More stories

  • in

    Adhesion of Rhodococcus bacteria to solid hydrocarbons and enhanced biodegradation of these compounds

    Semple, K. T., Morriss, A. W. J. & Paton, G. I. Bioavailability of hydrophobic organic contaminants in soils: Fundamental concepts and techniques for analysis. Eur. J. Soil Sci. 54, 809–818 (2003).Article 
    CAS 

    Google Scholar 
    Ivshina, I. et al. Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231. J. Hazard. Mater. 312, 8–17 (2016).Article 
    CAS 

    Google Scholar 
    Varjani, S. J. Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 223, 277–286 (2017).Article 
    CAS 

    Google Scholar 
    Chen, J. et al. Long-chain n-alkane biodegradation coupling to methane production in an enriched culture from production water of a high-temperature oil reservoir. AMB Express 10, 63 (2020).Article 
    CAS 

    Google Scholar 
    Li, Y. & Xiong, Y. Identification and quantification of mixed sources of oil spills based on distributions and isotope profiles of long-chain n-alkanes. Mar. Pollut. Bull. 58, 1868–1873 (2009).Article 
    CAS 

    Google Scholar 
    Stout, S. A., Payne, J. R., Emsbo-Mattingly, S. D. & Baker, G. Weathering of field-collected floating and stranded Macondo oils during and shortly after the Deepwater Horizon oil spill. Mar. Pollut. Bull. 105, 7–22 (2016).Article 
    CAS 

    Google Scholar 
    Wang, X. et al. Polycyclic aromatic hydrocarbons, polychlorinated biphenyls and legacy and current pesticides in indoor environment in Australia—occurrence, sources and exposure risks. Sci. Total Environ. 693, 133588 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Qiao, M., Qi, W., Liu, H. & Qu, J. Oxygenated polycyclic aromatic hydrocarbons in the surface water environment: Occurrence, ecotoxicity, and sources. Environ. Int. 163, 107232 (2022).Article 

    Google Scholar 
    Abbasnezhad, H., Foght, J. M. & Gray, M. R. Adhesion to the hydrocarbon phase increases phenanthrene degradation by Pseudomonas fluorescens LP6a. Biodegradation 22, 485–496 (2011).Article 
    CAS 

    Google Scholar 
    Abbasnezhad, H., Gray, M. & Foght, J. M. Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons. Appl. Microbiol. Biotechnol. 92, 653–675 (2011).Article 
    CAS 

    Google Scholar 
    Dewangan, N. K. & Conrad, J. C. Bacterial motility enhances adhesion to oil droplets. Soft Matter 16, 8237–8244 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodrigues, E. M., Cesar, D. E., Santos de Oliveira, R., de Paula Siqueira, T. & Tótola, M. R. Hydrocarbonoclastic bacterial species growing on hexadecane: Implications for bioaugmentation in marine ecosystems. Environ. Pollut. 267, (2020).Wang, J. D., Qu, C. T. & Song, S. F. Temperature-induced changes in the proteome of Pseudomonas aeruginosa during petroleum hydrocarbon degradation. Arch. Microbiol. 203, 2463–2473 (2021).Article 
    CAS 

    Google Scholar 
    Bastiaens, L. et al. Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers. Appl. Environ. Microbiol. 66, 1834–1843 (2000).Article 
    ADS 
    CAS 

    Google Scholar 
    Tao, K., Zhao, S., Gao, P., Wang, L. & Jia, H. Impacts of Pantoea agglomerans strain and cation-modified clay minerals on the adsorption and biodegradation of phenanthrene. Ecotoxicol. Environ. Saf. 161, 237–244 (2018).Article 
    CAS 

    Google Scholar 
    Xu, X. et al. Biodegradation potential of polycyclic aromatic hydrocarbons by immobilized Klebsiella sp. in soil washing effluent. Chemosphere 223, 140–147 (2019).Wang, H. et al. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins. Front. Environ. Sci. Eng. 14, 1–21 (2020).Article 

    Google Scholar 
    Tarasova, E. V., Grishko, V. V. & Ivshina, I. B. Cell adaptations of Rhodococcus rhodochrous IEGM 66 to betulin biotransformation. Process Biochem. 52, 1–9 (2017).Article 
    CAS 

    Google Scholar 
    Bohinc, K. et al. Available surface dictates microbial adhesion capacity. Int. J. Adhes. Adhes. 50, 265–272 (2014).Article 
    CAS 

    Google Scholar 
    Carniello, V., Peterson, B. W., van der Mei, H. C. & Busscher, H. J. Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. Adv. Colloid Interface Sci. 261, 1–14 (2018).Article 
    CAS 

    Google Scholar 
    Dorobantu, L. S., Bhattacharjee, S., Foght, J. M. & Gray, M. R. Analysis of force interactions between AFM tips and hydrophobic bacteria using DLVO theory. Langmuir 25, 6968–6976 (2009).Article 
    CAS 

    Google Scholar 
    Lehocký, M. et al. Adhesion of Rhodococcus sp. S3E2 and Rhodococcus sp. S3E3 to plasma prepared Teflon-like and organosilicon surfaces. J. Mater. Process. Technol. 209, 2871–2875 (2009).Hori, K. & Matsumoto, S. Bacterial adhesion: From mechanism to control. Biochem. Eng. J. 48, 424–434 (2010).Article 
    CAS 

    Google Scholar 
    Ivshina, I. B. et al. Biosurfactant-enhanced immobilization of hydrocarbon-oxidizing Rhodococcus ruber on sawdust. Appl. Microbiol. Biotechnol. 97, 5315–5327 (2013).Article 
    CAS 

    Google Scholar 
    Pen, Y. et al. Effect of extracellular polymeric substances on the mechanical properties of Rhodococcus. Biochim. Biophys. Acta – Biomembr. 1848, 518–526 (2015).Article 
    CAS 

    Google Scholar 
    De Cesare, F., Di Mattia, E., Zussman, E. & Macagnano, A. A study on the dependence of bacteria adhesion on the polymer nanofibre diameter. Environ. Sci. Nano 6, 778–797 (2019).Article 

    Google Scholar 
    Bergeau, D. et al. Unusual extracellular appendages deployed by the model strain Pseudomonas fluorescens C7R12. PLoS ONE 14, 1–20 (2019).Article 

    Google Scholar 
    Jin, X. & Marshall, J. S. Mechanics of biofilms formed of bacteria with fimbriae appendages. PLoS ONE 15, 1–22 (2020).Article 

    Google Scholar 
    Tarafdar, A., Sarkar, T. K., Chakraborty, S., Sinha, A. & Masto, R. E. Biofilm development of Bacillus thuringiensis on MWCNT buckypaper: Adsorption-synergic biodegradation of phenanthrene. Ecotoxicol. Environ. Saf. 157, 327–334 (2018).Article 
    CAS 

    Google Scholar 
    Rodrigues, A. C., Wuertz, S., Brito, A. G. & Melo, L. F. Fluorene and phenanthrene uptake by Pseudomonas putida ATCC 17514: Kinetics and physiological aspects. Biotechnol. Bioeng. 90, 281–289 (2005).Article 
    CAS 

    Google Scholar 
    Yang, H. Y., Jia, R. B., Chen, B. & Li, L. Degradation of recalcitrant aliphatic and aromatic hydrocarbons by a dioxin-degrader Rhodococcus sp. strain p52. Environ. Sci. Pollut. Res. 21, 11086–11093 (2014).Auffret, M. D., Yergeau, E., Labbé, D., Fayolle-Guichard, F. & Greer, C. W. Importance of Rhodococcus strains in a bacterial consortium degrading a mixture of hydrocarbons, gasoline, and diesel oil additives revealed by metatranscriptomic analysis. Appl. Microbiol. Biotechnol. 99, 2419–2430 (2015).Article 
    CAS 

    Google Scholar 
    Ahmed, R. Z. & Ahmed, N. Isolation of Rhodococcus sp. CMGCZ capable to degrade high concentration of fluoranthene. Water. Air. Soil Pollut. 227, 162 (2016).Ivshina, I. B., Kuyukina, M. S. & Krivoruchko, A. V. Hydrocarbon-oxidizing bacteria and their potential in eco-biotechnology and bioremediation. in Microbial Resources (ed. Kurtboke, I.) 121–148 (Elsevier Inc., 2017). https://doi.org/10.1016/B978-0-12-804765-1.00006-0.Pi, Y. et al. Microbial degradation of four crude oil by biosurfactant producing strain Rhodococcus sp. Bioresour. Technol. 232, 263–269 (2017).Article 
    CAS 

    Google Scholar 
    Cappelletti, M., Fedi, S. & Zannoni, D. Degradation of alkanes in Rhodococcus. in Biology of Rhodococcus, Microbiology Monographs 16 (ed. Alvarez, H. M.) 137–171 (Springer Nature Switzerland AG, 2019). https://doi.org/10.1007/978-3-030-11461-9_6.Kuyukina, M. S. & Ivshina, I. B. Application of Rhodococcus in bioremediation of contaminated environments. in Biology of Rhodococcus, Microbiology Monographs 16 (ed. Alvarez, H. M.) 231–262 (Springer Nature Switzerland, 2019). https://doi.org/10.1007/978-3-642-12937-7_9.Krivoruchko, A. V. et al. Adhesion of Rhodococcus ruber IEGM 342 to polystyrene studied using contact and non-contact temperature measurement techniques. Appl. Microbiol. Biotechnol. 102, 8525–8536 (2018).Article 
    CAS 

    Google Scholar 
    Rubtsova, E. V., Kuyukina, M. S. & Ivshina, I. B. Effect of cultivation conditions on the adhesive activity of Rhodococcus cells towards n-hexadecane. Appl. Biochem. Microbiol. 48, 452–459 (2012).Article 
    CAS 

    Google Scholar 
    Pearlman, R. S., Yalkowsky, S. H. & Banerjee, S. Water solubilities of polynuclear aromatic and heteroaromatic compounds. J. Phys. Chem. Ref. Data 13, 555–562 (1984).Article 
    ADS 
    CAS 

