More stories

  • in

    Evidence for a consistent use of external cues by marine fish larvae for orientation

    General methodological approachTo examine if larvae utilize external cues (i.e., oriented movement) to swim in a directional manner (i.e., significant mean vector length), we develop two complementary analyses that compare the empirically observed directional precision (i.e., mean vector length) with the null distribution expected under a strict use of internal cues (i.e., unoriented movement). The empirically observed directional precision is quantified as the mean vector length (R) of larval bearings (θ) (Fig. 2a), herein ({hat{R}}_{theta }). The angular differences between consecutive bearings, herein turning angles (Fig. 2a; Δθt = θt-θt-1), are used to generate two null distributions of Rθ expected under the unoriented movement of Correlated Random Walk (CRW; ({R}_{{theta }_{0}})), based on the two analyses: Correlated Random Walk-von Mises (CRW-vm) and Correlated Random Walk- resampling (CRW-r), described below. The first is theoretical and is based on a von Mises distribution of simulated Δθ (Fig. 2b, c); the second is empirical, and is based on resampling the Δθ within each trial (Fig. 2d, e). These two analyses are complementary because the first can generate an unlimited number of trajectories but is based on a theoretical distribution rather than on observations, whereas the second is based on a finite number of observations. In addition to these two main analyses, we apply a third analysis, the Correlated Random Walk-wrapped Cauchy, herein CRW-wc, which is similar to CRW-vm, with the only difference of using wrapped Cauchy distribution instead of von Mises. The reason for applying CRW-wc is that it was shown to represent well animal movement in some cases33. Notably, we consider the simple cases of undirected movement pattern with a turning angle distribution centered at 0 (CRW), testing if the mean vector length of the trial’s sequence is higher than that expected under CRW. If true, that would be an indication for a directed movement pattern (i.e., BRW or BCRW), or an indication for more complex behaviors (discussed in Supplementary note 4).Statistics and reproducibilityQuantitative analyses are applied to directional trials, i.e., larval bearing sequences ((hat{theta })) that are significantly different from a uniform distribution based on the Rayleigh’s test8 (p  81, 162, 270). Trials with Nobs higher than the maximal Nobs were trimmed to contain the maximal Nobs per species, retaining the later-in-time data. For the scuba-following trials, the number of observations had to be Nobs  > 20 due to the sensitivity of the analysis to a low number of observations. In other words, a low number of observations limits the capacity of the quantitative analyses to distinguish between oriented and unoriented movement patterns (see Supplementary note 3, Supplementary Figure S3). Importantly, both methods were shown to be robust in terms of artifacts and biases55,56, and have been tested together demonstrating high consistency in larval orientation results16,48.Each orientation trial includes a sequence of larval swimming directions, termed bearings (θ) (Fig. 2a). For the DISC trials, θ are the cardinal directions of larval positions within the DISC’s chamber55. The angular differences between θ of consecutive time steps (t) are defined as Δθ (Δθt = θt-θt-1), such that for every θ sequence of a given length (N), there is a respective Δθ sequence of length N-1 (Fig. 2a). Directional precision with respect to external and internal cues is computed as the mean vector length of bearings (Rθ) and of turning angles (RΔθ), respectively54. Values of mean vector length (R) range from 0 to 1, with 0 indicating a uniform distribution of angles and 1 indicating that all angles are the same.We used two quantitative approaches to examine if larvae exhibit oriented movement: the Correlated Random Walk- von Mises and Correlated Random Walk- wrapped Cauchy (CRW-vm and CRW-wc) analyses and the CRW resampling (CRW-r) analysis. Both types of analyses are based on the assumption that trajectories of animals that strictly use internal cues for directional movement are characterized by a CRW pattern. Hence, their capacity for directional movement is