More stories

  • in

    Growth of alpine grassland will start and stop earlier under climate warming

    Körner, C. Alpine Plant Life: Functional plant ecology of high mountain ecosystems. (Springer, 2021). https://doi.org/10.1007/978-3-030-59538-8.Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).Article 

    Google Scholar 
    Pepin, N. C. et al. Climate changes and their elevational patterns in the mountains of the world. Rev. Geophys. 60, e2020RG000730 (2022).Stewart, I. T. Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol. Process 23, 78–94 (2009).Article 

    Google Scholar 
    Vorkauf, M., Marty, C., Kahmen, A. & Hiltbrunner, E. Past and future snowmelt trends in the Swiss Alps: the role of temperature and snowpack. Clim. Change 165, 44–62 (2021).Article 

    Google Scholar 
    Inouye, D. W. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89, 353–362 (2008).Article 
    PubMed 

    Google Scholar 
    Vorkauf, M., Kahmen, A., Körner, C. & Hiltbrunner, E. Flowering phenology in alpine grassland strongly responds to shifts in snowmelt but weakly to summer drought. Alp. Bot. 131, 73–88 (2021).Article 

    Google Scholar 
    Wipf, S. & Rixen, C. A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Res. 29, 95–109 (2010).Article 

    Google Scholar 
    Collins, C. G. et al. Experimental warming differentially affects vegetative and reproductive phenology of tundra plants. Nat. Commun. 12, 3442 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Choler, P. Growth response of temperate mountain grasslands to inter-annual variations in snow cover duration. Biogeosciences 12, 3885–3897 (2015).Article 

    Google Scholar 
    Xie, J. et al. Land surface phenology and greenness in alpine grasslands driven by seasonal snow and meteorological factors. Sci. Total Environ. 725, 138380 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nord, E. A. & Lynch, J. P. Plant phenology: a critical controller of soil resource acquisition. J. Exp. Bot. 60, 1927–1937 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gallinat, A. S., Primack, R. B. & Wagner, D. L. Autumn, the neglected season in climate change research. Trends Ecol. Evol. 30, 169–176 (2015).Article 
    PubMed 

    Google Scholar 
    Rosa, R. K. et al. Plant phenological responses to a long‐term experimental extension of growing season and soil warming in the tussock tundra of Alaska. Glob. Change Biol. 21, 4520–4532 (2015).Article 

    Google Scholar 
    Livensperger, C. et al. Earlier snowmelt and warming lead to earlier but not necessarily more plant growth. AoB Plants 8, plw021 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Körner, C. & Hiltbrunner, E. Why is the alpine flora comparatively robust against climatic warming? Diversity 13, 383–397 (2021).Article 

    Google Scholar 
    Ma, H. et al. The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nat. Ecol. Evol. 5, 1110–1122 (2021).Article 
    PubMed 

    Google Scholar 
    Iversen, C. M. et al. The unseen iceberg: plant roots in arctic tundra. N. Phytol. 205, 34–58 (2015).Article 

    Google Scholar 
    Abramoff, R. Z. & Finzi, A. C. Are above‐ and below‐ground phenology in sync? N. Phytol. 205, 1054–1061 (2015).Article 

    Google Scholar 
    Liu, H. et al. Phenological mismatches between above- and belowground plant responses to climate warming. Nat. Clim. Change 12, 97–102 (2022).Article 
    CAS 

    Google Scholar 
    Rixen, C. et al. Winters are changing: snow effects on Arctic and alpine tundra ecosystems. Arct. Sci. 1–37 (2022) https://doi.org/10.1139/as-2020-0058.Johnson, M. G., Tingey, D. T., Phillips, D. L. & Storm, M. J. Advancing fine root research with minirhizotrons. Environ. Exp. Bot. 45, 263–289 (2001).Article 
    PubMed 

    Google Scholar 
    Atkinson, J. A., Pound, M. P., Bennett, M. J. & Wells, D. M. Uncovering the hidden half of plants using new advances in root phenotyping. Curr. Opin. Biotech. 55, 1–8 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Radville, L., McCormack, M. L., Post, E. & Eissenstat, D. M. Root phenology in a changing climate. J. Exp. Bot. 67, 3617–3628 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Blume-Werry, G. The belowground growing season. Nat. Clim. Change 12, 11–12 (2022).Article 

    Google Scholar 
    Wipf, S., Stoeckli, V. & Bebi, P. Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Clim. Change 94, 105–121 (2009).Article 

    Google Scholar 
    Baptist, F., Flahaut, C., Streb, P. & Choler, P. No increase in alpine snowbed productivity in response to experimental lengthening of the growing season. Plant Biol. 12, 755–764 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vitasse, Y. et al. ‘Hearing’ alpine plants growing after snowmelt: ultrasonic snow sensors provide long-term series of alpine plant phenology. Int J. Biometeorol. 61, 349–361 (2017).Article 
    PubMed 

    Google Scholar 
    Blume‐Werry, G., Jansson, R. & Milbau, A. Root phenology unresponsive to earlier snowmelt despite advanced above‐ground phenology in two subarctic plant communities. Funct. Ecol. 31, 1493–1502 (2017).Article 

    Google Scholar 
    Darrouzet‐Nardi, A. et al. Limited effects of early snowmelt on plants, decomposers, and soil nutrients in Arctic tundra soils. Ecol. Evol. 9, 1820–1844 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ernakovich, J. G. et al. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob. Change Biol. 20, 3256–3269 (2014).Article 

    Google Scholar 
    Keller, F. & Körner, C. The role of photoperiodism in alpine plant development. Arct. Antarct. Alp. Res 35, 361–368 (2003).Article 

    Google Scholar 
    Hiltbrunner, E., Arnaiz, J. & Körner, C. Biomass allocation and seasonal non-structural carbohydrate dynamics do not explain the success of tall forbs in short alpine grassland. Oecologia 1–15 (2021) https://doi.org/10.1007/s00442-021-04950-7.Inauen, N., Körner, C. & Hiltbrunner, E. No growth stimulation by CO2 enrichment in alpine glacier forefield plants. Glob. Change Biol. 18, 985–999 (2012).Article 

    Google Scholar 
    Möhl, P., Hiltbrunner, E. & Körner, C. Halving sunlight reveals no carbon limitation of aboveground biomass production in alpine grassland. Glob. Change Biol. 26, 1857–1872 (2020).Article 

    Google Scholar 
    Porter, J. R. & Gawith, M. Temperatures and the growth and development of wheat: a review. Eur. J. Agron. 10, 23–36 (1999).Article 

    Google Scholar 
    Parent, B., Turc, O., Gibon, Y., Stitt, M. & Tardieu, F. Modelling temperature-compensated physiological rates, based on the co-ordination of responses to temperature of developmental processes. J. Exp. Bot. 61, 2057–2069 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Körner, C. H. & Woodward, F. I. The dynamics of leaf extension in plants with diverse altitudinal ranges. Oecologia 72, 279–283 (1987).Article 
    PubMed 

    Google Scholar 
    Nagelmüller, S., Hiltbrunner, E. & Körner, C. Low temperature limits for root growth in alpine species are set by cell differentiation. AoB Plants 9, plx054 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Starr, G., Oberbauer, S. F. & Pop, E. W. Effects of lengthened growing season and soil warming on the phenology and physiology of Polygonum bistorta. Glob. Change Biol. 6, 357–369 (2000).Article 

    Google Scholar 
    Yoshie, F. Vegetative phenology of alpine plants at Tateyama Murodo-daira in central Japan. J. Plant Res. 123, 675–688 (2010).Article 
    PubMed 

    Google Scholar 
    Jonas, T., Rixen, C., Sturm, M. & Stoeckli, V. How alpine plant growth is linked to snow cover and climate variability. J. Geophys. Res. 113, G03013 (2008).
    Google Scholar 
    Wang, H. et al. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol. Lett. 23, 701–710 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frei, E. R. & Henry, G. H. R. Long-term effects of snowmelt timing and climate warming on phenology, growth, and reproductive effort of Arctic tundra plant species. Arct. Sci. 1–22 (2021) https://doi.org/10.1139/as-2021-0028.Schäppi, B. & Körner, C. Growth responses of an alpine grassland to elevated CO2. Oecologia 105, 43–52 (1996).Article 
    PubMed 

    Google Scholar 
    Aloni, R. Role of hormones in controlling vascular differentiation and the mechanism of lateral root initiation. Planta 238, 819–830 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sloan, V. L., Fletcher, B. J. & Phoenix, G. K. Contrasting synchrony in root and leaf phenology across multiple sub‐Arctic plant communities. J. Ecol. 104, 239–248 (2016).Article 
    CAS 

    Google Scholar 
    Nagelmüller, S., Hiltbrunner, E. & Körner, C. Critically low soil temperatures for root growth and root morphology in three alpine plant species. Alp. Bot. 126, 11–21 (2016).Article 

    Google Scholar 
    Woo, H. R., Kim, H. J., Lim, P. O. & Nam, H. G. Leaf senescence: systems and dynamics aspects. Annu. Rev. Plant Biol. 70, 1–30 (2019).Article 

    Google Scholar 
    Liu, Z., Marella, C. B. N., Hartmann, A., Hajirezaei, M. R. & Wirén, Nvon An age-dependent sequence of physiological processes defines developmental root senescence. Plant Physiol. 181, 993–1007 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ryser, P., Puig, S., Müller, M. & Munné-Bosch, S. Abscisic acid responses match the different patterns of autumn senescence in roots and leaves of Iris versicolor and Sparganium emersum. Environ. Exp. Bot. 176, 104097 (2020).Article 
    CAS 

    Google Scholar 
    Budge, K., Leifeld, J., Hiltbrunner, E. & Fuhrer, J. Alpine grassland soils contain large proportion of labile carbon but indicate long turnover times. Biogeosciences 8, 1911–1923 (2011).Article 
    CAS 

    Google Scholar 
    Solly, E. F. et al. Unravelling the age of fine roots of temperate and boreal forests. Nat. Commun. 9, 3006 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trumbore, S. E., Sierra, C. A. & Pries, C. E. H. Radiocarbon and climate change, mechanisms, applications and laboratory techniques. 45–82 (2016) https://doi.org/10.1007/978-3-319-25643-6_3.Windmaißer, T. & Reisch, C. Long-term study of an alpine grassland: local constancy in times of global change. Alp. Bot. 123, 1–6 (2013).Article 

    Google Scholar 
    De Witte, L. C. D., Armbruster, G. F. J., Gielly, L., Taberlet, P. & Stöcklin, J. AFLP markers reveal high clonal diversity and extreme longevity in four key arctic‐alpine species. Mol. Ecol. 21, 1081–1097 (2012).Article 
    PubMed 

    Google Scholar 
    Landolt, E. Unsere Alpenflora. (SAC-Verlag, 2012).Puşcaş, M. & Choler, P. A biogeographic delineation of the European Alpine System based on a cluster analysis of Carex curvula-dominated grasslands. Flora – Morphol. Distrib. Funct. Ecol. Plants 207, 168–178 (2012).Article 

