More stories

  • in

    Current trends suggest most Asian countries are unlikely to meet future biodiversity targets on protected areas

    Area-based sub-targetWe found that 13.2% of Asian terrestrial landscapes were covered by PAs by the target date for Aichi 11 based on our in-country sources. However, it was 17.4% lower based on WDPA data (10.9%). The average increase in coverage across Asia during the 2010s was 0.4% ± SE 0.1% per year. PA coverage at the level of individual countries increased from a mean 11.1% in 2010 (SE = 1.4%) to 14.1% by 2020 (SE = 1.8%) based on our in-country sources, which was 16.5% higher than WDPA data (12.1 ± SE 1.6%). However, these overall figures concealed considerable country-level and sub-regional heterogeneity.A total of 8,673,433 km2 across 10 countries, equaling 19.6% of Asian terrestrial landscapes was managed as hunting concessions, governed by governments, communities or private sectors, but these areas have not been included in the countries’ report to the Protected Planet Initiative databases. Most of these areas are locally important in terms of biodiversity conservation and local socioeconomic outcomes which may qualify them as examples of “other effective area-based conservation measures” (OECMs). The increase in area-based conservation coverage represented by these areas, above the current Protected Planet Initiative statistic, ranged from 0.2% (Iran) to 41.4% (Russia). With that update incorporated, a total of 32.9% of Asian terrestrial landscapes are under protection, either as protected areas or hunting concessions (potentially as one type of OECMs).We found that 40% of Asian countries met a target of 17% coverage for PAs by 2020 based on our in-country sources, mainly in East and some South Asia, whereas West and Central Asian countries had generally not achieved this target (Figs. 1 and 2). We did not find any statistically significant association between the proportions of highly at-risk (CR/EN) mammalian species range outside PAs and the % PA extent in 2020 (β = −0.22 ± SE 0.15, t = −1.51, P = 0.14 in a Generalized Linear Model). The highest proportions of the highly at-risk (CR/EN) mammalian species range outside PAs were seen in West (βCR/EN_outsidePA = 1.77 ± SE 0.46, t = 3.86, P 10%, but Kuwait lost area. In East Asia, all countries showed at least some PA expansion (South Korea and Japan by >10%) whereas in Central Asia, almost no change was seen. It is also noteworthy that between 2010 and 2015, agricultural lands increased by 2.0% across the continent, averaging 0.51 ± SE 0.03% per year at country level, although 18 counties (45.0%) had agricultural land loss, mainly in West and Central Asia (12 out of 18 countries with agricultural land loss; Fig. 2).In our attempt to model the variation in achievement of area-based target (% PA extent), we found a single model with a ΔAICc weight of 1.0 (R2adj = 0.66; Table 1). There was no evidence to reject the null hypothesis that the model fits well (P = 0.99). This model included the predictors % agricultural extent in 2015, % PA extent in 2010, and sub-region (Table 1). Specifically, the coefficients suggested that countries with greater PA extent in 2010 and a smaller percentage of agricultural lands in 2015 were more likely to achieve higher percentage of PA extent by 2020 (βPAExtent2020 = 0.58 ± SE 0.10, t = 5.74, P  0.05).Table 2 Results of generalized linear models testing different hypotheses on the association between the percentage of ecoregions protected by the PA network in 2020 and ecological and geopolitical factors in Asian countries.Full size tableFor the coverage of highly at-risk (CR/EN) mammalian species, a single statistical model was also selected, with non-significant deviance goodness of fit (P = 0.83), which included only the % PA extent by 2020 and Region as predictors (R2adj = 0. 27). Although there was no evidence for association between the % PA extent by 2020 and the coverage of threatened species (βPAExtent2020 = −0.23 ± SE 0.15, t = −1.57, P = 0.13). However, the coverage of threatened species varied geographically, with high intercept differences for East Asia (βEastAsia = −0.23 ± SE 0.15, t = −1.57, P = 0.13), implying the largest median of range of highly at-risk (CR/EN) mammalian species outside the current network of PAs within each country.PA management effectiveness sub-targetFor the level of PAME assessment, we found that out of 22781 PAs within the 40 studied Asian countries, only 7.0% have been assessed based on PAME criteria (n = 1599), averaging 17.4% ± of PAs per country (SE = 2.5%). Israel, Japan, Lao, Bahrain, Oman and Qatar had no PA assessed based on the PAME criteria while over 1/3 of PAs in Indonesia, Cambodia, Bhutan, Jordan, Nepal, Turkey, Singapore and the UAE were PAME assessed. When modeling the level of PAME assessment, three best supported models were averaged (Table 3), with the averaged model including GDP2019, % PA extent 2020 and the Region as predictors. The averaged model coefficients would be non-significant under a hypothesis-testing approach (βGDP2019 = −0.18 ± SE 0.12, t = 1.47, P = 0.14 and βPAExtent2020 = −0.15 ± SE 0.11, t = 1.31, P = 0.19). Similarly, there was no evidence for the association between the ratio of PAs with PAME and Asian regions (P  > 0.05).Table 3 Results of generalized linear models testing different hypotheses on the association between the ratio of PAs with management effectiveness (PAME) in 2020 and ecological and geopolitical factors in Asian countries.Full size table More

  • in

    Recent and rapid ecogeographical rule reversals in Northern Treeshrews

    Millien, V. et al. Ecotypic variation in the context of global climate change: Revisiting the rules. Ecol. Lett. 9, 853–869 (2006).Article 
    PubMed 

    Google Scholar 
    Calder, W. A. Size, Function and Life History (Harvard University Press, 1984).
    Google Scholar 
    Bergmann, C. Über die verhältnisse der wärmeökonomie der thiere zu ihrer grösse. Göttinger Stud. 3, 595–708 (1847).
    Google Scholar 
    Mayr, E. Geographical character gradients and climatic adaptation. Evolution 10, 105–108 (1956).Article 

    Google Scholar 
    Riddell, E. A., Iknayan, K. J., Wolf, B. O., Sinervo, B. & Beissinger, S. R. Cooling requirements fueled the collapse of a desert bird community from climate change. PNAS 116, 21609–21615 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Foster, J. B. Evolution of mammals on islands. Nature 202, 234–235 (1964).Article 
    ADS 

    Google Scholar 
    Lomolino, M. V. Body size evolution in insular vertebrates: Generality of the island rule. J. Biogeogr. 32, 1683–1699 (2005).Article 

    Google Scholar 
    Benítez-López, A. et al. The island rule explains consistent patterns of body size evolution in terrestrial vertebrates. Nat. Ecol. Evol. 5, 768–786 (2021).Article 
    PubMed 

    Google Scholar 
    Meiri, S. & Dayan, T. On the validity of Bergmann’s rule. J. Biogeogr. 30, 331–351 (2003).Article 

    Google Scholar 
    Meiri, S., Cooper, N. & Purvis, A. The island rule: Made to be broken?. Proc. R. Soc. B. 275, 141–148 (2008).Article 
    PubMed 

    Google Scholar 
    Millien, V. Relative effects of climate change, isolation and competition on body-size evolution in the Japanese field mouse, Apodemus argenteus. J. Biogeogr. 31, 1267–1276 (2004).Article 

    Google Scholar 
    Millien, V. & Damuth, J. Climate change and size evolution in an island rodent species: New perspectives on the island rule. Evolution 58, 1353–1360 (2004).Article 
    PubMed 

    Google Scholar 
    Lomolino, M. V., Sax, D. F., Riddle, B. R. & Brown, J. H. The island rule and a research agenda for studying ecogeographical patterns. J. Biogeogr. 33, 1503–1510 (2006).Article 

    Google Scholar 
    Sargis, E. J., Millien, V., Woodman, N. & Olson, L. E. Rule reversal: Ecogeographical patterns of body size variation in the common treeshrew (Mammalia, Scandentia). Ecol. Evol. 8, 1634–1645 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barnosky, A. D., Hadly, E. A. & Bell, C. J. Mammalian response to global warming on varied temporal scales. J. Mammal. 84, 354–368 (2003).Article 

    Google Scholar 
    Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).Article 
    ADS 

    Google Scholar 
    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: A third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).Article 
    PubMed 

    Google Scholar 
    Teplitsky, C., Mills, J. A., Alho, J. S., Yarrall, J. W. & Merilä, J. Bergmann’s rule and climate change revisited: Disentangling environmental and genetic responses in a wild bird population. PNAS 105, 13492–13496 (2008).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Teplitsky, C. & Millien, V. Climate warming and Bergmann’s rule through time: Is there any evidence?. Evol. Appl. 7, 156–168 (2014).Article 
    PubMed 

    Google Scholar 
    James, F. C. Geographic size variation in birds and its relationship to climate. Ecology 51, 385–390 (1970).Article 

    Google Scholar 
    Wigginton, J. D. & Dobson, F. S. Environmental influences on geographic variation in body size of western bobcats. Can. J. Zool. 77, 802–813 (1999).Article 

    Google Scholar 
    Yom-Tov, Y. & Geffen, E. Geographic variation in body size: The effects of ambient temperature and precipitation. Oecologia 148, 213–218 (2006).Article 
    PubMed 
    ADS 

    Google Scholar 
    Wagner, J. A. Schreber’s saugthiere, supplementband, 2. Abtheilung 1841(37–44), 553 (1841).
    Google Scholar 
    Hawkins, M. T. Family Tupaiidae (treeshrews). In Handbook of the Mammals of the World, Volume 8 Insectivores, Sloths and Colugos (eds Wilson, D. E. & Mittermeier, R. A.) (Lynx Edicions, 2018).
    Google Scholar 
    Roberts, T. E., Lanier, H. C., Sargis, E. J. & Olson, L. E. Molecular phylogeny of treeshrews (Mammalia: Scandentia) and the timescale of diversification in Southeast Asia. Mol. Phylogenet. Evol. 60, 358–372 (2011).Article 
    PubMed 

    Google Scholar 
    Zhang, L., Yang, F., Wang, Z. K. & Zhu, W. L. Role of thermal physiology and bioenergetics on adaptation in tree shrew (Tupaia belangeri): The experiment test. Sci. Rep. 7, 41352 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Zhu, W., Zhang, H. & Wang, Z. Seasonal changes in body mass and thermogenesis in tree shrews (Tupaia belangeri): The roles of photoperiod and cold. J. Therm. Biol. 37, 479–484 (2012).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Book 
    MATH 

    Google Scholar 
    South, A. rnaturalearth: World Map Data from Natural Earth. R package version 0.1.0 (2017).Dunnington, D. ggspatial: Spatial Data Framework for ggplot2. R package version 1.1.4 (2020).R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2018).Helgen, K. M. Order Scandentia. In Mammal Species of the World: A Taxonomic and Geographic Reference 3rd edn (eds Wilson, D. E. & Reeder, D. M.) (Johns Hopkins University Press, 2005).
    Google Scholar 
    Collins, P. M. & Tsang, W. N. Growth and reproductive development in the male tree shrew (Tupaia belangeri) from birth to sexual maturity. Biol. Reprod. 37, 261–267 (1987).Article 
    CAS 
    PubMed 

    Google Scholar 
    Heaney, L. R. Island area and body size of insular mammals: Evidence from the tri-colored squirrel (Callosciurus prevosti) of Southeast Asia. Evolution 32, 29–44 (1978).PubMed 

    Google Scholar 
    Husson, L., Boucher, F. C., Sarr, A. C., Sepulchre, P. & Cahyarini, S. Y. Evidence of Sundaland’s subsidence requires revisiting its biogeography. J. Biogeogr. 47, 843–853 (2020).Article 

    Google Scholar 
    Juman, M. M., Woodman, N., Olson, L. E. & Sargis, E. J. Ecogeographic variation and taxonomic boundaries in Large Treeshrews (Scandentia, Tupaiidae: Tupaia tana Raffles, 1821) from Southeast Asia. J. Mammal. 102, 1054–1066 (2021).Article 

    Google Scholar 
    Hinckley, A. et al. Challenging ecogeographical rules: Phenotypic variation in the Mountain Treeshrew (Tupaia montana) along tropical elevational gradients. PLoS ONE 17, e0268213 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lomolino, M. V., Sax, D. F., Palombo, M. R. & van der Geer, A. A. Of mice and mammoths: evaluations of causal explanations for body size evolution in insular mammals. J. Biogeogr. 39, 842–854 (2011).Article 

    Google Scholar 
    Teta, P., de la Sancha, N. U., D’Elía, G. & Patterson, B. D. Andean rain shadow effect drives phenotypic variation in a widely distributed Austral rodent. J. Biogeogr. 49, 1767–1778 (2022).Article 

    Google Scholar 
    Yom-Tov, Y. & Yom-Tov, S. Climatic change and body size in two species of Japanese rodents. Biol. J. Linn. Soc. 82, 263–267 (2004).Article 

    Google Scholar 
    Yom-Tov, Y. & Yom-Tov, J. Global warming, Bergmann’s rule and body size in the masked shrew Sorex cinereus in Alaska. J. Anim. Ecol. 74, 803–808 (2005).Article 

