More stories

  • in

    Land use and land cover changes influence the land surface temperature and vegetation in Penang Island, Peninsular Malaysia

    Study areaPenang is situated in the northern part of Peninsular Malaysia and lies within the latitudes 5°12’N to 5°30′ N and longitudes 100°09’E to 100°26’E (Fig. 7). Penang with a land area of 295 Km2, has an estimated population of 720,000 and is regarded as the most populated island in Malaysia. Penang shares the same border on the north and east with Kedah State and the south with Perak State. There are two main parts of Penang State: Penang Island and the mainland which is also regarded as Seberang Perai. These two parts of the State are connected by the two bridges. The eastern part of Penang Island is the most urbanized area comprising industries, commercial centres and residential buildings. However, the western part is less developed comprising mainly hilly terrain and forests22. This study is focused on the Island part of Penang. This island is endowed with a yearly equatorial climate (hot and humid). It has a mean annual temperature ranging between 27 and 30 °C while the mean annual relative humidity ranges between 70 and 90%. Also, the mean annual rainfall is about 267–624 cm.Figure 7The map of Penang State showing the Penang Island (created by the authors using ArcMap 10.8 software).Full size imageData acquisitionThe flow chart of the methodology is presented in Fig. 8. Landsat satellite images were used for the assessment of changes in land use covering a period of 2010–2021 (11 years).Figure 8The flow chart of the methodology.Full size imageThese images were gotten from the website of the United State Geological Survey (https://earthexplorer.usgs.gov). The Landsat images include the Landsat 5 TM (thematic mapper) and Landsat 8 OLI / TIRS (operational land imager / thermal infrared sensor). These were downloaded from the Landsat level 1 dataset (Table 6) with additional criteria which reduced the.Table 6 The characteristics of the satellite data used.Full size tableDetermination of LST and NDVI for Landsat 5 and 8Band 6 of Landsat 5 and band 10 of Landsat 8 were used for the determination of the land surface temperature (LST). The LST and normalized difference vegetation index were determined using the following steps:Conversion of top of atmosphere (TOA) radianceUsing the radiance rescaling factor, thermal infra-red digital numbers were converted to TOA spectral radiance using the equation below29: (frac{Red – NIR}{{Red + NIR}}) (frac{Red – NIR}{{Red + NIR}}) For Landsat 8,$$ {text{L}}lambda = left( {{text{ML}} times {text{ Qcal}}} right) + left( {{text{AL}} – {text{Oi}}} right) $$
    (1)
    For Landsat 5,$$ {text{L}}lambda = left( {{ }frac{{{text{LMax}}lambda – {text{LMin}}lambda }}{{{text{QcalMax}} – {text{QcalMin}}}}} right) times left( {left( {{text{Qcal }} – {text{QcalMin}}} right) + {text{LMin}}lambda } right) $$
    (2)
    where Lλ is TOA spectral radiance, ML is radiance multiplicative band Number, AL is radiance add band number, Qcal is quantized and calibrated standard product pixel values (DN for band 6 or band 10), Oi is the correction value for the respective bands, LMaxλ is spectral radiance scaled to QcalMax, LMinλ is spectral radiance scaled to QcalMin, QcalMax is maximum quantized calibrated pixel value, and QcalMin is minimum quantized calibrated pixel value.Conversion to TOA brightness temperature (BT)Spectral radiance data were converted to TOA brightness temperature using the thermal constant values in the Metadata file29.Kelvin (K) to Celcius (°C) degrees$$ BT = {raise0.5exhbox{$scriptstyle {K2}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle {ln left( {frac{K1}{{{text{L}}lambda { } + { }1}}} right)}$}} – 273.15 $$
    (3)
    where BT is the Top of atmosphere brightness temperature (°C), Lλ is TOA spectral radiance (W.m−2 .sr−1 .µm−1)), K1 is the K1 constant band number, and K2 is the K2 constant band number. For Landsat 5, K1 is 607.76, and K2 is 1260.56.Normalized difference vegetation index (NDVI)The Normalized Difference Vegetation Index (NDVI) is a standardized vegetation index which reveals the intensity of greenness and surface radiant temperature of the area30,31. The index value of NDVI usually ranges from − 1 to 1. The higher NDVI value indicates that the vegetation of the area is denser and healthier. This shows that the NDVI values of normal healthy vegetation range from 0.1– 0.75, while it is almost zero for rock and soil, and negative value for water bodies24. The NDVI is calculated using the followings:$$ {text{NDVI }} = frac{{left( {{text{NIR }}{-}{text{ RED}}} right){ }}}{{left( {{text{NIR }} + {text{ RED}}} right)}} $$
    (4)
    In Landsat 4–7$$ {text{NDVI }} = , left( {{text{Band 4 }}{-}{text{ Band 3}}} right) , / , left( {{text{Band 4 }} + {text{ Band 3}}} right) $$In Landsat 8$$ {text{NDVI }} = , left( {{text{Band 5 }}{-}{text{ Band 4}}} right) , / , left( {{text{Band 5 }} + {text{ Band 4}}} right) $$where: RED = DN values from the RED band, and NIR = DN values from the Near Infra-red band.Land Surface Emissivity (LSE)Land Surface Emissivity is the average emissivity of an element on the surface of the earth calculated from NDVI values.$$ {text{PV }} = left{ {frac{{left( {{text{NDVI }} – {text{ NDVImin}}} right)}}{{left( {{text{NDVImax }} – {text{ NDVImin}}} right)}}} right}^{2} $$
    (5)
    where PV is the Proportion of vegetation, NDVI is the DN value from the NDVI image, NDVImin is the minimum DN value from the NDVI image, and NDVImax is the maximum DN value from the NDVI image.$$ {text{E }} = left( {0.004{ } times {text{PV}}} right) + 0.986 $$
    (6)
    where E is land surface emissivity, PV is the Proportion of vegetation, 0.986 corresponds to a correction value of the equation.Land Surface Temperature (LST)Land Surface Temperature (LST) is the radiative temperature which is calculated using top of atmosphere brightness temperature, the wavelength of emitted radiance and land surface emissivity.$$ {text{LST}} = {raise0.5exhbox{$scriptstyle {BT}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle {left( {1 + left( {{lambda } times { }frac{{{text{BT}}}}{{{text{c}}2}}} right) times {text{ln}}left( {text{E}} right)} right)}$}} $$
    (7)
    Here c2 is 14388. The value of λ for Landsat 5 (Band 6) is 11.5 µm and Landsat 8 (Band 10) is 10.8 µm.Where BT is the top of atmosphere brightness temperature, λ is the wavelength of emitted radiance, and E is land surface emissivity.c2 = h*c/s (1.4388*10–2 mK = 14388 mK), h is Planck’s constant (6.626*1034 Js), s is Boltzmann constant (1.38*1023 JK), c is velocity of light (2.998*108 m/s).Determination of land use and land cover (LULC) of the study areaThe Landsat images were pre-screened and subjected to clipping and classification32. The boundary shape file of Penang was used to clip out the area of study.Image classificationThe unsupervised method involving a random assignment of sample training points and supervised methods of satellite image classification was employed in this study for determining the LULC types. This mixture of image classification methods has been reported as vital in achieving a high accuracy level33. Bands 5, 4 and 3 were used to classify Landsat 8 while bands 4, 3 and 2 were used for classifying Landsat 5. We used the extraction by mask in the spatial analyst tool of ArcMap 10.2.1 software to extract the study area from the selected bands of the Landsat satellite images. A widely used supervised image classification method was adopted for classifying the Landsat bands in this study32,34. The principle of operation of this method involves the identification of known sample training points which are then used to classify other unknown points with related spectral signatures35. The three monochromatic satellite bands were combined to produce the false colour composite (FCC) using the data management tool36. This involves drawing polygons on the LULC type to select the training points. The LULC types adopted for this study include urbanized areas, agricultural land, rocks, forests, bare surfaces, and water bodies. These were modified LULC types from IPOC Good Practice Guidance37. To achieve this, a minimum of 40 sample points were selected randomly for each category of LULC type36. Having prior knowledge of the study area assisted in the selection of the training points38.The multivariate maximum likelihood classification (MLC) technique was used for transforming the images. Other image transformation techniques have been used by researchers. These include the fuzzy set classifier, neural networks (NN) classifier, extraction and classification of homogenous objects (ECHO) classifier, per-field classifier, sub-pixel classifier, decision trees (DTs), support vector machines (SVMs), minimum distance classifier (MDC) and so-on39. The adoption of any of these techniques is dependent on the knowledge of the area of study, band selection, accessibility of data, the complexity of the landscape, the classification algorithm, and the proficiency of the analyst39. We preferred MLC to other techniques in this study due to its reported high level of accuracy in tropical regions32,34. Another reason for choosing MLC is that it is readily incorporated in many widely used GIS software packages. This MLC algorithm operates based on assigning pixels to the highest probability class and establishing the class ownership of such pixels. It is also regarded as a parametric classifier whose data follows almost a normal distribution39. We ensured the accuracy of this classifier by assigning a large number of training sample points using our prior knowledge of the study area.Description of the LULC categoriesThe urbanized area is the developed part of the study area. This includes houses, roads, railways, and industries. This is also known to be a settlement in other literature40. Agricultural land is the part of the study area dominated by agricultural activities and herbaceous plants and grasses. Agricultural land is generally a product of deforestation36. Rocks are part of the study area comprising solid mineral materials (rocks). Bare land is the bare soil which is either made open by natural or human activities.Forests are parts of the study area dominated by trees. They can be primary or secondary forests depending on the rate of disturbances. According to41, forest land is an area having more than 0.5 ha of flora comprising trees (height is above 5 m) with a canopy greater than 10%. The forests in Penang are generally both primary and secondary42. Water bodies are parts of the study area covered by water seasonally or permanently. These include seas, rivers, lakes, ponds, streams, or reservoirs40.Determination of change in the LULCThe rate and extent of change in the LULC of Penang within the periods under consideration were determined following the formula below43:$$ {text{Changed area }}left( {{text{C}}_{{text{a}}} } right) , = {text{ T}}_{{text{a}}} left( {text{year 2}} right) , {-}{text{ T}}_{{text{a}}} left( {text{year 1}} right) $$
    (8)
    $$ {text{Changed extent }}left( {{text{C}}_{{text{e}}} } right) , = {text{ C}}_{{text{a}}} /{text{ T}}_{{text{a}}} left( {text{year 1}} right) $$
    (9)
    $$ {text{Percentage of change }} = {text{ C}}_{{text{e}}} {text{x 1}}00 $$
    (10)
    where Ta means the total area.Determination of relationship between LST and NDVIThe values of LST and NDVI at 20 random points of each LULC class were used. The relationship between the LST and NDVI across all the LULC classes in each year was determined using the bivariate linear regression analysis. This was done in Paleontological Statistical (PAST) package 3.0.Classification accuracy assessmentThe classification accuracy was assessed by taking ground truth coordinate data of the LULC of the study area using a geographical positioning system (GPS) device (Garmin Etrex 10). These data were compared with the LULC classified in this study32. Consequently, an error matrix was generated. This normally uses ground truth data to explain the accuracy of the classified LULC. The error matrix comprises the user’s accuracy, the producer’s accuracy, overall accuracy and the Kappa index32.The producer’s accuracy (omission error) represents the probability of the correctly classified reference pixel and it is determined using this formula below:$${text{Producer’s accuracy }}left( % right) , = { 1}00% , – {text{ error of omission}} $$
    (11)
    Also, the user’s accuracy (commission error) represents the probability that the classified pixel matches the one on the ground36 and it is determined using the formula below:$$ {text{User’s accuracy }}left( % right) , = { 1}00% , – {text{ error of commission}} $$
    (12)
    The statistical accuracy of the matrix was determined using the Kappa coefficient44. This Kappa coefficient ranges from − 1 to + 145. Therefore, the overall accuracy of the classification was determined by dividing the total number of correctly classified pixels by the total number of sampled ground truth data40. More

  • in

    Recent speciation associated with range expansion and a shift to self-fertilization in North American Arabidopsis

    Coyne, J. A. & Orr, H. A. Speciation 83–178 (Sinauer, 2004).Dieckmann, U., Doebeli, M., Metz, J. A. & Tautz, D. Adaptive Speciation (Cambridge University Press, 2004).Butlin, R. K., Galindo, J. & Grahame, J. W. Sympatric, parapatric or allopatric: the most important way to classify speciation? Philos. T. Roy. Soc. B 363, 2997–3007 (2008).Article 

    Google Scholar 
    Smadja, C. M. & Butlin, R. K. A framework for comparing processes of speciation in the presence of gene flow. Mol. Ecol. 20, 5123–5140 (2011).Article 

    Google Scholar 
    Seehausen, O. et al. Genomics and the origin of species. Nat. Rev. Genet. 15, 176–192 (2014).Article 
    CAS 

    Google Scholar 
    Kulmuni, J., Butlin, R. K., Lucek, K., Savolainen, V. & Westram, A. M. Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers. Philos. T. Roy. Soc. B 375, 20190528 (2020).Article 

    Google Scholar 
    Hofreiter, M. & Stewart, J. Ecological change, range fluctuations and population dynamics during the Pleistocene. Curr. Biol. 19, R584–R594 (2009).Article 
    CAS 

    Google Scholar 
    Longman, J., Mills, B. J. W., Manners, H. R., Gernon, T. M. & Palmer, M. R. Late Ordovician climate change and extinctions driven by elevated volcanic nutrient supply. Nat. Geosci. 14, 924–929 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Thomson, R. C., Spink, P. Q. & Shaffer, H. B. A global phylogeny of turtles reveals a burst of climate-associated diversification on continental margins. Proc. Natl Acad. Sci. USA 118, e2012215118 (2021).Article 
    CAS 

    Google Scholar 
    Chaboureau, A. C., Sepulchre, P., Donnadieu, Y. & Franc, A. Tectonic-driven climate change and the diversification of angiosperms. Proc. Natl Acad. Sci. USA 111, 14066–14070 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).Article 
    ADS 
    CAS 

