More stories

  • in

    Infection with an acanthocephalan helminth reduces anxiety-like behaviour in crustacean host

    Cézilly, F. & Perrot-Minnot, M. J. Interpreting multidimensionality in parasite-induced phenotypic alterations: Panselectionism versus parsimony. Oikos 119, 1224–1229 (2010).Article 

    Google Scholar 
    Moore, J. Parasites and the Behavior of Animals. (Oxford University Press on Demand, 2002).
    Google Scholar 
    Thomas, F. et al. Do hairworms (Nematomorpha) manipulate the water seeking behaviour of their terrestrial hosts?. J. Evol. Biol. 15, 356–361 (2002).Article 

    Google Scholar 
    Weinersmith, K. L. What’s gotten into you? A review of recent research on parasitoid manipulation of host behavior. Curr. Opin. Insect Sci. 33, 37–42 (2019).Article 

    Google Scholar 
    Hughes, D. P. et al. Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection. BMC. Ecol. 11, (2011).Lagrue, C., Kaldonski, N., Perrot-Minnot, M. J., Motreuil, S. & Bollache, L. Modification of hosts’ behavior by a parasite: Field evidence for adaptive manipulation. Ecology 88, 2839–2847 (2007).Article 

    Google Scholar 
    Berdoy, M., Webster, J. P. & Mcdonald, D. W. Fatal attraction in rats infected with Toxoplasma gondii. Proc. R. Soc. B Biol. Sci. 267, 1591–1594 (2000).Article 
    CAS 

    Google Scholar 
    Perrot-Minnot, M. J., Kaldonski, N. & Cézilly, F. Increased susceptibility to predation and altered anti-predator behaviour in an acanthocephalan-infected amphipod. Int. J. Parasitol. 37, 645–651 (2007).Article 

    Google Scholar 
    Cézilly, F. & Perrot-Minnot, M. J. Studying adaptive changes in the behaviour of infected hosts: A long and winding road. Behav. Proc. 68, 223–228 (2005).Article 

    Google Scholar 
    Seppälä, O. & Jokela, J. Host manipulation as a parasite transmission strategy when manipulation is exploited by non-host predators. Biol. Lett. 4, 663–666 (2008).Article 

    Google Scholar 
    Dianne, L. et al. Protection first then facilitation: A manipulative parasite modulates the vulnerability to predation of its intermediate host according to its own developmental stage. Evolution 65, 2692–2698 (2011).Article 

    Google Scholar 
    Iritani, R. & Sato, T. Host-manipulation by trophically transmitted parasites: The switcher-paradigm. Trends Parasitol. 34, 934–944 (2018).Article 

    Google Scholar 
    Poulin, R. & Maure, F. Host manipulation by parasites: A look back before moving forward. Trends Parasitol. 31, 563–570 (2015).Article 

    Google Scholar 
    Herbison, R., Lagrue, C. & Poulin, R. The missing link in parasite manipulation of host behaviour. Parasite Vectors 11, 1–6 (2018).Article 

    Google Scholar 
    Perrot-Minnot, M. J. & Cézilly, F. Investigating candidate neuromodulatory systems underlying parasitic manipulation: Concepts, limitations and prospects. J. Exp. Biol. 216, 134–141 (2013).Article 

    Google Scholar 
    Adamo, S. A. Parasites: Evolution’s neurobiologists. J. Exp. Biol. 216, 3–10 (2013).Article 
    CAS 

    Google Scholar 
    Kaushik, M., Lamberton, P. H. L. & Webster, J. P. The role of parasites and pathogens in influencing generalised anxiety and predation-related fear in the mammalian central nervous system. Horm. Behav. 62, 191–201 (2012).Article 

    Google Scholar 
    Grupe, D. W. & Nitschke, J. B. Uncertainty and anticipation in anxiety: An integrated neurobiological and psychological perspective. Nat. Rev. Neurosci. 14, 488–501 (2013).Article 
    CAS 

    Google Scholar 
    Perry, C. J. & Baciadonna, L. Studying emotion in invertebrates: What has been done, what can be measured and what they can provide. J. Exp. Biol. 220, 3856–3868 (2017).Article 

    Google Scholar 
    Adamec, R. E., Burton, P., Shallow, T. & Budgell, J. NMDA receptors mediate lasting increases in anxiety-like behavior produced by the stress of predator exposure—Implications for anxiety associated with posttraumatic stress disorder. Physiol. Behav. 65, 723–737 (1998).Article 

    Google Scholar 
    Bacqué-Cazenave, J. et al. Serotonin in animal cognition and behavior. Int. J. Mol. Sci. 21, 1–23 (2020).Article 

    Google Scholar 
    Hamilton, T. J., Kwan, G. T., Gallup, J. & Tresguerres, M. Acute fluoxetine exposure alters crab anxiety-like behaviour, but not aggressiveness. Sci. Rep. 6, 4–9 (2016).Article 

    Google Scholar 
    de Bekker, C. et al. Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation. BMC Genom. 16, 1–23 (2015).Article 

    Google Scholar 
    Shaw, J. C. et al. Parasite manipulation of brain monoamines in California killifish (Fundulus parvipinnis) by the trematode Euhaplorchis californiensis. Proc. R. Soc. B Biol. Sci. 276, 1137–1146 (2009).Article 
    CAS 

    Google Scholar 
    Fayard, M., Dechaume-Moncharmont, F. X., Wattier, R. & Perrot-Minnot, M. J. Magnitude and direction of parasite-induced phenotypic alterations: A meta-analysis in acanthocephalans. Biol. Rev. 95, 1233–1251 (2020).Article 

    Google Scholar 
    Tain, L., Perrot-Minnot, M. J. & Cézilly, F. Altered host behaviour and brain serotonergic activity caused by acanthocephalans: Evidence for specificity. Proc. R. Soc. B Biol. Sci. 273, 3039–3045 (2006).Article 
    CAS 

    Google Scholar 
    Perrot-Minnot, M. J., Maddaleno, M., Balourdet, A. & Cézilly, F. Host manipulation revisited: No evidence for a causal link between altered photophobia and increased trophic transmission of amphipods infected with acanthocephalans. Funct. Ecol. 26, 1007–1014 (2012).Article 

    Google Scholar 
    Perrot-Minnot, M. J., Sanchez-Thirion, K. & Cézilly, F. Multidimensionality in host manipulation mimicked by serotonin injection. Proc. R. Soc. B Biol. Sci. 281, (2014).Perrot-Minnot, M. J., Banchetry, L. & Cézilly, F. Anxiety-like behaviour increases safety from fish predation in an amphipod crustacea. R. Soc. Open Sci. 4, (2017).Perrot-Minnot, M. J., Balourdet, A. & Musset, O. Optimization of anesthetic procedure in crustaceans: Evidence for sedative and analgesic-like effect of MS-222 using a semi-automated device for exposure to noxious stimulus. Aquat. Toxicol. 240, 105981 (2021).Article 
    CAS 

    Google Scholar 
    Barr, S., Laming, P. R., Dick, J. T. A. & Elwood, R. W. Nociception or pain in a decapod crustacean?. Anim. Behav. 75, 745–751 (2008).Article 

    Google Scholar 
    Fossat, P., Bacqué-Cazenave, J., de Deurwaerdère, P., Delbecque, J. P. & Cattaert, D. Anxiety-like behavior in crayfish is controlled by serotonin. Science 1979(344), 1293–1297 (2014).Article 
    ADS 

    Google Scholar 
    Magee, B. & Elwood, R. W. Shock avoidance by discrimination learning in the shore crab (Carcinus maenas) is consistent with a key criterion for pain. J. Exp. Biol. 216, 353–358 (2013).Article 

    Google Scholar 
    Rakitin, A., Tomsic, D. & Maldonado, H. Habituation and sensitization to an electrical shock in the crab Chasmagnathus. Effect of background illumination. Physiol. Behav. 50, 477–487 (1991).Article 
    CAS 

    Google Scholar 
    Koolhaas, J. M. et al. Stress revisited: A critical evaluation of the stress concept. Neurosci. Biobehav. Rev. 35, 1291–1301 (2011).Article 
    CAS 

    Google Scholar 
    Yuan, T. F. & Hou, G. The effects of stress on glutamatergic transmission in the brain. Mol. Neurobiol. 51, 1139–1143 (2015).Article 
    CAS 

    Google Scholar 
    Fossat, P., Bacqué-Cazenave, J., de Deurwaerdère, P., Cattaert, D. & Delbecque, J. P. Serotonin, but not dopamine, controls the stress response and anxiety-like behavior in the crayfish Procambarus clarkii. J. Exp. Biol. 218, 2745–2752 (2015).
    Google Scholar 
    Benesh, D. P., Valtonen, E. T. & Seppälä, O. Multidimensionality and intra-individual variation in host manipulation by an acanthocephalan. Parasitology 135, 617–626 (2008).Article 
    CAS 

    Google Scholar 
    Kaldonski, N., Perrot-Minnot, M. J. & Cézilly, F. Differential influence of two acanthocephalan parasites on the antipredator behaviour of their common intermediate host. Anim. Behav. 74, 1311–1317 (2007).Article 

    Google Scholar 
    Kaldonski, N., Perrot-Minnot, M. J., Motreuil, S. & Cézilly, F. Infection with acanthocephalans increases the vulnerability of Gammarus pulex (Crustacea, Amphipoda) to non-host invertebrate predators. Parasitology 135, 627–632 (2008).Article 
    CAS 

    Google Scholar 
    Parker, G. A., Ball, M. A., Chubb, J. C., Hammerschmidt, K. & Milinski, M. When should a trophically transmitted parasite manipulate its host?. Evolution 63, 448–458 (2009).Article 

    Google Scholar 
    Paul, E. S. & Mendl, M. T. Animal emotion: Descriptive and prescriptive definitions and their implications for a comparative perspective. Appl. Anim. Behav. Sci. 205, 202–209 (2018).Article 

    Google Scholar 
    Anderson, D. J. & Adolphs, R. A framework for studying emotions across species. Cell 157, 187–200 (2014).Article 
    CAS 

    Google Scholar 
    Weinberger, J. & Klaper, R. Environmental concentrations of the selective serotonin reuptake inhibitor fluoxetine impact specific behaviors involved in reproduction, feeding and predator avoidance in the fish Pimephales promelas (fathead minnow). Aquat. Toxicol. 151, 77–83 (2014).Article 
    CAS 

    Google Scholar 
    Curran, K. P. & Chalasani, S. H. Serotonin circuits and anxiety: What can invertebrates teach us?. Invertebr. Neurosci. 12, 81–92 (2012).CAS 

    Google Scholar 
    Mohammad, F. et al. Ancient anxiety pathways influence Drosophila defense behaviors. Curr. Biol. 26, 981–986 (2016).Article 
    CAS 

    Google Scholar 
    Kavaliers, M. & Colwell, D. D. Decreased predator avoidance in parasitized mice: neuromodulatory correlates. Parasitology 111, 257–263 (1995).Article 

    Google Scholar 
    Chivers, D. P., Wisenden, B. D. & Smith, R. J. F. Damselfly larvae learn to recognize predators from chemical cues in the predator’s diet. Anim. Behav. 52, 315–320 (1996).Article 

    Google Scholar 
    Hazlett, B. A., Acquistapace, P. & Gherardi, F. Differences in memory capabilities in invasive and native crayfish. J. Crustac. Biol. 22, 439–448 (2002).Article 

    Google Scholar 
    R Core Team. R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. R Foundation for Statistical Computing (2014). More