exclusively dependent on the distribution of their turning angles (Δθ)57. In contrast, for an external-cues orienting animal, for which movement directions are correlated with an external fixed direction, the mean vector length of the observed bearings, ({hat{R}}_{theta }), is expected to exceed that of a CRW, ({R}_{{theta }_{0}})6. Both analyses compare ({hat{R}}_{theta }) against the expected ({R}_{{theta }_{0}}), but the first type computes ({R}_{{theta }_{0}^{{vm}}})and ({R}_{{theta }_{0}^{{wc}}})using theoretical von Mises and wrapped Cauchy distributions of Δθ, and the second type computes ({R}_{{theta }_{0}^{r}}) by producing 100 new θ sequences per individual trial (larva) by multiple resampling-without-replacement of the Δθ.A key principle for both analyses types stems from the fact that the mean vector length of bearings (Rθ) is inherently dependent on the mean vector length of turning angles (RΔθ)28. In other words, an animal with a high capacity for unoriented directional movement, i.e., a narrow distribution of Δθ, is likely to yield a high Rθ, even if it makes absolutely no use of external cues for oriented movement. Hence, in both analyses ({hat{R}}_{theta }) is gauged against a distribution of ({R}_{{theta }_{0}}), given its respective mean vector length of turning angles ({hat{R}}_{triangle theta }). The open-source software R58 with the package circular59 is used for all analyses in this study.Correlated Random Walk-von Mises (CRW-vm)In this analysis, we first generate the directional precision (R), expected for unoriented CRW movement using the theoretical von Mises distribution (({R}_{{theta }_{0}^{{vm}}})). The CRW bearings sequences (({theta }_{0}^{{vm}})) are generated by choosing a random initial bearing, followed by a series of Nobs-1 turning angles (({triangle theta }_{0}^{{vm}})) in bearing direction; drawn at random (with replacement) from a von Mises distribution (Nrep = 1000). The length of ({theta }_{0}^{{vm}}) sequence is according to the number of observations in our four types of experimental trials: Nobs = 21 for the scuba-following, and 90, 180 and 300 for the DISC (Table 1). The directional precision of the von Mises distribution is dependent on the concentration parameter, kappa. Kappa values ranging from 0 to 399 are applied at 1-unit increments to cover the entire range of directional precision from completely random (kappa = 0), to highly directional (kappa = 399). Next, the directional precision of the bearings (Rθ) and the turning angles (RΔθ) are computed for each simulated sequence of θ (Fig. 2a–c).These respective pairs of values (RΔθ, Rθ) provide the basis for generating the expected relationship between ({R}_{{theta }_{0}^{{vm}}}) and ({R}_{{triangle theta }_{0}^{{vm}}}). Then, for any given kappa value, the following quantiles are computed: 5th, 10th, 20th,….,90th, and 95th (grey vertical distributions in Fig. 2c). Next, smooth spline functions are fitted through all respective quantiles, generating the ({R}_{{theta }_{0}^{{vm}}})quantile contours, which represent the null expectation under CRW. This expected (RΔθ, Rθ) correspondence creates a phase diagram (Fig. 2c), based on which the observed θ patterns are gauged. The procedure is repeated four times to match the among-study differences in the number of θ observations per trial (i.e., Nobs = 21, 90, 180, and 300; see Table 1).To examine if the observed larval movement patterns differ from those expected for unoriented movement (CRW-vm), we compute RΔθ and Rθ for each individual trial (({hat{R}}_{triangle theta }) and ({hat{R}}_{theta })). We then place these values in the phase diagram and examine their positions with respect to ({R}_{{theta }_{0}^{{vm}}}) (Fig. 2c). Larvae with ({hat{R}}_{theta }) substantially higher than ({bar{R}}_{{theta }_{0}^{{vm}}}), are considered to have a higher tendency for a straighter movement than expected under CRW, suggesting oriented movement such as BRW and BCRW (Fig. 2b, c)6,28. Larvae with ({hat{R}}_{theta }) values substantially below ({bar{R}}_{{theta }_{0}^{{vm}}})indicate irregular patterns such as a one-sided drift (right or left). A larva is considered directional if the bearing sequence ((hat{theta })) is significantly different from a uniform distribution based on the Rayleigh’s test (p  More

