More stories

  • in

    Substrate and low intensity fires influence bacterial communities in longleaf pine savanna

    Buisson, E., Archibald, S., Fidelis, A. & Suding, K. N. Ancient grasslands guide ambitious goals in grassland restoration. Science 377, 594–598. https://doi.org/10.1126/science.abo4605 (2022).Article 
    PubMed 

    Google Scholar 
    Archibald, S. et al. Biological and geophysical feedbacks with fire in the Earth system. Environ. Res. Lett. 13, 033003. https://doi.org/10.1088/1748-9326/aa9ead (2018).Article 

    Google Scholar 
    Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J. & Bradstock, R. A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16, 406–411. https://doi.org/10.1016/j.tplants.2011.04.002 (2011).Article 
    PubMed 

    Google Scholar 
    Whitman, T. et al. Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil Biol. Biochem. 138, 107571. https://doi.org/10.1016/j.soilbio.2019.107571 (2019).Article 

    Google Scholar 
    Platt, W. J., Ellair, D. P., Huffman, J. M., Potts, S. E. & Beckage, B. Pyrogenic fuels produced by savanna trees can engineer humid savannas. Ecol. Monogr. 86, 352–372. https://doi.org/10.1002/ecm.1224 (2016).Article 

    Google Scholar 
    He, T., Lamont, B. B. & Pausas, J. G. Fire as a key driver of Earth’s biodiversity. Biol. Rev. 94, 1983–2010. https://doi.org/10.1111/brv.12544 (2019).Article 
    PubMed 

    Google Scholar 
    Bond, W. J. & Keeley, J. E. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387–394 (2005).Article 
    PubMed 

    Google Scholar 
    Hopkins, J. R., Huffman, J. M., Platt, W. J. & Sikes, B. A. Frequent fire slows microbial decomposition of newly deposited fine fuels in a pyrophilic ecosystem. Oecologia 193, 631–643. https://doi.org/10.1007/s00442-020-04699-5 (2020).Article 
    PubMed 

    Google Scholar 
    Platt, W. J., Orzell, S. L. & Slocum, M. G. Seasonality of fire weather strongly influences fire regimes in south Florida savanna-grassland landscapes. PLoS ONE 10, e0116952 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Semenova-Nelsen, T. A., Platt, W. J., Patterson, T. R., Huffman, J. & Sikes, B. A. Frequent fire reorganizes fungal communities and slows decomposition across a heterogeneous pine savanna landscape. New Phytol. 224, 916–927. https://doi.org/10.1111/nph.16096 (2019).Article 
    PubMed 

    Google Scholar 
    Hansen, P. M., Semenova-Nelsen, T. A., Platt, W. J. & Sikes, B. A. Recurrent fires do not affect the abundance of soil fungi in a frequently burned pine savanna. Fungal Ecol. 42, 100852. https://doi.org/10.1016/j.funeco.2019.07.006 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Köster, K. et al. The long-term impact of low-intensity surface fires on litter decomposition and enzyme activities in boreal coniferous forests. Int. J. Wildland Fire 25, 618–618 (2016).Article 

    Google Scholar 
    Beals, K. K., Scearce, A. E., Swystun, A. T. & Schweitzer, J. A. Belowground mechanisms for oak regeneration: Interactions among fire, soil microbes, and plant community alter oak seedling growth. For. Ecol. Manage. 503, 119774. https://doi.org/10.1016/j.foreco.2021.119774 (2022).Article 

    Google Scholar 
    Huffman, M. S. & Madritch, M. D. Soil microbial response following wildfires in thermic oak-pine forests. Biol. Fertil. Soils 54, 985–997 (2018).Article 

    Google Scholar 
    Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 143, 1–10 (2005).Article 
    PubMed 

    Google Scholar 
    Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. 105, 11512–11519. https://doi.org/10.1073/pnas.0801925105 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Badía, D. et al. Burn effects on soil properties associated to heat transfer under contrasting moisture content. Sci. Total Environ. 601–602, 1119–1128. https://doi.org/10.1016/j.scitotenv.2017.05.254 (2017).Article 
    PubMed 

    Google Scholar 
    Mino, L. et al. Watershed and fire severity are stronger determinants of soil chemistry and microbiomes than within-watershed woody encroachment in a tallgrass prairie system. FEMS Microbiol. Ecol. 97, fiab154. https://doi.org/10.1093/femsec/fiab154 (2021).Article 
    PubMed 

    Google Scholar 
    Mataix-Solera, J., García-Orenes, F., Bárcenas-Moreno, G. & Torres, M. Forest Fire Effects on Soil Microbiology.
    In Fire Effects on Soils and Restoration Strategies, (eds A. Cerdà & P. Robichaud) 133–175 (Science Publishers, Inc., 2009). https://doi.org/10.1201/9781439843338-c5.McLauchlan, K. K. et al. Fire as a fundamental ecological process: Research advances and frontiers. J. Ecol. 108, 2047–2069. https://doi.org/10.1111/1365-2745.13403 (2020).Article 

    Google Scholar 
    Prober, S. M. et al. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol. Lett. 18, 85–95 (2015).Article 
    PubMed 

    Google Scholar 
    Veldman, J. W. et al. Toward an old-growth concept for grasslands, savannas, and woodlands. Front. Ecol. Environ. 13, 154–162. https://doi.org/10.1890/140270 (2015).Article 

    Google Scholar 
    Peet, R., Platt, W. & Costanza, J. Fire-maintained Pine Savannas and Woodlands of the Southeastern US Coastal Plain. in Ecology and Recovery of Eastern Old-Growth Forests (eds Barton, A. M. & Keeton, W. S.) Ch. 3, (2018).Costanza, J. K., Terando, A. J., McKerrow, A. J. & Collazo, J. A. Modeling climate change, urbanization, and fire effects on Pinus palustris ecosystems of the southeastern US. J. Environ. Manage. 151, 186–199. https://doi.org/10.1016/j.jenvman.2014.12.032 (2015).Article 
    PubMed 

    Google Scholar 
    Ibanez, T. et al. Altered cyclone–fire interactions are changing ecosystems. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2022.08.005 (2022).Article 
    PubMed 

    Google Scholar 
    Robertson, K. M., Platt, W. J. & Faires, C. E. Patchy fires promote regeneration of longleaf pine (Pinus palustris Mill.) in pine savannas. Forests https://doi.org/10.3390/f10050367 (2019).Article 

    Google Scholar 
    Platt, W. J., Evans, G. W. & Rathbun, S. L. The population dynamics of a long-lived conifer (Pinus palustris). Am. Nat. 131, 491–525 (1988).Article 

    Google Scholar 
    Noel, J., Platt, W. J. & Moser, E. Structural characteristics of old- and second-growth stands of longleaf pine (Pinus palustris) in the gulf coastal region of the USA. Conserv. Biol. 12, 533–548. https://doi.org/10.1111/j.1523-1739.1998.96124.x (1998).Article 

    Google Scholar 
    Ellair, D. P. & Platt, W. J. Fuel composition influences fire characteristics and understorey hardwoods in pine savanna. J. Ecol. 101, 192–201. https://doi.org/10.1111/1365-2745.12008 (2013).Article 

    Google Scholar 
    Senn, S. et al. The functional biogeography of eDNA metacommunities in the post-fire landscape of the Angeles national forest. Microorganisms https://doi.org/10.3390/microorganisms10061218 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ammitzboll, H., Jordan, G. J., Baker, S. C., Freeman, J. & Bissett, A. Contrasting successional responses of soil bacteria and fungi to post-logging burn severity. For. Ecol. Manage. 508, 120059. https://doi.org/10.1016/j.foreco.2022.120059 (2022).Article 

    Google Scholar 
    Rother, M. T., Huffman, J. M., Guiterman, C. H., Robertson, K. M. & Jones, N. A history of recurrent, low-severity fire without fire exclusion in southeastern pine savannas, USA. For. Ecol. Manage. 475, 118406. https://doi.org/10.1016/j.foreco.2020.118406 (2020).Article 

    Google Scholar 
    Noss, R. F. et al. How global biodiversity hotspots may go unrecognized: lessons from the North American Coastal Plain. Divers. Distrib. 21, 236–244. https://doi.org/10.1111/ddi.12278 (2015).Article 

    Google Scholar 
    Platt, W. J. Southeastern pine savannas. in Savannas, Barrens, and Rock Outcrop Plant Communities of North America, 23–51 (1999).Fill, J. M., Platt, W. J., Welch, S. M., Waldron, J. L. & Mousseau, T. A. Updating models for restoration and management of fiery ecosystems. For. Ecol. Manage. 356, 54–63 (2015).Article 

    Google Scholar 
    Fill, J. M., Davis, C. N. & Crandall, R. M. Climate change lengthens southeastern USA lightning-ignited fire seasons. Glob. Change Biol. 25, 3562–3569. https://doi.org/10.1111/gcb.14727 (2019).Article 

    Google Scholar 
    Weakley, A. Flora of the Southern and Mid-Atlantic States, (2015).Multivariate analysis of Ecological Data, Version 6.0 for Windows (MjM Software, Gleneden Beach, Oregon, USA, 2011).Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516. https://doi.org/10.1073/pnas.1000080107 (2011).Article 
    PubMed 

    Google Scholar 
    Renaud, G., Stenzel, U., Maricic, T., Wiebe, V. & Kelso, J. deML: Robust demultiplexing of Illumina sequences using a likelihood-based approach. Bioinformatics 31, 770–772. https://doi.org/10.1093/bioinformatics/btu719 (2015).Article 
    PubMed 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xia, Z. et al. Conventional versus real-time quantitative PCR for rare species detection. Ecol. Evol. 8, 11799–11807. https://doi.org/10.1002/ece3.4636 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. in Encyclopedia of Metagenomics: Genes, Genomes and Metagenomes: Basics, Methods, Databases and Tools (ed Nelson, K. E.) 626–635 (Springer US, 2015).Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261. https://doi.org/10.1128/AEM.00062-07 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Balvočiūtė, M. & Huson, D. H. SILVA, RDP, Greengenes, NCBI and OTT—how do these taxonomies compare?. BMC Genomics 18, 114. https://doi.org/10.1186/s12864-017-3501-4 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).Article 

    Google Scholar 
    Legendre, P. & Legendre, L. Numerical Ecology. (Elsevier, 2012).Jorgensen, B. Exponential dispersion models. J. R. Stat. Soc. Ser. B (Methodol.) 49, 127–162 (1987).MathSciNet 
    MATH 