    Google Scholar 
    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. PNAS 105, 6668–6672 (2008).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638 (2020).Article 
    PubMed 

    Google Scholar 
    Cronk, Q. C. B. Islands: stability, diversity, conservation. Biodivers. Conserv. 6, 477–493 (1997).Article 

    Google Scholar 
    Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. PNAS 106, 9322–9327 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Yom-Tov, Y. & Geffen, E. Recent spatial and temporal changes in body size of terrestrial vertebrates: Probable causes and pitfalls. Biol. Rev. 86, 531–541 (2011).Article 
    PubMed 

    Google Scholar 
    Theriot, M. K., Lanier, H. C. & Olson, L. E. Harnessing natural history collections to detect trends in body-size change as a response to warming: A critique and review of best practices. Methods Ecol. Evol. (2022).Rohwer, V. G., Rohwer, Y. & Dillman, C. B. Declining growth of natural history collections fails future generations. PLoS Biol. 20, e3001613 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sargis, E. J., Woodman, N., Morningstar, N. C., Reese, A. T. & Olson, L. E. Morphological distinctiveness of Javan Tupaia hypochrysa (Scandentia, Tupaiidae). J. Mammal. 94, 938–947 (2013).Article 

    Google Scholar 
    Sargis, E. J., Woodman, N., Morningstar, N. C., Reese, A. T. & Olson, L. E. Island history affects faunal composition: The treeshrews (Mammalia: Scandentia: Tupaiidae) from the Mentawai and Batu Islands, Indonesia. Biol. J. Linn. Soc. 111, 290–304 (2014).Article 

    Google Scholar 
    Sargis, E. J., Campbell, K. K. & Olson, L. E. Taxonomic boundaries and craniometric variation in the treeshrews (Scandentia, Tupaiidae) from the Palawan faunal region. J. Mamm. Evol. 21, 111–123 (2014).Article 

    Google Scholar 
    Sargis, E. J., Woodman, N., Morningstar, N. C., Bell, T. N. & Olson, L. E. Skeletal variation and taxonomic boundaries among mainland and island populations of the common treeshrew (Mammalia: Scandentia: Tupaiidae). Biol. J. Linn. Soc. 120, 286–312 (2017).
    Google Scholar 
    Juman, M. M., Olson, L. E. & Sargis, E. J. Skeletal variation and taxonomic boundaries in the Pen-tailed Treeshrew (Scandentia, Ptilocercidae: Ptilocercus lowii Gray, 1848). J. Mamm. Evol. 28, 1193–1203 (2021).Article 

    Google Scholar 
    Juman, M. M., Woodman, N., Miller-Murthy, A., Olson, L. E. & Sargis, E. J. Taxonomic boundaries in Lesser Treeshrews (Scandentia, Tupaiidae: Tupaia minor Günther, 1876). J. Mammal. https://doi.org/10.1093/jmammal/gyac080 (2022).Article 

    Google Scholar 
    Woodman, N., Miller-Murthy, A., Olson, L. E. & Sargis, E. J. Coming of age: Morphometric variation in the hand skeletons of juvenile and adult Lesser Treeshrews (Scandentia: Tupaiidae: Tupaia minor Günther, 1876). J. Mammal. 101, 1151–1164 (2020).Article 

    Google Scholar 
    Chamberlain, S., Barve, V., Mcglinn, D., Oldoni, D., Desmet, P., Geffert, L. & Ram, K. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.7.2, https://CRAN.R-project.org/package=rgbif.Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data. 7, 109 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meiyappan, P. & Jain, A. K. Three distinct global estimates of historical land-cover change and land-use conversions for over 200 years. Front. Earth Sci. 6, 122–139 (2012).Article 
    ADS 

    Google Scholar 
    Ryan, W. B. F. et al. Global multi-resolution topography synthesis. Geochem. Geophys. 10, Q03014 (2009).
    Google Scholar 
    van Buuren, S. & Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1–67 (2011).Article 

    Google Scholar 
    Clavel, J., Merceron, G. & Escarguel, G. Missing data estimation in morphometrics: How much is too much? Syst. Biol. 63, 203–218 (2014).Article 
    PubMed 

    Google Scholar 
    Nally, R. M. & Walsh, C. J. Hierarchical partitioning public-domain software. Biodivers. Conserv. 13, 659–660 (2004).Article 

    Google Scholar 
    Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied Spatial Data Analysis with R 2nd edn. (Springer, 2013).Book 
    MATH 

    Google Scholar  More

  • in

    Eddy covariance-based differences in net ecosystem productivity values and spatial patterns between naturally regenerating forests and planted forests in China

    Differences in environmental factorsEnvironmental factors showed value differences between forest types, while the significance of differences differed among variables, which were both found with corrected values and original measurements (Fig. 1).Figure 1The differences in environmental factors between naturally regenerating forests (NF) and planted forests (PF) in China. The environmental factors include three annual climatic factors (a–c), three seasonal temperature factors (d–f), three seasonal precipitation factors (g–i), three biotic factors (j–l), and two soil factors (m,n). Three annual climatic factors include mean annual air temperature (MAT, a), mean annual precipitation (MAP, b), and aridity index (AI, c) defined as the ratio of MAP to annual potential evapotranspiration. Three seasonal temperature factors include the temperature of the warmest month (Tw, d), the temperature of the coldest month (Tc, e), temperature annual range (TR, f). Three seasonal precipitation factors include precipitation of the wettest month (Pw, g), precipitation of the driest month (Pd, h), and precipitation seasonality (Ps, i) defined as the standard deviation of monthly precipitation during the measuring year. Three biological factors include the mean annual leaf area index (LAI, j), the maximum leaf area index (MLAI, k), and stand age (SA, l). Two soil factors include soil organic carbon content (SOC, m) and soil total nitrogen content (STN, n). The differences are tested for each variable with one-way analysis of variance (ANOVA), where * and ** indicate significant differences between forest types at significance levels of α = 0.05 and α = 0.01, respectively. The corrected values are mean values during 2003–2019 after correcting the original measurements with the interannual trend (See methods), which are listed in each panel, while original measurements are mean values during the measuring period of each ecosystem, which are not shown in each panel.Full size imageFor annual climatic factors, the significant difference between NF and PF only appeared in MAT (Fig. 1a). The mean MAT of NF was 10.50 ± 7.81 °C, which was significantly lower than that of PF (15.65 ± 6.23 °C) (p  0.05) (Fig. 2c). Even considering the significant effects of MAT on ER, ANCOVA results obtained by fixing MAT as a covariant also suggested that ER values did not significantly differ between forest types (F = 0.01, p  > 0.05). Fixing other variables as a covariant also drew a similar result.Therefore, NF showed a lower NEP resulting from the lower GPP than PF, while their differences were not statistically significant (Fig. 2).Differences in NEP latitudinal patternsCarbon fluxes showed divergent latitudinal patterns between NF and PF, while their latitudinal patterns varied among carbon fluxes, which were both found with corrected values and original measurements (Fig. 3).Figure 3The latitudinal patterns of carbon fluxes over Chinese naturally regenerating forests (NF) and planted forests (PF). The carbon fluxes include net ecosystem productivity (NEP, a,b), gross primary productivity (GPP, c,d), and ecosystem respiration (ER, e,f). Each panel is drawn with the corrected values (blue points) and original measurements (grey points), respectively. The blue and black lines represent the regression lines calculated from the corrected values and original measurements, respectively, with their regression statistics listed in blue and black letters. Only the regression slope (Sl) and R2 of each regression are listed. The grey lines represent the regressions between carbon fluxes added by random errors and latitude. Only significant (p  0.05).The ER of NF showed a significant decreasing latitudinal pattern (Fig. 3e), while that of PF exhibited no significant latitudinal pattern (Fig. 3f). The increasing latitude caused the ER of NF to significantly decrease. Each unit increase in latitude led to a 28.71 gC m−2 year−1 decrease in ER, with an R2 of 0.31. However, the increasing latitude contributed little to the ER spatial variation of PF (p  > 0.05).In addition, the latitudinal patterns of carbon fluxes and their differences between forest types were also obtained with the original measurements (Fig. 3, grey points). The latitudinal patterns of random error adding carbon fluxes were comparable to those of our corrected carbon fluxes (Fig. 3), which confirmed that the latitudinal patterns of carbon fluxes and their differences between forest types would not be affected by the uncertainties in generating the corrected carbon fluxes.Therefore, among NFs, the similar decreasing latitudinal patterns of GPP and ER meant that NEP showed no significant latitudinal pattern, while the significant decreasing latitudinal pattern of GPP and no significant latitudinal pattern of ER caused NEP to show a decreasing latitudinal pattern among PFs.Differences in the environmental effects on NEP spatial variationsEnvironmental factors, including the annual climatic factors, seasonal temperature factors, seasonal precipitation factors, biological factors, and soil factors, exerted divergent effects on the spatial variations of NEP and its components, which also differed between forest types (Table 1). No factor was found to affect that the spatial variation of NEP among NFs, while most annual and seasonal climatic factors were found to affect that among PFs. The spatial variations of GPP and ER among NFs were both affected by most annual and seasonal climatic factors and LAI, while those among PFs were primarily shaped by most annual and seasonal climatic factors. Though LAI showed no significant effect on GPP and ER spatial variations among PFs, SA exerted a significant negative effect. In addition, the spatial variations of soil variables contributed little to the spatial variations of carbon fluxes. Therefore, among NFs, most annual and seasonal climatic factors and LAI were found to affect GPP and ER spatial variations, while no factor was found to significantly influent the NEP spatial variation. However, among PFs, most annual and seasonal climatic factors were found to affect the spatial variations of NEP and its components, while LAI showed no significant effect. Using the original measurements also generated the similar correlation coefficients (Supplementary Table S1).Table 1 Correlation coefficients between carbon fluxes and environmental factors in naturally regenerating forests (NF) and planted forests (PF).Full size tableGiven the high correlations among annual climatic factors and seasonal climatic factors (Supplementary Table S2), the partial correlation analysis was applied to determine which factors should be employed to reveal the mechanisms underlying the spatial variations of NEP. Partial correlation analysis showed that MAT and MAP exerted the most important roles in spatial variations of NEP and its components (Table 2). After controlling MAT (or MAP), other factors seldom showed significant correlation with carbon fluxes, especially fixing MAT (Table 2). In addition, MAT and MAP exerted similar effects on the spatial variations of NEP and its components (Table 1). Using the original measurements also generated the similar partial correlation coefficients (Supplementary Table S3). Therefore, we only presented the effects of MAT on carbon flux spatial variations and their differences between forest types in detail.Table 2 Partial correlation coefficients between carbon fluxes and environmental factors in naturally regenerating forests (NF) and planted forests (PF) with fixing mean annual air temperature (MAT) or mean annual precipitation (MAP).Full size tableThe increasing MAT increased carbon fluxes, while the increasing rates differed between forest types (Fig. 4). The increasing MAT contributed little to the NEP spatial variation of NF but raised the NEP of PF (Fig. 4a,b). Each unit increase in MAT caused the NEP of PF to increase at a rate of 27.77 gC m−2 year−1, with an R2 of 0.31 (Fig. 4b). The increasing MAT significantly raised GPP in NF and PF (Fig. 4c,d). For NF, each unit increase in MAT increased GPP at a rate of 43.76 gC m−2 year−1, with an R2 of 0.49 (Fig. 4c), while each unit increase in MAT increased the GPP of PF at a rate of 69.18 gC m−2 year−1, with an R2 of 0.57 (Fig. 4d). The GPP increasing rates did not significantly differ between NF and PF (F = 1.52, p  > 0.05). The increasing MAT also raised ER in both NF and PF (Fig. 4e,f), whose increasing rates were 38.97 gC m−2 year−1 (Fig. 4e) and 36.79 gC m−2 year−1 (Fig. 4f), respectively, while their differences were not statistically significant (F = 0.01, p  > 0.05). In addition, using the original measurements also generated the similar spatial variations and their differences between forest types (Fig. 4). Furthermore, the random error adding carbon fluxes responded similarly to those of our correcting carbon fluxes (Fig. 4), indicating that the effects of MAT on carbon fluxes would not be affected by the uncertainties in our correcting carbon fluxes. Therefore, the similar responses of GPP and ER to MAT made MAT contribute little to NEP spatial variations among NFs, while GPP and ER showed divergent response rates to MAT, which made NEP increase with MAT among PFs.Figure 4The effects of mean annual air temperature (MAT) on the spatial variations of carbon fluxes over Chinese naturally regenerating forests (NF) and planted forests (PF). The carbon fluxes include net ecosystem productivity (NEP, a,b), gross primary productivity (GPP, c,d), and ecosystem respiration (ER, e,f). Each panel is drawn with the corrected values (blue points) and original measurements (grey points), respectively. The blue and black lines represent the regression lines calculated from the corrected values and original measurements, respectively, with their regression statistics listed in blue and black letters. Only the regression slope (Sl) and R2 of each regression are listed. The grey lines represent the regressions between carbon fluxes added by random errors and latitude. Only significant (p  More