  • in

    Seasonal variation in daily activity patterns of snow leopards and their prey

    Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).Article 

    Google Scholar 
    Ordiz, A., Stoen, O. G., Delibes, M. & Swenson, J. E. Predators or prey? Spatio-temporal discrimination of human-derived risk by brown bears. Oecologia 166, 59–67 (2011).Article 
    ADS 

    Google Scholar 
    Glass, T. W., Breed, G. A., Robards, M. D., Williams, C. T. & Kielland, K. Trade-off between predation risk and behavioural thermoregulation drives resting behaviour in a cold-adapted mesocarnivore. Anim. Behav. 175, 163–174 (2021).Article 

    Google Scholar 
    Daan, S. & Aschoff, J. Circadian rhytms of locomotor activity in captive birds and mammals: Their variation with seasons and latitude. Oecologia 18, 269–316 (1975).Article 
    ADS 

    Google Scholar 
    Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).Article 

    Google Scholar 
    Garcia, R. A., Cabeza, M., Rahbek, C. & Araujo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579 (2014).Article 

    Google Scholar 
    Curio, E. The Ethology of Predation (Springer-Verlag, 1976).Book 

    Google Scholar 
    Linkie, M. & Ridout, M. S. Assessing tiger-prey interactions in Sumatran rainforests. J. Zool. 284, 224–229 (2011).Article 

    Google Scholar 
    Heurich, M. et al. Activity patterns of Eurasian lynx are modulated by light regime and individual traits over a wide latitudinal range. PLoS ONE 9, e114143 (2014).Article 
    ADS 

    Google Scholar 
    Harmsen, B. J., Foster, R. J., Silver, S. C., Ostro, L. E. T. & Doncaster, C. P. Jaguar and puma activity patterns in relation to their main prey. Mamm. Biol. 76, 320–324 (2011).Article 

    Google Scholar 
    Foster, V. C. et al. Jaguar and puma activity patterns and predator-prey interactions in four Brazilian biomes. Biotropica 45, 373–379 (2013).Article 

    Google Scholar 
    Theuerkauf, J. et al. Daily patterns and duration of wolf activity in the Bialowieza forest, Poland. J. Mammal. 84, 243–253 (2003).Article 

    Google Scholar 
    Hebblewhite, M., Merrill, E. H. & McDonald, T. L. Spatial decomposition of predation risk usign resource selection functions: An example in a wolf-elk predator-prey system. Oikos 111, 101–111 (2005).Article 

    Google Scholar 
    Balme, G., Hunter, L. & Slotow, R. Feeding habitat selection by hunting leopards Panthera pardus in a woodland Savanna: Prey catchability versus abundance. Anim. Behav. 74, 589–598 (2007).Article 

    Google Scholar 
    Smith, J. A. et al. Where and when to hunt? Decomposing predation success of an ambush carnivore. Ecology 101, e03172 (2020).Article 

    Google Scholar 
    Hopcraft, J. G. C., Sinclair, A. R. E. & Packer, C. Planning for success: Serengeti lions seek prey accessibility rather than abundance. J. Anim. Ecol. 74, 559–566 (2005).Article 

    Google Scholar 
    Theuerkauf, J. What drives wolves: Fear or hunger? Humans, diet, climate and wolf activity patterns. Ethology 115, 649–657 (2009).Article 

    Google Scholar 
    Funston, P. J., Mills, M. G. & Biggs, H. C. Factors affecting the hunting success of male and female lions in the Kruger National Park. J. Zool. 253, 419–431 (2001).Article 

    Google Scholar 
    Schaller, G. The Serengeti lion (The University of Chicago Press, IL, 1972).
    Google Scholar 
    Bailey, T. N. The African Leopard, Ecology and Behaviour of a Solitary Felid (The Blackburn Press, 1993).Book 

    Google Scholar 
    Jenny, D. & Zuberbühler, K. Hunting behaviour in West African forest leopards. Afr. J. Ecol. 43, 197–200 (2005).Article 

    Google Scholar 
    Packer, C., Swanson, A., Ikanda, D. & Kushnir, H. Fear of darkness, the full moon and the nocturnal ecology of African lions. PLoS ONE 6, e22285 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Palmer, M. S., Fieberg, J., Swanson, A., Kosmala, M. & Packer, C. A “dynamic” landscape of fear: Prey responses to spatiotemporal variations in predation risk across the lunar cycle. Ecol. Letters 20, 1364–1373 (2017).Article 
    CAS 

    Google Scholar 
    Steinmetz, R., Seuaturien, N. & Chutipong, W. Tigers, leopards, and dholes in a half-empty forest: Assessing species interactions in a guild of threatened carnivores. Biol. Cons. 163, 68–78 (2013).Article 

    Google Scholar 
    Carter, N., Jasny, M., Gurung, B. & Liu, J. Impacts of people and tigers on leopard spatiotemporal activity patterns in a global biodiversity hotspot. Global Ecol. Conserv. 3, 149–162 (2015).Article 

    Google Scholar 
    George, S. L. & Crooks, K. R. Recreation and large mammal activity in an urban nature reserve. Biol. Cons. 133, 107–117 (2006).Article 

    Google Scholar 
    Beltrán, J. F. & Delibes, M. Environmental determinants of circadian activity of free-ranging Iberian lynxes. J. Mammal. 75, 382–393 (1994).Article 

    Google Scholar 
    McNab, B. K. The standard energetics of mammalian carnivores: Felidae and Hyaenidae. Sikes Can. J. Zool. 78, 2227–2239 (2000).Article 

    Google Scholar 
    Mishra, C. et al. Increasing risks for emerging infectious diseases within a rapidly changing High Asia. Ambio 51, 494–507 (2022).Article 

    Google Scholar 
    Mishra, C., Redpath, S. M. & Suryawanshi, K. R. Livestock predation by snow leopards: Conflicts and the search for solutions. In Snow Leopards (eds McCarthy, T. M. & Mallon, D.) 59–67 (Academic Press, 2016).Chapter 

    Google Scholar 
    Farrington, J. D., and J. Li. 2016. Climate change impacts on snow leopard range. In: McCarthy, T.M., Mallon, D., editors. Snow Leopards. Academic Press.Jackson, R. Home Range, Movements and Habitat use of Snow Leopard in Nepal (Dissertation niversity of London, London, 1996).
    Google Scholar 
    McCarthy, T. M., Fuller, T. K. & Munkhtsog, B. Movements and activities of snow leopards in Southwestern Mongolia. Biol. Cons. 124, 527–537 (2005).Article 

    Google Scholar 
    Salvatori, M. et al. Co-occurrence of snow leopard, wolf and Siberian ibex under livestock encroachment into protected areas across the Mongolian Altai. Biol. Cons. 261, 109294 (2021).Article 

    Google Scholar 
    Rode, J. et al. Population monitoring of snow leopards using camera trapping in Naryn state nature reserve, Kyrgyzstan, between 2016 and 2019. Global Ecol. Conserv. 31, e01850 (2021).Article 

    Google Scholar 
    Sharma, R. K. et al. Spatial variation in population-density of snow leopards in a multiple use landscape in Spiti Valley Trans-Himalay. PLoS ONE 16, e0250900 (2021).Article 
    CAS 

    Google Scholar 
    Kachel, S. M., Karimov, K. & Wirsing, A. J. Predator niche overlap and partitioning and potential interactions in the mountains of Central Asia. J. Mammal. 103, 1019–1029 (2022).Article 

    Google Scholar 
    Johansson, Ö., Simms, A. & McCarthy, T. M. From VHF to satellite GPS collars: Advancements in snow leopard telemetry. In Snow leopards (eds McCarthy, T. M. & Mallon, D.) p355-365 (Academic Press, 2016).Chapter 

    Google Scholar 
    Johansson, Ö. et al. Snow leopard predation in a livestock dominated landscape in Mongolia. Biol. Cons. 184, 251–258 (2015).Article 

    Google Scholar 
    Havmøller, R. W., Jacobsen, N. S., Scharff, N., Rovero, F. & Zimmermann, F. Assessing the activity pattern overlap among leopards (Panthera pardus), potential prey and competitors in a complex landscape in Tanzania. J. Zool. 311, 175–182 (2020).Article 

    Google Scholar 
    Kitchener, A. C., Van Valkenburgh, B. & Yamaguchi, N. Felid form and function. In Biology and Conservation of Wild Felids (eds MacDonald, D. W. & Loveridge, A. J.) 83–106 (Oxford University Press, 2010).
    Google Scholar 
    Fuglesteg, B. N., Haga, Ø. E., Folkow, L. P., Fuglei, E. & Blix, A. S. Seasonal variations in basal metabolic rate, lower critical temperature and responses to temporary starvation in the arctic fox (Alopex lagopus) from Svalbard. Polar Biol. 29, 308–319 (2005).Article 

    Google Scholar 
    Doris, P. A. & Baker, M. A. Effect of dehydration on thermoregulation in cats exposed to high ambient temperatures. J. Appl. Physiol. 51, 46–54 (1981).Article 
    CAS 

    Google Scholar 
    Forrest, J. L. et al. Conservation and climate change: Assessing the vulnerability of snow leopard habitat to treeline shift in the Himalaya. Biol. Cons. 150, 129–135 (2012).Article 

    Google Scholar 
    Sharma, R. K., Bhatnagar, Y. V. & Mishra, C. Does livestock benefit or harm snow leopards?. Biol. Cons. 190, 8–13 (2015).Article 

    Google Scholar 
    Samelius, G. et al. Keeping predators out: Testing fences to reduce livestock depredation at night-time corrals. Oryx 55, 466–472 (2021).Article 

    Google Scholar 
    Hebblewhite, M. & Merrill, E. Modelling wildlife-human relationships for social species with mixed-effects resource selection models. J. Appl. Ecol. 45, 834–844 (2007).Article 

    Google Scholar 
    Johansson, Ö., Malmsten, J., Mishra, C., Lkhagvajav, P. & McCarthy, T. Reversible immobilization of free-ranging snow leopards (Panthera uncia) with a combination of medetomidine and tiletamine-zolazepam. J. Wildl. Dis. 49, 338–346 (2013).Article 

    Google Scholar 
    Johansson, Ö., Kachel, S. & Weckworth, B. Guidelines for telemetry studies on snow leopards. Animals 12, 1663 (2022).Article 

    Google Scholar 
    Bjørneraas, K., Van Moorter, B., Rolandsen, C. M. & Herfindal, I. Screening global positioning system location data for errors using animal movement characteristics. J. Wildl. Manag. 74, 1361–1366 (2010).Article 

    Google Scholar 
    Pålsson O. 2022. Maternal behaviour of the snow leopard (Panthera uncial). MSc thesis. Uppsala University, Uppsala; Sweden https://www.diva-portal.org/smash/get/diva2:1668965/FULLTEXT01.pdf.du Sert, N. P. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 20. PLoS Biol. 18, e3000411 (2020).Article 

    Google Scholar 
    Nygren, E. 2015. Activity patterns of snow leopards (Panthera uncia) at their kill sites. MSc thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden. https://stud.epsilon.slu.se/8109/1/nygren_e_150625.pdf.Johansson, Ö. et al. Land sharing is essential for snow leopard conservation. Biol. Cons. 203, 1–7 (2016).Article 

    Google Scholar 
    Johansson, Ö. et al. The timing of breeding and independence for snow leopard females and their cubs. Mamm. Biol. 101, 173–180 (2021).Article 

    Google Scholar 
    Nouvellet, P., Rasmussen, G. S. A., Macdonald, D. W., Courchamp, F. & Braae, A. Noisy clocks and silent sunrises: Measurement methods of daily activity pattern. J. Zool. 286, 179–184 (2012).Article 

