Ruminant inner ear shape records 35 million years of neutral evolution
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).Article
CAS
PubMed
ADS
Google Scholar
Erwin, D. H. Climate as a driver of evolutionary change. Curr. Biol. 19, R575–R583 (2009).Article
CAS
PubMed
Google Scholar
Mayhew, P. J., Jenkins, G. B. & Benton, T. G. A long-term association between global temperature and biodiversity, origination and extinction in the fossil record. Proc. R. Soc. Lond. B 275, 47–53 (2008).
Google Scholar
Raia, P. et al. Past extinctions of Homo species coincided with increased vulnerability to climatic change. One Earth 3, 480–490 (2020).Article
ADS
Google Scholar
deMencoal, P. Climate and human evolution. Science 331, 540–542 (2011).Article
ADS
Google Scholar
Stroud, J. T. & Losos, J. B. Ecological opportunity and adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 47, 507–532 (2016).Article
Google Scholar
Potts, R. & Faith, J. T. Alternating high and low climate variability: The context of natural selection and speciation in Plio-Pleistocene hominin evolution. J. Hum. Evol. 87, 5–20 (2015).Article
PubMed
Google Scholar
Clavel, J. & Morlon, H. Accelerated body size evolution during cold climatic periods in the Cenozoic. Proc. Natl Acad. Sci. USA 114, 4183–4188 (2017).Article
CAS
PubMed
PubMed Central
ADS
Google Scholar
Mihlbachler, M. C., Rivals, F., Solounias, N. & Semprebon, G. M. Dietary change and evolution of horses in North America. Science 331, 1178–1181 (2011).Article
CAS
PubMed
ADS
Google Scholar
Mennecart, B. et al. Bony labyrinth morphology clarifies the origin and evolution of deer. Sci. Rep. 7, 13176 (2017).Article
PubMed
PubMed Central
ADS
Google Scholar
Ponce, deLeón et al. Human bony labyrinth is an indicator of population history and dispersal from Africa. Proc. Natl Acad. Sci. USA 115, 4128–4133 (2018).Article
ADS
Google Scholar
Luo, Z.-X. The inner ear and its bony housing in tritylodontids and implications for the evolution of the mammalian ear. Bull. Mus. Comp. Zool. 156, 81–97 (2001).
Google Scholar
Ekdale, E. G. Comparative anatomy of the bony labyrinth (inner ear) of placental mammals. PLoS ONE 8, e66624 (2013).Article
CAS
PubMed
PubMed Central
ADS
Google Scholar
O’Leary, M. A. An anatomical and phylogenetic study of the osteology of the petrosal of extant and extinct artiodactylans (Mammalia) and relatives. Bull. Am. Mus. Nat. Hist. 335, 1–206 (2010).Article
Google Scholar
Costeur, L. et al. The bony labyrinth of toothed whales reflects both phylogeny and habitat preferences. Sci. Rep. 8, 7841 (2018).Article
PubMed
PubMed Central
ADS
Google Scholar
Spoor, F., Bajpai, S., Hussain, S. T., Kumar, K. & Thewissen, J. G. M. Vestibular evidence for the evolution of aquatic behavior in early cetaceans. Nature 417, 163–166 (2002).Article
CAS
PubMed
ADS
Google Scholar
Davies, K. T. J., Bates, P. J. J., Maryanto, I., Cotton, J. A. & Rossiter, S. J. The evolution of bat vestibular systems in the face of potential antagonistic selection pressures for flight and echolocation. PLoS ONE 8, e61998 (2013).Article
CAS
PubMed
PubMed Central
ADS
Google Scholar
Park, T., Mennecart, B., Costeur, L., Grohé, C. & Cooper, N. Convergent evolution in toothed whale cochleae. BMC Evol. Biol. 1, 195 (2019).Article
Google Scholar
Benoit, J. et al. A test of the lateral semicircular canal correlation to head posture, diet and other biological traits in “ungulate” mammals. Sci. Rep. 10, 19602 (2020).Article
CAS
PubMed
PubMed Central
ADS
Google Scholar
Morimoto, N. et al. Variation of bony labyrinthine morphology in Mio-Plio-Pleistocene and modern anthropoids. Am. J. Phys. Anthropol. 2020, 1–17 (2020).