    Google Scholar 
    Team, R. C. R: A Language and Environment for Statistical Computing (2019).Wood, S. Package ‘mgcv’. R Package Version 1, 29 (2015).
    Google Scholar 
    Jones, G. M. & Tingley, M. W. Pyrodiversity and biodiversity: A history, synthesis, and outlook. Divers. Distrib. 28, 386–403. https://doi.org/10.1111/ddi.13280 (2022).Article 

    Google Scholar 
    Pfeiffer, B. et al. Leaf litter is the main driver for changes in bacterial community structures in the rhizosphere of ash and beech. Appl. Soil. Ecol. 72, 150–160 (2013).Article 

    Google Scholar 
    Purahong, W. et al. Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Mol. Ecol. https://doi.org/10.1111/mec.13739 (2016).Article 
    PubMed 

    Google Scholar 
    Angst, Š et al. Tree species identity alters decomposition of understory litter and associated microbial communities: A case study. Biol. Fertil. Soils 55, 525–538. https://doi.org/10.1007/s00374-019-01360-z (2019).Article 

    Google Scholar 
    Liang, X., Yuan, J., Yang, E. & Meng, J. Responses of soil organic carbon decomposition and microbial community to the addition of plant residues with different C:N ratio. Eur. J. Soil Biol. 82, 50–55. https://doi.org/10.1016/j.ejsobi.2017.08.005 (2017).Article 

    Google Scholar 
    Bonanomi, G. et al. Litter chemistry explains contrasting feeding preferences of bacteria, fungi, and higher plants. Sci. Rep. 7, 9208. https://doi.org/10.1038/s41598-017-09145-w (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, W., Niu, S., Liu, X. & Wang, J. Short-term response of the soil bacterial community to differing wildfire severity in Pinus tabulaeformis stands. Sci. Rep. 9, 1148. https://doi.org/10.1038/s41598-019-38541-7 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ficken, C. D. & Wright, J. P. Effects of fire frequency on litter decomposition as mediated by changes to litter chemistry and soil environmental conditions. PLoS ONE 12, e0186292 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bani, A. et al. The role of microbial community in the decomposition of leaf litter and deadwood. Appl. Soil. Ecol. 126, 75–84. https://doi.org/10.1016/j.apsoil.2018.02.017 (2018).Article 

    Google Scholar 
    Bowd, E. J. et al. Direct and indirect effects of fire on microbial communities in a pyrodiverse dry-sclerophyll forest. J. Ecol. https://doi.org/10.1111/1365-2745.13903 (2022).Article 

    Google Scholar 
    Hart, S., Deluca, T., Newman, G., Mackenzie, M. D. & Boyle, S. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For. Ecol. Manage. https://doi.org/10.1016/j.foreco.2005.08.012 (2005).Article 

    Google Scholar 
    López-Mondéjar, R. et al. Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling. ISME J. https://doi.org/10.1038/s41396-018-0084-2 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pérez-Valera, E., Verdú, M., Navarro Cano, J. & Goberna, M. Resilience to fire of phylogenetic diversity across biological domains. Mol. Ecol. https://doi.org/10.1111/mec.14729 (2018).Article 
    PubMed 

    Google Scholar 
    Zhao, F. et al. Change in soil bacterial community during secondary succession depend on plant and soil characteristics. CATENA 173, 246–252 (2019).Article 

    Google Scholar 
    Mikita-Barbato, R. A., Kelly, J. J. & Tate, R. L. Wildfire effects on the properties and microbial community structure of organic horizon soils in the New Jersey Pinelands. Soil Biol. Biochem. 86, 67–76. https://doi.org/10.1016/j.soilbio.2015.03.021 (2015).Article 

    Google Scholar 
    Adkins, J., Docherty, K. M., Gutknecht, J. L. M. & Miesel, J. R. How do soil microbial communities respond to fire in the intermediate term? Investigating direct and indirect effects associated with fire occurrence and burn severity. Sci. Total Environ. 745, 140957. https://doi.org/10.1016/j.scitotenv.2020.140957 (2020).Article 
    PubMed 

    Google Scholar 
    Ponder, F. Jr., Tadros, M. & Loewenstein, E. F. Microbial properties and litter and soil nutrients after two prescribed fires in developing savannas in an upland Missouri Ozark Forest. For. Ecol. Manage. 257, 755–763 (2009).Article 

    Google Scholar 
    Gołębiewski, M. et al. Rapid microbial community changes during initial stages of pine litter decomposition. Microb. Ecol. 77, 56–75. https://doi.org/10.1007/s00248-018-1209-x (2019).Article 
    PubMed 

    Google Scholar 
    Coetsee, C., Bond, W. J. & February, E. C. Frequent fire affects soil nitrogen and carbon in an African savanna by changing woody cover. Oecologia 162, 1027–1034 (2010).Article 
    PubMed 

    Google Scholar 
    Alcañiz, M., Outeiro, L., Francos, M. & Ubeda, X. Effects of prescribed fires on soil properties: A review. Sci Total Environ 613–614, 944–957. https://doi.org/10.1016/j.scitotenv.2017.09.144 (2018).Article 
    PubMed 

    Google Scholar 
    Ferrenberg, S. et al. Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME J. 7, 1102–1111 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kranz, C. & Whitman, T. Surface charring from prescribed burning has minimal effects on soil bacterial community composition two weeks post-fire in jack pine barrens. Appl. Soil. Ecol. 144, 134–138 (2019).Article 

    Google Scholar 
    Whitman, T., Woolet, J., Sikora, M., Johnson, D. B. & Whitman, E. Resilience in soil bacterial communities of the boreal forest from one to five years after wildfire across a severity gradient. Soil Biol. Biochem. 172, 108755. https://doi.org/10.1016/j.soilbio.2022.108755 (2022).Article 

    Google Scholar 
    Ammitzboll, H., Jordan, G. J., Baker, S. C., Freeman, J. & Bissett, A. Diversity and abundance of soil microbial communities decline, and community compositions change with severity of post-logging fire. Mol. Ecol. 30, 2434–2448. https://doi.org/10.1111/mec.15900 (2021).Article 
    PubMed 

    Google Scholar 
    Maquia, I. S. A. et al. The nexus between fire and soil bacterial diversity in the African miombo woodlands of niassa special reserve, Mozambique. Microorganisms https://doi.org/10.3390/microorganisms9081562 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shen, J.-P., Chen, C. & Lewis, T. Long term repeated fire disturbance alters soil bacterial diversity but not the abundance in an Australian wet sclerophyll forest. Sci. Rep. 6, 19639. https://doi.org/10.1038/srep19639 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, R. J., Hallgren, S. W. & Wilson, G. W. T. Frequency of prescribed burning in an upland oak forest determines soil and litter properties and alters the soil microbial community. For. Ecol. Manage. 265, 241–247. https://doi.org/10.1016/j.foreco.2011.10.032 (2012).Article 

    Google Scholar 
    Wang, Q., Zhong, M. & Wang, S. A meta-analysis on the response of microbial biomass, dissolved organic matter, respiration, and N mineralization in mineral soil to fire in forest ecosystems. For. Ecol. Manage. 271, 91–97. https://doi.org/10.1016/j.foreco.2012.02.006 (2012).Article 

    Google Scholar 
    Brockway, D. G., Gatewood, R. G. & Paris, R. B. Restoring fire as an ecological process in shortgrass prairie ecosystems: initial effects of prescribed burning during the dormant and growing seasons. J. Environ. Manage. 65, 135–152. https://doi.org/10.1006/jema.2002.0540 (2002).Article 
    PubMed 

    Google Scholar 
    Deka, H. & Mishra, P. Effect of fuel burning on the microbial population of soil. Folia Microbiol. 29, 330–336 (1984).Article 

    Google Scholar 
    Weber, C., Lockhart, J., Charaska, E., Aho, K. & Lohse, K. Bacterial composition of soils in ponderosa pine and mixed conifer forests exposed to different wildfire burn severity. Soil Biol. Biochem. 69, 242–250. https://doi.org/10.1016/j.soilbio.2013.11.010 (2014).Article 

    Google Scholar 
    Choromanska, U. & DeLuca, T. H. Microbial activity and nitrogen mineralization in forest mineral soils following heating: evaluation of post-fire effects. Soil Biol. Biochem. 34, 263–271. https://doi.org/10.1016/S0038-0717(01)00180-8 (2002).Article 

    Google Scholar 
    Saccá, M. L., Barra Caracciolo, A., Di Lenola, M. & Grenni, P. in Soil Biological Communities and Ecosystem Resilience. (eds Lukac, M., Grenni, P. & Gamboni, M.) 9–24 (Springer International Publishing, 2017).Maquia, I. S. et al. Mining the microbiome of key species from African savanna woodlands: Potential for soil health improvement and plant growth promotion. Microorganisms 8(9), 1291 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pressler, Y., Moore, J. C. & Cotrufo, M. F. Belowground community responses to fire: meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos 128, 309–327. https://doi.org/10.1111/oik.05738 (2019).Article 

    Google Scholar 
    Pérez-Valera, E. et al. Fire modifies the phylogenetic structure of soil bacterial co-occurrence networks. Environ. Microbiol. https://doi.org/10.1111/1462-2920.13609 (2017).Article 
    PubMed 

    Google Scholar 
    Baldrian, P. et al. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 6, 248–258. https://doi.org/10.1038/ismej.2011.95 (2012).Article 
    PubMed 

    Google Scholar 
    Kobziar, L. N. et al. Pyroaerobiology: The aerosolization and transport of viable microbial life by wildland fire. Ecosphere 9, e02507. https://doi.org/10.1002/ecs2.2507 (2018).Article 

    Google Scholar 
    Carini, P. et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 16242. https://doi.org/10.1038/nmicrobiol.2016.242 (2016).Article 
    PubMed 

    Google Scholar 
    Lennon, J. T., Muscarella, M. E., Placella, S. A. & Lehmkuhl, B. K. How, when, and where relic DNA affects microbial diversity. MBio 9, e00637-00618. https://doi.org/10.1128/mBio.00637-18 (2018).Article 

    Google Scholar 
    Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. 112, 10967–10972 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dolan, K. L., Peña, J., Allison, S. D. & Martiny, J. B. Phylogenetic conservation of substrate use specialization in leaf litter bacteria. PLoS ONE 12, e0174472 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woolet, J. & Whitman, T. Pyrogenic organic matter effects on soil bacterial community composition. Soil Biol. Biochem. 141, 107678 (2020).Article 

    Google Scholar 
    Buscardo, E. et al. Spatio-temporal dynamics of soil bacterial communities as a function of Amazon forest phenology. Sci. Rep. 8, 1–13 (2018).Article 