    Google Scholar 
    Wrenn, B. A. & Venosa, A. D. Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable-number procedure. Can. J. Microbiol. 42, 252–258 (1996).Article 
    CAS 

    Google Scholar 
    Christofi, N., Ivshina, I. B., Kuyukina, M. S. & Philp, J. C. Biological treatment of crude oil contaminated soil in Russia. Geol. Soc. Eng. Geol. Spec. Publ. 14, 45–51 (1998).
    Google Scholar 
    Sorongon, M. L., Bloodgood, R. A. & Burchard, R. P. Hydrophobicity, adhesion, and surface-exposed proteins of gliding bacteria. Appl. Environ. Microbiol. 57, 3193–3199 (1991).Article 
    ADS 
    CAS 

    Google Scholar 
    Bellon-Fontaine, M.-N., Rault, J. & van Ossb, C. J. Microbial adhesion to solvents : a novel method to determine the electron-donor/electron-acceptor or Lewis acid-base properties of microbial cells. Colloids Surf. B Biointerfaces 7, 47–53 (1996).Article 
    CAS 

    Google Scholar 
    Mattos-Guaraldi, A. L., Formiga, L. C. D. & Andrade, A. F. B. Cell surface hydrophobicity of sucrose fermenting and nonfermenting Corynebacterium diphtheriae strains evaluated by different methods. Curr. Microbiol. 38, 37–42 (1999).Article 
    CAS 

    Google Scholar 
    Nikiyan, H., Vasilchenko, A. & Deryabin, D. Humidity-dependent bacterial cells functional morphometry investigations using atomic forcemicroscope. Int. J. Microbiol. 2010, 704170 (2010).Article 

    Google Scholar 
    Xu, J. L. et al. Rhodococcus qingshengii sp. nov., a carbendazim-degrading bacterium. Int. J. Syst. Evol. Microbiol. 57, 2754–2757 (2007).Lee, S. D. & Kim, I. S. Rhodococcus spelaei sp. nov., isolated from a cave, and proposals that Rhodococcus biphenylivorans is a later synonym of Rhodococcus pyridinivorans, Rhodococcus qingshengii and Rhodococcus baikonurensis are later synonym. Int. J. Syst. Evol. Microbiol. 71, (2021).Korshunova, I. O., Pistsova, O. N., Kuyukina, M. S. & Ivshina, I. B. The effect of organic solvents on the viability and morphofunctional properties of Rhodococcus. Appl. Biochem. Microbiol. 52, 53–61 (2016).Article 

    Google Scholar 
    de Carvalho, C. C. C. R., Wick, L. Y. & Heipieper, H. J. Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. Appl. Microbiol. Biotechnol. 82, 311–320 (2009).Article 
    CAS 

    Google Scholar 
    Kuyukina, M. S. et al. Oilfield wastewater biotreatment in a fluidized-bed bioreactor using co-immobilized Rhodococcus cultures. J. Environ. Chem. Eng. 5, 1252–1260 (2017).Article 
    CAS 

    Google Scholar 
    Abdel-Shafy, H. I. & Mansour, M. S. M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 25, 107–123 (2016).Article 

    Google Scholar 
    He, J. et al. Subchronic exposure of benzo(a)pyrene interferes with the expression of Bcl-2, Ki-67, C-myc and p53, Bax, Caspase-3 in sub-regions of cerebral cortex and hippocampus. Exp. Toxicol. Pathol. 68, 149–156 (2016).Article 
    CAS 

    Google Scholar 
    Boente, C., Baragaño, D. & Gallego, J. R. Benzo[a]pyrene sourcing and abundance in a coal region in transition reveals historical pollution, rendering soil screening levels impractical. Environ. Pollut. 266, (2020).Cao, Y. et al. Interfacial interaction between benzo[a]pyrene and pulmonary surfactant: Adverse effects on lung health. Environ. Pollut. 287, 117669 (2021).Article 
    CAS 

    Google Scholar 
    Gallardo-Moreno, A. M. et al. Thermodynamic analysis of growth temperature dependence in the adhesion of Candida parapsilosis to polystyrene. Appl. Environ. Microbiol. 68, 2610–2613 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Kuyukina, M. S., Ivshina, I. B., Korshunova, I. O., Stukova, G. I. & Krivoruchko, A. V. Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene. AMB Express 6, 1–12 (2016).Article 
    CAS 

    Google Scholar 
    Letek, M. et al. The genome of a pathogenic Rhodococcus: Cooptive virulence underpinned by key gene acquisitions. PLoS Genet. 6, 1–17 (2010).Article 

    Google Scholar 
    Dayan, A. et al. The involvement of coordinative interactions in the binding of dihydrolipoamide dehydrogenase to titanium dioxide – Localization of a putative binding site. J. Mol. Recognit. 30, 1–11 (2017).Article 
    ADS 

    Google Scholar 
    Choi, E. J. & Dimitriadis, E. K. Cytochrome c adsorption to supported, anionic lipid bilayers studied via atomic force microscopy. Biophys. J. 87, 3234–3241 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Wright, C. J. & Armstrong, I. The application of atomic force microscopy force measurements to the characterisation of microbial surfaces. Surf. Interface Anal. 38, 1419–1428 (2006).Article 
    CAS 

    Google Scholar 
    Salerno, M., Dante, S., Patra, N. & Diaspro, A. AFM measurement of the stiffness of layers of agarose gel patterned with polylysine. Microsc. Res. Tech. 73, 982–990 (2010).CAS 

    Google Scholar 
    Campbell, J. E., Yang, J. & Day, G. M. Predicted energy-structure-function maps for the evaluation of small molecule organic semiconductors. J. Mater. Chem. C 5, 7574–7584 (2017).Article 
    CAS 

    Google Scholar 
    Wang, N. et al. Molecular elucidating of an unusual growth mechanism for polycyclic aromatic hydrocarbons in confined space. Nat. Commun. 11, 1079 (2020).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Quantitative environmental DNA metabarcoding shows high potential as a novel approach to quantitatively assess fish community

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Magurran, A. E. et al. Divergent biodiversity change within ecosystems. Proc. Natl. Acad. Sci. 115, 1843–1847 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Blowes, S. A. et al. Local biodiversity change reflects interactions among changing abundance, evenness, and richness. Ecology online, e3820 (2022).Crowder, D. W., Northfield, T. D., Gomulkiewicz, R. & Snyder, W. E. Conserving and promoting evenness: Organic farming and fire-based wildland management as case studies. Ecology 93, 2001–2007 (2012).Article 

    Google Scholar 
    Hillebrand, H., Bennett, D. M. & Cadotte, M. W. Consequences of dominance: A review of evenness effects on local and regional ecosystem processes. Ecology 89, 1510–1520 (2008).Article 

    Google Scholar 
    Masuda, R. et al. Fish assemblages associated with three types of artificial reefs: density of assemblages and possible impacts on adjacent fish abundance. Fishery Bulletin, National Oceanic and Atmospheric Administration. 108, 162–173 (2010).
    Google Scholar 
    Miyazono, S., Patiño, R. & Taylor, C. M. Desertification, salinization, and biotic homogenization in a dryland river ecosystem. Sci. Total Environ. 511, 444–453 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Yonekura, R., Kita, M. & Yuma, M. Species diversity in native fish community in Japan: Comparison between non-invaded and invaded ponds by exotic fish. Ichthyol. Res. 51, 176–179 (2004).Article 

    Google Scholar 
    Evans, N. T., Shirey, P. D., Wieringa, J. G., Mahon, A. R. & Lamberti, G. A. Comparative cost and effort of fish distribution detection via environmental DNA analysis and electrofishing. Fisheries 42, 90–99 (2017).Article 

    Google Scholar 
    Miya, M., Gotoh, R. O. & Sado, T. MiFish metabarcoding: A high-throughput approach for simultaneous detection of multiple fish species from environmental DNA and other samples. Fish. Sci. 86, 939–970 (2020).Article 
    CAS 

    Google Scholar 
    Oka, S. et al. Environmental DNA metabarcoding for biodiversity monitoring of a highly diverse tropical fish community in a coral reef lagoon: Estimation of species richness and detection of habitat segregation. Environ. DNA 3, 55–69 (2021).Article 
    CAS 

    Google Scholar 
    Thomsen, P. F. et al. Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol. 21, 2565–2573 (2012).Article 
    CAS 

    Google Scholar 
    Pimm, S. L. et al. Emerging technologies to conserve biodiversity. Trends Ecol. Evol. 30, 685–696 (2015).Article 

    Google Scholar 
    Rourke, M. L. et al. Environmental DNA (eDNA) as a tool for assessing fish biomass: A review of approaches and future considerations for resource surveys. Environ. DNA 4, 9–33 (2022).Article 
    CAS 

    Google Scholar 
    Tsuji, S. et al. Real-time multiplex PCR for simultaneous detection of multiple species from environmental DNA: An application on two Japanese medaka species. Sci. Rep. 8, 1–8 (2018).Article 
    CAS 

    Google Scholar 
    Kissling, W. D. et al. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol. Rev. 93, 600–625 (2018).Article 

    Google Scholar 
    Rodríguez-Ezpeleta, N. et al. Biodiversity monitoring using environmental DNA. Mol. Ecol. Resour. 21, 1405–1409 (2021).Article 

    Google Scholar 
    Boivin-Delisle, D. et al. Using environmental DNA for biomonitoring of freshwater fish communities: Comparison with established gillnet surveys in a boreal hydroelectric impoundment. Environ. DNA 3, 105–120 (2021).Article 
    CAS 

    Google Scholar 
    Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).Article 

    Google Scholar 
    Doi, H. et al. Compilation of real-time PCR conditions toward the standardization of environmental DNA methods. Ecol. Res. 36, 379–388 (2021).Article 
    CAS 

    Google Scholar 
    Kelly, R. P. Making environmental DNA count. Mol. Ecol. Resour. 16, 10–12 (2016).Article 
    CAS 

    Google Scholar 
    Kumar, G., Eble, J. E. & Gaither, M. R. A practical guide to sample preservation and pre-PCR processing of aquatic environmental DNA. Mol. Ecol. Resour. 20, 29–39 (2020).Article 