    Google Scholar 
    Ridout, M. S. & Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 14, 322–337 (2009).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    R Development core team. 2019. R: A language and environment for statistical computing. R foundation for statistical computing Vienna, Austria. www.R-project.org/.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. Roy. Stat. Soc. B 73, 3–36 (2011).Article 
    MathSciNet 
    MATH 

    Google Scholar  More

  • in

    Nature’s biggest news stories of 2022

    Russia invades UkraineThe global science community was quick to condemn Russian’s invasion of Ukraine in February. Research organizations moved fast to cut ties with Russia, stopping funding and collaborations, and journals came under pressure to boycott Russian authors.The situation escalated when Russian forces attacked Europe’s largest nuclear power plant, Zaporizhzhia, in March, prompting fears of a nuclear accident. Russian troops continue to occupy the power plant. Since the invasion began, thousands of civilians have been killed and millions displaced; many others, including scientists, have fled the country.The war has affected research in space and climate science, disrupted fieldwork and played a significant part in the global energy crisis. The invasion could also precipitate a new era for European defence research.JWST delights astronomers

    Stephans Quintet, a grouping of five galaxies, taken by NASA’s James Webb Space Telescope.Credit: NASA, ESA, CSA, and STScI via Getty

    NASA’s James Webb Space Telescope (JWST) — the most complex telescope ever built — reached its destination in space in January after decades of planning. In July, astronomers were awed by the telescope’s first image — of thousands of distant galaxies in the constellation Volans. Since then, the US$10-billion observatory has captured a steady stream of spectacular images, and astronomers have been working feverishly on early data. Insights include detailed observations of an exoplanet, and leading contenders for the most distant galaxy ever seen.NASA also decided not to rename the telescope, despite calls from some astronomers to do so because the telescope’s namesake, a former NASA administrator, held high-ranking government positions in the 1950s and 1960s, when the United States systematically fired gay and lesbian government employees. A NASA investigation “found no evidence that Webb was either a leader or proponent of firing government employees for their sexual orientation”, the agency said in a statement in November.AI predicts protein structuresResearchers announced in July that they had used the revolutionary artificial-intelligence (AI) network AlphaFold to predict the structures of more than 200 million proteins from roughly one million species, covering almost every known protein from all organisms whose genomes are held in databases. The development of AlphaFold netted its creators at the London-based AI company DeepMind, owned by Alphabet, one of this year’s US$3-million Breakthrough prizes — the most lucrative awards in science.AlphaFold isn’t the only player on the scene. Meta (formerly Facebook), in California, has developed its own AI network, called ESMFold, and used it to predict the shapes of roughly 600 million possible proteins from bacteria, viruses and other microorganisms that have not been isolated or cultured. Scientists are using these tools to dream up proteins that could form the basis of new drugs and vaccines.Monkeypox goes global

    The monkeypox virus (shown here as a coloured transmission electron micrograph) is related to the smallpox virus.Credit: CDC/Science Photo Library

    The rapid global spread of monkeypox (recently renamed ‘mpox’ by the World Health Organization) this year caught many scientists off guard. Previously, the virus had mainly been confined to Central and West Africa, but from May this year, infections started appearing in Europe, the United States, Canada and many other countries, mostly in young and middle-aged men who have sex with men. The virus is related to smallpox, and the circulating strain only rarely causes severe disease or death. But its fast spread led the World Health Organization to declare the global outbreak a ‘public-health emergency of international concern’, the agency’s highest alert level, in July.As cases soared, researchers got to work trying to understand the dynamics of the disease. Studies confirmed that it is transmitted primarily through repeated skin-to-skin contact, and trials of possible treatments got under way. Existing smallpox vaccines were also used to suppress the virus in some countries. Six months after mpox infections first started increasing, vaccination efforts and behavioural changes seemed to have curbed its spread in Europe and the United States. Researchers predict a range of scenarios from here — the most hopeful being that the virus fizzles out in non-endemic countries over the next few months or years.The Moon has a revivalThe Moon has become a popular destination for space missions this year. First off the launch pad, in August, was South Korea’s Danuri probe, which is expected to arrive at its destination in January and orbit the Moon for a year. The mission is the country’s first foray beyond Earth’s orbit and is carrying a host of experiments.Last month, NASA’s hotly anticipated Artemis programme — which aims to send astronauts to the Moon in the next few years — finally kicked off with the launch of an uncrewed capsule called Orion, a joint venture with the European Space Agency. As part of a test flight to see whether the system can transport people safely to the Moon, the capsule flew out past the Moon and made its way back to Earth safely this month.A lunar spacecraft made by a Japanese company launched this month. ispace’s M1 lander is aiming to be the first of several private ventures to land on the surface of the Moon next year. The lander will carry two rovers, one for the United Arab Emirates and another for the Japan Aerospace Exploration Agency, JAXA. The rovers will be a first for both countries.Climate-change funding

    People cross a flooded highway in Sindh province, Pakistan in August.Credit: Waqar Hussein/EPA-EFE/Shutterstock

    There were many reasons to feel despondent about the United Nations Climate Change Conference of the Parties (COP27) in Egypt last month, but an agreement on a new ‘loss and damage’ fund was one bright spot. The fund will help low- and middle-income countries to cover the cost of climate-change impacts, such as the catastrophic floods in Pakistan this year, which caused more than US$30 billion worth of damage and economic losses.But calls at COP27 to phase out fossil fuels were blocked by oil-producing states, and many blamed the lack of progress on the energy crisis sparked by Russia’s invasion of Ukraine. High natural-gas prices have led some European nations to rely temporarily on coal. Global carbon emissions from fossil fuels are expected to hit 37.5 billion tonnes this year, a new record. The window to limit warming to 1.5–2 ºC above pre-industrial temperatures is disappearing fast — and might even have passed.Omicron’s offspring drive the pandemicOmicron and its descendants dominated all other coronavirus variants this year. The fast-spreading strain was first detected in southern Africa in November 2021, and quickly spread around the globe. From early on, it was clear that Omicron could evade immune-system defences more successfully than previous variants, which has meant that vaccines are less effective. Throughout the year, a diverse group of immune-dodging offshoots of Omicron has emerged, making it challenging for scientists to predict coming waves of infection.Vaccines based on Omicron variants have been rolled out in some countries in the hope they will offer greater protection than previous jabs, but early data suggest the extra benefit is modest. Nasal sprays against COVID-19 have also become a tool in the vaccine arsenal. The idea is that these stop the virus at the site where it first takes hold. In September, China and India approved needle-free COVID-19 vaccines that are delivered through the nose or mouth, and many similar vaccines are in various stages of development.Pig organs transplanted into people

    Surgeons in Baltimore, Maryland transplanted the first pig heart into a person in January.Credit: EyePress News/Shutterstock

    In January, US handyman David Bennett became the first person to receive a transplanted heart from a genetically modified pig — a crucial first step in determining whether animals could provide a source of organs for people who need them. Bennett survived for another eight weeks after the transplant, but researchers were impressed that he lived for that long, given that the human immune system attacks non-genetically modified pig organs in minutes. A few months later, two US research groups independently reported transplanting pig kidneys into three people who had been declared legally dead because they did not have brain function. The organs weren’t rejected and started producing urine. Researchers say the next step is clinical trials to test such procedures thoroughly in living people.Elections and science

    Luís Inácio Lula da Silva was elected president of Brazil in October.Credit: Fabio Vieira/FotoRua/NurPhoto via Getty

    National elections in Brazil, Australia and France brought relief for many researchers. After three years of science-damaging policies under right-wing president Jair Bolsonaro, Brazil narrowly elected leftist labour leader and former president Luiz Inácio Lula da Silva to lead the country in October. Scientists are hopeful that Lula’s return will result in a desperately needed boost to research funding and greater protection for the Amazon rainforest.French researchers were buoyed by President Emmanuel Macron’s victory over far-right candidate Marine Le Pen in April, and the election of Anthony Albanese as prime minister in Australia in May was seen as a good thing for science and climate-change action, too. In China, Xi Jinping cemented his legacy with an historic third term as head of the Chinese Communist Party. Xi has placed science and innovation at the heart of his country’s growth strategy.In other nations, it was unclear how research would fare under new leaders, such as Giorgia Meloni, the far-right candidate elected as Italy’s first female prime minister in October. Science was not a priority for the United Kingdom’s three prime ministers this year, although they have retained previous commitments to raise research funding. After Boris Johnson reisgned, Liz Truss was in the position for just seven weeks before she too resigned and the current Prime Minister Rishi Sunak took over.Environmental push beginsThis week, conservation and political leaders are attempting to finalize a global deal to protect the environment. The UN’s Convention on Biological Diversity Conference of the Parties (COP15) is under way in Montreal, Canada. A new biodiversity treaty, known as the post-2020 Global Diversity Framework, has been delayed by more than two years because of the COVID-19 pandemic. Progress towards an agreement has been slow, and the deal looked under threat when negotiations stalled over financing during international talks in Nairobi in June. Financial pledges from some nations to support biodiversity helped discussions to move forward, but estimates suggest that US$700 billion more is needed annually to protect the natural world. At the meeting, delegates will hopefully agree on targets to stabilize species’ declines by 2030 and reverse them by mid-century. More

  • in

    Mild shading promotes sesquiterpenoid synthesis and accumulation in Atractylodes lancea by regulating photosynthesis and phytohormones

    Mild shading facilitates sesquiterpenoid accumulation and growth in Atractylodes lancea rhizomeTo determine a concrete shading value for the production of high-quality and high-yielding AR, we examined the major compounds, including the sesquiterpenoids hinesol (Hin), β-eudesmol (Edu), and atractylone (Atl), and the polyacetylene atractylodin (Atd), as well as the biomass of AR at different growth stages (Fig. 1A–C) under various light intensities. The sum of these four volatile oils as the total volatile oil content was subsequently analyzed. The results revealed that the accumulation of volatile oils was significantly different (p  More

  • in

    High-resolution tracking of hyrax social interactions highlights nighttime drivers of animal sociality

    Siegel, J. M. Do all animals sleep? Trends Neurosci. 31, 208–213 (2008).Article 
    CAS 

    Google Scholar 
    Lima, S. L., Rattenborg, N. C., Lesku, J. A. & Amlaner, C. J. Sleeping under the risk of predation. Anim. Behav. 70, 723–736 (2005).Article 

    Google Scholar 
    Tougeron, K. & Abram, P. K. An Ecological Perspective on Sleep Disruption. Am. Nat. 190, 55–66 (2017).Article 

    Google Scholar 
    Lesku, J. A., Aulsebrook, A. E., Kelly, M. L. & Tisdale, R. K. Evolution of Sleep and Adaptive Sleeplessness. Handbook of Behavioral Neuroscience vol. 30 (Elsevier B.V., 2019).Smeltzer, E. A. et al. Social sleepers: The effects of social status on sleep in terrestrial mammals. Horm. Behav. 143, 105181 (2022).Article 
    CAS 

    Google Scholar 
    Chu, H. S., Oh, J. & Lee, K. The Relationship between Living Arrangements and Sleep Quality in Older Adults: Gender Differences. Int. J. Environ. Res. Public Health 19, 3893 (2022).Karamihalev, S., Flachskamm, C., Eren, N., Kimura, M. & Chen, A. Social context and dominance status contribute to sleep patterns and quality in groups of freely-moving mice. Sci. Rep. 9, 1–9 (2019).Article 
    CAS 

    Google Scholar 
    Capellini, I., Barton, R. A., McNamara, P., Preston, B. T. & Nunn, C. L. Phylogenetic analysis of the ecology and evolution of mammalian sleep. Evolution 62, 1764–1776 (2008).Article 