  • in

    Researchers who reach far beyond their disabilities

    Scientists with visible and invisible disabilities take on adversity, helping themselves and others.Shigehiro Namiki always wanted to study insects. After his PhD research at the University of Tsukuba, he was a postdoctoral fellow, then a staff scientist at Janelia Research Campus. Among his projects, Namiki worked with others on a method to analyze how the few so-called descending neurons in fruit flies control a wide range of movements and behavior. These neurons run from the brain to the ventral nerve cord and branch out to circuits that control the insect’s neck, legs and wings. More

  • in

    A global roadmap to seize the opportunities of healthy longevity

    Building from this background the NAM took on these issues as its first-ever grand challenge, as a critical issue of import and urgency for us all. In 2018, the NAM empaneled an international, independent and multidisciplinary commission to create a global roadmap for healthy longevity, complete with evidence-based, targeted and actionable recommendations to move societies forward from an almost-exclusive focus on ‘coping with aging populations’ toward enabling individuals and societies to age successfully, and to reap the economic and societal benefits of longevity. The commission offers a way forward for governments and societies by beginning with recommendations for the next five years, and how these solutions can be financially sustainable through the creation of a virtuous cycle.To support these goals, the commission was to “(1) comprehensively address the challenges and opportunities presented by global aging population; (2) catalyze breakthrough ideas and research that will extend the human healthspan; and (3) generate transformative and scalable innovations world wide”8. The resulting comprehensive report, which was delayed in good measure by the COVID-19 pandemic, was released in June 2022 (ref. 8). We report here a summary of the high-level vision, goals, findings and recommendations of this global roadmap.The evidence for opportunities of longevity and the costs of inactionWe are seeing longer lives with increasing years spent in ill health (that is, the decompression of morbidity)9. The implications of longevity without health are costly ones for the individual, their families and for society. By contrast, scientific evidence shows that the majority of chronic diseases are preventable, and that prevention works at every age and stage of life. Further, the subset of individuals who are the beneficiaries of cumulative health-promoting conditions across the life course are demonstrating healthy longevity, defined as “the state in which years in good health approach the biological lifespan, with physical, cognitive and social functioning, enabling well-being across populations”8. However, only a minority of people in any country have the benefit of the necessary investments that promote health, and disparities in access to these investments across the life course are a major cause of unhealthy longevity. The costs of inaction in the face of widening disparities include the high risk of young people aging with more ill health, and the attendant costs to them and society.Further, the commission reports that when people have health and function in older age, the considerable cognitive and socioemotional capabilities and expertise that accrue with aging, and the prosocial goals of older age, constitute human and social capital assets that are unprecedented in both nature and scale. Contrary to disproven myths, workforce participation not only brings these valuable capabilities (such that intergenerational teams in the workplace are more productive and innovative than single-age-group teams), but older people working is also associated with more jobs for younger individuals10. In the USA and EU, it has been shown that older adults contribute 7% of gross domestic product (GDP) through paid work and the economic value of volunteering and caregiving11, even before opportunities are specifically expanded for the increasing older population. Societies that recognize this potential and invest to create both healthy longevity and the societal organizations and policies through which older adults can contribute to societal good will develop the opportunity for all ages to thrive. The return on investment will be to create older ages with health, function, dignity, meaning, purpose and opportunities — for those who desire it — to work longer, care for others or contribute in ways that they value to their community and future generations.The definition, principles and vision of ‘Vision 2050’ for healthy longevityThe global roadmap builds on the WHO ‘Decade of Healthy Ageing’, the UN Sustainable Development Goals for 2030 and other reports. It sets out principles for achieving healthy longevity using data and meaningful metrics to track achievement of outcomes and guide decision making. The report offers a vision empowered by the evidence: that, by 2050, societies will value the capabilities and assets of older people; all people will have the opportunity to live long lives with health and function; barriers to full participation by older people in society will have been solved; and that older people, with such health, will have the opportunity to engage in meaningful and productive activities. In turn, this societal engagement will create unprecedented social, human and economic capital, contributing to intergenerational well-being and cohesion, and to GDP.Implementing Vision 2050Accomplishing this vision demands ‘all-of-society’ intent — with aligned goals for healthy longevity and transformative action across public, private and academic sectors, and all of civil society and communities — and the implementation of evidence across the full and extending life course. Transforming only one component or sector (for example, health systems) will not be sufficient to create healthy longevity or its full opportunities. Rather, given that nations are complex systems, this vision for our future requires governmental leadership and transformation of all sectors of our complex societal system (Fig. 1).Fig. 1: Relevant actors for an all-of-society approach to healthy longevity.Healthy longevity requires government leadership and cooperation across all sectors. Adapted with permission from figure S-2 of ref. 8.Full size imageInvestment for healthy longevity — across the enabling sectors of health systems, social infrastructure and protections, the physical environment, and work and volunteering contributions — will require intentional planning and leadership to transform those components in tandem, and to resolve disrupters such as ageism, the social determinants of health and inequity, and pollution. These investments across all sectors will create the conditions for achieving healthy longevity and build new capital (human, social and economic) that will benefit all of society. As a result of these investments, society will see younger people thrive and move into a position to age with healthy longevity; those individuals who are already older will be recognized as valuable contributors to society in a ‘pay-it-forward’ stage of life. The underpinning social compact between citizens and government will support valuing each age group’s capabilities and goals, and the building of a society of well-being and cohesion across generations. This is at the center of the virtuous cycle for healthy longevity (Fig. 2)Fig. 2: The virtuous cycle of healthy longevity.Healthy longevity (top) is an outcome of a virtuous cycle, itself contributing to capital development (bottom left). Bottom right, capital (human, financial and social) supports enablers (work, physical environment, health systems and social infrastructure). The enablers propel the cycle, contributing to healthy longevity. Intentional investment for healthy longevity across all enabling sectors will create new capital that will benefit all of society. Adapted with permission from figure 1-4 of ref. 8.Full size imageGoals for initiating the transformation to healthy longevityThe commission identified the following changes that should occur from now to 2027 to start transformation of all of society, towards Vision 2050 and the creation of healthy longevity for all:

    Creating social cohesion, social engagement and addressing the social determinants of health through social infrastructure are among the most effective determinants of slowed aging and the prevention of chronic conditions across the life course. Financial security in older age is essential for all.

    Governments, the private sector and civil society should partner to design physical environments and infrastructure that are user-centered, and function as cohesion-enabling intergenerational communities for healthy longevity. Initiatives should focus on the inclusion of older people in the design, creating public spaces that promote social cohesion and intergenerational connection as well as mobility, physical activity and access to food, transportation, social services and engagement.

    By 2027, governments should develop strategies and plans to arrive at adequately sized, geriatrically knowledgeable public health, clinical and long-term care workforces, and an integration of the pillars of the health system and social services. Together, these dimensions would foster and extend years of good health and support the diverse health needs and well-being of older people.

    Governments should work to build the dividend of health longevity in collaboration with the business sector and civil society, to develop policies, incentives, and supportive systems that enable and encourage lifelong learning, and greater opportunities and necessary skills to engage in meaningful work or community volunteering across the lifespan.

    We summarize the commission’s recommended goals for each of these sectors in brief in Box 1. Across all sectors, the key first steps that the commission identified are ones that can resolve obstacles to change and plan the change needed to shift multiple complex systems through both top-down and bottom-up approaches, in ways appropriate to each country and context. These initiatives should create enough momentum to foster early returns on investment and optimism to propel sustained investment for subsequent stages. This would need to begin for all governments by 2023, establishing calls to action to develop and implement data-driven, all-of-society plans to build the systems, policies, organizations and infrastructure needed, and for tracking change.Box 1 Goals for 2022–2027 to initiate the transformation to healthy longevityThese goals are reproduced from Global Roadmap for Healthy Longevity8.
    Social infrastructure

    Develop evidence-based multipronged strategies to reduce ageism against all groups.

    Develop plans for ensuring basic financial security for all older people.

    Develop strategies to increase financial literacy and mechanisms for promoting working longer, pension options and savings over the life course.

    Plan opportunities for purposeful and meaningful engagement by older people at the family, community and societal levels.

    Physical environment

    At the societal level, improve broadband accessibility to reduce the digital divide and develop public transportation solutions that address first- and last-mile transportation.

    At the city level, implement mitigation strategies to reduce the negative effects of the physical environment and related emergencies on older people (for example, air pollution and climate-induced events, including extreme heat and flooding) and design environments for connection and cohesion.

    At the neighborhood level, promote and measure innovative policy solutions for healthy longevity, including affordable housing and intergenerational living, zoning and design for connection and cohesion, and the enabling of social capital.

    At the home level, update physical infrastructure and policies to address affordability, provide coliving arrangements that match people’s goals and needs, and resolve insufficiencies and inefficiencies in housing stock.

    Health systems

    Establish healthy longevity as a major goal.

    Increase investments in public health systems, which are needed to promote health and prevent disease, disability and injury at the population level, across the full life course. This may require rebalancing investments between this type of public health and medical care, recognizing that such public health is a public good and, as such, tends to be underinvested in.