    Google Scholar 
    Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Let. 4, 423–425 (2008).Article 

    Google Scholar 
    Kuwae, M. et al. Sedimentary DNA tracks decadal-centennial changes in fish abundance. Commun. Biol. 3, 1–12 (2020).Article 

    Google Scholar 
    Lynggaard, C. et al. Airborne environmental DNA for terrestrial vertebrate community monitoring. Curr. Biol. 32, 701–707.e5 (2022).Article 
    CAS 

    Google Scholar 
    Tsuji, S., Takahara, T., Doi, H., Shibata, N. & Yamanaka, H. The detection of aquatic macroorganisms using environmental DNA analysis—A review of methods for collection, extraction, and detection. Environ. DNA 1, 99–108 (2019).Article 

    Google Scholar 
    Bylemans, J., Gleeson, D. M., Duncan, R. P., Hardy, C. M. & Furlan, E. M. A performance evaluation of targeted eDNA and eDNA metabarcoding analyses for freshwater fishes. Environ. DNA 1, 402–414 (2019).Article 

    Google Scholar 
    Wozney, K. M. & Wilson, C. C. Quantitative PCR multiplexes for simultaneous multispecies detection of Asian carp eDNA. J. Great Lakes Res. 43, 771–776 (2017).Article 
    CAS 

    Google Scholar 
    Evans, N. T. et al. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Mol. Ecol. Resour. 16, 29–41 (2016).Article 
    CAS 

    Google Scholar 
    Fraija-Fernández, N. et al. Marine water environmental DNA metabarcoding provides a comprehensive fish diversity assessment and reveals spatial patterns in a large oceanic area. Ecol. Evol. 10, 7560–7584 (2020).Article 

    Google Scholar 
    Kelly, R. P., Port, J. A., Yamahara, K. M. & Crowder, L. B. Using environmental DNA to census marine fishes in a large mesocosm. PLoS ONE 9, e86175 (2014).Article 
    ADS 

    Google Scholar 
    Thomsen, P. F. et al. Environmental DNA from seawater samples correlate with trawl catches of subarctic, deepwater fishes. PLoS ONE 11, e0165252 (2016).Article 

    Google Scholar 
    Lamb, P. D. et al. How quantitative is metabarcoding: A meta-analytical approach. Mol. Ecol. 28, 420–430 (2019).Article 

    Google Scholar 
    Lim, N. K. M. et al. Next-generation freshwater bioassessment: eDNA metabarcoding with a conserved metazoan primer reveals species-rich and reservoir-specific communities. R. Soc. Open Sci. 3, 160635 (2016).Article 
    ADS 

    Google Scholar 
    Hoshino, T., Nakao, R., Doi, H. & Minamoto, T. Simultaneous absolute quantification and sequencing of fish environmental DNA in a mesocosm by quantitative sequencing technique. Sci. Rep. 11, 4372 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Smets, W. et al. A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing. Soil Biol. Biochem. 96, 145–151 (2016).Article 
    CAS 

    Google Scholar 
    Ushio, M. et al. Quantitative monitoring of multispecies fish environmental DNA using high-throughput sequencing. Metabarcod. Metagenom. 2, e23297 (2018).
    Google Scholar 
    Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Sato, M. et al. Quantitative assessment of multiple fish species around artificial reefs combining environmental DNA metabarcoding and acoustic survey. Sci. Rep. 11, 1–14 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Ushio, M. Interaction capacity as a potential driver of community diversity. Proc. R. Soc. B Biol. Sci. 289, 20212690 (2022).Article 

    Google Scholar 
    Andruszkiewicz, E. A., Sassoubre, L. M. & Boehm, A. B. Persistence of marine fish environmental DNA and the influence of sunlight. PLoS ONE 12, e0185043 (2017).Article 

    Google Scholar 
    Bylemans, J., Gleeson, D. M., Hardy, C. M. & Furlan, E. Toward an ecoregion scale evaluation of eDNA metabarcoding primers: A case study for the freshwater fish biodiversity of the Murray-Darling Basin (Australia). Ecol. Evol. 8, 8697–8712 (2018).Article 

    Google Scholar 
    Civade, R. et al. Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system. PLoS ONE 11, e0157366 (2016).Article 

    Google Scholar 
    Deiner, K., Fronhofer, E. A., Mächler, E., Walser, J.-C. & Altermatt, F. Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nat. Commun. 7, 12544 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Hänfling, B. et al. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Mol. Ecol. 25, 3101–3119 (2016).Article 

    Google Scholar 
    Nakagawa, H. et al. Comparing local-and regional-scale estimations of the diversity of stream fish using eDNA metabarcoding and conventional observation methods. Freshw. Biol. 63, 569–580 (2018).Article 
    CAS 

    Google Scholar 
    Sato, H., Sogo, Y., Doi, H. & Yamanaka, H. Usefulness and limitations of sample pooling for environmental DNA metabarcoding of freshwater fish communities. Sci. Rep. 7, 14860 (2017).Article 
    ADS 

    Google Scholar 
    Shaw, J. L. A. et al. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biol. Cons. 197, 131–138 (2016).Article 

    Google Scholar 
    Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929–942 (2016).Article 
    CAS 

    Google Scholar 
    Yamamoto, S. et al. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Sci. Rep. 7, 40368 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Jane, S. F. et al. Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams. Mol. Ecol. Resour. 15, 216–227 (2015).Article 
    CAS 

    Google Scholar 
    Harper, L. R. et al. Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of the great crested newt (Triturus cristatus). Ecol. Evol. 8, 6330–6341 (2018).Article 

    Google Scholar 
    Nichols, R. V. et al. Minimizing polymerase biases in metabarcoding. Mol. Ecol. Resour. 18, 927–939 (2018).Article 
    CAS 

    Google Scholar 
    Hosoya, K. Yamakei Handy Illustrated Book 15: Freshwater fishes of Japan (Yama-Kei Publishers, 2019).
    Google Scholar 
    Nakabo, T. Fishes of Japan with Pictorial Keys to the Species (3-Volume Set). (Tokai University Press, 2013).Goutte, A., Molbert, N., Guérin, S., Richoux, R. & Rocher, V. Monitoring freshwater fish communities in large rivers using environmental DNA metabarcoding and a long-term electrofishing survey. J. Fish Biol. 97, 444–452 (2020).Article 
    CAS 

    Google Scholar 
    Barnes, M. A. & Turner, C. R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17, 1–17 (2016).Article 
    CAS 

    Google Scholar 
    Collins, R. A. et al. Non-specific amplification compromises environmental DNA metabarcoding with COI. Methods Ecol. Evol. 10, 1985–2001 (2019).Article 

    Google Scholar 
    Tsuji, S., Ushio, M., Sakurai, S., Minamoto, T. & Yamanaka, H. Water temperature-dependent degradation of environmental DNA and its relation to bacterial abundance. PLoS ONE 12, e0176608 (2017).Article 

    Google Scholar 
    Elbrecht, V. & Leese, F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass—sequence relationships with an innovative metabarcoding protocol. PLoS ONE 10, e0130324 (2015).Article 

    Google Scholar 
    Nester, G. M. et al. Development and evaluation of fish eDNA metabarcoding assays facilitate the detection of cryptic seahorse taxa (family: Syngnathidae). Environ. DNA 2, 614–626 (2020).Article 

    Google Scholar 
    Piñol, J., Mir, G., Gomez-Polo, P. & Agustí, N. Universal and blocking primer mismatches limit the use of high-throughput DNA sequencing for the quantitative metabarcoding of arthropods. Mol. Ecol. Resour. 15, 819–830 (2015).Article 

    Google Scholar 
    Zhang, S., Zhao, J. & Yao, M. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish. Methods Ecol. Evol. 11, 1609–1625 (2020).Article 
    ADS 

    Google Scholar 
    Yamanaka, H. et al. A simple method for preserving environmental DNA in water samples at ambient temperature by addition of cationic surfactant. Limnology 18, 233–241 (2017).Article 
    CAS 

    Google Scholar 
    Minamoto, T. et al. An illustrated manual for environmental DNA research: Water sampling guidelines and experimental protocols. Environ. DNA 3, 8–13 (2021).Article 
    CAS 

    Google Scholar 
    Tsuji, S., Nakao, R., Saito, M., Minamoto, T. & Akamatsu, Y. Pre-centrifugation before DNA extraction mitigates extraction efficiency reduction of environmental DNA caused by the preservative solution (benzalkonium chloride) remaining in the filters. Limnology 23, 9–16 (2022).Article 
    CAS 

    Google Scholar 
    R Core Team. R. A Language and Environment for Statistical Computing. (2021).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002).Coulter, D. P. et al. Nonlinear relationship between Silver Carp density and their eDNA concentration in a large river. PLoS ONE 14, e0218823 (2019).Article 
    CAS 

    Google Scholar 
    Doi, H. et al. Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshw. Biol. 62, 30–39 (2017).Article 
    CAS 

    Google Scholar 
    Kanno, K., Onikura, N., Kurita, Y., Koyama, A. & Nakajima, J. Morphological, distributional, and genetic characteristics of Cottus pollux in the Kyushu Island, Japan: indication of fluvial and amphidromous life histories within a single lineage. Ichthyol. Res. 65, 462–470 (2018).Article 

    Google Scholar  More

  • in

    Gapless genome assembly of East Asian finless porpoise

    Gao, A. L. & Zhou, K. Y. Growth and reproduction of three populations of finless porpoise, Neophocaena phocaenoides, in Chinese waters. Aquat Mamm 19, 3–12 (1993).
    Google Scholar 
    Jefferson, T. A. Preliminary analysis of geographic variation in cranial morphometrics of the finless porpoise (Neophocaena phocaenoides). Raffles Bull Zool 10, 3–14 (2002).
    Google Scholar 
    Pilleri, G. & Gihr, M. Contribution to the knowledge of the cetaceans of Pakistan with particular reference to the genera Neomeris, Sousa, Delphinus and Tursiops and description of a new Chinese porpoise (Neomeris asiaeorientalis). Investig Cetacea 4, 107–162 (1972).
    Google Scholar 
    Pilleri, G. & Gihr, M. On the taxonomy and ecology of the finless black porpoise, Neophocaena (Cetacea, Delphinidae). Mammalia 39, 657–673 (1975).Article 