    Google Scholar 
    Ogawa, H., Idani, G., Moore, J., Pintea, L. & Hernandez-Aguilar, A. Sleeping Parties and nest distribution of chimpanzees in the Savanna woodland, Ugalla, Tanzania. Int. J. Primatol. 28, 1397–1412 (2007).Article 

    Google Scholar 
    Mulavwa, M. N. et al. Nest groups of wild bonobos at Wamba: Selection of vegetation and tree species and relationships between nest group size and party size. Am. J. Primatol. 72, 575–586 (2010).
    Google Scholar 
    Matsuda, I., Tuuga, A. & Higashi, S. Effects of water level on sleeping-site selection and inter-group association in proboscis monkeys: Why do they sleep alone inland on flooded days? Ecol. Res. 25, 475–482 (2010).Article 

    Google Scholar 
    Schreier, A. L. & Swedell, L. Ecology and sociality in a multilevel society: Ecological determinants of spatial cohesion in hamadryas baboons. Am. J. Phys. Anthropol. 148, 580–588 (2012).Article 

    Google Scholar 
    Kummer, H. & Kurt, F. Social units of free-living population of hamadryas baboons. Folia Primotol. 1, 4–19 (1963).Ogawa, H. & Takahashi, H. Triadic positions of Tibetan macaques huddling at a sleeping site. Int. J. Primatol. 24, 591–606 (2002).Article 

    Google Scholar 
    Snyder-Mackler, N., Beehner, J. C. & Bergman, T. J. Defining Higher Levels in the Multilevel Societies of Geladas (Theropithecus gelada). Int. J. Primatol. 33, 1054–1068 (2012).Article 

    Google Scholar 
    Mochida, K. & Nishikawa, M. Sleep duration is affected by social relationships among sleeping partners in wild Japanese macaques. Behav. Process. 103, 102–104 (2014).Article 

    Google Scholar 
    Di Bitetti, M. S., Vidal, E. M. L., Baldovino, M. C. & Benesovsky, V. Sleeping site preferences in tufted capuchin monkeys (Cebus apella nigritus). Am. J. Primatol. 50, 257 (2000).Article 

    Google Scholar 
    Takahashi, H. Huddling relationships in night sleeping groups among wild Japanese macaques in Kinkazan Island during winter. Primates 38, 57–68 (1997).Article 

    Google Scholar 
    Park, O., Barden, A. & Williams, E. Studies in Nocturnal Ecology, IX. Further Analysis of Activity of Panama Rain Forest Animals. Ecology 21, 122 (1940).Article 

    Google Scholar 
    Gaston, K. J. Nighttime ecology: The “nocturnal problem” revisited. Am. Nat. 193, 481–502 (2019).Article 

    Google Scholar 
    Börger, L. et al. Biologging Special Feature. J. Anim. Ecol. 89, 6–15 (2020).Article 

    Google Scholar 
    Krause, J. et al. Reality mining of animal social systems. Trends Ecol. Evol. 28, 541–551 (2013).Article 

    Google Scholar 
    Zeus, V. M., Puechmaille, S. J. & Kerth, G. Conspecific and heterospecific social groups affect each other’s resource use: a study on roost sharing among bat colonies. Anim. Behav. 123, 329–338 (2017).Article 

    Google Scholar 
    Wey, T. W., Burger, J. R., Ebensperger, L. A. & Hayes, L. D. Reproductive correlates of social network variation in plurally breeding degus (Octodon degus). Anim. Behav. 85, 1407–1414 (2013).Article 

    Google Scholar 
    Hirsch, B. T., Prange, S., Hauver, S. A. & Gehrt, S. D. Genetic relatedness does not predict racoon social network structure. Anim. Behav. 85, 463–470 (2013).Article 

    Google Scholar 
    Robitaille, A. L., Webber, Q. M. R., Turner, J. W. & Wal Eric, V. The problem and promise of scale in multilayer animal social networks. Curr. Zool. 67, 113–123 (2021).Article 

    Google Scholar 
    Smith, J. E. et al. Split between two worlds: Automated sensing reveals links between above- and belowground social networks in a free-living mammal. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170249 (2018).Silk, M. J. et al. Seasonal variation in daily patterns of social contacts in the European badger Meles meles. Ecol. Evol. 7, 9006–9015 (2017).Article 

    Google Scholar 
    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).Article 
    CAS 

    Google Scholar 
    Barry, R. E. & Mundy, P. J. Seasonal variation in the degree of heterospecific association of two syntopic hyraxes (Heterohyrax brucei and Procavia capensis) exhibiting synchronous parturition. Behav. Ecol. Sociobiol. 52, 177–181 (2002).Article 

    Google Scholar 
    Barocas, A., Ilany, A., Koren, L., Kam, M. & Geffen, E. Variance in centrality within rock hyrax social networks predicts adult longevity. PLoS ONE 6, 1–8 (2011).Article 

    Google Scholar 
    Ilany, A., Barocas, A., Koren, L., Kam, M. & Geffen, E. Structural balance in the social networks of a wild mammal. Anim. Behav. 85, 1397–1405 (2013).Article 

    Google Scholar 
    Gravett, N., Bhagwandin, A., Lyamin, O. I., Siegel, M. & Manger, P. R. Sleep in the Rock Hyrax, Procavia capensis. Brain Behav. Evol. 79, 155–169 (2012).Coe, M. J. Notes on the habits of the mount kenya hyrax (Procavia johnstoni mackinderi thomas). Proc. Zool. Soc. Lond. 138, 638–644 (1961).
    Google Scholar 
    Viblanc, V. A., Pasquaretta, C., Sueur, C., Boonstra, R. & Dobson, F. S. Aggression in Columbian ground squirrels: relationships with age, kinship, energy allocation, and fitness. Behav. Ecol. 27, arw098 (2016).Article 

    Google Scholar 
    Wolf, J. B. W., Mawdsley, D., Trillmich, F. & James, R. Social structure in a colonial mammal: unravelling hidden structural layers and their foundations by network analysis. Anim. Behav. 74, 1293–1302 (2007).Article 

    Google Scholar 
    Podgórski, T., Lusseau, D., Scandura, M., Sönnichsen, L. & Jȩdrzejewska, B. Long-lasting, kin-directed female interactions in a spatially structured wild boar social network. PLoS ONE 9, 1–11 (2014).Article 

    Google Scholar 
    Druce, D. J. et al. Scale-dependent foraging costs: Habitat use by rock hyraxes (Procavia capensis) determined using giving-up densities. Oikos 115, 513–525 (2006).Article 

    Google Scholar 
    Goll, Y. et al. Sex-associated and context-dependent leadership in the rock hyrax. iScience 104063 https://doi.org/10.1016/j.isci.2022.104063 (2022).Kelley, J. L., Morrell, L. J., Inskip, C., Krause, J. & Croft, D. P. Predation risk shapes social networks in fission-fusion populations. PLoS One 6, e24280 (2011).Article 
    CAS 

    Google Scholar 
    Brown, K. J. Seasonal variation in the thermal biology of the rock hyrax (Procavia capensis) (Document N° 10413/10124) [Master Dissertation, University of KwaZulu-Natal]. ResearchSpace Digital Library for UKZN scholarly research. http://hdl.handle.net/10413/10124.Bar Ziv, E. et al. Individual, social, and sexual niche traits affect copulation success in a polygynandrous mating system. Behav. Ecol. Sociobiol. 70, 901–912 (2016).Article 

    Google Scholar 
    McDonald, G. C., Spurgin, L. G., Fairfield, E. A., Richardson, D. S. & Pizzari, T. Differential female sociality is linked with the fine-scale structure of sexual interactions in replicate groups of red junglefowl, Gallus gallus. Proc. R. Soc. B Biol. Sci. 286, 20191734 (2019).Stanley, C. R., Liddiard Williams, H. & Preziosi, R. F. Female clustering in cockroach aggregations—A case of social niche construction? Ethology 124, 706–718 (2018).Article 

    Google Scholar 
    Pilastro, A., Benetton, S. & Bisazza, A. Female aggregation and male competition reduce costs of sexual harassment in the mosquitofish Gambusia holbrooki. Anim. Behav. 65, 1161–1167 (2003).Article 

    Google Scholar 
    Schoepf, I. & Schradin, C. Better off alone! Reproductive competition and ecological constraints determine sociality in the African striped mouse (Rhabdomys pumilio). J. Anim. Ecol. 81, 649–656 (2012).Article 

    Google Scholar 
    Brent, L. J. N., MacLarnon, A., Platt, M. L. & Semple, S. Seasonal changes in the structure of rhesus macaque social networks. Behav. Ecol. Sociobiol. 67, 349–359 (2013).Article 

    Google Scholar 
    Sundaresan, S. R., Fischhoff, I. R., Dushoff, J. & Rubenstein, D. I. Network metrics reveal differences in social organization between two fission-fusion species, Grevy’s zebra and onager. Oecologia 151, 140–149 (2007).Article 

    Google Scholar 
    Hasenjager, M. J. & Dugatkin, L. A. Fear of predation shapes social network structure and the acquisition of foraging information in guppy shoals. Proc. R. Soc. B Biol. Sci. 284, 20172020 (2017).Heathcote, R. J. P., Darden, S. K., Franks, D. W., Ramnarine, I. W. & Croft, D. P. Fear of predation drives stable and differentiated social relationships in guppies. Sci. Rep. 7, 1–10 (2017).Article 

    Google Scholar 
    Dunbar, R. I. M. Social structure as a strategy to mitigate the costs of group living: a comparison of gelada and guereza monkeys. Anim. Behav. 136, 53–64 (2018).Article 
    CAS 

    Google Scholar 
    Sutcliffe, A., Dunbar, R., Binder, J. & Arrow, H. Relationships and the social brain: Integrating psychological and evolutionary perspectives. Br. J. Psychol. 103, 149–168 (2012).Article 

    Google Scholar 
    Brown, M. R. Comparing the Fission-Fusion Dynamics of Spider Monkeys (Ateles geoffroyi) From Day to Night. https://doi.org/10.11575/PRISM/25371 (2014).Fanson, K. V., Fanson, B. G. & Brown, J. S. Using path analysis to explore vigilance behavior in the rock hyrax (Procavia capensis). J. Mammal. 92, 78–85 (2011).Article 

    Google Scholar 
    Santema, P. & Clutton-Brock, T. Meerkat helpers increase sentinel behaviour and bipedal vigilance in the presence of pups. Anim. Behav. 85, 655–661 (2013).Article 

    Google Scholar 
    Wright, J., Berg, E., De Kort, S. R., Khazin, V. & Maklakov, A. A. Cooperative sentinel behaviour in the Arabian babbler. Anim. Behav. 62, 973–979 (2001).Article 

    Google Scholar 
    Moscovice, L. R., Sueur, C. & Aureli, F. How socio-ecological factors influence the differentiation of social relationships: An integrated conceptual framework. Biol. Lett. 16, 20200384 (2020).Kotler, B. P., Brown, J. S. & Knight, M. H. Habitat and patch use by hyraxes: There’s no place like home? Ecol. Lett. 2, 82–88 (1999).Article 

    Google Scholar 
    Margolis, E. Dietary composition of the wolf Canis lupus in the Ein Gedi area according to analysis of their droppings (in Hebrew). In Proceedings of 45th Meeting of the Israel Zoological Society, Isr. J. Ecol. Evol. 55, 157–180 (2008).Firth, J. A. & Sheldon, B. C. Social carry-over effects underpin trans-seasonally linked structure in a wild bird population. Ecol. Lett. 19, 1324–1332 (2016).Article 

    Google Scholar 
    Olds, N. & Shoshani, J. Procavia capensis. Mammalian Species 171, 1–7 (2016).Fourie, L. J. & Perrin, M. R. Social behaviour and spatial relationships of the rock hyrax. South 17, 91–98 (1987).Montiglio, P.-O., Ferrari, C. & Réale, D. Social niche specialization under constraints: Personality, social interactions and environmental heterogeneity. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120343 (2013).Article 

