Singh, Y. D., Jena, B. & Ningthoujam, R. Potential bioactive molecules from natural products to combat against coronavirus. Adv. trad. Med. 1, 1–12. https://doi.org/10.1007/s13596-020-00496-w (2020).Article
CAS
Google Scholar
Badke, M. R. et al. Popular knowledge: The use of medicinal plants as therapeutic form in health care. Rev. Enferm. UFSM. 6, 225–234. https://doi.org/10.1590/S0104-07072012000200014 (2016).Article
Google Scholar
Macedo, J. G. F. et al. Analysis of the variability of therapeutic indications of medicinal species in the Northeast of Brazil: Comparative study. Evid. Based Complementary Altern. Med. 2018, 1–29. https://doi.org/10.1155/2018/6769193 (2018).Article
Google Scholar
Farias, J. C., Bomfim, B. L. S., Fonseca Filho, I. C., Silva, P. R. R. & Barros, R. F. M. Insecticides and repellents plants used in a rural community in northeast Brazilian. Revista Espacios. 37, 1–6 (2016).
Google Scholar
Silva, M. G. V., Lima, D. R., Monteiro, J. A. & Magalhães, F. E. A. Anxiolytic-like effect of chrysophanol from Senna Cana Stem in Adult Zebrafish (Danio Rerio). Nat. Prod. Res. 22, 1–5. https://doi.org/10.1080/14786419.2021.1980788 (2021).Article
CAS
Google Scholar
Vincenzi, F., Borea, P. A. & Varani, K. Anxiolytic properties of A1 adenosine receptor PAMs. Oncotarget 8, 7216–7217. https://doi.org/10.18632/oncotarget.13802 (2017).Article
PubMed
Google Scholar
Silva, M. I. G., Gondim, A. P. S., Nunes, I. F. S. & Sousa, F. C. F. Utilização de fitoterápicos nas unidades básicas de atenção à saúde da família no município de Maracanaú (CE). Rev. Bras. Farmacog. 16, 455–462. https://doi.org/10.1590/S0102-695X2006000400003 (2006).Article
Google Scholar
Guimarães, L. G. L., Silva, M. L. M., Reis, P. C. J., Costa, M. T. R. & Alves, L. L. General characteristics, phytochemistry and pharmacognosy of Lippia sidoides. Nat. Prod. Commun. 10, 1861–1867. https://doi.org/10.1177/1934578X1501001116 (2015).Article
Google Scholar
Veras, H. L. H. et al. Synergistic antibiotic activity of volatile compounds from the essential oil of Lippia sidoides and thymol. Fitoterap. 83, 508–512. https://doi.org/10.1016/j.fitote.2011.12.024 (2012).Article
CAS
Google Scholar
Farias, E. M. F. G. et al. Antifungal activity of Lippia sidoides Cham. (Verbenaceae) against clinical isolates of Candida species. J. Herb. Med. 2, 63–67. https://doi.org/10.1016/j.hermed.2012.06.002 (2012).Article
Google Scholar
Cavalcanti, S. C. H. et al. Composition and acaricidal activity of Lippia sidoides essential oil Against two-spotted spider mite (Tetranychus urticae Koch). Bioresour. Technol. 101, 829–832. https://doi.org/10.1016/j.biortech.2009.08.053 (2010).Article
CAS
PubMed
Google Scholar
Monteiro, M. V. B., Leite, A. K. R. M., Bertini, L. M., Morais, S. M. & Nunes-Pinheiro, D. C. S. Topical anti-inflammatory, gastroprotective and antioxidant effects of the essential oil of Lippia sidoides Cham. Leaves. J. Ethnopharmacol. 111, 378–382. https://doi.org/10.1016/j.jep.2006.11.036 (2007).Article
CAS
PubMed
Google Scholar
Botelho, M. A. et al. Effect of a novel essential oil mouthrinse without alcohol on gingivitis: A double-blinded randomized controlled tria. J. Appl. Oral. Sci. 15, 175–180 (2007).Article
