P. J. The physiological mechanisms of acclimatization in tropical reef corals. Am. Zool. 39, 30–43 (1999).Article 

    Google Scholar 
    West-Eberhard, M. J. Developmental plasticity and evolution (Oxford University Press, 2003).Book 

    Google Scholar 
    Brown, B. E., Dunne, R. P., Edwards, A. J., Sweet, M. J. & Phongsuwan, N. Decadal environmental ’memory’ in a reef coral?. Mar. Biol. 162, 479–483 (2015).Article 

    Google Scholar 
    Torda, G. et al. Rapid adaptive responses to climate change in corals. Nat. Clim. Change 7, 627 (2017).Article 

    Google Scholar 
    Liew, Y. J. et al. Intergenerational epigenetic inheritance in reef-building corals. Nat. Clim. Change 10, 254–259 (2020).Article 

    Google Scholar 
    Howells, E. J., Abrego, D., Liew, Y. J., Burt, J. A., Meyer, E. & Aranda, M. Enhancing the heat tolerance of reef-building corals to future warming. Sci. Adv. 7, eabg6070 (2021).Palstra, F. P. & Ruzzante, D. E. Genetic estimates of contemporary effective population size: What can they tell us about the importance of genetic stochasticity for wild population persistence?. Mol. Ecol. 17, 3428–3447 (2008).Article 

    Google Scholar 
    Hague, M. & Routman, E. Does population size affect genetic diversity? A test with sympatric lizard species. Heredity 116, 92–98 (2016).Article 

    Google Scholar 
    Gurgel, C. F. D., Camacho, O., Minne, A. J., Wernberg, T. & Coleman, M. A. Marine heatwave drives cryptic loss of genetic diversity in underwater forests. Curr. Biol. 30(7), 1199–1206 (2020).Article 

    Google Scholar 
    Ledoux, J.-B. et al. Assessing the impact of population decline on mating system in the overexploited Mediterranean red coral. Aquat. Conserv: Mar. Freshw. Ecosyst. 30(6), 1149–1159 (2020).Article 

    Google Scholar 
    Howells, E. J., Berkelmans, R., van Oppen, M. J. H., Willis, B. L. & Bay, L. K. Historical thermal regimes define limits to coral acclimatization. Ecology 94, 1078–1088 (2013).Article 

    Google Scholar 
    Spielman, D., Brook, B. W. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. Proc. Nat. Acad. Sci. USA 101, 15261–15264 (2004).Article 

    Google Scholar 
    Frankham, R., Bradshaw, C. J. A. & Brook, B. W. Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol. Cons. 170, 56–63 (2014).Article 

    Google Scholar 
    Gori, A. et al. Effects of food availability on the sexual reproduction and biochemical composition of the Mediterranean gorgonian Paramuricea clavata. J. Exp. Mar. Biol. Ecol. 444, 38–45 (2013).Article 

    Google Scholar 
    Darmaraki, S., Somot, S., Sevault, F. & Nabat, P. Past variability of Mediterranean Sea marine heatwaves. Geophys. Res. Lett. 46, 9813–9823 (2019).Article 

    Google Scholar 
    Bongaerts, P., Ridgway, T., Sampayo, E. M. & Hoegh-Guldberg, O. Assessing the ‘deep reef refugia’ hypothesis: Focus on Caribbean reefs. Coral Reefs 29, 309–327 (2010).Article 

    Google Scholar 
    Pilczynska, J. et al. Genetic diversity increases with depth in red gorgonian populations of the Mediterranean Sea and the Atlantic Ocean. Peer J 7, e6794 (2019).Article 

    Google Scholar 
    Gugliotti, E. F., DeLorenzo, M. E. & Etnoyer, P. J. Depth-dependent temperature variability in the Southern California bight with implications for the cold-water gorgonian octocoral Adelogorgia phyllosclera. J. Exp. Mar. Biol. Ecol. 514–515, 118–126 (2019).Article 

    Google Scholar 
    Aurelle, D. et al. Genetic insights into recolonization processes of Mediterranean octocorals. Mar. Biol. 167, 73 (2020).Article 

    Google Scholar 
    Morikawa, M. K., & Palumbi, S. R. Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proc. Nat. Acad. Sci. USA 116(21), 10586 LP–10591 (2019).Crisci, C., Bensoussan, N., Romano, J. C. & Garrabou, J. Temperature anomalies and mortality events in marine communities: Insights on factors behind differential mortality impacts in the NW Mediterranean. PLoS ONE 6, e23814 (2011).Article 

    Google Scholar 
    Brener-Raffalli, K., Vidal-Dupiol, J., Adjeroud, M., Rey, O., Romans, P., et al. Gene expression plasticity and frontloading promote thermotolerance in Pocilloporid corals. bioRxiv 398602 (2018).Ledoux, J. B. et al. The Genome Sequence of the Octocoral Paramuricea clavata – A Key resource to study the impact of climate change in the Mediterranean. G3 10(9), 2941–2952 (2020).Article 