Google Scholar
DeMiguel, D., Azanza, B. & Morales, J. Key innovations in ruminant evolution: A paleontological perspective. Int. Zool. 9, 412–433 (2014).Article
Google Scholar
Gunz, P., Ramsier, M., Kuhrig, M., Hublin, J. & Spoor, F. The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach. J. Anat. 220, 529–543 (2012).Article
PubMed
PubMed Central
Google Scholar
Grohe, C., Tseng, Z. J., Lebrun, R., Boistel, R. & Flynn, J. J. Bony labyrinth shape variation in extant Carnivora: a case study of Musteloidea. J. Anat. 228, 366–383 (2015).Article
PubMed
PubMed Central
Google Scholar
Urciuoli, A. et al. A comparative analysis of the vestibular apparatus in Epipliopithecus vindobonensis: Phylogenetic implications. J. Hum. Evol. 151, 102930 (2021).Article
PubMed
Google Scholar
IUCN. The IUCN red list of threatened species. Version 2021-1. https://www.iucnredlist.org. Accessed 17 June 2021.Kingdon, J. & Hoffmann. M. Mammals of Africa. Volume VI pigs, hippopotamuses, chevrotains, Giraffes, deer and bovids 704 (Bloomsbury Publishing, 2013).Chen, L. et al. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science 364 eaav6202 (2019).Hassanin, A. et al. Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. C. R. Biol. 335, 32–50 (2012).Article
PubMed
Google Scholar
Wang, Y. et al. Genetic basis of ruminant headgear and rapid antler regeneration. Science 364, 1153 (2019).Article
Google Scholar
Myers, E. A. & Bubrink, F. T. Ecological opportunity: Trigger of adaptative radiation. Nat. Educ. Knowl. 3, 23 (2012).
Google Scholar
Gentry, A. W. Bovidae. In Cenozoic mammals of Africa (eds Werdelin, L. & Sanders, W. J.) 741–796 (University of California Press, 2010).Harris, J. M., Solounias, N. & Geraads, D. Giraffoidea. In Werdelin, L. & Sanders, W. J. Cenozoic mammals of Africa. 797–812 (University of California Press, 2010).Clauss, M. & Rössner, G. E. Old world ruminant morphophysiology, life history, and fossil record: exploring key innovations of a diversification sequence. Ann. Zool. Fenn. 51, 80–94 (2014).Article
Google Scholar
Johnston, A. R. & Anthony, N. M. A multi-locus species phylogeny of African forest duikers in the subfamily Cephalophinae: evidence for a recent radiation in the Pleistocene. BMC Evol. Biol. 12, 120 (2012).Article
PubMed
PubMed Central
Google Scholar
Cooney, C. R. & Thomas, G. H. Heterogeneous relationships between rates of speciation and body size evolution across vertebrate clades. Nat. Ecol. Evol. 5, 101–110 (2020).Article
PubMed
Google Scholar
Köhler, M. & Moyà-Solà, S. Physiological and life history strategies of a fossil large mammal in a resource-limited environment. Proc. Natl Acad. Sci. USA 106, 20354–22035 (2009).Article
PubMed
PubMed Central
ADS
Google Scholar
Bibi, F. A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics. BMC Evol. Biol. 13, 1–15 (2013).Article
Google Scholar
Geraads, D. A reassessment of the Bovidae (Mammalia) from the Nawata Formation of Lothagam, Kenya, and the late Miocene diversification of the family in Africa. J. Syst. Palaeontol. 17, 1–14 (2017).