    Provide adequate primary care that includes preventive screening, addresses risk factors for chronic conditions and promotes positive health behaviors, and offers a continuum of medical care, including geriatrically knowledgeable care for older adults.

    Make culturally sensitive, person-centered and equitable long-term care systems available, which (to the degree possible) offer dignity and honor people’s preferences about care settings.

    Building the healthy longevity dividend

    Governments, in collaboration with the business sector and civil society, should design (1) work environments and develop new policies that enable and encourage older adults who want or need to remain in the work force longer, and (2) engagement opportunities that strengthen communities at every stage of life.

    Governments, employers and educational institutions should prioritize redesigning education systems to support lifelong learning and training, and invest in the science of learning and training for middle-aged and older adults.

    Pilot innovations that incentivize and allow middle-aged and older adults to retool for multiple careers and/or participate as volunteers across their lifespan in roles with meaning and purpose. More

  • in

    Heated beetles

    The long-term resilience of species to increasing temperature relies on both individual survival and successful reproduction. High temperatures have been shown to readily impair the production and function of gametes (particularly sperm), and species occurrence has been shown to map closely to sterilizing (rather than lethal) temperatures. However, the impacts of temperature on sexual selection — the competition for mating partners or their gametes — remains relatively unexplored. More

  • in

    A non-avian dinosaur with a streamlined body exhibits potential adaptations for swimming