    Google Scholar 
    Schmitt, T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 4, 11 (2007).Article 

    Google Scholar 
    Haffer, J. Speciation in Amazonian forest birds. Science 165, 131–137 (1969).Article 
    ADS 
    CAS 

    Google Scholar 
    Ebdon, S. et al. The Pleistocene species pump past its prime: evidence from European butterfly sister species. Mol. Ecol. 30, 3575–3589 (2021).Article 

    Google Scholar 
    Excoffier, L., Foll, M. & Petit, R. J. Genetic consequences of range expansions. Annu. Rev. Ecol. Evol. Syst. 40, 481–501 (2009).Article 

    Google Scholar 
    Baker, H. G. Self-compatibility and establishment after ‘long-distance’ dispersal. Evolution 9, 347–349 (1955).
    Google Scholar 
    Fisher, R. The Genetical Theory of Natural Selection 125–129 (Oxford University Press, 1930).Endler, J. A. Geographic Variation, Speciation, and Clines. Monographs in Population Biology Vol. 10, 53–65, 142–150 (Princeton University Press, 1977).Doebeli, M. & Dieckmann, U. Speciation along environmental gradients. Nature 421, 259–264 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Ispolatov, J. & Doebeli, M. Diversification along environmental gradients in spatially structured populations. Evol. Ecol. Res. 11, 295–304 (2009).
    Google Scholar 
    Rettelbach, A., Servedio, M. R. & Hermisson, J. Speciation in peripheral populations: effects of drift load and mating systems. J. Evol. Biol. 29, 1073–1090 (2016).Article 
    CAS 

    Google Scholar 
    Wright, S. I., Kalisz, S. & Slotte, T. Evolutionary consequences of self-fertilization in plants. Proc. R. Soc. Lond. Ser. B 280, 20130133 (2013).
    Google Scholar 
    Hu, X.-S. Mating system as a barrier to gene flow. Evolution 69, 1158–1177 (2015).Article 
    CAS 

    Google Scholar 
    Glémin, S. How are deleterious mutations purged? Drift versus nonrandom mating. Evolution 57, 2678–2687 (2003).
    Google Scholar 
    Warwick, S. I., Francis, A. & Al-Shehbaz, I. A. Brassicaceae: species checklist and database on CD-Rom. Plant Syst. Evol. 259, 249–258 (2006).Article 

    Google Scholar 
    Warwick, S. I., Al-Shehbaz, I. A. & Sauder, C. A. Phylogenetic position of Arabis arenicola and generic limits of Aphragmus and Eutrema (Brassicaceae) based on sequences of nuclear ribosomal DNA. Can. J. Bot. 84, 269–281 (2006).Article 
    CAS 

    Google Scholar 
    Hohmann, N. et al. Taming the wild: resolving the gene pools of non-model Arabidopsis lineages. BMC Evol. Biol. 14, e224 (2014).Article 

    Google Scholar 
    Novikova, P. Y. et al. Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism. Nat. Genet. 48, 1077–1082 (2016).Article 
    CAS 

    Google Scholar 
    Perrier, A. & Willi, Y. Intraspecific variation in reproductive barriers between two recently-diverged, allopatric Arabidopsis species. J. Evol. Biol. https://doi.org/10.1111/jeb.14122 (2022). (in press).Griffin, P. C. & Willi, Y. Evolutionary shifts to self-fertilisation restricted to geographic range margins in North American Arabidopsis lyrata. Ecol. Lett. 17, 484–490 (2014).Article 
    CAS 

    Google Scholar 
    Willi, Y., Fracassetti, M., Zoller, S. & Van Buskirk, J. Accumulation of mutational load at the edges of a species range. Mol. Biol. Evol. 35, 781–791 (2018).Article 
    CAS 

    Google Scholar 
    Schmickl, R., Jørgensen, M. H., Brysting, A. K. & Koch, M. A. The evolutionary history of the Arabidopsis lyrata complex: a hybrid in the Amphi-Beringian area closes a large distribution gap and builds up a genetic barrier. BMC Evol. Biol. 10, e98 (2010).Article 

    Google Scholar 
    Pyhäjärvi, T., Aalto, E. & Savolainen, O. Time scales of divergence and speciation among natural populations and subspecies of Arabidopsis lyrata (Brassicaceae). Am. J. Bot. 99, 1314–1322 (2012).Article 

    Google Scholar 
    Dyke, A. S. in Quaternary Glaciations – Extent and Chronology, Part II: North America (Elsevier, Amsterdam, 2004).Kirkpatrick, M. & Ravigné, V. Speciation by natural and sexual selection: models and experiments. Am. Nat. 159, S22–S35 (2002).Article 

    Google Scholar 
    Igic, B., Lande, R. & Kohn, J. R. Loss of self‐incompatibility and its evolutionary consequences. Int. J. Plant Sci. 169, 93–104 (2008).Article 

    Google Scholar 
    Willi, Y. & Määttänen, K. Evolutionary dynamics of mating system shifts in Arabidopsis lyrata. J. Evol. Biol. 23, 2123–2131 (2010).Article 
    CAS 

    Google Scholar 
    Lucek, K. & Willi, Y. Drivers of linkage disequilibrium across a species’ geographic range. PLoS Genet. 17, e1009477 (2021).Article 
    CAS 

    Google Scholar 
    Pironon, S. et al. Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm: the centre-periphery hypothesis. Biol. Rev. 92, 1877–1909 (2017).Article 

    Google Scholar 
    Encinas-Viso, F., Young, A. G. & Pannell, J. R. The loss of self-incompatibility in a range expansion. J. Evol. Biol. 33, 1235–1244 (2020).Article 

    Google Scholar 
    Jarne, P. & Auld, J. R. Animals mix it up too: the distribution of self-fertilization among hermaphroditic animals. Evolution 60, 1816–1824 (2006).
    Google Scholar 
    Foxe, J. P. et al. Reconstructing origins of loss of self-incompatibility and selfing in North American Arabidopsis lyrata: a population genetic context. Evolution 64, 3495–3510 (2010).Article 

    Google Scholar 
    Koski, M. H., Layman, N. C., Prior, C. J., Busch, J. W. & Galloway, L. F. Selfing ability and drift load evolve with range expansion. Evol. Lett. 3, 500–512 (2019).Article 

    Google Scholar 
    Prior, C. J. & Busch, J. W. Selfing rate variation within species is unrelated to life‐history traits or geographic range position. Am. J. Bot. 108, 2294–2308 (2021).Article 

    Google Scholar 
    Skeels, A. & Cardillo, M. Reconstructing the geography of speciation from contemporary biodiversity data. Am. Nat. 193, 240–254 (2019).Article 

    Google Scholar 
    Sánchez-Castro, D., Perrier, A. & Willi, Y. Reduced climate adaptation at range edges in North American Arabidopsis lyrata. Glob. Ecol. Biogeogr. 31, 1066–1077 (2022).Article 

    Google Scholar 
    Roessler, K. et al. The genome-wide dynamics of purging during selfing in maize. Nat. Plants 5, 980–990 (2019).Article 
    CAS 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).Hu, T. T. et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 43, 476–481 (2011).Article 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article 

    Google Scholar 
    McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).Article 
    CAS 

    Google Scholar 
    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).Article 
    CAS 

    Google Scholar 
    Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).Article 
    CAS 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).Article 
    CAS 

    Google Scholar 
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).Article 
    CAS 

    Google Scholar 
    Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).Article 
    CAS 

    Google Scholar 
    Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. & Foll, M. Robust demographic inference from genomic and SNP data. PLoS Genet. 9, e1003905 (2013).Article 

    Google Scholar 
    Marchi, N. et al. The genomic origins of the world’s first farmers. Cell 185, 1842–1859 (2022).Article 
    CAS 

    Google Scholar 
    Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).Article 
    CAS 

    Google Scholar 
    Genete, M., Castric, V. & Vekemans, X. Genotyping and de novo discovery of allelic variants at the Brassicaceae self-incompatibility locus from short-read sequencing data. Mol. Biol. Evol. 7, 1193–1201 (2020).Article 

    Google Scholar 
    Lynch, M. et al. Genome-wide linkage-disequilibrium profiles from single individuals. Genetics 198, 269–281 (2014).Article 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2021).Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).Article 
    CAS 

    Google Scholar 
    Nychka, D., Furrer, R., Paige, J. & Sain, S. fields: tools for spatial data. R package version 14.1 https://github.com/dnychka/fieldsRPackage (2021).Asquith, W. lmomco—L-moments, censored L-moments, trimmed L-moments, L-comoments, and many distributions. R package version 2.4.7 (2022).Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    Lemon, J. Plotrix: a package in the red light district of R. R. N. 6, 8–12 (2006).
    Google Scholar 
    Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R. N. 5, 9–13 (2005).
    Google Scholar 
    Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied Spatial Data Analysis with R Second edition (Springer, 2013). More

  • in

    Population fluctuations and synanthropy explain transmission risk in rodent-borne zoonoses

    Predictors of reservoir statusOur analyses include all known rodent reservoirs for zoonotic pathogens (282 species). These reservoirs harbour a total of 95 known zoonotic pathogens (34 viruses, 26 bacteria, 17 helminths, 12 protozoa and six fungi) employing all known modes of transmission (43 vector-borne, 32 close-contact, 28 non-close contact, and 13 using multiple transmission modes) (Supplementary Data 2). Compared to presumed non-reservoirs (species currently not known to harbour any zoonotic pathogens), we observed that reservoir rodents are strikingly synanthropic (Figs. 2, 3a, Table 1). Despite potential geographic biases, and the general possibility that synanthropic species are better studied compared to non-synanthropic species (see Sampling bias and Supplementary Figs. 1, 2), synanthropy emerged as a defining characteristic of nearly all (95%) currently known rodent reservoirs. Of the 155 synanthropic species, only six are considered as truly synanthropic, i.e., predominately, if not exclusively, occurring in or near human dwellings, while the remaining species only occasionally show synanthropic behaviour (Supplementary Data 1).Fig. 2: Predictors of reservoir status.Final structural equation model linking reservoir status of rodent species (n = 269) with their synanthropy and hunting status, population fluctuations (s-index, log-transformed), and adult body mass, controlling for their occurrence in a range of habitats and the number of studies available per species. One-sided (directional) arrows represent a causal influence originating from the variable at the base of the arrow, with the width of the arrow and associated value representing the standardised strength of the relationship. The small double-sided arrows and numbers next to each response (endogenous) variable represent the error variance.Full size imageFig. 3: Characteristics of reservoir and synanthropic rodents.a Reservoir rodents are predominately synanthropic (n = 436 with n (non-reservoir) = 154, n (reservoir) = 282). b Synanthropic rodents display high population fluctuations (high s-index) (n = 269) and c, occur in multiple artificial habitats (n = 269) (Tables 1–3). In a, estimated probability and 95% confidence intervals are shown and in b–c, estimated probability is shown and shaded areas show 95 % confidence intervals.Full size imageTable 1 Summary of best-fit generalized linear mixed effects model for reservoir status (n = 436)Full size tableCompared to non-reservoirs, we also found that rodent reservoirs are disproportionately exploited by humans (hunted for meat and fur). Seventy-two of the regularly hunted rodent species (n = 83) are reservoirs (87%), and hunted rodent species harbour on average five times the number of zoonotic pathogens than non-hunted species (Table 2).Table 2 Summary of rodent characteristics divided by rodent group with respect to hunting, reservoir status, and synanthropic behaviourFull size tableWe explored causal pathways using a structural equation model (SEM) linking synanthropy, reservoir status, and their hypothesized predictors. The final model, which we established a priori, had 17 free parameters and 21 degrees of freedom (n = 269). The model fit, based on the SRMR (standardized root mean squared residual) and the RMSEA (root mean squared error of approximation) indicated a good fit (see Methods). From the initially formulated full model, the pathways linking reservoir status to population fluctuations (s-index, Methods), occurrence in grasslands, number of artificial habitats a species occurs in, and number of studies found per species were not significant and thus removed from the final model (Supplementary Fig. 3). Similarly, pathways linking synanthropy and occurrence in grasslands were not significant and also removed. All reported coefficients for pathways are standardized to facilitate comparisons among the different relationships. The relationships and coefficients below all refer to those in the final model.The focal variable in the model was reservoir status, which was strongly and positively associated with synanthropy and had the highest estimated pathway coefficient (standardised estimate = 0.58, 95% CI 0.49–0.66, Fig. 2). Controlling for synanthropy, species were more likely to be a reservoir with increasing adult weight (0.13, 0.04–0.22). Species that occur in savanna were less likely to be reservoirs (−0.13, −0.22 to −0.04), while hunted species were more likely to be reservoirs (Fig. 2, 0.20, 0.11–0.30).Synanthropy was influenced by four habitat variables: a species was more likely to be synanthropic if it occurs in a higher number of artificial habitats (0.17, 0.04–0.31), and occurs in urban areas (0.14, 0.01–0.27), deserts (0.12, 0.01–0.23), or forests (0.13, 0.02–0.24). Notably, species with higher s-index, and thus larger population fluctuations, were more likely to be synanthropic (0.12, 0.01–0.22), and the s-index itself decreased as adult weight increased (−0.16, −0.27 to −0.04). Finally, hunted species were characterized by higher adult bodyweight (0.35, 0.25–0.44) (Fig. 2).The number of studies per species was positively associated with both a species’ synanthropic behaviour (0.29, 0.19–0.39) and its reservoir status (0.09, 0.00– 0.19), albeit with weaker evidence for the latter effect (p = 0.054) (Fig. 2),The confirmatory generalized linear mixed effects models (GLMMs) (Tables 1, 3), which control for correlation among species within the same family, showed that our SEM results were robust. Indeed, synanthropy was a significant predictor of reservoir status. These models underscore synanthropy as the most important predictor of reservoir status in our analysis (Table 1, Figs. 2–3).Table 3 Summary of best-fit generalized linear mixed effects model for synanthropic status (n = 269)Full size tablePopulation fluctuations affect transmission riskOur newly compiled data on the magnitude of population fluctuations enabled comparative investigations beyond theoretically straightforward predictions that transmission risk increases with reservoir abundance for density-dependent systems. We show that while strong population fluctuations (measured as the s-index) are found frequently in both reservoir and non-reservoir rodents (Table 2), synanthropic rodents exhibit much larger population fluctuations compared to non-synanthropic rodents (Table 2, Figs. 2–3). This pattern was apparent despite broad confidence intervals in the relationship between the s-index and the probability of being synanthropic (Fig. 3b, Tables 2, 3). Taken together, our results suggest that larger population fluctuations in reservoir species increase zoonotic transmission risk via synanthropic behaviours of rodents, thereby increasing the likelihood of zoonotic spillover infection to humans.Habitat generalism and habitat transformation increase transmission riskWe also find that reservoir species thrive in human-created (artificial) habitats (Fig. 3a, c, Tables 2–3), which reflects a general flexibility in their use of diverse habitat types compared to non-reservoir species (Fig. 4a, Table 2). In addition, the number of zoonotic pathogens harboured by a rodent species increased with habitat breadth (r436 = 0.34, p  More

  • in

    Oldest DNA reveals 2-million-year-old ecosystem

    Listen to the latest from the world of science, with Benjamin Thompson.
    Your browser does not support the audio element.