Google Scholar
Mennecart, B., Aiglstorfer, M., Li, Y., Li, C. & Wang, S. Ruminants reveal Eocene Asiatic palaeobiogeographical provinces as the origin of diachronous mammalian Oligocene dispersals into Europe. Sci. Rep. 11, 17710 (2021).Article
CAS
PubMed
PubMed Central
ADS
Google Scholar
Rössner, G. E. Family tragulidae. In: The evolution of artiodactyls (eds Prothero, D. R. & Foss S. C.) (The Johns Hopkins University Press, Baltimore, 2007).Sánchez, I. M., Quiralte, V., Morales, J. & Pickford, M. A new genus of tragulid ruminant from the early Miocene of Kenya. Acta Palaeontol. Pol. 55, 177–187 (2010).Article
Google Scholar
Sánchez, I. M., Quiralte, V., Ríos, M., Morales, J. & Pickford, M. First African record of the Miocene Asian mouse-deer Siamotragulus (Mammalia, Ruminantia, Tragulidae): implications for the phylogeny and evolutionary history of the advanced selenodont tragulids. J. Syst. Palaeontol. 13, 543–556 (2015).Article
Google Scholar
Mennecart, B. et al. The first French tragulid skull (Mammalia, Ruminantia, Tragulidae) and associated tragulid remains from the Middle Miocene of Contres (Loir-et-Cher, France). C. R. Palevol 17, 189–200 (2018).Article
Google Scholar
Bobe, R. & Eck, G. C. Responses of African bovids to Pliocene climatic change. Paleobiology 27, 1–47 (2001).Article
Google Scholar
Strömberg, C. A. E. Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America. Proc. Natl Acad. Sci. USA 102, 11980–11984 (2005).Article
PubMed
PubMed Central
ADS
Google Scholar
Kaya, F. et al. The rise and fall of the Old World savannah fauna and the origins of the African savannah biome. Nat. Ecol. Evol. 2, 241–246 (2017).Article
Google Scholar
Gravilets, S. & Losos, J. B. Adaptive radiation: contrasting theory with data. Science 323, 732–737 (2009).Article
ADS
Google Scholar
Moen, D. & Morlon, H. Why does diversification slow down? Trends Ecol. Evol. 29, 190–197 (2014).Article
PubMed
Google Scholar
Couvreur, T. L. P. et al. Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biol. Rev. 96, 16–51 (2020).Article
PubMed
Google Scholar
Fontoura, E., Darival Ferreira, J., Bubadué, J., Ribeiro, A. M. & Kerber, L. Virtual brain endocast of Antifer (Mammalia: Cervidae), an extinct large cervid from South America. J. Morphol. 281, 1–18 (2020).Article
Google Scholar
Trauth M. A. et al. Recurring types of variability and transitions in the ∼620 kyr record of climate change from the Chew Bahir basin, southern Ethiopia Quaternary. Sci. Rev. https://doi.org/10.1016/j.quascirev.2020.106777 (2021).Janis, C. M. & Manning, E. Antilocapridae. In Evolution of tertiary mammals of North America (eds Janis, C. M., Scott, K. M. & Jacobs, L. L.) 491–507 (Cambridge University Press, 1998).Klimova, A., Munguia-Vega, A., Hoffman, J. I. & Culver, M. Genetic diversity and demography of two endangered captive pronghorn subspecies from the Sonoran Desert. J. Mammal. 95, 1263–1277 (2014).Article
Google Scholar
Evin, A., et al. Size and shape of the semicircular canal of the inner ear: A new marker of pig domestication? J. Exp. Zool. B Mol. Dev. Evol. https://doi.org/10.1002/jez.b.23127 (2022).Sánchez, I. M., Cantalapiedra, J. L., Ríos, M., Quiralte, V. & Morales, J. Systematics and evolution of the Miocene three-horned Palaeomerycid ruminants (Mammalia, Cetartiodactyla). PLoS ONE 10, e0143034 (2015).Article
PubMed
PubMed Central
Google Scholar
Wiley, D. Landmark Editor 3.6 (Institute for Data Analysis and Visualization, Davis, CA, University of California, 2006).R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2022). https://www.R-project.org/.Gunz, P. & Mitteroecker, P. Semilandmarks: a method for quantifying curves and surfaces. Hystrix 24, 103–109 (2013).
Google Scholar
Adams, D. C. & Otárola-Castillo, E. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).Article
Google Scholar
Adams, D. C., Collyer, M. L., Kaliontzopoulou, A. geomorph: software for geometric morphometric analyses. R package version 3.2.1 software (2020).Gunz, P., Mitteroecker, P., Bookstein, F. L. Semilandmarks in three dimensions. In Modern morphometrics in physical anthropology. Springer, pp. 73–98 (2005).Maddison, W. P., Maddison, D. R. Mesquite: a modular system for evolutionary analysis. Version 3.04. (2010).Gromolard, C. & Guérin, C. Mise au point sur Parabos cordieri (de Christol), un Bovidé (Mammalia, Artiodactyla) du Pliocène d’Europe occidentale. Géobios 13, 741–755 (1980).Article
Google Scholar