    Google Scholar 
    Tláskal, V., Zrůstová, P., Vrška, T. & Baldrian, P. Bacteria associated with decomposing dead wood in a natural temperate forest. FEMS Microbiol. Ecol. 93, fix157 (2017).Article 

    Google Scholar 
    Shade, A. & Handelsman, J. Beyond the Venn diagram: the hunt for a core microbiome. Environ. Microbiol. 14, 4–12. https://doi.org/10.1111/j.1462-2920.2011.02585.x (2012).Article 
    PubMed 

    Google Scholar  More

  • in

    Area of Habitat maps for the world’s terrestrial birds and mammals

    Knowing the distribution of species is crucial for effective conservation action. However, accurate and high-resolution spatial data are only available for a limited number of species1,2. For mammals and birds, the most comprehensive and widely used global distribution dataset is the set of range maps compiled as part of the assessments for the International Union for Conservation of Nature (IUCN) Red List. These represent each species’ distributional limits and tend to minimize omission errors (i.e. false absences) at the expense of commission errors (i.e. false presences)3,4. Therefore, they often contain sizeable areas not regularly occupied by the species.Maps of the Area of Habitat (AOH; previously known as Extent of Suitable Habitat, ESH) complement range maps by indicating potential occupancy within the range, thereby reducing commission errors5. AOH is defined as ‘the habitat available to a species, that is, habitat within its range’5. These models are produced by subtracting areas unsuitable for the species within their range, using information on each species’ associations with habitat and elevation5,6,7,8. Comprehensive sets of AOH maps have been produced in the past for mammals6 and amphibians7, as well as subsets of birds8,9. The percentage of a species’ range covered by the AOH varies depending on the methodology used to associate species to their habitats, and their habitats to land-cover, the coarseness of the range map, the region in which the species is distributed, and the species’ habitat specialization and elevation limits5. For example, Rondinini et al.6 found that, when considering elevation and land cover features for terrestrial mammals, the AOH comprised, on average, 55% of the range. Ficetola et al.7 obtained a similar percentage when analyzing amphibians (55% for forest species, 42% for open habitat species and 61% for habitat generalists). Beresford et al.8 found that AOH covered a mean of 27.6% of the range maps of 157 threatened African bird species. In 2019, Brooks et al.5 proposed a formal definition and standardized methodology to produce AOH, limiting the inputs to habitat preferences, elevation limits, and geographical range.AOH production requires knowledge of which habitat types a species occurs in and their location within the range1. Information on habitat preference is documented for each species assessed in the IUCN Red List10, following the IUCN Habitats Classification Scheme11. However, the IUCN does not define habitat classes in a spatially explicit way, therefore, we used a recently published translation table that associates IUCN Habitat Classification Scheme classes with land cover classes12. Species’ elevation limits were also extracted from the IUCN Red List.We developed AOH maps for 5,481 terrestrial mammal species and 10,651 terrestrial bird species (Fig. 1). For 1,816 bird species defined by BirdLife International as migratory, we developed separate AOH maps, for the resident, breeding, and non-breeding ranges, according to the migratory distribution of the species (Fig. 2). The maps are presented in a regular latitude/longitude grid with an approximate 100 m resolution at the equator. On average, the AOH covers 66 ± 28% of the geographical range for mammals and 64 ± 27% for birds. We used the resulting AOH maps to produce four global species richness layers for: mammals, birds, globally threatened mammals and globally threatened birds13 (Fig. 3).Fig. 1Spatial distribution maps of Tangara abbas. Maps represent (a) the geographic range21, and (b) the Area of Habitat (AOH) of the species. The AOH was produced by subtracting unsuitable habitats from the geographical range. This species’ habitats are forest and terrestrial artificial habitats and has elevation range of 0 – 1600 m.Full size imageFig. 2Spatial distribution maps of Cardellina rubrifrons, divided into resident, breeding and non-breeding areas for this migratory species. Maps represent (a) the geographic range21, and (b) the Area of Habitat (AOH) of the species. The AOH was produced by subtracting unsuitable habitats from the ranges. This species is a forest species with elevation rangelimits of 1500 – 3100 m.Full size imageFig. 3Global species richness maps for (a) terrestrial mammals (considering 5,481species) and (b) terrestrial birds (considering 10,651 species). Calculated by overlaying all species’ AOH per class, resulting inon the number of species at each grid cell, latitude/longitude grid at a resolution of 1°/1008 or approximately 100 m at the equator (EPSG:4326) with the ellipsoid WGS 1984.Full size imageThe AOH maps presented in this paper are more useful for some purposes than global species distribution models, as they reduce and standardize commissions14. They are especially useful for not well-known and wide-range species. However, we note that for well-known species alternative sources may have more accurate distributions15. Moreover, AOHs are affected by the bias and errors of the underlying data, especially relevant errors associated with documentation of species’ habitats and elevations, and the translation of habitats into land cover classes, given that habitat is a complex multidimensional concept that is challenging to match to land-cover classes12, and that the current version of the IUCN Habitat Classification Scheme on IUCN’s website is described as a draft version11.The AOH maps have multiple conservation applications5,16,17, such as assessing species’ distributions and extinction risk, improving the accuracy of conservation planning, monitoring habitat loss and fragmentation, and guiding conservation actions. AOH has been proposed as an additional spatial metric to be documented in the Red List5, and is used for the identification of Key Biodiversity Areas18. More

  • in

    Long-term High Resolution Image Dataset of Antarctic Coastal Benthic Fauna

    Rogers, A. et al. Antarctic futures: An assessment of climate-driven changes in ecosystem structure, function, and service provisioning in the southern ocean. Annual Review of Marine Science 12, 87–120, https://doi.org/10.1146/annurev-marine-010419-011028 (2020).Article 
    PubMed 

    Google Scholar 
    Tin, T. et al. Impacts of local human activities on the antarctic environment. Antarctic Science 21, 3–33, https://doi.org/10.1017/S0954102009001722 (2009).Article 

    Google Scholar 
    Pineda-Metz, S. E. A., Gerdes, D. & Richter, C. Benthic fauna declined on a whitening antarctic continental shelf. Nature Communications 11, 2226, https://doi.org/10.1038/s41467-020-16093-z (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Convey, P. Antarctic terrestrial biodiversity in a changing world. Polar Biology 34, 1629, https://doi.org/10.1007/s00300-011-1068-0 (2011).Article 

    Google Scholar 
    Kang, Y. H. et al. Composition and structure of the marine benthic community in terra nova bay, antarctica: Responses of the benthic assemblage to disturbances. PLOS ONE 14, 1–16, https://doi.org/10.1371/journal.pone.0225551 (2019).Article 

    Google Scholar 
    Piazza, P. et al. Underwater photogrammetry in antarctica: long-term observations in benthic ecosystems and legacy data rescue. Polar Biology 42, 1061–1079, https://doi.org/10.1007/s00300-019-02480-w (2019).Article 

    Google Scholar 
    SOOS. Southern Ocean Observing System – Report on the 2017 Ross Sea Working Group Meeting. http://www.soos.aq. [Online; accessed 2022/11/15] (2017).SCAR. Scientific Committee on Antarctic Research. https://www.scar.org. [Online; accessed 2022/11/15] (2021).ANTOS. Antarctic near-shore and terrestrial observing system. https://www.scar.org/science/antos/home. [Online; accessed 2022/11/15] (2015).Dayton, P. K. et al. Benthic responses to an antarctic regime shift: food particle size and recruitment biology. Ecological Applications 29, e01823, https://doi.org/10.1002/eap.1823 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watters, G. M., Hinke, J. T. & Reiss, C. S. Long-term observations from antarctica demonstrate that mismatched scales of fisheries management and predator-prey interaction lead to erroneous conclusions about precaution. Scientific Reports 10, 2314, https://doi.org/10.1038/s41598-020-59223-9 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolinesi, F. et al. Spatial-related community structure and dynamics in phytoplankton of the ross sea, antarctica. Frontiers in Marine Science 7, https://doi.org/10.3389/fmars.2020.574963 (2020).Stenni, B. et al. Three-year monitoring of stable isotopes of precipitation at concordia station, east antarctica. The Cryosphere 10, 2415–2428, https://doi.org/10.5194/tc-10-2415-2016 (2016).Article 

    Google Scholar 
    Ramesh, K. & Soni, V. Perspectives of antarctic weather monitoring and research efforts. Polar Science 18, 183–188, https://doi.org/10.1016/j.polar.2018.04.005 (2018). Recent Advances in Climate Science of Polar Region (to commemorate the contributions of Late Dr. S.Z. Qasim, a pioneering doyen of the Indian Polar programme).Article 

    Google Scholar 
    Shepherd, A. et al. Mass balance of the antarctic ice sheet from 1992 to 2017. Nature 558, 219–222, https://doi.org/10.1038/s41586-018-0179-y (2018).Article 

    Google Scholar 
    Budge, J. S. & Long, D. G. A comprehensive database for antarctic iceberg tracking using scatterometer data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11, 434–442, https://doi.org/10.1109/JSTARS.2017.2784186 (2018).Article 

    Google Scholar 
    Rignot, E. et al. Four decades of antarctic ice sheet mass balance from 1979–2017. Proceedings of the National Academy of Sciences of the United States of America 116, 1095–1103, https://doi.org/10.1073/pnas.1812883116 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barbat, M. M., Rackow, T., Wesche, C., Hellmer, H. H. & Mata, M. M. Automated iceberg tracking with a machine learning approach applied to sar imagery: A weddell sea case study. ISPRS Journal of Photogrammetry and Remote Sensing 172, 189–206, https://doi.org/10.1016/j.isprsjprs.2020.12.006 (2021).Article 

    Google Scholar 
    Aguzzi, J. et al. New high-tech flexible networks for the monitoring of deep-sea ecosystems. Environmental Science & Technology 53, 6616–6631, https://doi.org/10.1021/acs.est.9b00409 (2019).Article 

    Google Scholar 
    Piazza, P., Gattone, S., Guzzi, A. & Schiaparelli, S. Towards a robust baseline for long-term monitoring of antarctic coastal benthos. Hydrobiologia 847, 1753–1771, https://doi.org/10.1007/s10750-020-04177-2 (2020).Article 

    Google Scholar 
    Rountree, R. et al. Towards an optimal design for ecosystem-level ocean observatories. Oceanography and Marine Biology 58, 79–105, https://doi.org/10.1201/9780429351495-2 (2020).Article 