    Google Scholar 
    Dunbar, R. I. M. Time: a hidden constraint on the behavioural ecology of baboons. Behav. Ecol. Sociobiol. 31, 35–49 (1992).Article 

    Google Scholar 
    Dunbar, R. I. M., Korstjens, A. H. & Lehmann, J. Time as an ecological constraint. Biol. Rev. 84, 413–429 (2009).Article 
    CAS 

    Google Scholar 
    Zahavi, A. Arabian babbler. In Cooperative Breeding in Birds (eds. Staceyp, B. & Koenigw, D.) 103-130 (Cambridge University Press, 1990).Smith, J. E. et al. Greetings promote cooperation and reinforce social bonds among spotted hyenas. Anim. Behav. 81, 401–415 (2011).Article 

    Google Scholar 
    Aureli, F. & Schaffner, C. M. Aggression and conflict management at fusion in spider monkeys. Biol. Lett. 3, 147–149 (2007).Article 

    Google Scholar 
    Deag, J. M. The diurnal patterns of behaviour of the wild Barbary macaque Macaca sylvanus. J. Zool. 206, 403–413 (1985).Article 

    Google Scholar 
    Canteloup, C., Cera, M. B., Barrett, B. J. & van de Waal, E. Processing of novel food reveals payoff and rank-biased social learning in a wild primate. Sci. Rep. 11, 1–13 (2021).Article 

    Google Scholar 
    Dragić, N., Keynan, O. & Ilany, A. Multilayer social networks reveal the social complexity of a cooperatively breeding bird. iScience 24, 103336 (2021).Kulahci, I. G., Ghazanfar, A. A. & Rubenstein, D. I. Knowledgeable Lemurs Become More Central in Social Networks. Curr. Biol. 28, 1306–1310.e2 (2018).Article 
    CAS 

    Google Scholar 
    Schino, G. Grooming and agonistic support: A meta-analysis of primate reciprocal altruism. Behav. Ecol. 18, 115–120 (2007).Article 

    Google Scholar 
    Kutsukake, N. & Clutton-Brock, T. H. Social functions of allogrooming in cooperatively breeding meerkats. Anim. Behav. 72, 1059–1068 (2006).Article 

    Google Scholar 
    Schweinfurth, M. K., Stieger, B. & Taborsky, M. Experimental evidence for reciprocity in allogrooming among wild-type Norway rats. Sci. Rep. 7, 1–8 (2017).Article 
    CAS 

    Google Scholar 
    Nandini, S., Keerthipriya, P. & Vidya, T. N. C. Group size differences may mask underlying similarities in social structure: A comparison of female elephant societies. Behav. Ecol. 29, 145–159 (2018).Article 

    Google Scholar 
    Hamede, R. K., Bashford, J., McCallum, H. & Jones, M. Contact networks in a wild Tasmanian devil (Sarcophilus harrisii) population: using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease. Ecol. Lett. 12, 1147–1157 (2009).Article 

    Google Scholar 
    Henkel, S., Heistermann, M. & Fischer, J. Infants as costly social tools in male Barbary macaque networks. Anim. Behav. 79, 1199–1204 (2010).Article 

    Google Scholar 
    Prehn, S. G. et al. Seasonal variation and stability across years in a social network of wild giraffe. Anim. Behav. 157, 95–104 (2019).Article 

    Google Scholar 
    Borgeaud, C., Sosa, S., Sueur, C. & Bshary, R. The influence of demographic variation on social network stability in wild vervet monkeys. Anim. Behav. 134, 155–165 (2017).Article 

    Google Scholar 
    Kerth, G., Perony, N. & Schweitzer, F. Bats are able to maintain long-term social relationships despite the high fission-fusion dynamics of their groups. Proc. R. Soc. B 278, 2761–2767 (2011).Article 

    Google Scholar 
    Silk, J. B. et al. The benefits of social capital: Close social bonds among female baboons enhance offspring survival. Proc. R. Soc. B Biol. Sci. 276, 3099–3104 (2009).Article 

    Google Scholar 
    Riehl, C. & Strong, M. J. Stable social relationships between unrelated females increase individual fitness in a cooperative bird. Proc. R. Soc. B Biol. Sci. 285, 20180130 (2018).Shizuka, D. & Johnson, A. E. How demographic processes shape animal social networks. Behav. Ecol. 31, 1–11 (2020).Article 

    Google Scholar 
    Sick, C. et al. Evidence for varying social strategies across the day in chacma baboons. Biol. Lett. 10, 3–6 (2014).Article 

    Google Scholar 
    Barrett, L., Peter Henzi, S. & Lusseau, D. Taking sociality seriously: The structure of multi-dimensional social networks as a source of information for individuals. Philos. Trans. R. Soc. B Biol. Sci. 367, 2108–2118 (2012).Article 

    Google Scholar 
    Henzi, S. P., Lusseau, D., Weingrill, T., Van Schaik, C. P. & Barrett, L. Cyclicity in the structure of female baboon social networks. Behav. Ecol. Sociobiol. 63, 1015–1021 (2009).Article 

    Google Scholar 
    Ripperger, S. P. & Carter, G. G. Social foraging in vampire bats is predicted by long-term cooperative relationships. PLoS Biol. 19, 1–17 (2021).Article 

    Google Scholar 
    Wittemyer, G., Douglas-Hamilton, I. & Getz, W. M. The socioecology of elephants: analysis of the processes creating multitiered social structures. Anim. Behav. 69, 1357–1371 (2005).Article 

    Google Scholar 
    Wittemyer, G., Getz, W. M., Vollrath, F. & Douglas-Hamilton, I. Social dominance, seasonal movements, and spatial segregation in African elephants: A contribution to conservation behavior. Behav. Ecol. Sociobiol. 61, 1919–1931 (2007).Article 

    Google Scholar 
    Gelardi, V., Fagot, J., Barrat, A. & Claidière, N. Detecting social (in)stability in primates from their temporal co-presence network. Anim. Behav. 157, 239–254 (2019).Article 

    Google Scholar 
    Hobson, E. A., Ferdinand, V., Kolchinsky, A. & Garland, J. Rethinking animal social complexity measures with the help of complex systems concepts. Anim. Behav. 155, 287–296 (2019).Article 

    Google Scholar 
    Kappeler, P. M. A framework for studying social complexity. Behav. Ecol. Sociobiol. 73, 13 (2019).Ballerini, M. et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proc. Natl Acad. Sci. USA 105, 1232–1237 (2008).Article 
    CAS 

    Google Scholar 
    Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S. & Camazine, S. Self-organization in social insects. Trends Ecol. Evol. 12, 188–193 (1997).Article 
    CAS 

    Google Scholar 
    Wickramasinghe, A. & Muthukumarana, S. Assessing the impact of the density and sparsity of the network on community detection using a Gaussian mixture random partition graph generator. Int. J. Inf. Technol. 14, 607–618 (2022).
    Google Scholar 
    Motalebi, N., Stevens, N. T. & Steiner, S. H. Hurdle Blockmodels for Sparse Network Modeling. Am. Stat. 75, 383–393 (2021).Article 

    Google Scholar 
    Gokcekus, S., Cole, E. F., Sheldon, B. C. & Firth, J. A. Exploring the causes and consequences of cooperative behaviour in wild animal populations using a social network approach. Biol. Rev. 96, 2355–2372 (2021).Article 

    Google Scholar 
    Koren, L., Mokady, O. & Geffen, E. Social status and cortisol levels in singing rock hyraxes. Horm. Behav. 54, 212–216 (2008).Article 
    CAS 

    Google Scholar 
    Boyland, N. K., James, R., Mlynski, D. T., Madden, J. R. & Croft, D. P. Spatial proximity loggers for recording animal social networks: Consequences of inter-logger variation in performance. Behav. Ecol. Sociobiol. 67, 1877–1890 (2013).Article 

    Google Scholar 
    Drewe, J. A. et al. Performance of proximity loggers in recording Intra- and Inter-species interactions: A laboratory and field-based validation study. PLoS ONE 7, e39068 (2012).Hoppitt, W. & Farine, D. Association Indices For Quantifying Social Relationships: How To Deal With Missing Observations Of Individuals Or Groups. Anim. Behav. 136, 227–238 (2018).Article 

    Google Scholar 
    Farine, D. R. Animal social network inference and permutations for ecologists in R using asnipe. Methods Ecol. Evol. 4, 1187–1194 (2013).Bejder, L., Fletcher, D. & Bräger, S. A method for testing association patterns of social animals. Anim. Behav. 56, 719–725 (1998).Article 
    CAS 

    Google Scholar 
    Kalinka, A. T. & Tomancak, P. linkcomm: An R package for the generation, visualization, and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011–2012 (2011).Article 
    CAS 

    Google Scholar 
    R Core Team, R. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).Wild, F. lsa: Latent Semantic Analysis. R package version 0.73.2. https://CRAN.R-project.org/package=lsa (2020).Han, J., Kamber, M. & Pei, J. Getting to Know Your Data. An R Companion Third Ed. Fundam. Polit. Sci. Res. https://doi.org/10.1016/B978-0-12-381479-1.00002-2 (2021).Benjamini, Y. Controlling the false discovery rate – A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
    Google Scholar 
    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal, Complex Syst. 1695, 1–9 (2006).Dai, H., Leeder, J. S. & Cui, Y. A modified generalized fisher method for combining probabilities from dependent tests. Front. Genet. 20, 2–7 (2014).
    Google Scholar  More

  • in

    Adaptations by the coral Acropora tenuis confer resilience to future thermal stress

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).Article 
    CAS 

    Google Scholar 
    Frolicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).Article 
    CAS 

    Google Scholar 
    Riegl, B. & Purkis, S. Coral population dynamics across consecutive mass mortality events. Glob. Chang Biol. 21, 3995–4005 (2015).Article 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373−+ (2017).Article 

    Google Scholar 
    Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).
    Google Scholar 
    van Hooidonk, R., Maynard, J. A. & Planes, S. Temporary refugia for coral reefs in a warming world. Nat. Clim. Change 3, 508–511 (2013).Article 

    Google Scholar 
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).Article 
    CAS 

    Google Scholar 
    Frieler, K. et al. Limiting global warming to 2 degrees C is unlikely to save most coral reefs. Nat. Clim. Change 3, 165–170 (2013).Article 

    Google Scholar 
    Guest, J. R. et al. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS ONE 7, https://doi.org/10.1371/journal.pone.0033353 (2012).Oliver, T. A. & Palumbi, S. R. Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30, 429–440 (2011).Article 

    Google Scholar 
    Howells, E. J. et al. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat. Clim. Change 2, 116–120 (2012).Article 

    Google Scholar 
    Bay, R. A., Rose, N. H., Logan, C. A. & Palumbi, S. R. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Sci. Adv. 3, https://doi.org/10.1126/sciadv.1701413 (2017).Loya, Y. et al. Coral bleaching: the winners and the losers. Ecol. Lett. 4, 122–131 (2001).Article 

    Google Scholar 
    Edmunds, P. J., Gates, R. D. & Gleason, D. F. The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances. Mar. Biol. 139, 981–989 (2001).Article 

    Google Scholar 
    Lager, C. V. A., Hagedorn, M., Rodgers, K. S. & Jokiel, P. L. The impact of short-term exposure to near shore stressors on the early life stages of the reef building coral Montipora capitata. Peerj 8, https://doi.org/10.7717/peerj.9415 (2020).Ross, C., Ritson-Williams, R., Olsen, K. & Paul, V. J. Short-term and latent post-settlement effects associated with elevated temperature and oxidative stress on larvae from the coral Porites astreoides. Coral Reefs 32, 71–79 (2013).Article 

