More stories

  • in

    Wildlife boost in African forests certified for sustainable logging

    Pillay, R. et al. Front. Ecol. Environ. 20, 10–15 (2022).Article 
    PubMed 

    Google Scholar 
    Fa, J. E., Funk, S. M. & Nasi, R. Hunting Wildlife in the Tropics and Subtropics (Cambridge Univ. Press, 2022).
    Google Scholar 
    Poorter, L. et al. Global Ecol. Biogeogr. 24, 1314–1328 (2015).Article 

    Google Scholar 
    Zwerts, J. A. et al. Nature https://doi.org/10.1038/s41586-024-07257-8 (2024).Article 

    Google Scholar 
    Blaser, J., Sarre, A., Poore, D. & Johnson, S. Status of Tropical Forest Management 2011. ITTO Technical Series No. 38 (International Tropical Timber Organization, 2011).
    Google Scholar 
    Asner, G. P., Rudel, T. K., Aide, T. M., Defries, R. & Emerson, R. Conserv. Biol. 23, 1386–1395 (2009).Article 
    PubMed 

    Google Scholar 
    Laporte, N. T., Stabach, J. A., Grosch, R., Lin, T. S. & Goetz, S. J. Science 316, 1451 (2007).Article 
    PubMed 

    Google Scholar 
    Ripple, W. J. et al. R. Soc. Open Sci. 3, 160498 (2016).Article 
    PubMed 

    Google Scholar 
    Greenpeace International. Destruction: Certified (Greenpeace, 2021).
    Google Scholar  More

  • in

    Brazil budget cuts could leave science labs without power and water

    More than three months into 2024, politicians in Brazil are still at odds about how much money the country’s research institutes and federal universities will receive this year. Scientists say that unless more funding is found, they won’t have enough money to cover basic expenses such as water, electricity and financial aid for students.On one side of the bargaining table is the National Congress. In December, it imposed cuts to the 2024 budget for the country’s research and higher-education institutions, which have already had their funding slashed several times in the past decade.On the other side is the administration of President Luiz Inácio Lula da Silva, which is fighting to reverse some of the congressional cuts. Lula, as the leader of the leftist Workers’ Party is popularly known, took office in 2023 pledging to make science a priority, increase Brazil’s spending on research and eliminate deforestation.“We should be doing research to support conservation policies, but now we are in a situation where we don’t know if we will be able to cover our routine activities,” says Nilson Gabas Júnior, director of the Emílio Goeldi Museum in the Amazonian city of Belém, whose studies provide data that feed into the management of the Amazon rainforest.Although the cuts affect the entire country, the Amazon institutions argue that they are the hardest hit because their federal support is already disproportionately low.Temporary reprieveLula managed to increase the budget for science and technology in 2023, compared with the levels in 2022, and scientists had hoped that funding would at least remain stable in 2024. Instead, Congress, which is controlled by a conservative majority, slashed the 2024 budget of the Ministry of Science, Technology and Innovation, which funds Brazil’s 16 federal research institutes, by 6.8% compared with that in 2023. Congress also reduced the budget for higher education from 6.3 billion reais (US$1.24 billion) in 2023 to 6.0 billion reais in 2024.After the budget was passed, an organization that represents the interests of the 69 Brazilian universities supported by the federal government published an open letter calling for more funding. Scientists’ allies in Congress have also tried to persuade legislators to reconsider their decision.In March, the government and Congress reached an agreement to restore 250 million reais to federal universities’ funding. But Sylvio Mário Puga Ferreira, dean of the Federal University of Amazonas in Manaus, who was involved in the negotiations, points out that “it would take a funding increase of 2.5 billion reais just to bring the universities’ budget closer to 2017 levels”.Winner take allThe paltry funding for federal universities and research institutes is likely to exacerbate an already-grim situation for science in Brazil’s Amazon. Data from the National Council for Scientific and Technological Development (CNPq), Brazil’s largest government agency for research funding, indicate that only 4% of the money invested in research projects in 2023 was directed to institutions in the seven states classified as the North region, which encompasses 87% of the Brazilian Amazon.“Scientific activity in Brazil is heavily concentrated in a few education and research institutions in the South and Southeast” regions, says Odir Dellagostin, president of the Brazilian National Council of State Funding Agencies. “They boast the best graduate programs, produce and publish more research and offer the best job opportunities” — and receive the most funding.
    ‘We are killing this ecosystem’: the scientists tracking the Amazon’s fading health
    The problem extends to biodiversity research. A study1 analysing CNPq’s investments in projects in botany, zoology, ecology and limnology (the study of freshwater ecosystems) between 2016 and 2022 found that research groups from the North region received only 2.57 million reais during this period. “This situation leaves the region with a very limited capacity to respond to the threats the forest faces,” says Lis Stegmann, one of the study’s authors and a biologist at the Eastern Amazon branch of the Brazilian Agricultural Research Corporation (Embrapa), in Belém. CNPq did not respond to Nature’s request for comment.Institutions in the North region produce fewer — and lower-quality — research outputs than do those in the South and Southeast regions, in part because they have difficulty training and attracting highly qualified personnel, and getting funding. In 2022, the seven Amazon states accounted for 3.9% of Brazil’s scientific production, whereas the state of São Paulo alone accounted for 28.9%, according to an unpublished study by Dellagostin.Funding feedback loopThis leads to a self-perpetuating problem: decisions about who gets research funding in Brazil are based heavily on quantitative assessments. Scientists who produce more research and publish in high-impact journals have better chances of acquiring funding.“Amazon research institutions are caught in a vicious circle,” says Emmanuel Zagury Tourinho, dean of the Federal University of Pará. “They don’t have enough funding because they lack robust scientific production, but they also cannot develop their research capacity because they don’t have enough funding.” This has led to a situation in which researchers from São Paulo (around 3,000 kilometres away from the Amazon) receive more public funding to study Amazon biodiversity than do researchers who are actually located in the Amazon.Some scientists are still hopeful that they will get some extra funds this year. “We are talking to the [science] minister Luciana Santos about the possibility of additional budget allocations for the upcoming months,” Gabas says. The most likely scenario, however, is that this discussion will be postponed until the next budget, because some of the funds that were earmarked for science and education in 2024 have already been redirected. More