    Google Scholar  More

  • in

    New globally distributed bacterial phyla within the FCB superphylum

    Identification, phylogeny, and distribution of five phylaTo advance our understanding of marine sediment microbial diversity, we obtained over 30 billion paired DNA sequences from 42 marine sediment samples (coastal and deep sea) (Supplementary Data 1). From this, we reconstructed over 8000 ( >50% complete, 95%) to genes from coastal waters (Venezuela), a hypersaline pond in Carpinteria (US), sediments in Garolim Bay (Korea), and others (Supplementary Data 6 and 7). The worldwide distribution of these five phyla suggests that they have potentially overlooked ecological roles across many environments.Detection of novel protein familiesTo explore novel metabolic capabilities of these bacteria, we employed a recently described approach to identify and characterize unknown genes exclusive to uncultivated taxa17. Using this computational method, we identified 1,934 novel protein families (NPFs) and 6,893 novel singletons (NSs) in the 55 MAGs. The former can be define as families that do not show any homology in broadly used databases (including eggNOG, pfamA, pfamB, and RefSeq, see “Methods”) while the latter (NSs) are NPFs that are detected only once in each given genome or group of genomes. To determine if this novelty was specific to the five phyla or distributed across other uncultivated prokaryotic taxa, we mapped these NPFs and NSs against a comprehensive dataset of 169,642 bacterial and archaeal genomes covered in Rodriguez del Río et al.17. Using an in-house pipeline (Supplementary Fig. 4), we found that 44.6% of these NPFs and NSs are present in other uncultured taxa, highlighting the novel and undescribed metabolic repertoire that these five phyla share with other uncultured prokaryotic lineages17. Specifically, we found that these proteins are also present in Marinisomatota, Bacteroidota, and WOR-3 from publicly available genomes obtained from both marine and terrestrial environments17. When comparing the total number of NPFs per genome in the novel bacterial phyla against the genomic dataset (approximately 170,000 genomes), we found that the novel taxa described in this study have a higher than average percentage of novel proteins per genome (5.68 ± 4.89%) (p  0.7) and widespread (coverage > 0.7) within each phylum are shown in dark purple bars. The number of novel protein families with conserved neighboring genes are shown in light gray bars. c, d, Selected examples of phylogenetic trees and novel protein family genomic context marked in gray with a black outline) in Blakebacterota and Arandabacterota. The protein families are similar between these two phyla and have conserved neighboring genes, including translation initiation factor IF-3 gene (infC), large subunit ribosomal protein L20 gene (rplT), phenylalanyl-tRNA synthetase genes (pheST), cell division protein gene (zapA), phosphodiesterase gene (ymdB), methenyltetrahydrofolate cyclohydrolase gene (folD), and exodeoxyribonuclease genes (xseAB). e Phylogenetic tree and genomic context of a novel protein family uniquely distributed in Joyebacterota. The novel protein family has conserved genomic neighbors related to energy conservation (Rnf complex genes, rnfABCDEG). The phylogeny was generated using FastTree2 and numbers on the top and bottom of the branch represent the bootstrap and branch length, respectively. Source data are provided as a Source Data file.Full size imageMetabolic pathways are often encoded by ‘genome neighborhoods’ (gene clusters and/or operons)18. Therefore, we calculated the genomic context conservation of the NPFs containing three or more sequences (3773 NPFs in total) and examined the annotation of genes found in genomic proximity of the NPFs to determine their potential function. Of the inspected families, 513 (14%) had a conservation score ≥ 0.9 (see “Methods”) indicating a high degree of conserved neighboring proteins. Manual annotation of these neighboring proteins indicated they are potentially involved in sulfur reduction, energy conservation, as well as the degradation of organics such as starch, fatty acids, and amino acids (highlighted in red in Supplementary Fig. 5). For example, a NPF predominantly found in Blakebacterota is neighbored by putative menaquinone reductases (QrcABCD), a conserved complex related to energy conservation in sulfate reducing bacteria19,20,21,22. However, metabolic annotations of Blakebacterota genomes that encode QrcABCD indicate that they largely lack the key enzymes for sulfate reduction, dissimilatory sulfite reductases (DsrABC), suggesting this QrcABCD complex may be involved in other bioenergetic contexts such as linking periplasmic hydrogen and formate oxidation to the menaquinone pool22.In some instances, we found NPFs coded near genes predicted to produce key proteins in nitrogen cycling. Two of the Joyebacterota MAGs code NPF neighboring proteins with homology to hydroxylamine dehydrogenases (HAO). HAO is a key enzyme in marine nitrogen cycling that has traditionally been thought to catalyze the oxidation of hydroxylamine (NH2OH) to nitrite (NO2−) in ammonia oxidizing bacteria. Recently, it has been suggested that HAO may also convert hydroxylamine to nitric oxide (NO) as an intermediate, which is then further oxidized to nitrite by an unknown mechanism. Hydroxylamine is also known to be an intermediate in the nitrogen cycle. It is a potential precursor of nitrous oxide (N2O), a potent greenhouse gas that is a byproduct of denitrification, nitrification23,24, and anaerobic ammonium oxidation25. The presence of HAO within the genomic context of these NPFs suggests they may be involved in mediating hydroxylamine metabolism, and thus may play an important role in nitrogen cycling.A number of NPFs are colocalized with genes predicted to be involved in the utilization of organic carbon. For example, one NPF found in Blakebacterota genomes is adjacent to a peptidase (PepQ; K01271) for dipeptide degradation. Another NPF, only detected in Blakebacterota, is neighbored by long-chain acyl-CoA synthetase (FadD; K01897), a key enzyme in fatty acid degradation (Supplementary Fig. 6). In Joyebacterota, as well as in publicly available Bacteroidetes and Latescibacteria we identified an NPF that is colocalized with amylo-alpha-1,6-glucosidase (Glycoside Hydrolase Family 57), suggesting a potential role in starch degradation.We also identified NPFs that are specific and very conserved in AABM5, Blakebacterota, Orphanbacterota, Arandabacterota, and Joyebacterota (2, 39, 3, 16, and 26 respectively). These NPFs were found in at least 70% of the MAGs belonging to each phylum, and rarely present in other genomes across the tree of life. Due to their unique nature, the 86 unique NPFs could be used as marker genes for future characterizations of the novel bacteria described in this study. When examining the genomic context of the phyla-specific NPFs, we found that more than half of the NPFs (49 of 86) shared the same gene order and are next to genes predicted to be involved in various catabolic and anabolic processes. For example, an NPF in Joyebacterota MAGs is adjacent to an Rnf complex26, which is important for energy conservation in numerous organisms21 (Fig. 2e). Also, two different NPFs in Blakebacterota and Arandabacterota MAGs were located next to tRNA synthesis genes (Fig. 2c, d). Additional phyla-specific NPFs were colocalized with genes predicted to be involved in other important processes, including peptidoglycan biosynthesis (Supplementary Fig. 6a), F-type ATPase (Supplementary Fig. 6b), acyl-CoA dehydrogenase, elements for transportation, sulfur assimilation (Supplementary Fig. 6c), and others (Supplementary Fig. 6d).Metabolic potential of the novel bacterial phylaIn addition to NPF-based analyses, we compared the predicted proteins in the novel lineages to a variety of databases and gene phylogenies to understand their metabolism (see “Methods”). The distribution of key metabolic proteins based on presence/absence of protein families (using MEBS: see methods) in the 61 MAGs is largely consistent with their phylogeny (Fig. 1a). Below, we detail the predicted metabolism of each novel bacterial phyla based on these analyses (Supplementary Fig. 5 and Supplementary Data 8 and 9, see details in Supplementary Information).JoyebacterotaJoyebacterota is composed of 20 MAGs predominantly reconstructed from hydrothermal vent sediments (blue, lower right side in the phylogeny shown in Fig. 1a). Metabolic inference suggests that these bacteria are obligate anaerobes encoding extracellular carbohydrate-active enzymes (CAZymes) with the potential to degrade pectate or pectin, photosynthetically fixed carbon in marine diatoms, macrophytes27, and terrestrial plants28. Furthermore, Joyebacterota seems to be involved in the sulfur cycle. Seven Joyebacterota MAGs encode sulfide:quinone oxidoreductases (SQR). Phylogenetic analysis indicate these SQR belong to the membrane-bound type I and III29. Interestingly, these SQR type I sequences are closely related to those sequences mostly found in terrestrial environments, e.g., freshwater, soil, and hot spring, while SQR-III  have been previously suggested to play a key role maintaining the sulfide homeostasis or bioenergetics in deep-sea sediments30. The presence of these pathways highlight the potential adaptation of Joyebacterota to several environments, contributing to recycling of carbon and sulfur.BlakebacterotaThe Blakebacterota phylum is composed of 11 MAGs predominantly reconstructed from the surface layer of GB sediments (0–6 cm). In this environment, temperatures range from 25 to 29 °C, CH4 measures 0.4–0.8 mM, CO2 reaches up to 10 mM, and SO42− concentrations are high (up to 28 mM)30. Metabolic inference using MEBS31 suggests Blakebacterota play an important role in N and S cycles. These findings were supported by the presence of key enzymes in these cycles. For example, we identified a nitrous oxide reductase in Blakebacterota, the only known enzyme to catalyze the reduction of nitrous oxide to nitrogen gas. This reaction acts as a sink for nitrous oxide, and thus is an important removal mechanism for this potent greenhouse gas. In addition to nitrogen cycling, we identified key genes involved in sulfur cycling in Blakebacterota. Six of the MAGs possess genes that code for SQR with sulfate or nitrous oxide as the final electron accepter. In addition, seven of the MAGs contain genes for thiosulfate dehydrogenase (doxD), which may convert thiosulfate to tetrathionate. Finally, one MAG is predicted to produce dimethyl sulfide (DMS) under oxic conditions via methanethiol S-methyltransferase (MddA) from methylate L-methionine or methanethiol (MeSH). Thus, these bacteria may play important roles in a variety of intermediate steps in nitrogen and sulfur cycling.ArandabacterotaLike Joyebacterota, Arandabacterota were largely recovered from shallow (2–14 cm) GB and deep (26–38 cm) BS sediments. This phylum contains 11 MAGs that are predicted to be anaerobic polysulfide and elemental sulfur reducers. They may mediate sulfur reduction via sulfhydrogenases (HydGB), which results in the production of sulfide32,33. Thus, Arandabacterota may contribute to sulfur cycling in marine sediments. Arandabacterota also code distinct hydrogenases, [NiFe] 3c and 4g types, (Fig. 3) for H2 oxidation. In addition, Arandabacterota may reduce nitrite via periplasmic dissimilatory nitrite reductases (NrfAH) present in Meg22_24_Bin_129, BHB10-38_Bin_9, and SY70-4-3_Bin_59. This mechanism for energy conservation is more efficient than polysulfide and elemental sulfur reduction. Therefore, they are likely to use sulfur species as electron donors in the absence of nitrite.Fig. 3: Maximum likelihood phylogenetic tree of NiFe hydrogenases from the novel phyla.The majority of NiFe hydrogenases identified from the five phyla in this study are highlighted in the gray background. Most hydrogenases are types 4g and 3c. Starred branches denote the minor NiFe hydrogenases identified in this study. Bootstrap values ≥ 80 are shown in circles. Source data are provided as a Source Data file.Full size imageOrphanbacterotaOrphanbacterota is composed of seven MAGs that were mostly obtained from the BS, and appear to be metabolically versatile, facultative aerobes. The BS has an average water depth of 18 m and is strongly influenced by anthropogenic activities in China, mainly the terrestrial input of nutrients and organic matter34. Orphanbacterota code a diversity of CAZymes for the degradation of complex carbohydrates. We identified genes coding for extracellular glycoside hydrolase family 16 (GH16), which may be involved in the degradation of laminarin, releasing glucose and oligosaccharides35. Six Orphanbacterota genomes also contain genes predicted to produce extracellular peptidases belonging to family M28 and S8, which are nonspecific peptidases (Supplementary Fig. 7 and Supplementary Data 10–14). The released amino acids could be taken up via ABC transporters coded by these bacteria.Consistent with their recovery from shallow sediment habitats (Supplementary Data 1), Orphanbacterota have a diverse repertoire of terminal cytochrome oxidase genes (Supplementary Data 9) suggesting they are capable of surviving in a range of oxygen concentrations. Based on the presence of isocitrate lyase and malate synthase, they may use the glyoxylate cycle for carbohydrate synthesis when sugar is not available, or use simple two-carbon compounds for energy conservation36,37. They also appear capable of reducing nitrate to nitrite via periplasmic nitrate reductases (NapAB)38. Moreover, they could reduce nitrate via the membrane-bound nitrate reductase for energy conservation and reducing nitrous oxide.One Orphanbacterota genome (M3-44_Bin_119) has genes predicted to mediate sulfate/sulfite reduction, including DsrABC, QmoABC, and membrane bound Rnf complexes (Supplementary Fig. 8a, b and Supplementary Data 8 and 9). Another Orphanbacterota (LQ108M_Bin_12) is predicted to contain diverse metabolic pathways, including MmdA for DMS production, SQR for sulfide oxidation, the Rnf complex for energy conservation21 or detoxification (Supplementary Fig. 8c), and sulfhydrogenases (HydABDG) for H2 oxidation. In addition to energy conservation and detoxification, sulfide oxidation is important for preventing the loss of sulfur through H2S volatilization. This is predicted to be an important process in sulfur-rich sediments, where large quantities of the self-produced H2S are produced during heterotrophic growth29.AABM5AABM5 (12 genomes, 7 obtained in this study) is an understudied bacterial group that has largely been recovered from shallow (4–12 cm) sediments in GB and deep (44–62 cm) sediments in BS. Despite the distinct environments where they have been found, genomes within this phylum have several shared metabolic abilities. In contrast to the strict anaerobic lifestyle that was previously reported in a subgroup within AABM5 (candidate division LCP–89)12, we predict they are facultative anaerobes. In support of this, we identified cytochrome c oxidase (CtaDCEF) and cytochrome bd ubiquinol oxidase (CydAB) for aerobic respiration39. In addition, we identified DsrABC in nine genomes (Supplementary Fig. 8 and Supplementary Data 15), indicating these organisms can potentially reduce sulfate/sulfite for energy conservation. Several AABM5 genomes are predicted to use H2 as an electron donor due to the presence of type 3c [NiFe] hydrogenase (MvhADG) (Fig. 3, Supplementary Fig. 9, and Supplementary Data 8 and 9). The metabolic versatility in this phylum better explains their global distribution.Ecological significance of the new phylaThese previously overlooked bacterial phyla appear to be involved in key biogeochemical processes in marine sediments, namely sulfur and nitrogen cycling, and the degradation of organic carbon. However, we did not find any evidence for complete autotrophic metabolisms (Wood-Ljungdahl pathway, Calvin–Benson–Bassham, reductive tricarboxylic acid, 3-hydroxypropionate bicycle, 3-hydroxypropionate-4-hydroxybutyrate, and dicarboxylate-4-hydroxybutyrate cycles) in any of these bacteria. Instead, they have a variety of pathways for the utilization of organic compounds as detailed above. These novel bacteria phyla (all except Blakebacterota) have the potential to degrade the algal glycan laminarin, one of the most important complex carbon compounds in the ocean40. These novel phyla encode extracellular laminarinases that specifically cleave the laminarin into more readily degradable sugars, e.g., glucose and oligosaccharide (Supplementary Fig. 7 and Supplementary Data 10–12). Laminarin glycan is produced in the surface ocean by microalgae that sequester CO2 as an important carbon sink in the oceans41. This is a key process of the global carbon cycle, and most studies have focused on understanding aerobic laminarin-degrading bacteria in the surface oceans41,42. Recently, it has been shown that laminarin plays a prominent role in oceanic carbon export and energy flow to higher trophic levels and the deep ocean40, yet the organisms responsible for laminarin degradation under anoxic conditions are unknown. The discovery of  these novel bacterial phyla opens new doors for future studies exploring laminarin degradation in the deep sea. In addition, most of them contain genes predicted to code for sulfatases. Blakebacterota, Orphanbacterota, Arandabacterota, and Joyebacterota code for arylsulfatase, mainly arylsulfatase A, for desulfation of galactosyl moiety of sulfatide. They also code choline sulfatase, iduronate 2-sulfatase and some uncharacterized sulfatases for different types of substrates43. This suggests they are capable of cleaving organic sulfate ester bonds as a source of sulfur and organic carbon on the ocean floor.Many metabolic processes identified here, including pathways for polysaccharide degradation, sulfur, and nitrogen metabolism are often incomplete (Fig. 4). This may be due to the incompleteness of these genomes, or it suggests that these processes occur via metabolic handoffs within the community. Some of the phyla are capable of mediating a variety of sulfur and nitrogen redox reactions (Fig. 4a, b). For example, four phyla code DsrABC, suggesting they play an overlooked role in inorganic matter degradation in marine sediments through sulfate reduction. The resultant sulfide may be reoxidized to sulfur intermediates and organic sulfur compounds by these newly described bacteria. Four phyla (Blakebacterota, Orphanbacterota, Arandabacterota, and Joyebacterota) code an SQR for producing elemental sulfur from sulfide. Methanethiol S-methyltransferase (MddA) is predicted to be produced by individual MAGs Blakebacterota (M3-38_Bin_215) and Orphanbacterota (LQ108M_Bin_12) for the production of DMS from methionine44. DMS is important in climate regulation and sulfur cycling in marine environments45,46, though little is known about the fate or production of DMS in anoxic environments like marine sediments. As detailed above, Blakebacterota contains genes for the conversion of thiosulfate to tetrathionate. Four phyla (AABM5, Orphanbacterota, Arandabacterota, and Joyebacterota) are predicted to disproportionate thiosulfate to sulfite via thiosulfate/3-mercaptopyruvate sulfurtransferase. Thus, we suspect these bacteria may be capable of mediating intermediate sulfur species in anoxic environments. These results provide a predictive framework for future physiological studiesto confirm our genomic-based predictions.Fig. 4: Genomic-based predictions of the potential metabolic role of the novel bacterial phyla.Key steps in the (a) sulfur and (b) nitrogen cycles predicted in the five bacterial phyla. Compounds (in gray triangle frames) were arranged according to the standard Gibbs free energy of formation of each sulfur or nitrogen compound (values next to the compound taken from Caspi et al.93). Star, square, triangle, pentagon, and diamond shapes correspond to AABM5, Blakebacterota, Orphanbacterota, Arandabacterota and Joyebacterota, respectively. Colored shapes represent the presence of genes in a given pathway. Fully colored shapes indicate the presence of genes in over 50% of the phyla. Half colored shapes signify that less than 50% of the phyla code for those genes. Uncolored shapes indicate presence of genes in only one MAG. Note that only pathways encoded in at least one MAG are shown. The red dotted line indicates the assimilatory process. The blue soild line indicates the confirmed pathway with phylogeny of key genes. c Phylogenetic tree and genomic context of a novel protein family (NPF) next to putative menaquinone reductase complex genes (qrcABCD) found in Blakebacterota and Orphanbacterota. d Phylogenetic tree and genomic context of a NPF next to hydroxylamine oxidoreductase genes (hao) in Joyebacterota.Full size imageIn addition to potential roles in sulfur cycling, the phyla described here may play key roles in nitrogen processes, for example several MAGs contain genes that code predicted hydroxylamine dehydrogenase proteins (HAO, confirmed by different databases)47,48. HAO is a precursor of nitrous oxide (N2O), a potent greenhouse gas and ozone destructing agent in the atmosphere. Marine N2O stems from nitrification and denitrification processes which depend on organic matter cycling and dissolved oxygen. Since hydroxylamine is a precursor of N2O, deciphering the organisms that can mediate the formation of N2O has important implications for Earth’s climate49. In addition, three phyla (AABM5, Blakebacterota, and Orphanbacterota) code for periplasmic and/or transmembrane nitrate reductase, and two phyla (AABM5 and Arandabacterota) are predicted to reduce nitrite via dissimilatory nitrite reductase.In recent years, there have been large advances in the exploration of novel microbial diversity. Genomic data has provided crucial insights into the ecological roles and biology of these new microbes. The recovery of bacterial genomes belonging to five overlooked, globally distributed phyla with considerably novel protein composition reminds us there is much to be learned about the microbial world. The identification of NPFs provides targets for future studies to elucidate the ecophysiology of these organisms. The presence of genes for organic carbon degradation and sulfur and nitrogen cycling in these new bacteria suggests they contribute to a variety of key processes in marine sediments. Thus, the addition of these bacterial genomes to ecosystem models will likely transform our understanding of how microbial communities drive carbon degradation and nutrient cycling in the oceans. More

  • in

    The overlapping burden of the three leading causes of disability and death in sub-Saharan African children

    Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USARobert C. Reiner Jr., Catherine A. Welgan, Christopher E. Troeger, Mathew M. Baumann, Aniruddha Deshpande, Brigette F. Blacker, Molly K. Miller-Petrie, Lucas Earl, Daniel C. Casey, Aubrey J. Cook, Farah Daoud, Nicole Davis Weaver, Samath Dhamminda Dharmaratne, Laura Dwyer-Lindgren, Valery L. Feigin, Joseph Jon Frostad, Kimberly B. Johnson, Alice Lazzar-Atwood, Kate E. LeGrand, Stephen S. Lim, Paulina A. Lindstedt, Laurie B. Marczak, Benjamin K. Mayala, Ali H. Mokdad, Jonathan F. Mosser, Chrisopher J. L. Murray, QuynhAnh P. Nguyen, David M. Pigott, Puja C. Rao, David L. Smith, Emma Elizabeth Spurlock & Simon I. HayDepartment of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USARobert C. Reiner Jr., Samath Dhamminda Dharmaratne, Laura Dwyer-Lindgren, Stephen S. Lim, Ali H. Mokdad, Chrisopher J. L. Murray, David M. Pigott, Benn Sartorius, David L. Smith & Simon I. HayMalaria Atlas Project, University of Oxford, Oxford, UKDaniel J. Weiss & Susan Fred RumishaImperial College London, London, UKSamir BhattDepartment of Laboratory Medicine, Karolinska University Hospital, Huddinge, SwedenHassan AbolhassaniResearch Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, IranHassan Abolhassani & Nima RezaeiDepartment of Public Health, Debre Berhan University, Debre Berhan, EthiopiaAkine Eshete AbosetugnDepartment of Clinical Sciences, University of Sharjah, Sharjah, United Arab EmiratesEman Abu-GharbiehPopulation Health Sciences, King’s College London, London, EnglandVictor AdekanmbiCentre of Excellence for Epidemiological Modelling and Analysis, Stellenbosch University, Stellenbosch, South AfricaOlatunji O. AdetokunbohDepartment of Global Health, Stellenbosch University, Cape Town, South AfricaOlatunji O. AdetokunbohDepartment of Epidemiology and Biostatistics, Qom University of Medical Sciences, Qom, IranMohammad AghaaliFaculty of Medicine and Public Health, Jenderal Soedirman University, Purwokerto, IndonesiaBudi AjiMayo Evidence-based Practice Center, Mayo Clinic Foundation for Medical Education and Research, Rochester, MN, USAFares AlahdabJohn T. Milliken Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO, USAZiyad Al-AlyClinical Epidemiology Center, Department of Veterans Affairs, St Louis, MO, USAZiyad Al-AlyInstitute of Health Research, University of Health and Allied Sciences, Ho, GhanaRobert Kaba AlhassanDepartment of Information Systems, College of Economics and Political Science, Sultan Qaboos University, Muscat, OmanSaqib AliInfectious and Tropical Disease Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, IranHesam AlizadeDepartment of Health Policy and Management, Kuwait University, Safat, KuwaitSyed Mohamed AljunidInternational Centre for Casemix and Clinical Coding, National University of Malaysia, Bandar Tun Razak, MalaysiaSyed Mohamed AljunidDepartment of Epidemiology, Arak University of Medical Sciences, Arak, IranAmir Almasi-Hashiani, Rahmatollah Moradzadeh & Maryam ZamanianMedical Research Center, Jazan University, Jazan, Saudi ArabiaHesham M. Al-MekhlafiDepartment of Parasitology, Sana’a University, Sana’a, YemenHesham M. Al-MekhlafiPediatric Intensive Care Unit, King Saud University, Riyadh, Saudi ArabiaKhalid A. Altirkawi & Mohamad-Hani TemsahResearch Group in Health Economics, University of Cartagena, Cartagena, ColombiaNelson Alvis-GuzmanResearch Group in Hospital Management and Health Policies, ALZAK Foundation, Cartagena, ColombiaNelson Alvis-GuzmanSchool of Medicine, University of Adelaide, Adelaide, SA, AustraliaAzmeraw T. AmareCollege of Medicine and Health Science, Bahir Dar University, Bahir Dar, EthiopiaAzmeraw T. AmareHealth Services Management Department, Arak University of Medical Sciences, Arak, IranSaeed AminiMaternal and Child Wellbeing, African Population and Health Research Center, Nairobi, KenyaDickson A. AmugsiPharmacy Department, Carol Davila University of Medicine and Pharmacy, Bucharest, RomaniaRobert AncuceanuCardiology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, RomaniaCatalina Liliana AndreiResearch Center for Evidence Based Medicine, Tabriz University of Medical Sciences, Tabriz, IranFereshteh AnsariRazi Vaccine and Serum Research Institute, Agricultural Research, Education, and Extension Organization (AREEO), Tehran, IranFereshteh AnsariDepartment of Parasitology, Mazandaran University of Medical Sciences, Sari, IranDavood AnvariDepartment of Parasitology, Iranshahr University of Medical Sciences, Iranshahr, IranDavood AnvariDepartment of Sociology and Social Work, Kwame Nkrumah University of Science and Technology, Kumasi, GhanaSeth Christopher Yaw AppiahCenter for International Health, Ludwig Maximilians University, Munich, GermanySeth Christopher Yaw AppiahHealth Management and Economics Research Center, Iran University of Medical Sciences, Tehran, IranJalal Arabloo & Ahmad GhashghaeeDepartment of Public Health, Birmingham City University, Birmingham, UKOlatunde AremuFaculty of Nursing, Philadelphia University, Amman, JordanMaha Moh’d Wahbi AtoutSchool of Business, University of Leicester, Leicester, UKMarcel AusloosDepartment of Statistics and Econometrics, Bucharest University of Economic Studies, Bucharest, RomaniaMarcel Ausloos, Claudiu Herteliu & Adrian PanaGastro-enterology Department, University of Liège, Liège, BelgiumFloriane AusloosDepartment of Health Policy Planning and Management, University of Health and Allied Sciences, Ho, GhanaMartin Amogre AyanoreDepartment of Nursing, Debre Berhan University, Debre Berhan, EthiopiaYared Asmare AynalemDepartment of Reproductive Health, University of Gondar, Gondar, EthiopiaZelalem Nigussie AzenePublic Health Risk Sciences Division, Public Health Agency of Canada, Toronto, ON, CanadaAlaa BadawiDepartment of Nutritional Sciences, University of Toronto, Toronto, ON, CanadaAlaa BadawiUnit of Biochemistry, Sultan Zainal Abidin University (Universiti Sultan Zainal Abidin), Kuala Terengganu, MalaysiaAtif Amin BaigDepartment of Hypertension, Medical University of Lodz, Lodz, PolandMaciej BanachPolish Mothers’ Memorial Hospital Research Institute, Lodz, PolandMaciej BanachDepartment of Community Medicine, Gandhi Medical College Bhopal, Bhopal, IndiaNeeraj BediJazan University, Jazan, Saudi ArabiaNeeraj BediDepartment of Social and Clinical Pharmacy, Charles University, Hradec Kralova, Czech RepublicAkshaya Srikanth BhagavathulaInstitute of Public Health, United Arab Emirates University, Al Ain, United Arab EmiratesAkshaya Srikanth BhagavathulaSchool of Public Health, University of Adelaide, Adelaide, SA, AustraliaDinesh BhandariPublic Health Research Laboratory, Tribhuvan University, Kathmandu, NepalDinesh BhandariDepartment of Anatomy, Government Medical College Pali, Pali, IndiaNikha BhardwajDepartment of Community Medicine and Family Medicine, All India Institute of Medical Sciences, Jodhpur, IndiaPankaj BhardwajSchool of Public Health, All India Institute of Medical Sciences, Jodhpur, IndiaPankaj BhardwajDepartment of Statistical and Computational Genomics, National Institute of Biomedical Genomics, Kalyani, IndiaKrittika BhattacharyyaDepartment of Statistics, University of Calcutta, Kolkata, IndiaKrittika BhattacharyyaCentre for Global Child Health, University of Toronto, Toronto, ON, CanadaZulfiqar A. BhuttaCentre of Excellence in Women & Child Health, Aga Khan University, Karachi, PakistanZulfiqar A. BhuttaSocial Determinants of Health Research Center, Babol University of Medical Sciences, Babol, IranAli BijaniPlanning, Monitoring and Evaluation Directorate, Amhara Public Health Institute, Bahir Dar, EthiopiaTesega Tesega Mengistu BirhanuNutrition Department, St. Paul’s Hospital Millennium Medical College, Addis Ababa, EthiopiaZebenay Workneh BitewSt. Paul’s Hospital Millennium Medical College, Addis Ababa, EthiopiaZebenay Workneh BitewDepartment of Internal Medicine, Manipal Academy of Higher Education, Mangalore, IndiaArchith BoloorDepartment of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UKOliver J. BradySchool of Public Health and Health Systems, University of Waterloo, Waterloo, ON, CanadaZahid A. ButtAl Shifa School of Public Health, Al Shifa Trust Eye Hospital, Rawalpindi, PakistanZahid A. ButtCentre for Population Health Sciences, Nanyang Technological University, Singapore, SingaporeJosip CarDepartment of Primary Care and Public Health, Imperial College London, London, UKJosip Car & Salman RawafResearch Unit on Applied Molecular Biosciences (UCIBIO), University of Porto, Porto, PortugalFelix CarvalhoDepartment of Medicine, University of Toronto, Toronto, ON, CanadaVijay Kumar ChattuGlobal Institute of Public Health (GIPH), Thiruvananthapuram, IndiaVijay Kumar ChattuMaternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, BangladeshMohiuddin Ahsanul Kabir ChowdhuryDepartment of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USAMohiuddin Ahsanul Kabir ChowdhuryFaculty of Biology, Hanoi National University of Education, Hanoi, VietnamDinh-Toi ChuLaboratory of Malaria Immunology and Vaccinology, National Institutes of Health, Bethesda, MD, USACamila H. CoelhoClinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, University of Milan, Milan, ItalyGiovanni DamianiDepartment of Dermatology, Case Western Reserve University, Cleveland, OH, USAGiovanni DamianiDepartment of Public Health, Ambo University, Ambo, EthiopiaJiregna Darega GelaDepartment of Pediatrics, Tanta University, Tanta, EgyptAmira Hamed DarwishToxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, IranAhmad DaryaniDivision of Women and Child Health, Aga Khan University, Karachi, PakistanJai K. DasWellcome Trust Brighton and Sussex Centre for Global Health Research, Brighton and Sussex Medical School, Brighton, UKKebede DeribeSchool of Public Health, Addis Ababa University, Addis Ababa, EthiopiaKebede DeribeSchool of Nursing and Midwifery, Haramaya University, Harar, EthiopiaAssefa DesalewDepartment of Community Medicine, University of Peradeniya, Peradeniya, Sri LankaSamath Dhamminda DharmaratneDepartment of Epidemiology and Biostatistics, Shahroud University of Medical Sciences, Shahroud, IranMostafa DianatinasabDepartment of Epidemiology, Shiraz University of Medical Sciences, Shiraz, IranMostafa DianatinasabCenter of Complexity Sciences, National Autonomous University of Mexico, Mexico City, MexicoDaniel DiazFaculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacán Rosales, MexicoDaniel DiazDevelopment of Research and Technology Center, Ministry of Health and Medical Education, Tehran, IranShirin DjalaliniaDepartment of Medical Laboratory Sciences, Iran University of Medical Sciences, Tehran, IranFariba DorostkarInstitute of Microbiology and Immunology, University of Belgrade, Belgrade, SerbiaEleonora DubljaninSchool of Public Health, Hawassa University, Hawassa, EthiopiaBereket DukoSchool of Public Health, Curtin University, Perth, WA, AustraliaBereket Duko & Ted R. MillerCentre Clinical Epidemiology and Biostatistics, University of Newcastle, Newcastle, NSW, AustraliaAndem EffiongReference Laboratory of Egyptian Universities Hospitals, Ministry of Higher Education and Research, Cairo, EgyptMaysaa El Sayed ZakiPediatric Dentistry and Dental Public Health Department, Alexandria University, Alexandria, EgyptMaha El TantawiDepartment of Microbiology and Immunology, Suez Canal University, Ismailia, EgyptShymaa EnanyResearch Center for Environmental Determinants of Health, Kermanshah University of Medical Sciences, Kermanshah, IranNazir Fattahi & Masoud MoradiNational Institute for Stroke and Applied Neurosciences, Auckland University of Technology, Auckland, New ZealandValery L. FeiginResearch Center of Neurology, Moscow, RussiaValery L. FeiginAssociated Laboratory for Green Chemistry (LAQV), University of Porto, Porto, PortugalEduarda FernandesResearch Center on Public Health, University of Milan Bicocca, Monza, ItalyPietro FerraraInstitute of Gerontological Health Services and Nursing Research, Ravensburg-Weingarten University of Applied Sciences, Weingarten, GermanyFlorian FischerInstitute of Gerontology, National Academy of Medical Sciences of Ukraine, Kyiv, UkraineNataliya A. FoigtDepartment of Child Dental Health, Obafemi Awolowo University, Ile-Ife, NigeriaMorenike Oluwatoyin FolayanDepartment of Medical Parasitology, Abadan Faculty of Medical Sciences, Abadan, IranMasoud ForoutanDepartment of Dermatology, Kobe University, Kobe, JapanTakeshi FukumotoDepartment of Community Medicine, Datta Meghe Institute of Medical Sciences, Wardha, IndiaAbhay Motiramji Gaidhane, Zahiruddin Quazi Syed & Deepak SaxenaDepartment of Pediatric Nursing, Aksum University, Aksum, EthiopiaHailemikael Gebrekidan G. K. GebrekrstosSchool of Pharmacy, Aksum University, Aksum, EthiopiaLeake GebremeskelDepartment of Pharmacy, Mekelle University, Mekelle, EthiopiaLeake GebremeskelDepartment of Reproductive Health, Mekelle University, Mekelle, EthiopiaAssefa Ayalew GebreslassieTelethon Kids Institute, Perth Children’s Hospital, Nedlands, WA, AustraliaPeter W. GethingCurtin University, Bentley, WA, AustraliaPeter W. GethingDepartment of Biostatistics, Mekelle University, Mekelle, EthiopiaKebede Embaye GezaeInfectious Disease Research Center, Kermanshah University of Medical Sciences, Kermanshah, IranKeyghobad GhadiriPediatric Department, Kermanshah University of Medical Sciences, Kermanshah, IranKeyghobad GhadiriStudent Research Committee, Iran University of Medical Sciences, Tehran, IranAhmad GhashghaeeHealth Systems and Policy Research, Indian Institute of Public Health Gandhinagar, Gandhinagar, IndiaMahaveer GolechhaDepartment of Family and Community Medicine, University Of Sulaimani, Sulaimani, IraqMohammed Ibrahim Mohialdeen GubariDepartment of Pediatrics and Child Health, Mekelle University, Mekelle, EthiopiaFikaden Berhe HadguSchool of Health and Environmental Studies, Hamdan Bin Mohammed Smart University, Dubai, United Arab EmiratesSamer HamidiDepartment of Public Health, Wachemo University, Hossana, EthiopiaDemelash Woldeyohannes HandisoDepartment of Public Health, Jigjiga University, Jijiga, EthiopiaAbdiwahab Hashi & Muktar Omer OmerCenter