    Google Scholar 
    Wang, P. L. The morphological characters and the problem of subspecies identifications of the finless porpoise. Fish Sci 11, 4–8 (1992).
    Google Scholar 
    Wang, P. L. On the taxonomy of the finless porpoise in China. Fish Sci 6, 10–14 (1992).
    Google Scholar 
    Gao, A. L. & Zhou, K. Y. Geographical variation of external measurements and three subspecies of Neophocaena phocaenoides in Chinese waters. Acta Theriol Sin 15, 81–92 (1995).
    Google Scholar 
    Wang, J. Y., Frasier, T. R., Yang, S. C. & White, B. N. Detecting recent speciation events: the case of the finless porpoise (genus Neophocaena). Heredity 101, 145–155 (2008).Article 

    Google Scholar 
    Jefferson, T. A. & Wang, J. Y. Revision of the taxonomy of finless porpoises (genus Neophocaena): the existence of two species. J Mar Anim Ecol 4, 3–16 (2011).
    Google Scholar 
    Zhou, X. M. et al. Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater. Nat Commun 9, 1276 (2018).Article 
    ADS 

    Google Scholar 
    Wang, D., Turvey, S.T., Zhao, X. & Mei, Z. Neophocaena asiaeorientalis ssp. asiaeorientalis. The IUCN Red List of Threatened Species https://www.iucnredlist.org/species/43205774/45893487 (2013).Wang, J. Y. & Reeves, R. Neophocaena Asiaeorientalis. The IUCN Red List of Threatened Species https://www.iucnredlist.org/species/41754/50381766 (2017).Kasuya, T. Japanese whaling and other cetacean fisheries. Environ Sci Pollut Res Int 14, 39–48 (2007).Article 

    Google Scholar 
    Yoshida, H., Shirakihara, K., Kishino, H. & Shirakihara, M. A population size estimate of the finless porpoise, Neophocaena phocaenoides, from aerial sighting surveys in Ariake Sound and Tachibana Bay, Japan. Popul Ecol 39, 239–247 (1997).Article 

    Google Scholar 
    Amano, M., Nakahara, F., Hayano, A. & Shirakihara, K. Abundance estimate of finless porpoises off the Pacific coast of eastern Japan based on aerial surveys. Mamm Study 28, 103–110 (2003).Article 

    Google Scholar 
    Shirakihara, K., Shirakihara, M. & Yamamoto, Y. Distribution and abundance of finless porpoise in the Inland Sea of Japan. Mar Biol 150, 1025–1032 (2007).Article 

    Google Scholar 
    Zuo, T., Sun, J. Q., Shi, Y. Q. & Wang, J. Primary survey of finless porpoise population in the Bohai Sea. Acta Theriol Sin 38, 551–561 (2018).
    Google Scholar 
    Ruan, R., Guo, A. H., Hao, Y. J., Zheng, J. S. & Wang, D. De novo assembly and characterization of narrow-ridged finless porpoise renal transcriptome and identification of candidate genes involved in osmoregulation. Int J Mol Sci 16, 2220–2238 (2015).Article 

    Google Scholar 
    Li, S. H. et al. Echolocation click sounds from wild inshore finless porpoise (Neophocaena phocaenoides sunameri) with comparisons to the sonar of riverine N. p. asiaeorientalis. J Acoust Soc Am 121, 3938–3946 (2007).Article 
    ADS 

    Google Scholar 
    Dong, J. H., Wang, G. J. & Xiao, Z. Z. Migration and population difference of the finless porpoise in China. Mar Sci 5, 42–45 (1993).
    Google Scholar 
    Lu, Z. C. et al. Analysis of the diet of finless porpoise (Neophocaena asiaeorientalis sunameri) based on prey morphological characters and DNA barcoding. Conserv Genet Resour 8, 523–531 (2016).Article 

    Google Scholar 
    Chen, B. et al. Finless porpoises (Neophocaena asiaeorientalis) in the East China Sea: insights into feeding habits using morphological, molecular, and stable isotopic techniques. Can J Fish Aquat Sci 74, 1628–1645 (2017).Article 

    Google Scholar 
    Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).Article 
    ADS 

    Google Scholar 
    Chen, Y. X. et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 7, 1–6 (2018).Article 
    ADS 

    Google Scholar 
    Chikhi, R. & Medvedev, P. Informed and automated k-mer size selection for genome assembly. Bioinformatics 30, 31–37 (2014).Article 

    Google Scholar 
    Chin, C. S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10, 563–569 (2013).Article 

    Google Scholar 
    Cheng, H. Y., Concepcion, G. T., Feng, X. W., Zhang, H. W. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods 18, 170–175 (2021).Article 

    Google Scholar 
    Roach, M. J., Schmidt, S. A. & Borneman, A. R. Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinformatics 19, 1–10 (2018).Article 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).Article 

    Google Scholar 
    Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst 3, 95–98 (2016).Article 

    Google Scholar 
    Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).Article 
    ADS 

    Google Scholar 
    Xiong, Y., Brandley, M. C., Xu, S. X., Zhou, K. Y. & Yang, G. Seven new dolphin mitochondrial genomes and a time-calibrated phylogeny of whales. BMC Evol Biol 9, 1–13 (2009).Article 

    Google Scholar 
    Alonge, M. et al. RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biol 20, 1–17 (2019).Article 

    Google Scholar 
    Mayer, A., Lahr, G., Swaab, D. F., Pilgrim, C. & Reisert, I. The Y-chromosomal genes SRY and ZFY are transcribed in adult human brain. Neurogenetics 1, 281–288 (1998).Article 

    Google Scholar 
    Sinclair, A. H. et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240–244 (1990).Article 
    ADS 

    Google Scholar 
    Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P. & Lovell-Badge, R. Male development of chromosomally female mice transgenic for Sry. Nature 351, 117–121 (1991).Article 
    ADS 

    Google Scholar 
    Salo, P. et al. Molecular mapping of the putative gonadoblastoma locus on the Y chromosome. Genes Chromosomes Cancer 14, 210–214 (1995).Article 

    Google Scholar 
    Tsuchiya, K., Reijo, R., Page, D. C. & Disteche, C. M. Gonadoblastoma: molecular definition of the susceptibility region on the Y chromosome. Am J Hum Genet 57, 1400–1407 (1995).
    Google Scholar 
    Gegenschatz-Schmid, K., Verkauskas, G., Stadler, M. B. & Hadziselimovic, F. Genes located in Y-chromosomal regions important for male fertility show altered transcript levels in cryptorchidism and respond to curative hormone treatment. Basic Clin Androl 29, 1–8 (2019).Article 

    Google Scholar 
    Chen, N. Using Repeat Masker to identify repetitive elements in genomic sequences. Curr protoc Bioinf 5, 4–10 (2004).Article 

    Google Scholar 
    Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35, W265–W268 (2007).Article 

    Google Scholar 
    Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).Article 

    Google Scholar 
    Bao, W. D., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6, 1–6 (2015).Article 

    Google Scholar 
    Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27, 573–580 (1999).Article 

    Google Scholar 
    Liu, W. et al. Blood Transcriptome Analysis Reveals Gene Expression Differences between Yangtze Finless Porpoises from Two Habitats: Natural and Ex Situ Protected Waters. Fishes 7, 96 (2022).Article 

    Google Scholar 
    Yin, D. H. et al. Integrated analysis of blood mRNAs and microRNAs reveals immune changes with age in the Yangtze finless porpoise (Neophocaena asiaeorientalis). Comp Biochem Physiol B Biochem Mol Biol 256, 110635 (2021).Article 

    Google Scholar 
    Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37, 907–915 (2019).Article 

    Google Scholar 
    Kovaka, S. et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol 20, 1–13 (2019).Article 

    Google Scholar 
    Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637–644 (2008).Article 

    Google Scholar 
    Keane, M. et al. Insights into the evolution of longevity from the bowhead whale genome. Cell Rep 10, 112–122 (2015).Article 

    Google Scholar 
    Yim, H. S. et al. Minke whale genome and aquatic adaptation in cetaceans. Nat Genet 46, 88–92 (2014).Article 

    Google Scholar 
    Jones, S. J. et al. The genome of the beluga whale (Delphinapterus leucas). Genes 8, 378 (2017).Article 
    ADS 

    Google Scholar 
    Zhou, X. M. et al. Baiji genomes reveal low genetic variability and new insights into secondary aquatic adaptations. Nat Commun 4, 1–6 (2013).Article 
    ADS 

    Google Scholar 
    Foote, A. D. et al. Convergent evolution of the genomes of marine mammals. Nat Genet 47, 272–275 (2015).Article 

    Google Scholar 
    Keilwagen, J., Hartung, F. & Grau, J. GeMoMa: homology-based gene prediction utilizing intron position conservation and RNA-seq data. Methods Mol Biol 1962, 161–177 (2019).Article 

    Google Scholar 
    Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44, D457–D462 (2016).Article 

    Google Scholar 
    Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 28, 45–48 (2000).Article 

    Google Scholar 
    Korf, I. Gene finding in novel genomes. BMC bioinformatics 5, 1–9 (2004).Article 

    Google Scholar 
    Finn, R. D. et al. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res 45, D190–D199 (2017).Article 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J Mol Biol 215, 403–410 (1990).Article 

    Google Scholar 
    Mulder, N. J. & Apweiler, R. InterPro and InterProScan: tools for protein sequence classification and comparison. Methods Mol Biol 396, 59–70 (2007).Article 

    Google Scholar 
    Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat Genet 25, 25–29 (2000).Article 