CAS
PubMed
PubMed Central
Google Scholar
Botelho, M. A. et al. Comparative effect of an essential oil mouthrinse on plaque, gingivitis and salivary Streptococcus mutans levels: A double blind randomized study. Phytother. Res. 23, 1214–1219. https://doi.org/10.1002/ptr.2489 (2009).Article
CAS
PubMed
Google Scholar
Medeiros, M. G. F. et al. In vitro antileishmanial activity and cytotoxicity of essential oil from Lippia sidoides Cham. Parasitol. Inter. 60, 237–241. https://doi.org/10.1016/j.parint.2011.03.004 (2011).Article
CAS
Google Scholar
Gomide, M. S. et al. The effect of the essential oils from five different Lippia species on the viability of tumor cell lines. Rev. Bras. Farmacogn. 23, 895–902. https://doi.org/10.1590/S0102-695X2013000600006 (2013).Article
CAS
Google Scholar
Murade, V. et al. A plausible involvement of GABAA/benzodiazepine receptor in the anxiolytic-like effect of ethyl acetate fraction and quercetin isolated from Ricinus communis Linn. leaves in mice. Phytomed. Plus. 1, 100041. https://doi.org/10.1016/j.phyplu.2021.100041 (2021).Article
Google Scholar
Coleta, M., Campos, M. A., Cotrim, M. D., Lima, T. C. M. & Cunha, A. P. Assessment of luteolin (3′,4′,5,7-tetrahydroxyflavone) neuropharmacological activity. Behav. Brain Res. 189, 75–82. https://doi.org/10.1016/j.bbr.2007.12.010 (2008).Article
CAS
PubMed
Google Scholar
Kosalec, I., Bakmaz, M., Pepeliniak, S. & Vladimir-Knezevic, S. Quantitative analysis of the flavonoids in raw propolis from northern Croatia. A Pharmaceut. 54, 65–72 (2004).CAS
Google Scholar
Cunha, F. A. B. et al. Eugenia uniflora leaves essential oil induces toxicity in Drosophila melanogaster: Involvement of oxidative stress mechanisms. Toxicol. Res. 4, 634–644. https://doi.org/10.1039/c4tx00162a (2015).Article
Google Scholar
Coulom, H. & Birman, S. Chronic exposure to rotenone models sporadic Parkinson’s disease in Drosophila melanogaster. J. Neurosci. 24, 10993–10998. https://doi.org/10.1523/JNEUROSCI.2993-04.2004 (2004).Article
CAS
PubMed
PubMed Central
Google Scholar
Barros, F. J. et al. Activity of essential oils of Piper aduncum anf and Cinnamomum zeylanicum by evaluating osmotic and morphologic fragility of erythrocytes. Eur. J. Integr. Med. 515, 1–8. https://doi.org/10.1016/j.eujim.2016.02.011 (2016).Article
Google Scholar
Meyer, B. N. et al. Brine Shrimp: A convenient general bioassay for active plant constituints. Planta Med. 45, 31–34. https://doi.org/10.1055/s-2007-971236 (1982).Article
CAS
PubMed
Google Scholar
de Magalhães, F. E. A. et al. Adult zebrafish: an alternative behavioral model of formalin-induced nociception. Zebrafish 4, 422–429. https://doi.org/10.1089/zeb.2017.1436 (2017).Article
CAS
Google Scholar
OECD guideline for testing acute toxicity in fishes, Test No. 1992. http://www.oecd.org/chemicalsafety/risk-assessment/1948241.pdf. (Acessado em 25 de octuber, 2021).Arellano-Aguilar, O. et al. Use of the zebrafish embryo toxicity test for use of the zebrafish embryo toxicity test for risk assessment purpose: Case study. J. Fish Sci. 4, 52–62 (2015).