for International Health (CIH), University of Bergen, Bergen, NorwayShoaib HassanBergen Center for Ethics and Priority Setting (BCEPS), University of Bergen, Bergen, NorwayShoaib HassanInstitute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, PakistanKhezar HayatDepartment of Pharmacy Administration and Clinical Pharmacy, Xian Jiaotong University, Xian, ChinaKhezar HayatSchool of Business, London South Bank University, London, UKClaudiu HerteliuDepartment of Urban Planning and Design, University of Hong Kong, Hong Kong, ChinaHung Chak HoKasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, IndiaRamesh Holla & Priya RathiInstitute of Research and Development, Duy Tan University, Da Nang, VietnamMehdi Hosseinzadeh & Yasser VasseghianDepartment of Computer Science, University of Human Development, Sulaymaniyah, IraqMehdi HosseinzadehCollege of Science and Engineering, Hamad Bin Khalifa University, Doha, QatarMowafa HousehSchool of Pharmaceutical Sciences, University of Science Malaysia, Penang, MalaysiaRabia HussainDepartment of Occupational Safety and Health, China Medical University, Taichung, TaiwanBing-Fang HwangDepartment of Health Promotion and Education, University of Ibadan, Ibadan, NigeriaSegun Emmanuel IbitoyeDepartment of Community Medicine, University of Ibadan, Ibadan, NigeriaOlayinka Stephen IlesanmiDepartment of Community Medicine, University College Hospital, Ibadan, Ibadan, NigeriaOlayinka Stephen IlesanmiFaculty of Medicine, University of Belgrade, Belgrade, SerbiaIrena M. IlicDepartment of Epidemiology, University of Kragujevac, Kragujevac, SerbiaMilena D. IlicResearch Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IranSeyed Sina Naghibi IrvaniDepartment of Environmental Health Engineering, Guilan University of Medical Sciences, Rasht, IranJalil JaafariHealth Informatic Lab, Boston University, Boston, MA, USATahereh JavaheriDepartment of Community Medicine, Dr. Baba Saheb Ambedkar Medical College & Hospital, Delhi, IndiaRavi Prakash JhaDepartment of Community Medicine, Banaras Hindu University, Varanasi, IndiaRavi Prakash JhaDepartment of Ophthalmology, Heidelberg University, Heidelberg, GermanyJost B. JonasBeijing Institute of Ophthalmology, Beijing Tongren Hospital, Beijing, ChinaJost B. JonasDepartment of Family Medicine and Public Health, University of Opole, Opole, PolandJacek Jerzy JozwiakMinimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, IranAli KabirInstitute for Prevention of Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, IranRohollah KalhorHealth Services Management Department, Qazvin University of Medical Sciences, Qazvin, IranRohollah KalhorDepartment of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Jodhpur, IndiaTanuj KanchanInstitute for Epidemiology and Social Medicine, University of Münster, Münster, GermanyAndré KarchInternational Research Center of Excellence, Institute of Human Virology Nigeria, Abuja, NigeriaGbenga A. KayodeJulius Centre for Health Sciences and Primary Care, Utrecht University, Utrecht, NetherlandsGbenga A. KayodeOpen, Distance and eLearning Campus, University of Nairobi, Nairobi, KenyaPeter Njenga KeiyoroDepartment of Public Health, Jordan University of Science and Technology, Irbid, JordanYousef Saleh KhaderDepartment of Global Health, University of Washington, Seattle, WA, USAIbrahim A. Khalil & Sonali KochharDepartment of Population Science, Jatiya Kabi Kazi Nazrul Islam University, Mymensingh, BangladeshMd Nuruzzaman KhanEpidemiology Department, Jazan University, Jazan, Saudi ArabiaMaseer KhanDepartment of Medical Microbiology & Immunology, United Arab Emirates University, Al Ain, United Arab EmiratesGulfaraz KhanFaculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, UKKhaled KhatabCollege of Arts and Sciences, Ohio University, Zanesville, OH, USAKhaled KhatabDepartment of Medical Parasitology, Cairo University, Cairo, EgyptMona M. KhaterGlobal Evidence Synthesis Initiative, Datta Meghe Institute of Medical Sciences, Wardha, IndiaMahalaqua Nazli KhatibDepartment of Public Health, Kermanshah University of Medical Sciences, Kermanshah, IranNeda KianipourSchool of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, MalaysiaYun Jin KimDepartment of Nutrition, Simmons University, Boston, MA, USARuth W. KimokotiDepartment of Nursing and Health Promotion, Oslo Metropolitan University, Oslo, NorwaySezer KisaSchool of Health Sciences, Kristiania University College, Oslo, NorwayAdnan KisaGlobal Community Health and Behavioral Sciences, Tulane University, New Orleans, LA, USAAdnan KisaDepartment of Pediatrics, University of British Columbia, Vancouver, BC, CanadaNiranjan KissoonGlobal Healthcare Consulting, New Delhi, IndiaSonali KochharDepartment of Environmental Health Engineering, Arak University of Medical Sciences, Arak, IranAli KoolivandSchool of Population and Public Health, University of British Columbia, Vancouver, BC, CanadaJacek A. KopecArthritis Research Canada, Richmond, BC, CanadaJacek A. KopecCIBERSAM, San Juan de Dios Sanitary Park, Sant Boi de Llobregat, SpainAi KoyanagiCatalan Institution for Research and Advanced Studies (ICREA), Barcelona, SpainAi KoyanagiDepartment of Anthropology, Panjab University, Chandigarh, IndiaKewal KrishanInternational Institute for Population Sciences, Mumbai, IndiaPushpendra KumarFaculty of Health and Life Sciences, Coventry University, Coventry, UKOm P. KurmiDepartment of Medicine, McMaster University, Hamilton, ON, CanadaOm P. KurmiImperial College Business School, Imperial College London, London, UKDian KusumaFaculty of Public Health, University of Indonesia, Depok, IndonesiaDian KusumaPublic Health Foundation of India, Gurugram, IndiaDharmesh Kumar LalDepartment of Community and Family Medicine, University of Baghdad, Baghdad, IraqFaris Hasan LamiUnit of Genetics and Public Health, Institute of Medical Sciences, Las Tablas, PanamaIván LandiresMinistry of Health, Herrera, PanamaIván LandiresMedical Director, HelpMeSee, New York, NY, USAVan Charles LansinghGeneral Director, Mexican Institute of Ophthalmology, Queretaro, MexicoVan Charles LansinghDepartment of Otorhinolaryngology, Father Muller Medical College, Mangalore, IndiaSavita LasradoDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCarlo La VecchiaSchool of Nursing, Hong Kong Polytechnic University, Hong Kong, ChinaPaul H. LeeCentre for Tropical Medicine and Global Health, University of Oxford, Oxford, UKSonia LewyckaOxford University Clinical Research Unit, Wellcome Trust Asia Programme, Hanoi, VietnamSonia LewyckaDepartment of Sociology, Shenzhen University, Shenzhen, ChinaBingyu LiDepartment of Systems, Populations, and Leadership, University of Michigan, Ann Arbor, MI, USAXuefeng LiuDepartment of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UKJoshua LongbottomIndependent Consultant, Melbourne, VIC, AustraliaAlan D. LopezRadiology Department, Egypt Ministry of Health and Population, Mansoura, EgyptHassan Magdy Abd El RazekGrants, Innovation and Product Development Unit, South African Medical Research Council, Cape Town, South AfricaPhetole Walter MahashaEnvironmental Health, Tehran University of Medical Sciences, Tehran, IranAfshin MalekiEnvironmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, IranAfshin Maleki & Shadieh MohammadiInstitute for Social Science Research, The University of Queensland, Indooroopilly, QLD, AustraliaAbdullah A. MamunDepartment of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, IranMohammad Ali MansourniaCampus Caucaia, Federal Institute of Education, Science and Technology of Ceará, Caucaia, BrazilFrancisco Rogerlândio Martins-MeloICF International, DHS Program, Rockville, MD, USABenjamin K. MayalaDepartment of Pharmacy, Wollo University, Dessie, EthiopiaBirhanu Geta MeharieDepartment of Medical Laboratory Sciences, Bahir Dar University, Bahir Dar, EthiopiaAddisu MelesePeru Country Office, United Nations Population Fund (UNFPA), Lima, PeruWalter MendozaForensic Medicine Division, Imam Abdulrahman Bin Faisal University, Dammam, Saudi ArabiaRitesh G. MenezesDepartment of Reproductive Health and Population Studies, Bahir Dar University, Bahir Dar, EthiopiaEndalkachew Worku MengeshaCenter for Translation Research and Implementation Science, National Institutes of Health, Bethesda, MD, USAGeorge A. MensahDepartment of Medicine, University of Cape Town, Cape Town, South AfricaGeorge A. MensahBreast Surgery Unit, Helsinki University Hospital, Helsinki, FinlandTuomo J. MeretojaUniversity of Helsinki, Helsinki, FinlandTuomo J. MeretojaClinical Microbiology and Parasitology Unit, Dr. Zora Profozic Polyclinic, Zagreb, CroatiaTomislav MestrovicUniversity Centre Varazdin, University North, Varazdin, CroatiaTomislav MestrovicPacific Institute for Research & Evaluation, Calverton, MD, USATed R. MillerInternal Medicine Programme, Kyrgyz State Medical Academy, Bishkek, KyrgyzstanErkin M. MirrakhimovDepartment of Atherosclerosis and Coronary Heart Disease, National Center of Cardiology and Internal Disease, Bishkek, KyrgyzstanErkin M. MirrakhimovHeidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, GermanyBabak Moazen & Shafiu MohammedInstitute of Addiction Research (ISFF), Frankfurt University of Applied Sciences, Frankfurt, GermanyBabak MoazenDepartment of Biostatistics, Hamadan University of Medical Sciences, Hamadan, IranNaser Mohammad Gholi MezerjiResearch Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj City, IranShadieh MohammadiHealth Systems and Policy Research Unit, Ahmadu Bello University, Zaria, NigeriaShafiu MohammedComputer, Electrical, and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi ArabiaPaula MoragaClinical Research Development Center, Kermanshah University of Medical Sciences, Kermanshah, IranMehdi NaderiResearch and Analytics Department, Initiative for Financing Health and Human Development, Chennai, IndiaAhamarshan Jayaraman NagarajanDepartment of Research and Analytics, Bioinsilico Technologies, Chennai, IndiaAhamarshan Jayaraman NagarajanDepartment of Pediatrics, Arak University of Medical Sciences, Arak, IranJavad NazariDisease Control and Environmental Health, Makerere University, Kampala, UgandaRawlance NdejjoDepartment of General Surgery, Carol Davila University of Medicine and Pharmacy, Bucharest, RomaniaIonut NegoiDepartment of General Surgery, Emergency Hospital of Bucharest, Bucharest, RomaniaIonut NegoiDepartment of Biological Sciences, University of Embu, Embu, KenyaJosephine W. NgunjiriInstitute for Global Health Innovations, Duy Tan University, Hanoi, VietnamHuong Lan Thi Nguyen & Hai Quang PhamSouth African Medical Research Council, Cape Town, South AfricaChukwudi A. Nnaji & Charles Shey WiysongeSchool of Public Health and Family Medicine, University of Cape Town, Cape Town, South AfricaChukwudi A. Nnaji & Charles Shey WiysongeCentre for Heart Rhythm Disorders, University of Adelaide, Adelaide, SA, AustraliaJean Jacques NoubiapUnit of Microbiology and Public Health, Institute of Medical Sciences, Las Tablas, PanamaVirginia Nuñez-SamudioDepartment of Public Health, Ministry of Health, Herrera, PanamaVirginia Nuñez-SamudioDepartment of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, CanadaAndrew T. OlagunjuDepartment of Psychiatry, University of Lagos, Lagos, NigeriaAndrew T. OlagunjuCentre for Healthy Start Initiative, Lagos, NigeriaJacob Olusegun Olusanya & Bolajoko Olubukunola OlusanyaDepartment of Pharmacology and Therapeutics, University of Nigeria Nsukka, Enugu, NigeriaObinna E. OnwujekweLaboratory of Public Health Indicators Analysis and Health Digitalization, Moscow Institute of Physics and Technology, Dolgoprudny, RussiaNikita Otstavnov & Stanislav S. OtstavnovDepartment of Project Management, National Research University Higher School of Economics, Moscow, RussiaStanislav S. OtstavnovDepartment of Medicine, University of Ibadan, Ibadan, NigeriaMayowa O. OwolabiDepartment of Medicine, University College Hospital, Ibadan, Ibadan, NigeriaMayowa O. OwolabiDepartment of Respiratory Medicine, Jagadguru Sri Shivarathreeswara Academy of Health Education and Research, Mysore, IndiaMahesh P ADepartment of Forensic Medicine, Manipal Academy of Higher Education, Mangalore, IndiaJagadish Rao PadubidriDepartment of Health Metrics, Center for Health Outcomes & Evaluation, Bucharest, RomaniaAdrian PanaSchool of Global Public Health, New York University, New York, NY, USAEmmanuel K. PeprahDepartment of Parasitology and Entomology, Tarbiat Modares University, Tehran, IranMajid PirestaniUniversity Medical Center Groningen, University of Groningen, Groningen, NetherlandsMaarten J. PostmaSchool of Economics and Business, University of Groningen, Groningen, NetherlandsMaarten J. PostmaDepartment of Pharmacology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi ArabiaFaheem Hyder PottooDepartment of Nutrition and Food Sciences, Maragheh University of Medical Sciences, Maragheh, IranHadi PourjafarDietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, IranHadi PourjafarThalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IranFakher RahimMetabolomics and Genomics Research Center, Tehran University of Medical Sciences, Tehran, IranFakher RahimSina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, IranVafa Rahimi-MovagharDepartment of Community Medicine, Maharishi Markandeshwar Medical College & Hospital, Solan, IndiaMohammad Hifz Ur RahmanDepartment of Oral Pathology, Srinivas Institute of Dental Sciences, Mangalore, IndiaSowmya J. RaoAcademic Public Health England, Public Health England, London, UKSalman RawafWHO Collaborating Centre for Public Health Education and Training, Imperial College London, London, UKDavid Laith RawafUniversity College London Hospitals, London, UKDavid Laith RawafSchool of Health, Medical and Applied Sciences, CQ University, Sydney, NSW, AustraliaLal RawalDepartment of Computer Science, Boston University, Boston, MA, USAReza RawassizadehSchool of Public Health, Haramaya University, Harar, EthiopiaLemma Demissie RegassaSchool of Social Sciences and Psychology, Western Sydney University, Penrith, NSW, AustraliaAndre M. N. RenzahoTranslational Health Research Institute, Western