    Google Scholar 
    Katsanevakis, S. et al. Monitoring marine populations and communities: Methods dealing with imperfect detectability. Aquatic Biology 16, 31–52, https://doi.org/10.3354/ab00426 (2012).Article 

    Google Scholar 
    Zampoukas, N. et al. Technical guidance on monitoring for the marine strategy framework directive. Tech. Rep., European Commission, Report EUR 26499 (2014).Bicknell, A. W., Godley, B. J., Sheehan, E. V., Votier, S. C. & Witt, M. J. Camera technology for monitoring marine biodiversity and human impact. Frontiers in Ecology and the Environment 14, 424–432, https://doi.org/10.1002/fee.1322 (2016).Article 

    Google Scholar 
    European Marine Board. Working Group on Big Data in Marine Science. https://www.marineboard.eu/publications/big-data-marine-science. [Online; accessed 2022/11/15] (2020).Zurowietz, M. & Nattkemper, T. W. Current trends and future directions of large scale image and video annotation: Observations from four years of biigle 2.0. Frontiers in Marine Science 8, https://doi.org/10.3389/fmars.2021.760036 (2021).Kim, S. L., Thurber, A., Hammerstrom, K. & Conlan, K. Seastar response to organic enrichment in an oligotrophic polar habitat. Journal of Experimental Marine Biology and Ecology 346, 66–75, https://doi.org/10.1016/j.jembe.2007.03.004 (2007).Article 

    Google Scholar 
    Peirano, A., Bordone, A., Marini, S., Piazza, P. & Schiaparelli, S. A simple time-lapse apparatus for monitoring macrozoobenthos activity in antarctica. Antarctic Science 28, 473–474, https://doi.org/10.1017/S0954102016000377 (2016).Article 

    Google Scholar 
    Peirano, A., Marini, S., Bordone, A. & Schiaparelli, S. ICE-LAPSE: Analysis of antarctic benthos dynamics by using non-destructive monitoring devices and permanent stations, pnra 2013/az1.16, funded by the italian national antarctic program (2015-2016).Marini, S. et al. Long-term automated visual monitoring of antarctic benthic fauna. Methods in Ecology and Evolution 13, 1746–1764, https://doi.org/10.1111/2041-210X.13898 (2022).Article 

    Google Scholar 
    Marini, S. et al. EP2863257 (A1) – Underwater images acquisition and processing system. https://data.epo.org/gpi/EP2863257B1. [Online; accessed 2022/11/15] (2013).Corgnati, L. et al. Looking inside the ocean: Toward an autonomous imaging system for monitoring gelatinous zooplankton. Sensors 16, 2124, https://doi.org/10.3390/s16122124 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marini, S. et al. Automated estimate of fish abundance through the autonomous imaging device guard1. Measurement 126, 72–75, https://doi.org/10.1016/j.measurement.2018.05.035 (2018).Article 

    Google Scholar 
    Pensieri, S. et al. Environmental acoustic noise observations in tethys bay (terra nova bay, ross sea, antarctica). In 2014 Oceans – St. John’s, 1–6, https://doi.org/10.1109/OCEANS.2014.7003196 (2014).Jung, J. et al. Multibeam bathymetry and distribution of clay minerals on surface sediments of a small bay in terra nova bay, antarctica. Minerals 11, https://doi.org/10.3390/min11010072 (2021).Balog, I. et al. Estimation of direct normal irradiance at antarctica for concentrated solar technology. Applied System Innovation 2, https://doi.org/10.3390/asi2030021 (2019).Caputi, S. S. et al. Seasonal food web dynamics in the antarctic benthos of tethys bay (ross sea): Implications for biodiversity persistence under different seasonal sea-ice coverage. Frontiers in Marine Science 7, 1046, https://doi.org/10.3389/fmars.2020.594454 (2020).Article 

    Google Scholar 
    van Leeuwe, M. A. et al. Annual patterns in phytoplankton phenology in antarctic coastal waters explained by environmental drivers. Limnology and Oceanography 65, 1651–1668, https://doi.org/10.1002/lno.11477 (2020).Article 

    Google Scholar 
    OEngineering. OEngineering s.r.l. – GUARD-1, Underwater Autonomous Smart Camera. https://www.oengineering.eu//GUARD-1/. [Online; accessed 2022/11/15] (2021).Magic Lantern. https://magiclantern.fm. [Online; accessed 2022/11/15] (2021).Marini, S. et al. Guard1: An autonomous system for gelatinous zooplankton image-based recognition. In OCEANS 2015 – Genova, 1–7, https://doi.org/10.1109/OCEANS-Genova.2015.7271704 (2015).CR2. The Canon RAW (CRW) File Format. https://exiftool.org/canon_raw.html. [Online; accessed 2022/11/15] (2022).Marini, S. et al. ICE-LAPSE image dataset. Zenodo https://doi.org/10.5281/zenodo.6418163 (2022).LabelImg. A graphical image annotation tool. https://github.com/tzutalin/labelImg. [Online; accessed 2022/11/15] (2021).Schoening, T. et al. Making marine image data fair. Scientific Data 9, 414, https://doi.org/10.1038/s41597-022-01491-3 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cattaneo-Vietti, R., Chiantore, M., Schiaparelli, S. & Albertelli, G. Shallow- and deep-water mollusc distribution at terra nova bay (ross sea, antarctica). Polar Biology 23, 173–182, https://doi.org/10.1007/s003000050024 (2000).Article 

    Google Scholar 
    Cattaneo-Vietti, R. et al. Spatial and Vertical Distribution of Benthic Littoral Communities in Terra Nova Bay, 503–514 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2000).Cummings, V. J. et al. Linking ross sea coastal benthic communities to environmental conditions: Documenting baselines in a spatially variable and changing world. Frontiers in Marine Science 5, 232, https://doi.org/10.3389/fmars.2018.00232 (2018).Article 

    Google Scholar 
    Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You only look once: Unified, real-time object detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788, https://doi.org/10.1109/CVPR.2016.91 (2016).YOLO V5. https://github.com/ultralytics/yolov5. [Online; accessed 2022/11/15] (2022). More

  • in

    Analysis of influencing factors of phenanthrene adsorption by different soils in Guanzhong basin based on response surface method

    Surface morphology analysisSEM images were shown in Fig. 1. It showed that the contour of three soils were fairly clear before adsorption. But it became fuzzier and the degree of cementation was increased when phenanthrene was adsorbed on the soils. According to the surface morphology, the silty sand (A) had furrows on the surface before adsorption compared with the fairly smooth without any furrows after adsorption (B). The silts (C) were flaky and the lamellar accumulation decreased (D). The loess (E) had a smooth surface with some flaky and rod like structure, after adsorption (F), the surface of loess increased in clay-like structure.Figure 1SEM micrographs of the three soil samples. (A) Silty sand; (B) Adsorbing 5 h of Silty sand; (C) Silts; (D) Adsorbing 5 h of Silts; (E) Loess; (F) Adsorbing 5 h of Loess.Full size imageAdsorption and desorption experimentsAdsorption and desorption kineticsAdsorption kinetics is one of the most important characteristics governing solute uptake rate and represents adsorption efficiency33. The sorption and desorption kinetics of phenanthrene in three soils were shown in Fig. 2. The results showed that the adsorption processes among all soils were similar. The kinetics of phenanthrene in soils was completed in two steps: a “fast” adsorption and a “slow” adsorption. The adsorption amount increased during 0-18h. It was a rapid reaction from 0 to 200 minutes. From 200 to 600 minutes, the adsorption amount increased slightly into balance. This phenomenon was due to the adsorption of phenanthrene occurred on the surface of soil organic matter. With the increase of time, soil surface adsorption sites were gradually saturated, causing the decrease of adsorption rate until reaching the equilibrium. Phenanthrene was a hydrophobic substance. It was easy to reach the soil surface and adhere to the grain surface. The results were consistent with the study of had also found that the balance time was approximately 18h and the adsorption amount increased with the adsorption reaction time34. Under the same conditions, loess had the highest adsorption capacity, which was mainly due to the highest organic content 18. The maximum phenanthrene sorption capacities ranked as follows: loess > silty sand > silts. As shown in Fig. 2, phenanthrene desorption in soils was relatively quick and its desorption equilibrium time was 3h. To reach an adequate desorption balance while remaining consistent with the adsorption reaction time, the balance time of the adsorption–desorption experiment was set at 18h. Generally, PAHs below 4 cycles could reach the adsorption equilibrium for about 16~24h.Figure 2(a)Adsorption equilibration curves of phenanthrene sorption in soils. (b) Desorption equilibration curves of phenanthrene sorption in soils.Full size imagePseudo-second-order and Elovich models were used to study the phenanthrene adsorption mechanism (Table 3). Phenanthrene sorption kinetics were satisfactorily described by a pseudo-second-order model with coefficients of determination (R2) ranging from 0.99875 to 0.99847, compared with R2 values of 0.26508–0.73901 for the Elovich model. This well-fitting pseudo-second-order model indicated that the rate-limiting step was chemical adsorption, including electronic forces through sharing or exchange of electrons35,36. Moreover, it suggested that sorption was governed by the availability of sorption sites on the soil surfaces instead of by the phenanthrene concentration in solution.Table 3 Constants and coeffients of determination of Pseudo-second-order kinetics and Elovich models of sorption.Full size tableAdsorption and desorption isothermsThe isotherm was used for quantitative analysis of phenanthrene transport from liquid to solid phase and for understanding the nature of interactions between phenanthrene and the soil matrix. The sorption and desorption isotherms of phenanthrene in soils were shown in Fig. 3. The data showed that phenanthrene adsorption and desorption capacities of three soils varied markedly due to their different physicochemical properties. With the increase of phenanthrene concentration, the adsorbed amount increased. At the same temperature, the adsorption capacity of silty sand was minimum while loess was maximum. This is mainly related to the soil physicochemical properties. At the same initial concentration, the temperature increase from 20 °C to 40 °C showed that the adsorption and desorption capacity decreased with temperature increase. On the one hand, the rise of temperature can increase the phenanthrene solubility in the liquid phase. On the other hand, it could reduce various forces between the soil surface and phenanthrene37.Figure 3(a)20 °C adsorption isotherms for phenanthrene in soils. (b)30 °C adsorption isotherms for phenanthrene in soils. (c)40 °C adsorption isotherms for phenanthrene in soils. (d) 20 °C desorption isotherms for phenanthrene in soils. (e) 30 °C desorption isotherms for phenanthrene in soils. (f) 40 °C desorption isotherms for phenanthrene in soils.Full size imageThe Freundlich isotherm was used mainly for adsorption surfaces with nonuniform energy distribution, and the Langmuir isotherm was used for monolayer adsorption on perfectly smooth and homogeneous surfaces38. The experimental data were fitted with the Langmuir and Freundlich adsorption models, and the isotherm parameters logKF, 1/n, KL, qmax and the coefficient of determination (R2) of phenanthrene in soils were listed in Table 4.Table 4 Isotherm parameters for Phenanthrene sorption in soils.Full size tableAs shown in Table 4, according to the coefficients of determination (R2), all soils were better fitted with the Freundlich model, which assumes that phenanthrene sorption and desorption occurs on a heterogeneous surface with the possibility of sorption being multi-layered39. This phenomenon has also been observed in humic acid and nanometer clay mineral40. It showed that the soil adsorption of organic matter was not only surface adsorption but also the process of soil organic matter distribution41,42,43 reached the equilibrium isotherm fitted well with the Freundlich equation when studying the adsorption behavior of aromatic compounds by solids.Adsorption and desorption thermodynamicsTo clarify the adsorption mechanisms, the thermodynamic parameters mentioned earlier were calculated and presented in Table 5. Generally, the value of Gibbs free energy changeΔG0 indicated the spontaneity of a chemical reaction. Therefore, it could evaluate whether sorption was relate to spontaneous interaction44. Negative values of ΔG0 indicated that the feasibility and spontaneous nature. The research was under the temperature range about 293–313 K. For adsorption process, all soils ΔG0 was  0 and desorption ΔH  1, P  temperature  > phenanthrene concentration  > pH. In the interaction, the phenanthrene concentration and organic matter have a significant effect on the silt adsorption rate. The coefficient of determination of the silt complex correlation is R2 = 0.9464, indicating that the response model has a good fit, and the experimental error is within the acceptable range. Adjusting the complex correlation coefficient R2 = 0.8982 indicates that the regression relationship can explain 89.82% of the change in the dependent variable. Therefore, this The model can be used to analyze and predict the effect of different factors on the adsorption rate of phenanthrene.3D response surface analysisIn response surface optimization, the three-dimensional response surface graph reflects the influence of the interaction of the other two variables on the response value, and the slope of the response surface reflects the significance of the interaction of the two variables on the response value. The more significant the interaction effect is on the response value, when the slope is gentle, the effect is not significant. If the contour map is elliptical, it indicates that the interaction between the two variables is significant, and if the contour map is circular, it is not significant46. In addition, the slope and density of the contour line also reflect the influence of the variable on the response value. The steeper the contour line and the greater the density, the greater the influence of the variable on the response value47.