  • in

    Digging in: last chance to save a native forest

    “When I first came to the small Caribbean island of Carriacou in 1990, I had no intention of staying. But something clicked; my partner and I have been here ever since.I’m from Venice, Italy, so a small island feels cosy to me. We also thought that Carriacou was small enough to tackle environmental problems and help make a difference. We saw the overfishing, deforestation and environmental damage here — not by multinational corporations, but by local people who were unaware of the ecological consequences of their actions.Since starting an environment and education foundation, called KIDO, in 1995, we have run around 30 projects — from protecting sea turtles to replanting mangroves.In this photograph, I am hiking to our latest project, the 40-hectare Anse La Roche nature reserve. Deforestation affected several areas of the plot, and one spot was devastated, illegally, with a bulldozer. To reconstitute the forest’s eroded soil, we gather Sargassum seaweed — overgrowth of which is afflicting Caribbean beaches as the sea warms — and use it as fertilizer.We will also plant thousands of native trees, including replanting 20 key canopy tree species that have almost been lost from Carriacou. This might be the last chance to save the forest: Carriacou’s diminishing rainfall is our nemesis, and each day we water around 3,000 saplings.With another ten years of care, we will see the forest resurge. Today when it rains, water rushes down the hillsides, taking the topsoil with it — but once the trees are established, rainwater will be caught in the natural terracing across the slope that the formidable buttress-root systems create. Forests take decades to grow, and it will be somebody else sitting under those trees saying, ‘Wow, it’s much cooler here!’” More

  • in

    Survival of the nicest: have we got evolution the wrong way round?

    Selfish Genes to Social Beings: A Cooperative History of Life Jonathan Silvertown Oxford Univ. Press (2024)The fact that all life evolved thanks to natural selection can have depressing connotations. If ‘survival of the fittest’ is the key to evolution, are humans hardwired for conflict with one another? Not at all, says evolutionary biologist Jonathan Silvertown in his latest book, Selfish Genes to Social Beings. On the contrary, he argues, many phenomena in the natural world, from certain types of predation to parasitism, rely on cooperation. Thus “we need no longer fret that human nature is sinful or fear that the milk of human kindness will run dry”.Silvertown uses examples from genes, bacteria, fungi, plants and animals to emphasize that cooperation is ubiquitous in nature. For instance, bacteria called rhizobia thrive in the root nodules of legumes — and turn nitrogen from the air into a soluble form that the plants can use. Some beetles cooperate to bury animal corpses that would be too large for any single insect to manage alone, both reducing the risk of other animals stealing food and providing a nest for beetle families to live in.
    It’s time to admit that genes are not the blueprint for life
    And many bacteria indicate their presence to each other using a chemical-signalling system called quorum sensing, which is active only when members of the same species are tightly packed together. This allows each cell to adjust its gene expression in a way that benefits the individuals in the group — to release a poison to kill other species, for instance, when enough bacteria are clustered together to mount a decent attack.Even eighteenth-century piracy, says Silvertown, is a good example of effective cooperation. Pirates worked together on their ships, and used violence more often against outsiders than as an internal mechanism for law enforcement.The author argues against the idea that cooperation is fundamentally at odds with competition — a view that emerged as a consequence of the sociobiology movement of the 1970s, in which some biologists argued that all human behaviour is reducible to a Darwinian need to be the ‘fittest’. The reality, as Silvertown shows, is not black and white.