    Google Scholar 
    Grabherr, G., Mahr, E. & Reisigl, H. Nettoprimärproduktion und Reproduktion in einem Krummseggenrasen (Caricetum curvulae) der Otztaler Alpen, Tirol. Oecologia Plant. 13, 227–251 (1978).
    Google Scholar 
    Chiang, C., Bånkestad, D. & Hoch, G. Reaching natural growth: light quality effects on plant performance in indoor growth facilities. Plants 9, 1273 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chiang, C., Olsen, J. E., Basler, D., Bånkestad, D. & Hoch, G. Latitude and weather influences on sun light quality and the relationship to tree growth. Forests 10, 610–621 (2019).Article 

    Google Scholar 
    Richardson, A. D. et al. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia 152, 323–334 (2007).Article 
    PubMed 

    Google Scholar 
    Jiang, Y. & Li, C. Convolutional neural networks for image-based high-throughput plant phenotyping: a review. Plant Phenomics 2020, 4152816 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Möller, B. et al. rhizoTrak: a flexible open source Fiji plugin for user-friendly manual annotation of time-series images from minirhizotrons. Plant Soil 444, 519–534 (2019).Article 

    Google Scholar 
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Smith, A. G., Petersen, J., Selvan, R. & Rasmussen, C. R. Segmentation of roots in soil with U-Net. Plant Methods 16, 13–27 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seethepalli, A. et al. Rhizovision crown: an integrated hardware and software platform for root crown phenotyping. Plant Phenomics 2020, 3074916 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2021).Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.6.2-1. (2021).Möhl P., von Büren R. S. & Hiltbrunner E. Data from: Growth of alpine grassland will start and stop earlier under climate warming figshare. https://doi.org/10.6084/m9.figshare.20440497 (2022). More

  • in

    Younger trees in the upper canopy are more sensitive but also more resilient to drought

    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).Article 
    CAS 

    Google Scholar 
    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).Article 
    CAS 

    Google Scholar 
    De Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019).Article 

    Google Scholar 
    Anderegg, W. R., Kane, J. M. & Anderegg, L. D. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Change 3, 30–36 (2013).Article 

    Google Scholar 
    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 129 (2015).Article 

    Google Scholar 
    Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).Article 
    CAS 

    Google Scholar 
    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).Article 
    CAS 

    Google Scholar 
    Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).Article 
    CAS 

    Google Scholar 
    Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).Article 

    Google Scholar 
    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).Article 
    CAS 

    Google Scholar 
    Anderegg, W. R. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).Article 
    CAS 

    Google Scholar 
    Anderegg, W. R., Trugman, A. T., Badgley, G., Konings, A. G. & Shaw, J. Divergent forest sensitivity to repeated extreme droughts. Nat. Clim. Change 10, 1091–1095 (2020).Article 

    Google Scholar 
    Zhang, T., Niinemets, Ü., Sheffield, J. & Lichstein, J. W. Shifts in tree functional composition amplify the response of forest biomass to climate. Nature 556, 99–102 (2018).Article 
    CAS 

    Google Scholar 
    Engelbrecht, B. M. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).Article 
    CAS 

    Google Scholar 
    Lenoir, J., Gégout, J.-C., Marquet, P., De Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).Article 
    CAS 

    Google Scholar 
    Au, T. F. et al. Demographic shifts in eastern US forests increase the impact of late‐season drought on forest growth. Ecography 43, 1475–1486 (2020).Article 

    Google Scholar 
    Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).Article 
    CAS 

    Google Scholar 
    Lindenmayer, D. B., Laurance, W. F. & Franklin, J. F. Global decline in large old trees. Science 338, 1305–1306 (2012).Article 
    CAS 

    Google Scholar 
    McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).Article 
    CAS 

    Google Scholar 
    Ellsworth, D. & Reich, P. Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96, 169–178 (1993).Article 
    CAS 

    Google Scholar 
    Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93 (2014).Article 
    CAS 

    Google Scholar 
    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).Article 
    CAS 

    Google Scholar 
    Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).Article 

    Google Scholar 
    Piovesan, G. & Biondi, F. On tree longevity. N. Phytol. 231, 1318–1337 (2021).Article 

    Google Scholar 
    Jucker, T. et al. Tallo: a global tree allometry and crown architecture database. Glob. Change Biol. 28, 5254–5268 (2022).Article 
    CAS 

    Google Scholar 
    Körner, C. A matter of tree longevity. Science 355, 130–131 (2017).Article 

    Google Scholar 
    D’orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Change Biol. 24, 2339–2351 (2018).Article 

    Google Scholar 
    Luo, Y. & Chen, H. Y. Observations from old forests underestimate climate change effects on tree mortality. Nat. Commun. 4, 1655 (2013).Article 

    Google Scholar 
    Dannenberg, M. P., Wise, E. K. & Smith, W. K. Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes. Sci. Adv. 5, eaaw0667 (2019).Article 

    Google Scholar 
    Anderegg, W. R. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).Article 
    CAS 

    Google Scholar 
    McCormick, E. L. et al. Widespread woody plant use of water stored in bedrock. Nature 597, 225–229 (2021).Article 
    CAS 

    Google Scholar 
    Giardina, F. et al. Tall Amazonian forests are less sensitive to precipitation variability. Nat. Geosci. 11, 405–409 (2018).Article 
    CAS 

    Google Scholar 
    Phillips, R. P. et al. A belowground perspective on the drought sensitivity of forests: towards improved understanding and simulation. For. Ecol. Manage. 380, 309–320 (2016).Article 

    Google Scholar 
    Meinzer, F. C., Lachenbruch, B. & Dawson, T. E. Size- and Age-Related Changes in Tree Structure and Function Vol. 4 (Springer, 2011).Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).Article 
    CAS 

    Google Scholar 
    Klein, T. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct. Ecol. 28, 1313–1320 (2014).Article 

    Google Scholar 
    Cavender-Bares, J. & Bazzaz, F. Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Oecologia 124, 8–18 (2000).Article 
    CAS 

    Google Scholar 
    Gallé, A., Haldimann, P. & Feller, U. Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. N. Phytol. 174, 799–810 (2007).Article 

    Google Scholar 
    Keith, H., Mackey, B. G. & Lindenmayer, D. B. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc. Natl Acad. Sci. USA 106, 11635–11640 (2009).Article 
    CAS 

    Google Scholar 
    Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).Article 
    CAS 

    Google Scholar 
    Zhao, S. et al. The International Tree‐Ring Data Bank (ITRDB) revisited: data availability and global ecological representativity. J. Biogeogr. 46, 355–368 (2019).Article 

    Google Scholar 
    Fisher, R. A. et al. Vegetation demographics in Earth system models: a review of progress and priorities. Glob. Change Biol. 24, 35–54 (2018).Article 

    Google Scholar 
    Rayback, S. A. et al. The DendroEcological Network: a cyberinfrastructure for the storage, discovery and sharing of tree-ring and associated ecological data. Dendrochronologia 60, 125678 (2020).Article 

    Google Scholar 
    Maxwell, J. T. et al. Sampling density and date along with species selection influence spatial representation of tree-ring reconstructions. Climate of the Past 16, 1901–1916 (2020).Article 

    Google Scholar 
    Maxwell, J. T. et al. Higher CO2 concentrations and lower acidic deposition have not changed drought response in tree growth but do influence iWUE in hardwood trees in the Midwestern USA. J. Geophys. Res. Biogeosci. 124, 3798–3813 (2019).Article 
    CAS 

    Google Scholar 
    Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).Article 

    Google Scholar 
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021); https://www.R-project.org/Cook, E. R. & Kairiukstis, L. A. Methods of Dendrochronology: Applications in the Environmental Sciences (Springer, 2013).Cook, E. R. & Peters, K. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull. 41, 45–53 (1981).
    Google Scholar 
    Fritts, H. Tree Rings and Climate (Academic Press, 1976).
    Google Scholar 
    Wilson, R. et al. Last millennium Northern Hemisphere summer temperatures from tree rings: part I: the long term context. Quat. Sci. Rev. 134, 1–18 (2016).Article 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).Article 

    Google Scholar 
    Holmes, R. Program COFECHA User’s Manual (Univ. Arizona Laboratory of Tree-Ring Research, 1983).Palmer, J. G. et al. Drought variability in the eastern Australia and New Zealand summer drought atlas (ANZDA, CE 1500–2012) modulated by the Interdecadal Pacific Oscillation. Environ. Res. Lett. 10, 124002 (2015).Article 

    Google Scholar 
    Cook, E. R. et al. Asian monsoon failure and megadrought during the last millennium. Science 328, 486–489 (2010).Article 
    CAS 

    Google Scholar 
    Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M. & Stahle, D. W. Long-term aridity changes in the western United States. Science 306, 1015–1018 (2004).Article 
    CAS 

    Google Scholar 
    Cook, E. R. et al. Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long‐term palaeoclimate context. J. Quat. Sci. 25, 48–61 (2010).Article 

    Google Scholar 
    Cook, E. R. et al. Old World megadroughts and pluvials during the Common Era. Sci. Adv. 1, e1500561 (2015).Article 

    Google Scholar 
    Morales, M. S. et al. Six hundred years of South American tree rings reveal an increase in severe hydroclimatic events since mid-20th century. Proc. Natl Acad. Sci. USA 117, 16816–16823 (2020).Article 
    CAS 

    Google Scholar 
    Stokes, M. & Smiley, T. An Introduction to Tree-Ring Dating. (Univ. Chicago Press, 1968).
    Google Scholar 
    Lockwood, B. R., Maxwell, J. T., Robeson, S. M, & Au, T. F. Assessing bias in diameter at breast height estimated from tree rings and its effects on basal area increment and biomass. Dendrochronologia 67, 125844 (2021).Locosselli, G. M. et al. Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature. Proc. Natl Acad. Sci. USA 117, 33358–33364 (2020).Article 
    CAS 

    Google Scholar 
    Rozas, V., DeSoto, L. & Olano, J. M. Sex‐specific, age‐dependent sensitivity of tree‐ring growth to climate in the dioecious tree Juniperus thurifera. N. Phytol. 182, 687–697 (2009).Article 

    Google Scholar 
    Carrer, M. & Urbinati, C. Age‐dependent tree‐ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85, 730–740 (2004).Article 

    Google Scholar 
    Gazol, A., Camarero, J., Anderegg, W. & Vicente‐Serrano, S. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Glob. Ecol. Biogeogr. 26, 166–176 (2017).Article 

    Google Scholar 
    Li, X. et al. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nat. Ecol. Evol. 4, 1075–1083 (2020).Article 

    Google Scholar 
    Pardos, M. et al. The greater resilience of mixed forests to drought mainly depends on their composition: analysis along a climate gradient across Europe. For. Ecol. Manage. 481, 118687 (2021).Article 

    Google Scholar 
    Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: thestandardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).Article 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: An Introduction with R (CRC Press, 2017).Rollinson, C. R. et al. Climate sensitivity of understory trees differs from overstory trees in temperate mesic forests. Ecology 102, e03264 (2021).Article 

    Google Scholar 
    Lloret, F., Keeling, E. G. & Sala, A. Components of tree resilience: effects of successive low‐growth episodes in old ponderosa pine forests. Oikos 120, 1909–1920 (2011).Article 

    Google Scholar 
    Li, X. et al. Reply to: Disentangling biology from mathematical necessity in twentieth-century gymnosperm resilience trends. Nat. Ecol. Evol. 5, 736–737 (2021).Article 

    Google Scholar 
    Zheng, T. et al. Disentangling biology from mathematical necessity in twentieth-century gymnosperm resilience trends. Nat. Ecol. Evol. 5, 733–735 (2021).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Long, J. A. jtools: Analysis and Presentation of Social Scientific Data R Package v.2.2.0 https://cran.r-project.org/package=jtools (2022).Mazerolle, M. J. AICcmodavg: Model Selection and Multimodel Inference Based on AIC R Package v.2.3-1 https://cran.r-project.org/package=AICcmodavg (2020).Au, T. F. Au_et_al_NCC.R. Figshare https://doi.org/10.6084/m9.figshare.21263676.v1 (2022). More

  • in

    Oil-palm farms that spare rainforests menace grasslands instead

    .readcube-buybox { display: none !important;}
    Efforts to keep oil-palm plantations from crowding out tropical rainforests could threaten biodiversity in other habitats1.