Sydney University, Penrith, NSW, AustraliaAndre M. N. RenzahoNetwork of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, IranNima RezaeiPediatric Infectious Diseases Research Center, Mazandaran University of Medical Sciences, Sari, IranMohammad Sadegh RezaiEpidemiology Research Unit Institute of Public Health (EPIUnit-ISPUP), University of Porto, Porto, PortugalAna Isabel RibeiroDepartment of Surgery, University of Minnesota, Minneapolis, MN, USAJennifer RickardDepartment of Surgery, University Teaching Hospital of Kigali, Kigali, RwandaJennifer RickardFaculty of Medical Sciences, Research Department, National University of Caaguazu, Cnel. Oviedo, ParaguayCarlos Miguel Rios-GonzálezDepartment of Research and Publications, National Institute of Health, Asunción, ParaguayCarlos Miguel Rios-GonzálezDepartment of Health Statistics, National Institute for Medical Research, Dar es Salaam, TanzaniaSusan Fred RumishaDepartment of Epidemiology, Shahid Beheshti University of Medical Sciences, Tehran, IranSiamak SabourDepartment of Phytochemistry, Soran University, Soran, IraqS. Mohammad SajadiDepartment of Nutrition, Cihan University-Erbil, Kurdistan Region, IraqS. Mohammad SajadiCenter for Health Policy & Center for Primary Care and Outcomes Research, Stanford University, Stanford, CA, USAJoshua A. SalomonDrug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, IranHossein Samadi KafilDepartment of Entomology, Ain Shams University, Cairo, EgyptAbdallah M. SamyDepartment of Surgery, Marshall University, Huntington, WV, USAJuan SanabriaDepartment of Nutrition and Preventive Medicine, Case Western Reserve University, Cleveland, OH, USAJuan SanabriaFaculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UKBenn SartoriusDepartment of Epidemiology, Indian Institute of Public Health, Gandhinagar, IndiaDeepak SaxenaGlobal Programs, Medical Teams International, Seattle, WA, USALauren E. SchaefferDepartment of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, USALauren E. SchaefferEmergency Department, Manian Medical Centre, Erode, IndiaSubramanian SenthilkumaranCenter for Biomedical Information Technology, Shenzhen Institutes of Advanced Technology, Shenzhen, ChinaFeng ShaPublic Health Division, An-Najah National University, Nablus, PalestineAmira A. ShaheenIndependent Consultant, Karachi, PakistanMasood Ali ShaikhUniversity School of Management and Entrepreneurship, Delhi Technological University, Delhi, IndiaRajesh SharmaCentre for Medical Informatics, University of Edinburgh, Edinburgh, UKAziz SheikhDivision of General Internal Medicine, Harvard University, Boston, MA, USAAziz SheikhInstitute for Population Health, King’s College London, London, UKKenji ShibuyaNational Institute of Infectious Diseases, Tokyo, JapanMika ShigematsuCollege of Medicine, Yonsei University, Seoul, South KoreaJae Il ShinDepartment of Law, Economics, Management and Quantitative Methods, University of Sannio, Benevento, ItalyBiagio SimonettiWSB University in Gdańsk, Gdansk, PolandBiagio SimonettiSchool of Medicine, University of Alabama at Birmingham, Birmingham, AL, USAJasvinder A. SinghMedicine Service, US Department of Veterans Affairs (VA), Birmingham, AL, USAJasvinder A. SinghNursing Care Research Center, Semnan University of Medical Sciences, Semnan, IranAmin SoheiliDepartment of Infectious Diseases, Kharkiv National Medical University, Kharkiv, UkraineAnton SokhanDivision of Community Medicine, International Medical University, Kuala Lumpur, MalaysiaChandrashekhar T. SreeramareddyDepartment of Community Medicine, Ahmadu Bello University, Zaria, NigeriaMu’awiyyah Babale SufiyanSchool of Medicine, University of California San Francisco, San Francisco, CA, USAScott J. SwartzJoint Medical Program, University of California Berkeley, Berkeley, CA, USAScott J. SwartzDepartment of Nursing, Aksum University, Aksum, EthiopiaDegena Bahrey TadesseDepartment of Midwifery, University of Gondar, Gondar, EthiopiaAnimut Tagele TamiruDepartment of Clinical Pharmacy, University of Gondar, Gondar, EthiopiaYonas Getaye TeferaDepartment of Epidemiology and Biostatistics, University of Gondar, Gondar, EthiopiaZemenu Tadesse TessemaK.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, RussiaMariya Vladimirovna TitovaLaboratory of Public Health Indicators Analysis and Health Digitalization, Moscow Institute of Physics and Technology, Moscow, RussiaMariya Vladimirovna TitovaDepartment of Health Economics, Hanoi Medical University, Hanoi, VietnamBach Xuan TranFaculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, NetherlandsPhuong N. TruongKasturba Medical College, Manipal Academy of Higher Education, Mangalore, IndiaBhaskaran UnnikrishnanAmity Institute of Biotechnology, Amity University Rajasthan, Jaipur, IndiaEra UpadhyayUKK Institute, Tampere, FinlandTommi Juhani VasankariDepartment of Medical and Surgical Sciences, University of Bologna, Bologna, ItalyFrancesco S. ViolanteOccupational Health Unit, Sant’Orsola Malpighi Hospital, Bologna, ItalyFrancesco S. ViolanteCenter of Excellence in Behavioral Medicine, Nguyen Tat Thanh University, Ho Chi Minh City, VietnamGiang Thu VuFoundation University Medical College, Foundation University Islamabad, Islamabad, PakistanYasir WaheedCultures, Societies and Global Studies, & Integrated Initiative for Global Health, Northeastern University, Boston, MA, USARichard G. WamaiSchool of Public Health, University of Nairobi, Nairobi, KenyaRichard G. WamaiDepartment of Human Nutrition and Food Sciences, Debre Markos University, Debre Markos, EthiopiaEmebet Gashaw WassieDepartment of Midwifery, Adigrat University, Adigrat, EthiopiaFissaha Tekulu WelayDepartment of Community Medicine, Rajarata University of Sri Lanka, Anuradhapura, Sri LankaNuwan Darshana WickramasingheDepartment of Epidemiology, Johns Hopkins University, Baltimore, MD, USAKirsten E. WiensDepartment of Neurology, University of Melbourne, Melbourne, VIC, AustraliaTissa WijeratneDepartment of Medicine, University of Rajarata, Saliyapura Anuradhapuraya, Sri LankaTissa WijeratneDepartment of Public Health, Samara University, Samara, EthiopiaTemesgen Gebeyehu WondmenehDepartment of Diabetes and Metabolic Diseases, University of Tokyo, Tokyo, JapanTomohide YamadaSchool of International Development and Global Studies, University of Ottawa, Ottawa, ON, CanadaSanni YayaThe George Institute for Global Health, University of Oxford, Oxford, UKSanni YayaDepartment of Nursing, Arba Minch University, Arba Minch, EthiopiaYordanos Gizachew YeshitilaCentre for Suicide Research and Prevention, University of Hong Kong, Hong Kong, ChinaPaul YipDepartment of Social Work and Social Administration, University of Hong Kong, Hong Kong, ChinaPaul YipDepartment of Neuropsychopharmacology, National Center of Neurology and Psychiatry, Kodaira, JapanNaohiro YonemotoDepartment of Public Health, Juntendo University, Tokyo, JapanNaohiro YonemotoDepartment of Epidemiology and Biostatistics, Wuhan University, Wuhan, ChinaChuanhua YuCancer Institute, Hacettepe University, Ankara, TurkeyDeniz YuceDepartment of Health Care Management and Economics, Urmia University of Medical Science, Urmia, IranHasan YusefzadehDepartment of Medicine, University Ferhat Abbas of Setif, Sétif, AlgeriaZoubida ZaidiSocial Development and Health Promotion Research Center, Kermanshah University of Medical Sciences, Kermanshah, IranAlireza ZangenehSchool of Medicine, Wuhan University, Wuhan, ChinaZhi-Jiang ZhangSchool of Public Health, Wuhan University of Science and Technology, Wuhan, ChinaYunquan ZhangHubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, ChinaYunquan ZhangDepartment of Health Education and Health Promotion, Kermanshah University of Medical Sciences, Kermanshah, IranArash ZiapourManaging the estimation or publication process. L.B.D. T.B.C. Writing the first draft of the manuscript. R.C.R.J. Primary responsibility for this manuscript focused on: applying analytical methods to produce estimates. L.B.D. T.B.C. Primary responsibility for this manuscript focused on: seeking, cataloguing, extracting, or cleaning data; production or coding of figures and tables. L.B.D. T.B.C. Providing data or critical feedback on data sources. L.B.D. T.B.C. and S.I.H. Development of methods or computational machinery. R.C.R.J. and L.B.D. T.B.C. Providing critical feedback on methods or results. L.B.D. T.B.C. and S.I.H. Drafting the manuscript or revising it critically for important intellectual content. R.C.R.J., L.B.D. T.B.C., and S.I.H. Management of the overall research enterprise (for example, through membership in the Scientific Council). L.B.D. T.B.C. and S.I.H. Consortia author contributions Managing the estimation or publication process. B.F.B., M.K.M.P. Writing the first draft of the manuscript. R.C.R.J. Primary responsibility for this manuscript focused on: applying analytical methods to produce estimates. C.A.W. Primary responsibility for this manuscript focused on: seeking, cataloguing, extracting, or cleaning data; production or coding of figures and tables. M.M.B. Providing data or critical feedback on data sources D.J.W., A.D., C.E.T., H.A., A.E.A., V.A., O.O.A., M.A., B.A., F.A., S.A., H.A., S.M.A., A.A.-H., N.A.-G., A.T.A., S.A., C.L.A., F.A., D.A., S.C.Y.A., J.A., O.A., M.A., F.A., Y.A.A., A.B., M.B., N.B., A.S.B., A.B., V.K.C., D.-T.C., G.D., J.D.G., A.D., S.D.D., M.D., A.E., M.El.S.Z., S.E., T.F., A.M.G., L.G., P.W.G., K.G., A.G., M.G., A.H., S.H., K.H., C.H., H.C.H., M.H., M.H., S.S.N.I., T.J., J.B.J., J.J.J., A.K., G.A.K., Y.S.K., I.A.K., M.N.K., M.K., K.K., M.N.K., Y.J.K., S.K., A.K., N.K., K.K., P.K., D.K., D.K.L., F.H.L., V.C.L., S.L., A.L.-A., K.E.L., S.S.L., P.A.L., X.L., H.M.A.E.R., M.A.M., B.K.M., W.M., R.G.M., E.M.M., B.M., N.M.G.M., S.M., S.M., A.H.M., M.M., A.J.N., J.N., I.N., J.W.N., Q.P.N., H.L.T.N., C.A.N., J.J.N., A.T.O., J.O.O., B.O.O., O.E.O., N.O., S.S.O., M.O.O., M.P.A., J.R.P., A.P., E.K.P., H.Q.P., M.P., M.J.P., H.P., Z.Q.S., F.R., V.R.-M., S.J.R., P.R., S.R., D.L.R., L.R., R.R., A.M.N.R., N.R., J.R., C.M.R.-G., S.S., S.M.S., A.M.S., B.S., D.S., A.A.S., M.A.S., J.I.S., J.A.S., A.S., E.S., C.T.S., S.J.S., D.B.T., A.T.T., B.X.T., P.N.T., B.U., E.U., T.J.V., Y.V., G.T.V., Y.W., R.G.W., T.W., C.S.W., T.G.W., S.Y., Y.G.Y., N.Y., C.Y., H.Y., Z.Z., A.Z., and S.I.H. Development of methods or computational machinery R.C.R.J., C.A.W., M.M.B., A.D., L.E., S.B., C.E.T., H.A., D.A., Y.A.A., A.S.B., D.C.C., V.K.C., F.D. A.D., M.D., M.E.S.Z., N.F., J.J.F., P.W.G., M.H., K.B.J., S.K., A., A.D.L., S.M., A.H.M., J.W.N., Q.P.N., S.F.R., A.M.S., E.E.S., S.J.S., E.U., Y.V., K.E.W., Y.G.Y., and N.Y. Providing critical feedback on methods or results C.A.W., A.D., C.E.T., H.A., A.E.A., E.A.-G., V.A., O.O.A., M.A., B.A., F.A., Z.A.-A., R.K.A., S.A., H.A., A.A.-H., H.M.A.M., K.A.A., N.A.-Gu., A.T.A., S.A., D.A.A., C.L.A., F.A., D.A., S.C.Y.A., J.A., O.A., M.M.W.A., M.A., F.A., Y.A.A., Z.N.A., A.B., M.B., A.S.B., D.B., N.B., P.B., K.B., O.J.B., Z.A.B., A.B., Z.W.B., A.B., Z.A.B., V.C., M.A.K.C., D.-T.C., C.H.C., G.D., J.D.G., A.H.D., A.D., J.K.D., K.D., A.D., S.D.D., M.D., D.D., S.D., F.D., B.D., L.D.-L., A.E., V.L.F., F.F., N.A.F., M.O.F., M.F., T.F., A.M.G., H.G.G.K.G., L.G., A.A.G., K.E.G., A.G., M.G., F.B.H., S.H., A.H., S.H., C.H., H.C.H., R.H., M.H., M.H., R.H., B.-F.H., S.E.I., O.S.I., I.M.I., M.D.I., S.S.N.I., T.J., R.P.J., J.B.J., J.J.J., A.K., R.K., T.K., A.K., G.A.K., P.N.K., Y.S.K., I.A.K., M.N.K., M.K., K.K., M.M.K., M.N.K., Y.J.K., R.W.K., S.K., A.K., N.K., S.K., A.K., J.A.K., A.K., K.K., P.K., O.P.K., D.K., D.K.L., S.L., K.E.L., S.L., B.L., X.L., A.D.L., H.M.A.E.R., P.W.M., A.A.M., M.A.M., L.B.M., F.R.M.-M., B.K.M., W.M., R.G.M., E.W.M., T.J.M., T.R.M., E.M.M., B.M., N.M.G.M., S.M., S.M., A.H.M., R.M., J.F.M., M.N., A.J.N., J.N., R.N., I.N., J.W.N., H.L.T.N., C.A.N., J.J.N., A.T.O., J.O.O., B.O.O., M.O.O., O.E.O., N.O., S.S.O., M.O.O., M.P.A., J.R.P., A.P., E.K.P., H.Q.P., M.J.P., F.H.P., H.P., Z.Q.S., F.R., V.R.-M., S.J.R., P.R., S.R., D.L.R., L.R., R.R., L.D.R., A.M.N.R., N.R., M.S.R., A.I.R., J.R., C.M.R.-G., S.S., S.M.S., J.A.S., H.S.K., A.M.S., J.S., B.S., D.S., L.E.S., S.S., F.S., A.A.S., M.A.S., A.S., K.S., M.S., J.I.S., B.S., J.A.S., D.L.S., A.S., E.E.S., C.T.S., M.B.S., D.B.T., A.T.T., Y.G.T., M.-H.T., Z.T.T., M.V.T., B.X.T., P.N.T., B.U., E.U., Y.V., F.S.V., G.T.V., Y.W., R.G.W., E.G.W., F.T.W., N.D.W., K.E.W., T.W., C.S.W., T.G.W., T.Y., S.Y., Y.G.Y., P.Y., N.Y., C.Y., D.Y., Z.Z., M.Z., Z.-J.Z., Y.Z., and S.I.H. Drafting the manuscript or revising it critically for important intellectual content R.C.R.J., C.A.W., M.K.M.-P., L.E., H.A., E.A.-G., V.A., O.O.A., M.A., B.A, F.A., R.K.A., H.A., A.A.-H., N.A.-G., A.T.A., S.A., D.A.A., R.A., C.L.A., J.A., O.A., M.M.W.A., M.A., F.A., M.A.A., Z.N.A., A.B., A.A.B., M.B., N.B. A.S.B., D.B., K.B., T.T.M.B., O.J.B., J.C., F.C., V.K.C., G.D., A.D., N.D.W., K.D., S.D.D., D.D., E.D., A.E., M.E.S.Z., M.E.T., S.E., V.L.F., E.F., P.F., F.F., N.A.F., M.O.F., M.F., T.F., A.M.G., L.G., A.G., M.I.M.G., D.W.H., A.H., S.H., C.H., H.C.H., R.H., M.H., S.E.I., O.S.I., I.M.I., M.D.I., S.S.N.I., J.J., R.P.J., J.B.J., J.J.J., A.K., A.K., G.A.K., M.N.K., M.K., G.K., K.K., M.M.K., M.N.K., A.K., N.K., A.K., A.K., K.K., P.K., O.P.K., D.K., I.L., S.L., C.L.V., P.H.L., K.E.L., J.L., A.D.L., H.M.A.E.R., P.W.M., A.M., A.A.M., M.A.M., L.B.M., F.R.M.-M., B.G.M., W.M., R.G.M., E.W.M., G.A.M., T.J.M., T.M., T.R.M., B.M., S.M., S.M., A.H.M., R.M., P.M., J.F.M., A.J.N., J.N., I.N., J.W.N., H.L.T.N., V.N.-S., A.T.O., J.O.O., B.O.O., M.O.O., O.E.O., N.O., S.S.O., M.O.O., M.P.A., J.R.P., A.P., H.Q.P., M.J.P., Z.Q.S., F.R., V.R.-M., M.H.U.R., S.J.R., S.R., D.L.R., L.R., N.R., A.I.R., J.R., C.M.R.-G., S.F.R., S.S., J.A.S., H.S.K., A.M.S., J.S., D.S., R.S., M.S., J.A.S., A.S., C.T.S., M.B.S., D.B.T., A.T.T., M.V.T., B.X.T., B.U., E.U., T.J.V., Y.V., F.S.V., G.T.V., R.G.W., N.D.W., K.E.W., T.W., .C.S.W., S.Y., Y.G.Y., Z.Z., M.Z., Z.-J.Z., and S.I.H. Management of the overall research enterprise (for example, through membership in the Scientific Council) B.F.B., A.J.C., P.W.G., J.A.K., A.H.M., C.J.L.M., P.C.R., J.A.S., B.S., and S.I.H. More