  • in

    Host identity is the dominant factor in the assembly of nematode and tardigrade gut microbiomes in Antarctic Dry Valley streams

    Alpha diversity differences among communitiesNematode gut microbiomes were assigned into their respective species categories of E. antarcticus and P. murrayi based on 18S host data that was consistent with morphology (see Methods “Microinvertebrate haplotypes”). In contrast, due to recovery of three undiscernible 18S tardigrade haplotypes, the gut microbiomes were assigned to Tardigrada. Mat bacterial communities were significantly (Tukey’s HSD, P  0.65, χ2(1)  0.38, χ2(3)  More

  • in

    Biodiversity loss and climate extremes — study the feedbacks

    As humans warm the planet, biodiversity is plummeting. These two global crises are connected in multiple ways. But the details of the intricate feedback loops between biodiversity decline and climate change are astonishingly under-studied.It is well known that climate extremes such as droughts and heatwaves can have devastating impacts on ecosystems and, in turn, that degraded ecosystems have a reduced capacity to protect humanity against the social and physical impacts of such events. Yet only a few such relationships have been probed in detail. Even less well known is whether biodiversity-depleted ecosystems will also have a negative effect on climate, provoking or exacerbating weather extremes.For us, a group of researchers living and working mainly in Central Europe, the wake-up call was the sequence of heatwaves of 2018, 2019 and 2022. It felt unreal to watch a floodplain forest suffer drought stress in Leipzig, Germany. Across Germany, more than 380,000 hectares of trees have now been damaged (see go.nature.com/3etrrnp; in German), and the forestry sector is struggling with how to plan restoration activities over the coming decades1. What could have protected these ecosystems against such extremes? And how will the resultant damage further impact our climate?
    Nature-based solutions can help cool the planet — if we act now
    In June 2021, the Intergovernmental Panel on Climate Change (IPCC) and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) published their first joint report2, acknowledging the need for more collaborative work between these two domains. And some good policy moves are afoot: the new EU Forest Strategy for 2030, released in July 2021, and other high-level policy initiatives by the European Commission, formally recognize the multifunctional value of forests, including their role in regulating atmospheric processes and climate. But much more remains to be done.To thoroughly quantify the risk that lies ahead, ecologists, climate scientists, remote-sensing experts, modellers and data scientists need to work together. The upcoming meeting of the United Nations Convention on Biological Diversity in Montreal, Canada, in December is a good opportunity to catalyse such collaboration.Buffers and responsesWhen lamenting the decline in biodiversity, most people think first about the tragedy of species driven to extinction. There are more subtle changes under way, too.For instance, a study across Germany showed that over the past century, most plant species have declined in cover, with only a few increasing in abundance3. Also affected is species functionality4 — genetic diversity, and the diversity of form and structure that can make communities more or less efficient at taking up nutrients, resisting heat or surviving pathogen attacks.When entire ecosystems are transformed, their functionality is often degraded. They are left with less capacity to absorb pollution, store carbon dioxide, soak up water, regulate temperature and support vital functions for other organisms, including humans5. Conversely, higher levels of functional biodiversity increase the odds of an ecosystem coping with unexpected events, including climate extremes. This is known as the insurance effect6.The effect is well documented in field experiments and modelling studies. And there is mounting evidence of it in ecosystem responses to natural events. A global synthesis of various drought conditions showed, for instance, that forests were more resilient when trees with a greater diversity of strategies for using and transporting water lived together7.

    Dead trees near Iserlohn, Germany, in April 2020 (left) and after felling in June 2021 (right).Credit: Ina Fassbender/AFP via Getty

    However, biodiversity cannot protect all ecosystems against all kinds of impacts. In a study this year across plots in the United States and Canada, for example, mortality was shown to be higher in diverse forest ecosystems8. The proposed explanation for this unexpected result was that greater biodiversity could also foster more competition for resources. When extreme events induce stress, resources can become scarce in areas with high biomass and competition can suddenly drive mortality, overwhelming the benefits of cohabitation. Whether or not higher biodiversity protects an ecosystem from an extreme is highly site-specific.Some plants respond to drought by reducing photosynthesis and transpiration immediately; others can maintain business as usual for much longer, stabilizing the response of the ecosystem as a whole. So the exact response of ecosystems to extremes depends on interactions between the type of event, plant strategies, vegetation composition and structure.Which plant strategies will prevail is hard to predict and highly dependent on the duration and severity of the climatic extreme, and on previous extremes9. Researchers cannot fully explain why some forests, tree species or individual plants survive in certain regions hit by extreme climate conditions, whereas entire stands disappear elsewhere10. One study of beech trees in Germany showed that survival chances had a genomic basis11, yet it is not clear whether the genetic variability present in forests will be sufficient to cope with future conditions.And it can take years for ecosystem impacts to play out. The effects of the two consecutive hot drought years, 2018 and 2019, were an eye-opener for many of us. In Leipzig, tree growth declined, pathogens proliferated and ash and maple trees died. The double blow, interrupted by a mild winter, on top of the long-term loss of soil moisture, led to trees dying at 4–20 times the usual rate throughout Germany, depending on the species (see go.nature.com/3etrrnp; in German). The devastation peaked in 2020.Ecosystem changes can also affect atmospheric conditions and climate. Notably, land-use change can alter the brightness (albedo) of the planet’s surface and its capacity for heat exchange. But there are more-complex mechanisms of influence.Vegetation can be a source or sink for atmospheric substances. A study published in 2020 showed that vegetation under stress is less capable of removing ozone than are unstressed plants, leading to higher levels of air pollution12. Pollen and other biogenic particles emitted from certain plants can induce the freezing of supercooled cloud droplets, allowing ice in clouds to form at much warmer temperatures13, with consequences for rainfall14. Changes to species composition and stress can alter the dynamics of these particle emissions. Plant stress also modifies the emission of biogenic volatile organic gases, which can form secondary particles. Wildfires — enhanced by drought and monocultures — affect clouds, weather and climate through the emission of greenhouse gases and smoke particles. Satellite data show that afforestation can boost the formation of low-level, cooling cloud cover15 by enhancing the supply of water to the atmosphere.Research prioritiesAn important question is whether there is a feedback loop: will more intense, and more frequent, extremes accelerate the degradation and homogenization of ecosystems, which then, in turn, promote further climate extremes? So far, we don’t know.One reason for this lack of knowledge is that research has so far been selective: most studies have focused on the impacts of droughts and heatwaves on ecosystems. Relatively little is known about the impacts of other kinds of extremes, such as a ‘false spring’ caused by an early-season bout of warm weather, a late spring frost, heavy rainfall events, ozone maxima, or exposure to high levels of solar radiation during dry, cloudless weather.Researchers have no overview, much less a global catalogue, of how each dimension of biodiversity interacts with the full breadth of climate extremes in different combinations and at multiple scales. In an ideal world, scientists would know, for example, how the variation in canopy density, vegetation age, and species diversity protects against storm damage; and whether and how the diversity of canopy structures controls atmospheric processes such as cloud formation in the wake of extremes. Researchers need to link spatiotemporal patterns of biodiversity with the responses of ecosystem processes to climate extremes.
    Biodiversity needs every tool in the box: use OECMs
    Creating such a catalogue is a huge challenge, particularly given the more frequent occurrence of extremes with little or no precedent16. Scientists will also need to account for the increasing likelihood of pile-ups of climate stressors. The ways in which ecosystems respond to compound events17 could be quite different. Researchers will have to study which facets of biodiversity (genetic, physiological, structural) are required to stabilize ecosystems and their functions against these onslaughts.There is at least one piece of good news: tools for data collection and analysis are improving fast, with huge advances over the past decade in satellite-based observations for both climate and biodiversity monitoring. The European Copernicus Earth-observation programme, for example — which includes the Sentinel 1 and 2 satellite fleet, and other recently launched missions that cover the most important wavelengths of the electromagnetic spectrum — offer metre-scale resolution observations of the biochemical status of plants and canopy structure. Atmospheric states are recorded in unprecedented detail, vertically and in time.Scientists must now make these data interoperable and integrate them with in situ observations. The latter is challenging. On the ground, a new generation of data are being collected by researchers and by citizen scientists18. For example, unique insights into plant responses to stress are coming from time-lapse photography of leaf orientation; accelerometer measures of movement patterns of stems have been shown to provide proxies for the drought stress of trees19.High-quality models are needed to turn these data into predictions. The development of functional ‘digital twins’ of the climate system is now in reach. These models replicate hydrometeorological processes at the metre scale, and are fast enough to allow for rapid scenario development and testing20. The analogous models for ecosystems are still in a more conceptual phase. Artificial-intelligence methods will be key here, to study links between climate extremes and biodiversity.Researchers can no longer afford to track global transformations of the Earth system in disciplinary silos. Instead, ecologists and climate scientists need to establish a joint agenda, so that humanity is properly forewarned: of the risks of removing biodiversity buffers against climate extremes, and of the risk of thereby amplifying these extremes. More

  • in

    Memory for own actions in parrots

    Zimmer, H. D. et al. Memory for Action: A Distinct Form of Episodic Memory? (Oxford University Press, 2001).
    Google Scholar 
    Goswami, U. The Wiley-Blackwell Handbook of Childhood Cognitive Development (Wiley, 2013).
    Google Scholar 
    Fujita, K., Morisaki, A., Takaoka, A., Maeda, T. & Hori, Y. Incidental memory in dogs (Canis familiaris): Adaptive behavioral solution at an unexpected memory test. Anim. Cogn. 15, 1055–1063 (2012).Article 
    PubMed 

    Google Scholar 
    Lind, J., Enquist, M. & Ghirlanda, S. Animal memory: A review of delayed matching-to-sample data. Behav. Processes 117, 52–58 (2015).Article 
    PubMed 

    Google Scholar 
    Kuczaj, S. A. II. & Eskelinen, H. C. (2014) The “creative dolphin” revisited: What do dolphins do when asked to vary their behavior. Anim. Behav. Cogn. 1, 66–77 (2014).Article 

    Google Scholar 
    Tulving, E. Episodic and semantic memory. Organ. Mem. 1, 381–403 (1972).
    Google Scholar 
    Tulving, E. How many memory systems are there?. Am. Psychol. 40, 385 (1985).Article 

    Google Scholar 
    Fugazza, C., Pongrácz, P., Pogány, Á., Lenkei, R. & Miklósi, Á. Mental representation and episodic-like memory of own actions in dogs. Sci. Rep. 10, 1–8 (2020).Article 

    Google Scholar 
    Hauser, M. D., Chomsky, N. & Fitch, W. T. The faculty of language: What is it, who has it, and how did it evolve?. Science 298, 1569–1579 (2002).Article 
    PubMed 

    Google Scholar 
    Conway, M. A. Memory and the self. J. Mem. Lang. 53, 594–628 (2005).Article 

    Google Scholar 
    Scagel, A. & Mercado, E. III. Do that again! Memory for self-performed actions in dogs (Canis familiaris). J. Comp. Psychol. 20, 25 (2022).
    Google Scholar 
    Mercado, E., Murray, S. O., Uyeyama, R. K., Pack, A. A. & Herman, L. M. Memory for recent actions in the bottlenosed dolphin (Tursiops truncatus): Repetition of arbitrary behaviors using an abstract rule. Learn. Behav. 26, 210–218 (1998).Article 

    Google Scholar 
    Paukner, A., Anderson, J. R., Donaldson, D. I. & Ferrari, P. F. Cued repetition of self-directed behaviors in macaques (Macaca nemestrina). J. Exp. Psychol. Anim. Behav. Process. 33, 139 (2007).Article 
    PubMed 

    Google Scholar 
    Smeele, S. Q. et al. Memory for own behaviour in pinnipeds. Anim. Cogn. 20, 1–12 (2019).
    Google Scholar 
    Clayton, N. S. Episodic-like memory and mental time travel in animals. (2017).Clayton, N. S., Griffiths, D. P. & Dickinson, A. Declarative and episodic-like memory in animals: Personal musings of a Scrub Jay (2000).Clayton, N. S. & Dickinson, A. Episodic-like memory during cache recovery by scrub jays. Nature 395, 272–274 (1998).Article 
    PubMed 

    Google Scholar 
    Tulving, E. Episodic memory and autonoesis: Uniquely human. Missing Link Cogn. Orig. Self-Reflect. Conscious 20, 3–56 (2005).
    Google Scholar 
    Suddendorf, T. & Corballis, M. C. Mental time travel and the evolution of the human mind. Genet. Soc. Gen. Psychol. Monogr. 123, 133–167 (1997).PubMed 

    Google Scholar 
    Suddendorf, T. & Corballis, M. C. The evolution of foresight: What is mental time travel, and is it unique to humans?. Behav. Brain Sci. 30, 299–313 (2007).Article 
    PubMed 