    Access options

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to Nature and 55 other Nature journal$29.99monthlySubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueAll prices are NET prices.VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00All prices are NET prices.

    Additional access options:

    doi: https://doi.org/10.1038/d41586-022-04179-1

    References

    Subjects

    Conservation biology More

  • in

    Integrating crop redistribution and improved management towards meeting China’s food demand with lower environmental costs

    Clark, M. A., Springmann, M., Hill, J. & Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl Acad. Sci. USA 116, 23357 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davis, K. F. et al. Assessing the sustainability of post-Green Revolution cereals in India. Proc. Natl Acad. Sci. USA 116, 25034 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoekstra, A. Y. & Wiedmann, T. O. Humanity’s unsustainable environmental footprint. Science 344, 1114 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    O Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88 (2018).Article 

    Google Scholar 
    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).Article 
    PubMed 

    Google Scholar 
    van Dijk, M., Morley, T., Rau, M. L. & Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2, 494 (2021).Article 

    Google Scholar 
    Grassini, P., Eskridge, K. M. & Cassman, K. G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 4, 2918 (2013).Article 
    PubMed 

    Google Scholar 
    Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).Article 
    PubMed 

    Google Scholar 
    Chen, X. et al. Integrated soil–crop system management for food security. Proc. Natl Acad. Sci. USA 108, 6399 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    FAOSTAT. FAO http://www.fao.org/faostat/en/#home (2021).Liu, Z. et al. Optimization of China’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints. Nat. Food 2, 426 (2021).Article 

    Google Scholar 
    Zhang, Q. et al. Outlook of China’s agriculture transforming from smallholder operation to sustainable production. Glob. Food Secur. 26, 100444 (2020).Article 

    Google Scholar 
    Duan, J. et al. Consolidation of agricultural land can contribute to agricultural sustainability in China. Nat. Food 2, 1014 (2021).Article 
    CAS 

    Google Scholar 
    Cui, Z. et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhou, F. et al. Deceleration of China’s human water use and its key drivers. Proc. Natl Acad. Sci. USA 117, 7702 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, H. et al. Estimating ammonia emissions from cropland in China based on the establishment of agro-region-specific models. Agr. For. Meteorol. 303, 108373 (2021).Article 

    Google Scholar 
    Yue, Q. et al. Deriving emission factors and estimating direct nitrous oxide emissions for crop cultivation in China. Environ. Sci. Technol. 53, 10246 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ju, X., Gu, B., Wu, Y. & Galloway, J. N. Reducing China’s fertilizer use by increasing farm size. Global Environ. Chang. 41, 26 (2016).Article 

    Google Scholar 
    Costanza, R. et al. Changes in the global value of ecosystem services. Global Environ. Chang. 26, 152 (2014).Article 

    Google Scholar 
    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Davis, K. F., Rulli, M. C., Seveso, A. & D. Odorico, P. Increased food production and reduced water use through optimized crop distribution. Nat. Geosci. 10, 919 (2017).Article 
    CAS 

    Google Scholar 
    Chen, X. et al. Producing more grain with lower environmental costs. Nature 514, 486 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    UN Department of Economic and Social Affairs, Population Division (2019). World Population Prospects 2019, Online Edition. Rev. 1 (2019). https://population.un.org/wpp/2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2019).Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2, 284 (2020).Article 

    Google Scholar 
    Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18123 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Price Bureau of the National Development and Reform Commission of China. China Agricultural Products Cost–Benefit Compilation of Information 2017 (in Chinese) (China Statistics Press, 2017).Fan, S., Brzeska, J., Keyzer, M. & Halsema, A. From Subsistence to Profit: Transforming Smallholder Farms. (Inter. Food Policy Res. Inst., 2013).Wang, S. et al. Urbanization can benefit agricultural production with large-scale farming in China. Nat. Food 2, 183 (2021).Article 

    Google Scholar 
    Yin, Y. et al. A steady-state N balance approach for sustainable smallholder farming. Proc. Natl Acad. Sci. USA 118, e2106576118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guiding opinions of the ministry of agriculture on the adjustment of maize structure in the “sickle” area. Ministry of Agriculture and Rural Affairs of the People’s Republic of China http://www.moa.gov.cn/nybgb/2015/shiyiqi/201712/t20171219_6103893.htm (2017).Zhang, F., Chen, X. & Vitousek, P. An experiment for the world. Nature 497, 33 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, W. et al. Closing yield gaps in China by empowering smallholder farmers. Nature 537, 671 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cyberspace Administration of China. State Council of the People’s Republic of China http://www.gov.cn/xinwen/2021-12/28/content_5664873.htm (2021).Kou, T. et al. Effects of long-term cropping regimes on soil carbon sequestration and aggregate composition in rainfed farmland of Northeast China. Soil Till. Res. 118, 132 (2012).Article 

    Google Scholar 
    Li, X. et al. Long-term increased grain yield and soil fertility from intercropping. Nat. Sustain. 4, 943 (2021).Article 

    Google Scholar 
    Damerau, K. et al. India has natural resource capacity to achieve nutrition security, reduce health risks and improve environmental sustainability. Nat. Food 1, 631 (2020).Article 

    Google Scholar 
    Kuang, W. et al. Cropland redistribution to marginal lands undermines environmental sustainability. Natl Sci. Rev. 9, 1 (2021).
    Google Scholar 
    Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ma, L. et al. Exploring future food provision scenarios for China. Environ. Sci. Technol. 53, 1385 (2018).Article 

    Google Scholar 
    National population development plan: 2016–2030. National Development and Reform Commission http://www.gov.cn/zhengce/content/2017-01/25/content_5163309.htm (2016).Ma, L. et al. Environmental assessment of management options for nutrient flows in the food chain in China. Environ. Sci. Technol. 47, 7260 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lobell, D. B., Cassman, K. G. & Field, C. B. Crop yield gaps: their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 34, 179 (2009).Article 

    Google Scholar 
    Yan, X., Akiyama, H., Yagi, K. & Akimoto, H., Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Global Biogeochem. Cy. https://doi.org/10.1029/2008GB003299 (2009).Smith, P., Martino, Z. & Cai, D. ‘Agriculture’, in Climate Change 2007: Mitigation (Cambridge Univ. Press, 2007).Liang, D. et al. China’s greenhouse gas emissions for cropping systems from 1978–2016. Sci. Data 8, 171 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Quantifying the benefits of reducing synthetic nitrogen application policy on ecosystem carbon sequestration and biodiversity