  • in

    Ruminant inner ear shape records 35 million years of neutral evolution

    Zachos, J. C., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar 
    Erwin, D. H. Climate as a driver of evolutionary change. Curr. Biol. 19, R575–R583 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mayhew, P. J., Jenkins, G. B. & Benton, T. G. A long-term association between global temperature and biodiversity, origination and extinction in the fossil record. Proc. R. Soc. Lond. B 275, 47–53 (2008).
    Google Scholar 
    Raia, P. et al. Past extinctions of Homo species coincided with increased vulnerability to climatic change. One Earth 3, 480–490 (2020).Article 
    ADS 

    Google Scholar 
    deMencoal, P. Climate and human evolution. Science 331, 540–542 (2011).Article 
    ADS 

    Google Scholar 
    Stroud, J. T. & Losos, J. B. Ecological opportunity and adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 47, 507–532 (2016).Article 

    Google Scholar 
    Potts, R. & Faith, J. T. Alternating high and low climate variability: The context of natural selection and speciation in Plio-Pleistocene hominin evolution. J. Hum. Evol. 87, 5–20 (2015).Article 
    PubMed 

    Google Scholar 
    Clavel, J. & Morlon, H. Accelerated body size evolution during cold climatic periods in the Cenozoic. Proc. Natl Acad. Sci. USA 114, 4183–4188 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Mihlbachler, M. C., Rivals, F., Solounias, N. & Semprebon, G. M. Dietary change and evolution of horses in North America. Science 331, 1178–1181 (2011).Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar 
    Mennecart, B. et al. Bony labyrinth morphology clarifies the origin and evolution of deer. Sci. Rep. 7, 13176 (2017).Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Ponce, deLeón et al. Human bony labyrinth is an indicator of population history and dispersal from Africa. Proc. Natl Acad. Sci. USA 115, 4128–4133 (2018).Article 
    ADS 

    Google Scholar 
    Luo, Z.-X. The inner ear and its bony housing in tritylodontids and implications for the evolution of the mammalian ear. Bull. Mus. Comp. Zool. 156, 81–97 (2001).
    Google Scholar 
    Ekdale, E. G. Comparative anatomy of the bony labyrinth (inner ear) of placental mammals. PLoS ONE 8, e66624 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    O’Leary, M. A. An anatomical and phylogenetic study of the osteology of the petrosal of extant and extinct artiodactylans (Mammalia) and relatives. Bull. Am. Mus. Nat. Hist. 335, 1–206 (2010).Article 

    Google Scholar 
    Costeur, L. et al. The bony labyrinth of toothed whales reflects both phylogeny and habitat preferences. Sci. Rep. 8, 7841 (2018).Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Spoor, F., Bajpai, S., Hussain, S. T., Kumar, K. & Thewissen, J. G. M. Vestibular evidence for the evolution of aquatic behavior in early cetaceans. Nature 417, 163–166 (2002).Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar 
    Davies, K. T. J., Bates, P. J. J., Maryanto, I., Cotton, J. A. & Rossiter, S. J. The evolution of bat vestibular systems in the face of potential antagonistic selection pressures for flight and echolocation. PLoS ONE 8, e61998 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Park, T., Mennecart, B., Costeur, L., Grohé, C. & Cooper, N. Convergent evolution in toothed whale cochleae. BMC Evol. Biol. 1, 195 (2019).Article 

    Google Scholar 
    Benoit, J. et al. A test of the lateral semicircular canal correlation to head posture, diet and other biological traits in “ungulate” mammals. Sci. Rep. 10, 19602 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Morimoto, N. et al. Variation of bony labyrinthine morphology in Mio-Plio-Pleistocene and modern anthropoids. Am. J. Phys. Anthropol. 2020, 1–17 (2020).
    Google Scholar 
    DeMiguel, D., Azanza, B. & Morales, J. Key innovations in ruminant evolution: A paleontological perspective. Int. Zool. 9, 412–433 (2014).Article 

    Google Scholar 
    Gunz, P., Ramsier, M., Kuhrig, M., Hublin, J. & Spoor, F. The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach. J. Anat. 220, 529–543 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grohe, C., Tseng, Z. J., Lebrun, R., Boistel, R. & Flynn, J. J. Bony labyrinth shape variation in extant Carnivora: a case study of Musteloidea. J. Anat. 228, 366–383 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Urciuoli, A. et al. A comparative analysis of the vestibular apparatus in Epipliopithecus vindobonensis: Phylogenetic implications. J. Hum. Evol. 151, 102930 (2021).Article 
    PubMed 

    Google Scholar 
    IUCN. The IUCN red list of threatened species. Version 2021-1. https://www.iucnredlist.org. Accessed 17 June 2021.Kingdon, J. & Hoffmann. M. Mammals of Africa. Volume VI pigs, hippopotamuses, chevrotains, Giraffes, deer and bovids 704 (Bloomsbury Publishing, 2013).Chen, L. et al. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science 364 eaav6202 (2019).Hassanin, A. et al. Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. C. R. Biol. 335, 32–50 (2012).Article 
    PubMed 

    Google Scholar 
    Wang, Y. et al. Genetic basis of ruminant headgear and rapid antler regeneration. Science 364, 1153 (2019).Article 