    Download MP3

    In this episode:00:45 World’s oldest DNA shows that mastodons roamed ancient GreenlandDNA recovered from ancient permafrost has been used to reconstruct what an ecosystem might have looked like two million years ago. Their work suggests that Northern Greenland was much warmer than the frozen desert it is today, with a rich ecosystem of plants and animals.Research Article: Kjær et al.Nature Video: The world’s oldest DNA: Extinct beasts of ancient Greenland08:21 Research HighlightsWhy low levels of ‘good’ cholesterol don’t predict heart disease risk in Black people, and how firework displays affect the flights of geese.Research Highlight: ‘Good’ cholesterol readings can lead to bad results for Black peopleResearch Highlight: New Year’s fireworks chase wild geese high into the sky10:31 Modelling the potential emissions of plasticsWhile the global demand for plastics is growing, the manufacturing and disposal of these ubiquitous materials is responsible for significant CO2 emissions each year. This week, a team have modelled how CO2 emissions could vary in the context of different strategies for mitigating climate change. They reveal how under specific conditions the industry could potentially become a carbon sink.Research Article: Stegmann et al.News and Views: Plastics can be a carbon sink but only under stringent conditionsSubscribe to Nature Briefing, an unmissable daily round-up of science news, opinion and analysis free in your inbox every weekday.Never miss an episode. Subscribe to the Nature Podcast on Apple Podcasts, Google Podcasts, Spotify or your favourite podcast app. An RSS feed for Nature Podcast is available too. More

  • in

    Aminolipids elicit functional trade-offs between competitiveness and bacteriophage attachment in Ruegeria pomeroyi

    Bacterial strains and cultivationAll marine bacteria used in this study were cultivated using the ½ YTSS (yeast-tryptone-sea salt) medium (DSMZ 974), containing yeast extract 2 g/L, tryptone 1.25 g/L and Sigma sea salts 20 g/L or the defined marine ammonium mineral salt (MAMS) medium (DSMZ 1313) where HEPES (10 mM, pH 8.0) replaced the phosphate buffer [16]. All cultures were grown at 30 °C aerobically in a shaker (150 rpm).For growth competition assays between the WT and the olsA mutant, cultures of bacteria were grown in 10 mL ½ YTSS medium for the WT strain, or with the addition of 10 µg/mL gentamicin for the olsA mutant since a gentamicin cassette was inserted to construct the mutant [4]. Cells were harvested at mid-late exponential phase and diluted to an optical density measured at 540 nm (OD540) of 1.0. These cells were then both inoculated at 1% (v/v) into 250 mL flasks containing 50 mL growth media (either ½ YTSS or MAMS + 0.5 mM Pi) in triplicate and grown at 30 °C with shaking at 140 rpm. At time point 0 h, 100 µL samples were removed in triplicate from each flask. These samples were then ten-fold serially diluted in the same growth media to a dilution of 10−9. From each serial dilution tube, 10 µL droplets were pipetted in triplicate onto agar plates containing either ½ YTSS agar (to count both the WT and the olsA mutant) or ½ YTSS agar + 10 µg/mL gentamicin (to count just the olsA mutant). Once the droplets were dry, plates were incubated at 30 °C for 3-4 days. Colony forming units (CFU) were determined by counting the number of colonies in the dilution number where single colonies were clearly visible. For the cultures grown in ½ YTSS medium, samples were removed and enumerated using the same method at time points 24 h and 96 h. For the cultures grown in MAMS media + 0.5 mM Pi, samples were removed and enumerated at time points 0 h, 48 h and 96 h.Membrane separation by sucrose density gradient ultracentrifugationThe WT strain and the olsA mutant were grown in ½ YTSS medium to OD540 ~0.8. One litre of culture was then collected by centrifugation at 12,300 × g at 4 °C for 10 minutes, using a JLA 10.5 rotor. Cells were washed and resuspended in 50 mL HEPES buffer (pH 8.0, 10 mM). Cells were then pelleted by centrifugation at 4,500 × g at 4 °C for 10 min, before resuspending the pellet in 3 mL HEPES buffer (pH 8.0, 10 mM), containing 1.6X cOmplete Protease Inhibitor cocktail (Roche), 3X DNAse I buffer (NEB) and 6 units/mL DNase I (NEB). Cells were then lysed using a French Press at 1000 PSI. Cell debris was removed by centrifugation at 4,500 × g at 4 °C for 10 min and the supernatant was transferred to a new Oakridge centrifuge tube for pelleting total membranes by centrifugation at 75,600 × g at 10 °C for 45 min in a JA25.5 rotor. Pelleted membranes were then washed and resuspended in 20% (w/v) sucrose in HEPES buffer (10 mM, pH 8.0). Resuspended membrane samples were then layered on top of a stepwise gradient containing 3.3 mL 73% (w/v) sucrose at the bottom and 6.7 mL 53% (w/v) sucrose in between. Inner (IM) and outer (OM) membranes were separated by centrifugation at 140,000 × g at 4 °C, for 16 hours in a SW40-Ti rotor. The IM resided in the interface between the 53% (w/v) and 20% (w/v) sucrose layers and the OM in the interface between the 53% (w/v) and 73% (w/v) sucrose layers. Both IM and OM samples were removed from the sucrose density interface, diluted with 30 mL HEPES buffer (10 mM, pH 8.0), and pelleted by centrifugation at 75,600 × g for 45 min. IM and OM were then resuspended in 1 mL of the same HEPES buffer before lipid and protein extractions.Proteomics sample preparation, in-gel digestion and nanoLC-MS analysisIM and OM samples were carefully dissolved in 100 μL 1X LDS loading buffer (Invitrogen) before loading on a precast Tris-Bis NuPAGE gel (Invitrogen) using 1X MOPS running solution (Invitrogen). SDS-polyacrylamide gel electrophoresis was run for approximately 5 min to purify polypeptides in the polyacrylamide gel by removing contaminants. Polyacrylamide gel bands containing the membrane proteome were excised and digested by trypsin (Roche) proteolysis. The resulting tryptic peptides were extracted using formic acid-acetonitrile (5%:25%, v/v) before resuspension in acetonitrile-trifluoroacetate (2.5%:0.05%, v/v). Tryptic peptides were separated by nano-liquid chromatography (nanoLC) using an Ultimate 3000 LC system with an Acclaim PepMap RSLC C18 reverse phase column (ThermoFisher) at the Proteomics Research Technology Platform (PRTP) at the University of Warwick. MS/MS spectra were collected using an Orbitrap Fusion mass spectrometer (ThermoFisher) in electrospray ionization (ESI) mode. Survey scans of peptides from m/z 350 to 1500 were collected for each sample in a 1.5-hr LC-MS run. This resulted in 12 mass spectra (3 biological replicates of IM and OM of WT and the olsA mutant) with a total of ~ 7.5 G of MS/MS data.MS/MS data search and statistical analysesCompiled MS/MS raw files were searched against the genome of Ruegeria pomeroyi DSS-3 using the MaxQuant software package [17, 18]. Default settings were used and samples were matched between runs. The software package Perseus (v1.6.5.0) was used to determine differentially expressed proteins with a false discovery rate (FDR) of 0.01 [19]. The LFQ (label-free quantitation) intensity of each protein was normalized by dividing the total peptide intensity of each sample by the length of each protein. Peptides were retained for further analyses only if they were consistently found in all three biological replicates in at least one set of the four samples (IM_WT, IM_olsA, OM_WT, OM_olsA). Missing values were imputed using the default parameters (width, 0.3; down-shift 1.8) and statistical analyses were performed using a two-sample Student’s t-test. Principle component analysis (PCA) plots and volcano plots were generated using default settings in the Perseus package.To analyse the pathways of differentially expressed proteins between the wild-type and the mutant, the sequences of those proteins that were significantly overrepresented (FDR  More

  • in

    The global spectrum of plant form and function: enhanced species-level trait dataset

    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892, https://doi.org/10.1111/j.2007.0030-1299.15559.x (2007).Article 

    Google Scholar 
    Aerts, R. & Chapin, F. S. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, Vol 30 30, 1–67 (2000).CAS 

    Google Scholar 
    Grime, J. P. Plant Strategies, Vegetation Processes, and Ecosystem Properties., (John Wiley & Sons, 2001).Diaz, S. et al. The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science 15, 295–304, https://doi.org/10.1111/j.1654-1103.2004.tb02266.x (2004).Article 

    Google Scholar 
    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16, 545–556 (2002).Article 

    Google Scholar 
    Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61, 167, https://doi.org/10.1071/bt12225 (2013).Article 

    Google Scholar 
    Garnier, E., Navas, M.-L. & Grigulis, K. Plant Functional Diversity. (Oxford University Press, 2016).Pausas, J. G., Bradstock, R. A., Keith, D. A. & Keeley, J. E. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85, 1085–1100 (2004).Article 

    Google Scholar 
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171, https://doi.org/10.1038/nature16489 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Kattge, J. et al. TRY – a global database of plant traits. Global Change Biology 17, 2905–2935, https://doi.org/10.1111/j.1365-2486.2011.02451.x (2011).Article 
    ADS 

    Google Scholar 
    Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Global Change Biology 26, 119–188, https://doi.org/10.1111/gcb.14904 (2020).Article 
    ADS 

    Google Scholar 
    Royal Botanic Gardens, Kew. The State of the World’s Plants Report – 2016. (Royal Botanic Gardens, Kew, 2016).Kattge, J. et al. TRY – Categorical Traits Dataset. Data from: TRY – a global database of plant traits. TRY File Archive https://www.try-db.org/TryWeb/Data.php – 3 (2012).Garnier, E. et al. Towards a thesaurus of plant characteristics: an ecological contribution. Journal of Ecology 105, 298–309, https://doi.org/10.1111/1365-2745.12698 (2016).Article 

    Google Scholar 
    Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51, 335, https://doi.org/10.1071/bt02124 (2003).Article 

    Google Scholar 
    Kleyer, M. et al. The LEDA Traitbase: a database of life-history traits of the Northwest European flora. Journal of Ecology 96, 1266–1274, https://doi.org/10.1111/j.1365-2745.2008.01430.x (2008).Article 

    Google Scholar 
    Adler, P. B., Milchunas, D. G., Lauenroth, W. K., Sala, O. E. & Burke, I. C. Functional traits of graminoids in semi-arid steppes: a test of grazing histories. Journal of Applied Ecology 41, 653–663, https://doi.org/10.1111/j.0021-8901.2004.00934.x (2004).Article 

    Google Scholar 
    Adler, P. B. A comparison of livestock grazing effects on sagebrush steppe, USA, and Patagonian steppe, Argentina. PhD thesis, Colorado State University, (2003).Atkin, O. K., Westbeek, M. H. M., Cambridge, M. L., Lambers, H. & Pons, T. L. Leaf Respiration in Light and Darkness (A Comparison of Slow- and Fast-Growing Poa Species. Plant Physiology 113, 961–965, https://doi.org/10.1104/pp.113.3.961 (1997).Article 
    CAS 

    Google Scholar 
    Campbell, C. et al. Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytologist 176, 375–389, https://doi.org/10.1111/j.1469-8137.2007.02183.x (2007).Article 
    CAS 

    Google Scholar 
    Atkin, O. K., Schortemeyer, M., McFarlane, N. & Evans, J. R. The response of fast- and slow-growing Acacia species to elevated atmospheric CO2: an analysis of the underlying components of relative growth rate. Oecologia 120, 544–554, https://doi.org/10.1007/s004420050889 (1999).Article 
    ADS 

    Google Scholar 
    Loveys, B. R. et al. Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow-growing plant species. Global Change Biology 9, 895–910, https://doi.org/10.1046/j.1365-2486.2003.00611.x (2003).Article 
    ADS 

    Google Scholar 
    Bahn, M. et al. in Land-use changes in European mountain ecosystems. ECOMONT- Concept and Results (eds A. Cernusca, U. Tappeiner, & N. Bayfield) 247-255 (Blackwell Wissenschaft, Berlin, 1999).Wohlfahrt, G. et al. Inter-specific variation of the biochemical limitation to photosynthesis and related leaf traits of 30 species from mountain grassland ecosystems under different land use. Plant, Cell and Environment 22, 1281–1296, https://doi.org/10.1046/j.1365-3040.1999.00479.x (1999).Article 

    Google Scholar 
    Wilson, K. B., Baldocchi, D. D. & Hanson, P. J. Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. Tree Physiology 20, 565–578, https://doi.org/10.1093/treephys/20.9.565 (2000).Article 

    Google Scholar 
    Xu, L. & Baldocchi, D. D. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiology 23, 865–877, https://doi.org/10.1093/treephys/23.13.865 (2003).Article 

    Google Scholar 
    Baraloto, C. et al. Decoupled leaf and stem economics in rain forest trees. Ecology Letters 13, 1338–1347, https://doi.org/10.1111/j.1461-0248.2010.01517.x (2010).Article 