    Overview of modeling frameworkWe have used a range of econometric, economic, and agricultural land surface models to analyze the factors driving land-use change in order to assess their ecological, agricultural, climatic and economic impacts. These multi-scale models differ in their methodologies, scale of interest, and resolution, but they are very complementary and could provide a unique opportunity to analyze public policy scenario effects on land-use and resulting changes in ecosystem carbon and biodiversity.Among these models, the economic land use model Nexus Land Use (NLU)29,30 and the agricultural supply-side model Agriculture, Recomposition de l’Offre et Politique Agricole (AROPAj)31 coupled with a spatial econometric model32 have allowed us to estimate the impact on EU land-use of a scenario involving a 50% reduction in N synthetic fertilizers compared to a baseline scenario. In the present study, we use these land-use scenarios to force ORCHIDEE-crop (Organising Carbon and Hydrology in Dynamic Ecosystems), an agricultural land surface model16,33 and Projecting Responses of Ecological Diversity in Changing Terrestrial Systems (PREDICTS)34, a biodiversity model to simulate, respectively, ecosystem C and biodiversity changes across the EU covering the domain 35.25°N and 69.25°N in latitude and 9.25°W and 34.25°W in longitude. The schematic (Fig. 1) provides a brief overview of the modelling framework applied in this study.Figure 1Schematic diagram illustrating the coupling of multi-scale land-use models. The multi-scale models coupled in this study are econometric, and economic models (NLU and AROPAj), an agricultural land surface model (ORCHIDEE-crop), and a biodiversity model (PREDICTS). Coupling means, we use the output of one model as an input to other models. In addition, we have performed one-way coupling and there is no two-way interaction between models. Each economic model generates two land-use maps corresponding to Baseline and Halving-N scenario which are inputs (2 from NLU and 2 from AROPAj) to ORCHIDEE-crop and PREDICTS. The ecosystem carbon (C) sequestration is simulated by ORCHIDEE-crop and biodiversity indicators are simulated by PREDICTS model. The abbreviations ‘BaseNLU’ and ‘HaNNLU’ means Baseline and Halving-N land-use map generated by NLU model. The abbreviations ‘BaseAR’ and ‘HaNAR’ means Baseline and Halving-N land-use map generated by AROPAj model.Full size imageIn order to link the land use output data from the AROPAj and NLU models with the ORCHIDEE-crop and PREDICTS models, the first step is to match land uses and crops between the models (see Table 1). AROPAj and NLU crops are classified into ORCHIDEE-crop plant functional types (PFTs): C3 winter and summer crops, C4 summer crop and C3/C4 natural grass (see “Model descriptions” section for a detailed description of ORCHIDEE-crop PFTs). The AROPAj and NLU crops are also classified into the PREDICTS crop types: annual, perennial, N-fixing. The AROPAj and NLU “rangeland” and “pasture” categories are found in PREDICTS but in ORCHIDEE-crop they are considered to fall within the C3 natural grassland PFT. Finally, NLU and AROPAJ forest and other natural areas are classified as “primary” natural areas (with low anthropogenic use) or “secondary” (intermediate to high anthropogenic environmental use) according to the land use map of these areas35. For ORCHIDEE-crop, they are classified as natural forest PFTs. Note that the fallow areas described in AROPAj that are part of crops are classified as “grass” PFT in ORCHIDEE-crop and as “minimum” intensity annual crops in PREDICTS.Table 1 Table of correspondences between the land uses and crops represented in the AROPAJ/NLU and ORCHIDEE models and PREDICTS.Full size tableThe land-use and land cover changes described in the following sub-section are used as inputs to ORCHIDEE-crop and PREDICTS from both the NLU and AROPAj models’ output.Land-use change scenariosLand-use changes in the EU are simulated for the present day using two scenarios: (1) a business as usual scenario (Baseline) and (2) a scenario involving a policy to reduce mineral nitrogen use by 50% from the Baseline (Halving-N). The land-use changes in Halving-N and Baseline are computed by both NLU and AROPAj models. In the latter model, the computed land-use changes result from coupling between AROPAj and a spatial econometric model. Since there are differences in the nature of the models (supply-side model versus partial equilibrium model) and their underlying data, the Baseline scenarios in the NLU and AROPAj frameworks are different. A detailed description of the differences and a discussion of their implications on the production and area of different land-uses is provided in Lungarska et al.36. EU plant production is 370 and 383 MtDM (Million tons of Dry Matter) respectively based on the application of 12 TgN (Tera grams) of N fertilizer in AROPAj and NLU. Crops, grasslands, and forests cover respectively, 116, 57 and 234 Mha in NLU and respectively 94 (including fallow land), 38 and 142 Mha in AROPAj. In AROPAj and NLU, the 50% N reduction is achieved indirectly by increasing the N input price from present-day figures36.The land-use changes output from AROPAj and NLU are supplied as inputs to the ORCHIDEE-crop and PREDICTS models. The land-use changes are matched with corresponding plant functional types (PFTs) in ORCHIDEE-crop and land-uses in PREDICTS (see Table 1). “Model descriptions” section provides a detailed description of the ORCHIDEE-crop and PREDICTS models.Model descriptionsHere, we describe the ORCHIDEE-crop and PREDICTS models that quantify the impacts of halving N fertilizer consumption in the EU. Table 2 presents a brief overview of the two models.Table 2 Overview of the ORCHIDEE-crop and PREDICTS models input and output.Full size tableA detailed description of ORCHIDEE-crop: This model is a process-based agricultural land surface model that integrates crop-specific phenology based on Simulateur mulTidisciplinaire pour les Cultures Standard (STICS)37,38. Carbon allocation is based on the plant-based hybrid model from the original ORCHIDEE allocation scheme39 and a crop specific formulation of STICS providing leaf, root, and shoot biomass, grain maturity time, litter production, and litter and soil carbon decomposition. The harvest date is calculated after grains reach maturity40. The ORCHIDEE-crop model has no explicit nitrogen cycle but accounts empirically for the effect of N fertilization by increasing the maximum Rubisco- and light-limited leaf photosynthetic rates as a function of the amount of N applied, using a Michaelis–Menten function40. Also, ORCHIDEE-crop is calibrated against observations, which showed a good match between modeled observed aboveground biomass, crop yield, and daily carbon40. This version of the model currently uses three crop PFTs: C3 winter, C3 summer and C4 summer. Forests are classified as Broadleaf, Needle leaf, Deciduous, Temperate and Boreal. Up to 11 non-cropland vegetation types can co-exist with crops on a grid point of the model, according to prescribed land cover information. A gridded simulation of ORCHIDEE-crop requires 30-min time step meteorological forcing (air temperature, specific humidity, incoming shortwave and longwave radiation, rainfall), which can be interpolated in time from gridded climate analysis data or atmospheric models. In this study, this model is used to quantify the ecosystem C variables.A detailed description of PREDICTS: The PREDICTS database was collated by searching the published literature for studies where terrestrial biodiversity (including plants, fungi, vertebrates, and invertebrates) was sampled using consistent methods across multiple sites, which vary in the pressures faced. The land use and intensity of each site have been assessed and categorized in a consistent way41,42,43. Authors of studies were contacted to ask for the raw biodiversity data where this was not already available41,42. Most records in the PREDICTS database refer to the number of individuals of a species at a site; this makes it possible to compute a range of biodiversity indices. To estimate biodiversity responses to human impacts across such a global and heterogeneous dataset, linear mixed-effects models are used; random intercepts account for differences in biogeographic factors, sampling methodology and taxonomic focus, and the spatial layout of sites within studies. Using the PREDICTS database to assess the impact of human pressures on biodiversity assumes that space-for-time substitution is valid44; it assumes that the sites have reached equilibrium and so the impact of pressures on biodiversity over time can be observed across space and that the relationship between biodiversity and drivers do not vary over time.SR is calculated as the number of species at each site; it is a widely used measure of biodiversity and is both simple and intuitive. Responses of SR to land use and intensity were modelled using generalized linear mixed effects models and with a Poisson error structure; an observation-level random effect was included to account for overdispersion45. This model is then used to project SR in each grid of a 0.5° map and expressed as a percentage of the SR level in primary vegetation from land use harmonization map35.To estimate BII change with land use and intensity, two models are required. Total abundance was first calculated as the sum of all individuals at each site; it was then rescaled within the study (so that the maximum within a study is 1) and was square-root transformed before modelling as a function of land use and intensity, to account for non-normality of the model residuals (a Poisson error structure could not be used as abundance data can include non-integer data e.g. densities). Inclusion of a random slope for land use within the study was supported (based on Akaike’s Information Criterion). Compositional similarity was then calculated as the asymmetric Jaccard index, comparing each baseline site (primary vegetation) with all other sites, and logit transformed with an adjustment of 0.01 (to account for non-normality of the model residuals). Compositional similarity was then modelled as a function of land use and intensity (coarsened so that only perennial crops were allowed to differ across intensities), including the environmental and geographic distance between sites as control variables, whose effects were permitted to differ among land use and intensity levels (these variables were cube-root and log-transformed respectively to improve residual distribution). To calculate BII, total abundance (expressed as a percentage of their level in primary vegetation) and compositional similarity (expressed as a percentage of their level in primary vegetation)46 are projected for each grid of a 0.5° map; these two maps are then multiplied to give abundance-based BII19. The PREDICTS models include different levels of management (intensive, light or minimal) and different types of land cover (forest, pasture, rangeland, annual cropland, perennial cropland, and urban zones). The coefficients of these mixed-effect models and a detailed description of the link between the PREDICTS models and NLU are available in Prudhomme et al.46. The spatial predictions of biodiversity were computed using a python pipeline, which was developed specifically for the PREDICTS project (https://github.com/ricardog/raster-project).In our modeling framework, the impact of halving N fertilizer goes through two steps: (i) we calculate the effect of this reduction of N fertilizer on agricultural yield, and (ii) calculate the effect of the yield reduction on biodiversity. By keeping yield as a proxy of agricultural land use intensification as proposed in Prudhomme et al.46, we include not only the direct effect of the reduction of N fertilizer on biodiversity but also the effects correlated to this reduction of N fertilizer such as the reduction of other chemical inputs (P and K fertilizers and pesticides). While the effect of the change in N fertilization on yield is calculated by the classical concave production function in agronomy29, the effect of the change in yield is calculated by coupling the NLU land use model and the PREDICTS biodiversity model46. For each category of crops (annual, perennial, leguminous), the coupling consists of estimating (using a Generalized Additive Model [GAM]) the share of each intensity class (minimum, light, intense) as a function of the average calorie yield based on the average crop yield maps from a plant growth model. The maps describing the share of land use intensities are from Newbold et al.19 Similarly for pasture, the share of each intensity class (light, intense) is estimated with the help of a GAM as a function of ruminant density.SimulationsOur experimental design focuses on assessing the effects of a 50% reduction in present-day N fertilizer use levels across the EU. The choice of halving N fertilizer in EU agriculture is related to the “Farm to Fork” strategy, which puts forward the ambition for 2030 to reduce nutrient losses to the environment from both organic and mineral fertilizers by at least 50%. The results from NLU (and its nitrogen balance module) show that this level of reduction corresponds to a 50% reduction in nutrient losses (nitrogen and phosphorus) aimed by the Farm to Fork strategy as a part of the European Green Deal. AROPAj models exclusively the EU countries (in 2012, there were 28 member states) while NLU simulations cover the EU and the rest of the world (EU being a part of the European region as represented by the model). However, the N reduction policy implemented in the EU alone and the comparison of the results conducted only for the EU. All EU member states are considered but for some of them we present results. A total of four simulations corresponding to four land-use maps (two from AROPAj and two from NLU, see Fig. 1) are performed in the ORCHIDEE-crop model and also in the PREDICTS model. In addition to changes in the area of different land-uses, changes in mineral N input are accounted for in both models. However, changes in organic N input and crop rotations are not accounted for. In ORCHIDEE-crop 55% of the carbon harvested from croplands is exported but the remaining residues are returned to the soils.ORCHIDEE-crop simulation details: the model simulations are performed over a domain covering the EU. Four idealized simulations are carried out using the ORCHIDEE-crop model by forcing present-day meteorological data (2006–2010), levels of N fertilizer (150 KgN/ha) and atmospheric CO2 concentration (385 ppm). The four simulations include Halving-N and Baseline corresponding to AROPAj and NLU land-use scenarios (two ORCHIDEE-crop simulations per economic model). All four simulations start from the year 2010 climate and carbon cycle conditions with a recycled climate (2006–2010) for 150 years. For the year 2010, climate and carbon cycle conditions are obtained from the output of historical simulations. Historical simulations from the year 1901 to the year 2010 are performed for both AROPAj and NLU Baseline scenario land-use land cover maps. In addition, these historical simulations started from an equilibrium state of soil carbon, energy and water cycle variables corresponding to the year 1901. The 1901 equilibrium state is determined by running a 350-year spin-up simulation corresponding to a recycled climate (1901–1910). The observation-based climate forcing data from the Global Soil Wetness Project was only available starting from the year 1901. The drift in soil carbon over the last 100 years of the 350-year simulations is less than 1%. The equilibrium state simulations corresponding to the year 1901 were necessary to have stabilized biophysical and ecosystem C variables across the EU. Other forcing variables, e.g. atmospheric CO2 concentration (296.57 ppm), N-fertilization rate (32 KgN/ha), harvest index (0.25), and also the phenology parameters for short-cycle variety winter and summer crops16 corresponding to the year 1901 were prescribed.PREDICTS simulation details: the PREDICTS model represents changes in broad-sense biodiversity in different land-uses and intensities of land-use relative to a reference land-use (as the biodiversity metrics assessed include all terrestrial biodiversity for which data are present in the PREDICTS database including plants, fungi, vertebrates and invertebrates). Here the reference ecosystem is a primary natural ecosystem. Biodiversity changes are then reported as a percentage by dividing the obtained biodiversity levels by the level of biodiversity present in the primary natural ecosystem. This simulation is performed for each grid point on a map of the EU for land-use scenarios corresponding to Baseline and Halving-N for both economic models, AROPAj and NLU (Fig. 1).Breakdown method for biodiversity and carbon changesThe Halving-N and Baseline scenarios provide contrasted land-use maps according to the assumptions of economic and land-use models36. This results in different plant and animal production, and different land-uses at the European scale in each model. A price shock on inputs, as represented in the Halving-N scenario compared to the Baseline scenario, can induce (1) a spatial reallocation of production or (2) production changes47. Here, we separate out the effects of these two mechanisms on biodiversity (species richness) and carbon indicators (NPP and soil carbon) by decomposing the overall environmental differences between the Halving-N and the Baseline scenarios. The breakdown is not possible for the BII indicator because this indicator is the product of two indicators: abundance and a similarity indicator of ecological communities.First, we breakdown the carbon and biodiversity differences by land-use type. The breakdown for carbon is straightforward because the carbon changes are computed for each land-use. The biodiversity changes associated with each land-use are computed by setting no changes in the other PREDICTS model land-uses. The sum of the biodiversity changes for each land-use is thus equal to the overall change in biodiversity.For each land-use i (forest, grassland and cropland), we separate out the carbon and biodiversity differences between the Halving-N and the Baseline scenarios into two effects in accordance with Eq. (1): (i) the carbon and biodiversity difference associated with the area difference—called “Area effect”, and (ii) the carbon and biodiversity difference associated with the difference in biodiversity and carbon sequestration per unit area—called “Intensity effect”. The “Area effect” corresponds to the change in carbon sequestration and biodiversity associated with a change in the land-use area. For example, a reduction in grassland area leads to reduction in the C sequestration and biodiversity associated with this area. The “Intensity effect” corresponds to a change in the C sequestration and biodiversity per unit area. For example, a reallocation of production toward places with high soil C content leads to an increase in the carbon stock per hectare or an increase in crop yield leads to a reduction in the biodiversity per unit of cropland. Thus, the “Intensity effect” corresponds to the effect of a production reallocation on C sequestration, and the effect of land-use intensity on biodiversity.We use the Logarithmic Mean Division Index (LMDI) method, which breaks down the target values into several main influencing factors based on mathematical identity transformation48 as follows.$$Delta {E}_{i}=Delta {E}_{i}^{A}+Delta {E}_{i}^{I}$$
    (1)
    (Delta {E}_{i}) is the difference in the environmental indicator between the Halving-N and the Baseline scenarios. Superscript ‘A’ denotes area effect and ‘I’ denotes intensity effect. Subscript ‘i’ denotes different land-use (e.g. forests, grassland, cropland etc.). (Delta {E}_{i}^{A}) is the difference in the environmental indicator between the Halving-N and the Baseline scenarios associated with the difference in area. (Delta {E}_{i}^{I}) is the difference between the Halving-N and the Baseline scenarios associated with the different intensity per unit of area of the environmental indicator.$$Delta {E}_{i}^{A}=frac{{E}_{i}^{hN}-{E}_{i}^{b}}{ln({E}_{i}^{hN})-{ln(E}_{i}^{b})}times lnleft(frac{{A}_{i}^{hN}}{{A}_{i}^{b}}right)$$
    (2)
    ({E}_{i}^{hN}) is the level of the environmental indicator in the Halving-N (superscript hN) scenario. ({E}_{i}^{b}) is the level of the environmental indicator in the Baseline (superscript b). ({A}_{i}^{hN}) is the area of land-use i in the Halving-N scenario. ({A}_{i}^{b}) is the area of land-use i in the Baseline$$Delta {E}_{i}^{I}=frac{{E}_{i}^{hN}-{E}_{i}^{b}}{ln({E}_{i}^{hN})-ln({E}_{i}^{b})}times lnleft(frac{{e}_{i}^{hN}}{{e}_{i}^{b}}right)$$
    (3)
    Equation (3) is same as Eq. (2) but for the intensity of the environmental indicator ({e}_{i}).The breakdown of the differences in the environmental indicators is performed between the Halving-N scenario and the Baseline. A positive variation ((Delta {E}_{i} >0)) indicates a higher environmental indicator in the Halving-N scenario compared to the Baseline without implying any temporal variation since the scenarios compare the environmental indicator status in 2012 in the AROPAj and in the NLU land-uses. Conversely, a negative variation ((Delta {E}_{i} More