    Lichen is a composite organism, in which an alga lives within a fungus.Credit: Ashley Cooper/SPL

    A matter of perspectiveTake lichens, for instance — ‘composite organisms’ in which an alga or cyanobacterium lives within a fungus. The Swiss botanist Simon Schwendener, who discovered this relationship in the 1860s, argued that a lichen is a parasite: “Its slaves are green algals, which it has sought out or indeed caught hold of, and forced into its service.” Another way to view the relationship is that these algae and fungi are co-dependent — when they co-exist as a lichen, each grows better than it would alone. The line between parasitism and mutualism, competition and cooperation is not clear cut. It’s a matter of perspective.
    A ‘user’s manual for the female mammal — how women’s bodies evolved
    Similarly hazy boundaries are found in the biology of our own cells. More than a billion years ago, cells absorbed bacteria, which eventually evolved into structures called mitochondria that generate energy. Mitochondria are an essential part of the cells of all plants, animals and fungi alive today. They could be considered slaves, with cells the parasites. Or perhaps they are more like adopted family members.Fundamentally, Silvertown proposes, cooperation in each of these situations stems from selfishness. Animals did not evolve to act for the benefit of their species, but to spread their own genes. Cooperation happens because mutual benefits are better, biologically speaking, than working alone, as the case of lichens effectively demonstrates.If this seems heartless, it’s a reflection of the human tendency to apply human moral frameworks to biological phenomena. The use of emotionally charged words such as ‘slave’ and ‘adopted’ takes us away from rigorous science and leads us to see biological interactions as ‘good’ or ‘bad’, rather than as the morally agnostic, transactional processes that they truly are.
    Why reciprocity is common in humans but rare in other animals
    The anthropomorphizing of biological processes is a deep and current problem. The tendency to falsely imply agency in the natural world is an easy trap to fall into — consider how often people might say that a virus such as SARS-CoV-2 ‘wants’ to be transmitted, for instance, or that ants act ‘for the good of their colony’. I would have liked to hear more about Silvertown’s views on this category error. But in places, I felt that he could have made his implied understanding more explicit. Instead, he sometimes sacrifices that carefulness for unnecessary jokes, noting, for instance, that bacteria “are essentially singletons who like to party”.The author could also have talked more about how the amorality inherent in most of the natural world does not apply to humans. Similarly to other organisms, our evolutionary heritage makes us social, but whether that sociality is ‘good’ or ‘bad’ is a moral, not a scientific, question. This distinction from the other cooperative processes that Silvertown outlines could have been explained better.Selfish Genes to Social Beings is at its best in the long, fascinating discussions of the complexity of cooperative behaviours across the natural world. For instance, although I’ve read a lot about biology, before reading this book I could never understand how RNA chains might have joined together and started the process of self-replication through which all life evolved. Silvertown can talk as easily about the compounds making up your genes as most people can about yesterday’s football match. More

  • in

    Climate change predicted to exacerbate declines in bee populations

    Cowie, R. H., Bouchet, P. & Fontaine, B. Biol. Rev. 97, 640–663 (2022).Article 
    PubMed 

    Google Scholar 
    Vasiliev, D. & Greenwood, S. Sci. Total Environ. 775, 145788 (2021).Article 
    PubMed 

    Google Scholar 
    Kazenel, M. R., Wright, K. W., Griswold, T., Whitney, K. D. & Rudgers, J. A. Nature https://doi.org/10.1038/s41586-024-07241-2 (2024).Article 

    Google Scholar 
    Ghisbain, G. et al. Nature https://doi.org/10.1038/s41586-023-06471-0 (2023).Article 

    Google Scholar 
    Soroye, P., Newbold, T. & Kerr, J. Science 367, 685–688 (2020).Article 
    PubMed 

    Google Scholar 
    Jackson, H. M. et al. Biol. Lett. 18, 20210551 (2022).Article 
    PubMed 

    Google Scholar 
    Martínez-López, O. et al. Glob. Change Biol. 27, 1772–1787 (2021).Article 

    Google Scholar 
    Martinet, B. et al. Conserv. Biol. 35, 1507–1518 (2021).Article 
    PubMed 

    Google Scholar 
    Kammerer, M., Goslee, S. C., Douglas, M. R., Tooker, J. F. & Grozinger, C. M. Glob. Change Biol. 27, 1250–1265 (2021).Article 

    Google Scholar 
    Oyen, K. J. & Dillon, M. E. J. Exp. Biol. 221, jeb165589 (2018).Article 
    PubMed 