    Dinosauria Owen, 1842Theropoda Marsh, 1881Dromaeosauridae Matthew and Brown, 1922Halszkaraptorinae Cau et al., 2017Revised diagnosisSmall dromaeosaurids that possess dorsoventrally flattened premaxillae, premaxillary bodies perforated by many neurovascular foramina, enlarged and closely packed premaxillary teeth that utilized delayed replacement patterns, reduced anterior maxillary teeth, dorsolateral placement of retracted external nares, greatly elongated cervical vertebrae, anterior cervical vertebrae with round lobes formed by the postzygapophyses, horizontal zygapophyses, and pronounced zygapophyseal laminae in the anterior caudal vertebrae, mediolaterally compressed ulnae with sharp posterior margins, second and third metacarpals with similar thicknesses, shelf-like supratrochanteric processes on the ilia, elongated fossae that border posterolateral ridges on the posterodistal surfaces of the femoral shafts, and third metatarsals in which the proximal halves are unconstricted and anteriorly convex.Natovenator polydontus gen. et sp. nov.HolotypeMPC-D 102/114 (Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia) is a mostly articulated skeleton with a nearly complete skull (See Supplementary Table 1 for measurements).Locality and horizonBaruungoyot Formation (Upper Cretaceous), Hermiin Tsav, Omnogovi Province, Mongolia13 (Supplementary Fig. 5).EtymologyNatovenator, from the Latin nato (swim) and venator (hunter), in reference to the hypothesized swimming behaviour and piscivorous diet of the new taxon; polydontus, from the Greek polys (many) and odous (tooth) in reference to the unusually many teeth.DiagnosisA small halszkaraptorine dromaeosaurid with the following autapomorphies: wide groove delimited by a pair of ridges on the anterodorsal surface of the premaxilla, premaxilla with an elongated internarial process that overlies nasal and extends posterior to the external naris, 13 premaxillary teeth with large and incisiviform crowns, first three anteriormost maxillary teeth are greatly reduced and are clustered together with the following tooth without any separations by interdental septa, anteroposteriorly long external naris (about 30% of the preorbital skull length), paroccipital process with a anteroposteriorly broad dorsal surface, elongate maxillary process of the palatine that extends anteriorly beyond the middle of the antorbital fenestra, pterygoid with a deep fossa on the medial surface of the quadrate ramus, distinct posterolaterally oriented projection on the lateral surface of atlas, absence of pleurocoels in cervical vertebrae (not confirmed in the missing fifth cervical centrum), posterolaterally oriented and nearly horizontal proximal shafts in the dorsal ribs, hourglass-shaped metacarpal II with distinctly concave medial and lateral surfaces.DescriptionThe skull of Natovenator is nearly complete, although the preorbital region has been affected by compression and is slightly offset from the rest of the skull (Figs. 1c, d, 2a–d and Supplementary Figs. 1, 2). Near the tip of the snout, the premaxilla is marked by a broad groove. The body of the premaxilla is also dorsoventrally low and is perforated by numerous foramina that lead into a complex network of neurovascular chambers (Supplementary Fig. 1b) as in Halszkaraptor4. Similarly, the external naris is positioned posteriorly and is level with the premaxilla-maxilla contact (Fig. 2a, b), although it is marginally behind this position in Halszkaraptor4. It is also dorsally placed compared to those of other non-avian theropods and faces dorsolaterally. The exceptionally long external naris and accordingly elongated internarial process of Natovenator (Fig. 2c) are unique among dromaeosaurids but comparable to those in aquatic toothed birds14 as well as in therizinosaurs15,16. The frontal is similar to those of other halszkaraptorines4,17 in that it is vaulted to accommodate a large orbit and has little contribution to the supratemporal fossa. A sharp nuchal crest is formed by the parietal and the squamosal (Supplementary Fig. 2a–e). The latter also produces a shelf that extends over the quadrate head as in other dromaeosaurids18. The paroccipital process curves gently on the occiput and has a broad dorsal surface that tapers laterally (Fig. 2f and Supplementary Fig. 2b, e). Its ventrolateral orientation is reminiscent of Mahakala17 but is different from the more horizontal paroccipital process of Halszkaraptor4. The occipital condyle is long and constricted at its base. A shallow dorsal tympanic recess on the lateral wall of the braincase is different from the deep one of Mahakala17. The palatine is tetraradiate with a greatly elongated maxillary process, which extends anteriorly beyond the level of the mid-antorbital fenestra. The pterygoid is missing its anterior portion (Fig. 2g and Supplementary Fig. 2a–e). A deep fossa on the medial surface of the thin quadrate ramus is not seen in any other dromaeosaurids. The mandibles of Natovenator preserve most of the elements, especially those on the left side (Fig. 1a, b, d and Supplementary Figs. 1a, 2). Each jaw is characterized by a slender dentary with nearly parallel dorsal and ventral margins, a surangular partially fused with the articular, a distinctive surangular shelf, and a fan-shaped retroarticular process that protrudes dorsomedially. The upper dentition of Natovenator is heterodont as the premaxillary teeth are morphologically