    Google Scholar 
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR21047154 (2022).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR20760935 (2022).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR20760936 (2022).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR20997931 (2022).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR20997932 (2022).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR20997933 (2022).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR20997934 (2022).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR20997935 (2022).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP389529 (2022).Yin, D. H. et al. Neophocaena asiaeorientalis sunameri isolate NAS202207, whole genome shotgun sequencing project. GenBank https://identifiers.org/insdc.gca:GCA_026225855.1 (2022).Yin, D. H. et al. Gapless genome assembly of East Asian finless porpoise, Neophocaena asiaeorientalis sunameri. figshare https://doi.org/10.6084/m9.figshare.20381274.v2 (2022).Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).Article 

    Google Scholar 
    Marçais, G. et al. MUMmer4: A fast and versatile genome alignment system. PLoS Comput Biol 14, e1005944 (2018).Article 

    Google Scholar  More

  • in

    Different roles of concurring climate and regional land-use changes in past 40 years’ insect trends

    All statistical analyses were performed through R version 4.1.050. Besides the explicitly mentioned packages, the R packages cowplot51, data.table52, dplyr53, ggplot254, itsadug55, purrr56, raster57, sf58, sfheaders59, tibble60 and tidyr61 were key for data handling, data analysis, and plotting. Posterior distributions were summarised through means and credible intervals (CIs). CIs are the highest density intervals, calculated through the package bayestestR62. To summarise multiple posterior distributions, 5000 Monte Carlo simulations were used.Study regionThe study included data from the whole of Switzerland. As an observation unit for records, we chose 1 × 1 km squares (henceforth squares). Switzerland covers 41,285 km2, spanning a large gradient in elevation, climate and land use. It can be divided into five coarse biogeographic regions based on floristic and faunistic distributions and on institutional borders of municipalities63 (Fig. 1b). The Jura is a mountainous but agricultural landscape in the northwest (~4200 km2, 300–1600 m asl; annual mean temperature: ~9.4 °C, annual precipitation: ~1100 mm (gridded climate data here and in the following from MeteoSwiss (https://www.meteoswiss.admin.ch), average 1980–2020, at sites ~500 m asl.)). The Jura is separated from the Alps by the Plateau, which is the lowland region spanning from the southwest to the northeast (~11,300 km2, 250–1400 m asl, mostly below 1000 m asl; ~9.5 °C, ~1100 mm). It is the most densely populated region with most intensive agricultural use. For the Alps, three regions can be distinguished. The Northern Alps (~10,700 km2, 350–4000 m asl; ~9.2 °C, ~1400 mm), which entail the area from the lower Prealps, which are rather densely populated and largely used agriculturally, up to the northern alpine mountain range. The Central Alps (~11,300 km2, 450–4600 m asl; ~9.5 °C, ~800 mm) comprise of the highest mountain ranges in Switzerland and the inner alpine valleys characterised by more continental climate (i.e., lower precipitation). Intensive agricultural land use is concentrated in the lower elevations and agriculture in higher elevations is mostly restricted to grassland areas used for summer grazing. The Southern Alps (~3800 km2, 200–3800 m asl; ~10.4 °C, 1700 mm) range from the southern alpine mountain range down to the lowest elevations of Switzerland and are clearly distinguished from the other regions climatically, as they are influenced by Mediterranean climate, resulting in, e.g., milder winters. Besides differences between biogeographic regions, climate, land use and changes therein vary greatly between different elevations (Supplementary Fig. S9). To account for these differences, we split the regions in two elevation classes at the level of squares. All squares with a mean elevation of less than 1000 m asl were assigned to the low elevation, whereas squares above 1000 m asl were assigned to the high elevation (no squares in the Plateau fell in the high elevation). This resulted in nine bioclimatic zones (Fig. 1b), for which separate species trends were estimated in the subsequent analyses. The threshold of 1000 m asl enabled a meaningful distinction based on the studied drivers (climate and land-use change) and was also determined by the availability of records data (high coverage in all nine bioclimatic zones).Species detection dataWe extracted records of butterflies (refers here to Papilionoidea as well as Zygaenidae moths), grasshoppers (refers here to all Orthoptera) and dragonflies (refers here to all Odonata) from the database curated by info fauna (The Swiss Faunistic Records Centre; metadata available from the GBIF database at https://doi.org/10.15468/atyl1j, https://doi.org/10.15468/bcthst, https://doi.org/10.15468/fcxtjg). This database unites faunistic records made in Switzerland from various sources including both records by private persons and from projects such as research projects, Red-List inventories or checks of revitalisation measures. Only records with a sufficient precision, both temporally (day of recording) and spatially (place of recording known to the precision of 1 km2 or less), were used for analyses. Besides temporal and spatial information, information on the observer and the project (if any) was obtained for each record. All records made by a person/project on a day in a square were attributed to one visit, which was later used as replication unit to model the observation process (see below).We included records from the focal time range 1980–2020. Additionally, we included records from 1970–1979 for butterflies in occupancy-detection models to increase the robustness of mean occupancy estimates. We excluded the mean occupancy estimates for these additional years from further analyses to cover the same period for all groups. Prior to analyses, following the approach in ref. 26, we excluded observations of non-adult stages and observations from squares that only were visited in 1 year of the studied period, because these would not contain any information on change between years64. This resulted in 18,018 squares (15,248 for butterflies, 9870 for grasshoppers, 5188 for dragonflies) and 1,448,134 records (879,207 butterflies, 272,863 grasshoppers, 296,064 dragonflies) that we included in the analyses (Supplementary Fig. S2). The three datasets for the different groups were treated separately for occupancy-detection modelling, following the same procedures for all three groups. To determine detections and non-detections for each species and visit, which could then be used for occupancy-detection modelling, we only included visits that (a) did not originate from a project, which had a restricted taxonomic focus not including the focal species, (b) were not below the 5% quantile or above the 95% quantile of the day of the year at which the focal species has been recorded26 and (c) were from a bioclimatic zone, from which the focal species was recorded at least once.Occupancy-detection modelsWe used occupancy-detection models65,66 to estimate annual mean occupancy of squares for the whole of Switzerland and for the nine bioclimatic zones for each species (i.e., mean number of squares occupied by a species), mostly following the approach in ref. 26. We fitted a separate model for each species, based on different datasets for the three groups. We included only species that were recorded in any square in at least 25% of all analysed years. Occupancy-detection models are hierarchical models in which two interconnected processes are modelled jointly, one of which describes occurrence probability (ecological process; used to infer mean occupancy), whereas the other describes detection probability (observation process)65. The two processes are modelled through logistic regression models. The occupancy model estimates occurrence probability for all square and year combinations, whereas the observation model estimates the probability that a species has been detected by an observer during a visit. More formally, each square i in the year t has the latent occupancy status zi,t, which may be either 1 (present) or 0 (absent). zi,t depends on the occurrence probability ψi,t as follows$${z}_{i,t}sim {{{mbox{Bern}}}}left({psi }_{i,t}right)$$
    (1)
    The occupancy status is linked to the detection/non-detection data yi,t,j at square i in year t at visit j as$${y}_{i,t,, j}{{|}}{z}_{i,t}sim {mathrm {Bern}}({z}_{i,t}{p}_{i,t,j})$$
    (2)
    where pi,t,j is the detection probability.The regression model for occurrence probability (occupancy model) looked as follows$${{mbox{logit}}}({psi }_{i,t})={mu }_{o}+{beta }_{o1}{{{{{rm{elevatio}}}}}}{{{{{{rm{n}}}}}}}_{i}+{beta }_{o2}{{{{{rm{elevatio}}}}}}{{{{{{rm{n}}}}}}}_{i}^{2}+{alpha }_{o1,i}+{alpha }_{o2,i}+{gamma }_{r(i),t}$$
    (3)
    with μo being the global intercept, elevationi being the scaled elevation above sea level and αo1,i, αo2,i and γr(i),t being the random effects for fine biogeographic region (12 levels, Supplementary Fig. S10; these were again defined based on floristic and faunistic distributions and followed institutional borders63), square and year. The random effects for fine biogeographic region and square were modelled as follows:$${alpha }_{o1}sim {{{{{rm{Normal}}}}}}left(0,{sigma }_{o1}right)$$
    (4)
    and$${alpha }_{o2}sim {{{{{rm{Normal}}}}}}left(0,{sigma }_{o2}right)$$
    (5)
    The random effect of the year was implemented with separate random walks per zone following ref. 67, which allowed the effect to vary between the nine bioclimatic zones, while accounting for dependencies among consecutive years. Conceptually, in random walks, the effect of 1 year is dependent on the previous year’s effect, resulting in trajectories with less sudden changes between consecutive years. This was implemented as follows:$${gamma }_{r,t}sim left{begin{array}{c}{{{{{rm{Normal}}}}}}left(0,{1.5}^{2}right){{{{rm{for}}}}},t=1\ {{{{{rm{Normal}}}}}}left({gamma }_{r,t-1},{sigma }_{gamma r}^{2}right){{{{rm{for}}}}},t , > ,1end{array}right.$$
    (6)
    with$${sigma }_{gamma r}sim {{mbox{Cauchy}}}left(0,1right)$$
    (7)
    The regression model for detection probability (observation model) looked as follows$${{{{rm{logit}}}}}({p}_{i,t,j}) =, {mu }_{d}+{beta }_{d1}{{{{{rm{yda}}}}}}{{{{{{rm{y}}}}}}}_{j}+{beta }_{d2}{{{{{rm{yda}}}}}}{{{{{{rm{y}}}}}}}_{j}^{2}+{beta }_{d3}{{{{{rm{shortlis}}}}}}{{{{{{rm{t}}}}}}}_{j}+{beta }_{d4}{{{{{rm{longlis}}}}}}{{{{{{rm{t}}}}}}}_{j} \ quad+ {beta }_{d5}{{{{{rm{exper}}}}}}{{{{{{rm{t}}}}}}}_{j}+{beta }_{d6}{{{{{rm{projec}}}}}}{{{{{{rm{t}}}}}}}_{j}+{beta }_{d7}{{{{{rm{targeted}}}}}}_{{{{{rm{projec}}}}}}{{{{{{rm{t}}}}}}}_{j} \ quad+ {beta }_{d8}{{{{{rm{redlis}}}}}}{{{{{{rm{t}}}}}}}_{j}+{alpha }_{d1,t}$$
    (8)
    where μd is the global intercept, ydayj is the scaled day of the year of visit j, shortlistj and longlistj are dummies of a three-level factor denoting the number of species recorded during the visit (1; 2–3; >3), and expertj, projectj, targeted_projectj and redlistj are dummies of a five-level factor denoting the source of the data. The source might either be a common naturalist observation (reference level), an observation by an expert naturalist, an observation made during a not further specified project, an observation made in a project targeted at the focal species or an observation made during a Red-List inventory. An expert naturalist was defined as an observer that contributed a significant number of records, which was defined as the upper 2.5% quantile of all observers arranged by their total number of records, and that made at least one visit with an exceptionally long species list, which was defined as a visit in the upper 2.5% quantile of all visits arranged by the number of records. The proportions of records originating from these different sources changed across years, but change was not unidirectional and differed among the investigated groups (Supplementary Fig. S11), such that accounting for data source in the model should suffice to yield reliable estimates of occupancy trends. αd1,t is a random effect for year, which was modelled as$${alpha }_{d1}sim {{{{{rm{Normal}}}}}}left(0,{sigma }_{d1}right)$$
    (9)
    The occupancy and observation models were fitted jointly in Stan through the interface CmdStanR68. Four Markov chain Monte Carlo chains with 2000 iterations each, including 1000 warm-up iterations, were used. Priors of the model parameters are specified in Supplementary Table S5. For the prior distribution of global intercepts, a standard deviation of 1.5 was chosen to not overweight the extreme values on the probability scale. To ensure that chains mixed well, Rhat statistics for annual mean occupancy estimates were calculated through the package rstan69. For Switzerland-wide annual estimates (n = 18,140), 98.0% of values met the standard threshold of 1.1 (99.9% of values More