    Google Scholar 
    Hamblin, A. L., Youngsteadt, E., López-Uribe, M. M. & Frank, S. D. Biol. Lett. 13, 20170125 (2017).Article 
    PubMed 

    Google Scholar 
    Fijen, T. P. M. J. Appl. Ecol. 58, 274–280 (2021).Article 

    Google Scholar 
    Schmid-Hempel, R. et al. J. Anim. Ecol. 83, 823–837 (2014).Article 
    PubMed 

    Google Scholar 
    Jordan, A., Patch, H. M., Grozinger, C. M. & Khanna, V. Environ. Sci. Technol. 55, 2243–2253 (2021).Article 
    PubMed 

    Google Scholar 
    Willmer, P. G., Cunnold, H. & Ballantyne, G. Arthropod Plant Interact. 11, 411–425 (2017).Article 

    Google Scholar 
    Kleijn, D. et al. Nature Commun. 6, 7414 (2015).Article 
    PubMed 

    Google Scholar  More

  • in

    Deep-sea mining plans should not be rushed

    Giant excavators for use in deep-sea mining must stay parked for now.Credit: Nigel Roddis/Reuters

    For more than a week, representatives of nations around the world have been meeting at a session of the International Seabed Authority (ISA) in Kingston, Jamaica. The ISA was established under the UN Convention on the Law of the Sea 30 years ago with the task of protecting the sea bed in international waters — which comprise roughly half of the world’s ocean. The goal of the latest meeting is to write the rules for the commercial mining of metals such as cobalt, manganese and nickel. These are needed in increasing quantities, mainly to power low-carbon technologies, such as battery storage.The meeting is set to end on 29 March, and there’s mounting concern among researchers that the final text is being rushed, not least because some countries including China, India, Japan and South Korea want to press ahead with commercial exploitation of deep-sea minerals. Some in the mining industry would like excavations to begin next year.China dominates the global supply of critical minerals and so far has the most sea-bed exploration licences of any country. These permits do not allow commercial exploitation. One company, meanwhile, The Metals Company, based in Vancouver, Canada, wants to apply for a commercial permit, potentially in late July.
    Hypocrisy is threatening the future of the world’s oceans
    There is little justification for such haste. Commercial sea-bed mining is not permitted for a reason: too little is known about the deep-sea ecosystem, such as its biodiversity, and its interactions with other ecosystems, and the impact of disturbance from commercial operations. Until we have the results of long-term studies, the giant robotic underwater excavators, drills and pumps that are ready to go must remain parked. Researchers have told Nature that the text is nowhere near ready, and that important due diligence is being circumvented. Outstanding issues need to be resolved, such as what is considered an acceptable level of environmental harm and how much contractors should pay the ISA for the right to extract minerals.Last month, the ISA published the latest draft of its mining regulations text. This ran to 225 pages, and researchers and conservation groups were alarmed to see that, unlike previous drafts, it incorporated proposals that would speed up the process for issuing commercial permits, and it also weakened environmental protections.Worryingly, a few of the changes in the latest text were not identified by square brackets — the practice in international negotiations to highlight wording that has not been agreed on by all parties. Nor were the sources for some changes attributed.Furthermore, in an earlier version of the text, there was a proposal to include measures to protect rare or fragile ecosystems, but this wording is not in the latest draft. Another suggestion was to require that mining applications be decided on within 30 days of their receipt, rather than waiting for the ISA’s twice-yearly meeting — an idea that has support from some in the industry and that does appear in the latest draft.Proposing changes to draft texts is normal in a negotiation, but failing to publicly identify who is proposing them is not. It is damaging to trust and a risk to reaching an outcome in which all parties are happy.Questions are rightly being asked of the leadership of the ISA secretariat, which organizes meetings and is responsible for producing and distributing texts, as well as the leadership of the ISA’s governing council. Nature has reached out to the secretariat with questions, but no response was received by the time this editorial went to press. We urge the ISA to respond, engage and explain.
    Norway’s approval of sea-bed mining undermines efforts to protect the ocean
    It is possible that the benefits to low-carbon technologies outweigh the risks of deep-sea mining if these are mitigated. But some 25 countries are calling for a moratorium on the practice, at least until the science is better understood. The European Parliament also backs a moratorium. This is also the official view of the High Level Panel for a Sustainable Ocean Economy, a group of 18 countries that pledged to not undertake commercial deep-sea mining in their national waters — despite founding member Norway’s decision to open up applications for commercial licences, which the European Parliament has criticized.The UN Convention on Migratory Species is urging that its member states should neither encourage nor engage in deep-sea mining “until sufficient and robust scientific information has been obtained to ensure that deep-seabed mineral exploitation activities do not cause harmful effects to migratory species, their prey and their ecosystems”.The ISA and its member states should exercise care, make their decisions on a consensus of evidence and be transparent in doing so, because transparency is foundational to the success of international relations. The deep seas are the least explored parts of the planet; we should not allow for their loss before we even understand their complexities. More

  • in

    The ‘Mother Tree’ idea is everywhere — but how much of it is real?