Google Scholar
Gonçalves, N. G. G. et al. Protein fraction from Artocarpus Altilis pulp exhibits antioxidant properties and reverses anxiety behavior in adult zebrafish via the serotoninergic system. J. Funct. Foods. 66, 103772. https://doi.org/10.1016/j.jff.2019.103772 (2020).Article
CAS
Google Scholar
Gebauer, D. L. et al. Effects of anxiolytics in zebrafish: Similarities and differences between benzodiazepines. Buspirone and Ethanol. Pharmacol. Biochem. Behav. 99, 480–486. https://doi.org/10.1016/j.pbb.2011.04.021 (2011).Article
CAS
PubMed
Google Scholar
Benneh, C. K. et al. Maerua Angolensis stem bark extract reverses anxiety and related behaviours in zebrafish—Involvement of GABAergic and 5-HT systems. J. Ethnopharmacol. 207, 129–145. https://doi.org/10.1016/j.jep.2017.06.012 (2017).Article
CAS
PubMed
Google Scholar
Santos, S. A., Vilela, C., Freire, C. S., Neto, C. P. & Silvestre, A. J. Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood. J. Chromatogr. B. 938, 65–74. https://doi.org/10.1016/j.jchromb.2013.08.034 (2013).Article
CAS
Google Scholar
Pereira, O. R., Peres, A. M., Silva, A. M. S., Domingues, M. R. M. & Cardoso, S. M. Simultaneous characterization and quantification of phenolic compounds in Thymus x citriodorus using a validated HPLC–UV and ESI–MS combined method. Food Res. Inter. 54, 1773–1780. https://doi.org/10.1016/j.foodres.2013.09.016.( (2013).Article
CAS
Google Scholar
Zhao, Y. et al. Characterization of phenolic constituents in Lithocarpus polystachyus. Royal Soc. Chem. https://doi.org/10.1039/c3ay41288a (2014).Article
Google Scholar
Petkovska, A., Gjamovski, V., Stanoeva, J. P. & Stefova, M. Characterization of the polyphenolic profiles of peel, flesh and leaves of malus domestica cultivars using UHPLC-DAD-HESI-MSn. Nat. Prod. Commun. https://doi.org/10.1177/1934578X1701200111 (2017).Article
PubMed
Google Scholar
Mena, P. et al. Rapid and comprehensive evaluation of (poly)phenolic compounds in pomegranate (Punica granatum L.) juice by UHPLC-MSn. Molecules 17, 14821–14840. https://doi.org/10.3390/molecules171214821 (2012).Article
CAS
PubMed
PubMed Central
Google Scholar
Ye, M., Han, J., Chen, H., Zheng, J. & Guo, D. Analysis of phenolic compounds in rhubarbs using liquid chromatography coupled with electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 18, 82–91. https://doi.org/10.1016/j.jasms.2006.08.009 (2007).Article
CAS
PubMed
Google Scholar
Kang, J., Price, W., Ashton, J., Tapsell, L. C. & Johnson, S. Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MSn. Food Chem. 211, 215–226. https://doi.org/10.1016/j.foodchem.2016.05.052 (2016).Article
CAS
PubMed
Google Scholar
Schutz, K., Kammerer, D. R., Carle, R. & Schieber, A. Characterization of phenolic acids and flavonoids in dandelion (Taraxacum officinale WEB. ex WIGG.) root and herb by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 19, 179–186. https://doi.org/10.1002/rcm.1767.15593267 (2005).Article
PubMed
Google Scholar
Hassan, K. O., Bedgood, D. R. Jr., Prenzler, P. D. & Robards, K. Chemical screening of olive biophenol extracts by hyphenated liquid chromatography. Anal. Chim. Acta 603, 176–189. https://doi.org/10.1016/j.aca.2007.09.044 (2007).Article
CAS
Google Scholar
Brito, A., Ramirez, J. E., Areche, C., Sepúlveda, B. & Simirgiotis, M. J. HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in Northern Chile. Molecules 19, 17400–17421. https://doi.org/10.3390/moléculas191117400 (2014).Article
PubMed
PubMed Central
Google Scholar
McNab, H., Ferreira, E. S. B., Hulme, A. N. & Quye, A. Negative ion ESI–MS analysis of natural yellow dye flavonoids—An isotopic labelling study. Int. J. Mass Spectrometry. 284, 57–65. https://doi.org/10.1016/j.ijms.2008.05.039 (2009).Article
CAS
Google Scholar
Gouveia, S. & Castilho, P. C. Characterisation of phenolic acid derivatives and flavonoids from different morphological parts of Helichrysum obconicum by a RP-HPLC–DAD-()–ESI-MSn method. Food Chem. 129, 333–344. https://doi.org/10.1016/j.foodchem.2011.04.078 (2011).Article
CAS