  • in

    Francisella tularensis PCR detection in Cape hares (Lepus capensis) and wild rabbits (Oryctolagus cuniculus) in Algeria

    Tularemia affects animal welfare, human health, and the environment and is thus better approached from a one-health perspective27. Several studies in the Northern hemisphere28, and more recently in Australia15,16, have provided a vital research track in the epidemiology of this disease. In contrast, studies in Africa are too limited and scarce. The aim of this study was to investigate the presence of tularemia in wild leporids collected in Northern Algeria. These animals are highly susceptible to F. tularensis infection and considered sentinel hosts for surveillance of tularemia. The strategy we used to detect F. tularensis in leporids mainly used molecular, histological and immunohistochemical analyzes of tissues taken from animals found dead or hunted. To the best of our knowledge, detection of F. tularensis by PCR or culture has not been previously reported in wild leporidae in Algeria or other African countries.Animal tissue samples were tested using three qPCR assays of variable sensitivity and specificity. The Type B-qPCR test targets a specific junction between ISFtu2 and a flanking 3′ region, which is considered specific for F. tularensis subsp. holarctica26, the only tularemia agent found in Europe and Asia. The Tul4-qPCR assay targets a simple copy gene encoding a surface protein, which can be found in the genome of all F. tularensis subspecies causing tularemia and that of the aquatic bacterium F. novicida. Because F. novicida has never been isolated from lagomorphs or other animal species, and very rarely from human29, a positive Tul4 qPCR for the studied tissue samples likely indicated the presence of F. tularensis DNA. The ISFtu2 qPCR is considered highly sensitive because multiple copies of this insertion sequence are found in the F. tularensis genome. However, it lacks specificity because ISFtu2 is also found in many other Francisella species25.Two animals were considered “probable” tularemia cases because some of their samples were positive for the three qPCR tests. Ten animals were considered “possible” tularemia cases because their samples were positive for the ISFtu2 and Tul4 qPCRs but not the Type B qPCR. Finally 19 leporids were “uncertain” cases because only samples positive for the ISFtu2 qPCR were found. For the remaining 43 animals, all the tested samples were negative for the three qPCRs. Overall, we detected F. tularensis DNA-positive samples in 12/74 (16.21%) leporids, which strongly suggest that tularemia is present in the lagomorph population of the study area. The positive Type B qPCR tests in two animals suggested that F. tularensis subsp. holarctica could be the involved subspecies. We did not confirm these data by isolating F. tularensis from the studied leporids. However, the isolation of this pathogen from human or animal samples is tedious and has a low sensitivity13. Moreover, most of our samples were not appropriate for F. tularensis culture because of their long-term preservation in ethanol 70° or 10% formalin. Further study using fresh (non-fixed) tissue samples from dead leporids collected in the same study area is needed to definitively confirm the presence of tularemia in these animals and characterize the F. tularensis subspecies and genotypes involved.Although PCR is usually more sensitive than culture for detecting F. tularensis, it also has some limitations. Firstly, the DNA extraction from organs preserved in ethanol for several months was difficult although easier for spleen than for liver samples. Some tissue samples could be lysed only after overnight incubation with proteinase K. Secondly, tissue samples contained PCR inhibitors as demonstrated by better DNA amplification from some samples after their dilution in PCR grade water. To reduce the effect of PCR inhibitors, organ samples with negative qPCR were retested using Bovine Serum Albumin (BSA) and the Real-time PCR system TaqMan (Applied Biosystems, Munich, Germany)30. Finally, DNA regions to be amplified were optimized to obtain high sensitivity and specificity of qPCR tests.IHC detection of F. tularensis in formalin-fixed tissue can be helpful for tularemia diagnosis31,32. For one possible tularemia case, F. tularensis could be detected on immunohistochemical (IHC) examination of a liver sample using a specific anti-F. tularensis antibody. The intensity and localization of positive staining were comparable to those previously recorded for other animals32,33. IHC did not provide interpretable findings for four other tested specimens. Such negative results might be explained by an inhomogeneous distribution of infectious foci in the involved organs as well as a low bacterial inoculum in infected tissues. This has been previously demonstrated in tularemia granulomatous lesions in cell types like epithelial cells of the kidney, testis, and epididymis, hepatocytes, and bronchiolar epithelial cells31. Besides, IHC is a delicate technology whose results are highly dependent on the quality and fixation time of the organ tissues34. IHC analysis of dead animal tissues remains challenging, especially in case of tissue necrosis34.In our limited case series we found a F. tularensis infection prevalence in leporids of 2.7% (2/74) for probable tularemia cases and 16.2% (12/74) when considering both probable and posible cases. We cannot make a guess about the prevalence of tularemia because our series is not representative of the general lagomorph population in the study area. In Germany, F. tularensis DNA was detected in 1.1% of European Brown hares and 2.4% of wild rabbits collected between 2009 and 201435. Higher infection rates were reported in the same country, including 11.8% (100/848 animals) in hares collcted in the North Rhine-Westphalia region36 and 30% (55/179) in brown hares collected between 2010 and 2016 in Baden-Wuerttemberg37. In Hungary, the prevalence of tularemia in hares was evaluated at 4.9–5.3%38. In Portugal, prevalences of 4.3% and 6.3% were reported in brown hares and wild rabbits, respectively39. However, the comparison of the reported tularemia prevalences in leporids is irrelevant because studies involved different animal species and geographic areas, and used different methods for F. tularensis detection.Two possibilities could explain the lack of detection of tularemia in Algeria before this study. The first hypothesis is that this disease was not searched for in previous years, while it could have been present in this country for decades. The second hypothesis is that tularemia was recently imported in Algeria. Migratory birds may have been involved in the long-distance spread of F. tularensis40. These hosts can be infested by ectoparasites such as ticks which are the primary vectors of tularemia41,42. They can also spread the bacteria in the hydro-telluric environment through their secretions and feces18,43,44. An alternative possibility is that F. tularensis-infected animals (especially game animals) have been imported in Algeria from endemic countries. Whatever the mode of introduction of tularemia in Algeria, the dissemination of this disease over time might have been facilitated by the ability of F. tularensis to infect multiple hosts and its better survival in a cool environment45, which characterizes Northern Algeria climate. The emergence or re-emergence of tularemia in other countries has been related to climate change, human-mediated movement of infected animals, and wartime resulting in a significant rise of F. tularensis infections in the rodent populations39,46.In our study, infected animals were collected throughout 4 years, although more frequently in autumn. Probable and possible tularemia cases were mainly collected during the hunting season (i.e., September, October, November, and December). Animals could not be collected in February because of heavy rains and in May and June because it corresponds to female leporids’ lactation period. In most endemic countries, tularemia cases are typically more frequent in late spring, the summer months, and early autumn37,47,48,49,50. Occasionally, fatal tularemia cases in hares have been predominantly reported during the cold season11,51. The climatic conditions can affect tularemia outbreaks in animals, depending on the reservoir involved and the predominant modes of infection52.We detected tularemia more frequently in female than in male hares, and the reverse was true for wild rabbits. The prevalence of tularemia in male or female lagomorphs varies between studies. In Sweden, Morener et al.50 reported a tularemia case series only involving male hares. In the same country, Borg et al.50 observed an overrepresentation of females in the epizootic of 1967. They suggested that, compared to males, females had a higher risk of exposure to infected mosquitoes or were more vulnerable to tularemia because they were pregnant or had just given birth to a litter50. Tularemia was found in a few juveline leporids, which might be explained by a shorter exposure time to F. tularensis, a higher death rates due to higher susceptibility to F. tularensis infection or easier predation by their natural enemies, or more frequent hunting of adults compared to the juveniles53.Tularemia is usually more frequently detected in leporids found dead than in hunted animals. As an example, a German study reported a higher prevalence of tularemia in hares found dead (2.9%) than in hunted ones (0.7%)35. In our study, most qPCR-positive animals were hunted. Our study might not be representative of the prevalence of tularemia in either population because most collected animals had been hunted.The incubation period and clinical presentation of tularemia in leporids vary according to the species considered. Tularemia is typically an acute disease in mountain hares (Lepus timidus) in Scandinavia and has a chronic pattern in European brown hares (Lepus europaeus) in Central Europe50. The incubation time and clinical presentation of tularemia can be different in Cape hares (Lepus capensis). Wild rabbits are less sensitive to F. tularensis infection than hares31,39,54. An extended incubation period and chronic evolution of tularemia would facilitate the detection of F. tularensis in infected animals. In our study, a similar tularemia prevalence was found in the Cape hares and wild rabbits, which might reflect exposure to a same biotope area and environmental reservoirs of F. tularensis.The pathological lesions of tularemiia in leporids can vary according to the F. tularensis strain involved, the mode and route of infection, and the susceptibility and immune status of the host32,50. In the European brown hares, granulomas with central necrosis have been reported in the lungs and kidneys and occasionally in the liver, spleen, bone marrow, and lymph nodes50. In contrast, only acute necrosis in the liver, spleen, bone marrow, and lymph nodes have been found in Lepus timudus hares in Sweden50. The lesions in the Japanese hare (Lepus brachyurus angustidens) are comparable to those of Lepus timidus, except for cutaneous, lung, brain, and adrenal gland lesions32. In the European rabbit, Oryctolagus cuniculus, tularemia is not associated with identifiable macroscopic tissue lesions39,55. To our knowledge, no reports describing post-mortem lesions in Cape hares with tularemia are available. In this study, similar lesions were found in hares and wild rabbits except necrotic foci only observed in some wild rabbit organs (such as liver, lungs, kidney, ovary). Most animals had pathological lesions of pneumonia, gastritis and enteritis. Kidney lesions and adrenal glands enlargment were oberved. Necrotic lesions were occasionally found in the lungs, liver, spleen and ovary and hemorrhages in the lungs, liver, and intestines.Tularemia is an arthropod-born disease in most endemic areas14,22,28. In our study, 50% of positive leporids were infested by known tularemia vectors such as ticks (Ixodes ricinus56,57, Rhipicephalus sanguineus39), fleas (Spillopsylus cuniculi58), and lice of lagomorphs (Haemodipsus lepori and Haemodipsus setoni59,60). Ticks are the most significant arthropod vectors of tularemia61. Ticks are frequently involved in the transmission of tularemia in North America, including Dermacentor andersoni, D. variabilis, and Amblyomma americanum57,62,63. In Europe, tick-borne tularemia represents 13% to 26% of human cases57,64. The involved species include D. marginatus, D. reticulatus, I. ricinus, R. sanguineus, and Haemaphysalis concinna65,66. Further research on wild leporid sucking arthropods is needed to confirm the presence and clarify the ecology of F. tularensis in Algeria.Our study reports for the first time the detection of F. tularensis DNA in leporids from Northern Algeria. The markers most in favor of tularemia in the animals studied are the positivity of qPCR tests, in particular, the “type B” qPCR test which amplifies a specific DNA sequence of F. tularensis subsp. holarctica, and a positive immunohistological examination in one animal. Further investigation is needed to confirm our results by the isolation of this pathogen from animal samples and determine the F. tularensis subspecies and genotypes involved. This would allow the characterization of the F. tularensis subspecies and genotypes present in Algeria. Furthermore, our findings push us in future studies to seek tularemia in the Algerian human population. To achieve this, interdisciplinary or trans-disciplinary collaborative efforts underpinned by the One Health concept will be necessary. More