    It was a call from a reporter that first made ecologist Jason Hoeksema think things had gone too far. The journalist was asking questions about the wood wide web — the idea that trees communicate with each other through an underground fungal network — that seemed to go well beyond what Hoeksema considered to be the facts.Hoeksema discovered that his colleague, Melanie Jones, was becoming restive as well: her peers, she says, “had been squirming for a while and feeling uncomfortable with how the message had morphed in the public literature”. Then, a third academic, mycorrhizal ecologist Justine Karst, took the lead. She thought speaking out about the lack of evidence for the wood wide web had become an ethical obligation: “Our job as scientists is to present the truth, as close as we can get to it”.Their concerns lay predominantly with a depiction of the forest put forward by Suzanne Simard, a forest ecologist at the University of British Columbia in Vancouver, in her popular work. Her book Finding the Mother Tree, for example, was published in 2021 and swiftly became a bestseller. In it she drew on decades of her own and others’ research to portray forests as cooperating communities. She said that trees help each other out by dispatching resources and warning signals through fungal networks in the soil — and that more mature individuals, which she calls mother trees, sometimes prioritize related trees over others.The idea has enchanted the public, appearing in bestselling books, films and television series. It has inspired environmental campaigners, ecology students and researchers in fields including philosophy, urban planning and electronic music. Simard’s ideas have also led to recommendations on forest management in North America.
    It takes a wood to raise a tree: a memoir
    But in the ecology community there is a groundswell of unease with the way in which the ideas are being presented in popular forums. Last year, Karst, at the University of Alberta in Edmonton, Canada; Hoeksema, at the University of Mississippi in Oxford; and Jones, at the University of British Columbia in Kelowna, Canada, challenged Simard’s ideas in a review1, digesting the evidence and suggesting that some of Simard’s descriptions of the wood wide web in popular communications had “overlooked uncertainty” and were “disconnected from evidence”. They were later joined by other researchers, including around 30 forest and fungal scientists, who published a separate paper that questioned the scientific credibility2 of two popular books about forests — one of them Simard’s — saying that some of the claims in her book “do not correctly reflect, and even contradict, the data”. The article warns of “the perils of plant personification”, saying that the desire to humanize plant life “may eventually harm rather than help the commendable cause of preserving forests”. Another review of the evidence appeared in May last year3.Simard, however, disagrees with these characterizations of her work and is steadfast about the scientific support for her idea that trees cooperate through underground fungal networks. “They’re reductionist scientists,” she says when asked about criticism of her work. “They’ve missed the forest for the trees.” She is concerned that the debate over the details of the theory diminishes her larger goal of forest protection and renewal. “The criticisms are a distraction, to be honest, from what’s happening in our ecosystems.”Robert Kosak, dean of the faculty of forestry at the University of British Columbia, supports Simard and calls her “a world-renowned scientist, a strong advocate for science-based environmental solutions, an amazing communicator, mentor, and teacher, and a wonderful colleague”.The dispute offers a window into how scientific ideas take shape and spread in popular culture — and raises questions about what the responsibilities of scientists are as they communicate their ideas more widely.Conversation starterIn her book, Simard tells of an idyllic childhood, with summers spent in the ancient forests of British Columbia. While an undergraduate, she worked at a forestry company, witnessing clear-cut logging at first hand. The experience set the course of her career. On graduating, she took a government forest-service post, and joined the University of British Columbia in 2002. She still works there, running a research programme called the Mother Tree Project, which develops sustainable forest-renewal practices.One of Simard’s earliest papers appeared in Nature4 in 1997, describing evidence that carbon could travel underground between trees of different species, and suggesting that this could be through an underground fungal network. Nature put the paper on its cover and dubbed the idea the wood wide web — a term that quickly caught on and is now widely used to describe the idea (Nature’s news team is editorially independent of its journal team).Tree leaves turn sunshine and carbon dioxide into sugars, and some of this flows to their roots and into mycorrhizal fungi, which grow into the root tip and donate water and nutrients in return. There was already evidence, from a laboratory study5, that carbon can move through the tendrils of the fungi that link seedling roots together. But Simard’s approach, a controlled experiment in clear-cut forest, was “groundbreaking”, says David Johnson, who studies the ecology of soil microbes at the University of Manchester, UK.