    (1) Loess Fig. 5 is a three-dimensional response surface diagram of the interaction between initial phenanthrene concentration and pH to phenanthrene adsorption on loess. It can be seen from the figure that the slope of the response surface graph is steep, and the contour line is an approximate circle, indicating that the interaction between phenanthrene concentration and pH is not significant for the response value. With the increase of pH, the adsorption rate of phenanthrene on loess showed a slow decline at first to the lowest point at 6, and then gradually increased. When the soil pH was close to 6, with the increase of the initial phenanthrene concentration, the adsorption rate of loess also showed a trend of first decreasing and then increasing. According to the F value, F = 0.337, P = 0.5532  > 0.05, it can be concluded that soil pH and initial phenanthrene concentration of the solution have no significant interaction on the adsorption rate of loess.

    Figure 6 shows the effects of initial phenanthrene concentration and organic matter on phenanthrene adsorption on Loess under the condition that pH value and temperature are at the central point. It can be seen from the figure that the initial phenanthrene concentration and soil organic matter contour are steep, indicating that their interaction is significant. The range of phenanthrene adsorption rate is 70 ~ 95, and the change of surface is steep. From the Loess error analysis, it can be seen that if f value is 6.05 and P value is 0.0275  More

  • in

    Climate, currents and species traits contribute to early stages of marine species redistribution

    Pecl, G. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).Article 
    PubMed 

    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).Article 

    Google Scholar 
    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).Article 
    PubMed 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 
    PubMed 

    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).Article 

    Google Scholar 
    Sanford, E., Sones, J. L., García-Reyes, M., Goddard, J. H. & Largier, J. L. Widespread shifts in the coastal biota of northern California during the 2014–2016 marine heatwaves. Sci. Rep. 9, 4216 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Molinos, J. G., Burrows, M. & Poloczanska, E. Ocean currents modify the coupling between climate change and biogeographical shifts. Sci. Rep. 7, 1–9 (2017).
    Google Scholar 
    Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean‐warming hotspot. Ecol. Lett. 18, 944–953 (2015).Article 
    PubMed 

    Google Scholar 
    Figueira, W. F., Curley, B. & Booth, D. J. Can temperature-dependent predation rates regulate range expansion potential of tropical vagrant fishes? Mar. Biol. 166, 73 (2019).Article 

    Google Scholar 
    Champion, C. & Coleman, M. A. Seascape topography slows predicted range shifts in fish under climate change. Limnol. Oceanogr. Lett. 6, 143–153 (2021).Article 

    Google Scholar 
    Roberts, S. M., Boustany, A. M. & Halpin, P. N. Substrate-dependent fish have shifted less in distribution under climate change. Commun. Biol. 3, 1–7 (2020).Article 

    Google Scholar 
    Engelhard, G. H., Righton, D. A. & Pinnegar, J. K. Climate change and fishing: a century of shifting distribution in North Sea cod. Glob. Change Biol. 20, 2473–2483 (2014).Article 

    Google Scholar 
    Twiname, S. et al. A cross‐scale framework to support a mechanistic understanding and modelling of marine climate‐driven species redistribution, from individuals to communities. Ecography 43, 1764–1778 (2020).Article 

    Google Scholar 
    Bates, A. E. et al. Defining and observing stages of climate-mediated range shifts in marine systems. Glob. Environ. Change 26, 27–38 (2014).Article 

    Google Scholar 
    Fogarty, H. E., Burrows, M. T., Pecl, G. T., Robinson, L. M. & Poloczanska, E. S. Are fish outside their usual ranges early indicators of climate‐driven range shifts? Glob. Change Biol. 23, 2047–2057 (2017).Article 

    Google Scholar 
    Jiguet, F. & Barbet‐Massin, M. Climate change and rates of vagrancy of Siberian bird species to Europe. Ibis 155, 194–198 (2013).Article 

    Google Scholar 
    Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).Article 
    PubMed 

    Google Scholar 
    Peck, M. A. et al. Projecting changes in the distribution and productivity of living marine resources: a critical review of the suite of modeling approaches used in the large European project VECTORS. Estuar., Coast. Shelf Sci. 201, 40–55 (2016).Article 

    Google Scholar 
    Brito-Morales, I. et al. Climate velocity can inform conservation in a warming world. Trends Ecol. Evol. 33, 441–457 (2018).Article 
    PubMed 

    Google Scholar 
    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).Article 
    PubMed 

    Google Scholar 
    Champion, C., Hobday, A. J., Zhang, X., Pecl, G. T. & Tracey, S. R. Changing windows of opportunity: past and future climate-driven shifts in temporal persistence of kingfish (Seriola lalandi) oceanographic habitat within south-eastern Australian bioregions. Mar. Freshw. Res. 70, 33–42 (2019).Article 

    Google Scholar 
    Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: scaling from organisms to communities. Annu. Rev. Mar. Sci. 12, 153–179 (2020).Article 

    Google Scholar 
    Lonhart, S. I., Jeppesen, R., Beas-Luna, R., Crooks, J. A. & Lorda, J. Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Mar. Biodivers. Rec. 12, 1–15 (2019).Article 

    Google Scholar 
    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).Article 

    Google Scholar 
    Lenanton, R., Dowling, C., Smith, K., Fairclough, D. & Jackson, G. Potential influence of a marine heatwave on range extensions of tropical fishes in the eastern Indian Ocean—Invaluable contributions from amateur observers. Regional Stud. Mar. Sci. 13, 19–31 (2017).Article 

    Google Scholar 
    Leriorato, J. C. & Nakamura, Y. Unpredictable extreme cold events: a threat to range-shifting tropical reef fishes in temperate waters. Mar. Biol. 166, 1–10 (2019).Article 

    Google Scholar 
    Hobday, A. J. & Pecl, G. T. Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Rev. Fish. Biol. Fish. 24, 415–425 (2014).Article 

    Google Scholar 
    Pecl, G. T. et al. Redmap Australia: challenges and successes with a large-scale citizen science-based approach to ecological monitoring and community engagement on climate change. Front. Mar. Sci. 6, 349 (2019).Article 

    Google Scholar 
    Jacox, M. G., Alexander, M. A., Bograd, S. J. & Scott, J. D. Thermal displacement by marine heatwaves. Nature 584, 82–86 (2020).Article 
    PubMed 

    Google Scholar 
    Brown, C. J. et al. Ecological and methodological drivers of species’ distribution and phenology responses to climate change. Glob. Change Biol. 22, 1548–1560 (2016).Article 

    Google Scholar 
    Fuchs, H. L. et al. Wrong-way migrations of benthic species driven by ocean warming and larval transport. Nat. Clim. Change 10, 1052–1056 (2020).Article 

    Google Scholar 
    Rooney, N., McCann, K. S. & Moore, J. C. A landscape theory for food web architecture. Ecol. Lett. 11, 867–881 (2008).Article 
    PubMed 

    Google Scholar 
    Feary, D. A. et al. Latitudinal shifts in coral reef fishes: why some species do and others do not shift. Fish. Fish. 15, 593–615 (2014).Article 

    Google Scholar 
    Beissinger, S. R. & Riddell, E. A. Why are species’ traits weak predictors of range shifts? Ann. Rev. Ecol. Evol. Syst. 52, 47–66 (2021).Pearce, A. F. & Feng, M. The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J. Mar. Syst. 111, 139–156 (2013).Article 

    Google Scholar 
    Oliver, E. C. et al. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 8, 16101 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gervais, C. R., Champion, C. & Pecl, G. T. Species on the move around the Australian coastline: a continental scale review of climate‐driven species redistribution in marine systems. Glob. Change Biol. 27, 3200–3217 (2021).Article 

    Google Scholar 
    Nursey-Bray, M., Palmer, R. & Pecl, G. Spot, log, map: assessing a marine virtual citizen science program against Reed’s best practice for stakeholder participation in environmental management. Ocean Coast. Manag. 151, 1–9 (2018).Article 

    Google Scholar 
    Pecl, G. T. et al. Ocean warming hotspots provide early warning laboratories for climate change impacts. Rev. Fish. Biol. Fish. 24, 409–413 (2014).Article 