Duvernois, M.-P. Mise au point sur le genre Leptobos (Mammalia, Artiodactyla, Bovidae); implications biostratigraphiques et phylogénétiques. Géobios 25, 155–166 (1992).Article
Google Scholar
Janis, C. M., Manning, E. Dromomerycidae. In Evolution of Tertiary mammals of North America Volume1: Terrestrial carnivores, ungulates, and ungulatelike mammals (eds. Janis, C. M., Scott, K. M., Jacobs L. L.) 477–490 (Cambridge University Press, 1998).Birungi, J. & Arctander, P. Molecular systematics and phylogeny of the reduncini (artiodactyla: bovidae) inferred from the analysis of mitochondrial cytochrome b gene sequences. J. Mamm. Evol. 8, 125–147 (2001).Article
Google Scholar
Lalueza-Fox, C. et al. Molecular dating of caprines using ancient DNA sequences of Myotragus balearicus, an extinct endemic Balear mammal. BMC Evol. Biol. 5, 1–11 (2005).Article
Google Scholar
Marot, J. D. Molecular phylogeny of terrestrial artiodactyls, conflict and resolution. In The evolution of artiodactyls (eds Prothero, D. R., Foss, S. C.) 4–18 (The Johns Hopkins University Press, 2007).Webb, D. S. Hornless ruminants. In Evolution of Tertiary mammals of North America Volume1: Terrestrial carnivores, ungulates, and ungulatelike mammals (eds Janis, C. M., Scott, K. M., Jacobs, L. L.) 463–476 (Cambridge University Press, 1998).Mennecart, B. & Métais, G. Mosaicomeryx gen. nov., a ruminant mammal from the Oligocene of Europe and the significance of ‘gelocids’. J. Syst. Palaeontol. 13, 581–600 (2015).Article
Google Scholar
Sánchez, I. M., DeMiguel, D., Quiralte, V. & Morales, J. The first known Asian Hispanomeryx (Mammalia, Ruminantia, Moschidae.). J. Vert. Paleontolo. 31, 1397–1403 (2011).Heckeberg, N. S., Erpenbeck, D., Wörheide, G. & Rössner, G. Systematic relationships of five newly sequenced cervid species. PeerJ 4, e2307 (2016).Article
PubMed
PubMed Central
Google Scholar
Ríos, M., Sánchez, I. M. & Morales, J. A new giraffid (Mammalia, Ruminantia, Pecora) from the late Miocene of Spain, and the evolution of the sivathere-samothere lineage. PLoS ONE 12, e0185378 (2017).Article
PubMed
PubMed Central
Google Scholar
Vislobokova, I. New data on late Miocene mammals of Kohfidisch, Austria. Paleontol. J. 41, 451–460 (2007).Article
Google Scholar
Aiglstorfer, M., Rössner, G. E. & Böhme, M. Dorcatherium naui and pecoran ruminants from the late Middle Miocene Gratkorn locality (Austria). Palaeobiodivers. Palaeoenviron. 94, 83–123 (2014).Article
Google Scholar
Janis, C. M. & Scott, K. M. The interrelationships of higher ruminant families with special emphasis on the members of the Cervoidea. Am. Mus. Novit. 2893, 1–85 (1987).
Google Scholar
Leinders, J. Hoplitomerycidae fam. nov. (Ruminantia, Mammalia) from Neogene fissure fillings in Gargano (Italy). Scr. Geol. 70, 1–68 (1984).
Google Scholar
Hassanin, A. & Douzery, E. Molecular and morphological phylogenies of Ruminantia, and the alternative position of the Moschidae. Syst. Biol. 52, 206–228 (2003).Article
PubMed
Google Scholar
Métais, G. & Vislobokova, I. Basal ruminants. In The evolution of artiodactyls (eds Prothero, D. R. & Foss, S. C.) 189–212 (The Johns Hopkins University Press, 2007).Mennecart, B., Zoboli, D., Costeur, L. & Pillola, G. L. On the systematic position of the oldest insular ruminant Sardomeryx oschiriensis (Mammalia, Ruminantia) and the early evolution of the Giraffomorpha. J. Syst. Palaeontol. 17, 691–704 (2019).Article
Google Scholar
Aiglstorfer, M. et al. Musk Deer on the Run – Dispersal of Miocene Moschidae in the Context of Environmental Changes. In Evolution of Cenozoic land mammal faunas and ecosystems: 25 years of the NOW database of fossil mammals. (eds Casanovas-Vilar, I., van den Hoek Ostende, L. W., Janis, C. M. & Saarinen J.) (Cham: Springer, in press).Klingenberg, C. P. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357 (2011).Article
PubMed
Google Scholar
Schlager, S. Morpho and Rvcg – Shape analysis in R. In Zheng, G., Li, S., Szekely, G. Statistical shape and deformation analysis, 217–256 (MA: Academic Press, 2017).Klingenberg, C. P. & Gidaszewski, N. A. Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Syst. Biol. 59, 245–261 (2010).Article
CAS
PubMed
Google Scholar
Marriott, F. H. C. Barnard’s monte carlo tests: how many simulations? Appl. Stat. 28, 75–77 (1979).Article
Google Scholar
Edgington, E. S. Randomization tests (Marcel Dekker, 1987).Tzeng, T. D. & Yeh, S. Y. Permutation tests for difference between two multivariate allometric patterns. Zool. Stud. 38, 10–18 (1999).