    Forest ecologist Suzanne Simard’s 1997 study looked at carbon transfer between Douglas fir (Pseudotsuga menziesii) and paper birch trees (Betula papyrifera, pictured).Credit: Steve Gettle/Nature Picture Library

    She planted pairs of seedlings — one paper birch (Betula papyrifera) and one Douglas fir (Pseudotsuga menziesii) — close to one another. She shaded the Douglas fir to prevent it from manufacturing sugars. Then she bathed the air surrounding each seedling with traceable, labelled carbon dioxide. She found carbon in sugars made by the birch in the needles of the shaded Douglas fir. Smaller quantities of sugars from the fir were found in the birch.A third seedling in each group — western red cedar (Thuja plicata) — which is not colonized by the same types of mycorrhizal fungi, absorbed less carbon than did the other seedlings. The results, the authors concluded4, suggest that carbon transfer between birch and Douglas fir “is primarily through the direct hyphal pathway”. That is, there could be an active fungal pipeline connecting the roots of both trees.Over the years, Simard and other researchers developed in published work the idea that there could be a common mycorrhizal network in the forest soil, connecting many trees of the same and different species.About a decade ago, Simard began to take the idea further, and into the media. In a short film called Mother Trees Connect the Forest, she said of forest trees: “These plants are really not individuals in the sense that Darwin thought they were individuals competing for survival of the fittest. In fact, they’re interacting with each other, trying to help each other survive.”In 2016, in a TED talk that has had more than 5.6 million views, she portrayed forest trees as “not just competitors” — competition being foundational to the understanding of how ecosystems work — “but as cooperators”. Her 1997 experiment, she said, had revealed evidence for a “massive underground communications network”. Her later work, she added in the TED talk, found that some bigger, older “mother trees”, as she called them, are particularly well connected. They nurture their young — preferentially sending them carbon and making space for them in their root systems. What’s more, “when mother trees are injured or dying, they also send messages of wisdom on to the next generation of seedlings.”Then came her book — a memoir and detailed account of her work. It has been praised for its vivid and personal depiction of the scientific life.The book concludes that to escape environmental devastation, humans should adopt attitudes to nature that are similar to those of Indigenous people. “This begins by recognizing that trees and plants have agency,” she writes.Simard has worked to change forestry practices in North America in line with her ideas, for example by sparing the oldest trees during clear-cutting so that they can provide an infrastructure for the next generation of planted trees.Challenging ideasBut academics were increasingly concerned that the ideas and the publicity that they were attracting had moved beyond what was warranted by the scientific evidence.The disquiet came to a head when the 2023 scientific review1 was published. The authors, Hoeksema, Jones and Karst, have all collaborated scientifically with Simard in the past; Jones was an author of the 1997 paper. The review considers the evidence for popular claims made about the wood wide web.
    ‘We are killing this ecosystem’: the scientists tracking the Amazon’s fading health
    Their review has drawn praise for its scholarship. It is “the gold standard of how one should tackle a contentious and important field”, says James Cahill, who studies plant behaviour at the University of Alberta.Simard takes the opposite view: the paper, she says, fails to see the bigger picture, and its prominence is “an injustice to the whole world”.The review laid out what the authors regard as the three key claims underlying the popular idea of the ‘mother tree’: that networks of different fungi linking the roots of different trees — known as common mycorrhizal networks (CMNs) — are widespread in forests; that resources pass through such networks, benefiting seedlings; and that mature trees preferentially send resources along the networks to their kin. The scientists concluded that the first two are insufficiently supported by the scientific evidence, and that the last “has no peer-reviewed, published evidence”.Some elements of the wood-wide-web idea are not in dispute, they say. For instance, mycorrhizal fungi can latch onto multiple roots of the same plant; one species of fungus can connect with the roots of different species of plant; and mycelia — a cobweb of fungal tendrils — can spread over large distances.But evidence for a CMN in trees — one in which an individual fungus links the roots of the same or different tree species — is patchy, the review authors say. There are well-documented CMNs that link certain plants together: some orchids use CMNs to connect with trees, for instance, so that the orchids can feed on tree sugars when they can’t make their own.And lab studies have shown that a single fungus can link seedlings of different tree species. But, the authors say, the lab studies compare with the forest in the same way that human cells grown in a dish compare with human bodies.The review authors found that the strongest evidence for a CMN among trees in the field comes from five studies published between 2006 and 2020 — some led by ecologist Kevin Beiler, when he was a PhD student in Simard’s group. Beiler, who is now at the University for Sustainable Development in Eberswalde, Germany, used DNA techniques to map the networks of genetically distinct fungi in patches of old-growth forest, and found that they linked many trees of different ages, all Douglas fir — and the larger the tree, the greater the extent of its connections.