    Google Scholar 
    Baraloto, C. et al. Functional trait variation and sampling strategies in species-rich plant communities. Functional Ecology 24, 208–216, https://doi.org/10.1111/j.1365-2435.2009.01600.x (2010).Article 

    Google Scholar 
    Blonder, B. et al. The leaf-area shrinkage effect can bias paleoclimate and ecology research. American Journal of Botany 99, 1756–1763, https://doi.org/10.3732/ajb.1200062 (2012).Article 

    Google Scholar 
    Blonder, B. et al. Testing models for the leaf economics spectrum with leaf and whole-plant traits in Arabidopsis thaliana. AoB Plants 7, plv049, https://doi.org/10.1093/aobpla/plv049 (2015).Article 

    Google Scholar 
    Blonder, B., Violle, C. & Enquist, B. J. Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. Journal of Ecology 101, 981–989, https://doi.org/10.1111/1365-2745.12102 (2013).Article 

    Google Scholar 
    Blonder, B., Violle, C., Bentley, L. P. & Enquist, B. J. Venation networks and the origin of the leaf economics spectrum. Ecology Letters 14, 91–100, https://doi.org/10.1111/j.1461-0248.2010.01554.x (2010).Article 

    Google Scholar 
    Bond-Lamberty, B., Wang, C. & Gower, S. T. Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Canadian Journal of Forest Research 32, 1441–1450, https://doi.org/10.1139/x02-063 (2002).Article 

    Google Scholar 
    Bond-Lamberty, B., Wang, C., Gower, S. T. & Norman, J. Leaf area dynamics of a boreal black spruce fire chronosequence. Tree Physiology 22, 993–1001, https://doi.org/10.1093/treephys/22.14.993 (2002).Article 
    CAS 

    Google Scholar 
    Bond-Lamberty, B., Wang, C. & Gower, S. T. The use of multiple measurement techniques to refine estimates of conifer needle geometry. Canadian Journal of Forest Research 33, 101–105, https://doi.org/10.1139/x02-166 (2003).Article 

    Google Scholar 
    Brown, K. A. et al. Assessing Natural Resource Use by Forest-Reliant Communities in Madagascar Using Functional Diversity and Functional Redundancy Metrics. PLoS ONE 6, e24107, https://doi.org/10.1371/journal.pone.0024107 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Burrascano, S. et al. Wild boar rooting intensity determines shifts in understorey composition and functional traits. Community Ecology 16, 244–253, https://doi.org/10.1556/168.2015.16.2.12 (2015).Article 

    Google Scholar 
    Butterfield, B. J. & Briggs, J. M. Regeneration niche differentiates functional strategies of desert woody plant species. Oecologia 165, 477–487, https://doi.org/10.1007/s00442-010-1741-y (2010).Article 
    ADS 

    Google Scholar 
    Byun, C., de Blois, S. & Brisson, J. Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. Journal of Ecology 101, 128–139, https://doi.org/10.1111/1365-2745.12016 (2012).Article 

    Google Scholar 
    Campetella, G. et al. Patterns of plant trait–environment relationships along a forest succession chronosequence. Agriculture, Ecosystems & Environment 145, 38–48, https://doi.org/10.1016/j.agee.2011.06.025 (2011).Article 

    Google Scholar 
    Cavender-Bares, J., Keen, A. & Miles, B. Phylogenetic structure of floridian plant communities depends on taxonomic and spatial scale. Ecology 87, S109–S122, https://doi.org/10.1890/0012-9658(2006)87[109:psofpc]2.0.co;2 (2006).Article 

    Google Scholar 
    Cerabolini, B. E. L. et al. Can CSR classification be generally applied outside Britain? Plant Ecology 210, 253–261, https://doi.org/10.1007/s11258-010-9753-6 (2010).Article 

    Google Scholar 
    Pierce, S., Brusa, G., Sartori, M. & Cerabolini, B. E. L. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Annals of Botany 109, 1047–1053, https://doi.org/10.1093/aob/mcs021 (2012).Article 

    Google Scholar 
    Cornelissen, J. H. C. et al. Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Functional Ecology 18, 779–786, https://doi.org/10.1111/j.0269-8463.2004.00900.x (2004).Article 

    Google Scholar 
    Quested, H. M. et al. Decomposition of sub-arctic plants with differenting nitogen economies: a functional role for hemiparasites. Ecology 84, 3209–3221, https://doi.org/10.1890/02-0426 (2003).Article 

    Google Scholar 
    Cornelissen, J. H. C., Diez, P. C. & Hunt, R. Seedling Growth, Allocation and Leaf Attributes in a Wide Range of Woody Plant Species and Types. The Journal of Ecology 84, 755, https://doi.org/10.2307/2261337 (1996).Article 

    Google Scholar 
    Cornelissen, J. H. C., Werger, M. J. A. & CastroDiez, P. vanRheenen, J. W. A. & Rowland, A. P. Foliar nutrients in relation to growth, allocation and leaf traits in seedlings of a wide range of woody plant species and types. Oecologia 111, 460–469 (1997).Article 
    ADS 
    CAS 

    Google Scholar 
    Cornelissen, J. H. C. et al. Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? Journal of Vegetation Science 14, 311, https://doi.org/10.1658/1100-9233(2003)014[0311:ftowpc]2.0.co;2 (2003).Article 

    Google Scholar 
    Castro-Díez, P., Puyravaud, J. P., Cornelissen, J. H. C. & Villar-Salvador, P. Stem anatomy and relative growth rate in seedlings of a wide range of woody plant species and types. Oecologia 116, 57–66, https://doi.org/10.1007/s004420050563 (1998).Article 
    ADS 

    Google Scholar 
    Cornelissen, J. H. C. A triangular relationship between leaf size and seed size among woody species: allometry, ontogeny, ecology and taxonomy. Oecologia 118, 248–255, https://doi.org/10.1007/s004420050725 (1999).Article 
    ADS 
    CAS 

    Google Scholar 
    Cornelissen, J. H. C. An Experimental Comparison of Leaf Decomposition Rates in a Wide Range of Temperate Plant Species and Types. The Journal of Ecology 84, 573, https://doi.org/10.2307/2261479 (1996).Article 

    Google Scholar 
    Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11, 1065–1071, https://doi.org/10.1111/j.1461-0248.2008.01219.x (2008).Article 

    Google Scholar 
    Preston, K. A., Cornwell, W. K. & DeNoyer, J. L. Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytologist 170, 807–818, https://doi.org/10.1111/j.1469-8137.2006.01712.x (2006).Article 

    Google Scholar 
    Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: Convex hull volume. Ecology 87, 1465–1471, https://doi.org/10.1890/0012-9658(2006)87[1465:attfhf]2.0.co;2 (2006).Article 

    Google Scholar 
    Ackerly, D. D. & Cornwell, W. K. A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecology Letters 10, 135–145, https://doi.org/10.1111/j.1461-0248.2006.01006.x (2007).Article 
    CAS 

    Google Scholar 
    Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs 79, 109–126, https://doi.org/10.1890/07-1134.1 (2009).Article 

    Google Scholar 
    Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist 183, 980–992, https://doi.org/10.1111/j.1469-8137.2009.02917.x (2009).Article 
    CAS 

    Google Scholar 
    Craine, J. M. et al. Functional consequences of climate change-induced plant species loss in a tallgrass prairie. Oecologia 165, 1109–1117, https://doi.org/10.1007/s00442-011-1938-8 (2011).Article 
    ADS 

    Google Scholar 
    Craine, J. M., Towne, E. G., Ocheltree, T. W. & Nippert, J. B. Community traitscape of foliar nitrogen isotopes reveals N availability patterns in a tallgrass prairie. Plant and Soil 356, 395–403, https://doi.org/10.1007/s11104-012-1141-7 (2012).Article 
    CAS 

    Google Scholar 
    Tucker, S. S., Craine, J. M. & Nippert, J. B. Physiological drought tolerance and the structuring of tallgrass prairie assemblages. Ecosphere 2, art48, https://doi.org/10.1890/es11-00023.1 (2011).Article 

    Google Scholar 
    Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J. & Johnson, L. C. Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology 86, 12–19, https://doi.org/10.1890/04-1075 (2005).Article 

    Google Scholar 
    Craven, D. et al. Between and within-site comparisons of structural and physiological characteristics and foliar nutrient content of 14 tree species at a wet, fertile site and a dry, infertile site in Panama. Forest Ecology and Management 238, 335–346, https://doi.org/10.1016/j.foreco.2006.10.030 (2007).Article 

    Google Scholar 
    Craven, D. et al. Seasonal variability of photosynthetic characteristics influences growth of eight tropical tree species at two sites with contrasting precipitation in Panama. Forest Ecology and Management 261, 1643–1653, https://doi.org/10.1016/j.foreco.2010.09.017 (2011).Article 

    Google Scholar 
    Bragazza, L. Conservation priority of Italian Alpine habitats: a floristic approach based on potential distribution of vascular plant species. Biodiversity and Conservation 18, 2823–2835, https://doi.org/10.1007/s10531-009-9609-3 (2009).Article 

    Google Scholar 
    Dainese, M. & Bragazza, L. Plant traits across different habitats of the Italian Alps: a comparative analysis between native and alien species. Alpine Botany 122, 11–21, https://doi.org/10.1007/s00035-012-0101-4 (2012).Article 

    Google Scholar 
    de Araujo, A. C. et al. LBA-ECO CD-02 C and N Isotopes in Leaves and Atmospheric CO2, Amazonas, Brazil. Data set. Available on-line [http://daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. (2011).Royal Botanical Gardens KEW. Seed Information Database (SID). Version 7.1. Available from: http://data.kew.org/sid/ (accessed May 2011). (2008).Domingues, T. F., Berry, J. A., Martinelli, L. A., Ometto, J. P. H. B. & Ehleringer, J. R. Parameterization of Canopy Structure and Leaf-Level Gas Exchange for an Eastern Amazonian Tropical Rain Forest (Tapajós National Forest, Pará, Brazil). Earth Interactions 9, 1–23, https://doi.org/10.1175/ei149.1 (2005).Article 
    ADS 

    Google Scholar 
    Domingues, T. F., Martinelli, L. A. & Ehleringer, J. R. Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazônia, Brazil. Plant Ecology 193, 101–112, https://doi.org/10.1007/s11258-006-9251-z (2007).Article 

    Google Scholar 
    Domingues, T. F. et al. Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant, Cell & Environment 33, 959–980, https://doi.org/10.1111/j.1365-3040.2010.02119.x (2010).Article 
    CAS 

    Google Scholar 
    Kerkhoff, A. J., Fagan, W. F., Elser, J. J. & Enquist, B. J. Phylogenetic and Growth Form Variation in the Scaling of Nitrogen and Phosphorus in the Seed Plants. The American Naturalist 168, E103–E122, https://doi.org/10.1086/507879 (2006).Article 

    Google Scholar 
    Fagúndez, J. & Izco, J. Seed morphology of the European species of Erica L. sect. Arsace Salisb. ex Benth. (Ericaceae). Acta Botanica Gallica 157, 45–54, https://doi.org/10.1080/12538078.2010.10516188 (2010).Article 

    Google Scholar 
    Han, W., Fang, J., Guo, D. & Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist 168, 377–385, https://doi.org/10.1111/j.1469-8137.2005.01530.x (2005).Article 
    CAS 

    Google Scholar 
    He, J.-S. et al. A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist 170, 835–848, https://doi.org/10.1111/j.1469-8137.2006.01704.x (2006).Article 

    Google Scholar 
    He, J.-S. et al. Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia 155, 301–310, https://doi.org/10.1007/s00442-007-0912-y (2007).Article 
    ADS 

    Google Scholar 
    Bocanegra, K., Fernández, F. & Galvis, J. Grupos funcionales de arboles en bosques secundarios de la region Bajo Calima (Buenaventura, Colombia). Boletín Científico. Centro de Museos. Museo de Historia Natural 19, 17–40, https://doi.org/10.17151/bccm.2015.19.1.2 (2015).Article 

    Google Scholar 
    Fitter, A. H. & Peat, H. J. The Ecological Flora Database. The Journal of Ecology 82, 415, https://doi.org/10.2307/2261309 (1994).Article 

    Google Scholar 
    Frenette-Dussault, C., Shipley, B., Léger, J.-F., Meziane, D. & Hingrat, Y. Functional structure of an arid steppe plant community reveals similarities with Grime’s C-S-R theory. Journal of Vegetation Science 23, 208–222, https://doi.org/10.1111/j.1654-1103.2011.01350.x (2011).Article 

    Google Scholar 
    Kichenin, E., Wardle, D. A., Peltzer, D. A., Morse, C. W. & Freschet, G. T. Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Functional Ecology 27, 1254–1261, https://doi.org/10.1111/1365-2435.12116 (2013).Article 

    Google Scholar 
    Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P. & Aerts, R. Evidence of the ‘plant economics spectrum’ in a subarctic flora. Journal of Ecology 98, 362–373, https://doi.org/10.1111/j.1365-2745.2009.01615.x (2010).Article 

    Google Scholar 
    Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P. & Aerts, R. Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits. New Phytologist 186, 879–889, https://doi.org/10.1111/j.1469-8137.2010.03228.x (2010).Article 
    CAS 

    Google Scholar 
    Gallagher, R. V. & Leishman, M. R. A global analysis of trait variation and evolution in climbing plants. Journal of Biogeography 39, 1757–1771, https://doi.org/10.1111/j.1365-2699.2012.02773.x (2012).Article 

    Google Scholar 
    Garnier, E. et al. Assessing the Effects of Land-use Change on Plant Traits, Communities and Ecosystem Functioning in Grasslands: A Standardized Methodology and Lessons from an Application to 11 European Sites. Annals of Botany 99, 967–985, https://doi.org/10.1093/aob/mcl215 (2007).Article 

    Google Scholar 
    Pakeman, R. J., Lepš, J., Kleyer, M., Lavorel, S. & Garnier, E. Relative climatic, edaphic and management controls of plant functional trait signatures. Journal of Vegetation Science 20, 148–159, https://doi.org/10.1111/j.1654-1103.2009.05548.x (2009).Article 