    Google Scholar 
    Crystal, J. D. Evaluating evidence from animal models of episodic memory. J. Exp. Psychol. Anim. Learn. Cogn. 47, 337 (2021).Article 
    PubMed 

    Google Scholar 
    Mercado, E. III., Uyeyama, R. K., Pack, A. A. & Herman, L. M. Memory for action events in the bottlenosed dolphin. Anim. Cogn. 2, 17–25 (1999).Article 

    Google Scholar 
    Zentall, T. R. Coding of stimuli by animals: Retrospection, prospection, episodic memory and future planning. Learn. Motiv. 41, 225–240 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fugazza, C., Pogány, Á. & Miklósi, Á. Recall of others’ actions after incidental encoding reveals episodic-like memory in dogs. Curr. Biol. 26, 3209–3213 (2016).Article 
    PubMed 

    Google Scholar 
    Lambert, M. L., Jacobs, I., Osvath, M. & von Bayern, A. M. Birds of a feather? Parrot and corvid cognition compared. Behaviour 156, 505–594 (2019).Article 

    Google Scholar 
    Emery, N. J. Cognitive ornithology: The evolution of avian intelligence. Philos. Trans. R. Soc. B Biol. Sci. 361, 23–43 (2006).Article 

    Google Scholar 
    Olkowicz, S. et al. Birds have primate-like numbers of neurons in the forebrain. Proc. Natl. Acad. Sci. 113, 7255–7260 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Emery, N. J. & Clayton, N. S. Evolution of the avian brain and intelligence. Curr. Biol. 15, R946–R950 (2005).Article 
    PubMed 

    Google Scholar 
    Bradbury, J. W. & Balsby, T. J. The functions of vocal learning in parrots. Behav. Ecol. Sociobiol. 70, 293–312 (2016).Article 

    Google Scholar 
    Baciadonna, L., Cornero, F. M., Emery, N. J. & Clayton, N. S. Convergent evolution of complex cognition: Insights from the field of avian cognition into the study of self-awareness. Learn. Behav. 49, 9–22 (2021).Article 
    PubMed 

    Google Scholar 
    Osvath, M., Kabadayi, C. & Jacobs, I. Independent evolution of similar complex cognitive skills (2014).Zentall, T. R., Clement, T. S., Bhatt, R. S. & Allen, J. Episodic-like memory in pigeons. Psychon. Bull. Rev. 8, 685–690 (2001).Article 
    PubMed 

    Google Scholar 
    Zentall, T. R., Singer, R. A. & Stagner, J. P. Episodic-like memory: Pigeons can report location pecked when unexpectedly asked. Behav. Processes 79, 93–98 (2008).Article 
    PubMed 

    Google Scholar 
    Healy, S. D. & Hurly, T. A. Spatial learning and memory in birds. Brain. Behav. Evol. 63, 211–220 (2004).Article 
    PubMed 

    Google Scholar 
    Taylor, A. H. Corvid cognition. Wiley Interdiscip. Rev. Cogn. Sci. 5, 361–372 (2014).Article 
    PubMed 

    Google Scholar 
    Boeckle, M. & Bugnyar, T. Long-term memory for affiliates in ravens. Curr. Biol. 22, 801–806 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marzluff, J. M., Walls, J., Cornell, H. N., Withey, J. C. & Craig, D. P. Lasting recognition of threatening people by wild American crows. Anim. Behav. 79, 699–707 (2010).Article 

    Google Scholar 
    Pepperberg, I. M. & Pepperberg, I. M. The Alex Studies: Cognitive and Communicative Abilities of Grey Parrots (Harvard University Press, 2009).Book 

    Google Scholar 
    Emery, N. J. & Clayton, N. S. Effects of experience and social context on prospective caching strategies by scrub jays. Nature 414, 443–446 (2001).Article 
    PubMed 

    Google Scholar 
    Herzog, S. K. et al. First systematic sampling approach to estimating the global population size of the Critically Endangered Blue-throated Macaw Ara glaucogularis. Bird Conserv. Int. 31, 293–311 (2021).Article 

    Google Scholar 
    Auersperg, A. M. & von Bayern, A. M. Who’sa clever bird—now? A brief history of parrot cognition. Behaviour 156, 391–407 (2019).Article 

    Google Scholar 
    Tassin de Montaigu, C., Durdevic, K., Brucks, D., Krasheninnikova, A. & von Bayern, A. Blue-throated macaws (Ara glaucogularis) succeed in a cooperative task without coordinating their actions. Ethology 126, 267–277 (2020).Article 

    Google Scholar 
    Auersperg, A. M. et al. Social transmission of tool use and tool manufacture in Goffin cockatoos (Cacatua goffini). Proc. R. Soc. B Biol. Sci. 281, 20140972 (2014).Article 

    Google Scholar 
    Brucks, D. & von Bayern, A. M. Parrots voluntarily help each other to obtain food rewards. Curr. Biol. 30, 292–297 (2020).Article 
    PubMed 

    Google Scholar 
    Krasheninnikova, A., Höner, F., O’Neill, L., Penna, E. & von Bayern, A. M. Economic decision-making in parrots. Sci. Rep. 8, 1–10 (2018).Article 

    Google Scholar 
    Jarvis, E. D. et al. Avian brains and a new understanding of vertebrate brain evolution. Nat. Rev. Neurosci. 6, 151–159 (2005).Article 
    PubMed 

    Google Scholar 
    Gutiérrez-Ibáñez, C., Iwaniuk, A. N. & Wylie, D. R. Parrots have evolved a primate-like telencephalic-midbrain-cerebellar circuit. Sci. Rep. 8, 1–11 (2018).Article 

    Google Scholar 
    Smeele, S. Q. et al. Coevolution of relative brain size and life expectancy in parrots. Proc. R. Soc. B 289, 20212397 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kirsch, J. A., Güntürkün, O. & Rose, J. Insight without cortex: Lessons from the avian brain. Conscious. Cogn. 17, 475–483 (2008).Article 
    PubMed 

    Google Scholar 
    Dunbar, R. I. & Shultz, S. Evolution in the social brain. Science 317, 1344–1347 (2007).Article 
    PubMed 

    Google Scholar 
    Wright, A. A. & Katz, J. S. Mechanisms of same/different concept learning in primates and avians. Behav. Processes 72, 234–254 (2006).Article 
    PubMed 

    Google Scholar 
    Smirnova, A. A., Obozova, T. A., Zorina, Z. A. & Wasserman, E. A. How do crows and parrots come to spontaneously perceive relations-between-relations?. Curr. Opin. Behav. Sci. 37, 109–117 (2021).Article 

    Google Scholar 
    Schusterman, R. J. & Kastak, D. A California sea lion (Zalophus californianus) is capable of forming equivalence relations. Psychol. Rec. 43, 823–839 (1993).Article 

    Google Scholar 
    Kastak, D. & Schusterman, R. J. Transfer of visual identity matching-to-sample in two California sea lions (Zalophus californianus). Anim. Learn. Behav. 22, 427–435 (1994).Article 

    Google Scholar 
    Zentall, T. R., Wasserman, E. A., Lazareva, O. F., Thompson, R. K. & Rattermann, M. J. Concept learning in animals. Comp. Cogn. Behav. Rev. 20, 25 (2008).
    Google Scholar 
    Marino, L. Convergence of complex cognitive abilities in cetaceans and primates. Brain. Behav. Evol. 59, 21–32 (2002).Article 
    PubMed 

    Google Scholar 
    Huber, L., Range, F. & Virányi, Z. Dog imitation and its possible origins. In Domestic dog Cognition and Behavior 79–100 (Springer, 2014).Chapter 

    Google Scholar 
    Schmidjell, T., Range, F., Huber, L. & Virányi, Z. Do owners have a Clever Hans effect on dogs? Results of a pointing study. Front. Psychol. 3, 558 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hare, B., Brown, M., Williamson, C. & Tomasello, M. The domestication of social cognition in dogs. Science 298, 1634–1636 (2002).Article 
    PubMed 

    Google Scholar 
    Lindqvist, C. & Jensen, P. Domestication and stress effects on contrafreeloading and spatial learning performance in red jungle fowl (Gallus gallus) and White Leghorn layers. Behav. Processes 81, 80–84 (2009).Article 
    PubMed 

    Google Scholar 
    Pack, A. A., Herman, L. M. & Roitblat, H. L. Generalization of visual matching and delayed matching by a California sea lion (Zalophus californianus). Anim. Learn. Behav. 19, 37–48 (1991).Article 

    Google Scholar 
    Bennett, M. S. Five breakthroughs: A first approximation of brain evolution from early bilaterians to humans. Front. Neuroanat. 15, 25 (2021).Article 

    Google Scholar 
    Cisek, P. Resynthesizing behavior through phylogenetic refinement. Atten. Percept. Psychophys. 81, 2265–2287 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Toft, C. A. & Wright, T. F. Parrots of the wild. Nat. Hist. World’s Most Captiv. Birds 20, 25 (2015).
    Google Scholar 
    Merkle, J. A., Sigaud, M. & Fortin, D. To follow or not? How animals in fusion–fission societies handle conflicting information during group decision-making. Ecol. Lett. 18, 799–806 (2015).Article 
    PubMed 

    Google Scholar 
    Stevens, J. R. & Gilby, I. C. A conceptual framework for nonkin food sharing: Timing and currency of benefits. Anim. Behav. 67, 603–614 (2004).Article 

    Google Scholar 
    Kamil, A. C. & Roitblat, H. L. The ecology of foraging behavior—Implications for animal learning and memory. Annu. Rev. Psychol. 36, 141–169 (1985).Article 
    PubMed 

    Google Scholar 
    Ortiz, S. T., Castro, A. C., Balsby, T. J. S. & Larsen, O. N. Problem-solving in a cooperative task in peach-fronted conures (Eupsittula aurea). Anim. Cogn. 23, 265–275 (2020).Article 

    Google Scholar 
    Krasheninnikova, A., Brucks, D., Blanc, S. & von Bayern, A. M. Assessing African grey parrots’ prosocial tendencies in a token choice paradigm. R. Soc. Open Sci. 6, 190696 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Krasheninnikova, A. et al. Parrots do not show inequity aversion. Sci. Rep. 9, 1–12 (2019).Article 

    Google Scholar 
    Clayton, N. S., Griffiths, D. P., Emery, N. J. & Dickinson, A. Elements of episodic–like memory in animals. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356, 1483–1491 (2001).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (Chapman and Hall, 2020).Book 

    Google Scholar  More

  • in

    Habitat types and megabenthos composition from three sponge-dominated high-Arctic seamounts

    Pitcher, T. J. et al. Seamounts: Ecology, Fisheries & Conservation (Blackwell Publishing, 2007).Book 

    Google Scholar 
    Harris, P. T., Macmillan-Lawler, M., Rupp, J. & Baker, E. K. Geomorphology of the oceans. Mar. Geol. 352, 4–24 (2014).Article 

    Google Scholar 
    Wessel, P., Sandwell, D. T. & Kim, S.-S. The global seamount census. Oceanography 23, 24–33 (2010).Article 

    Google Scholar 
    Etnoyer, P. J. et al. BOX 12|How large is the seamount biome?. Oceanography 23, 206–209 (2010).Article 

    Google Scholar 
    De Forges, B. R., Koslow, J. A. & Pooro, G. C. B. Diversity and endemism of the benthic seamount fauna in the southwest Pacific. Nature 405, 944–947 (2000).Article 
    PubMed 

    Google Scholar 
    Rowden, A. A., Dower, J. F., Schlacher, T. A., Consalvey, M. & Clark, M. R. Paradigms in seamount ecology: Fact, fiction and future. Mar. Ecol. 31, 226–241 (2010).Article 

    Google Scholar 
    Pinheiro, H. T. et al. Fish biodiversity of the Vitória-Trindade seamount chain, southwestern Atlantic: An updated database. PLoS ONE 10, 1–17 (2015).Article 

    Google Scholar 
    Morato, T., Hoyle, S. D., Allain, V. & Nicol, S. J. Seamounts are hotspots of pelagic biodiversity in the open ocean. PNAS 107, 9711 (2010).Article 

    Google Scholar 
    Rowden, A. A. et al. A test of the seamount oasis hypothesis: Seamounts support higher epibenthic megafaunal biomass than adjacent slopes. Mar. Ecol. 31, 95–106 (2010).Article 

    Google Scholar 
    Busch, K. et al. On giant shoulders: How a seamount affects the microbial community composition of seawater and sponges. Biogeosciences 17, 3471–3486 (2020).Article 
    CAS 

    Google Scholar 
    Zhao, Y. et al. Virioplankton distribution in the tropical western Pacific Ocean in the vicinity of a seamount. Microbiol Open 9, e1031 (2020).Article 

    Google Scholar 
    Arístegui, J. et al. Plankton metabolic balance at two North Atlantic seamounts. Deep-Sea Res. II 56, 2646–2655 (2009).Article 