    Google Scholar 
    Myers, E. A. & Bubrink, F. T. Ecological opportunity: Trigger of adaptative radiation. Nat. Educ. Knowl. 3, 23 (2012).
    Google Scholar 
    Gentry, A. W. Bovidae. In Cenozoic mammals of Africa (eds Werdelin, L. & Sanders, W. J.) 741–796 (University of California Press, 2010).Harris, J. M., Solounias, N. & Geraads, D. Giraffoidea. In Werdelin, L. & Sanders, W. J. Cenozoic mammals of Africa. 797–812 (University of California Press, 2010).Clauss, M. & Rössner, G. E. Old world ruminant morphophysiology, life history, and fossil record: exploring key innovations of a diversification sequence. Ann. Zool. Fenn. 51, 80–94 (2014).Article 

    Google Scholar 
    Johnston, A. R. & Anthony, N. M. A multi-locus species phylogeny of African forest duikers in the subfamily Cephalophinae: evidence for a recent radiation in the Pleistocene. BMC Evol. Biol. 12, 120 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cooney, C. R. & Thomas, G. H. Heterogeneous relationships between rates of speciation and body size evolution across vertebrate clades. Nat. Ecol. Evol. 5, 101–110 (2020).Article 
    PubMed 

    Google Scholar 
    Köhler, M. & Moyà-Solà, S. Physiological and life history strategies of a fossil large mammal in a resource-limited environment. Proc. Natl Acad. Sci. USA 106, 20354–22035 (2009).Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Bibi, F. A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics. BMC Evol. Biol. 13, 1–15 (2013).Article 

    Google Scholar 
    Geraads, D. A reassessment of the Bovidae (Mammalia) from the Nawata Formation of Lothagam, Kenya, and the late Miocene diversification of the family in Africa. J. Syst. Palaeontol. 17, 1–14 (2017).
    Google Scholar 
    Mennecart, B., Aiglstorfer, M., Li, Y., Li, C. & Wang, S. Ruminants reveal Eocene Asiatic palaeobiogeographical provinces as the origin of diachronous mammalian Oligocene dispersals into Europe. Sci. Rep. 11, 17710 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Rössner, G. E. Family tragulidae. In: The evolution of artiodactyls (eds Prothero, D. R. & Foss S. C.) (The Johns Hopkins University Press, Baltimore, 2007).Sánchez, I. M., Quiralte, V., Morales, J. & Pickford, M. A new genus of tragulid ruminant from the early Miocene of Kenya. Acta Palaeontol. Pol. 55, 177–187 (2010).Article 

    Google Scholar 
    Sánchez, I. M., Quiralte, V., Ríos, M., Morales, J. & Pickford, M. First African record of the Miocene Asian mouse-deer Siamotragulus (Mammalia, Ruminantia, Tragulidae): implications for the phylogeny and evolutionary history of the advanced selenodont tragulids. J. Syst. Palaeontol. 13, 543–556 (2015).Article 

    Google Scholar 
    Mennecart, B. et al. The first French tragulid skull (Mammalia, Ruminantia, Tragulidae) and associated tragulid remains from the Middle Miocene of Contres (Loir-et-Cher, France). C. R. Palevol 17, 189–200 (2018).Article 

    Google Scholar 
    Bobe, R. & Eck, G. C. Responses of African bovids to Pliocene climatic change. Paleobiology 27, 1–47 (2001).Article 

    Google Scholar 
    Strömberg, C. A. E. Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America. Proc. Natl Acad. Sci. USA 102, 11980–11984 (2005).Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Kaya, F. et al. The rise and fall of the Old World savannah fauna and the origins of the African savannah biome. Nat. Ecol. Evol. 2, 241–246 (2017).Article 

    Google Scholar 
    Gravilets, S. & Losos, J. B. Adaptive radiation: contrasting theory with data. Science 323, 732–737 (2009).Article 
    ADS 

    Google Scholar 
    Moen, D. & Morlon, H. Why does diversification slow down? Trends Ecol. Evol. 29, 190–197 (2014).Article 
    PubMed 

    Google Scholar 
    Couvreur, T. L. P. et al. Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biol. Rev. 96, 16–51 (2020).Article 
    PubMed 

    Google Scholar 
    Fontoura, E., Darival Ferreira, J., Bubadué, J., Ribeiro, A. M. & Kerber, L. Virtual brain endocast of Antifer (Mammalia: Cervidae), an extinct large cervid from South America. J. Morphol. 281, 1–18 (2020).Article 

    Google Scholar 
    Trauth M. A. et al. Recurring types of variability and transitions in the ∼620 kyr record of climate change from the Chew Bahir basin, southern Ethiopia Quaternary. Sci. Rev. https://doi.org/10.1016/j.quascirev.2020.106777 (2021).Janis, C. M. & Manning, E. Antilocapridae. In Evolution of tertiary mammals of North America (eds Janis, C. M., Scott, K. M. & Jacobs, L. L.) 491–507 (Cambridge University Press, 1998).Klimova, A., Munguia-Vega, A., Hoffman, J. I. & Culver, M. Genetic diversity and demography of two endangered captive pronghorn subspecies from the Sonoran Desert. J. Mammal. 95, 1263–1277 (2014).Article 

    Google Scholar 
    Evin, A., et al. Size and shape of the semicircular canal of the inner ear: A new marker of pig domestication? J. Exp. Zool. B Mol. Dev. Evol. https://doi.org/10.1002/jez.b.23127 (2022).Sánchez, I. M., Cantalapiedra, J. L., Ríos, M., Quiralte, V. & Morales, J. Systematics and evolution of the Miocene three-horned Palaeomerycid ruminants (Mammalia, Cetartiodactyla). PLoS ONE 10, e0143034 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wiley, D. Landmark Editor 3.6 (Institute for Data Analysis and Visualization, Davis, CA, University of California, 2006).R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2022). https://www.R-project.org/.Gunz, P. & Mitteroecker, P. Semilandmarks: a method for quantifying curves and surfaces. Hystrix 24, 103–109 (2013).
    Google Scholar 
    Adams, D. C. & Otárola-Castillo, E. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).Article 

    Google Scholar 
    Adams, D. C., Collyer, M. L., Kaliontzopoulou, A. geomorph: software for geometric morphometric analyses. R package version 3.2.1 software (2020).Gunz, P., Mitteroecker, P., Bookstein, F. L. Semilandmarks in three dimensions. In Modern morphometrics in physical anthropology. Springer, pp. 73–98 (2005).Maddison, W. P., Maddison, D. R. Mesquite: a modular system for evolutionary analysis. Version 3.04. (2010).Gromolard, C. & Guérin, C. Mise au point sur Parabos cordieri (de Christol), un Bovidé (Mammalia, Artiodactyla) du Pliocène d’Europe occidentale. Géobios 13, 741–755 (1980).Article 

    Google Scholar 
    Duvernois, M.-P. Mise au point sur le genre Leptobos (Mammalia, Artiodactyla, Bovidae); implications biostratigraphiques et phylogénétiques. Géobios 25, 155–166 (1992).Article 

    Google Scholar 
    Janis, C. M., Manning, E. Dromomerycidae. In Evolution of Tertiary mammals of North America Volume1: Terrestrial carnivores, ungulates, and ungulatelike mammals (eds. Janis, C. M., Scott, K. M., Jacobs L. L.) 477–490 (Cambridge University Press, 1998).Birungi, J. & Arctander, P. Molecular systematics and phylogeny of the reduncini (artiodactyla: bovidae) inferred from the analysis of mitochondrial cytochrome b gene sequences. J. Mamm. Evol. 8, 125–147 (2001).Article 

    Google Scholar 
    Lalueza-Fox, C. et al. Molecular dating of caprines using ancient DNA sequences of Myotragus balearicus, an extinct endemic Balear mammal. BMC Evol. Biol. 5, 1–11 (2005).Article 

    Google Scholar 
    Marot, J. D. Molecular phylogeny of terrestrial artiodactyls, conflict and resolution. In The evolution of artiodactyls (eds Prothero, D. R., Foss, S. C.) 4–18 (The Johns Hopkins University Press, 2007).Webb, D. S. Hornless ruminants. In Evolution of Tertiary mammals of North America Volume1: Terrestrial carnivores, ungulates, and ungulatelike mammals (eds Janis, C. M., Scott, K. M., Jacobs, L. L.) 463–476 (Cambridge University Press, 1998).Mennecart, B. & Métais, G. Mosaicomeryx gen. nov., a ruminant mammal from the Oligocene of Europe and the significance of ‘gelocids’. J. Syst. Palaeontol. 13, 581–600 (2015).Article 

    Google Scholar 
    Sánchez, I. M., DeMiguel, D., Quiralte, V. & Morales, J. The first known Asian Hispanomeryx (Mammalia, Ruminantia, Moschidae.). J. Vert. Paleontolo. 31, 1397–1403 (2011).Heckeberg, N. S., Erpenbeck, D., Wörheide, G. & Rössner, G. Systematic relationships of five newly sequenced cervid species. PeerJ 4, e2307 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ríos, M., Sánchez, I. M. & Morales, J. A new giraffid (Mammalia, Ruminantia, Pecora) from the late Miocene of Spain, and the evolution of the sivathere-samothere lineage. PLoS ONE 12, e0185378 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vislobokova, I. New data on late Miocene mammals of Kohfidisch, Austria. Paleontol. J. 41, 451–460 (2007).Article 

    Google Scholar 
    Aiglstorfer, M., Rössner, G. E. & Böhme, M. Dorcatherium naui and pecoran ruminants from the late Middle Miocene Gratkorn locality (Austria). Palaeobiodivers. Palaeoenviron. 94, 83–123 (2014).Article 

    Google Scholar 
    Janis, C. M. & Scott, K. M. The interrelationships of higher ruminant families with special emphasis on the members of the Cervoidea. Am. Mus. Novit. 2893, 1–85 (1987).
    Google Scholar 
    Leinders, J. Hoplitomerycidae fam. nov. (Ruminantia, Mammalia) from Neogene fissure fillings in Gargano (Italy). Scr. Geol. 70, 1–68 (1984).
    Google Scholar 
    Hassanin, A. & Douzery, E. Molecular and morphological phylogenies of Ruminantia, and the alternative position of the Moschidae. Syst. Biol. 52, 206–228 (2003).Article 
    PubMed 

    Google Scholar 
    Métais, G. & Vislobokova, I. Basal ruminants. In The evolution of artiodactyls (eds Prothero, D. R. & Foss, S. C.) 189–212 (The Johns Hopkins University Press, 2007).Mennecart, B., Zoboli, D., Costeur, L. & Pillola, G. L. On the systematic position of the oldest insular ruminant Sardomeryx oschiriensis (Mammalia, Ruminantia) and the early evolution of the Giraffomorpha. J. Syst. Palaeontol. 17, 691–704 (2019).Article 

    Google Scholar 
    Aiglstorfer, M. et al. Musk Deer on the Run – Dispersal of Miocene Moschidae in the Context of Environmental Changes. In Evolution of Cenozoic land mammal faunas and ecosystems: 25 years of the NOW database of fossil mammals. (eds Casanovas-Vilar, I., van den Hoek Ostende, L. W., Janis, C. M. & Saarinen J.) (Cham: Springer, in press).Klingenberg, C. P. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357 (2011).Article 
    PubMed 

    Google Scholar 
    Schlager, S. Morpho and Rvcg – Shape analysis in R. In Zheng, G., Li, S., Szekely, G. Statistical shape and deformation analysis, 217–256 (MA: Academic Press, 2017).Klingenberg, C. P. & Gidaszewski, N. A. Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Syst. Biol. 59, 245–261 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Marriott, F. H. C. Barnard’s monte carlo tests: how many simulations? Appl. Stat. 28, 75–77 (1979).Article 

    Google Scholar 
    Edgington, E. S. Randomization tests (Marcel Dekker, 1987).Tzeng, T. D. & Yeh, S. Y. Permutation tests for difference between two multivariate allometric patterns. Zool. Stud. 38, 10–18 (1999).
    Google Scholar 
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    Renaud, S., Dufour, A.-B., Hardouin, E. A., Ledevin, R. & Auffray, C. Once upon multivariate analyses: when they tell several stories about biological evolution. PLoS ONE 10, e0132801 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mitteroecker, P. & Bookstein, F. Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evol. Biol. 38, 100–114 (2011).Article 

    Google Scholar 
    Raia, P., Castiglione, S., Serio, C., Mondanaro, A. & Raia, M. P. Package ‘RRphylo’. CRAN Repos. 4, 1–31 (2018).
    Google Scholar 
    Castiglione, S. et al. A new method for testing evolutionary rate variation and shifts in phenotypic evolution. Methods Ecol. Evol. 9, 974–983 (2018).Article 

    Google Scholar 
    Morlon, H. et al. “RPANDA: an R package for macroevolutionary analyses on phylogenetic trees.”. Methods Ecol. Evol. 7, 589–597 (2016).Article 

    Google Scholar 
    Costeur, L., Mennecart, B., Müller, B., Schulz, G. Observations on the scaling relationship between bony labyrinth, skull size and body mass in ruminants. Proc. SPIE 11113, https://doi.org/10.1117/12.2530702 (2019).Costeur, L., Mennecart, B., Müller, B. & Schulz, G. Prenatal growth stages show the development of the ruminant bony labyrinth and petrosal bone. J. Anat. 230, 347–353 (2017).Article 
    PubMed 