    Google Scholar 
    Pakeman, R. J. et al. Impact of abundance weighting on the response of seed traits to climate and land use. Journal of Ecology 96, 355–366 (2008).Article 

    Google Scholar 
    Fortunel, C. et al. Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90, 598–611 (2009).Article 

    Google Scholar 
    Gillison, A. N. & Carpenter, G. A generic plant functional attribute set and grammar for dynamic vegetation description and analysis. Functional Ecology 11, 775–783, https://doi.org/10.1046/j.1365-2435.1997.00157.x (1997).Article 

    Google Scholar 
    Hill, M. O., Preston, C. D. & Roy, D. B. PLANTATT – attributes of British and Irish Plants: status, size, life history, geography and habitats. (Huntingdon: Centre for Ecology and Hydrology, 2004).Green, W. USDA PLANTS Compilation, version 1, 09-02-02. (http://bricol.net/downloads/data/PLANTSdatabase/) NRCS: The PLANTS Database (http://plants.usda.gov, 1 Feb 2009). National Plant Data Center: Baton Rouge, LA 70874-74490 USA (2009).Guerin, G. R., Wen, H. & Lowe, A. J. Leaf morphology shift linked to climate change. Biology Letters 8, 882–886, https://doi.org/10.1098/rsbl.2012.0458 (2012).Article 

    Google Scholar 
    Gutiérrez, A. G. & Huth, A. Successional stages of primary temperate rainforests of Chiloé Island, Chile. Perspectives in Plant Ecology, Evolution and Systematics 14, 243–256, https://doi.org/10.1016/j.ppees.2012.01.004 (2012).Article 

    Google Scholar 
    Han, W. et al. Floral, climatic and soil pH controls on leaf ash content in China’s terrestrial plants. Global Ecology and Biogeography 21, 376–382, https://doi.org/10.1111/j.1466-8238.2011.00677.x (2011).Article 

    Google Scholar 
    Chen, Y., Han, W., Tang, L., Tang, Z. & Fang, J. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography 36, 178–184, https://doi.org/10.1111/j.1600-0587.2011.06833.x (2011).Article 

    Google Scholar 
    Meng, T.-T. et al. Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts. Biogeosciences 12, 5339–5352, https://doi.org/10.5194/bg-12-5339-2015 (2015).Article 
    ADS 

    Google Scholar 
    Prentice, I. C. et al. Evidence of a universal scaling relationship for leaf CO2 drawdown along an aridity gradient. New Phytologist 190, 169–180, https://doi.org/10.1111/j.1469-8137.2010.03579.x (2010).Article 
    CAS 

    Google Scholar 
    He, T., Pausas, J. P., Belcher, C. M., Schwilk, D. W. & Lamont, B. B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytologist 194, 751–759, https://doi.org/10.1111/j.1469-8137.2012.04079.x (2012).Article 

    Google Scholar 
    He, T., Lamont, B. B. & Downs, K. S. Banksias born to burn. New Phytologist 191, 184–196, https://doi.org/10.1111/j.1469-8137.2011.03663.x. (2011).Article 

    Google Scholar 
    Hickler, T. Plant functional types and community characteristics along environmental gradients on Öland’s Great Alvar (Sweden) Master thesis, University of Lund, Sweden, (1999).Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F. & Jackson, R. B. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs 82, 205–220, https://doi.org/10.1890/11-0416.1 (2012).Article 

    Google Scholar 
    Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F. & Jackson, R. B. A Global Database of Carbon and Nutrient Concentrations of Green and Senesced Leaves Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1106 (2012).Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755, https://doi.org/10.1038/nature11688 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Kattge, J., Knorr, W., Raddatz, T. & Wirth, C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Global Change Biology 15, 976–991, https://doi.org/10.1111/j.1365-2486.2008.01744.x (2009).Article 
    ADS 

    Google Scholar 
    Kirkup, D., Malcolm, P., Christian, G. & Paton, A. Towards a Digital African Flora. Taxon 54, 457, https://doi.org/10.2307/25065373 (2005).Article 

    Google Scholar 
    Koike, F. Plant traits as predictors of woody species dominance in climax forest communities. Journal of Vegetation Science 12, 327–336, https://doi.org/10.2307/3236846 (2001).Article 

    Google Scholar 
    Koike, F., Clout, M., Kawamichi, M., De Poorter, M. & Iwatsuki, K. Assessment and Control of Biological Invasion Risks. (Cambridge, UK and Shoukadoh Book Sellers, Kyoto, Japan, and IUCN, Gland, Switzerland, 2006).Kraft, N. J. B. & Ackerly, D. D. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs 80, 401–422, https://doi.org/10.1890/09-1672.1 (2010).Article 

    Google Scholar 
    Kraft, N. J. B., Valencia, R. & Ackerly, D. D. Functional Traits and Niche-Based Tree Community Assembly in an Amazonian Forest. Science 322, 580–582, https://doi.org/10.1126/science.1160662 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Kühn, I., Durka, W. & Klotz, S. BiolFlor – a new plant-trait database as a tool for plant invasion ecology. Diversity and Distribution 10, 363–365 (2004).Article 

    Google Scholar 
    Otto, B. Merkmale von Samen, Früchten, generativen Germinulen und generativen Diasporen. In: Klotz, S., Kühn, I. & Durka, W. [eds.]: BIOLFLOR – Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. Schriftenreihe für Vegetationskunde 38. Bundesamt für Naturschutz, Bonn (2002).Kurokawa, H. & Nakashizuka, T. Leaf herbivory and decomposability in a Malaysian tropical rain forest. Ecology 89, 2645–2656, https://doi.org/10.1890/07-1352.1 (2008).Article 

    Google Scholar 
    Guy, A. L., Mischkolz, J. M. & Lamb, E. G. Limited effects of simulated acidic deposition on seedling survivorship and root morphology of endemic plant taxa of the Athabasca Sand Dunes in well-watered greenhouse trials. Botany 91, 176–181, https://doi.org/10.1139/cjb-2012-0162 (2013).Article 

    Google Scholar 
    Mishkolz, J. M. Selecting and evaluating native forage mixtures for the mixed grass prairie. (University of Saskatchewan, Saskatoon, SK., 2013).Laughlin, D. C., Leppert, J. J., Moore, M. M. & Sieg, C. H. A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Functional Ecology 24, 493–501, https://doi.org/10.1111/j.1365-2435.2009.01672.x (2009).Article 

    Google Scholar 
    Laughlin, D. C., Fulé, P. Z., Huffman, D. W., Crouse, J. & Laliberté, E. Climatic constraints on trait-based forest assembly. Journal of Ecology 99, 1489–1499, https://doi.org/10.1111/j.1365-2745.2011.01885.x (2011).Article 

    Google Scholar 
    Fyllas, N. M. et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6, 2677–2708, https://doi.org/10.5194/bg-6-2677-2009 (2009).Article 
    ADS 

    Google Scholar 
    Baker, T. R. et al. Do species traits determine patterns of wood production in Amazonian forests. Biogeosciences 6, 297–307, https://doi.org/10.5194/bg-6-297-2009 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Patiño, S. et al. Branch xylem density variations across the Amazon Basin. Biogeosciences 6, 545–568, https://doi.org/10.5194/bg-6-545-2009 (2009).Article 
    ADS 

    Google Scholar 
    Louault, F., Pillar, V. D., Aufrère, J., Garnier, E. & Soussana, J. F. Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. Journal of Vegetation Science 16, 151–160, https://doi.org/10.1111/j.1654-1103.2005.tb02350.x (2005).Article 

    Google Scholar 
    Malhado, A. C. M. et al. Spatial distribution and functional significance of leaf lamina shape in Amazonian forest trees. Biogeosciences 6, 1577–1590, https://doi.org/10.5194/bg-6-1577-2009 (2009).Article 
    ADS 

    Google Scholar 
    Manning, P., Houston, K. & Evans, T. Shifts in seed size across experimental nitrogen enrichment and plant density gradients. Basic and Applied Ecology 10, 300–308, https://doi.org/10.1016/j.baae.2008.08.004 (2009).Article 
    CAS 

    Google Scholar 
    Fry, E. L., Power, S. A. & Manning, P. Trait-based classification and manipulation of plant functional groups for biodiversity-ecosystem function experiments. Journal of Vegetation Science 25, 248–261, https://doi.org/10.1111/jvs.12068 (2013).Article 

    Google Scholar 
    Everwand, G., Fry, E. L., Eggers, T. & Manning, P. Seasonal Variation in the Capacity for Plant Trait Measures to Predict Grassland Carbon and Water Fluxes. Ecosystems 17, 1095–1108, https://doi.org/10.1007/s10021-014-9779-z (2014).Article 
    CAS 

    Google Scholar 
    Medlyn, B. E. & Jarvis, P. G. Design and use of a database of model parameters from elevated [CO2] experiments. Ecological Modelling 124, 69–83, https://doi.org/10.1016/s0304-3800(99)00148-9 (1999).Article 
    CAS 

    Google Scholar 
    Medlyn, B. E. et al. Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant, Cell & Environment 22, 1475–1495, https://doi.org/10.1046/j.1365-3040.1999.00523.x (1999).Article 
    CAS 

    Google Scholar 
    Medlyn, B. E. et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytologist 149, 247–264, https://doi.org/10.1046/j.1469-8137.2001.00028.x (2001).Article 
    CAS 

    Google Scholar 
    Meir, P. et al. Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant, Cell and Environment 25, 343–357, https://doi.org/10.1046/j.0016-8025.2001.00811.x (2002).Article 

    Google Scholar 
    Carswell, F. E. et al. Photosynthetic capacity in a central Amazonian rain forest. Tree Physiology 20, 179–186, https://doi.org/10.1093/treephys/20.3.179 (2000).Article 

    Google Scholar 
    Meir, P., Levy, P. E., Grace, J. & Jarvis, P. G. Photosynthetic parameters from two contrasting woody vegetation types in West Africa. Plant Ecology 192, 277–287, https://doi.org/10.1007/s11258-007-9320-y (2007).Article 

    Google Scholar 
    Mencuccini, M. The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant, Cell and Environment 26, 163–182, https://doi.org/10.1046/j.1365-3040.2003.00991.x (2003).Article 

    Google Scholar 
    Messier, J., McGill, B. J. & Lechowicz, M. J. How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters 13, 838–848, https://doi.org/10.1111/j.1461-0248.2010.01476.x (2010).Article 

    Google Scholar 
    Milla, R. & Reich, P. B. Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude. Annals of Botany 107, 455–465, https://doi.org/10.1093/aob/mcq261 (2011).Article 

    Google Scholar 
    Minden, V. & Kleyer, M. Testing the effect-response framework: key response and effect traits determining above-ground biomass of salt marshes. Journal of Vegetation Science 22, 387–401, https://doi.org/10.1111/j.1654-1103.2011.01272.x (2011).Article 

    Google Scholar 
    Minden, V., Andratschke, S., Spalke, J., Timmermann, H. & Kleyer, M. Plant trait–environment relationships in salt marshes: Deviations from predictions by ecological concepts. Perspectives in Plant Ecology, Evolution and Systematics 14, 183–192, https://doi.org/10.1016/j.ppees.2012.01.002 (2012).Article 

    Google Scholar 
    Moles, A. T., Falster, D. S., Leishman, M. R. & Westoby, M. Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime. Journal of Ecology 92, 384–396, https://doi.org/10.1111/j.0022-0477.2004.00880.x (2004).Article 

    Google Scholar 
    Moles, A. T. et al. Factors that shape seed mass evolution. Proceedings of the National Academy of Sciences 102, 10540–10544, https://doi.org/10.1073/pnas.0501473102 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Lavergne, S., Muenke, N. J. & Molofsky, J. Genome size reduction can trigger rapid phenotypic evolution in invasive plants. Annals of Botany 105, 109–116, https://doi.org/10.1093/aob/mcp271 (2009).Article 
    CAS 

    Google Scholar 
    Lavergne, S. & Molofsky, J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proceedings of the National Academy of Sciences 104, 3883–3888, https://doi.org/10.1073/pnas.0607324104 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Givnish, T. J., Montgomery, R. A. & Goldstein, G. Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: light regimes, static light responses, and whole-plant compensation points. American Journal of Botany 91, 228–246, https://doi.org/10.3732/ajb.91.2.228 (2004).Article 
    CAS 

    Google Scholar 
    Moretti, M. & Legg, C. Combining plant and animal traits to assess community functional responses to disturbance. Ecography 32, 299–309, https://doi.org/10.1111/j.1600-0587.2008.05524.x (2009).Article 

    Google Scholar 
    Niinemets, U. Global-Scale Climatic Controls of Leaf Dry Mass per Area, Density, and Thickness in Trees and Shrubs. Ecology 82, 453, https://doi.org/10.2307/2679872 (2001).Article 

    Google Scholar 
    Niinemets, Ü. Research review. Components of leaf dry mass per area – thickness and density – alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytologist 144, 35–47, https://doi.org/10.1046/j.1469-8137.1999.00466.x (1999).Article 

    Google Scholar 
    Ciocarlan, V. The illustrated Flora of Romania. Pteridophyta et Spermatopyta. 1141 (Editura Ceres, 2009).Sanda, V., Bita-Nicolae, C. D. & Barabas, N. The flora of spontane and cultivated cormophytes from Romania. (Editura “Ion Borcea”, Bacau, 2003).Onoda, Y. et al. Global patterns of leaf mechanical properties. Ecology Letters 14, 301–312, https://doi.org/10.1111/j.1461-0248.2010.01582.x (2011).Article 

    Google Scholar 
    Ordoñez, J. C. et al. Plant Strategies in Relation to Resource Supply in Mesic to Wet Environments: Does Theory Mirror Nature? The American Naturalist 175, 225–239, https://doi.org/10.1086/649582 (2010).Article 