distinct from the maxillary teeth (Fig. 2a, b, e and Supplementary Fig. 1a, c). There are unusually numerous premaxillary teeth tightly packed without any separation of the alveoli by bony septa. The roots of the teeth are long, and the crowns are tall and incisiviform as in Halszkaraptor4. Moreover, the large replacement teeth in the premaxilla suggest that the replacement of the premaxillary teeth was delayed as in Halszkaraptor4. However, the number of teeth in each premaxilla is 13 in Natovenator, whereas it is only 11 in Halszkaraptor4. In the maxilla, the three most anterior maxillary teeth are markedly shorter than the premaxillary teeth and the more posterior maxillary teeth. This pattern is also observed in Halszkaraptor, although the number of shorter maxillary teeth differs as it has two reduced ones7. Both the maxillary and dentary teeth have sharp fang-like crowns that lack serrations. Although posteriormost parts are poorly preserved, there are at least 23 alveoli in each of the maxilla and dentary, which suggests high numbers of teeth in both elements.The neck of Natovenator, as preserved, is twisted and includes ten elongated cervical vertebrae, although most of the 5th cervical is missing (Figs. 1, 3a–d). This elongation of the cervicals results in a noticeably longer neck than those of most dromaeosaurids and is estimated to be longer than the dorsal series. It is, however, proportionately shorter than that of Halszkaraptor, which has a neck as long as its dorsal and sacral vertebra combined4. Another peculiarity in the neck of the Natovenator is a pronounced posterolaterally extending projection on the neurapophysis of the atlas (Fig. 3a and Supplementary Fig. 2b, c, e). The postzygapophyses of each anterior cervical are fused into a single lobe-like process as in Halszkaraptor4. Pleurocoels are absent in the cervical vertebrae. In contrast, Halszkaraptor has pleurocoels on its 7th–9th cervicals4. A total of 12 dorsal vertebrae are preserved (Figs. 1a, b, 3e, 4a and Supplementary Figs. 3a–d). They all lack pleurocoels, and their parapophyses on the anterior and mid-dorsals are placed high on the anterodorsal end of each centrum. Interestingly, the positions of the parapophyses are similar to those of hesperornithiforms19,20,21 rather than other dromaeosaurids such as Deinonychus22 or Velociraptor23. The preserved dorsal ribs, articulated with the second to seventh dorsals, are flattened and posteriorly oriented (Figs. 1, 3e, 4a–d). The proximal shafts are also nearly horizontal, which is indicative of a dorsoventrally compressed ribcage. Each proximal caudal vertebra has a long centrum and horizontal zygapophyses with expanded laminae (Fig. 3f and Supplementary Fig. 3e–i), all of which are characters shared with other halszkaraptorines4,17. The forelimb elements are partially exposed (Figs. 1a, b, 2a–d, 3e, g). The nearly complete right humerus is proportionately short and distally flattened like that of Halszkaraptor4. The shaft of the ulna is mediolaterally compressed to produce a sharp posterior margin as in Halszkaraptor4 and Mahakala17. Metacarpal III is robust and is only slightly longer than metacarpal II. Similarly, metacarpal III is almost as thick and long as other second metacarpals of other halszkaraptorines4,17. The femur has a long ridge on its posterior surface, which is another characteristic shared among halszkaraptorines4. Typically for a dromaeosaurid, metatarsals II and III have ginglymoid distal articular surfaces (Fig. 3h and Supplementary Fig. 4f, h). The ventral surface of metatarsal III is invaded by a ridge near the distal end, unlike other halszkaraptorines (Fig. 3h)4,5,17,24.Phylogenetic analysisThe phylogenetic analysis found more than 99,999 most parsimonious trees (CI = 0.23, RI = 0.55) with 6574 steps. Deinonychosaurian monophyly is not supported by the strict consensus tree (Supplementary Fig. 6). Instead, Dromaeosauridae was recovered as a sister clade to a monophyletic clade formed by Troodontidae and Avialae, which is consistent with the results of Cau et al.4 and Cau7. Halszkaraptorinae is positioned at the base of Dromaeosauridae as in Cau et al.4, although there are claims that dromaeosaurid affinities of halszkaraptorines are not well supported25. Nine (seven ambiguous and two unambiguous) synapomorphies support the inclusion of Halszkaraptorinae in Dromaeosauridae. The two unambiguous synapomorphies are the anterior tympanic recess at the same level as the basipterygoid process and the presence of a ventral flange on the paroccipital process. A total of 20 synapomorphies (including one unambiguous synapomorphy) unite the four halszkaraptorines, including Natovenator (Supplementary Fig. 7). In Halszkaraptorinae, Halszkaraptor is the earliest branching taxon, and the remaining three taxa form an unresolved clade supported by three ambiguous synapomorphies (characters 121/1, 569/0, and 1153/1). Two of these synapomorphies are related to the paroccipital process (characters 121 and 569), which is not preserved in Hulsanpes5,24. The other is the presence of an expansion on the medial margin of the distal half of metatarsal III, which is not entirely preserved in the Natovenator. When scored as 0 for this character, Natovenator branches off from the unresolved clade. It suggests that the medial expansion of the dorsal surface of metatarsal III could be a derived character among halszkaraptorines. More