    Suzanne Simard is the scientist most closely associated with the idea of the ‘wood wide web’.Credit: PA Images/Alamy

    But Karst says that this doesn’t prove that the fungus was simultaneously connecting different trees, because mycelia decay easily and the technique would have picked up strands that are defunct, as well as alive. And that arduous mapping exercise has been repeated for just two tree species — hardly grounds for generalization, she says.So, do these common networks exist? “The consensus seems to be they are probably there but we do need more people to go out and map them at a fine scale to show that,” says Jones.The second claim explored by the review is that resources travel through the CMN and benefit seedlings. It has three parts. The first — that resources do, by some means, travel through the soil between plants, commands some support, say the review authors. For example, they highlight research in a Swiss forest in which the canopies of certain trees had been bathed in labelled carbon dioxide. The experiment showed that carbon ended up in the roots of nearby trees.But the authors say that proving the second two parts of the claim — that a CMN is the major conduit, and that seedlings typically benefit — is tricky. Lab and field studies often cannot rule out that resources moved through the soil for at least part of the way. The review highlighted three lab studies that directly observed carbon moving from one tree seedling to another through a mycorrhizal link, and these “are still the best evidence for the movement of resources within a CMN formed by woody plant species”, say the authors.In the forest, the authors found 26 experiments reporting carbon transfer, but for each transfer, there was an alternative explanation for how the carbon travelled.Some studies don’t look for a CMN but simply assess whether growing a seedling next to an adult tree improves its performance. For every instance in which a seedling benefited, the review states, there was another study in which its growth was inhibited. The results are “a huge smear from positive effects to negative effects and mostly neutral”, says Hoeksema.The third claim is that mature trees communicate preferentially with offspring through CMNs, for example sending warning signals after an attack.“When I heard that out in public I thought ‘Holy cow, that’s extraordinary’,” says Karst.The team did find one lab experiment, published in 2017 and led by Brian Pickles, who did the work as a postdoc in Simard’s department, that found that if seedlings were related then more carbon was transferred between them. But it happened in only two of the four lineages of seedlings, and it happened even when fungi were prevented from making links with each other — suggesting that one fungus exuded it into the soil and the other picked it up, the researchers say. In the review, the authors write that, for the third claim, “there is no current evidence from peer-reviewed, published field studies”.
    We must get a grip on forest science — before it’s too late
    Karst says that one reason why ideas about mother trees and their kin have traction in the public domain is that Simard, in media interviews and her book, has implied that findings made in the greenhouse were actually made in the forest, making the evidence seem stronger than it is. Simard disagrees. “I do not, and would never, imply anything misleading when presenting research.”Karst gives the example of a passage from Simard’s book that describes a visit to a field site made by Simard and her master’s student, Amanda Asay. In October 2012, Asay was exploring a question that is important for forestry — do seedlings stand a better chance of survival if they grow near their mother tree, and, if so, is this because they receive preferential help through a common mycorrhizal network? Asay had blocked such connections in control seedlings by planting them in mesh bags with pores too small for fungi to fit through. What she found in that forest experiment, Simard says in her book, matched the theory that trees help their kin through networks. “Seedlings that were [the mother tree’s] kin survived better and were noticeably bigger than those that were strangers linked into the network, a strong hint that Douglas-fir mother trees could recognize their own.” Yet, when the review authors accessed Asay’s master’s thesis6, they found that her field work had discovered the opposite: that more non-kin seedlings survived than did kin (although the trend was not significant). As for the role of networks, the thesis states: “Our hypothesis that kin recognition is facilitated by mycorrhizal networks, however, was not supported”.When asked about the discrepancy, Simard says that Asay also did greenhouse experiments for her master’s thesis, which used pairs of older and younger tree seedlings, and showed that older seedlings recognized younger kin and sent them more resources than they did to non-kin. After that, Asay and others in the team did find evidence that “there are responses that clearly show kin selection in those trees”.Simard says that, when describing Asay’s findings in the forest in 2012, she made a writer’s choice to situate other findings as if they were discovered in the forest on that day. “I situated the story in the field, because that’s where the question came from.” That description, she says, encompasses “the whole body of work”.

    A spruce tree root with ectomycorrhizal fungi.Credit: Eye of Science/Science Photo Library