    Google Scholar 
    Ordoñez, J. C. et al. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply. Ecology, 100413130925016, https://doi.org/10.1890/09-1509 (2010).Pahl, A. T., Kollmann, J., Mayer, A. & Haider, S. No evidence for local adaptation in an invasive alien plant: field and greenhouse experiments tracing a colonization sequence. Annals of Botany 112, 1921–1930, https://doi.org/10.1093/aob/mct246 (2013).Article 

    Google Scholar 
    Paula, S. et al. Fire-related traits for plant species of the Mediterranean Basin. Ecology 90, 1420–1420, https://doi.org/10.1890/08-1309.1 (2009).Article 

    Google Scholar 
    Paula, S. & Pausas, J. G. Burning seeds: germinative response to heat treatments in relation to resprouting ability. Journal of Ecology 96, 543–552, https://doi.org/10.1111/j.1365-2745.2008.01359.x (2008).Article 

    Google Scholar 
    Peco, B., de Pablos, I., Traba, J. & Levassor, C. The effect of grazing abandonment on species composition and functional traits: the case of dehesa grasslands. Basic and Applied Ecology 6, 175–183, https://doi.org/10.1016/j.baae.2005.01.002 (2005).Article 

    Google Scholar 
    Ogaya, R. & Peñuelas, J. Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environmental and Experimental Botany 50, 137–148, https://doi.org/10.1016/s0098-8472(03)00019-4 (2003).Article 

    Google Scholar 
    Ogaya, R. & Penuelas, J. Contrasting foliar responses to drought in Quercus ilex and Phillyrea latifolia. Biologia Plantarum 50, 373–382, https://doi.org/10.1007/s10535-006-0052-y (2006).Article 

    Google Scholar 
    Ogaya, R. & Peñuelas, J. Tree growth, mortality, and above-ground biomass accumulation in a holm oak forest under a five-year experimental field drought. Plant Ecology 189, 291–299, https://doi.org/10.1007/s11258-006-9184-6 (2006).Article 

    Google Scholar 
    Ogaya, R. & Peñuelas, J. Changes in leaf δ13C and δ15N for three Mediterranean tree species in relation to soil water availability. Acta Oecologica 34, 331–338, https://doi.org/10.1016/j.actao.2008.06.005 (2008).Article 
    ADS 

    Google Scholar 
    Sardans, J., Peñuelas, J. & Ogaya, R. Drought-induced changes in C and N stoichiometry in a Quercus ilex Mediterranean forest. Forest Science 54, 513–522 (2008).
    Google Scholar 
    Sardans, J., Peñuelas, J., Prieto, P. & Estiarte, M. Changes in Ca, Fe, Mg, Mo, Na, and S content in a Mediterranean shrubland under warming and drought. Journal of Geophysical Research 113, https://doi.org/10.1029/2008jg000795 (2008).Peñuelas, J. et al. Faster returns on ‘leaf economics’ and different biogeochemical niche in invasive compared with native plant species. Global Change Biology 16, 2171–2185, https://doi.org/10.1111/j.1365-2486.2009.02054.x (2009).Article 
    ADS 

    Google Scholar 
    Peñuelas, J. et al. Higher Allocation to Low Cost Chemical Defenses in Invasive Species of Hawaii. Journal of Chemical Ecology 36, 1255–1270, https://doi.org/10.1007/s10886-010-9862-7 (2010).Article 
    CAS 

    Google Scholar 
    Pierce, S., Brusa, G., Vagge, I. & Cerabolini, B. E. L. Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants. Functional Ecology 27, 1002–1010, https://doi.org/10.1111/1365-2435.12095 (2013).Article 

    Google Scholar 
    Pierce, S., Ceriani, R. M., De Andreis, R., Luzzaro, A. & Cerabolini, B. The leaf economics spectrum of Poaceae reflects variation in survival strategies. Plant Biosystems – An International Journal Dealing with all Aspects of Plant Biology 141, 337–343, https://doi.org/10.1080/11263500701627695 (2007).Article 

    Google Scholar 
    Pierce, S., Luzzaro, A., Caccianiga, M., Ceriani, R. M. & Cerabolini, B. Disturbance is the principal α-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. Journal of Ecology 95, 698–706, https://doi.org/10.1111/j.1365-2745.2007.01242.x (2007).Article 

    Google Scholar 
    Müller, S. C., Overbeck, G. E., Pfadenhauer, J. & Pillar, V. D. Plant Functional Types of Woody Species Related to Fire Disturbance in Forest–Grassland Ecotones. Plant Ecology 189, 1–14, https://doi.org/10.1007/s11258-006-9162-z (2006).Article 

    Google Scholar 
    Pillar, V. D. & Sosinski, E. E. An improved method for searching plant functional types by numerical analysis. Journal of Vegetation Science 14, 323–332, https://doi.org/10.1111/j.1654-1103.2003.tb02158.x (2003).Article 

    Google Scholar 
    Duarte, Ld. S., Carlucci, M. B., Hartz, S. M. & Pillar, V. D. Plant dispersal strategies and the colonization of Araucaria forest patches in a grassland-forest mosaic. Journal of Vegetation Science 18, 847–858, https://doi.org/10.1111/j.1654-1103.2007.tb02601.x (2007).Article 

    Google Scholar 
    Blanco, C., Sosinski, E., Santos, B., Silva, M. & Pillar, V. On the overlap between effect and response plant functional types linked to grazing. Community Ecology 8, 57–65, https://doi.org/10.1556/comec.8.2007.1.8 (2007).Article 

    Google Scholar 
    Overbeck, G. E., Müller, S. C., Pillar, V. D. & Pfadenhauer, J. Fine-scale post-fire dynamics in southern Brazilian subtropical grassland. Journal of Vegetation Science 16, 655, https://doi.org/10.1658/1100-9233(2005)016[0655:fpdisb]2.0.co;2 (2005).Article 

    Google Scholar 
    Overbeck, G. E. & Pfadenhauer, J. Adaptive strategies in burned subtropical grassland in southern Brazil. Flora – Morphology, Distribution, Functional Ecology of Plants 202, 27–49, https://doi.org/10.1016/j.flora.2005.11.004 (2007).Article 

    Google Scholar 
    Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist 182, 565–588, https://doi.org/10.1111/j.1469-8137.2009.02830.x (2009).Article 

    Google Scholar 
    Powers, J. S. & Tiffin, P. Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approaches. Functional Ecology 24, 927–936, https://doi.org/10.1111/j.1365-2435.2010.01701.x (2010).Article 

    Google Scholar 
    Price, C. A. & Enquist, B. J. Scaling of mass and morphology in Dicotyledonous leaves: an extension of the WBE model. Ecology 88, 1132–1141, https://doi.org/10.1890/06-1158 (2007).Article 

    Google Scholar 
    Price, C. A., Enquist, B. J. & Savage, V. M. A general model for allometric covariation in botanical form and function. Proceedings of the National Academy of Sciences 104, 13204–13209, https://doi.org/10.1073/pnas.0702242104 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Willis, C. G. et al. Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation. Ecography, no-no, https://doi.org/10.1111/j.1600-0587.2009.05975.x (2009).Reich, P. B., Oleksyn, J. & Wright, I. J. Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160, 207–212, https://doi.org/10.1007/s00442-009-1291-3 (2009).Article 
    ADS 

    Google Scholar 
    Reich, P. B. et al. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecology Letters 11, 793–801, https://doi.org/10.1111/j.1461-0248.2008.01185.x (2008).Article 

    Google Scholar 
    Cavender-Bares, J., Sack, L. & Savage, J. Atmospheric and soil drought reduce nocturnal conductance in live oaks. Tree Physiology 27, 611–620, https://doi.org/10.1093/treephys/27.4.611 (2007).Article 

    Google Scholar 
    Coomes, D. A., Heathcote, S., Godfrey, E. R., Shepherd, J. J. & Sack, L. Scaling of xylem vessels and veins within the leaves of oak species. Biology Letters 4, 302–306, https://doi.org/10.1098/rsbl.2008.0094 (2008).Article 

    Google Scholar 
    Cornwell, W. K., Bhaskar, R., Sack, L., Cordell, S. & Lunch, C. K. Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs. low precipitation. Functional Ecology 21, 1063–1071, https://doi.org/10.1111/j.1365-2435.2007.01323.x (2007).Article 

    Google Scholar 
    Dunbar‐Co, S., Sporck, Margaret, J. & Sack, L. Leaf Trait Diversification and Design in Seven Rare Taxa of the Hawaiian Plantago Radiation. International Journal of Plant Sciences 170, 61–75, https://doi.org/10.1086/593111 (2009).Article 

    Google Scholar 
    Hao, G.-Y., Sack, L., Wang, A.-Y., Cao, K.-F. & Goldstein, G. Differentiation of leaf water flux and drought tolerance traits in hemiepiphytic and non-hemiepiphytic Ficus tree species. Functional Ecology 24, 731–740, https://doi.org/10.1111/j.1365-2435.2010.01724.x (2010).Article 

    Google Scholar 
    Hoof, J., Sack, L., Webb, D. T. & Nilsen, E. T. Contrasting Structure and Function of Pubescent and Glabrous Varieties of Hawaiian Metrosideros polymorpha (Myrtaceae) at High Elevation. Biotropica 0, 070606001740001-???, https://doi.org/10.1111/j.1744-7429.2007.00325.x (2007).Article 

    Google Scholar 
    Martin, R. E., Asner, G. P. & Sack, L. Genetic variation in leaf pigment, optical and photosynthetic function among diverse phenotypes of Metrosideros polymorpha grown in a common garden. Oecologia 151, 387–400, https://doi.org/10.1007/s00442-006-0604-z (2006).Article 
    ADS 

    Google Scholar 
    Nakahashi, C. D., Frole, K. & Sack, L. Bacterial Leaf Nodule Symbiosis in Ardisia (Myrsinaceae): Does it Contribute to Seedling Growth Capacity. Plant Biology 7, 495–500, https://doi.org/10.1055/s-2005-865853 (2005).Article 
    CAS 

    Google Scholar 
    Quero, J. L. et al. Relating leaf photosynthetic rate to whole-plant growth: drought and shade effects on seedlings of four Quercus species. Functional Plant Biology 35, 725, https://doi.org/10.1071/fp08149 (2008).Article 

    Google Scholar 
    Sack, L. Responses of temperate woody seedlings to shade and drought: do trade-offs limit potential niche differentiation. Oikos 107, 110–127, https://doi.org/10.1111/j.0030-1299.2004.13184.x (2004).Article 

    Google Scholar 
    Sack, L. & Frole, K. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology 87, 483–491, https://doi.org/10.1890/05-0710 (2006).Article 

    Google Scholar 
    Sack, L., Tyree, M. T. & Holbrook, N. M. Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. New Phytologist 167, 403–413, https://doi.org/10.1111/j.1469-8137.2005.01432.x (2005).Article 

    Google Scholar 
    Sack, L., Cowan, P. D., Jaikumar, N. & Holbrook, N. M. The ‘hydrology’ of leaves: co-ordination of structure and function in temperate woody species. Plant, Cell and Environment 26, 1343–1356, https://doi.org/10.1046/j.0016-8025.2003.01058.x (2003).Article 

    Google Scholar 
    Sack, L., Melcher, P. J., Liu, W. H., Middleton, E. & Pardee, T. How strong is intracanopy leaf plasticity in temperate deciduous trees. American Journal of Botany 93, 829–839, https://doi.org/10.3732/ajb.93.6.829 (2006).Article 

    Google Scholar 
    Scoffoni, C., Pou, A., Aasamaa, K. & Sack, L. The rapid light response of leaf hydraulic conductance: new evidence from two experimental methods. Plant, Cell & Environment 31, 1803–1812, https://doi.org/10.1111/j.1365-3040.2008.01884.x (2008).Article 

    Google Scholar 
    Sandel, B., Corbin, J. D. & Krupa, M. Using plant functional traits to guide restoration: a case study in California coastal grassland. Ecosphere 2, https://doi.org/10.1890/ES10-00175.1 (2011).Scherer-Lorenzen, M., Schulze, E., Don, A., Schumacher, J. & Weller, E. Exploring the functional significance of forest diversity: A new long-term experiment with temperate tree species (BIOTREE. Perspectives in Plant Ecology, Evolution and Systematics 9, 53–70, https://doi.org/10.1016/j.ppees.2007.08.002 (2007).Article 

    Google Scholar 
    Schweingruber, F. H. & Landolt, W. The Xylem Database. (Swiss Federal Research Institute WSL, 2005).Schweingruber, F. H. & Poschlod, P. Growth rings in herbs and shrubs: Life span, age determination and stem anatomy. Forest, Snow and Landscape Research 79, 195–415 (2005).
    Google Scholar 
    Sheremetev, S. N. Herbs on the soil moisture gradient (water relations and the structural-functional organization). (KMK Scientific Press Ltd, Moscow, 2005).Shiodera, S., Rahajoe, J. S. & Kohyama, T. Variation in longevity and traits of leaves among co-occurring understorey plants in a tropical montane forest. Journal of Tropical Ecology 24, 121–133, https://doi.org/10.1017/s0266467407004725 (2008).Article 

    Google Scholar 
    Shipley, B. Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: relationship with daily irradiance. Functional Ecology 16, 682–689, https://doi.org/10.1046/j.1365-2435.2002.00672.x (2002).Article 

    Google Scholar 
    Meziane, D. & Shipley, B. Interacting components of interspecific relative growth rate: constancy and change under differing conditions of light and nutrient supply. Functional Ecology 13, 611–622, https://doi.org/10.1046/j.1365-2435.1999.00359.x (1999).Article 

    Google Scholar 
    McKenna, M. F. & Shipley, B. Interacting determinants of interspecific relative growth: Empirical patterns and a theoretical explanation. Écoscience 6, 286–296, https://doi.org/10.1080/11956860.1999.11682529 (1999).Article 

    Google Scholar 
    Shipley, B. & Vu, T.-T. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytologist 153, 359–364, https://doi.org/10.1046/j.0028-646x.2001.00320.x (2002).Article 