PubMed
Google Scholar
Peter, S. R., Peru, K. M., Fahlman, B., McMartin, D. W. & Headley, J. V. The application of HPLC ESI MS in the investigation of the flavonoids and flavonoid glycosides of a Caribbean Lamiaceae plant with potential for bioaccumulation. J. Environ. Sci. Health B. 50, 819–826. https://doi.org/10.1080/03601234.2015.1058103 (2015).Article
CAS
PubMed
Google Scholar
Rashid, N. A. A., Lau, B. F. & Kue, C. S. Differential toxicity and teratogenic effects of the hot water and cold water extracts of Lignosus rhinocerus (Cooke) Ryvarden sclerotium on zebrafish (Danio rerio) embryos. J. Ethnopharmacol. 285(114787), 2022. https://doi.org/10.1016/j.jep.2021.114787 (2022).Article
CAS
Google Scholar
Costa, S. M. O. et al. Chemical constituents from Lippia sidoides and cytotoxic activity. J. Nat. Prod. 64, 792–795. https://doi.org/10.1021/np0005917 (2001).Article
CAS
PubMed
Google Scholar
Fabri, R. L., Nogueira, M. S., Moreira, J. R., Bouzada, M. L. M. & Scio, E. Identification of antioxidant and antimicrobial compounds of Lippia Species by bioautography. J. Med. Food. 14, 840–846. https://doi.org/10.1089/jmf.2010.0141 (2011).Article
CAS
PubMed
Google Scholar
Funari, C. S. et al. Chemical and antifungal investigations of six Lippia species (Verbenaceae) from Brazil. Food Chem. 135, 2086–2094. https://doi.org/10.1016/j.foodchem.2012.06.077 (2012).Article
CAS
PubMed
Google Scholar
Garmus, T. T., Paviani, L. C., Queiroga, C. L. & Cabral, F. A. Extraction of phenolic compounds from pepper-rosmarin (Lippia sidoides Cham.) leaves by sequential extraction in fixed bed extractorusing supercritical CO2, ethanol and water as solvents. J. Supercrit. Fluids. 99, 68–75. https://doi.org/10.1016/j.supflu.2015.01.016 (2015).Article
CAS
Google Scholar
Botelho, M. A. et al. Nanotechnology in phytotherapy: Antiinflammatory effect of a nanostructured thymol gel from Lippia sidoides in acute periodontitis in rats. Phytother. Res. 30, 152–159. https://doi.org/10.1002/ptr.5516 (2016).Article
CAS
PubMed
Google Scholar
Veras, H. N. et al. Atividade anti-inflamatória tópica do óleo essencial de Lippia sidoides cham: Possível mecanismo de ação. Phytother. Res. 27, 179–185. https://doi.org/10.1002/ptr.4695 (2013).Article
CAS
PubMed
Google Scholar
Fernandes, L. M., Guterres, Z. R., Almeida, I. V. & Vicentini, V. E. P. Genotoxicity and antigenotoxicity assessments of the flavonoid vitexin by the Drosophila melanogaster somatic mutation and recombination test. J. Med. food. 20, 1–9. https://doi.org/10.1089/jmf.2016.0149 (2017).Article
CAS
Google Scholar
Sotibrán, A. N. C., Ordaz-Téllez, M. G. & Rodríguez-Arnaiz, R. Flavonoids and oxidative stress in Drosophila melanogaster. Mutation Res. 726(60–65), 2011. https://doi.org/10.1016/j.mrgentox.2011.08.005 (2011).Article
CAS
Google Scholar
Silva, L. V. F., Mourão, R. H. V., Manimala, J. & Lnenicka, G. A. The essential oil of Lippia alba and its components affect Drosophila behavior and synaptic physiology. J. Experim. Biol. 221, 1–10. https://doi.org/10.1242/jeb.176909 (2018).Article
Google Scholar
Poetini, M. R. et al. Hesperidin attenuates iron-induced oxidative damage and dopamine depletion in Drosophila melanogaster model of Parkinson’s disease. Chem. Biol. Interact. 279, 177–186. https://doi.org/10.1016/j.cbi.2017.11.018 (2018).Article
CAS
PubMed
Google Scholar
Xavier, A. L. et al. Chemical composition, antitumor activity, and toxicity of essential oil from the leaves of Lippia microphylla. Z. Naturforsch. 70, 129–137. https://doi.org/10.1515/znc-2014-4138 (2015).Article
CAS
Google Scholar
Freitas, M. V. et al. Influence of aqueous crude extracts of medicinal plants on the osmotic stability of human erythrocytes. Toxicol. In Vitro. 22, 219–224. https://doi.org/10.1016/j.tiv.2007.07.010 (2008).Article
CAS
PubMed
Google Scholar
Oyedapo, O. O., Akinpelu, B. A., Akinwunmi, K. F., Adeyinka, M. O. & Sipeolu, F. O. Red blood cell membrane stabilizing potentials of extracts of Lantana camara and its fractions. Plant Physiol. Biochem. 2, 46–51 (2010).