  • in

    Honey bee colony loss linked to parasites, pesticides and extreme weather across the United States

    Honey bee colony loss and parasites across space and timeHoney bee colony loss strongly depends on spatio-temporal factors33,42, which in turn have to be jointly modeled with other stressors. Focusing on CONUS climatic regions, defined by the National Centers for Environmental Information40 (see Fig. 1), this is supported by the box plots in Fig. 2 which depict appropriately normalized honey bee colony loss (upper panel) and presence of V. destructor (lower panel) quarterly between 2015 and 2021. Specifically, Fig. 2a highlights that the first quarter generally accounts for a higher and more variable proportion of losses. Average losses are typically lower and less dispersed during the second quarter, and then tend to increase again during the third and fourth quarters. The Central region, which reports the highest median losses during the first quarter (larger than 20%) exemplifies this pattern, which is in line with existing studies that link overwintering with honey bee colony loss6,29,30,31,32,33,43. On the other hand, the West North Central region follows a different pattern, where losses are typically lower during the first quarter and peak during the third. This holds, albeit less markedly, also for Northwest and Southwest regions. These differing patterns are also depicted in Fig. 3, which shows the time series of normalized colony loss for each state belonging to Central and West North Central regions – with the smoothed conditional means highlighted in black and red, respectively. Figure 2b shows that also the presence of V. destructor tends to follow a specific pattern; in most regions it increases from the first to the third quarter, and then it decreases in the fourth – with the exception of the Southwest region, where it keeps increasing. This is most likely because most beekeepers try to get V. destructor levels low by fall, so that colonies are as healthy as possible going into winter, and also because of the population dynamics of V. destructor alongside honey bee colonies – i.e., their presence typically increases as the colony grows and has more brood cycles, since this parasite develops inside honey bee brood cells44,45. The West region (which encompasses only California since Nevada was missing in the honey bee dataset; see Data) reports high levels of V. destructor throughout the year, with very small variability. A comparison of Fig. 2a and b shows that honey bee colony loss and the presence of V. destructor tend to be higher than the corresponding medians during the third quarter, suggesting a positive association. This is further confirmed in Fig. 4, which shows a scatter plot of normalized colony loss against V. destructor presence, documenting a positive association in all quarters. Although with the data at hand we are not able to capture honey bee movement across states, as well as intra-quarter losses and honey production, these preliminary findings can be useful to support commercial beekeeper strategies and require further investigation.Figure 2Empirical distribution of honey bee (Apis mellifera) colony loss (a) and Varroa destructor presence (b) across quarters (the first one being January-March) and climatic regions; red dashed lines indicate the overall medians. (a) Box plots of normalized colony loss (number of lost colonies over the maximum number of colonies) for each quarter of 2015–2021 and each climatic region. At the contiguous United States level, this follows a stable pattern across the years, with higher and more variable losses during the first quarter (see Supplementary Figs. S2-S6), but some regions do depart from this pattern (e.g., West North Central). (b) Box plots of normalized V. destructor presence (number of colonies affected by V. destructor over the maximum number of colonies) for each quarter of 2015–2021 and each climatic region. The maximum number of colonies is defined as the number of colonies at the beginning of a quarter, plus all colonies moved into that region during the same quarter.Full size imageFigure 3Comparison of normalized honey bee (Apis mellifera) colony loss (number of lost colonies over the maximum number of colonies) between Central and West North Central climatic regions for each quarter of 2015–2021 (the first quarter being January-March). (a) Trajectory of each state belonging to Central (yellow) and West North Central (blue) climatic regions. (b) Smoothed conditional means for each of the two sets of curves based on a locally weighted running line smoother where the width of the sliding window is equal to 0.2 and corresponding standard error bands are based on a 0.95 confidence level46.Full size imageFigure 4Scatter plot of normalized honey bee (Apis mellifera) colony loss (number of lost colonies over the maximum number of colonies) against normalized Varroa destructor presence (number of colonies affected by V. destructor over the maximum number of colonies) for each state and each quarter of 2015–2021 (the first quarter being January-March). Points are color-coded by quarter, and ordinary least squares fits (with corresponding standard error bands based on a 0.95 confidence level) computed by quarter are superimposed to visualize the positive association.Full size imageUp-scaling weather dataThe data sets available to us for weather related variables had a much finer spatio-temporal resolution (daily and on a (4 times 4) kilometer grid) than the colony loss data (quarterly and at the state level). Therefore, we aggregated the former to match the latter. For similar data up-scaling tasks, sums or means are commonly employed to summarize the variables available at finer resolution47. The problem with aggregating data in such a manner is that one only preserves information on the “center” of the distributions – thus losing a potentially considerable amount of information. To retain richer weather related information in our study, we considered additional summaries capturing more complex characteristics, e.g., the tails of the distributions or their entropy, to ascertain whether they may help in predicting honey bee colony loss. Within each state and quarter we therefore computed, in addition to means, indexes such as standard deviation, skewness, kurtosis, (L_2)-norm (or energy), entropy and tail indexes48. This was done for minimum and maximum temperatures, as well as precipitation data (see Data processing for details).Next, as a first way to validate the proposed weather data up-scaling approach, we performed a likelihood ratio test between nested models. Specifically, we considered a linear regression for colony loss (see Statistical model) and compared an ordinary least squares fit comprising all the computed indexes as predictors (the full model) against one comprising only means and standard deviations (the reduced model). The test showed that the use of additional indexes provides a statistically significant improvement in the fit (p-(text {value}=0.03)). This test, which can be replicated for other choices of models and estimation methods (see Supplementary Table S5), supports the use of our up-scaling approach.Figure 5 provides a spatial representation of (normalized) honey bee colony losses and of three indexes relative to the minimum temperature distribution; namely, mean, kurtosis and skewness (these all turn out to be relevant predictors based on subsequent analyses; see Table 1). For each of the four quantities, the maps are color-coded by state based on the median of first quarter values over the period 2015-2021 (first quarters typically have the highest losses, but similar patterns can be observed for other quarters; see Supplementary Figs. S12-S14). Notably, the indexes capture characteristics of the within-state distributions of minimum temperatures that do vary geographically. For example, considering minimum temperature, skewness is an index that (broadly speaking) provides information on whether the data tends to accumulate at one end or the other of the observed range of minimum temperatures (i.e., a positive/negative skewness indicates that the data accumulates towards the lower/upper range, respectively). On the other hand, kurtosis is an index that captures the presence of “extreme” values in the tails of the data (i.e., a low/high value of kurtosis indicates that the tail minimum temperatures are relatively close/very far from the typical minimum temperatures). With this in mind, going back to Fig. 5, we can see that minimum temperatures in states in the north-west present large kurtosis (a prevalence of extreme values in the tails) and negative skewness (a tendency to accumulate towards the upper values of the minimum temperature range), while the opposite is true for states in the south-east. More generally, the mean minimum temperature separates northern vs southern states, kurtosis is higher for states located in the central band of the CONUS, and skewness separates western vs eastern states.We further note that the states with lower losses during the first quarter (e.g., Montana and Wyoming) do not report extreme values in any of the considered indexes. Although these states are generally characterized by low minimum temperatures, these are somewhat “stable” (they do not show marked kurtosis or skewness in their distributions) – perhaps allowing honey bees and beekeepers to adapt to more predictable conditions. On the other hand, states with higher losses during the first quarter such as New Mexico have higher minimum temperatures as well as marked kurtosis, and thus higher chances of extreme minimum temperatures – which may indeed affect honey bee behavior and colony loss. Overall, across all quarters of the years 2015-2021, we found that normalized colony losses and mean minimum temperatures are negatively associated (the Pearson correlation is -0.17 with a p-(text {value} More