    Google Scholar 
    Shipley, B. & Parent, M. Germination Responses of 64 Wetland Species in Relation to Seed Size, Minimum Time to Reproduction and Seedling Relative Growth Rate. Functional Ecology 5, 111, https://doi.org/10.2307/2389561 (1991).Article 

    Google Scholar 
    Shipley, B. & Lechowicz, M. J. The functional co-ordination of leaf morphology, nitrogen concentration, and gas exchange in40 wetland species. Écoscience 7, 183–194, https://doi.org/10.1080/11956860.2000.11682587 (2000).Article 

    Google Scholar 
    Pyankov, V. I., Kondratchuk, A. V. & Shipley, B. Leaf structure and specific leaf mass: the alpine desert plants of the Eastern Pamirs, Tadjikistan. New Phytologist 143, 131–142, https://doi.org/10.1046/j.1469-8137.1999.00435.x (1999).Article 

    Google Scholar 
    Meziane, D. & Shipley, B. Interacting determinants of specific leaf area in 22 herbaceous species: effects of irradiance and nutrient availability. Plant, Cell & Environment 22, 447–459, https://doi.org/10.1046/j.1365-3040.1999.00423.x (1999).Article 

    Google Scholar 
    Shipley, B. Structured Interspecific Determinants of Specific Leaf Area in 34 Species of Herbaceous Angiosperms. Functional Ecology 9, 312, https://doi.org/10.2307/2390579 (1995).Article 

    Google Scholar 
    Kazakou, E., Vile, D., Shipley, B., Gallet, C. & Garnier, E. Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Functional Ecology 20, 21–30, https://doi.org/10.1111/j.1365-2435.2006.01080.x (2006).Article 

    Google Scholar 
    Vile, D. Significations fonctionnelle et ecologique des traits des especes vegetales: exemple dans une succession post-cultural mediterraneenne et generalisations PhD thesis, Université de Sherbrooke, Sherbrooke (Quebec), (2005).Auger, S. L’importance de la variabilité interspécifique des traits fonctionnels par rapport à la variabilité intraspécifique chez les jeunes arbres en forêt mature Msc thesis, Université de Sherbrooke, Sherbrooke (Quebec) (2012).Auger, S. & Shipley, B. Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. Journal of Vegetation Science 24, 419–428, https://doi.org/10.1111/j.1654-1103.2012.01473.x (2012).Article 

    Google Scholar 
    Soudzilovskaia, N. A. et al. Functional traits predict relationship between plant abundance dynamic and long-term climate warming. Proceedings of the National Academy of Sciences 110, 18180–18184, https://doi.org/10.1073/pnas.1310700110 (2013).Article 
    ADS 

    Google Scholar 
    Elumeeva, T. G. et al. Long-term vegetation dynamic in the Northwestern Caucasus: which communities are more affected by upward shifts of plant species? Alpine Botany 123, 77–85, https://doi.org/10.1007/s00035-013-0122-7 (2013).Article 

    Google Scholar 
    Spasojevic, M. J. & Suding, K. N. Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. Journal of Ecology 100, 652–661, https://doi.org/10.1111/j.1365-2745.2011.01945.x (2012).Article 

    Google Scholar 
    Swaine, E. K. Ecological and evolutionary drivers of plant community assembly in a Bornean rain forest PhD thesis, University of Aberdeen, (2007).Zheng, W. Silva Sinica: Volume 1-4. (China Forestry Publishing House, Beijing 1983).Pan, Y., Cieraad, E. & van Bodegom, P. M. Are ecophysiological adaptive traits decoupled from leaf economics traits in wetlands. Functional Ecology 33, 1202–1210, https://doi.org/10.1111/1365-2435.13329 (2019).Article 

    Google Scholar 
    Douma, J. C., Bardin, V., Bartholomeus, R. P. & van Bodegom, P. M. Quantifying the functional responses of vegetation to drought and oxygen stress in temperate ecosystems. Functional Ecology 26, 1355–1365, https://doi.org/10.1111/j.1365-2435.2012.02054.x (2012).Article 

    Google Scholar 
    van Bodegom, P. M., Sorrell, B. K., Oosthoek, A., Bakker, C. & Aerts, R. Separating the effects of partial submergence and soil oxygen demand on plant physiology. Ecology 89, 193–204, https://doi.org/10.1890/07-0390.1 (2008).Article 

    Google Scholar 
    Bakker, C., Van Bodegom, P. M., Nelissen, H. J. M., Ernst, W. H. O. & Aerts, R. Plant responses to rising water tables and nutrient management in calcareous dune slacks. Plant Ecology 185, 19–28, https://doi.org/10.1007/s11258-005-9080-5 (2006).Article 

    Google Scholar 
    Bakker, C., Rodenburg, J. & Van Bodegom, P. M. Effects of Ca- and Fe-rich seepage on P availability and plant performance in calcareous dune soils. Plant and Soil 275, 111–122 (2005).Article 
    CAS 

    Google Scholar 
    Adriaenssens, S. Dry deposition and canopy exchange for temperate tree species under high nitrogen deposition PhD thesis, Ghent University, Ghent, Belgium, (2012).Von Holle, B. & Simberloff, D. Testing Fox’s assembly rule: does plant invasion depend on recipient community structure? Oikos 105, 551–563, https://doi.org/10.1111/j.0030-1299.2004.12597.x (2004).Article 

    Google Scholar 
    Williams, M., Shimabokuro, Y. E. & Rastetter, E. B. LBA-ECO CD-09 Soil and Vegetation Characteristics, Tapajos National Forest, Brazil, Dataset. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA https://doi.org/10.3334/ORNLDAAC/1104 (2012).Article 

    Google Scholar 
    Wirth, C. & Lichstein, J. W. in Old-Growth Forests 81–113 (Springer Berlin Heidelberg, 2009).Fonseca, C. R., Overton, J. M., Collins, B. & Westoby, M. Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology 88, 964–977, https://doi.org/10.1046/j.1365-2745.2000.00506.x (2000).Article 

    Google Scholar 
    McDonald, P. G., Fonseca, C. R., Overton, J. M. & Westoby, M. Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Functional Ecology 17, 50–57, https://doi.org/10.1046/j.1365-2435.2003.00698.x (2003).Article 

    Google Scholar 
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827, https://doi.org/10.1038/nature02403 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Wright, I. J. et al. Irradiance, temperature and rainfall influence leaf dark respiration in woody plants: evidence from comparisons across 20 sites. New Phytologist 169, 309–319, https://doi.org/10.1111/j.1469-8137.2005.01590.x (2005).Article 
    CAS 

    Google Scholar 
    Wright, I. J. et al. Relationships Among Ecologically Important Dimensions of Plant Trait Variation in Seven Neotropical Forests. Annals of Botany 99, 1003–1015, https://doi.org/10.1093/aob/mcl066 (2006).Article 

    Google Scholar 
    Wright, J. P. & Sutton-Grier, A. Does the leaf economic spectrum hold within local species pools across varying environmental conditions. Functional Ecology 26, 1390–1398, https://doi.org/10.1111/1365-2435.12001 (2012).Article 

    Google Scholar 
    Wright, S. J. et al. Functional traits and the growth-mortality tradeoff in tropical trees. Ecology, 100514035422098, https://doi.org/10.1890/09-2335 (2010).Yguel, B. et al. Phytophagy on phylogenetically isolated trees: why hosts should escape their relatives. Ecology Letters 14, 1117–1124, https://doi.org/10.1111/j.1461-0248.2011.01680.x (2011).Article 

    Google Scholar 
    Zanne, A. E. et al. in Data from: Towards a worldwide wood economics spectrum. Dataset, https://doi.org/10.5061/dryad.234 (Dryad, 2009).Chave, J. et al. Towards a worldwide wood economics spectrum. Ecology Letters 12, 351–366, https://doi.org/10.1111/j.1461-0248.2009.01285.x (2009).Article 

    Google Scholar 
    Wang, H. et al. The China Plant Trait Database: toward a comprehensive regional compilation of functional traits for land plants. Ecology 99(2) 500–500 https://doi.org/10.1002/ecy.2091 (2018).Article 

    Google Scholar 
    Boyle, B. et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics 14, https://doi.org/10.1186/1471-2105-14-16 (2013).The Taxonomic Name Resolution Service [Internet]. iPlant Collaborative. Version 4.0 [Accessed: Sep 2015]. Available from: http://tnrs.iplantcollaborative.org.Büntgen, U., Psomas, A. & Schweingruber, F. H. Introducing wood anatomical and dendrochronological aspects of herbaceous plants: applications of the Xylem Database to vegetation science. Journal of Vegetation Science 25, 967–977, https://doi.org/10.1111/jvs.12165 (2014).Article 

    Google Scholar 
    Page, C. N. The ferns of Britain and Ireland. (Cambridge Univ. Press, 1997).Lloyd, R. M. Spore morphology of the Hawaiian genus Sadleria (Blechnaceae). Am. Fern J. 66, 1–7 (1976).Article 

    Google Scholar 
    Conway, E. Spore production in bracken (Pteridium aquilinum (L.) Kuhn). J. Ecol. 45, 273–284 (1957).Article 

    Google Scholar 
    Stoor, A. M., Boudrie, M., Jéröme, C., Horn, K. & Bennert, H. W. Diphasiastrum oellgaardii (Lycopodiaceae, Pteridophyta), a new lycopod species from Central Europe and France. Feddes Repert. 107, 149–157 (1996).Article 

    Google Scholar 
    Shan, H. et al. Trait prediction using hierarchical probabilistic matrix factorization. In J. Langford (Ed.) Proceedings of the International Conference for Machine Learning (ICML). Edinburgh: International Conference on Machine Learning, 1303–1310 (2012).Fazayeli F, Banerjee, A., Kattge, J., Schrodt, F. & Reich, P. B. Uncertainty Quantified Matrix Completion using Bayesian Hierarchical Matrix Factorization. 13th International Conference on Machine Learning and Applications (ICMLA), Detroit, USA December 3–6, https://doi.org/10.1109/ICMLA.2014.56 (2014).Schrodt, F. et al. BHPMF – a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Global Ecology and Biogeography, https://doi.org/10.1111/geb.12335 (2015).Díaz, S. et al. The global spectrum of plant form and function: enhanced species-level trait dataset. TRY File Archive https://doi.org/10.17871/TRY.81 (2022).New, M., Hulme, M. & Jones, P. Representing Twentieth-Century Space–Time Climate Variability. Part I: Development of a 1961–90 Mean Monthly Terrestrial Climatology. Journal of Climate 12, 829–856, https://doi.org/10.1175/1520-0442(1999)0122.0.CO;2 (1999).Whittaker, R. J. Communities and Ecosystems. (Macmillan, 1975).Weigelt, P., König, C. & Kreft, H. The Global Inventory of Floras and Traits (GIFT) database. Available: http://gift.uni-goettingen.de (2018).Weigelt, P., König, C. & Kreft, H. GIFT – A Global Inventory of Floras and Traits for macroecology and biogeography. Journal of Biogeography 47(1) 16–43 https://doi.org/10.1111/jbi.13623 (2020)Article 

    Google Scholar  More

  • in

    Plastic adjustments in xylem vessel traits to drought events in three Cedrela species from Peruvian Tropical Andean forests

    Bruijnzeel, L. A., Mulligan, M. & Scatena, F. N. Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrol. Processes 25, 25 (2011).
    Google Scholar 
    Myster, R. W. The Andean Cloud Forest. Andean Cloud Forest https://doi.org/10.1007/978-3-030-57344-7 (2021).Article 

    Google Scholar 
    Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).Article 
    ADS 

    Google Scholar 
    Hu, J. & Riveros-Iregui, D. A. Life in the clouds: are tropical montane cloud forests responding to changes in climate?. Oecologia 180, 1061–1073 (2016).Article 
    ADS 

    Google Scholar 
    Peterson, A. T. Ecological niche conservatism: A time-structured review of evidence. J. Biogeogr. 38, 817–827 (2011).Article 

    Google Scholar 
    Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).Article 

    Google Scholar 
    Johnstone, J. F. et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).Article 

    Google Scholar 
    Trugman, A. T. et al. Tree carbon allocation explains forest drought-kill and recovery patterns. Ecol. Lett. 21, 1552–1560 (2018).Article 
    CAS 

    Google Scholar 
    Hacket-Pain, A. J., Friend, A. D., Lageard, J. G. A. & Thomas, P. A. The influence of masting phenomenon on growth-climate relationships in trees: explaining the influence of previous summers’ climate on ring width. Tree Physiol. 00, 1–12 (2015).
    Google Scholar 
    Lourenço, J. et al. Hydraulic tradeoffs underlie local variation in tropical forest functional diversity and sensitivity to drought. New Phytol. https://doi.org/10.1111/nph.17944 (2022).Article 

    Google Scholar 
    Fonti, P., von Arx, G., García-González, I. & Sass-Klaassen, U. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 185, 42–53 (2010).Article 

    Google Scholar 
    Jupa, R., Krabičková, D., Plichta, R., Mayr, S. & Gloser, V. Do angiosperm tree species adjust intervessel lateral contact in response to soil drought?. Physiol. Plant. 20, 1–11. https://doi.org/10.1111/ppl.13435 (2021).Article 
    CAS 

    Google Scholar 
    Peters, J. M. R. et al. Living on the edge: a continental-scale assessment of forest vulnerability to drought. Glob. Change Biol. 20, 1–22. https://doi.org/10.1111/gcb.15641 (2021).Article 
    CAS 

    Google Scholar 
    Rita, A., Borghetti, M., Todaro, L. & Saracino, A. Interpreting the climatic effects on xylem functional traits in two Mediterranean oak species: the role of extreme climatic events. Front. Plant Sci. 7, 1–11 (2016).Article 

    Google Scholar 
    Rodríguez-Ramírez, E. C., Vázquez-García, J. A., García-González, I., Alcántara-Ayala, O. & Luna-Vega, I. Drought effects on the plasticity in vessel traits of two endemic Magnolia species in the tropical montane cloud forests of eastern Mexico. J. Plant Ecol. 13, 331–340. https://doi.org/10.1093/jpe/rtaa019 (2020).Article 