  • in

    Bioenergetic control of soil carbon dynamics across depth

    Further details about radiocarbon and thermal analysis, isotopic partitioning procedures and quantification of their uncertainty, and statistical analyses can be found in Supplementary Methods.Study soils, experimental design and soil samplingWe selected three soil types: eutric cambisol, chromic vertisol and silandic andosol70. The three soil profiles studied were found in long-term semi-natural grasslands located relatively close to each other ( More

  • in

    Long-term enclosure at heavy grazing grassland affects soil nitrification via ammonia-oxidizing bacteria in Inner Mongolia

    Pan, H. et al. Archaea and bacteria respectively dominate nitrification in lightly and heavily grazed soil in a grassland system. Biol. Fert. Soils. 54(1), 41–54 (2018).Article 

    Google Scholar 
    Pan, H. et al. Understanding the relationships between grazing intensity and the distribution of nitrifying communities in grassland soils. Sci. Total Environ. 634, 1157–1164 (2018).Article 
    ADS 

    Google Scholar 
    Dong, L., Li, J. J., Sun, J. & Yang, C. Soil degradation influences soil bacterial and fungal community diversity in overgrazed alpine meadows of the Qinghai-Tibet plateau. Sci. Rep. 11, 11538 (2021).Article 
    ADS 

    Google Scholar 
    Oduor, C. O. et al. Enhancing soil organic carbon, particulate organic carbon and microbial biomass in semi-arid rangeland using pasture enclosures. BMC Ecol. 18, 45 (2018).Article 

    Google Scholar 
    Wang, S. Z., Fan, J. W., Li, Y. Z. & Huang, L. Effects of grazing exclusion on biomass growth and species diversity among various grassland types of the Tibetan Plateau. Sustainability 11(6), 1705 (2019).Article 

    Google Scholar 
    Simpson, A. C., Zabowski, D., Rochefort, R. M. & Edmonds, R. L. Increased microbial uptake and plant nitrogen availability in response to simulated nitrogen deposition in alpine meadows. Geoderma 336, 68–80 (2019).Article 
    ADS 

    Google Scholar 
    Qasim, S. et al. Influence of grazing enclosure on vegetation biomass and soil quality. Int. Soil Water Conserv. 5(1), 62–68 (2017).Article 

    Google Scholar 
    Hirobe, M. et al. Effects of livestock grazing on the spatial heterogeneity of net soil nitrogen mineralization in three types of Mongolian grasslands. J. Soils Sediment. 13, 1123–1132 (2013).Article 

    Google Scholar 
    Luo, Y. K., Wang, C. H., Shen, Y., Sun, W. & Dong, K. H. The interactive effects of mowing and N addition did not weaken soil net N mineralization rates in semiarid grassland of Northern China. Sci. Rep. 9, 13457 (2019).Article 
    ADS 

    Google Scholar 
    Wu, H. et al. Feedback of grazing on gross rates of N mineralization and inorganic N partitioning in steppe soils of Inner Mongolia. Plant Soil. 340(1–2), 127–139 (2011).Article 

    Google Scholar 
    Xu, Y. Q., Li, L. H., Wang, Q. B., Chen, Q. S. & Cheng, W. X. The patterns between nitrogen mineralization and grazing intensities in an Inner Mongolian typical steppe. Plant Soil. 300, 289–300 (2007).Article 

    Google Scholar 
    Wang, X. et al. Grazing improves C and N cycling in the Northern Great Plains: A meta-analysis. Sci. Rep. 6, 33190 (2016).Article 
    ADS 

    Google Scholar 
    Pang, R., Sun, Y., Xu, X. L., Song, M. H. & Ouyang, H. Effects of clipping and shading on 15NO3− and 15NH4+ recovery by plants in grazed and ungrazed temperate grasslands. Plant Soil. 433(1–2), 339–352 (2018).Article 

    Google Scholar 
    Sun, Y., Schleuss, P. M., Pausch, J., Xu, X. L. & Kuzyakov, Y. Nitrogen pools and cycles in Tibetan Kobresia pastures depending on grazing. Biol. Fert. Soils. 54(5), 569–581 (2018).Article 

    Google Scholar 
    Andrioli, R. J., Distel, R. A. & Didone, N. G. Influence of cattle grazing on nitrogen cycling in soils beneath Stipa tenuis, native to central Argentina. J. Arid. Environ. 74(3), 419–422 (2010).Article 
    ADS 

    Google Scholar 
    Norman, J. S., Lin, L. & Barrett, J. E. Paired carbon and nitrogen metabolism by ammonia-oxidizing bacteria and archaea in temperate forest soils. Ecosphere 6(10), 1–11 (2016).
    Google Scholar 
    Mukhtar, H., Lin, Y. P., Lin, C. M. & Petway, J. R. Assessing thermodynamic parameter sensitivity for simulating temperature responses of soil nitrification. Environ. Sci.-Proc. Imp. 21(9), 1596–1608 (2019).
    Google Scholar 
    Rütting, T., Schleusner, P., Hink, L. & Prosser, J. I. The contribution of ammonia-oxidizing archaea and bacteria to gross nitrification under different substrate availability. Soil Biol. Biochem 160, 108353 (2021).Article 

    Google Scholar 
    Pan, H. et al. Management practices have a major impact on nitrifier and denitrifier communities in a semiarid grassland ecosystem. J. Soils Sediment. 16, 896–908 (2016).Article 

    Google Scholar 
    Szukics, U. et al. Management versus site effects on the abundance of nitrifiers and denitrifiers in European mountain grasslands. Sci. Total Environ. 648, 745–753 (2019).Article 
    ADS 

    Google Scholar 
    Chen, Q., Hooper, D. U. & Lin, S. Shifts in species composition constrain restoration of overgrazed grassland using nitrogen fertilization in Inner Mongolian steppe, China. PLoS ONE 6(3), e16909 (2011).Article 
    ADS 

    Google Scholar 
    Raison, R. J., Connell, M. J. & Khanna, P. K. Methodology for studying fluxes of soil mineral-N in situ. Soil Biol. Biochem. 19, 521–530 (1987).Article 

    Google Scholar 
    Kurola, J., Salkinoja-Salonen, M., Aarnio, T., Hultman, J. & Romantschuk, M. Activity, diversity and population size of ammonia-oxidizing bacteria in oil-contaminated land farming soil. FEMS Microbiol. Lett. 250, 33–38 (2005).Article 

    Google Scholar 
    Tran, H. T. et al. Bacterial community progression during food waste composting containing high dioctyl terephthalate (DOTP) concentration. Chemosphere 265, 129064 (2021).Article 
    ADS 

    Google Scholar 
    Hook, P. B. & Burke, I. C. Evaluation of a method for estimating net nitrogen mineralization in a semiarid grassland. Soil Sci. Soc. Am. J. 59, 831–837 (1995).Article 
    ADS 