    Google Scholar 
    Dower, J. F. & Mackast, D. L. “Seamount effects” in the zooplankton community near Cobb Seamount. Deep-Sea Res. I 43, 837–858 (1996).Article 

    Google Scholar 
    O’Hara, T. D., Rowden, A. A. & Bax, N. J. A Southern Hemisphere bathyal fauna is distributed in latitudinal bands. Curr. Biol. 21, 226–230 (2011).Article 
    PubMed 

    Google Scholar 
    Williams, A., Althaus, F., Clark, M. R. & Gowlett-Holmes, K. Composition and distribution of deep-sea benthic invertebrate megafauna on the Lord Howe Rise and Norfolk Ridge, southwest Pacific Ocean. Deep-Sea Res. II 58, 948–958 (2011).Article 
    CAS 

    Google Scholar 
    Bridges, A. E. H., Barnes, D. K. A., Bell, J. B., Ross, R. E. & Howell, K. L. Benthic assemblage composition of South Atlantic seamounts. Front. Mar. Sci. 8, 660648 (2021).Article 

    Google Scholar 
    Lapointe, A. E., Watling, L., France, S. C. & Auster, P. J. Megabenthic assemblages in the lower bathyal (700–3000 m) on the New England and corner rise seamounts Northwest Atlantic. Deep-Sea Res. I 165, 103366 (2020).Article 

    Google Scholar 
    Clark, M. R. & Bowden, D. A. Seamount biodiversity: High variability both within and between seamounts in the Ross Sea region of Antarctica. Hydrobiologia 761, 161–180 (2015).Article 
    CAS 

    Google Scholar 
    McClain, C. R., Lundsten, L., Barry, J. & DeVogelaere, A. Assemblage structure, but not diversity or density, change with depth on a northeast Pacific seamount. Mar. Ecol. 31, 14–25 (2010).Article 

    Google Scholar 
    Long, D. J. & Baco, A. R. Rapid change with depth in megabenthic structure-forming communities of the Makapu’u deep-sea coral bed. Deep-Sea Res. II 99, 158–168 (2014).Article 

    Google Scholar 
    Thresher, R. et al. Strong septh-related zonation of megabenthos on a rocky continental margin (∼ 700–4000 m) off southern Tasmania Australia. PLoS ONE 9, e85872 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Hara, T. D., Consalvey, M., Lavrado, H. P. & Stocks, K. I. Environmental predictors and turnover of biota along a seamount chain. Mar. Ecol. 31, 84–94 (2010).Article 

    Google Scholar 
    Boschen, R. E. et al. Megabenthic assemblage structure on three New Zealand seamounts: Implications for seafloor massive sulfide mining. Mar. Ecol. Prog. Ser. 523, 1–14 (2015).Article 

    Google Scholar 
    Caratori Tontini, F. et al. Crustal magnetization of brothers volcano, New Zealand, measured by autonomous underwater vehicles: Geophysical expression of a submarine hydrothermal system. Econ. Geol. 107, 1571–1581 (2012).Article 

    Google Scholar 
    Rex, M. A., Etter, R. J., Clain, A. J. & Hill, M. S. Bathymetric patterns of body size in deep-sea gastropods. Evolution (N Y) 53, 1298–1301 (1999).
    Google Scholar 
    O’Hara, T. D. Seamounts: Centres of endemism or species richness for ophiuroids?. Glob. Ecol. Biogeogr. 16, 720–732 (2007).Article 

    Google Scholar 
    Clark, M. R. et al. The ecology of seamounts: Structure, function, and human impacts. Ann. Rev. Mar. Sci. 2, 253–278 (2010).Article 
    PubMed 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).Article 
    PubMed 

    Google Scholar 
    Levin, L. A. & Thomas, C. L. The influence of hydrodynamic regime on infaunal assemblages inhabiting carbonate sediments on central Pacific seamounts. Deep Sea Res. A 36, 1897–1915 (1989).Article 

    Google Scholar 
    Puerta, P. et al. Variability of deep-sea megabenthic assemblages along the western pathway of the Mediterranean outflow water. Deep-Sea Res. I 185, 103791 (2022).Article 

    Google Scholar 
    Tapia-Guerra, J. M. et al. First description of deep benthic habitats and communities of oceanic islands and seamounts of the Nazca Desventuradas Marine Park Chile. Sci. Rep. 11, 6209 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morgan, N. B., Goode, S., Roark, E. B. & Baco, A. R. Fine scale assemblage structure of benthic invertebrate megafauna on the North Pacific seamount Mokumanamana. Front. Mar. Sci. 6, 715 (2019).Article 

    Google Scholar 
    Perez, J. A. A., Kitazato, H., Sumida, P. Y. G., Sant’Ana, R. & Mastella, A. M. Benthopelagic megafauna assemblages of the Rio Grande Rise (SW Atlantic). Deep-Sea Res. I 134, 1–11 (2018).Article 

    Google Scholar 
    Poore, G. C. B. et al. Invertebrate diversity of the unexplored marine western margin of Australia: Taxonomy and implications for global biodiversity. Mar. Biodivers. 45, 271–286 (2015).Article 

    Google Scholar 
    Henry, L. A., Moreno Navas, J. & Roberts, J. M. Multi-scale interactions between local hydrography, seabed topography, and community assembly on cold-water coral reefs. Biogeosciences 10, 2737–2746 (2013).Article 

    Google Scholar 
    Meyer, K. S. et al. Rocky islands in a sea of mud: Biotic and abiotic factors structuring deep-sea dropstone communities. Mar. Ecol. Prog. Ser. 556, 45–57 (2016).Article 

    Google Scholar 
    Stratmann, T., Soetaert, K., Kersken, D. & van Oevelen, D. Polymetallic nodules are essential for food-web integrity of a prospective deep-seabed mining area in Pacific abyssal plains. Sci. Rep. 11, 12238 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Genin, A., Dayton, P. K., Lonsdale, P. F. & Spiess, F. N. Corals on seamount peaks provide evidence of current acceleration over deep-sea topography. Nature 322, 59–61 (1986).Article 

    Google Scholar 
    Roberts, J. M., Wheeler, A. J. & Freiwald, A. Reefs of the deep: The biology and geology of cold-water coral ecosystems. Science 1979(312), 543–547 (2006).Article 

    Google Scholar 
    Kutti, T., Bannister, R. J. & Fosså, J. H. Community structure and ecological function of deep-water sponge grounds in the Traenadypet MPA-Northern Norwegian continental shelf. Cont. Shelf Res. 69, 21–30 (2013).Article 

    Google Scholar 
    Beazley, L., Kenchington, E. L., Murillo, F. J. & Sacau, M. D. M. Deep-sea sponge grounds enhance diversity and abundance of epibenthic megafauna in the Northwest Atlantic. ICES J. Mar. Sci. 70, 1471–1490 (2013).Article 

    Google Scholar 
    Buhl-Mortensen, L. et al. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar. Ecol. 31, 21–50 (2010).Article 

    Google Scholar 
    Victorero, L., Robert, K., Robinson, L. F., Taylor, M. L. & Huvenne, V. A. I. Species replacement dominates megabenthos beta diversity in a remote seamount setting. Sci. Rep. 8, 1–11 (2018).Article 
    CAS 

    Google Scholar 
    Yesson, C., Clark, M. R., Taylor, M. L. & Rogers, A. D. The global distribution of seamounts based on 30 arc seconds bathymetry data. Deep-Sea Res. I 58, 442–453 (2011).Article 

    Google Scholar 
    ICES. Report of the ICES-NAFO Working Group on Deep-Water Ecology (WGDEC), 9–13 March 2009, ICES CM2009ACOM:23. 2009.Cárdenas, P. & Rapp, H. T. Demosponges from the Northern mid-Atlantic ridge shed more light on the diversity and biogeography of North Atlantic deep-sea sponges. J. Mar. Biol. Assoc. U.K. 95, 1475–1516 (2015).Article 

    Google Scholar 
    Cárdenas, P. et al. Taxonomy, biogeography and DNA barcodes of Geodia species (Porifera, Demospongiae, Tetractinellida) in the Atlantic boreo-arctic region. Zool. J. Linn. Soc. 169, 251–311 (2013).Article 

    Google Scholar 
    Roberts, E. M. et al. Oceanographic setting and short-timescale environmental variability at an Arctic seamount sponge ground. Deep-Sea Res. I 138, 98–113 (2018).Article 

    Google Scholar 
    Roberts, E. et al. Water masses constrain the distribution of deep-sea sponges in the North Atlantic Ocean and Nordic seas. Mar. Ecol. Prog. Ser. 659, 75–96 (2021).Article 

    Google Scholar 
    Morganti, T. M. et al. Giant sponge grounds of central Arctic seamounts are associated with extinct seep life. Nat. Commun. 13, 638 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morganti, T. M. et al. In situ observation of sponge trails suggests common sponge locomotion in the deep central Arctic. Curr. Biol. 31, R368–R370 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Meyer, H. K., Roberts, E. M., Rapp, H. T. & Davies, A. J. Spatial patterns of arctic sponge ground fauna and demersal fish are detectable in autonomous underwater vehicle (AUV) imagery. Deep-Sea Res. I 153, 103137 (2019).Article 

    Google Scholar 
    McIntyre, F. D., Drewery, J., Eerkes-Medrano, D. & Neat, F. C. Distribution and diversity of deep-sea sponge grounds on the Rosemary bank seamount NE Atlantic. Mar. Biol. 163, 143 (2016).Article 

    Google Scholar 
    Buhl-Mortensen, P. & Buhl-Mortensen, L. Diverse and vulnerable deep-water biotopes in the Hardangerfjord. Mar. Biol. Res. 10, 253–267 (2014).Article 

    Google Scholar 
    de Clippele, L. H. et al. The effect of local hydrodynamics on the spatial extent and morphology of cold-water coral habitats at Tisler Reef Norway. Coral Reefs 37, 253–266 (2018).Article 
    PubMed 

    Google Scholar 
    Dunlop, K., Harendza, A., Plassen, L. & Keeley, N. Epifaunal habitat Associations on mixed and hard bottom substrates in coastal waters of Northern Norway. Front. Mar. Sci. 7, 568802 (2020).Article 

    Google Scholar 
    Fiore, C. L. & Cox Jutte, P. Characterization of macrofaunal assemblages associated with sponges and tunicates collected off the southeastern United States. Biology 129, 105–120 (2010).
    Google Scholar 
    Murillo, F. J. et al. Deep-sea sponge grounds of the Flemish Cap, Flemish Pass and the Grand Banks of Newfoundland (Northwest Atlantic Ocean): Distribution and species composition. Mar. Biol. Res. 8, 842–854 (2012).Article 

    Google Scholar 
    Purser, A. et al. Local variation in the distribution of benthic megafauna species associated with cold-water coral reefs on the Norwegian margin. Cont. Shelf Res. 54, 37–51 (2013).Article 

    Google Scholar 
    Klitgaard, A. B. & Tendal, O. S. Distribution and species composition of mass occurrences of large-sized sponges in the northeast Atlantic. Prog. Oceanogr. 61, 57–98 (2004).Article 

    Google Scholar 
    Klitgaard, A. B. The fauna associated with outer shelf and upper slope sponges (porifera, demospongiae) at the faroe islands, northeastern Atlantic. Sarsia 80, 1–22 (1995).Article 

    Google Scholar 
    Cárdenas, P. & Moore, J. A. First records of Geodia demosponges from the New England seamounts, an opportunity to test the use of DNA mini-barcodes on museum specimens. Mar. Biodivers. 49, 163–174 (2019).Article 

    Google Scholar 
    Schejter, L., Chiesa, I. L., Doti, B. L. & Bremec, C. Mycale (Aegogropila) magellanica (Porifera: Demospongiae) in the southwestern Atlantic Ocean: Endobiotic fauna and new distributional information. Sci. Mar. 76, 753–761 (2012).
    Google Scholar 
    Beaulieu, S. E. Life on glass houses: Sponge stalk communities in the deep sea. Mar. Biol. 138, 803–817 (2001).Article 

    Google Scholar 
    Goren, L., Idan, T., Shefer, S. & Ilan, M. Macrofauna inhabiting massive demosponges from shallow and mesophotic habitats along the Israeli Mediterranean coast. Front. Mar. Sci. 7, 612779 (2021).Article 

    Google Scholar 
    Kersken, D. et al. The infauna of three widely distributed sponge species (Hexactinellida and Demospongiae) from the deep Ekström Shelf in the Weddell Sea Antarctica. Deep-Sea Res. II 108, 101–112 (2014).Article 

    Google Scholar 
    Meyer, H. K., Roberts, E. M., Rapp, H. T. & Davies, A. J. Spatial patterns of arctic sponge ground fauna and demersal fish are detectable in autonomous underwater vehicle (AUV) imagery. Deep Sea Res. 1 Oceanogr. Res. Pap. 153, 103137 (2019).Article 