    Google Scholar 
    Stuart-Smith, J. et al. Southernmost records of two Seriola species in an Australian ocean-warming hotspot. Mar. Biodivers. 48, 1579–1582 (2018).Article 

    Google Scholar 
    Provoost, P. & Bosch, S. robis: R Client to access data from the OBIS API. Ocean Biogeographic Information System. Intergovernmental Oceanographic Commission of UNESCO. R package version 2.1.8, https://cran.r-project.org/package=robis (2019).Froese, R. & Pauly, D. (eds). FishBase. World Wide Web electronic publication. www.fishbase.org. (2022). Accessed 14 July 2019.ABRS. Australian Faunal Directory. Australian Biological Resources Study, Canberra. https://biodiversity.org.au/afd/home. (2020). Accessed 15 July 2019.Robinson, L. M. et al. Rapid assessment of an ocean warming hotspot reveals “high” confidence in potential species’ range extensions. Glob. Environ. Change 31, 28–37 (2015).Article 

    Google Scholar 
    Hijmans, R. J. raster: geographic data analysis and modeling. R package version 3.4-5. https://CRAN.R-project.org/package=raster (2020).van Etten, J. R package gdistance: distances and routes on geographical grids. J. Stat. Softw. 76, 1–21 (2017).
    Google Scholar 
    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).Article 

    Google Scholar 
    Molinos, J. G., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: an r package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evol. 10, 2195–2202 (2019).Article 

    Google Scholar 
    Schlegel, R. W. & Smit, A. J. heatwaveR: a central algorithm for the detection of heatwaves and cold-spells. J. Open Source Softw. 3, 821 (2018).Article 

    Google Scholar 
    Venables, W. N. & Ripley, B. D. Modern applied statistics with S. 4th edn, (Springer, 2002).Lüdecke, D. sjPlot: data visualization for statistics in social science. R package version 2.8.6. https://CRAN.R-project.org/package=sjPlot (2020). More

  • in

    A trait-based conceptual framework to examine urban biodiversity, socio-ecological filters, and ecosystem services linkages

    United Nations. World Urbanization Prospects: The 2018 revision. (Department of Economic and Social Affairs, Population Division, United Nations, 2018).Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).Article 

    Google Scholar 
    McPhearson, T. et al. Advancing urban ecology toward a science of cities. Bioscience 66, 198–212 (2016).Article 

    Google Scholar 
    Dodman, D. et al. Cities, settlements and key infrastructure. In Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Pörtner, H.-O. et al.) 997–1040 (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2022).Díaz, S. et al. Assessing nature’s contributions to people: Recognizing culture, and diverse sources of knowledge, can improve assessments. Science 359, 270–272 (2018).Article 

    Google Scholar 
    Grabowski, Z. J., McPhearson, T., Matsler, A. M., Groffman, P. & Pickett, S. T. A. What is green infrastructure? A study of definitions in US city planning. Front. Ecol. Environ. 20, 152–160 (2022).Article 

    Google Scholar 
    Childers, D. L. et al. Urban ecological infrastructure: An inclusive concept for the non-built urban environment. Elementa 7, 1–14 (2019).
    Google Scholar 
    Gómez-Baggethun, E. et al. Urban ecosystem services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities (eds. Elmqvist, T. et al.) 175–251 (Springer, Netherlands, 2013).Díaz, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    Burkhard, B. & Maes, J. Mapping Ecosystem Services (Pensoft Publishers, Sofia, 2017).Eviner, V. T. & Chapin, F. S. Functional Matrix: A conceptual framework for predicting multiple plant effects on ecosystem processes. Annu. Rev. Ecol. Evol. Syst. 34, 455–485 (2003).Article 

    Google Scholar 
    Lavorel, S., McIntyre, S., Landsberg, J. & Forbes, T. D. A. Plant functional classifications: From general groups to specific groups based on response to disturbance. Trends Ecol. Evol. 12, 474–478 (1997).Article 

    Google Scholar 
    Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).Article 

    Google Scholar 
    Suding, K. N. et al. Scaling environmental change through the community-level: A trait-based response-and-effect framework for plants. Glob. Chang. Biol. 14, 1125–1140 (2008).Article 

    Google Scholar 
    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).Article 

    Google Scholar 
    Hevia, V. et al. Trait-based approaches to analyze links between the drivers of change and ecosystem services: Synthesizing existing evidence and future challenges. Ecol. Evol. 7, 831–844 (2017).Article 

    Google Scholar 
    Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).Article 

    Google Scholar 
    Lavorel, S. Plant functional effects on ecosystem services. J. Ecol. 101, 4–8 (2013).Article 

    Google Scholar 
    Andersson, E. et al. What are the traits of a social-ecological system: Towards a framework in support of urban sustainability. npj Urban Sustain. 1, 14 (2021).Article 

    Google Scholar 
    Pickett, S. T. A. et al. Urban ecological systems: Linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu. Rev. Ecol. Syst. 32, 127–157 (2001).Article 

    Google Scholar 
    McPhearson, T., Haase, D., Kabisch, N. & Gren, Å. Advancing understanding of the complex nature of urban systems. Ecol. Indic. 70, 566–573 (2016).Article 

    Google Scholar 
    Zhou, W., Pickett, S. T. A. & McPhearson, T. Conceptual frameworks facilitate integration for transdisciplinary urban science. npj Urban Sustain. 1, 1 (2021).Article 

    Google Scholar 
    Andersson, E. et al. Scale and context dependence of ecosystem service providing units. Ecosyst. Serv. 12, 157–164 (2015).Article 

    Google Scholar 
    Pinho, P. et al. Research agenda on biodiversity and ecosystem functions and services in European cities. Basic Appl. Ecol. 53, 124–133 (2021).Article 

    Google Scholar 
    Bullock, J. M. et al. Human-mediated dispersal and the rewiring of spatial networks. Trends Ecol. Evol. 33, 958–970 (2018).Article 

    Google Scholar 
    Avolio, M. L., Swan, C., Pataki, D. E. & Jenerette, G. D. Incorporating human behaviors into theories of urban community assembly and species coexistence. Oikos 130, 1849–1864 (2021).Article 

    Google Scholar 
    Aronson, M. F. J. et al. Hierarchical filters determine community assembly of urban species pools. Ecology 97, 2952–2963 (2016).Article 

    Google Scholar 
    Woodward, F. I. & Diament, A. D. Functional approaches to predicting the ecological effects of global change. Funct. Ecol. 5, 212 (1991).Article 

    Google Scholar 
    Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9, 113–122 (1998).Article 

    Google Scholar 
    Boet, O., Arnan, X. & Retana, J. The role of environmental vs. biotic filtering in the structure of European ant communities: A matter of trait type and spatial scale. PLoS ONE 15, e0228625 (2020).Article 

    Google Scholar 
    Grimm, N. B., Grove, J. M., Pickett, S. T. A. & Redman, C. L. Integrated approaches to long-term studies of urban ecological systems. Bioscience 50, 571–584 (2000).Article 

    Google Scholar 
    Vandewalle, M. et al. Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers. Conserv. 19, 2921–2947 (2010).Article 

    Google Scholar 
    Williams, N. S. G. et al. A conceptual framework for predicting the effects of urban environments on floras. J. Ecol. 97, 4–9 (2009).Article 

    Google Scholar 
    Cavender-Bares, J. et al. Horticultural availability and homeowner preferences drive plant diversity and composition in urban yards. Ecol. Appl. 30, 1–16 (2020).Article 

    Google Scholar 
    Pearse, W. D. et al. Homogenization of plant diversity, composition, and structure in North American urban yards. Ecosphere 9, e02105 (2018).Article 

    Google Scholar 
    Cubino, J. P. et al. Drivers of plant species richness and phylogenetic composition in urban yards at the continental scale. Landsc. Ecol. 34, 63–77 (2019).Article 

    Google Scholar 
    Oke, T. R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108, 1–24 (1982).
    Google Scholar 
    Sukopp, H. Human-caused impact on preserved vegetation. Landsc. Urban Plan. 68, 347–355 (2004).Article 

    Google Scholar 
    Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. USA 104, 20684–20689 (2007).Article 

    Google Scholar 
    Williams, N. S. G., Hahs, A. K. & Vesk, P. A. Urbanisation, plant traits and the composition of urban floras. Perspect. Plant Ecol. Evol. Syst. 17, 78–86 (2015).Article 

    Google Scholar 
    Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 38, 1699–1712 (2015).Article 

    Google Scholar 
    Jochner, S. & Menzel, A. Urban phenological studies—past, present, future. Environ. Pollut. 203, 250–261 (2015).Article 

    Google Scholar 
    Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365 (2007).Article 

    Google Scholar 
    de Bello, F. et al. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers. Conserv. 19, 2873–2893 (2010).Article 

    Google Scholar 
    Santangelo, J. S. et al. Global urban environmental change drives adaptation in white clover. Science 375, 1275–1281 (2022).Article 

    Google Scholar 
    Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499–504 (2013).Article 

    Google Scholar 
    Martin, C. A., Warren, P. S. & Kinzig, A. P. Neighborhood socioeconomic status is a useful predictor of perennial landscape vegetation in residential neighborhoods and embedded small parks of Phoenix, AZ. Landsc. Urban Plan. 69, 355–368 (2004).Article 

    Google Scholar 
    Kinzig, A. P., Warren, P., Martin, C., Hope, D. & Katti, M. The effects of human socioeconomic status and cultural characteristics on urban patterns of biodiversity. Ecol. Soc. 10, 23 (2005).Article 

    Google Scholar 
    Stephenson, J. The cultural values model: An integrated approach to values in landscapes. Landsc. Urban Plan. 84, 127–139 (2008).Article 

    Google Scholar 
    Andersson, E., Barthel, S. & Ahrné, K. Measuring social–ecological dynamics behind the generation of ecosystem services. Ecol. Appl. 17, 1267–1278 (2007).Article 

    Google Scholar 
    Fraser, E. D. G. & Kenney, W. A. Cultural background and landscape history as factors affecting perceptions of the urban forest. J. Arboric. 26, 106–113 (2000).
    Google Scholar 
    Hope, D. et al. Socioeconomics drive urban plant diversity. Proc. Natl. Acad. Sci. USA 100, 8788–8792 (2003).Article 

    Google Scholar 
    Avolio, M. L. et al. Understanding preferences for tree attributes: The relative effects of socio-economic and local environmental factors. Urban Ecosyst. 18, 73–86 (2015).Article 