    Google Scholar 
    Liu, T. Z., Nan, Z. B. & Hou, F. J. Grazing intensity effects on soil nitrogen mineralization in semi-arid grassland on the Loess Plateau of northern China. Nutr. Cyc. Agroecosyst. 91(1), 67–75 (2011).Article 

    Google Scholar 
    Li, J. P., Ma, H. B., Xie, Y. Z., Wang, K. B. & Qiu, K. Y. Deep soil C and N pools in long-term fenced and overgrazed temperate grasslands in northwest China. Sci. Rep. 9, 16088 (2019).Article 
    ADS 

    Google Scholar 
    Di, H. J. et al. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat. Geosci. 2(9), 621–624 (2009).Article 
    ADS 

    Google Scholar 
    Li, J. P., Zheng, Z. R., Xie, H. T., Zhao, N. X. & Gao, Y. B. Increased soil nutrition and decreased light intensity drive species loss after eight years grassland enclosures. Sci. Rep. 7, 44525 (2017).Article 
    ADS 

    Google Scholar 
    Luo, C. Y. et al. Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan plateau. Glob. Change Biol. 16, 1606–1617 (2010).Article 
    ADS 

    Google Scholar 
    Shahzad, T. et al. Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species. Soil Biol. Biochem. 80, 146–155 (2015).Article 

    Google Scholar 
    Xie, Z. et al. Identifying response groups of soil nitrifiers and denitrifiers to grazing and associated soil environmental drivers in Tibetan alpine meadows. Soil Biol. Biochem. 77, 89–99 (2014).Article 

    Google Scholar 
    Clark, I. M., Hughes, D. J., Fu, Q. L., Abadie, M. & Hirsch, P. R. Metagenomic approaches reveal differences in genetic diversity and relative abundance of nitrifying bacteria and archaea in contrasting soils. Sci. Rep. 11, 15905 (2021).Article 
    ADS 

    Google Scholar 
    He, J. Z. et al. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ. Microbiol. 9, 2364–2374 (2007).Article 

    Google Scholar 
    Meyer, A. et al. Influence of land use intensity on the diversity of ammonia oxidizing bacteria and archaea in soils from grassland ecosystems. Microb. Ecol. 67(1), 161–166 (2014).Article 

    Google Scholar 
    Zhu, X. X. et al. Effects of warming, grazing/cutting and nitrogen fertilization on greenhouse gas fluxes during growing seasons in an alpine meadow on the Tibetan Plateau. J. Agric. Meteorol. 214–215, 506–514 (2015).Article 

    Google Scholar 
    Jia, Z. J. & Cornrad, R. Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil. Environ. Microbiol. 11(7), 1658–1671 (2009).Article 

    Google Scholar 
    Verhamme, D. T., Prosser, J. I. & Nicol, G. W. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J. 5, 1067–1071 (2011).Article 

    Google Scholar 
    Zhou, X. H. et al. Diversity, abundance and community structure of ammonia-oxidizing archaea and bacteria in riparian sediment of Zhenjiang ancient canal. Ecol. Eng. 90, 447–458 (2016).Article 

    Google Scholar 
    Martens-Habbena, W., Berube, P. M., Urakawa, H., de la Torre, J. R. & Stahl, D. A. Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nature 461, 976–979 (2009).Article 
    ADS 

    Google Scholar 
    Clark, D. R. et al. Mineralization and nitrification: Archaea dominate ammonia-oxidising communities in grassland soils. Soil Biol. Biochem. 143, 107725 (2020).Article 

    Google Scholar 
    Long, X. N., Chen, C. R., Xu, Z. H., Linder, S. & He, J. Z. Abundance and community structure of ammonia oxidizing bacteria and archaea in a Sweden boreal forest soil under 19-year fertilization and 12-year warming. J. Soils Sediment. 12, 1124–1133 (2012).Article 

    Google Scholar 
    Wessén, E. & Hallin, S. Abundance of archaeal and bacterial ammonia oxidizers-possible bioindicator for soil monitoring. Ecol. Indic. 11, 1696–1698 (2011).Article 

    Google Scholar 
    Yang, Y. et al. Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Glob. Change Biol. 19(2), 637–648 (2013).Article 
    ADS 

    Google Scholar 
    Zhang, C. J. et al. Impacts of long-term nitrogen addition, watering and mowing on ammonia oxidizers, denitrifiers and plant communities in a temperate steppe. Appl. Soil Ecol. 130, 241–250 (2018).Article 

    Google Scholar 
    Alves, R. J. E., Minh, B. Q., Urich, T., Haeseler, A. V. & Schleper, C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat. Commun. 9, 1517 (2018).Article 
    ADS 

    Google Scholar 
    DeLong, E. F. Everything in moderation archaea as ‘non extremophiles’. Curr. Opin. Genet. Dev. 8(6), 649–654 (1998).Article 

    Google Scholar 
    Jia, Z. J. et al. Evidence for niche differentiation of nitrifying communities in grassland soils after 44 years of different field fertilization scenarios. Pedoshpere 30(1), 87–97 (2019).
    Google Scholar 
    Wang, X. L. et al. Long-term fertilization effects on active ammonia oxidizers in an acidic upland soil in China. Soil Biol. Biochem. 84, 28–37 (2015).Article 

    Google Scholar 
    Li, Y. Y., Chapman, S. J., Nicol, G. W. & Yao, H. Y. Nitrification and nitrifiers in acidic soils. Soil Biol. Biochem. 116, 290–301 (2018).Article 

    Google Scholar 
    Olivera, N. L., Prieto, L., Bertiller, M. B. & Ferrero, M. A. Sheep grazing and soil bacterial diversity in shrub lands of the Patagonian Monte, Argentina. J. Arid. Environ. 125, 16–20 (2016).Article 
    ADS 

    Google Scholar  More

  • in

    Long-term maintenance of a heterologous symbiont association in Acropora palmata on natural reefs

    Hoegh-Guldberg O, Smith JG. The effect of sudden changes in temperature, light, and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata (Esper) and Seriatopora hysterix (Dana). J Exp Mar Biol Ecol. 1989;129:279–303.Article 

    Google Scholar 
    Glynn PW. Coral reef bleaching: ecological perspectives. Coral Reefs. 1993;12:1–17.Article 

    Google Scholar 
    Berkelmans R, van Oppen MJH. The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proc R Soc B: Biol Sci. 2006;273:2305–12.Article 

    Google Scholar 
    Cunning R, Gillette P, Capo T, Galvez K, Baker AC. Growth tradeoffs associated with thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans. Coral Reefs. 2015;34:155–60.Article 

    Google Scholar 
    Scharfenstein HJ, Chan WY, Buerger P, Humphrey C, van Oppen MJH. Evidence for de novo acquisition of microalgal symbionts by bleached adult corals. ISME J. 2022;16:1676–9.Article 

    Google Scholar 
    Goulet TL. Most corals may not change their symbionts. Mar Ecol Prog Ser. 2006;321:1–7.Article 

    Google Scholar 
    Jones A, Berkelmans R. Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types. PLoS ONE. 2010;5:e10437.Article 

    Google Scholar 
    van Oppen MJH, Oliver JK, Putnam HM, Gates RD. Building coral reef resilience through assisted evolution. Proc R Soc B: Biol Sci. 2015;112:2307–13.
    Google Scholar 
    Buerger P, Alvarez C, Coppin CW, Pearce SL, Chakravarti LJ, Oakeshott JG, et al. Heat-evolved microalgal symbionts increase coral bleaching tolerance. Sci Adv. 2020;6:eaba2498.Kuffner IB, Toth LT. A geological perspective on the degradation and conservation of western Atlantic coral reefs. Conserv Biol: J Soc Conserv Biol. 2016;30:706–15.Article 

    Google Scholar 
    Young CN, Schopmeyer SA, Lirman D. A review of reef restoration and Coral propagation using the threatened genus Acropora in the Caribbean and western Atlantic. Bull Mar Sci. 2012;88:1075–98.Article 

    Google Scholar 
    Reich HG, Kitchen SA, Stankiewicz KH, Devlin-Durante M, Fogarty ND, Baums IB. Genomic variation of an endosymbiotic dinoflagellate (Symbiodinium fitti) among closely related coral hosts. Mol Ecol. 2021;30:3500–14.Article 

    Google Scholar 
    Baums IB, Devlin-Durante MK, Lajeunesse TC. New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Mol Ecol. 2014;23:4203–15.Article 

    Google Scholar 
    Gantt SE, Keister E, Manfroy A, Merck D, Fitt W, Muller E, et al. Wild and nursery-raised corals: comparative physiology of two framework coral species. Coral Reefs. (In Press).Hume BCC, Smith EG, Ziegler M, Hugh J, Warrington M, Burt J, et al. SymPortal: a novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol Ecol Resour. 2019;19:1063–80.Article 

    Google Scholar 
    Randall CJ, Negri AP, Quigley KM, Foster T, Ricardo GF, Webster NS, et al. Sexual production of corals for reef restoration in the Anthropocene. Mar Ecol Prog Ser. 2020;635:203–32.Article 

    Google Scholar 
    Bay LK, Cumbo VR, Abrego D, Kool JT, Ainsworth TD, Willis BL. Infection dynamics vary between Symbiodinium types and cell surface treatments during establishment of endosymbiosis with coral larvae. Diversity. 2011;3:356–74.Article 

    Google Scholar 
    Abrego D, van Oppen MJH, Willis BL. Highly infectious symbiont dominates initial uptake in coral juveniles. Mol Ecol. 2009;18:3518–31.Article 

    Google Scholar 
    Cunning R, Silverstein RN, Baker AC. Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change. Proc R Soc B: Biol Sci. 2015;282:20141725.Chamberland VF, Petersen D, Latijnhouwers KRW, Snowden S, Mueller B, Vermeij MJA. Four-year-old Caribbean Acropora colonies reared from field-collected gametes are sexually mature. Bull Mar Sci. 2016;92:263–4.Silverstein RN, Correa AMS, Baker AC. Specificity is rarely absolute in coral–algal symbiosis: implications for coral response to climate change. Proc R Soc B: Biol Sci. 2012;279:2609–18.Article 

    Google Scholar  More