    Google Scholar 
    Putnam, H. M. & Gates, R. D. Preconditioning in the reef-building coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions. J. Exp. Biol. 218, 2365–2372 (2015).Article 

    Google Scholar 
    Baird, A. H. & Marshall, P. A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133–141 (2002).Article 

    Google Scholar 
    Fisch, J., Drury, C., Towle, E. K., Winter, R. N. & Miller, M. W. Physiological and reproductive repercussions of consecutive summer bleaching events of the threatened Caribbean coral Orbicella faveolata. Coral Reefs 38, 863–876 (2019).Article 

    Google Scholar 
    Michalek-Wagner, K. & Willis, B. L. Impacts of bleaching on the soft coral Lobophytum compactum. I. Fecundity, fertilization and offspring viability. Coral Reefs 19, 231–239 (2001).Article 

    Google Scholar 
    Paxton, C. W., Baria, M. V. B., Weis, V. M. & Harii, S. Effect of elevated temperature on fecundity and reproductive timing in the coral Acropora digitifera. Zygote 24, 511–516 (2016).Article 

    Google Scholar 
    Nozawa, Y. & Harrison, P. L. Effects of elevated temperature on larval settlement and post-settlement survival in scleractinian corals, Acropora solitaryensis and Favites chinensis. Mar. Biol. 152, 1181–1185 (2007).Article 

    Google Scholar 
    Hughes, T. P. & Tanner, J. E. Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81, 2250–2263 (2000).Article 

    Google Scholar 
    Edmunds, P. J. Juvenile coral population dynamics track rising seawater temperature on a Caribbean reef. Mar. Ecol. Prog. Ser. 269, 111–119 (2004).Article 

    Google Scholar 
    Davis, K. & Marshall, D. J. Offspring size in a resident species affects community assembly. J. Anim. Ecol. 83, 322–331 (2014).Article 

    Google Scholar 
    Chua, C. M., Leggat, W., Moya, A. & Baird, A. H. Temperature affects the early life history stages of corals more than near future ocean acidification. Mar. Ecol. Prog. Ser. 475, 85–92 (2013).Article 

    Google Scholar 
    Schnitzler, C. E., Hollingsworth, L. L., Krupp, D. A. & Weis, V. M. Elevated temperature impairs onset of symbiosis and reduces survivorship in larvae of the Hawaiian coral, Fungia scutaria. Mar. Biol. 159, 633–642 (2012).Article 

    Google Scholar 
    Ward, S., Harrison, P. & Hoegh-Guldberg, O. in: Proceedings of the Ninth International Coral Reef Symposium, Bali, 23–27 October 2000. 1123–1128 (2000).Foster, T. & Gilmour, J. Egg size and fecundity of biannually spawning corals at Scott Reef. Sci Rep-Uk 10, https://doi.org/10.1038/s41598-020-68289-4 (2020).Negri, A. P., Marshall, P. A. & Heyward, A. J. Differing effects of thermal stress on coral fertilization and early embryogenesis in four Indo Pacific species. Coral Reefs 26, 759–763 (2007).Article 

    Google Scholar 
    Randall, C. J. & Szmant, A. M. Elevated temperature affects development, survivorship, and settlement of the Elkhorn Coral, Acropora palmata (Lamarck 1816). Biol. Bull. 217, 269–282 (2009).Article 

    Google Scholar 
    Anlauf, H., D’Croz, L. & O’Dea, A. A corrosive concoction: the combined effects of ocean warming and acidification on the early growth of a stony coral are multiplicative. J. Exp. Mar. Biol. Ecol. 397, 13–20 (2011).Article 

    Google Scholar 
    Foster, T., Gilmour, J. P., Chua, C. M., Falter, J. L. & McCulloch, M. T. Effect of ocean warming and acidification on the early life stages of subtropical Acropora spicifera. Coral Reefs 34, 1217–1226 (2015).Article 

    Google Scholar 
    Randall, C. J. & Szmant, A. M. Elevated temperature reduces survivorship and settlement of the larvae of the Caribbean scleractinian coral, Favia fragum (Esper). Coral Reefs 28, 537–545 (2009).Article 

    Google Scholar 
    Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an isolated coral reef system following severe disturbance. Science 340, 69–71 (2013).Article 

    Google Scholar 
    Doropoulos, C., Ward, S., Roff, G., Gonzalez-Rivero, M. & Mumby, P. J. Linking Demographic Processes of Juvenile Corals to Benthic Recovery Trajectories in Two Common Reef Habitats. PLoS ONE 10, https://doi.org/10.1371/journal.pone.0128535 (2015).Donelson, J. M., Munday, P. L., McCormick, M. I. & Pitcher, C. R. Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat. Clim. Change 2, 30–32 (2012).Article 

    Google Scholar 
    Yuyama, I., Nakamura, T., Higuchi, T. & Hidaka, M. Different stress tolerances of juveniles of the Coral Acropora tenuis associated with clades C1 and D symbiodinium. Zool. Stud. 55, https://doi.org/10.6620/Zs.2016.55-19 (2016).Mumby, P. J. Can Caribbean coral populations be modelled at metapopulation scales? Mar. Ecol. Prog. Ser. 180, 275–288 (1999).Article 

    Google Scholar 
    Raymundo, L. J. & Maypa, A. P. Getting bigger faster: mediation of size-specific mortality via fusion in jevenile coral transplants. Ecol. Appl. 14, 281–295 (2004).Article 

    Google Scholar 
    Heyward, A. J. & Negri, A. P. Plasticity of larval pre-competency in response to temperature: observations on multiple broadcast spawning coral species. Coral Reefs 29, 631–636 (2010).Article 

    Google Scholar 
    Figueiredo, J., Baird, A. H., Harii, S. & Connolly, S. R. Increased local retention of reef coral larvae as a result of ocean warming. Nat. Clim. Change 4, 498–502 (2014).Article 

    Google Scholar 
    Ward, S. & Harrison, P. Changes in gametogenesis and fecundity of acroporid corals that were exposed to elevated nitrogen and phosphorus during the ENCORE experiment. J. Exp. Mar. Biol. Ecol. 246, 179–221 (2000).Article 
    CAS 

    Google Scholar 
    Jones, A. M. & Berkelmans, R. Tradeoffs to thermal acclimation: energetics and reproduction of a reef coral with heat tolerant Symbiodinium type-D. J. Mar. Biol. 2011, 185890 (2011).Harriott, V. Reproductive ecology of four scleratinian species at Lizard Island, Great Barrier Reef. Coral Reefs 2, 9–18 (1983).Article 

    Google Scholar 
    Hall, V. R. & Hughes, T. P. Reproductive strategies of modular organisms: Comparative studies of reef-building corals. Ecology 77, 950–963 (1996).Article 

    Google Scholar 
    Smith, C. C. & Fretwell, S. D. The optimal balance between size and number of offspring. Am. Naturalist 108, 499–506 (1974).Article 

    Google Scholar 
    Hoegh-Guldberg, O. & Smith, G. J. Influence of the population density of zooxanthellae and supply of ammonium on the biomass and metabolic characteristics of the reef corals Seriatopora hystrix and Stylophora pistillata. Mar. Ecol. Prog. Ser. 57, 173–186 (1989).Lesser, M. P. Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in ymbiotic dinoflagellates. Limnol. Oceanogr. 41, 271–283 (1996).Article 
    CAS 

    Google Scholar 
    Jones, R. J., Hoegh-Guldberg, O., Larkum, A. W. D. & Schreiber, U. Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ. 21, 1219–1230 (1998).Article 
    CAS 

    Google Scholar 
    Warner, M. E., Fitt, W. K. & Schmidt, G. W. Damage to photosystem II in symbiotic dinoflagellates: A determinant of coral bleaching. Proc. Natl Acad. Sci. USA 96, 8007–8012 (1999).Article 
    CAS 

    Google Scholar 
    McRae, C. J., Huang, W. B., Fan, T. Y. & Côté, I. M. Effects of thermal conditioning on the performance of Pocillopora acuta adult coral colonies and their offspring. Coral Reefs 40, 1491–1503 (2021).Article 

    Google Scholar 
    Howells, E. J. et al. Species-specific trends in the reproductive output of corals across environmental gradients and bleaching histories. Mar. Pollut. Bull. 105, 532–539 (2016).Article 
    CAS 

    Google Scholar 
    Galanto, N., Sartor, C., Moscato, V., Lizama, M. & Lemer, S. Effects of elevated temperature on reproduction and larval settlement in Leptastrea purpurea. Coral Reefs 41, 293–302 (2022).Article 

    Google Scholar 
    Hazraty-Kari, S., Masaya, M., Kawachi, M. & Harii, S. The early acquisition of symbiotic algae benefits larval survival and juvenile growth in the coral Acropora tenuis. J. Exp. Zool. A Ecol. Integr. Physiol. https://doi.org/10.1002/jez.2589 (2022).Moran, A. L. & Manahan, D. T. Energy metabolism during larval development of green and white abalone, Haliotis fulgens and H. sorenseni. Biol. Bull. 204, 270–277 (2003).Article 

    Google Scholar 
    Sewell, M. A. Utilization of lipids during early development of the sea urchin Evechinus chloroticus. Mar. Ecol. Prog. Ser. 304, 133–142 (2005).Article 
    CAS 

    Google Scholar 
    Alexander, G., Hancock, J., Huffmyer, A. & Matsuda, S. Larval thermal conditioning does not improve post-settlement thermal tolerance in the dominant reef-building coral, Montipora capitata. Coral Reefs 41, 333–342 (2022).Rivest, E. B., Chen, C. S., Fan, T. Y., Li, H. H. & Hofmann, G. E. Lipid consumption in coral larvae differs among sites: a consideration of environmental history in a global ocean change scenario. Proc. Biol. Sci. 284, https://doi.org/10.1098/rspb.2016.2825 (2017).Graham, E. M., Baird, A. H., Connolly, S. R., Sewell, M. A. & Willis, B. L. Uncoupling temperature-dependent mortality from lipid depletion for scleractinian coral larvae. Coral Reefs 36, 97–104 (2017).Article 

    Google Scholar 
    Graham, E. M., Baird, A. H., Connolly, S. R., Sewell, M. A. & Willis, B. L. Rapid declines in metabolism explain extended coral larval longevity. Coral Reefs 32, 539–549 (2013).Article 

    Google Scholar 
    Reid, E. C. et al. Internal waves influence the thermal and nutrient environment on a shallow coral reef. Limnol. Oceanogr. 64, 1949–1965 (2019).Article 

    Google Scholar 
    Maynard, J. A., Anthony, K. R. N., Marshall, P. A. & Masiri, I. Major bleaching events can lead to increased thermal tolerance in corals. Mar. Biol. 155, 173–182 (2008).Article 

    Google Scholar 
    Siebeck, U. E., Marshall, N. J., Kluter, A. & Hoegh-Guldberg, O. Monitoring coral bleaching using a colour reference card. Coral Reefs 25, 453–460 (2006).Article 

    Google Scholar 
    Veal, C. J., Holmes, G., Nunez, M., Hoegh-Guldberg, O. & Osborn, J. A comparative study of methods for surface area and three-dimensional shape measurement of coral skeletons. Limnol. Oceanogr.-Meth 8, 241–253 (2010).Article 

    Google Scholar 
    Jeffrey, S. W. & Humphrey, G. F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 167, 191–194 (1975).Article 
    CAS 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).Article 
    CAS 

    Google Scholar 
    R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria 2021). More