    Google Scholar 
    Körmöndi, B., Tempfli, J., Kocsis, J. B., Adams, J. & Szkordilisz, F. E. The secret ingredient—The role of governance in green infrastructure development: Through the examples of European cities. IOP Conf. Ser. Earth Environ. Sci. 323, (2019).Conway, T. M. & Vander Vecht, J. Growing a diverse urban forest: species selection decisions by practitioners planting and supplying trees. Landsc. Urban Plan. 138, 1–10 (2015).Article 

    Google Scholar 
    Lack, W. H. The Book of Palms (Taschen-Bibliotheca Universalis, 2015).Grilo, F. et al. Using green to cool the grey: Modelling the cooling effect of green spaces with a high spatial resolution. Sci. Total Environ. 724, 138182 (2020).Article 

    Google Scholar 
    Prasifka, J. R. et al. Using nectar-related traits to enhance crop–pollinator interactions. Front. Plant Sci. 9, 1–8 (2018).Article 

    Google Scholar 
    Veerkamp, C. J. et al. A review of studies assessing ecosystem services provided by urban green and blue infrastructure. Ecosyst. Serv. 52, 101367 (2021).Article 

    Google Scholar 
    Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 576 (2020).Article 

    Google Scholar 
    Farmer, J. Trees in Paradise: A California History (WW Norton & Company, 2013).Goodness, J., Andersson, E., Anderson, P. M. L. & Elmqvist, T. Exploring the links between functional traits and cultural ecosystem services to enhance urban ecosystem management. Ecol. Indic. 70, 597–605 (2016).Article 

    Google Scholar 
    Masterson, V. A. et al. The contribution of sense of place to social-ecological systems research: A review and research agenda. Ecol. Soc. 22, 49 (2017).Article 

    Google Scholar 
    Masterson, V. A., Enqvist, J. P., Stedman, R. C. & Tengö, M. Sense of place in social-ecological systems: From theory to empirics. Sustain. Sci. 14, 555–564 (2019).Article 

    Google Scholar 
    Mukherjee, A. & Agrawal, M. Use of GLM approach to assess the responses of tropical trees to urban air pollution in relation to leaf functional traits and tree characteristics. Ecotoxicol. Environ. Saf. 152, 42–54 (2018).Article 

    Google Scholar 
    Singh, S. K., Rao, D. N., Agrawal, M., Pandey, J. & Naryan, D. Air pollution tolerance index of plants. J. Environ. Manage. 32, 45–55 (1991).Article 

    Google Scholar 
    Mukherjee, A. & Agrawal, M. Pollution response score of tree species in relation to ambient air quality in an urban area. Bull. Environ. Contam. Toxicol. 96, 197–202 (2016).Article 

    Google Scholar 
    Barwise, Y. & Kumar, P. Designing vegetation barriers for urban air pollution abatement: A practical review for appropriate plant species selection. npj Clim. Atmos. Sci. 3, 12 (2020).Article 

    Google Scholar 
    Grote, R. et al. Functional traits of urban trees: Air pollution mitigation potential. Front. Ecol. Environ. 14, 543–550 (2016).Article 

    Google Scholar 
    Tomson, M. et al. Green infrastructure for air quality improvement in street canyons. Environ. Int. 146, 106288 (2021).Article 

    Google Scholar  More

  • in

    Human attachment site preferences of ticks parasitizing in New York

    The attachment site of ticks has been studied in the context of both animal and human tick preference. In Oklahoma, a study of horses indicated that A. americanum preferentially bites the inguinal area, while I. scapularis and D. albipictus, the moose-tick, primarily bite the chest and axillary region, with D. albipictus often being found on the back18. A survey of dogs and cats across the US identified a similar distribution of ticks on dogs, with the attachment being most common on the abdomen, axillary and inguinal regions. However, this was species-specific with D. variabilis preferring the head and neck specifically19. Cats were more successfully parasitized by I. scapularis which preferred the head and A. americanum, which preferred the tail and perianal region19. This is similar to a study of tick distribution on wild black bears (Ursus americanus) in Pennsylvania, indicating that the primary tick present was I. scapularis and that the greatest numbers were found in association with the ears and muzzle20. In these cases, the ability for ticks to attach to specific areas is most likely a result of the grooming habits and abilities of the animals in question.Studies of anatomical region preference in humans also reported tick bite-site specificity associated with particular tick species. For example, in Korea, H. longicornis was determined to prefer abdomen and lower extremities (33%) and the abdomen/inguinal area (26.4%)21, which is a behavior similar to that of A. americanum observed here. Although H. longicornis is present in New York1, insufficient numbers were detected to draw definitive conclusions about its biting preference here. Additionally, a study in England (I. ricinus) reported that tick bites were most common in the legs (50%) of adult humans, but in the head and necks of children (43%)22, a differentiation that our survey does not at this time include. A similar phenomenon was observed in Russia, where tick bites were most common on the head and neck of all individuals (39.2%), but were much more common in children (84.9%)23. This study determined that the bite-site of single tick bites that resulted in infection with the Tick-Borne Encephalitis virus (TBEV) were associated with lethal outcomes if the bites were located on the head, neck, arms or axilla, while less lethality was associated with bites to the lower limbs and groin. This is most directly analogous to the transmission of DTV by I. scapularis, suggesting that bite site may have a similar relationship to disease outcomes in the related North American pathogen/vector pair.Under normal circumstances, ticks exist in sylvatic cycles with specific host preferences based on the tick species and life stage, with spillover to humans occasionally occurring for species with generalist feeding habits. Therefore, the feeding behaviors of ticks are variable, and this influences the ways that the ticks interact with humans.Ixodes scapularis is less specific in host-site preferenceThe primary life stages of I. scapularis that bite humans include nymphs and adult females, although males may also be found on humans. The body segment preference of I. scapularis is less specific than for D. variabilis, which prefers the head, and A. americanum, which prefers the thighs and pelvic region. Ixodes scapularis is primarily found on the central trunk, including the groin/pelvic region, the abdomen, the thoracic region, and the head/neck. This varies between the life stages, with more adults found in the thoracic/abdominal region of the body and nymphs being more commonly found on the arms and legs. This is partly due to the substantial size difference between adult and nymph/larval I. scapularis, with larvae being almost imperceptible and nymphs having a total body length of two to four millimeters. This results in nymphs/larvae being much more difficult to see, allowing them to more readily attach to the most visible portions of the human body while adults are restricted mostly to areas covered by clothing and hair.The presence of ticks on the head and neck indicates that I. scapularis tends to climb, although not with the preference for hair observed with D. variabilis. They appear to spend substantial time moving on the host, a period where they can be removed easily without having had a chance to potentially transmit pathogens by biting. On deer, this corresponds to a preference to move toward the neck and ears where the ticks are more difficult to dislodge24,25. On humans, it results in wide distribution across the whole body with less location specificity than other ticks.In addition to body region and life stage identification, I. scapularis ticks were also screened for several pathogens to determine if infection status influences host site preference. Anaplasma phagocytophilum, B. microti, and other pathogens (DTV and B. miyamotoi) did not influence the body segment the ticks chose to feed. However, in ticks infected with B. burgdorferi, a statistically significant change in the distribution of tick bites marked by an increased report of tick bites in the midsection and a decreased tick bites in the arms, legs, and head. While this may suggest a change in tick behavior/fitness in response to infection, it may also relate to the differences in infection rates of adult and nymph/larval ticks. Larvae, having never fed, are not infected with B. burgdorferi, and the rate of infection in nymphs is lower than that of adults1. Nymphs are less likely to be infected and are more likely to attach to the arms and legs, which is a potential source of the observed difference in infection rates. However, it remains unclear why this is not observed for the other pathogens that follow the same trend of increased infection rate in adult versus nymph/larval ticks.Bacterial and protozoal agents transmitted by I. scapularis take several hours for an infectious dose to be transmitted26,27,28. Therefore, prompt detection and removal of ticks is important for preventing tick-borne disease. Furthermore, understanding where the ticks attach allows them to be more easily detected, and also assists in preparing protective clothing for individuals entering tick-endemic areas. Additionally, knowing the biting location of I. scapularis could aid in detecting potential erythema migrans, a skin condition that occurs at the point of B. burgdorferi infected tick exposure in about 80% of cases29, which is highly diagnostic for both Lyme disease and STARI, which is transmitted by A. americanum.
    Amblyomma americanum prefers the thighs and groin of subjectsAmblyomma americanum, the lone star tick, is present throughout the southern portion of New York and is particularly dominant on Long Island1. This species is relatively large, fast, and aggressive, feeding on various animals, including deer, medium-sized animals, and birds30. As a generalist feeder, both adult and nymph/larval A. americanum often bite humans in endemic areas. This experiment identified six larvae, 107 nymphs, and 48 adult A. americanum from human sources. The dominance of nymph submissions is likely due to the large size of the tick, making nymphs and adults easier to spot in more visible areas.In terms of body segment location, all life stages of A. americanum were most often found in the thigh/groin/pelvic region. Considering that most humans encounter ticks while walking through vegetation, the ticks most likely first adhere to the legs and move upward before biting. In this case, the ticks bite rapidly instead of ascending in large numbers to the torso or head. This area is also almost invariably covered in relatively tight-fitting clothing. The closeness of the fabric may also assist in inducing the ticks to feed by slowing their ascent and creating contact to induce biting.While it does not transmit the same range of pathogens as I. scapularis, A. americanum is still a medically significant species. This species can transmit Ehrlichia chaffeensis and E. ewingii31,32, which are at present rare in New York, but are likely to increase as more A. americanum becomes established. Amblyomma americanum is also associated with Southern Tick-Borne Rash Associated Illness (STARI)11, a disease of unknown etiology that has previously been observed in New York33 and with galactose-alpha-1,3-galactose (alpha-gal) allergy, a reaction to the tick’s saliva that can result in a long term, potentially serious allergic sensitivity to the consumption of red meat. While the attachment time required to transmit or induce these pathogens is still unclear, prompt detection and removal of the tick is still recommended. Knowing the approach of the tick and where it is likely to be found improves this process.Additionally, it is unclear if the results observed for A. americanum also apply to the related A. maculatum, the vector of Rickettsia parkeri, a cause of spotted fever. These ticks have been observed in the southernmost portions of New York with a high infection rate with R. parkeri34. Since early R. parkeri infection may result in a visible eschar, understanding where the eschar is most likely located can be critical for rapid diagnosis before the onset of severe disease symptoms. Considering the similarities in behavior between the two Amblyomma species, it may have similar preferences to A. americanum. Other escharotic diseases, such as F. tularensis, may also be present and linked to a tick with a highly dissimilar segment preference. The location of the escar itself, therefore, may be at least partially diagnostic for specific pathogens. However, at present, the sample size within this community engaged passive surveillance program is too small to assess its biting behavior in detail.
    Dermacentor variabilis exhibits preference for the human headIn this study, D. variabilis was almost exclusively encountered in its adult life stage. This indicates that while the adult ticks are generalist feeders that may bite humans, the nymph and larval stages are not and have much greater host specificity, either feeding exclusively on a specific type of animal or being restricted to the vicinity of animal burrows. The exact identity of the preferred larval and nymphal host of D. variabilis in New York could not be determined from these data, but is presumed to be one or several rodent species, lagomorph, or mesocarnivore with broad distribution across the eastern United States.Additionally, D. variabilis was unique among the three species of ticks studied here. It had a strong bias toward the head and neck of human hosts, as opposed to a higher preference for the midsection and pelvis/groin with I. scapularis and especially A. americanum. This is clear evidence of climbing behavior, tending upward, but is also indicative of a strong preference for dense hair. In contrast to I. scapularis and A. americanum, D. variabilis in its adult stage is less likely to feed on deer35,36, with a preference for canids36, hence its colloquial name as the “American dog tick”. Hair provides the ticks with the same benefits as feeding on canids. It protects them from being immediately detected and removed, obscuring them until they can feed extensively. This can be of potential medical consequence in the case of tick paralysis, a condition of flaccid paralysis associated with the bite of Dermacentor spp. ticks30. In such cases, prompt removal of the tick is critical for treatment. Therefore, understanding its most likely location can be useful for removal of the tick before the onset of the condition, diagnostically to confirm the presence of the tick, or during treatment to ensure its removal. Considering that the tick will most likely be adult, it should be relatively obvious with careful observation.Limitations of this studyThe data described in this manuscript derived from a set of ticks submitted by general public, with site location from a questionnaire completed upon tick submission. While speciation and pathogen testing were performed under laboratory conditions, the public completed the initial survey and is therefore subject to a level of inherent error and ambiguity. In the context of this study, this mainly concerns whether the body location submitted concerns an attachment or a tick that is still crawling over the potential host in preparation for biting. The term “attachment” may be colloquially interpreted as to contain both categories, or a person can potentially be mistaken about the state of the tick. While ticks filled with blood have fed, the situation is more indeterminate for short-duration attachments where the ticks have not yet begun to engorge. This may introduce some level of error from ticks found on a body segment that were not, at the time of collection, attached. However, the data are overall still useful for predicting the most likely location where ticks of specific species can be found on a person. Studies with test subjects and ticks under controlled conditions may assist in elucidating this matter further. Additionally, this data set was compiled without regard to gender and age group. This data was not collected with this version of the questionnaire; therefore, the tick attachment cannot be stratified by any demographic parameters of tick submitters. More