    Google Scholar 
    Aide, T. M. & Grau, H. R. Globalization, migration and Latin American ecosystems. Science 305, 1915–1917 (2004).Article 

    Google Scholar 
    Oliveira, R. S., Eller, C. B., Bittencourt, P. R. L. & Mulligan, M. The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates. Ann. Bot. 113, 909–920 (2014).Article 

    Google Scholar 
    Pereyra-Espinoza, M. J., Inga-Guillen, G. J., Santos-Morales, M. & Rodríguez-Arisméndiz, R. Potencialidad de Cedrela odorata (Meliaceae) para estudios dendrocronológicos en la selva central del Perú. Rev. Biol. Trop. 62, 783–793 (2014).Article 

    Google Scholar 
    Layme-Huaman, E. T., Ferrero, M. E., Palacios-Lazaro, K. S. & Requena-Rojas, E. J. Cedrela nebulosa: A novel species for dendroclimatological studies in the montane tropics of South America. Dendrochronologia 50, 105–112 (2018).Article 

    Google Scholar 
    Rodríguez-Ramírez, E. C., Valdez-Nieto, J. A., Vázquez-García, J. A., Dieringer, G. & Luna-Vega, I. Plastic responses of Magnolia schiedeana Schltdl., a relict-endangered Mexican cloud forest tree, to climatic events: Evidences from leaf venation and wood vessel anatomy. Forests 11, 25 (2020).Article 

    Google Scholar 
    Carlquist, S. Ecological factors in wood evolution: a floristic approach. Am. J. Bot. 64, 887–896 (2020).Article 

    Google Scholar 
    Speer, B. J. H. Fundamentals of tree-ring research. 509 (2010). https://doi.org/10.1002/gea.20357.Rita, A., Cherubini, P., Leonardi, S., Todaro, L. & Borghetti, M. Functional adjustments of xylem anatomy to climatic variability: Insights from long-Term Ilex aquifolium tree-ring series. Tree Physiol. 35, 817–828 (2015).Article 

    Google Scholar 
    Paredes-Villanueva, K., López, L. & Navarro Cerrillo, R. M. Regional chronologies of Cedrela fissilis and Cedrela angustifolia in three forest types and their relation to climate. Trees Struct. Funct. 30, 1581–1593 (2016).Article 

    Google Scholar 
    Köhl, M., Lotfiomran, N. & Gauli, A. Influence of local climate and ENSO on the growth of Cedrela odorata L. in Suriname. Atmosphere 13, 1119 (2022).Article 
    ADS 

    Google Scholar 
    Menezes, I. R. N., Aragão, J. R. V., Pagotto, M. A. & Lisi, C. S. Teleconnections and edaphoclimatic effects on tree growth of Cedrela odorata L in a seasonally dry tropical forest in Brazil. Dendrochronologia 72, 125923 (2022).Article 

    Google Scholar 
    Jiménez-Rodríguez, C. D., Coenders-Gerrits, M., Schilperoort, B., González-Angarita, A. D. P. & Savenije, H. Vapor plumes in a tropical wet forest: Spotting the invisible evaporation. Hydrol. Earth Syst. Sci. 25, 619–635 (2021).Article 
    ADS 

    Google Scholar 
    Bräuning, A. et al. Climatic control of radial growth of Cedrela montana in a humid mountain rainforest in southern Ecuador. Erdkunde 63, 337–345 (2009).Article 

    Google Scholar 
    Goldsmith, G. R., Matzke, N. J. & Dawson, T. E. The incidence and implications of clouds for cloud forest plant water relations. Ecol. Lett. 16, 307–314 (2013).Article 

    Google Scholar 
    Toledo, M. et al. Climate is a stronger driver of tree and forest growth rates than soil and disturbance. J. Ecol. 99, 254–264 (2011).Article 

    Google Scholar 
    Pandey, S., Carrer, M., Castagneri, D. & Petit, G. Xylem anatomical responses to climate variability in Himalayan birch trees at one of the world’s highest forest limit. Perspect. Plant Ecol. Evol. Syst. 33, 34–41 (2018).Article 

    Google Scholar 
    Bose, A. K. et al. Growth and resilience responses of Scots pine to extreme droughts across Europe depend on predrought growth conditions. Glob. Change Biol. 26, 4521–4537 (2020).Article 
    ADS 

    Google Scholar 
    Aloni, R. Ecophysiological implications of vascular differentiation and plant evolution. Trees Struct. Funct. 29, 25 (2015).Article 

    Google Scholar 
    Venegas-González, A., von Arx, G., Chagas, M. P. & Filho, M. T. Plasticity in xylem anatomical traits of two tropical species in response to intra-seasonal climate variability. Trees Struct. Funct. 29, 423–435 (2015).Article 

    Google Scholar 
    Fonti, P. et al. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 185, 42–53 (2010).Article 

    Google Scholar 
    Scholz, A., Klepsch, M., Karimi, Z. & Jansen, S. How to quantify conduits in wood?. Front. Plant Sci. 4, 1–11 (2013).Article 

    Google Scholar 
    García-González, I., Souto-Herrero, M. & Campelo, F. Ring-porosity and earlywood vessels: a review on extracting environmental information through time. IAWA J. 37, 295–314 (2016).Article 

    Google Scholar 
    Scholz, A., Stein, A., Choat, B. & Jansen, S. How drought and deciduousness shape xylem plasticity in three Costa Rican woody plant species. IAWA J. 35, 337–355 (2014).Article 

    Google Scholar 
    von Arx, G., Kueffer, C. & Fonti, P. Quantifying plasticity in vessel grouping—added value from the image analysis tool ROXAS. IAWA J. 34, 433–445 (2013).Article 

    Google Scholar 
    Koecke, A. V., Muellner-Riehl, A. N., Pennington, T. D., Schorr, G. & Schnitzler, J. Niche evolution through time and across continents: The story of Neotropical Cedrela (Meliaceae). Am. J. Bot. 100, 1800–1810 (2013).Article 

    Google Scholar 
    Sperry, J. S. & Saiendra, N. Z. Intra- and inter-plant variation in xylem cavitation in Betula occidentalis. Plant. Cell Environ. 17, 1233–1241 (1994).Article 

    Google Scholar 
    Rodríguez-Ramírez, E. C., Crispín-DelaCruz, D. B., Ticse-Otarola, G. & Requena-Rojas, E. J. Assessing the hydric deficit on two Polylepis species from the Peruvian Andean mountains: Xylem vessel anatomic adjusting. Forest 13, 633 (2022).
    Google Scholar 
    Islam, M., Rahman, M. & Bräuning, A. Xylem anatomical responses of diffuse porous Chukrasia tabularis to climate in a South Asian moist tropical forest. For. Ecol. Manage. 412, 9–20 (2018).Article 

    Google Scholar 
    Abrantes, J., Campelo, F., García-González, I. & Nabais, C. Environmental control of vessel traits in Quercus ilex under Mediterranean climate: Relating xylem anatomy to function. Trees Struct. Funct. 27, 655–662 (2013).Article 

    Google Scholar 
    Fahey, T. J., Sherman, R. E. & Tanner, E. V. J. Tropical montane cloud forest: environmental drivers of vegetation structure and ecosystem function. J. Trop. Ecol. 20, 1–13 (2015).
    Google Scholar 
    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).Article 
    ADS 

    Google Scholar 
    FAO-UNESCO. Soil Map of the World: Revised Legend (World Soil Resources Report 60. FAO-UNESCO, 1998).Stokes, M. & Smiley, T. L. An Introduction to Tree-Ring Dating (University of Arizona Press, 1996).
    Google Scholar 
    Speer, J. H. Oak mast history from dendrochronology: A new technique demonstrated in the Southern Appalachian region. Science 20, 257 (2001).
    Google Scholar 
    Schulman, E. Dendroclimatic Changes in Semiarid America (University of Arizona Press, 1956).
    Google Scholar 
    Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43, 69–78 (1983).
    Google Scholar 
    Grissino-Mayer, H. D. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree Ring Res. 57, 205–221 (2001).
    Google Scholar 
    Wigley, T. M. L., Briffa, K. R. & Jones, P. D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 23, 201–213 (1984).Article 
    ADS 

    Google Scholar 
    Cook, E. RCSigFree, Software Specialized in Dendrochronology (2017).Barichivich, J., Sauchyn, D. J. & Lara, A. Climate signals in high elevation tree-rings from the semiarid Andes of north-central Chile: responses to regional and large-scale variability. Palaeogeogr. Palaeoclimatol. Palaeoecol. 281, 320–333 (2009).Article 

    Google Scholar 
    Briffa, K. R. Interpreting high-resolution proxy climate data-The example of dendroclimatology. In Analysis of Climate Variability vol 0500 (eds von Storch, H. et al.) 77–94 (Springer, 1999).Chapter 

    Google Scholar 
    Marengo, J. A., Nobre, C. A., Tomasella, J., Cardoso, M. F. & Oyama, M. D. Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005. Philos. Trans. R. Soc. B Biol. Sci. 363, 1773–1778 (2008).Article 
    CAS 

    Google Scholar 
    Jimenez, J. C. et al. Spatio-temporal patterns of thermal anomalies and drought over tropical forests driven by recent extreme climatic anomalies. Philos. Trans. R. Soc. B Biol. Sci. 373, 25 (2018).Article 

    Google Scholar 
    Gloor, M. et al. Recent Amazon climate as background for possible ongoing Special Section. Glob. Biogeochem. Cycles 29, 1384–1399 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Mooney, C. Z., Mooney, C. F., Duval, R. D. & Duvall, R. Bootstrapping: A Nonparametric Approach to Statistical Inference (Sage Publications, 1993).Book 

    Google Scholar 
    Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).Article 

    Google Scholar 
    Lloret, F., Keeling, E. G. & Sala, A. Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests Published by Wiley on behalf of Nordic Society Oikos Stable. https://www.jstor.org/stable/41316009 Linked references are available on JSTOR for. Oikos 120, 1909–1920 (2011).Baker, J. C. A., Santos, G. M., Gloor, M. & Brienen, R. J. W. Does Cedrela always form annual rings? Testing ring periodicity across South America using radiocarbon dating. Trees Struct. Funct. 31, 1999–2009 (2017).Article 

    Google Scholar 
    Palacios, W. A., Santiana, J. & Iglesias, J. A new species of Cedrela (Meliaceae) from the eastern flanks of Ecuador. Phytotaxa 393, 84–88 (2019).Article 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).Article 
    CAS 

    Google Scholar 
    Souto-Herrero, M., Rozas, V. & García-González, I. Earlywood vessels and latewood width explain the role of climate on wood formation of Quercus pyrenaica Willd. across the Atlantic-Mediterranean boundary in NW Iberia. For. Ecol. Manage. 425, 126–137 (2018).Article 

    Google Scholar 
    Oksanen, J. et al. Vegan: Community ecology package. R Package version 2.4-1. https://cran.r-project.org/web/packages/vegan/index.html. (2016).Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Media Vol 35 (Springer, 2016).Book 
    MATH 

    Google Scholar 
    Ver Hoef, J. M. & Boveng, P. L. Binomial Regression: How should we model overdispersed count data?. Ecology 88, 2766–2772 (2007).Article 

    Google Scholar 
    Karger, D., Nobis, M., Normand, S., Graham, C. & Zimmermann, N. CHELSA-TraCE21k v1.0. Downscaled transient temperature and precipitation data since the last glacial maximum. Clim. Past Discuss. https://doi.org/10.5194/cp-2021-30 (2021).Hurvich, C. M. & Tsai, C. L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, 2011). https://doi.org/10.1007/978-1-4419-7976-6.Book 
    MATH 

    Google Scholar 
    ‘glm2’, P. http://mirror.psu.ac.th/pub/cran/web/packages/glm2/glm2.pdf. Accessed 20 Mar 2020. 4–11 http://mirror.psu.ac.th/pub/cran/web/packages/glm2/glm2.pdf (2020).Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 25 (2015).Article 

    Google Scholar 
    Barton, K. Package ‘ MuMIn ’ Version 1.46.0. R Package (2022). More

  • in

    Author Correction: Adult sex ratios: causes of variation and implications for animal and human societies

    Department of Anthropology, East Carolina University, Greenville, NC, USARyan SchachtDepartment of Environmental Science, Policy and Management and Museum of Vertebrate Zoology, University of California, Berkeley, CA, 94720, USASteven R. BeissingerDepartment of Ecology and Evolution, University of Lausanne, 1015, Lausanne, SwitzerlandClaus WedekindEcology & Evolution, Research School of Biology, The Australian National University, Acton, Canberra, 2601, AustraliaMichael D. JennionsMARBEC Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, FranceBenjamin GeffroyELKH-PE Evolutionary Ecology Research Group, University of Pannonia, 8210, Veszprém, HungaryAndrás LikerBehavioural Ecology Research Group, Center for Natural Sciences, University of Pannonia, 8210, Veszprém, HungaryAndrás LikerBehavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute of Primate Biology, 37077, Göttingen, GermanyPeter M. KappelerDepartment of Sociobiology/Anthropology, University of Göttingen, 37077, Göttingen, GermanyPeter M. KappelerGroningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG, Groningen, The NetherlandsFranz J. WeissingDepartment of Anthropology, University of Utah, Salt Lake City, UT, USAKaren L. KramerInstitute of Global Health, University College London, London, UKTherese HeskethCentre for Global Health, Zhejiang University School of Medicine, Hangzhou, P.R. ChinaTherese HeskethIHPE Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, FranceJérôme BoissierStockholm University Demography Unit, Sociology Department, Stockholm University, 106 91, Stockholm, SwedenCaroline UgglaKem C. Gardner Policy Institute, David Eccles School of Business, University of Utah, Salt Lake City, UT, USAMike HollingshausMilner Centre for Evolution, University of Bath, Bath, BA2 7AY, UKTamás SzékelyELKH-DE Reproductive Strategies Research Group, Department of Zoology and Human Biology, University of Debrecen, H-4032, Debrecen, HungaryTamás Székely More