  • in

    Global distribution and climate sensitivity of the tropical montane forest nitrogen cycle

    von Humboldt, A., and A. Bonpland. Essai sur la geographiedes plantes. Chez Levrault, Schoell et Campagnie, Libraries, Paris.(1805).Malhi, Y. et al. Introduction: elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Glob. Change Biol. 16, 3171–3175 (2010).Article 

    Google Scholar 
    Nottingham, A. T. et al. Climate warming and soil carbon in tropical forests: insights from an elevation gradient in the Peruvian Andes. BioScience 65, 906–921 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Malhi, Y. et al. The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. N. Phytologist 214, 1019–1032 (2017).Article 
    CAS 

    Google Scholar 
    Nottingham, A. T. et al. Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm. Biogeosciences 12, 6071–6083 (2015).Article 

    Google Scholar 
    Nottingham, A. T. et al. Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology 99, 2455–2466 (2018).Article 
    PubMed 

    Google Scholar 
    Jenny, H., Bingham, F. & Padillasaravia, B. Nitrogen and organic matter contents of equatorial soils of Colombia, South-America. Soil Sci. 66, 173–186 (1948).Article 
    CAS 

    Google Scholar 
    Tanner, E., Vitousek, P. & Cuevas, E. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79, 10–22 (1998).Article 

    Google Scholar 
    Vitousek, P. M., Matson, P. A. & Turner, D. R. Elevational and age gradients in Hawaiian montane rainforest: foliar and soil nutrients. Oecologia 77, 565–570 (1988).Article 
    PubMed 

    Google Scholar 
    Vitousek, P. M. & Sanford, R. L. Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Syst. 17, 137–167 (1986).Article 

    Google Scholar 
    Krishnaswamy, J., John, R. & Joseph, S. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Glob. Change Biol. 20, 203–215 (2014).Article 

    Google Scholar 
    Duque, A. et al. Mature Andean forests as globally important carbon sinks and future carbon refuges. Nat. Commun. 12, 2138 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fadrique, B. et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564, 207–212 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nottingham, A. T. et al. Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecol. Lett. 22, 1889–1899 (2019).Article 
    PubMed 

    Google Scholar 
    Marrs, R. H., Proctor, J., Heaney, A. & Mountford, M. D. Changes in soil nitrogen-mineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica. J. Ecol. 76, 466–482 (1988).Grubb, P. J. Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annu. Rev. Ecol. Syst. 8, 83–107 (1977).Article 
    CAS 

    Google Scholar 
    Wolf, K., Veldkamp, E., Homeier, J. & Martinson, G. O. Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Glob. Biogeochem. Cycles 25, GB4009 (2011).Barthel, M. et al. Low N2O and variable CH4 fluxes from tropical forest soils of the Congo Basin. Nat. Commun. 13, 330 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brookshire, E. N. J., Hedin, L. O., Newbold, J. D., Sigman, D. M. & Jackson, J. K. Sustained losses of bioavailable nitrogen from montane tropical forests. Nat. Geosci. 5, 123–126 (2012).Article 
    CAS 

    Google Scholar 
    Rütting, T. et al. Leaky nitrogen cycle in pristine African montane rainforest soil. Glob. Biogeochem. Cycles 29, 1754–1762 (2015).Article 

    Google Scholar 
    Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 47, 151–163 (1996).Article 
    CAS 

    Google Scholar 
    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Poggio, L. et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. SOIL 7, 217–240 (2021).Article 
    CAS 

    Google Scholar 
    Bauters, M. et al. Parallel functional and stoichiometric trait shifts in South American and African forest communities with elevation. Biogeosciences 14, 5313–5321 (2017).Article 
    CAS 

    Google Scholar 
    Dalling, J. W., Heineman, K., González, G. & Ostertag, R. Geographic, environmental and biotic sources of variation in the nutrient relations of tropical montane forests. J. Tropical Ecol. 32, 368–383 (2016).Article 

    Google Scholar 
    Porder, S., Vitousek, P., Chadwick, O., Chamberlain, C. & Hilley, G. Uplift, erosion, and phosphorus limitation in terrestrial ecosystems. Ecosystems 10, 158–170 (2007).Article 
    CAS 

    Google Scholar 
    Houlton, B. Z., Morford, S. L. & Dahlgren, R. A. Convergent evidence for widespread rock nitrogen sources in Earth’s surface environment. Science 360, 58–62 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hilton, R. G., Galy, A., West, A. J., Hovius, N. & Roberts, G. G. Geomorphic control on the delta N-15 of mountain forests. Biogeosciences 10, 1693–1705 (2013).Article 
    CAS 

    Google Scholar 
    Vitousek, P. M., Van Cleve, K., Balakrishnan, N. & Mueller-Dombois, D. Soil development and nitrogen turnover in montane rainforest soils on Hawai’i. Biotropica 268–274 (1983).Taylor, P. G. et al. Temperature and rainfall interact to control carbon cycling in tropical forests. Ecol. Lett. 20, 779–788 (2017).Article 
    PubMed 

    Google Scholar 
    Houlton, B. & Bai, E. Imprint of denitrifying bacteria on the global terrestrial biosphere. Proc. Natl Acad. Sci. USA 106, 21713–21716 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).Article 
    CAS 

    Google Scholar 
    Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant and Soil 396, 1–26 (2015).Högberg, P. Tansley Review No. 95. 15N Natural Abundance in Soil-Plant Systems. N. Phytologist 137, 179–203 (1997).Article 

    Google Scholar 
    Martinelli, L. et al. Nitrogen stable isotopic composition of leaves and soil: Tropical versus temperate forests. Biogeochemistry 46, 45–65 (1999).Article 
    CAS 

    Google Scholar 
    Amundson, R. et al. Global patterns of the isotopic composition of soil and plant nitrogen. Glob. Biogeochem. Cycles 17, (2003).Craine, J. M. et al. Convergence of soil nitrogen isotopes across global climate gradients. Sci. Rep. 5, 8280 (2015).Mooshammer, M. et al. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nat. Commun. 5, 3694 (2014).Camenzind, T., Hättenschwiler, S., Treseder, K. K., Lehmann, A. & Rillig, M. C. Nutrient limitation of soil microbial processes in tropical forests. Ecol. Monogr. 88, 4–21 (2018).Article 

    Google Scholar 
    Mariotti, A., Pierre, D., Vedy, J. C., Bruckert, S. & Guillemot, J. The abundance of natural nitrogen 15 in the organic matter of soils along an altitudinal gradient (Chablais, Haute Savoie, France). Catena 7, 293–300 (1980).Article 
    CAS 

    Google Scholar 
    Sena‐Souza, J. P., Houlton, B. Z., Martinelli, L. A. & Nardoto, G. B. Reconstructing continental-scale variation in soil δ15N: a machine learning approach in South America. Ecosphere 11, e03223 (2020).Article 

    Google Scholar 
    Nottingham, A. T., Bååth E., Reischke, S., Salinas, N. & Meir, P. Adaptation of soil microbial growth to temperature: Using a tropical elevation gradient to predict future changes. Glob. change Biol. 25, 827–838 (2019).Liu, Y. et al. A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: latitudinal patterns and mechanisms. Glob. Change Biol. 23, 455–464 (2017).Article 

    Google Scholar 
    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zimmermann, M. & Bird, M. I. Temperature sensitivity of tropical forest soil respiration increase along an altitudinal gradient with ongoing decomposition. Geoderma 187–188, 8–15 (2012).Article 

    Google Scholar 
    Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17, 798–818 (2011).Article 

    Google Scholar 
    Wright, S. J. Plant responses to nutrient addition experiments conducted in tropical forests. Ecol. Monogr. 89, e01382 (2019).Article 

    Google Scholar 
    Brookshire, E. N. J., Gerber, S., Menge, D. N. L. & Hedin, L. O. Large losses of inorganic nitrogen from tropical rainforests suggest a lack of nitrogen limitation. Ecol. Lett. 15, 9–16 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Corrales, A., Henkel, T. W. & Smith, M. E. Ectomycorrhizal associations in the tropics—biogeography, diversity patterns and ecosystem roles. N. Phytologist 220, 1076–1091 (2018).Article 

    Google Scholar 
    Zeng, Z. et al. Deforestation-induced warming over tropical mountain regions regulated by elevation. Nat. Geosci. 1–7 https://doi.org/10.1038/s41561-020-00666-0 (2020).Nogués-Bravo, D., Araújo, M. B., Errea, M. P. & Martínez-Rica, J. P. Exposure of global mountain systems to climate warming during the 21st Century. Glob. Environ. Change 17, 420–428 (2007).Article 

    Google Scholar 
    Weintraub, S. R., Cole, R. J., Schmitt, C. G. & All, J. D. Climatic controls on the isotopic composition and availability of soil nitrogen across mountainous tropical forest. Ecosphere 7, e01412 (2016).Article 

    Google Scholar 
    Brookshire, E. N. J. & Thomas, S. A. Ecosystem consequences of tree monodominance for nitrogen cycling in lowland tropical forest. PLoS ONE 8, e70491 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kitayama, K. & Iwamoto, K. Patterns of natural 15N abundance in the leaf-to-soil continuum of tropical rain forests differing in N availability on Mount Kinabalu, Borneo. Plant Soil 229, 203–212 (2001).Article 
    CAS 

    Google Scholar 
    Bauters, M. et al. Contrasting nitrogen fluxes in African tropical forests of the Congo Basin. Ecol. Monogr. 89, e01342 (2019).Article 

    Google Scholar 
    Proctor, J., Edwards, I. D., Payton, R. W. & Nagy, L. Zonation of forest vegetation and soils of Mount Cameroon, West Africa. Plant Ecol. 192, 251–269 (2007).Article 

    Google Scholar 
    Grubb, P. J. & Stevens, P. F. The Forests of the Fatima Basin and Mt Kerigomna, Papua New Guinea with a Review of Montane and Subalpine Rainforests in Papuasia (Department of Human Geography, Research School of Pacific Studies…, 2017).Dieleman, W. I. J., Venter, M., Ramachandra, A., Krockenberger, A. K. & Bird, M. I. Soil carbon stocks vary predictably with altitude in tropical forests: Implications for soil carbon storage. Geoderma 204–205, 59–67 (2013).Article 

    Google Scholar 
    Kapos, V., Rhind, J., Edwards, M., Price, M. F. & Ravilious, C. in Forests in sustainable mountain development: a state of knowledge report for 2000. Task Force on Forests in Sustainable Mountain Development. 4–19 (CABI, 2000). https://doi.org/10.1079/9780851994468.0004.Sexton, J. O. et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digital Earth 6, 427–448 (2013).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org (2022).Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48, https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Bartoń K. MuMIn: Multi-Model Inference. R package version 1.43.17 (2020).Grömping, U. Relative Importance for Linear Regression in R: The Package Relaimpo. J. Stat. Softw. 17, 1–27 (2006).Article 

    Google Scholar 
    Baty, F. et al. A Toolbox for Nonlinear Regression in R: The Package nlstools. J. Stat. Softw. 66, 1–21 (2015).Article 

    Google Scholar  More

  • in

    Analysis toxicity by different methods and anxiolytic effect of the aqueous extract Lippia sidoides Cham.