  • in

    Meiotic transmission patterns of additional genomic elements in Brachionus asplanchnoidis, a rotifer with intraspecific genome size variation

    Many eukaryotes display intraspecific genome size (GS) variation due to varying amounts of non-coding DNA1,2,3,4,5. Such GS variation can be mediated by additional genomic elements, which are physically represented either by extra (B-)chromosomes or by large heterozygous insertions into the regular chromosomes. On a DNA sequence level, non-coding DNA can be classified as highly repetitive, e.g. interspersedly repeated transposable elements or tandemly repeated satellite DNA, or as the result of previous duplications of the genome followed by pseudogenization6. The long-term gain and loss of such non-coding DNA sequences is thought to be governed by largely neutral evolutionary processes, and their excessive accumulation in some genomes can be explained by genetic drift7,8, even though selection might also sometimes play a role9,10.Non-coding DNA can affect organisms in different ways. A large number of studies document correlations between genome size and organismic traits such as cell size11,12, body size13,14, or developmental rates15, sometimes even at the within-population level13. Under some circumstances, differential amounts of non-coding DNA might even affect fitness16. Furthermore, DNA can have coding-independent effects that operate at lower levels, such as intragenomic selection. For example, (additional) genomic elements might increase their own fitness by increasing their transmission rates to offspring by meiotic drive, sometimes at the expense of their host’s fitness17,18,19. Meiotic drive in this classical sense occurs during the chromosome segregation during the meiotic divisions, even though later stages during gametogenesis can also be affected20. Recognizing and disentangling such effects is important for a better understanding of the evolution of eukaryotic genomes, in particular, the evolutionary causes of the large intraspecific genome size variation.Here we study meiotic transmission patterns of additional genomic elements in the monogonont rotifer Brachionus aplanchnoidis. Individuals of this species can differ by up to almost two-fold in genome size, which is mediated by several Megabase-sized independently segregating genomic elements (ISEs) consisting mainly of tandemly repeated satellite DNA21. The genomic data are consistent with a mixture of both B-chromosomes and large insertions to normal chromosomes21,22. Individual rotifers and their clonal offspring can be characterized by the number and size of their ISEs and their composition stays constant through hundreds of asexual (mitotic) generations22. Occasionally, monogonont rotifers engage in sexual reproduction (Fig. 1), producing sexual females, whose oocytes undergo classical meiosis with two polar bodies formed23. Unfertilized haploid eggs develop mitotically into males, and sperm production does not involve any meiotic maturation divisions24. By analyzing the genome size distributions of haploid males produced by different mother clones, it has been shown that ISEs segregate in a manner suggesting that they do not pair with each other, nor with any other part of the genome22. For instance, a clone containing three ISEs will produce males (and gametes) that might contain either zero, one, two, or three ISEs, corresponding to four different GS classes of the males in this clone. The frequencies of these different GS classes roughly approximated those expected by random segregation. However, previous studies in B. asplanchnoidis did not resolve different steps during meiotic transmission, so they were not designed to detect meiotic drive or subsequent changes in meiotic transmission, and they also did not test whether there were subtle deviations from completely independent segregation.Figure 1Schematics of rotifer life cycle. Monogonont rotifers are cyclical parthenogens, capable of both ameiotic parthenogenesis and sexual reproduction. The production of sexual females is triggered by quorum sensing chemicals, released by the animals themselves at high population density. In contrast to parthenogenetic females, sexual females produce oocytes by meiosis, and give rise to either haploid males or diploid resting eggs, depending on whether they get fertilized by a male24.Full size imageIn the present study, we test for meiotic transmission biases of ISEs. If meiotic transmission would be completely unbiased, the frequencies of haploid oocytes, or males, with different numbers of ISEs should be identical to those expected by random segregation. For example, a mother with two ISEs should produce males with zero, one, or two ISEs (hence, three male GS classes), which have relative frequencies of 0.25, 0.5, and 0.25, respectively. However, if ISEs avoid segregating into polar bodies due to meiotic drive17,20,25, one would expect to see an increase in the relative frequency of male GS classes with two ISEs, compared to those with no ISE . By contrast, if ISEs are preferentially sequestered into polar bodies due to meiotic drag 7,26, the GS class with two ISEs should be underrepresented. Our experimental approach for detecting meiotic transmission biases relies on measuring (by flow-cytometry) the observed relative frequencies of each male GS class and comparing these to their relative frequencies expected under unbiased transmission (Fig. 2). To allow for clear comparisons, the main output variable in these analyses is the observed/expected ratio (O/E-ratio), i.e., the observed frequency divided by the expected relative frequency for each GS class. If there were no transmission biases, O/E-ratios across all GS classes should equal one. In contrast, O/E-ratios larger than one indicate overrepresentation of a certain GS class, and if O/E ratios increase or decrease with genome size, this indicates drive or drag at a meiotic or postmeiotic stage (Fig. 2d,h).Figure 2Principle of inferring meiotic transmission patterns from the genome size distributions of haploid rotifer males. The first four panels (a–d) show a rotifer clone with one ISE (i.e., two corresponding male GS classes). The last four panels (e–h) show a clone with four ISEs (i.e., five corresponding male GS classes). a, e Example of flow cytometry data. b, f Conceptual model of ISE meiotic segregation. c, g Theoretically predicted GS distributions of males (relative to the female GS) under meiotic drive, meiotic drag, or in the absence of meiotic drive. d, h Theoretically predicted O/E ratios (observed vs. expected frequencies of different male GS classes) under drive, drag, or on absence of drive. O/E values of  > 1 indicate over-representation of a GS class (relative to the frequency expected from unbiased transmission).Full size imageWe implemented these ideas in a mathematical model that contains the two parameters, transmission bias and cosegregation bias. Values for transmission bias may range from − 1 to 1 in our model. For instance, a value of 0.1 denotes a 10% increase in probability that an ISE segregates towards the egg pole (this is equivalent to a transmission rate of 0.55 for this ISE, i.e. mild meiotic drive). Concerning the second parameter, cosegregation bias, a positive value means that pairs of ISEs have an increased probability of being sequestered towards the same pole (irrespective of whether this is the egg pole or polar body pole), while a negative bias favors migration towards opposite poles. Please note that a cosegregation bias value of − 1 (i.e., 100% probability that ISEs migrate towards opposite poles) resembles the default segregation pattern of regular chromosomes. By estimating the transmission bias and cosegregation bias parameter for each rotifer clone, we tried to infer and compare general meiotic transmission patterns across clones, even if they contained different numbers and types of ISEs.Transmission biases may not only arise during meiosis, as described above but also during later stages of male embryonic development. For instance, they might be caused by differences in the survival of embryos, or due to differences in the fitness of hatched males containing different numbers of ISEs. To address these potential sources of variation, we compared the transmission biases in relatively young, synchronized male eggs, older eggs accumulating in growing cultures, and hatched males. Finally, to address the question of whether a high number of ISEs affects male embryonic survival in general, we estimated and compared hatching rates of (haploid) male eggs and (diploid) female eggs in 19 rotifer clones of different genome sizes (which is highly correlated with the number and size of ISEs in the genome22).Our results suggested that the ISEs in B. asplanchnoidis exhibit diverse meiotic segregation patterns: In some rotifer clones, transmission bias was positive, while the ISEs of other clones showed negative transmission bias (indicative of drag). Furthermore, we obtained evidence for a negative cosegregation bias in some clones, i.e., pairs of ISEs showed an increased probability to segregate towards opposite poles. Overall, these transmission patterns seemed to be determined early in the haploid life cycle, probably at or shortly after meiosis, since early and late stages of male embryonic development showed very similar GS distributions. Finally, we found that very large genome size (i.e., a large numbers of ISEs) was associated with reduced male embryonic survival. More