  • in

    Marine phytoplankton community data and corresponding environmental properties from eastern Norway, 1896–2020

    Sampling strategies and dataThe inner Oslofjorden phytoplankton dataset is a compilation of data mostly assembled from the monitoring program, financed since 1978 by a cooperation between the municipalities around the fjord, united in the counsel for technical water and sewage cooperation called “Fagrådet for Vann- og avløpsteknisk samarbeid i Indre Oslofjord”. The monitoring program started in 1973 and is ongoing. The program has sampled environmental parameters and chlorophyll since 1973, but for the first 25 years, phytoplankton data is only reported for the years 1973, 1974, 1988/9, 1990, 1994 and 1995. Since 1998, yearly sampling has been conducted, and from 2006 to 2019, the sampling frequency was approximately monthly. In addition, we have compiled research and monitoring data from researchers at the University of Oslo from 1896 and 1916, 1933–34 and 1962–1965.The records from 1896 and 1897 were collected using zoo-plankton net13. The phytoplankton collection in 1916–1917 used buckets or Nansen flasks for sampling. From 1933 to 1984, phytoplankton samples were collected using Nansen bottles and then from 1985–2020 with Niskin bottles from research vessels. The exception is the period from 2006 to 2018 when samples were also collected with FerryBox- equipped ships of opportunity14 with refrigerated autosamplers (Table 2).Since the 1990s, quantitative phytoplankton samples have mostly been preserved in Lugol’s solution, except for spring and autumn samples in the period 1990–2000 that were preserved in formalin. The records from 1896, 1897 and 1916 were preserved in ethanol, and between 1933 and 1990, samples were preserved in formalin. Sampling strategies and methods are listed in Table 2.The records from 1896 and 1897 were quantified by weight, and taxon abundance is categorised as “rare” (r), “rather common” (+), “common” (c) and “very common” (cc)13. In 1916 and 1917, Grans filtration method15 was used, and the number was given in cell counts per litre. From 1916 to 1993, the data is reported only as phytoplankton abundance (N, number of cells per litre). For most years after 1994, the dataset includes both abundance and biomass (μg C per litre), except for 2003, 2004, 2017 and 2018. Phytoplankton was identified and quantified using the sedimentation method of Utermöhl (1958)16. Biovolume for each species is calculated according to HELCOM 200617 and converted to biomass (μg C) following Menden-Deuer & Lessards (2000)18.Data inventoryThe inner Oslofjorden Phytoplankton dataset was compiled in 2020, comprising quantitative phytoplankton cell counts from inner Oslofjorden since 1896. Previously, parts of the data have been available as handwritten or printed tables in reports and published sources19,20,21 (Fig. 2). All sources are digitally available from the University of Oslo Library, the website for “Fagrådet” (http://www.indre-oslofjord.no/) or the NIVA online report database (https://www.niva.no/rapporter). Data from 1994 and onwards have been accessed digitally from the NIVA’s databases. They are also available from client reports from the monitoring project for inner Oslofjorden from the online sites listed above.The first known, published investigation of hydrography and plankton in the upper water column of the inner Oslofjorden was by Hjort & Gran (1900)13. Samples were collected during a hydrographical and biological investigation covering both the Skagerrak and Oslofjorden. There is only one sampling event from Steilene (Dk 1), but some phytoplankton data were obtained at Drøbak, just south of the shallow sill separating the inner and outer Oslofjorden, from winter 1896 to autumn 1897. Twenty years later, Gran and Gaarder (1927)22 conducted a study that included culture experiments at Drøbak field station (at the border between the inner and outer Oslofjorden) in March – April 1916 and August – September 1917. A higher frequency investigation was carried out from June 1933 to May 1934, covering 12 stations in inner and outer Oslofjorden where phytoplankton was analysed by microscopic examination23. The extensive program (the Oslofjord Project) conducted from 1962–1964 covered many parameters, and we have extracted the data for phytoplankton. From 1973 and onward, the research vessel-based monitoring program was financed by the municipalities around the fjord, and since 2006 NIVA has supplemented the monitoring program using FerryBox ships of opportunity. Samples from 4 m depth were collected using a refrigerated autosampler system (Teledyne ISCO) connected to a FerryBox system on M/S Color Festival and M/S Color Fantasy through cooperation between NIVA and Color Line A/S. Since 2018, the FerryBox has been part of the Norwegian Ships of Opportunity Program research infrastructure funded by the Research Council of Norway.The indicated depth of 3.5–4 m is an estimated average, as the actual sampling depth depends on shipload and sea conditions.Several other research projects have sampled from inner Oslofjorden between 1886 and 2000 with different aims. Data from relevant projects reporting on the whole phytoplankton community have also been included in this database.Data compilationThe data already digitalised were compiled from MS Excel files, and other data were manually entered into the standard format in MS Excel files. All collected data were then integrated into one MS Excel database, and this file was used for upload into GBIF. Data can be downloaded from GBIF in different formats and be linked together by the measurementsorfacts table.Quality control and standardisationAfter compilation, the data were checked for errors that could occur during manual digitalisation or just the compilation process. Duplicates and zero values were removed (Fig. 2). The major quantitative unit is phytoplankton abundance in cells per litre. Due to varying scopes of sampling and the development of gear and instruments, the number of species identified may vary between projects. Some of the earliest records were registered as “present”, indicating the amount in comments.Metadata, such as geographical reference, depth and methodology accessed from papers and reports, were accessible from the data source. When data was accessed from the NIVA internal databases, the metadata information was provided by the database owners/researchers.TaxonomyThe taxonomy of microalgae is in constant revision as new knowledge and techniques for identification are developing. Several historical species names recorded in this database are synonyms of accepted names in 2021. We have used the original names in our database and matched them to accepted names and Aphia ID using the taxon match tool available in the open-access reference system; World Register of Marine Species (Worms)24. The taxon match was conducted in March 2021.The nomenclature in Worms is quality assured by a wide range of taxonomic specialists. The Aphia ID is a unique and stable identifier for each available name in the database24. We also cross-checked the last updated nomenclature in Algaebase25 (March 2022) to assign species to a valid taxon name. When Algaebase and Worms were not in accordance, Algaebase taxonomy was usually chosen except in the case of Class Bacillariophyceae.Before matching the species list, the original species names were cleaned from spelling mistakes or just spelling mismatches like spaces, commas, etc. The original name is, however, left in one column in the database. For registrations where a species identification is uncertain, e.g. Alexandrium cf. tamarense, we used only Alexandrium. For registrations where the full name is uncertain, e.g. cf. Alexandrium tamarense, we used the name and Aphia ID for higher taxa, in this case, order. For others, e.g. “pennate diatoms” or “centric diatoms“, we used the name and Aphia ID for class. When names for, e.g. order and class were not recognised automatically by the matching tool in World Register of Marine Species (WoRMS), these were matched manually. Only very few records, mostly “cysts” and “unidentified monads”, could not be matched neither automatically nor manually but were assigned to general “protists” with affiliated ID. More

  • in

    Composition and toxicity of venom produced by araneophagous white-tailed spiders (Lamponidae: Lampona sp.)

    Schendel, V., Rash, L. D., Jenner, R. A. & Undheim, E. A. The diversity of venom: The importance of behavior and venom system morphology in understanding its ecology and evolution. Toxins 11(11), 666 (2019).Article 
    CAS 

    Google Scholar 
    Casewell, N. R., Wüster, W., Vonk, F. J., Harrison, R. A. & Fry, B. G. Complex cocktails: The evolutionary novelty of venoms. Trends Ecol. Evol. 28(4), 219–229 (2013).Article 

    Google Scholar 
    Pineda, S. S. et al. Structural venomics reveals evolution of a complex venom by duplication and diversification of an ancient peptide-encoding gene. Proc. Natl. Acad. Sci. USA 117(21), 11399–11408 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Chippaux, J. P., Williams, V. & White, J. Snake venom variability: Methods of study, results and interpretation. Toxicon 29(11), 1279–1303 (1991).Article 
    CAS 

    Google Scholar 
    Lyons, K., Dugon, M. M. & Healy, K. Diet breadth mediates the prey specificity of venom potency in snakes. Toxins 12(2), 74 (2020).Article 

    Google Scholar 
    Pekár, S. et al. Venom gland size and venom complexity—essential trophic adaptations of venomous predators: A case study using spiders. Mol. Ecol. 27(21), 4257–4269 (2018).Article 

    Google Scholar 
    Phuong, M. A., Mahardika, G. N. & Alfaro, M. E. Dietary breadth is positively correlated with venom complexity in cone snails. BMC Genom. 17(1), 401 (2016).Article 

    Google Scholar 
    Holding, M. L., Biardi, J. E. & Gibbs, H. L. Coevolution of venom function and venom resistance in a rattlesnake predator and its squirrel prey. Proc. R. Soc. B. 283(1829), 20152841 (2016).Article 

    Google Scholar 
    Pekár, S., Líznarová, E., Bočánek, O. & Zdráhal, Z. Venom of prey-specialized spiders is more toxic to their preferred prey: A result of prey-specific toxins. J. Anim. Ecol. 87(6), 1639–1652 (2018).Article 

    Google Scholar 
    Pekár, S., Coddington, J. A. & Blackledge, T. A. Evolution of stenophagy in spiders (Araneae): Evidence based on the comparative analysis of spider diets. Evolution 66(3), 776–806 (2012).Article 

    Google Scholar 
    Herzig, V., King, G. F. & Undheim, E. A. Can we resolve the taxonomic bias in spider venom research?. Toxicon: X 1, 100005 (2019).Article 
    CAS 

    Google Scholar 
    Platnick, N. A relimitation and revision of the Australasian ground spider family Lamponidae (Araneae: Gnaphosoidea). Bull. Am. Mus. Nat. Hist. 2000(245), 1–328 (2000).Article 

    Google Scholar 
    World Spider Catalog. Version 22.0. Natural History Museum Bern. http://wsc.nmbe.ch. Accessed 15 Mar 2021 (2021).White, J. & Weinstein, S. A. A phoenix of clinical toxinology: White-tailed spider (Lampona spp.) bites. A case report and review of medical significance. Toxicon 87, 76–80 (2014).Article 
    CAS 

    Google Scholar 
    Rash, L. D., King, R. G. & Hodgson, W. C. Sex differences in the pharmacological activity of venom from the white-tailed spider (Lampona cylindrata). Toxicon 38, 1111–1127 (2000).Article 
    CAS 

    Google Scholar 
    Young, A. R. & Pincus, S. J. Comparison of enzymatic activity from three species of necrotising arachnids in Australia: Loxosceles rufescens, Badumna insignis and Lampona cylindrata. Toxicon 39, 391–400 (2001).Article 
    CAS 

    Google Scholar 
    Michálek, O., Petráková, L. & Pekár, S. Capture efficiency and trophic adaptations of a specialist and generalist predator: A comparison. Ecol. Evol. 7(8), 2756–2766 (2017).Article 

    Google Scholar 
    Klint, J. K. et al. Spider-venom peptides that target voltage-gated sodium channels: Pharmacological tools and potential therapeutic leads. Toxicon 60(4), 478–491 (2012).Article 
    CAS 

    Google Scholar 
    Diniz, M. R. et al. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches. PLoS ONE 13(8), e0200628 (2018).Article 

    Google Scholar 
    Wilson, D. et al. The aromatic head group of spider toxin polyamines influences toxicity to cancer cells. Toxins 9(11), 346 (2017).Article 

    Google Scholar 
    Herzig, V. & King, G. F. The cystine knot is responsible for the exceptional stability of the insecticidal spider toxin ω-hexatoxin-Hv1a. Toxins 7(10), 4366–4380 (2015).Article 
    CAS 