    Google Scholar 
    Bart, M. C., Hudspith, M., Rapp, H. T., Verdonschot, P. F. M. & de Goeij, J. M. A Deep-Sea Sponge Loop? Sponges transfer dissolved and particulate organic carbon and nitrogen to associated fauna. Front. Mar. Sci. 8, 604879 (2021).Article 

    Google Scholar 
    de Goeij, J. M. et al. Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science 1979(342), 108–110 (2013).Article 

    Google Scholar 
    Pawlik, J. R. & Mcmurray, S. E. The emerging ecological and biogeochemical importance of sponges on coral reefs. (2019) https://doi.org/10.1146/annurev-marine-010419Wassmann, P., Slagstad, D. & Ellingsen, I. Primary production and climatic variability in the European sector of the Arctic Ocean prior to 2007: Preliminary results. Polar Biol. 33, 1641–1650 (2010).Article 

    Google Scholar 
    Arrigo, K. R., van Dijken, G. & Pabi, S. Impact of a shrinking Arctic ice cover on marine primary production. Geophys. Res. Lett. 35, L19603 (2008).Article 

    Google Scholar 
    Dunne, J. P., Sarmiento, J. L. & Gnanadesikan, A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Glob. Biogeochem. Cycles 21, GB4006 (2007).Article 

    Google Scholar 
    Wei, C.-L. et al. Global patterns and predictions of seafloor biomass using random forests. PLoS ONE 5, e15323 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stratmann, T. et al. The BenBioDen database, a global database for meio-, macro- and megabenthic biomass and densities. Sci. Data 7, 206 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McClain, C. R., Lundsten, L., Ream, M., Barry, J. & DeVogelaere, A. Endemicity, biogeography, composition, and community structure on a Northeast Pacific seamount. PLoS ONE 4, e4141 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walter, M., Köhler, J., Myriel, H., Steinmacher, B. & Wisotzki, A. Physical oceanography measured on water bottle samples during POLARSTERN cruise PS101 (ARK-XXX/3). PANGAEA https://doi.org/10.1594/PANGAEA.871927 (2017).van Appen, W.-J., Latarius, K. & Kanzow, T. Physical oceanography and current meter data from mooring F6–17. PANGAEA https://doi.org/10.1594/PANGAEA.870845 (2017).Ruhl, H. A. & Smith, K. L. Shifts in deep-sea community structure linked to climate and food supply. Science 1979(305), 513–515 (2004).Article 

    Google Scholar 
    Boetius, A. et al. Export of algal biomass from the melting Arctic sea ice. Science 1979(339), 1430–1432 (2013).Article 

    Google Scholar 
    Rybakova, E., Kremenetskaia, A., Vedenin, A., Boetius, A. & Gebruk, A. Deep-sea megabenthos communities of the Eurasian Central Arctic are influenced by ice-cover and sea-ice algal falls. PLoS ONE 14, e0211009 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhulay, I., Bluhm, B. A., Renaud, P. E., Degen, R. & Iken, K. Functional pattern of benthic epifauna in the Chukchi borderland Arctic deep sea. Front. Mar. Sci. 8, 609956 (2021).Article 

    Google Scholar 
    Boetius, A. & Purser, A. The expedition PS101 of the research vessel Polarstern to the Arctic Ocean in 2016. Berichte zur Polar-und Meeresforschung = Rep Polar Mar Res https://doi.org/10.2312/BzPM_0706_2017 (2017).Article 

    Google Scholar 
    Simon-Lledó, E. et al. Multi-scale variations in invertebrate and fish megafauna in the mid-eastern Clarion Clipperton Zone. Prog. Oceanogr. 187, 102405 (2020).Article 

    Google Scholar 
    Simon-Lledó, E. et al. Preliminary observations of the abyssal megafauna of Kiribati. Front. Mar. Sci. 6, 1–13 (2019).Article 

    Google Scholar 
    Zhulay, I., Iken, K., Renaud, P. E. & Bluhm, B. A. Epifaunal communities across marine landscapes of the deep Chukchi Borderland (Pacific Arctic). Deep Sea Res. 1 Oceanogr. Res. Pap. 151, 103065 (2019).Article 

    Google Scholar 
    Åström, E. K. L., Sen, A., Carroll, M. L. & Carroll, J. L. Cold seeps in a warming Arctic: Insights for benthic ecology. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00244 (2020).Article 

    Google Scholar 
    Pedersen, R. B. et al. Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge. Nat. Commun. 1, 1–6 (2010).Article 
    CAS 

    Google Scholar 
    Åström, E. K. L. et al. Methane cold seeps as biological oases in the high-Arctic deep sea. Limnol. Oceanogr. 63, S209–S231 (2018).Article 

    Google Scholar 
    Rybakova Goroslavskaya, E., Galkin, S., Bergmann, M., Soltwedel, T. & Gebruk, A. Density and distribution of megafauna at the Håkon Mosby mud volcano (the Barents Sea) based on image analysis. Biogeosciences 10, 3359–3374 (2013).Article 

    Google Scholar 
    Sweetman, A. K., Levin, L. A., Rapp, H. T. & Schander, C. Faunal trophic structure at hydrothermal vents on the southern mohn’s ridge, arctic ocean. Mar. Ecol. Prog. Ser. 473, 115–131 (2013).Article 

    Google Scholar 
    Decker, C. & Olu, K. Does macrofaunal nutrition vary among habitats at the Hakon Mosby mud volcano?. Cah. Biol. Mar. 51, 361–367 (2010).
    Google Scholar 
    Macdonald, I. R., Bluhm, B. A., Iken, K., Gagaev, S. & Strong, S. Benthic macrofauna and megafauna assemblages in the Arctic deep-sea Canada Basin. Deep-Sea Res. II 57, 136–152 (2010).Article 

    Google Scholar 
    Taylor, J., Krumpen, T., Soltwedel, T., Gutt, J. & Bergmann, M. Dynamic benthic megafaunal communities: Assessing temporal variations in structure, composition and diversity at the Arctic deep-sea observatory HAUSGARTEN between 2004 and 2015. Deep Sea Res. 1 Oceanogr. Res. Pap. 122, 81–94 (2017).Article 

    Google Scholar 
    Vedenin, A. A. et al. Uniform bathymetric zonation of marine benthos on a Pan-Arctic scale. Prog. Oceanogr. 202, 102764 (2022).Article 

    Google Scholar 
    Bart, M. C. et al. A deep-sea sponge loop? Sponges transfer dissolved and particulate organic carbon and nitrogen to associated fauna. Front. Mar. Sci. 8, 604879 (2021).Article 

    Google Scholar 
    Guihen, D., White, M. & Lundälv, T. Temperature shocks and ecological implications at a cold-water coral reef. ANZIAM J. https://doi.org/10.1017/S1755267212000413 (2014).Article 

    Google Scholar 
    Strand, R. et al. The response of a boreal deep-sea sponge holobiont to acute thermal stress. Sci. Rep. 7, 1660 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hanz, U. et al. The important role of sponges in carbon and nitrogen cycling in a deep-sea biological hotspot. Funct. Ecol. 36, 2188–2199 (2022).Article 
    CAS 

    Google Scholar 
    Maier, S. R. et al. Reef communities associated with ‘dead’ cold-water coral framework drive resource retention and recycling in the deep sea. Deep-Sea Res. I 175, 103574 (2021).Article 
    CAS 

    Google Scholar 
    Bart, M. C. et al. Dissolved organic carbon (DOC) is essential to balance the metabolic demands of four dominant North-Atlantic deep-sea sponges. Limnol. Oceanogr. https://doi.org/10.1002/lno.11652 (2020).Article 

    Google Scholar 
    Bart, M. C. et al. Differential processing of dissolved and particulate organic matter by deep-sea sponges and their microbial symbionts. Sci. Rep. 10, 1–13 (2020).Article 

    Google Scholar 
    Maier, S. R. et al. Recycling pathways in cold-water coral reefs: Use of dissolved organic matter and bacteria by key suspension feeding taxa. Sci. Rep. 10, 9942 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    International Hydrographic Bureau. 16th meeting of the GEBCO sub-committee on undersea feature names (SCUFN). Preprint at (2003).Torres-Valdés, S., Morische, A. & Wischnewski, L. Revision of nutrient data from Polarstern expedition PS101 (ARK-XXX/3). PANGAEA https://doi.org/10.1594/PANGAEA.908179 (2019).Purser, A. et al. Ocean floor observation and bathymetry system (OFOBS): A new towed camera/sonar system for deep-sea habitat surveys. IEEE J. Ocean. Eng. 44, 87–99 (2019).Article 

    Google Scholar 
    Marcon, Y. & Purser, A. PAPARA(ZZ)I : An open-source software interface for annotating photographs of the deep-sea. SoftwareX 6, 69–80 (2017).Article 

    Google Scholar 
    Greene, H. G., Bizzarro, J. J., O’Connell, V. M. & Brylinsky, C. K. Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application. Spec. Pap.: Geol. Assoc. Canada 47, 141–155 (2007).
    Google Scholar 
    Horton, T. et al. Recommendations for the standardisation of open taxonomic nomenclature for image-based identifications. Front. Mar. Sci. 8, 620702 (2021).Article 

    Google Scholar 
    Davison, A. C. & Hinkley, D. V. Bootstrap Methods and Their Application (Cambridge University Press, 1997).Book 
    MATH 

    Google Scholar 
    Rodgers, J. L. The bootstrap, the jackknife, and the randomization test: A sampling taxonomy. Multivar. Behav. Res. 34, 441–456 (1999).Article 
    CAS 

    Google Scholar 
    Crowley, P. H. Resampling methods for computation-intensive data analysis in ecology and evolution. Annu. Rev. Ecol. Syst. 23, 405–447 (1992).Article 

    Google Scholar 
    Simon-Lledó, E. et al. Ecology of a polymetallic nodule occurrence gradient: Implications for deep-sea mining. Limnol. Oceanogr. 64, 1883–1894 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article 

    Google Scholar 
    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).Article 

    Google Scholar 
    R-Core Team. R: A language and environment for statistical computing. Preprint at https://www.r-project.org/ (2017).Oksanen, J. et al. vegan: Community ecology package. Preprint at (2017).Veech, J. A. A probabilistic model for analysing species co-occurrence. Glob. Ecol. Biogeogr. 22, 252–260 (2013).Article 

    Google Scholar 
    Griffith, D. M., Veech, J. A. & Marsh, C. J. Cooccur: Probabilistic species co-occurrence analysis in R. J. Stat. Softw. 69, 1–17 (2016).Article 

    Google Scholar 
    Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).Article 
    CAS 
    PubMed 

    Google Scholar 
    de Kluijver, A. Fatty acid analysis sponges. protocols.io 1, 1–14. https://doi.org/10.17504/protocols.io.bhnpj5dn (2021).Article 

    Google Scholar 
    de Kluijver, A. et al. Bacterial precursors and unsaturated long-chain fatty acids are biomarkers of North-Atlantic deep-sea demosponges. PLoS ONE 16, e0241095 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Finding space for nature in cities: the considerable potential of redundant car parking

    Butt, N. et al. Opportunities for biodiversity conservation as cities adapt to climate change. Geo Geogr. Environ. 5, 52 (2018).
    Google Scholar 
    Norton, B. A. et al. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 134, 127–138 (2015).Article 

    Google Scholar 
    Ossola, A. et al. Small vegetated patches greatly reduce urban surface temperature during a summer heatwave in Adelaide, Australia. Landsc. Urban Plan. 209, 104046 (2021).Article 

    Google Scholar 
    Grey, V., Livesley, S. J., Fletcher, T. D. & Szota, C. Tree pits to help mitigate runoff in dense urban areas. J. Hydrol. 565, 400–410 (2018).Article 

    Google Scholar 
    Szota, C. et al. Street tree stormwater control measures can reduce runoff but may not benefit established trees. Landsc. Urban Plan. 182, 144–155 (2019).Article 

    Google Scholar 
    Liu, L. & Jensen, M. B. Green infrastructure for sustainable urban water management: Practices of five forerunner cities. Cities 74, 126–133 (2018).Article 

    Google Scholar 
    Astell-Burt, T. & Feng, X. Association of urban green space with mental health and general health among adults in Australia. JAMA Netw. Open 2, 198209 (2019).Article 

    Google Scholar 
    Astell Burt, T. et al. More green, less lonely? A longitudinal cohort study. Int. J. Epidemiol. 51, 99–110 (2022).Article 

    Google Scholar 
    Astell-Burt, T., Navakatikyan, M. A. & Feng, X. Urban green space, tree canopy and 11-year risk of dementia in a cohort of 109,688 Australians. Env. Int. 145, 106102 (2020).Article 

    Google Scholar 
    Feng, X. & Astell-Burt, T. Residential green space quantity and quality and child well-being: a longitudinal study. Am. J. Prev. Med. 53, 616–624 (2017).Article 