    Singh, Y. D., Jena, B. & Ningthoujam, R. Potential bioactive molecules from natural products to combat against coronavirus. Adv. trad. Med. 1, 1–12. https://doi.org/10.1007/s13596-020-00496-w (2020).Article 
    CAS 

    Google Scholar 
    Badke, M. R. et al. Popular knowledge: The use of medicinal plants as therapeutic form in health care. Rev. Enferm. UFSM. 6, 225–234. https://doi.org/10.1590/S0104-07072012000200014 (2016).Article 

    Google Scholar 
    Macedo, J. G. F. et al. Analysis of the variability of therapeutic indications of medicinal species in the Northeast of Brazil: Comparative study. Evid. Based Complementary Altern. Med. 2018, 1–29. https://doi.org/10.1155/2018/6769193 (2018).Article 

    Google Scholar 
    Farias, J. C., Bomfim, B. L. S., Fonseca Filho, I. C., Silva, P. R. R. & Barros, R. F. M. Insecticides and repellents plants used in a rural community in northeast Brazilian. Revista Espacios. 37, 1–6 (2016).
    Google Scholar 
    Silva, M. G. V., Lima, D. R., Monteiro, J. A. & Magalhães, F. E. A. Anxiolytic-like effect of chrysophanol from Senna Cana Stem in Adult Zebrafish (Danio Rerio). Nat. Prod. Res. 22, 1–5. https://doi.org/10.1080/14786419.2021.1980788 (2021).Article 
    CAS 

    Google Scholar 
    Vincenzi, F., Borea, P. A. & Varani, K. Anxiolytic properties of A1 adenosine receptor PAMs. Oncotarget 8, 7216–7217. https://doi.org/10.18632/oncotarget.13802 (2017).Article 
    PubMed 

    Google Scholar 
    Silva, M. I. G., Gondim, A. P. S., Nunes, I. F. S. & Sousa, F. C. F. Utilização de fitoterápicos nas unidades básicas de atenção à saúde da família no município de Maracanaú (CE). Rev. Bras. Farmacog. 16, 455–462. https://doi.org/10.1590/S0102-695X2006000400003 (2006).Article 

    Google Scholar 
    Guimarães, L. G. L., Silva, M. L. M., Reis, P. C. J., Costa, M. T. R. & Alves, L. L. General characteristics, phytochemistry and pharmacognosy of Lippia sidoides. Nat. Prod. Commun. 10, 1861–1867. https://doi.org/10.1177/1934578X1501001116 (2015).Article 

    Google Scholar 
    Veras, H. L. H. et al. Synergistic antibiotic activity of volatile compounds from the essential oil of Lippia sidoides and thymol. Fitoterap. 83, 508–512. https://doi.org/10.1016/j.fitote.2011.12.024 (2012).Article 
    CAS 

    Google Scholar 
    Farias, E. M. F. G. et al. Antifungal activity of Lippia sidoides Cham. (Verbenaceae) against clinical isolates of Candida species. J. Herb. Med. 2, 63–67. https://doi.org/10.1016/j.hermed.2012.06.002 (2012).Article 

    Google Scholar 
    Cavalcanti, S. C. H. et al. Composition and acaricidal activity of Lippia sidoides essential oil Against two-spotted spider mite (Tetranychus urticae Koch). Bioresour. Technol. 101, 829–832. https://doi.org/10.1016/j.biortech.2009.08.053 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Monteiro, M. V. B., Leite, A. K. R. M., Bertini, L. M., Morais, S. M. & Nunes-Pinheiro, D. C. S. Topical anti-inflammatory, gastroprotective and antioxidant effects of the essential oil of Lippia sidoides Cham. Leaves. J. Ethnopharmacol. 111, 378–382. https://doi.org/10.1016/j.jep.2006.11.036 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Botelho, M. A. et al. Effect of a novel essential oil mouthrinse without alcohol on gingivitis: A double-blinded randomized controlled tria. J. Appl. Oral. Sci. 15, 175–180 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Botelho, M. A. et al. Comparative effect of an essential oil mouthrinse on plaque, gingivitis and salivary Streptococcus mutans levels: A double blind randomized study. Phytother. Res. 23, 1214–1219. https://doi.org/10.1002/ptr.2489 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Medeiros, M. G. F. et al. In vitro antileishmanial activity and cytotoxicity of essential oil from Lippia sidoides Cham. Parasitol. Inter. 60, 237–241. https://doi.org/10.1016/j.parint.2011.03.004 (2011).Article 
    CAS 

    Google Scholar 
    Gomide, M. S. et al. The effect of the essential oils from five different Lippia species on the viability of tumor cell lines. Rev. Bras. Farmacogn. 23, 895–902. https://doi.org/10.1590/S0102-695X2013000600006 (2013).Article 
    CAS 

    Google Scholar 
    Murade, V. et al. A plausible involvement of GABAA/benzodiazepine receptor in the anxiolytic-like effect of ethyl acetate fraction and quercetin isolated from Ricinus communis Linn. leaves in mice. Phytomed. Plus. 1, 100041. https://doi.org/10.1016/j.phyplu.2021.100041 (2021).Article 

    Google Scholar 
    Coleta, M., Campos, M. A., Cotrim, M. D., Lima, T. C. M. & Cunha, A. P. Assessment of luteolin (3′,4′,5,7-tetrahydroxyflavone) neuropharmacological activity. Behav. Brain Res. 189, 75–82. https://doi.org/10.1016/j.bbr.2007.12.010 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kosalec, I., Bakmaz, M., Pepeliniak, S. & Vladimir-Knezevic, S. Quantitative analysis of the flavonoids in raw propolis from northern Croatia. A Pharmaceut. 54, 65–72 (2004).CAS 

    Google Scholar 
    Cunha, F. A. B. et al. Eugenia uniflora leaves essential oil induces toxicity in Drosophila melanogaster: Involvement of oxidative stress mechanisms. Toxicol. Res. 4, 634–644. https://doi.org/10.1039/c4tx00162a (2015).Article 

    Google Scholar 
    Coulom, H. & Birman, S. Chronic exposure to rotenone models sporadic Parkinson’s disease in Drosophila melanogaster. J. Neurosci. 24, 10993–10998. https://doi.org/10.1523/JNEUROSCI.2993-04.2004 (2004).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barros, F. J. et al. Activity of essential oils of Piper aduncum anf and Cinnamomum zeylanicum by evaluating osmotic and morphologic fragility of erythrocytes. Eur. J. Integr. Med. 515, 1–8. https://doi.org/10.1016/j.eujim.2016.02.011 (2016).Article 

    Google Scholar 
    Meyer, B. N. et al. Brine Shrimp: A convenient general bioassay for active plant constituints. Planta Med. 45, 31–34. https://doi.org/10.1055/s-2007-971236 (1982).Article 
    CAS 
    PubMed 

    Google Scholar 
    de Magalhães, F. E. A. et al. Adult zebrafish: an alternative behavioral model of formalin-induced nociception. Zebrafish 4, 422–429. https://doi.org/10.1089/zeb.2017.1436 (2017).Article 
    CAS 

    Google Scholar 
    OECD guideline for testing acute toxicity in fishes, Test No. 1992. http://www.oecd.org/chemicalsafety/risk-assessment/1948241.pdf. (Acessado em 25 de octuber, 2021).Arellano-Aguilar, O. et al. Use of the zebrafish embryo toxicity test for use of the zebrafish embryo toxicity test for risk assessment purpose: Case study. J. Fish Sci. 4, 52–62 (2015).
    Google Scholar 
    Gonçalves, N. G. G. et al. Protein fraction from Artocarpus Altilis pulp exhibits antioxidant properties and reverses anxiety behavior in adult zebrafish via the serotoninergic system. J. Funct. Foods. 66, 103772. https://doi.org/10.1016/j.jff.2019.103772 (2020).Article 
    CAS 

    Google Scholar 
    Gebauer, D. L. et al. Effects of anxiolytics in zebrafish: Similarities and differences between benzodiazepines. Buspirone and Ethanol. Pharmacol. Biochem. Behav. 99, 480–486. https://doi.org/10.1016/j.pbb.2011.04.021 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Benneh, C. K. et al. Maerua Angolensis stem bark extract reverses anxiety and related behaviours in zebrafish—Involvement of GABAergic and 5-HT systems. J. Ethnopharmacol. 207, 129–145. https://doi.org/10.1016/j.jep.2017.06.012 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Santos, S. A., Vilela, C., Freire, C. S., Neto, C. P. & Silvestre, A. J. Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood. J. Chromatogr. B. 938, 65–74. https://doi.org/10.1016/j.jchromb.2013.08.034 (2013).Article 
    CAS 

    Google Scholar 
    Pereira, O. R., Peres, A. M., Silva, A. M. S., Domingues, M. R. M. & Cardoso, S. M. Simultaneous characterization and quantification of phenolic compounds in Thymus x citriodorus using a validated HPLC–UV and ESI–MS combined method. Food Res. Inter. 54, 1773–1780. https://doi.org/10.1016/j.foodres.2013.09.016.( (2013).Article 
    CAS 

    Google Scholar 
    Zhao, Y. et al. Characterization of phenolic constituents in Lithocarpus polystachyus. Royal Soc. Chem. https://doi.org/10.1039/c3ay41288a (2014).Article 

    Google Scholar 
    Petkovska, A., Gjamovski, V., Stanoeva, J. P. & Stefova, M. Characterization of the polyphenolic profiles of peel, flesh and leaves of malus domestica cultivars using UHPLC-DAD-HESI-MSn. Nat. Prod. Commun. https://doi.org/10.1177/1934578X1701200111 (2017).Article 
    PubMed 

    Google Scholar 
    Mena, P. et al. Rapid and comprehensive evaluation of (poly)phenolic compounds in pomegranate (Punica granatum L.) juice by UHPLC-MSn. Molecules 17, 14821–14840. https://doi.org/10.3390/molecules171214821 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ye, M., Han, J., Chen, H., Zheng, J. & Guo, D. Analysis of phenolic compounds in rhubarbs using liquid chromatography coupled with electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 18, 82–91. https://doi.org/10.1016/j.jasms.2006.08.009 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kang, J., Price, W., Ashton, J., Tapsell, L. C. & Johnson, S. Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MSn. Food Chem. 211, 215–226. https://doi.org/10.1016/j.foodchem.2016.05.052 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schutz, K., Kammerer, D. R., Carle, R. & Schieber, A. Characterization of phenolic acids and flavonoids in dandelion (Taraxacum officinale WEB. ex WIGG.) root and herb by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 19, 179–186. https://doi.org/10.1002/rcm.1767.15593267 (2005).Article 
    PubMed 