    Google Scholar 
    Mennecart, B. & Costeur, L. Shape variation and ontogeny of the ruminant bony labyrinth, an example in Tragulidae. J. Anat. 229, 422–435 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clauss, M., Steuer, P., Müller, D. W. H., Codron, D. & Hummel, J. Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism. PLoS One 8, e68714 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    du Toit, J. T. & Owen-Smith, N. Body size, population metabolism, and habitat specialization among large African herbivores. Am. Nat. 133, 736–740 (1989).Article 

    Google Scholar 
    Mennecart B., Becker D., & Berger J. -P. Mandible shape of ruminants: between phylogeny and feeding habits. In: Ruminants: Anatomy, behavior, and diseases, (ed. Mendes R. E.) 205–226 (Nova Science Publishers, 2012).Bokma, F. et al. Testing for Depéret’s rule (body size increase) in mammals using combined extinct and extant data. Syst. Biol. 65, 98–108 (2016).Article 
    PubMed 

    Google Scholar 
    Besiou, E., Choupa, M. N., Lyras, G. & van der Geer, A. Body mass divergence in sympatric deer species of Pleistocene Crete (Greece). Palaeontol. Electron. 25, a23 (2022).
    Google Scholar 
    Mennecart B., Métais G., Tissier J., Rössner G. E., & Costeur L. 3D models related to the publication: Reassessment of the enigmatic ruminant Miocene genus Amphimoschus Bourgeois, 1873 (Mammalia, Artiodactyla, Ruminantia, Pecora). MorphoMuseuM 7, e131 (2021).Mennecart, B., Perthuis de, A. D. & Costeur, L. 3D models related to the publication: The first French tragulid skull (Mammalia, Ruminantia, Tragulidae) and associated tragulid remains from the Middle Miocene of Contres (Loir-et-Cher, France). MorphoMuseuM 3, e4 (2018).Article 

    Google Scholar 
    Aiglstorfer, M., Costeur, L., Mennecart, B. & Heizmann, E. P. J. Micromeryx? eiselei – a new moschid species from Steinheim am Albuch, Germany, and the first comprehensive description of moschid cranial material from the Miocene of Central Europe. MorphoMuseuM 3, e4 (2107).Article 

    Google Scholar 
    Costeur, L. & Mennecart, B. 3D models related to the publication: Prenatal growth stages show the development of the ruminant bony labyrinth and petrosal bone. MorphoMuseuM 2, e3 (2016).Article 

    Google Scholar 
    Mennecart, B. & Costeur, L. 3D models related to the publication: a Dorcatherium (Mammalia, Ruminantia, Middle Miocene) petrosal bone and the tragulid ear region. MorphoMuseuM 2, e2 (2016).Article 

    Google Scholar 
    Mennecart, B. et al. Allometric and phylogenetic aspects of stapes morphology in ruminantia (Mammalia, Artiodactyla). Front. Earth Sci. 8, 176 (2020). More

  • in

    Increases in reef size, habitat and metacommunity complexity associated with Cambrian radiation oxygenation pulses

    The rise of animals (metazoans) is a seminal event in the history of life. The Cambrian Radiation ~540 Ma marks the appearance of abundant and diverse metazoans and increasing ecosystem complexity in the fossil record1. A causal relationship between the redox and fossil records is proposed, where oxygen provision reached a threshold, or series of thresholds, which allowed for the diversification of metazoans with increasing metabolic demands2. Global geochemical data, however, suggest that oxygenation was not a simple, linear process, but rather occurred episodically via a series of short-lived pulses (1–3 Myr), or ‘oceanic oxygenation events’ (OOEs)3,4. Early and even later Cambrian seas likely had shallower, and more dynamic, oxygen minimum zones (OMZs) than modern oceans5,6. Such pulses of increased oxygenation (and related changes in productivity) are hypothesised to have increased the extent of shallow-ocean oxygenation and hence to have promoted diversification7. But what remains unquantified is the community-wide response of metazoans to such redox cycles, an insight into the evolutionary processes involved, and hence whether these pulses were indeed a driving force for the Cambrian Radiation.In order to test the hypothesis that oxic pulses led to diversification and potentially ecological development, a correlation between increased oxygenation, rates of origination, and metrics of metazoan ecosystem complexity needs to be demonstrated. Early Cambrian marine environments were heterogeneous with respect to oxygen provision and nutrient load at a regional scale, so in order to investigate potential correlations, we require the integration of global and local redox proxies, and biotic records in the same stratigraphically well-constrained geological successions.During the early Cambrian, the Siberian Platform was a vast isolated, tropical continent almost entirely covered by an epicontinental sea (Fig. 1a)8,9. The platform supported a single metacommunity, i.e. a species pool with many local, interacting communities e.g.10, representing a third of total early Cambrian metazoan benthic diversity with widespread metazoan (archaeocyath sponge) reefs that formed bioherms (Fig. 1b)7,11. Dynamic and synchronous changes of body size in archaeocyath sponges, hyoliths, and helcionelloid molluscs through the early Cambrian on the Siberian Platform have been quantified, which coincide with elevated biodiversity and rates of origination: these have been proposed to follow OOEs12. Here we consider temporal changes in both the position of archaeocyath sponge reefs as a function of relative water depth, and in individual reef size (diameter), as well as the ecological complexity of the reef-building and dwelling communities by quantification of changing reef community membership of sessile archaeocyath sponge, coralomorph, and cribricyath species, on the Siberian Platform.Fig. 1: Palaeogeographic and stratigraphic position of the early Cambrian archaeocyath reefs of the Lena-Aldan area on the Siberian Platform.a Early Cambrian palaeofacies zonation map of the Siberian Platform. b Cross section to show relative positions of sampled transects along the Lena River11,40,66,67,68. c Lithostratigraphy, biostratigraphy, carbon isotope (δ13C)29,31,32 and carbonate-associated sulfate sulfur isotope (δ34SCAS)7 data for sections from the middle Lena River (Isit’, Zhurinsky Mys, Achchagy-Kyyry-Taas, and Achchagy-Tuoydakh). S.E.—Sinsk Event; Tolb.—Tolba Formation; ATD., BOT., N.-D., TOM.—Atdabanian, Botoman, Nemakit-Daldynian, and Tommotian local stages, respectively.Full size imageTo quantify ecological complexity, we used metacommunity analyses, which compare the structure between communities in terms of taxa (generally species) compositions spatially and temporally10 (see Methods). The ‘Elements of Metacommunity Structure’ framework used here is a hierarchical analysis that identifies properties in site-by-species presence/absence matrices that are related to the underlying processes, such as species interactions, dispersal, and environmental filtering that shape species distributions10. Application to various marine and terrestrial palaeocommunities has demonstrated the robustness of these methods to fossil data and sample size variations13,14. There are fourteen different types of metacommunity structure which are determined by the calculation of three metacommunity metrics: Coherence, Turnover, and Boundary Clumping, which reveal different controlling processes of underlying metacommunity structure10,15,16,17,18.The most ecologically complex metacommunities are classified as Clementsian, and have positive coherence, turnover and boundary clumping16. Clementsian metacommunities contain groups of taxa with similar range boundaries that respond to the environment synchronously as taxa have physiological or evolutionary trade-offs within the communities associated with environmental thresholds19. By contrast, when taxa respond individualistically to the underlying environment, without accounting for other taxa within the community, the structure is Gleasonian, and is defined by positive coherence and turnover but no significant boundary clumping16. When coherence is positive, but turnover is not significantly different from random, then the resultant metacommunity structures are known as quasi-structures (e.g. quasi-Clementsian), which reflect weaker underlying structuring processes.We determined the metacommunity structure for archaeocyath sponge species on the Siberian Platform throughout their early Cambrian record using an entire previously published data set11 then on a sub-set of metacommunities which had a sufficient number of reef sites to be suitable for analyses, i.e. with a sufficient number of sites to be statistically significant. Further, to investigate the effects of water depth on metacommunity structure, we used Spearman rank correlations to test whether the metacommunity ranking (as determined by reciprocal averaging, a type of correspondence analysis which ordinates the sites based on their species composition17), is significantly correlated to water depth. Finally, to quantify how pairwise associations between taxa change between the three temporally different metacommunities, we determined which pairwise taxa co-occurrences are significantly non-random using a combinatorics approach, and whether any non-random co-occurrences are positive or negative20.Species richness estimates are highly sensitive to differences in sampling. When comparing species richness of assemblages from several time intervals, it is advisable to standardise sampling across those assemblages to ensure that changes in species richness are not attributable to sampling differences. One approach is to subsample each time interval down to a standardised number of individuals (size-based rarefaction), but this approach can underestimate changes in richness because it tends to sample low-richness assemblages more completely than high-richness ones21. Coverage-based rarefaction, where each sample is down-sampled to a standardised level of taxonomic completeness, avoids this potential issue. The coverage of a sample is the proportion of species in the assemblage which are represented in that sample, and it can be estimated by subtracting the proportion of singletons in a sample from 1 (e.g.22; see also21 for details). We used the estimateD function from R package iNEXT23 to produce coverage-standardised species richness estimates with 95% confidence intervals, by repeatedly down-sampling the sampled assemblage from each time interval to match the coverage of the lowest-coverage interval. We did this by setting datatype = “abundance”, base = “coverage” and leaving all other arguments as default.In sum, we test the biotic response to OOEs by compiling metrics of archaeocyath reef size, location, and metacommunity complexity, integrated with existing data on archaeocyath individual size, species richness and origination and extinction rates12 and high-resolution geochemistry4,7 recalculated to the same stratigraphic scale, on the Siberian Platform over 11 Myr through Cambrian stages 2–3 (mid-Tommotian to early Botoman on the Siberian stratigraphic scale; 525–514 Ma). These results are used to quantify the community-wide response of metazoans to extrinsic redox cycles, and hence gain insight into the evolutionary processes involved.Geological setting and evolution of redoxDuring the early Cambrian shallow marine carbonates associated with evaporites and siliciclastics dominated the inner Siberian Platform, passing to shallow marginal carbonates of transitional facies known as the transitional zone (or the Anabar-Sinsk), thence to deep ramp and slope settings that accumulated organic-rich limestone and shale (Fig. 1a)24,25,26. Archaeocyathan reefs or bioherms were almost entirely restricted to the transitional facies. Such reefs appeared and proliferated during Cambrian stages 2 and 3 (Tommotian, Atdabanian and earliest Botoman), disappeared at the beginning of Stage 4 (middle Botoman) and re-appeared briefly at the end of this stage (Toyonian).We integrate palaeontological (archaeocyath species number and individual size), palaeoecological (reef size and palaeodepth location) and chemostratigraphic information (carbon isotope cycles 5p, 6p, and II–VII) for sections of the Aldan, Selinde and Lena rivers with sub-metre-scale lithostratigraphic subdivisions27,28,29,30,31,32,33 (Figs. 1c, 2a–c, 3a). This results in negligible uncertainty associated with sample heights, which are fixed relative to a consistent datum within each section.Fig. 2: Lithostratigraphy, biostratigraphy and carbon isotope (δ13C) data for sections of the Aldan and Selinde rivers bearing the earlierst archaeocyath reef communities of the Siberian Platform.a Dvortsy27,28,30 b Ulakhan-Sulugur33,34, and c Selinde69,70.Full size imageFig. 3: Summary of geochemical and biotic changes through the early Cambrian, Siberian Platform, and uranium isotope data representing a global record.a International and Siberian timescale, within age model C of 57. ND—Nemakit-Daldynian regional stage; U’-Y—Ust’-Yudoma Formation. b Summary of carbon and sulphur isotopes (from the Lena River, Siberia7). c Uranium isotopes from Siberia (grey; Sukharikha and Bol’shaya Kuonamka rivers), South China (blue), and Morocco (orange) (all data points are larger than 2SE)4. d Archaeocyath sponge species diversity and maximum diameter12. Plotted richness values are the species richness estimator21 with accompanying 95% confidence interval, calculated using the estimated function from R package iNEXT62. e Rates of archaeocyath sponge species origination and extinction12. f Reef location as a function of relative water depth (Supplementary Table 1). FWWB—Fair weather wave base. SWB—Storm weather wave base. g Reef/bioherm diameter, coloured by relative water depth (see column f, and Supplementary Table 2). h Number of reef community types (Supplementary Table 3). i Archaeocyath reef ecosystem complexity, with percentage of species co-occurrence as changing proportions of total non-random and positive and negative. G = Gleasonian, QG = Quasi-Gleasonian, C = Clementsian.Full size imageThroughout Cambrian stages 2 and 3, high-amplitude positive δ13C carbon isotope excursions show a strong positive covariation with the sulphur isotope composition of carbonate-associated sulphate (δ34SCAS) in sections from the Lena River (Fig. 3b)7. The rising limbs of these excursions are interpreted as intervals of progressive burial of reductants under anoxic bottom water conditions, and a progressive increase in atmospheric oxygen7. Coincident δ13C and δ34SCAS peaks (numbered II–VII) correspond with a pulse of atmospheric oxygen into the shallow marine environment (creating an OOE), followed by a corresponding decrease in reductant burial under more widespread marine oxia (falling limbs of δ13C and δ34SCAS), and leading to gradual de-oxygenation over Myr7. In addition, phosphorous retention might have occurred under oxic shallow marine conditions, acting to reduce primary productivity and further oxygenate the shallow marine environment in the short-term ( More