    Google Scholar 
    Knobel, P. et al. Quality of urban green spaces influences residents’ use of these spaces, physical activity, and overweight/obesity. Environ. Pollut. 271, 116393 (2021).Article 
    CAS 

    Google Scholar 
    Haaland, C. & van den Bosch, C. K. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For.Urban Green 14, 760–771 (2015).Article 

    Google Scholar 
    Russo, A. & Cirella, G. T. Modern compact cities: How much greenery do we need? Int. J. Environ. Res. Public Health 15, 2180 (2018).Article 

    Google Scholar 
    Garrard, G. E., Williams, N. S. G., Mata, L., Thomas, J. & Bekessy, S. A. Biodiversity sensitive urban design. Conserv. Lett. 11, 1–10 (2018).Article 

    Google Scholar 
    Eaton, T. T. Approach and case-study of green infrastructure screening analysis for urban stormwater control. J. Environ. Manage. 209, 495–504 (2018).Article 

    Google Scholar 
    Maes, M. J. A., Jones, K. E., Toledano, M. B. & Milligan, B. Mapping synergies and trade-offs between urban ecosystems and the sustainable development goals. Environ. Sci. Policy 93, 181–188 (2019).Article 

    Google Scholar 
    Astell-Burt, T., Feng, X., Mavoa, S., Badland, H. M. & Giles-Corti, B. Do low-income neighbourhoods have the least green space? A cross-sectional study of Australia’s most populous cities. BMC Public Health 14, 19–21 (2014).Article 

    Google Scholar 
    Coutts, A. M., Tapper, N. J., Beringer, J., Loughnan, M. & Demuzere, M. Watering our cities: The capacity for Water Sensitive Urban Design to support urban cooling and improve human thermal comfort in the Australian context. Prog. Phys. Geogr. 37, 2–28 (2013).Article 

    Google Scholar 
    Intergovernmental Panel on Climate Change. Climate Change 2022: Impacts, Adaptation and Vulnerability | Climate Change 2022: Impacts, Adaptation and Vulnerability. IPCC Sixth Assessment Report https://www.ipcc.ch/report/ar6/wg2/ (2022).Davies, C. & Lafortezza, R. Urban green infrastructure in Europe: Is greenspace planning and policy compliant? Land Use Policy 69, 93–101 (2017).Article 

    Google Scholar 
    Faivre, N., Fritz, M., Freitas, T., de Boissezon, B. & Vandewoestijne, S. Nature-based solutions in the EU: Innovating with nature to address social, economic and environmental challenges. Environ. Res. 159, 509–518 (2017).Article 
    CAS 

    Google Scholar 
    Meerow, S. & Newell, J. P. Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landsc. Urban Plan. 159, 62–75 (2017).Article 

    Google Scholar 
    City of Los Angeles. L.A.’s Green New Deal: Sustainability Plan 2019. https://plan.lamayor.org/ (2019).City of Paris. Urban forests soon on four emblematic sites. https://www.paris.fr/pages/des-forets-urbaines-bientot-sur-quatre-sites-emblematiques-6899/ (2019).Brisbane City Council. Brisbane’s urban forest. https://www.brisbane.qld.gov.au/clean-and-green/natural-environment-and-water/plants-trees-and-gardens/brisbanes-trees/brisbanes-urban-forest (2019).Cortinovis, C., Olsson, P., Boke-Olén, N. & Hedlund, K. Scaling up nature-based solutions for climate-change adaptation: Potential and benefits in three European cities. Urban For. Urban Green. 67, 127450 (2022).Furchtlehner, J., Lehner, D. & Lička, L. Sustainable streetscapes: design approaches and examples of Viennese practice. Sustainability 14, 961 (2022).Schmidt, S., Guerrero, P. & Albert, C. Advancing sustainable development goals with localised nature-based solutions: Opportunity spaces in the Lahn river landscape, Germany. J. Environ. Manage. 309, 114696 (2022).Article 

    Google Scholar 
    Gómez Martín, E., Giordano, R., Pagano, A., van der Keur, P. & Máñez Costa, M. Using a system thinking approach to assess the contribution of nature based solutions to sustainable development goals. Sci. Total Environ. 738, 139693 (2020).Article 

    Google Scholar 
    Bush, J. & Doyon, A. Building urban resilience with nature-based solutions: How can urban planning contribute? Cities 95, 102483 (2019).Article 

    Google Scholar 
    Brink, E. et al. Cascades of green: A review of ecosystem-based adaptation in urban areas. Glob. Environ. Chang. 36, 111–123 (2016).Article 

    Google Scholar 
    Oke, C. et al. Cities should respond to the biodiversity extinction crisis. npj Urban Sustain. 1, 9–12 (2021).Article 

    Google Scholar 
    Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).Article 

    Google Scholar 
    Spotswood, E. N. et al. Nature inequity and higher COVID-19 case rates in less-green neighbourhoods in the United States. Nat. Sustain. 4, 1092–1098 (2021).Article 

    Google Scholar 
    Moglia, M. et al. Accelerating a green recovery of cities: Lessons from a scoping review and a proposal for mission-oriented recovery towards post-pandemic urban resilience. Dev. Built Environ. 7, 100052 (2021).Article 

    Google Scholar 
    OECD. Focus on green recovery. https://www.oecd.org/coronavirus/en/themes/green-recovery (2021).European Commission. A European Green Deal. https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (2021).UNEP. Smart, Sustainable and Resilient cities: the Power of Nature-based Solutions. https://www.unep.org/resources/report/smart-sustainable-and-resilient-cities-power-nature-based-solutions (2021).Croeser, T. et al. Diagnosing delivery capabilities on a large international nature-based solutions project. npj Urban Sustain. 1, 32 (2021).Article 

    Google Scholar 
    McPhillips, L. E. & Matsler, A. M. Temporal evolution of green stormwater infrastructure strategies in three us cities. Front. Built. Environ. 4, 1–14 (2018).Article 

    Google Scholar 
    Spahr, K. M., Bell, C. D., McCray, J. E. & Hogue, T. S. Greening up stormwater infrastructure: Measuring vegetation to establish context and promote cobenefits in a diverse set of US cities. Urban For. Urban Green 48, 126548 (2020).Article 

    Google Scholar 
    Hamel, P. & Tan, L. Blue–Green Infrastructure for Flood and Water Quality Management in Southeast Asia: Evidence and Knowledge Gaps. Environ. Manage. 69, 699–718 (2021)City of Melbourne. Elizabeth Street Integrated Water Cycle Management Plan. http://urbanwater.melbourne.vic.gov.au/industry/our-strategies/elizabeth-street-catchment-iwcm-plan/#:~:text =The Elizabeth Street Catchment Integrated,within the municipality of Melbourne. (2015).Phelan, K., Hurley, J. & Bush, J. Land-use planning’s role in urban forest strategies: recent local government approaches in Australia. Urban Policy Res 37, 215–226 (2019).Article 

    Google Scholar 
    Bradford, J. B. & D’Amato, A. W. Recognizing trade-offs in multi-objective land management. Front. Ecol. Environ. 10, 210–216 (2012).Article 

    Google Scholar 
    Kindler, J. Linking ecological and development objectives: Trade-offs and imperatives. Ecol. Appl. 8, 591–600 (1998).Article 

    Google Scholar 
    UN Habitat. Streets as Public Spaces and Drivers of Urban Prosperity. https://unhabitat.org/streets-as-public-spaces-and-drivers-of-urban-prosperity (2013).De Gruyter, C., Zahraee, S. M. & Young, W. Street space allocation and use in Melbourne’s activity centres: Working paper. https://apo.org.au/sites/default/files/resource-files/2021-09/apo-nid314604.pdf (2021).Shoup, D. C. The trouble with minimum parking requirements. Transp. Res. Part A Policy Pract. 33, 549–574 (1999).Article 

    Google Scholar 
    Barter, P. A. A parking policy typology for clearer thinking on parking reform. Int. J. Urb. Sci. 5934, 136–156 (2015).Taylor, E. J. Transport Strategy Refresh Background Paper: Parking. https://s3.ap-southeast-2.amazonaws.com/hdp.au.prod.app.com-participate.files/2615/2963/7455/Transport_Strategy_Refresh_-_Background_paper_-_Car_Parking.pdf (2018).Guo, Z. & Schloeter, L. Street standards as parking policy: rethinking the provision of residential street parking in American Suburbs. J. Plan. Educ. Res. 33, 456–470 (2013).Article 
    CAS 

    Google Scholar 
    Taylor, D. E. Free parking for free people: German road laws and rights as constraints on local car parking management. Transp. Policy 101, 23–33 (2021).Article 

    Google Scholar 
    Pierce, G., Willson, H. & Shoup, D. Optimizing the use of public garages: Pricing parking by demand. Transp. Policy 44, 89–95 (2015).Article 

    Google Scholar 
    Taylor, E. J. Parking policy: The politics and uneven use of residential parking space in Melbourne. Land Use Policy 91, 103706 (2020).Article 

    Google Scholar 
    Thigpen, C. G. & Volker, J. M. B. Repurposing the paving: The case of surplus residential parking in Davis, CA. Cities 70, 111–121 (2017).Article 

    Google Scholar 
    Volker, J. M. B. & Thigpen, C. G. Not enough parking, you say? A study of garage use and parking supply for single-family homes in Sacramento and implications for ADUs. J. Transp. Land Use 15, 183–206 (2022).Article 

    Google Scholar 
    Rosenblum, J., Hudson, A. W. & Ben-Joseph, E. Parking futures: An international review of trends and speculation. Land Use Policy 91, 104054 (2020).Article 

    Google Scholar 
    Gössling, S. Why cities need to take road space from cars – and how this could be done. J. Urban Des. 25, 443–448 (2020).Article 

    Google Scholar 
    Clements, R. Parking: an opportunity to deliver sustainable transport. in Handbook of Sustainable Transport 280–288 (Edward Elgar Publishing, 2020). https://doi.org/10.4337/9781789900477.00041.Barter, P. A. Off-street parking policy surprises in Asian cities. Cities 29, 23–31 (2012).Article 

    Google Scholar 
    Shao, C., Yang, H., Zhang, Y. & Ke, J. A simple reservation and allocation model of shared parking lots. Transp. Res. Part C Emerg. Technol. 71, 303–312 (2016).Article 

    Google Scholar 
    Pojani, D. et al. Setting the agenda for parking research in other cities. in Parking: An International Perspective 245–260 (Elsevier, 2019).Guo, Z. Home parking convenience, household car usage, and implications to residential parking policies. Transp. Policy 29, 97–106 (2013).Article 
    CAS 

    Google Scholar 
    Scheiner, J., Faust, N., Helmer, J., Straub, M. & Holz-Rau, C. What’s that garage for? Private parking and on-street parking in a high-density urban residential neighbourhood. J. Transp. Geogr. 85, 102714 (2020).Article 

    Google Scholar 
    Inci, E. Economics of Transportation A review of the economics of parking. Econ. Transp. 4, 50–63 (2015).Article 

    Google Scholar 
    Arnott, R. Spatial competition between parking garages and downtown parking policy. Transp. Policy 13, 458–469 (2006).Article 

    Google Scholar 
    Marsden, G. The evidence base for parking policies-a review. Transp. Policy 13, 447–457 (2006).Article 

    Google Scholar 
    Taylor, E. “Fight the towers! Or kiss your car park goodbye”: How often do residents assert car parking rights in Melbourne planning appeals? Plan. Theory Pract. 15, 328–348 (2014).Article 

    Google Scholar 
    Kimpton, A. et al. Contemporary parking policy, practice, and outcomes in three large Australian cities. Prog. Plann. 153, 100506 (2020).Article 

    Google Scholar 
    Taylor, E. J. Journey into an immense heart of car parking. Plan. Theory Pract. 20, 448–455 (2019).Article 

    Google Scholar 
    Van Ommeren, J. N., Wentink, D. & Rietveld, P. Empirical evidence on cruising for parking. Transp. Res. Part A Policy Pract. 46, 123–130 (2012).Article 

    Google Scholar 
    Croeser, T. et al. Patterns of tree removal and canopy change on public and private land in the City of Melbourne. Sustain. Cities Soc. 56, 102096 (2020).Article 

    Google Scholar 
    Hurley, J. et al. Urban vegetation cover change in Melbourne. https://cur.org.au/cms/wp-content/uploads/2019/07/urban-vegetation-cover-change.pdf (2019).Hartigan, M., Fitzsimons, J., Grenfell, M. & Kent, T. Developing a metropolitan-wide urban forest strategy for a large, expanding and densifying capital city: Lessons from Melbourne, Australia. Land 10, 809 (2021).Article 