Google Scholar
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article
Google Scholar
Renaud, S., Dufour, A.-B., Hardouin, E. A., Ledevin, R. & Auffray, C. Once upon multivariate analyses: when they tell several stories about biological evolution. PLoS ONE 10, e0132801 (2015).Article
PubMed
PubMed Central
Google Scholar
Mitteroecker, P. & Bookstein, F. Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evol. Biol. 38, 100–114 (2011).Article
Google Scholar
Raia, P., Castiglione, S., Serio, C., Mondanaro, A. & Raia, M. P. Package ‘RRphylo’. CRAN Repos. 4, 1–31 (2018).
Google Scholar
Castiglione, S. et al. A new method for testing evolutionary rate variation and shifts in phenotypic evolution. Methods Ecol. Evol. 9, 974–983 (2018).Article
Google Scholar
Morlon, H. et al. “RPANDA: an R package for macroevolutionary analyses on phylogenetic trees.”. Methods Ecol. Evol. 7, 589–597 (2016).Article
Google Scholar
Costeur, L., Mennecart, B., Müller, B., Schulz, G. Observations on the scaling relationship between bony labyrinth, skull size and body mass in ruminants. Proc. SPIE 11113, https://doi.org/10.1117/12.2530702 (2019).Costeur, L., Mennecart, B., Müller, B. & Schulz, G. Prenatal growth stages show the development of the ruminant bony labyrinth and petrosal bone. J. Anat. 230, 347–353 (2017).Article
PubMed
Google Scholar
Mennecart, B. & Costeur, L. Shape variation and ontogeny of the ruminant bony labyrinth, an example in Tragulidae. J. Anat. 229, 422–435 (2016).Article
PubMed
PubMed Central
Google Scholar
Clauss, M., Steuer, P., Müller, D. W. H., Codron, D. & Hummel, J. Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism. PLoS One 8, e68714 (2013).Article
CAS
PubMed
PubMed Central
ADS
Google Scholar
du Toit, J. T. & Owen-Smith, N. Body size, population metabolism, and habitat specialization among large African herbivores. Am. Nat. 133, 736–740 (1989).Article
Google Scholar
Mennecart B., Becker D., & Berger J. -P. Mandible shape of ruminants: between phylogeny and feeding habits. In: Ruminants: Anatomy, behavior, and diseases, (ed. Mendes R. E.) 205–226 (Nova Science Publishers, 2012).Bokma, F. et al. Testing for Depéret’s rule (body size increase) in mammals using combined extinct and extant data. Syst. Biol. 65, 98–108 (2016).Article
PubMed
Google Scholar
Besiou, E., Choupa, M. N., Lyras, G. & van der Geer, A. Body mass divergence in sympatric deer species of Pleistocene Crete (Greece). Palaeontol. Electron. 25, a23 (2022).
Google Scholar
Mennecart B., Métais G., Tissier J., Rössner G. E., & Costeur L. 3D models related to the publication: Reassessment of the enigmatic ruminant Miocene genus Amphimoschus Bourgeois, 1873 (Mammalia, Artiodactyla, Ruminantia, Pecora). MorphoMuseuM 7, e131 (2021).Mennecart, B., Perthuis de, A. D. & Costeur, L. 3D models related to the publication: The first French tragulid skull (Mammalia, Ruminantia, Tragulidae) and associated tragulid remains from the Middle Miocene of Contres (Loir-et-Cher, France). MorphoMuseuM 3, e4 (2018).Article
Google Scholar
Aiglstorfer, M., Costeur, L., Mennecart, B. & Heizmann, E. P. J. Micromeryx? eiselei – a new moschid species from Steinheim am Albuch, Germany, and the first comprehensive description of moschid cranial material from the Miocene of Central Europe. MorphoMuseuM 3, e4 (2107).Article
Google Scholar
Costeur, L. & Mennecart, B. 3D models related to the publication: Prenatal growth stages show the development of the ruminant bony labyrinth and petrosal bone. MorphoMuseuM 2, e3 (2016).Article
Google Scholar
Mennecart, B. & Costeur, L. 3D models related to the publication: a Dorcatherium (Mammalia, Ruminantia, Middle Miocene) petrosal bone and the tragulid ear region. MorphoMuseuM 2, e2 (2016).Article
Google Scholar
Mennecart, B. et al. Allometric and phylogenetic aspects of stapes morphology in ruminantia (Mammalia, Artiodactyla). Front. Earth Sci. 8, 176 (2020). More