    Asay’s subsequent work has not yet been published, for a tragic reason: she died in an accident in 2022. Her death was devastating for the group and publication stalled, Simard says. “We’re about to publish those papers,” she says.Karst, Jones and Hoeksema’s overall conclusion is that CMNs do exist in the plant kingdom, and that resources can travel along them, benefiting at least one party, and sometimes both. In the forest, myriad mycelia extend through the soil that are capable of linking with trees, including those of different species. Whether they form a live thoroughfare, and whether resources travel through it between trees, has yet to be demonstrated in the field. Whether there are, in general, kin effects between plants was beyond the scope of their review, but the authors found nothing to support the idea that forest trees target kin through common mycorrhizal networks.Their review also looked at the literature and found that some scientists have selectively cited and quoted from studies, boosting the credibility of the idea. The main problem, the review concludes, is not the quality of the science. “The most concerning issue is the rigour with which the results of these studies have been transmitted and interpreted.”Rigour and reactionMost of the response to the review has been positive, says Jones. “We got a lot of letters saying ‘thank you for doing that, it’s such a relief’. But I was really surprised how many of our colleagues said ‘you are brave’. That shouldn’t be, that you would have to be brave.”But some researchers have taken issue with aspects of the review. Johnson disagrees with the team’s decision to exclude evidence for similar networks elsewhere in the plant kingdom, including between orchids and trees, and in grasslands and heathlands. It means, he says, they were “ignoring 90% of the work … our default position should be that we should expect mycorrhizal fungi to connect many plants”. It’s important, he says, to take a collective view of the evidence.He agrees with the conclusion, however, that Simard’s idea of the cooperating forest is incompatible with evolutionary theory. “It’s all about the plants supporting each other for these altruistic reasons. I think that’s completely rubbish.”Johnson’s view is that it “makes complete sense” that there are CMNs linking multiple forest trees and that substances might travel from one to another through them. Crucially, he says, this is not due to the trees supporting one another. A simple explanation, compatible with evolutionary theory, is that the fungi are acting to protect the trees that are their source of energy. It is beneficial for fungi to activate a tree’s defence signals, or to top up food for temporarily ailing trees. Pickles, who spent six years working with Simard before moving to the University of Reading, UK, says Simard’s ideas are not incompatible with competition, but give more weight to well-known phenomena in ecology, such as mutualism, in which organisms cooperate for mutual benefit. “It’s not altruism. It’s not some outrageous idea,” he says. “She certainly focuses more on facilitation and mutualism than is traditional in these fields, and that’s probably why there’s a lot of pushback.”Other ecologists agree that there is some “polarization” in ecology between cooperative and competitive ideas. “The idea that perhaps not everything is trying to kill everything else is helpful,” says Katie Field, who studies plant-soil processes at the University of Sheffield, UK.Regardless of the differences of opinion, Pickles says, “It’s good to have this rigorous analysis.”Frustrating debateSimard is exasperated by the debate.Her work, she says, has “changed our whole world view of how the forest works”. There are now “dozens and dozens” of people “who have found that stuff moves through networks and through the soil”.She says that the quality of her science has been unfairly challenged. To say that her 200 published papers are “not valid science, which I think is what they’re saying … that it was wrong … is not right,” she says. She is in the process of submitting responses to the critical papers to two journals, she says.She says that she is unfairly accused of claiming CMNs are the only pathway for resources to travel between trees, and that she acknowledges other pathways in her papers and her book.In media appearances, it’s hard to make that clear, she says: “It’s a very short period of time, and I don’t get into all those other evolutionary reasons for these things.”Simard maintains that her critics attack her in the academic literature for imagery she has used only in public communication: “I talked about the mother tree as a way of communicating the science and then these other people say it’s a scientific hypothesis. They misuse my words.”She argues that changing our understanding of how forests work from ‘winner takes all’ to ‘collaborative, integrated network system’ is essential for fixing the rampant destruction of old-growth forest, especially in British Columbia, where her research has focused. Indigenous cultures that have a more sustainable relationship with forests have mother and father trees, she says — “but the European male society hates the mother tree … somebody needs to write a paper on that”.“I’m putting forward a paradigm shift. And the critics are saying ‘we don’t want a paradigm shift, we’re fine, just the way we are’. We’re not fine.”Simard also says that Karst held a position partially funded by members of Canada’s Oil Sands Innovation Alliance that constitutes a conflict of interest. Extraction of oil deposits is associated with forest loss and environmental damage, and Karst was studying land reclamation after extraction. Karst says that she held this position until 2021, terminating it before starting work on the review, and that the work it funded did not overlap with the focus of the review on mycorrhizal networks.Taking the research forwards will be challenging, says Johnson. Karst and her colleagues have produced an agenda for future field research — from mapping the genotypes of trees and fungi in a range of forests to using controls in experiments more stringently. But the agenda doesn’t impress Johnson. “It’s almost impossible to fulfil,” he says, partly because fieldwork is so fiendishly difficult.Some scientists say that Simard’s popular work has had a positive influence on the field, even if elements of it remain controversial. Her work propelled the mycorrhizal research community from an obscure and underfunded field to one that excites the public, says Field. That has unleashed funding, stimulated researchers’ imaginations and influenced research agendas.The backlash has further energized the community, she says. There are plans for a special edition of a journal she edits, and sessions have been added to the upcoming meeting of the International Mycorrhizal Society. All of this is helpful, says Field. “Anything that makes people think again and look again at the evidence is good.” More