Google Scholar
Bilto, Y. Y., Suboh, S., Aburjai, T. & Abdalla, S. Structure-activity relationships regarding the antioxidant effects of the flavonoids on human erythrocytes. Nat. Sci. 4, 740–747. https://doi.org/10.4236/ns.2012.4909 (2012).Article
Google Scholar
Ajaiyeoba, E. O. et al. In vitro cytotoxicity studies of 20 plants used in Nigerian antimalarial ethnomedicine. Phytomed. 13, 295–298 (2006).Article
CAS
Google Scholar
Vélez, E., Regnault, H. D., Jaramillo, C. J., Veléz, A. P. E. & Isitua, C. C. Fitoquímica de Lippia citriodora K cultivada en Ecuador y su actividad biológica. Rev. Cien. UNEMI. 12, 9–19 (2019).Article
Google Scholar
Costa, P. S. et al. Antifungal activity and synergistic effect of essential oil from Lippia alba against trichophyton rubrum and Candida spp. Rev. Virt. Quim. 12, 1–12. https://doi.org/10.21577/1984-6835.20200119 (2020).Article
CAS
Google Scholar
Gupta, P., Khobragade, S. B., Shingatgeri, V. M. & Rajaram, S. M. Assessment of locomotion behavior in adult Zebrafish after acute exposure to different pharmacological reference compounds. Drug Des. Devel. Ther. 5, 127–133. https://doi.org/10.4103/2394-2002.139626 (2014).Article
CAS
Google Scholar
Bezerra, P. et al. Composição química e atividade biológicade óleos essenciais de plantas do Nordeste—gênero Lippia. Cienc. Cult. 33, 1–14 (1981).CAS
Google Scholar
Pascual, M. E., Slowing, K., Carretero, E., Sánchez Mata, D. & Villar, A. Lippia: Traditional uses, chemistry and pharmacology: A review. J. Ethnopharmacol. 76, 201–214. https://doi.org/10.1016/s0378-8741(01)00234-3 (2001).Article
CAS
PubMed
Google Scholar
Mamun-Or-Rashid, A. N. M., Sen, M. K., Jamal, M. A. H. M. & Nasrin, S. A comprehensive ethnopharmacological review on Lippia alba M. Int. J. Biomed. Mater. Res. 1, 14–20. https://doi.org/10.11648/j.ijbmr.20130101.13 (2013).Article
Google Scholar
Mácová, S. et al. Comparison of acute toxicity of 2-phenoxyethanol and clove oil to juvenile and embryonic stages of Danio rerio. Neuroendocrinol. Lett. 29, 680–684 (2008).PubMed
Google Scholar
Batista, F. L. A. et al. Antinociceptive effect of volatile oils from Ocimum basilicum flowers on Adult Zebrafish. Rev. Bras. Farmacog. 31, 282–289. https://doi.org/10.1007/s43450-021-00154-5 (2021).Article
CAS
Google Scholar
Horzmann, K. A. & Freeman, J. L. Making waves: New developments in toxicology with the Zebrafish. Toxicol. Sci. 163, 5–12. https://doi.org/10.1093/toxsci/kfy044 (2018).Article
CAS
PubMed
PubMed Central
Google Scholar
Ferreira, M. K. A. et al. Anxiolytic-like effect of chalcone N-{(4′-[(E)-3-(4-fluorophenyl)-1-(phenyl) prop-2-en-1-one]} acetamide on adult zebrafish (Danio Rerio): Involvement of the GABAergic system. Behav. Brain Res. 374, 111871. https://doi.org/10.1016/j.bbr.2019.03.040 (2019).Article
CAS
PubMed
Google Scholar
Siqueira-Lima, P. S. et al. Central nervous system and analgesic profiles of Lippia Genus. Rev. Bras. Farmacogn. 29, 125–135. https://doi.org/10.1016/j.bjp.2018.11.006 (2019).Article
CAS
Google Scholar
Ferreira, M.K.A. da Silva, A.W. dos Santos Moura, A.L. Sales, K.V.B. Marinho, E.M. do Nascimento Martins Cardoso, J. Marinho, M.M. Bandeira, P.N. Magalhães, F.E.A. Marinho, E.S. et al. Chalcones reverse the anxiety and convulsive behavior of adult zebrafish. Epilepsy Behav. https://doi.org/10.1016/j.yebeh.2021.107881 (2021).Silva, A. W., Wlisses, A., Kueirislene, M., Ferreira, A. & Ramos, L. Combretum lanceolatum extract reverses anxiety and seizure behavior in adult zebrafish through GABAergic neurotransmis-Sion: An in vivo and in silico study. J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2021.1935322 (2021).Article
PubMed
PubMed Central
Google Scholar
Selmani, A. & Kovaˇcevi´, D., Bohinc, K.,. Nanoparticles: From synthesis to applications and beyond. Adv. Colloid Interface Sci. 303, 102640. https://doi.org/10.1016/j.cis.2022.102640 (2022).Article
CAS
PubMed
Google Scholar More