    Google Scholar 
    Wang, X. H. et al. Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal disulfide bridge. Nat. Struct. Biol. 7(6), 505–513 (2000).Article 
    CAS 

    Google Scholar 
    Yuan, C. H. et al. Discovery of a distinct superfamily of Kunitz-type toxin (KTT) from tarantulas. PLoS ONE 3(10), e3414 (2008).Article 
    ADS 

    Google Scholar 
    Luo, J. et al. Molecular diversity and evolutionary trends of cysteine-rich peptides from the venom glands of Chinese spider Heteropoda venatoria. Sci. Rep. 11, 3211 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Cole, J., Buszka, P. A., Mobley, J. A. & Hataway, R. A. Characterization of the venom proteome for the wandering spider, Ctenus hibernalis (Aranea: Ctenidae). J. Proteom. Bioinform. 9, 196–199 (2016).Article 

    Google Scholar 
    Korolkova, Y. et al. New Insectotoxin from Tibellus Oblongus Spider venom presents novel daptation of ICK Fold. Toxins 13(1), 29 (2021).Article 
    CAS 

    Google Scholar 
    Koua, D. et al. Proteotranscriptomic insights into the venom composition of the wolf spider Lycosa tarantula. Toxins 12(8), 501 (2020).Article 
    CAS 

    Google Scholar 
    Liberato, T., Troncone, L. R. P., Yamashiro, E. T., Serrano, S. M. & Zelanis, A. High-resolution proteomic profiling of spider venom: Expanding the toxin diversity of Phoneutria nigriventer venom. Amino Acids 48(3), 901–906 (2016).Article 
    CAS 

    Google Scholar 
    Oldrati, V. et al. Peptidomic and transcriptomic profiling of four distinct spider venoms. PLoS ONE 12(3), e0172966 (2017).Article 

    Google Scholar 
    King, G. F. & Hardy, M. C. Spider-venom peptides: Structure, pharmacology, and potential for control of insect pests. Annu. Rev. Entomol. 58, 475–496 (2013).Article 
    CAS 

    Google Scholar 
    Turner, A. J., Isaac, R. E. & Coates, D. The neprilysin (NEP) family of zinc metalloendopeptidases: Genomics and function. BioEssays 23(3), 261–269 (2001).Article 
    CAS 

    Google Scholar 
    Casewell, N. R., Harrison, R. A., Wüster, W. & Wagstaff, S. C. Comparative venom gland transcriptome surveys of the saw-scaled vipers (Viperidae: Echis) reveal substantial intra-family gene diversity and novel venom transcripts. BMC Genom. 10(1), 1–12 (2009).Article 

    Google Scholar 
    Tan, C. H., Tan, K. Y., Fung, S. Y. & Tan, N. H. Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah). BMC Genom. 16(1), 1–21 (2015).Article 

    Google Scholar 
    Tan, K. Y., Tan, C. H., Chanhome, L. & Tan, N. H. Comparative venom gland transcriptomics of Naja kaouthia (monocled cobra) from Malaysia and Thailand: Elucidating geographical venom variation and insights into sequence novelty. PeerJ 5, e3142 (2017).Article 

    Google Scholar 
    Undheim, E. A. et al. A proteomics and transcriptomics investigation of the venom from the barychelid spider Trittame loki (brush-foot trapdoor). Toxins. 5(12), 2488–2503 (2013).Article 
    CAS 

    Google Scholar 
    do Nascimento, S. M., de Oliveira, U. C., Nishiyama-Jr, M. Y., Tashima, A. K. & Silva Junior, P. I. D. Presence of a neprilysin on Avicularia juruensis (Mygalomorphae: Theraphosidae) venom. Toxin Rev. 41(2), 370–379 (2021).Article 

    Google Scholar 
    Zobel-Thropp, P. A. et al. Not so dangerous after all? Venom composition and potency of the Pholcid (daddy long-leg) spider Physocyclus mexicanus. Front. Ecol. Evol. 7, 256 (2019).Article 

    Google Scholar 
    Diniz, M. R. et al. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches. PLoS ONE 13(8), e0200628 (2018).Article 

    Google Scholar 
    He, Q. et al. The venom gland transcriptome of Latrodectus tredecimguttatus revealed by deep sequencing and cDNA library analysis. PLoS ONE 8(11), e81357 (2013).Article 
    ADS 

    Google Scholar 
    Haney, R. A., Ayoub, N. A., Clarke, T. H., Hayashi, C. Y. & Garb, J. E. Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics. BMC Genom. 15(1), 1–18 (2014).Article 

    Google Scholar 
    Haney, R. A., Matte, T., Forsyth, F. S. & Garb, J. E. Alternative transcription at venom genes and its role as a complementary mechanism for the generation of venom complexity in the common house spider. Front. Ecol. Evol. 7, 85 (2019).Article 

    Google Scholar 
    Lüddecke, T. et al. An economic dilemma between molecular weapon systems may explain an arachno-atypical venom in wasp spiders (Argiope bruennichi). Biomolecules 10(7), 978 (2020).Article 

    Google Scholar 
    Fainzilber, M., Gordon, D., Hasson, A., Spira, M. E. & Zlotkin, E. Mollusc-specific toxins from the venom of Conus textile neovicarius. Eur. J. Biochem. 202(2), 589–595 (1991).Article 
    CAS 

    Google Scholar 
    Pawlak, J. et al. Denmotoxin, a three-finger toxin from the colubrid snake Boiga dendrophila (Mangrove Catsnake) with bird-specific activity. J. Biol. Chem. 281(39), 29030–29041 (2006).Article 
    CAS 

    Google Scholar 
    Krasnoperov, V. G., Shamotienko, O. G. & Grishin, E. V. Isolation and properties of insect and crustacean-specific neurotoxins from the venom of the black widow spider (Latrodectus mactans tredecimguttatus). J. Nat. Toxins 1, 17–23 (1992).CAS 

    Google Scholar 
    Xu, X. et al. A comparative analysis of the venom gland transcriptomes of the fishing spiders Dolomedes mizhoanus and Dolomedes sulfurous. PLoS ONE 10(10), e0139908 (2015).Article 

    Google Scholar 
    Kuzmenkov, A. I., Sachkova, M. Y., Kovalchuk, S. I., Grishin, E. V. & Vassilevski, A. A. Lachesana tarabaevi, an expert in membrane-active toxins. Biochem. J. 473(16), 2495–2506 (2016).Article 
    CAS 

    Google Scholar 
    Pekár, S. & Toft, S. Trophic specialisation in a predatory group: The case of prey-specialised spiders (Araneae). Biol. Rev. 90(3), 744–761 (2015).Article 

    Google Scholar 
    Nyffeler, M. & Pusey, B. J. Fish predation by semi-aquatic spiders: A global pattern. PLoS ONE 9(6), e99459 (2014).Article 
    ADS 

    Google Scholar 
    Pekár, S. & Lubin, Y. Prey and predatory behavior of two zodariid species (Araneae, Zodariidae). J. Arachnol. 37(1), 118–121 (2009).Article 

    Google Scholar 
    Michálek, O., Kuhn-Nentwig, L. & Pekár, S. High specific efficiency of venom of two prey-specialized spiders. Toxins 11(12), 687 (2019).Article 

    Google Scholar 
    Modahl, C. M., Mrinalini, Frietze, S. & Mackessy, S. P. Adaptive evolution of distinct prey-specific toxin genes in rear-fanged snake venom. Proc. R. Soc. B. 285(1884), 20181003 (2018).Article 

    Google Scholar 
    Harris, R. J., Zdenek, C. N., Harrich, D., Frank, N. & Fry, B. G. An appetite for destruction: Detecting prey-selective binding of α-neurotoxins in the venom of Afro-Asian elapids. Toxins 12(3), 205 (2020).Article 
    CAS 

    Google Scholar 
    Duran, L. H., Rymer, T. L. & Wilson, D. T. Variation in venom composition in the Australian funnel-web spiders Hadronyche valida. Toxicon: X 8, 100063 (2020).Article 
    CAS 

    Google Scholar 
    Kuhn-Nentwig, L., Schaller, J. & Nentwig, W. Purification of toxic peptides and the amino acid sequence of CSTX-1 from the multicomponent venom of Cupiennius salei (Araneae: Ctenidae). Toxicon 32(3), 287–302 (1994).Article 
    CAS 

    Google Scholar 
    Friedel, T. & Nentwig, W. Immobilizing and lethal effects of spider venoms on the cockroach and the common mealbeetle. Toxicon 27(3), 305–316 (1989).Article 
    CAS 

    Google Scholar 
    Eggs, B., Wolff, J. O., Kuhn-Nentwig, L., Gorb, S. N. & Nentwig, W. Hunting without a web: How lycosoid spiders subdue their prey. Ethology 121(12), 1166–1177 (2015).Article 

    Google Scholar 
    Andrews, S. FastQC: A quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2015).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30(15), 2114–2120 (2014).Article 
    CAS 

    Google Scholar 
    Song, L. & Florea, L. Rcorrector: Efficient and accurate error correction for Illumina RNA-seq reads. GigaScience 4(1), s13742–s14015 (2015).Article 

    Google Scholar 
    Grabherr, M. G. et al. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29(7), 644 (2011).Article 
    CAS 

    Google Scholar 
    Gilbert, D. EvidentialGene: Evidence directed gene predictions for eukaryotes. Available online at: http://arthropods.eugenes.org/EvidentialGene/ (2010).Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10(3), 1–10 (2009).Article 

    Google Scholar 
    Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness. In Gene Prediction (ed. Kollmar, M.) 227–245 (Humana, 2019).
    Google Scholar 
    Haas, B. TransDecoder. Available online at: https://github.com/TransDecoder/TransDecoder (2015).Petersen, T. N., Brunak, S., Von Heijne, G. & Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 8(10), 785–786 (2011).Article 
    CAS 

    Google Scholar 
    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997).Article 
    CAS 

    Google Scholar 
    UniProt. The universal protein knowledgebase in 2021. Nucleic Acids Res. 49(1), 480–489 (2021).
    Google Scholar 
    Eddy, S. R. A probabilistic model of local sequence alignment that simplifies statistical significance estimation. PLoS Comput. Biol. 4(5), e1000069 (2008).Article 
    ADS 
    MathSciNet 

    Google Scholar 
    Finn, R. D. et al. Pfam: The protein families database. Nucleic Acids Res. 42(1), 222–230 (2014).Article 

    Google Scholar 
    Wong, E. S., Hardy, M. C., Wood, D., Bailey, T. & King, G. F. SVM-based prediction of propeptide cleavage sites in spider toxins identifies toxin innovation in an Australian tarantula. PLoS ONE 8(7), e66279 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    King, G. F., Gentz, M. C., Escoubas, P. & Nicholson, G. M. A rational nomenclature for naming peptide toxins from spiders and other venomous animals. Toxicon 52(2), 264–276 (2008).Article 
    CAS 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at: https://www.R-project.org/ (2019).Venables, W. N. & Ripley, B. D. Random and mixed effects in Modern Applied Statistics with S 271–300 (Springer, New York, 2002).Pekár, S. & Brabec, M. Modern Analysis of Biological Data: Generalized Linear Models in R (Masaryk University Press, 2016).
    Google Scholar 
    Halekoh, U., Højsgaard, S. & Yan, J. The R package geepack for generalized estimating equations. J. Stat. Softw. 15(2), 1–11 (2006).Article 

    Google Scholar 
    Pekár, S. & Brabec, M. Generalized estimating equations: A pragmatic and flexible approach to the marginal GLM modelling of correlated data in the behavioural sciences. Ethology 124(2), 86–93 (2018).Article 

    Google Scholar  More