    Google Scholar 
    Department of Environment Land Water and Planning. Port Phillip Bay Environmental Management Plan. https://www.marineandcoasts.vic.gov.au/coastal-programs/port-phillip-bay (2017).City of Melbourne. Urban Forest Strategy. https://www.melbourne.vic.gov.au/community/greening-the-city/urban-forest/Pages/urban-forest-strategy.aspx (2014).City of Melbourne. Total Watermark: City as a Catchment (2014 Update). (2014).City of Melbourne. Nature in the City Strategy. https://www.melbourne.vic.gov.au/community/greening-the-city/urban-nature/Pages/nature-in-the-city-strategy.aspx (2017).Li, F. & Guo, Z. Do parking standards matter? Evaluating the London parking reform with a matched-pair approach. Transp. Res. Part A Policy Pract 67, 352–365 (2014).Article 

    Google Scholar 
    Ríos Flores, R. A., Vicentini, V. L. & Acevedo-Daunas, R. M. Practical Guidebook: Parking and Travel Demand Management Policies in Latin America. https://publications.iadb.org/en/publication/17409/practical-guidebook-parking-and-travel-demand-management-policies-latin-america (2015).Mingardo, G., van Wee, B. & Rye, T. Urban parking policy in Europe: A conceptualization of past and possible future trends. Transp. Res. Part A Policy Pract. 74, 268–281 (2015).Article 

    Google Scholar 
    Barter, P. A. Parking requirements in some major Asian cities. Transp. Res. Rec. 2245, 79–86 (2011)Taylor, E. J. & van Bemmel-Misrachi, R. The elephant in the scheme: Planning for and around car parking in Melbourne, 1929–2016. Land use policy 60, 287–297 (2017).Article 

    Google Scholar 
    City of Melbourne. Transport Strategy 2030. https://www.melbourne.vic.gov.au/parking-and-transport/transport-planning-projects/Pages/transport-strategy.aspx (2020).City of Melbourne. Total Watermark. https://www.clearwatervic.com.au/user-data/resource-files/City-of-Melbourne-Total-Watermark-Strategy.pdf (2009).Roy, A. H. et al. Impediments and solutions to sustainable, watershed-scale urban stormwater management: Lessons from Australia and the United States. Environ. Manag. 42, 344–359 (2008).Article 

    Google Scholar 
    City of Melbourne. Annual Report 2020-2021. https://www.melbourne.vic.gov.au/SiteCollectionDocuments/annual-report-2020-21.pdf (2021).Sprei, F., Hult, Å., Hult, C. & Roth, A. Review of the effects of developments with low parking requirements. ECEEE Summer Study Proc. 2019-June, 1079–1086 (2019).
    Google Scholar 
    Langemeyer, J. et al. Creating urban green infrastructure where it is needed – A spatial ecosystem service-based decision analysis of green roofs in Barcelona. Sci. Total Environ. 707, 135487 (2019).Article 

    Google Scholar 
    Ossola, A. et al. Landscape and Urban Planning Small vegetated patches greatly reduce urban surface temperature during a summer heatwave in Adelaide, Australia. Landsc. Urban Plan. 209, 104046 (2021).Article 

    Google Scholar 
    Dhakal, K. P. & Chevalier, L. R. Managing urban stormwater for urban sustainability: Barriers and policy solutions for green infrastructure application. J. Environ. Manage. 203, 171–181 (2017).Article 

    Google Scholar 
    Siqueira, F. F. et al. Small landscape elements double connectivity in highly fragmented areas of the Brazilian Atlantic Forest. Front. Ecol. Evol. 9, 1–14 (2021).Article 

    Google Scholar 
    Mimet, A., Kerbiriou, C., Simon, L., Julien, J. F. & Raymond, R. Contribution of private gardens to habitat availability, connectivity and conservation of the common pipistrelle in Paris. Landsc. Urban Plan. 193, 103671 (2020).Article 

    Google Scholar 
    Braschler, B., Dolt, C. & Baur, B. The function of a set-aside railway bridge in connecting urban habitats for animals: A case study. Sustain 12, 1194 (2020).Article 

    Google Scholar 
    Kirk, H., Threlfall, C. G., Soanes, K. & Parris, K. Linking Nature in the City Part Two: Applying the Connectivity Index. https://nespurban.edu.au/wp-content/uploads/2021/02/Linking-nature-in-the-city-Part-2.pdf (2020).Ossola, A., Locke, D., Lin, B. & Minor, E. Yards increase forest connectivity in urban landscapes. Landsc. Ecol. 34, 2935–2948 (2019).Article 

    Google Scholar 
    Lindenmayer, D. Small patches make critical contributions to biodiversity conservation. Proc. Natl. Acad. Sci. USA 116, 717–719 (2019).Article 
    CAS 

    Google Scholar 
    Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl. Acad. Sci. USA 116, 909–914 (2019).Article 
    CAS 

    Google Scholar 
    Rolf, W., Peters, D., Lenz, R. & Pauleit, S. Farmland–an Elephant in the room of urban green infrastructure? Lessons learned from connectivity analysis in three German cities. Ecol. Indic. 94, 151–163 (2018).Article 

    Google Scholar 
    Marissa Matsler, A. Making ‘green’ fit in a ‘grey’ accounting system: The institutional knowledge system challenges of valuing urban nature as infrastructural assets. Environ. Sci. Policy 99, 160–168 (2019).Article 

    Google Scholar 
    Meerow, S. The politics of multifunctional green infrastructure planning in New York City. Cities 100, 102621 (2020).Article 

    Google Scholar 
    Wolf, K. L. & Robbins, A. S. T. Metro nature, environmental health, and economic value. Environ. Health Perspect. 123, 390–398 (2015).Article 

    Google Scholar 
    Bell, J. F., Wilson, J. S. & Liu, G. C. Neighborhood greenness and 2-year changes in body mass index of children and youth. Am. J. Prev. Med. 35, 547–553 (2008).Article 

    Google Scholar 
    Miller, S. M. & Montalto, F. A. Stakeholder perceptions of the ecosystem services provided by Green Infrastructure in New York City. Ecosyst. Serv. 37, 100928 (2019).Article 

    Google Scholar 
    Janhäll, S. Review on urban vegetation and particle air pollution – Deposition and dispersion. Atmos. Environ. 105, 130–137 (2015).Article 

    Google Scholar 
    Li, L., Uyttenhove, P. & Vaneetvelde, V. Planning green infrastructure to mitigate urban surface water flooding risk–A methodology to identify priority areas applied in the city of Ghent. Landsc. Urban Plan. 194, 103703 (2020).Article 

    Google Scholar 
    Haghighatafshar, S. et al. Efficiency of blue-green stormwater retrofits for flood mitigation–Conclusions drawn from a case study in Malmö, Sweden. J. Environ. Manage. 207, 60–69 (2018).Article 

    Google Scholar 
    Croeser, T., Garrard, G., Sharma, R., Ossola, A. & Bekessy, S. Choosing the right nature-based solutions to meet diverse urban challenges. Urban For. Urban Green 65, 127337 (2021).Article 

    Google Scholar 
    Hansen, R., Olafsson, A. S., van der Jagt, A. P. N., Rall, E. & Pauleit, S. Planning multifunctional green infrastructure for compact cities: What is the state of practice? Ecol. Indic. 96, 99–110 (2019).Article 

    Google Scholar 
    Roy Morgan. Return of Corporate Workforce. https://www.melbourne.vic.gov.au/SiteCollectionDocuments/roy-morgan-report-return-to-the-workplace.pdf (2020).Bloomberg CityLab. A Modest Proposal to Eliminate 11,000 Urban Parking Spots. https://www.bloomberg.com/news/articles/2019-03-29/amsterdam-s-plan-to-eliminate-11-000-parking-spots (2019).World Economic Forum. Paris halves street parking and asks residents what they want to do with the space. https://www.weforum.org/agenda/2020/12/paris-parking-spaces-greenery-cities/ (2020).Urry, J. The ‘System’ of automobility. Theory, Cult. Soc. 21, 25–39 (2004).Article 

    Google Scholar 
    Docherty, I., Marsden, G. & Anable, J. The governance of smart mobility. Transp. Res. Part A Policy Pract 115, 114–125 (2018).Article 

    Google Scholar 
    Burdett, R. & Rode, P. Shaping cities in an urban age. (Phaidon Press Inc, 2018).Egerer, M., Haase, D., Frantzeskaki, N. & Andersson, E. Urban change as an untapped opportunity for climate adaptation. npj Urban Sustain. https://doi.org/10.1038/s42949-021-00024-y (2021).Article 

    Google Scholar 
    New York City Department of Environmental Protection. NYC Green Infrastructure Annual Report. https://www1.nyc.gov/assets/dep/downloads/pdf/water/stormwater/green-infrastructure/gi-annual-report-2020.pdf (2020).Eggimann, S. The potential of implementing superblocks for multifunctional street use in cities. Nat. Sustain. (2022) https://doi.org/10.1038/s41893-022-00855-2.City of Melbourne. Open Data Platform. https://data.melbourne.vic.gov.au/ (2022).City of Melbourne. Off-street car parks with capacity and type. https://data.melbourne.vic.gov.au/Transport/Off-street-car-parks-with-capacity-and-type/krh5-hhjn (2020).Ding, C. & Cao, X. How does the built environment at residential and work locations a ff ect car ownership? An application of cross-classi fi ed multilevel model. J. Transp. Geogr. 75, 37–45 (2019).Article 

    Google Scholar 
    Scheiner, J., Faust, N., Helmer, J., Straub, M. & Holz-rau, C. What’ s that garage for? Private parking and on-street parking in a high- density urban residential neighbourhood. J. Transp. Geogr. 85, 102714 (2020).Article 

    Google Scholar 
    Arnold, J. E., Graesch, A. P., Ochs, E. & Ragazzini, E. Life at Home in the Twenty-First Century in Life at home in the twenty-first century: 32 families open their doors. (ISD LLC, 2012).Beck, M. J., Hensher, D. A. & Wei, E. Slowly coming out of COVID-19 restrictions in Australia: Implications for working from home and commuting trips by car and public transport. J. Transp. Geogr. 88, 102846 (2020).Article 

    Google Scholar 
    Hensher, D. A., Ho, C. Q. & Reck, D. J. Mobility as a service and private car use: Evidence from the Sydney MaaS trial. Transp. Res. Part A Policy Pract 145, 17–33 (2021).Article 

    Google Scholar 
    ESRI. ArcGIS Network Analyst Extension. https://www.esri.com/en-us/arcgis/products/arcgis-network-analyst/overview (2022).Daniels, R. & Mulley, C. Explaining walking distance to public transport: The dominance of public transport supply. J. Transp. Land Use 6, 5–20 (2013).Article 

    Google Scholar 
    Sanders, J., Grabosky, J. & Cowie, P. Establishing maximum size expectations for urban trees with regard to designed space. Arboric. Urban For. 39, 68–73 (2013).
    Google Scholar 
    Grey, V., Livesley, S. J., Fletcher, T. D. & Szota, C. Establishing street trees in stormwater control measures can double tree growth when extended waterlogging is avoided. Landsc. Urban Plan. 178, 122–129 (2018).Article 

    Google Scholar 
    Kirk, H. et al. Linking nature in the city: A framework for improving ecological connectivity across the City of Melbourne. https://nespurban.edu.au/wp-content/uploads/2019/03/Kirk_Ramalho_et_al_Linking_nature_in_the_city_03Jul18_lowres.pdf (2018).Jaeger, J. A. G. Landscape division, splitting index, and effective mesh size: New measures of landscape fragmentation. Landsc. Ecol 15, 115–130 (2000).Article 

    Google Scholar 
    Spanowicz, A. G. & Jaeger, J. A. G. Measuring landscape connectivity: On the importance of within-patch connectivity. Landsc. Ecol. 34, 2261–2278 (2019).Article 

    Google Scholar 
    Casalegno, S., Anderson, K., Cox, D. T. C., Hancock, S. & Gaston, K. J. Ecological connectivity in the three-dimensional urban green volume using waveform airborne lidar. Sci. Rep. 7, 1–8 (2017).Article 

    Google Scholar 
    Garrard, G. E., McCarthy, M. A., Vesk, P. A., Radford, J. Q. & Bennett, A. F. A predictive model of avian natal dispersal distance provides prior information for investigating response to landscape change. J. Anim. Ecol 81, 14–23 (2012).Article 

    Google Scholar 
    Duncan, D. Pollination of Black-anther flax lily (Dianella revoluta) in fragmented New South Wales Mallee: A report to the Australian Flora Foundation. 12, http://aff.org.au/wpcontent/uploads/Duncan_Dianella_final.pdf (2003).Pebesma, E. Simple features for R: Standardized support for spatial vector. Data. R J. 10, 439–446 (2018).
    Google Scholar 
    Imteaz, M. A., Ahsan, A., Rahman, A. & Mekanik, F. Modelling stormwater treatment systems using MUSIC: Accuracy. Resour. Conserv. Recycl. 71, 15–21 (2013).Article 

    Google Scholar 
    Melbourne Water. Raingardens. https://www.melbournewater.com.au/building-and-works/stormwater-management/options-treating-stormwater/raingardens#:~:text=Designing a raingarden,2%25 of the catchment area. (2017). More