    Google Scholar 
    Hassan, K. O., Bedgood, D. R. Jr., Prenzler, P. D. & Robards, K. Chemical screening of olive biophenol extracts by hyphenated liquid chromatography. Anal. Chim. Acta 603, 176–189. https://doi.org/10.1016/j.aca.2007.09.044 (2007).Article 
    CAS 

    Google Scholar 
    Brito, A., Ramirez, J. E., Areche, C., Sepúlveda, B. & Simirgiotis, M. J. HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in Northern Chile. Molecules 19, 17400–17421. https://doi.org/10.3390/moléculas191117400 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McNab, H., Ferreira, E. S. B., Hulme, A. N. & Quye, A. Negative ion ESI–MS analysis of natural yellow dye flavonoids—An isotopic labelling study. Int. J. Mass Spectrometry. 284, 57–65. https://doi.org/10.1016/j.ijms.2008.05.039 (2009).Article 
    CAS 

    Google Scholar 
    Gouveia, S. & Castilho, P. C. Characterisation of phenolic acid derivatives and flavonoids from different morphological parts of Helichrysum obconicum by a RP-HPLC–DAD-()–ESI-MSn method. Food Chem. 129, 333–344. https://doi.org/10.1016/j.foodchem.2011.04.078 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Peter, S. R., Peru, K. M., Fahlman, B., McMartin, D. W. & Headley, J. V. The application of HPLC ESI MS in the investigation of the flavonoids and flavonoid glycosides of a Caribbean Lamiaceae plant with potential for bioaccumulation. J. Environ. Sci. Health B. 50, 819–826. https://doi.org/10.1080/03601234.2015.1058103 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rashid, N. A. A., Lau, B. F. & Kue, C. S. Differential toxicity and teratogenic effects of the hot water and cold water extracts of Lignosus rhinocerus (Cooke) Ryvarden sclerotium on zebrafish (Danio rerio) embryos. J. Ethnopharmacol. 285(114787), 2022. https://doi.org/10.1016/j.jep.2021.114787 (2022).Article 
    CAS 

    Google Scholar 
    Costa, S. M. O. et al. Chemical constituents from Lippia sidoides and cytotoxic activity. J. Nat. Prod. 64, 792–795. https://doi.org/10.1021/np0005917 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fabri, R. L., Nogueira, M. S., Moreira, J. R., Bouzada, M. L. M. & Scio, E. Identification of antioxidant and antimicrobial compounds of Lippia Species by bioautography. J. Med. Food. 14, 840–846. https://doi.org/10.1089/jmf.2010.0141 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Funari, C. S. et al. Chemical and antifungal investigations of six Lippia species (Verbenaceae) from Brazil. Food Chem. 135, 2086–2094. https://doi.org/10.1016/j.foodchem.2012.06.077 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Garmus, T. T., Paviani, L. C., Queiroga, C. L. & Cabral, F. A. Extraction of phenolic compounds from pepper-rosmarin (Lippia sidoides Cham.) leaves by sequential extraction in fixed bed extractorusing supercritical CO2, ethanol and water as solvents. J. Supercrit. Fluids. 99, 68–75. https://doi.org/10.1016/j.supflu.2015.01.016 (2015).Article 
    CAS 

    Google Scholar 
    Botelho, M. A. et al. Nanotechnology in phytotherapy: Antiinflammatory effect of a nanostructured thymol gel from Lippia sidoides in acute periodontitis in rats. Phytother. Res. 30, 152–159. https://doi.org/10.1002/ptr.5516 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Veras, H. N. et al. Atividade anti-inflamatória tópica do óleo essencial de Lippia sidoides cham: Possível mecanismo de ação. Phytother. Res. 27, 179–185. https://doi.org/10.1002/ptr.4695 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fernandes, L. M., Guterres, Z. R., Almeida, I. V. & Vicentini, V. E. P. Genotoxicity and antigenotoxicity assessments of the flavonoid vitexin by the Drosophila melanogaster somatic mutation and recombination test. J. Med. food. 20, 1–9. https://doi.org/10.1089/jmf.2016.0149 (2017).Article 
    CAS 

    Google Scholar 
    Sotibrán, A. N. C., Ordaz-Téllez, M. G. & Rodríguez-Arnaiz, R. Flavonoids and oxidative stress in Drosophila melanogaster. Mutation Res. 726(60–65), 2011. https://doi.org/10.1016/j.mrgentox.2011.08.005 (2011).Article 
    CAS 

    Google Scholar 
    Silva, L. V. F., Mourão, R. H. V., Manimala, J. & Lnenicka, G. A. The essential oil of Lippia alba and its components affect Drosophila behavior and synaptic physiology. J. Experim. Biol. 221, 1–10. https://doi.org/10.1242/jeb.176909 (2018).Article 

    Google Scholar 
    Poetini, M. R. et al. Hesperidin attenuates iron-induced oxidative damage and dopamine depletion in Drosophila melanogaster model of Parkinson’s disease. Chem. Biol. Interact. 279, 177–186. https://doi.org/10.1016/j.cbi.2017.11.018 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Xavier, A. L. et al. Chemical composition, antitumor activity, and toxicity of essential oil from the leaves of Lippia microphylla. Z. Naturforsch. 70, 129–137. https://doi.org/10.1515/znc-2014-4138 (2015).Article 
    CAS 

    Google Scholar 
    Freitas, M. V. et al. Influence of aqueous crude extracts of medicinal plants on the osmotic stability of human erythrocytes. Toxicol. In Vitro. 22, 219–224. https://doi.org/10.1016/j.tiv.2007.07.010 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Oyedapo, O. O., Akinpelu, B. A., Akinwunmi, K. F., Adeyinka, M. O. & Sipeolu, F. O. Red blood cell membrane stabilizing potentials of extracts of Lantana camara and its fractions. Plant Physiol. Biochem. 2, 46–51 (2010).
    Google Scholar 
    Bilto, Y. Y., Suboh, S., Aburjai, T. & Abdalla, S. Structure-activity relationships regarding the antioxidant effects of the flavonoids on human erythrocytes. Nat. Sci. 4, 740–747. https://doi.org/10.4236/ns.2012.4909 (2012).Article 

    Google Scholar 
    Ajaiyeoba, E. O. et al. In vitro cytotoxicity studies of 20 plants used in Nigerian antimalarial ethnomedicine. Phytomed. 13, 295–298 (2006).Article 
    CAS 

    Google Scholar 
    Vélez, E., Regnault, H. D., Jaramillo, C. J., Veléz, A. P. E. & Isitua, C. C. Fitoquímica de Lippia citriodora K cultivada en Ecuador y su actividad biológica. Rev. Cien. UNEMI. 12, 9–19 (2019).Article 

    Google Scholar 
    Costa, P. S. et al. Antifungal activity and synergistic effect of essential oil from Lippia alba against trichophyton rubrum and Candida spp. Rev. Virt. Quim. 12, 1–12. https://doi.org/10.21577/1984-6835.20200119 (2020).Article 
    CAS 

    Google Scholar 
    Gupta, P., Khobragade, S. B., Shingatgeri, V. M. & Rajaram, S. M. Assessment of locomotion behavior in adult Zebrafish after acute exposure to different pharmacological reference compounds. Drug Des. Devel. Ther. 5, 127–133. https://doi.org/10.4103/2394-2002.139626 (2014).Article 
    CAS 

    Google Scholar 
    Bezerra, P. et al. Composição química e atividade biológicade óleos essenciais de plantas do Nordeste—gênero Lippia. Cienc. Cult. 33, 1–14 (1981).CAS 

    Google Scholar 
    Pascual, M. E., Slowing, K., Carretero, E., Sánchez Mata, D. & Villar, A. Lippia: Traditional uses, chemistry and pharmacology: A review. J. Ethnopharmacol. 76, 201–214. https://doi.org/10.1016/s0378-8741(01)00234-3 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mamun-Or-Rashid, A. N. M., Sen, M. K., Jamal, M. A. H. M. & Nasrin, S. A comprehensive ethnopharmacological review on Lippia alba M. Int. J. Biomed. Mater. Res. 1, 14–20. https://doi.org/10.11648/j.ijbmr.20130101.13 (2013).Article 

    Google Scholar 
    Mácová, S. et al. Comparison of acute toxicity of 2-phenoxyethanol and clove oil to juvenile and embryonic stages of Danio rerio. Neuroendocrinol. Lett. 29, 680–684 (2008).PubMed 

    Google Scholar 
    Batista, F. L. A. et al. Antinociceptive effect of volatile oils from Ocimum basilicum flowers on Adult Zebrafish. Rev. Bras. Farmacog. 31, 282–289. https://doi.org/10.1007/s43450-021-00154-5 (2021).Article 
    CAS 

    Google Scholar 
    Horzmann, K. A. & Freeman, J. L. Making waves: New developments in toxicology with the Zebrafish. Toxicol. Sci. 163, 5–12. https://doi.org/10.1093/toxsci/kfy044 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferreira, M. K. A. et al. Anxiolytic-like effect of chalcone N-{(4′-[(E)-3-(4-fluorophenyl)-1-(phenyl) prop-2-en-1-one]} acetamide on adult zebrafish (Danio Rerio): Involvement of the GABAergic system. Behav. Brain Res. 374, 111871. https://doi.org/10.1016/j.bbr.2019.03.040 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Siqueira-Lima, P. S. et al. Central nervous system and analgesic profiles of Lippia Genus. Rev. Bras. Farmacogn. 29, 125–135. https://doi.org/10.1016/j.bjp.2018.11.006 (2019).Article 
    CAS 

    Google Scholar 
    Ferreira, M.K.A. da Silva, A.W. dos Santos Moura, A.L. Sales, K.V.B. Marinho, E.M. do Nascimento Martins Cardoso, J. Marinho, M.M. Bandeira, P.N. Magalhães, F.E.A. Marinho, E.S. et al. Chalcones reverse the anxiety and convulsive behavior of adult zebrafish. Epilepsy Behav. https://doi.org/10.1016/j.yebeh.2021.107881 (2021).Silva, A. W., Wlisses, A., Kueirislene, M., Ferreira, A. & Ramos, L. Combretum lanceolatum extract reverses anxiety and seizure behavior in adult zebrafish through GABAergic neurotransmis-Sion: An in vivo and in silico study. J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2021.1935322 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Selmani, A. & Kovaˇcevi´, D., Bohinc, K.,. Nanoparticles: From synthesis to applications and beyond. Adv. Colloid Interface Sci. 303, 102640. https://doi.org/10.1016/j.cis.2022.102640 (2022).Article 
    CAS 
    PubMed 

    Google Scholar  More