  • in

    Temporal patterns of soil carbon emission in tropical forests under long-term nitrogen deposition

    Arneth, A. et al. Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci. 3, 525–532 (2010).Article 

    Google Scholar 
    Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCC, 2015).IPCC Special Report on Climate Change and Land (eds Shukla, P. R. et al.) (IPCC, 2019).Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F. & Erasmi, S. Greenhouse gas emissions from soils—a review. Geochemistry 76, 327–352 (2016).Article 

    Google Scholar 
    Schlesinger, W. H. & Bernhardt, E. S. Biogeochemistry: An Analysis of Global Change 3rd edn (Elsevier, 2013).Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).Article 

    Google Scholar 
    Ackerman, D., Millet, D. B. & Chen, X. Global estimates of inorganic nitrogen deposition across four decades. Glob. Biogeochem. Cycles 33, 100–107 (2019).Article 

    Google Scholar 
    Du, E. Rise and fall of nitrogen deposition in the United States. Proc. Natl Acad. Sci. USA 113, E3594–E3595 (2016).Article 

    Google Scholar 
    Schmitz, A. et al. Responses of forest ecosystems in Europe to decreasing nitrogen deposition. Environ. Pollut. 244, 980–994 (2019).Article 

    Google Scholar 
    Hietz, P. et al. Long-term change in the nitrogen cycle of tropical forests. Science 334, 664–666 (2011).Article 

    Google Scholar 
    Fang, Y. T., Gundersen, P., Mo, J. M. & Zhu, W. X. Input and output of dissolved organic and inorganic nitrogen in subtropical forests of South China under high air pollution. Biogeosciences 5, 339–352 (2008).Article 

    Google Scholar 
    Yu, G. et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 12, 424–429 (2019).Article 

    Google Scholar 
    Liu, L. L. & Greaver, T. L. A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol. Lett. 13, 819–828 (2010).Article 

    Google Scholar 
    LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).Article 

    Google Scholar 
    Reich, P. B. et al. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol. Lett. 11, 793–801 (2008).Article 

    Google Scholar 
    Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).Article 

    Google Scholar 
    Mo, J. et al. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Glob. Change Biol. 14, 403–412 (2008).Article 

    Google Scholar 
    Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).Article 

    Google Scholar 
    Zhong, Y., Yan, W. & Shangguan, Z. The effects of nitrogen enrichment on soil CO2 fluxes depending on temperature and soil properties. Glob. Ecol. Biogeogr. 25, 475–488 (2016).Article 

    Google Scholar 
    Deng, L. et al. Soil GHG fluxes are altered by N deposition: new data indicate lower N stimulation of the N2O flux and greater stimulation of the calculated C pools. Glob. Change Biol. 26, 2613–2629 (2020).Article 

    Google Scholar 
    Hagedorn, F., Kammer, A., Schmidt, M. W. I. & Goodale, C. L. Nitrogen addition alters mineralization dynamics of 13C-depleted leaf and twig litter and reduces leaching of older DOC from mineral soil. Glob. Change Biol. 18, 1412–1427 (2012).Article 

    Google Scholar 
    Du, Y. et al. Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests. Glob. Change Biol. 20, 3222–3228 (2014).Article 

    Google Scholar 
    Yan, T. et al. Negative effect of nitrogen addition on soil respiration dependent on stand age: evidence from a 7-year field study of larch plantations in northern China. Agr. For. Meteorol. 262, 24–33 (2018).Article 

    Google Scholar 
    Xing, A. et al. Nonlinear responses of ecosystem carbon fluxes to nitrogen deposition in an old-growth boreal forest. Ecol. Lett. 25, 77–78 (2021).Article 

    Google Scholar 
    Melillo, J. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105 (2017).Article 

    Google Scholar 
    Gao, Q. et al. Stimulation of soil respiration by elevated CO2 is enhanced under nitrogen limitation in a decade-long grassland study. Proc. Natl Acad. Sci. USA 117, 33317–33324 (2020).Article 

    Google Scholar 
    Liu, X. J. et al. Nitrogen deposition and its ecological impact in China: an overview. Environ. Pollut. 159, 2251–2264 (2011).Article 

    Google Scholar 
    Zhu, F. F., Yoh, M., Gilliam, F. S., Lu, X. K. & Mo, J. M. Nutrient limitation in three lowland tropical forests in southern China receiving high nitrogen deposition: insights from fine root responses to nutrient additions. PLoS ONE 8, e82661 (2013).Article 

    Google Scholar 
    Wang, C. et al. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biol. Biochem. 121, 103–112 (2018).Article 

    Google Scholar 
    Priess, J. & Fölster, H. Microbial properties and soil respiration in submontane forests of Venezuelian Guyana: characteristics and response to fertilizer treatments. Soil Biol. Biochem. 33, 503–509 (2001).Article 

    Google Scholar 
    He, T., Wang, Q., Wang, S. & Zhang, F. Nitrogen addition altered the effect of belowground C allocation on soil respiration in a subtropical forest. PLoS ONE 11, e0155881 (2016).Article 

    Google Scholar 
    Fan, H. et al. Nitrogen deposition promotes ecosystem carbon accumulation by reducing soil carbon emission in a subtropical forest. Plant Soil 379, 361–371 (2014).Article 

    Google Scholar 
    Zheng, M. et al. Effects of nitrogen and phosphorus additions on nitrous oxide emission in a nitrogen-rich and two nitrogen-limited tropical forests. Biogeosciences 13, 3503–3517 (2016).Article 

    Google Scholar 
    Lu, X. et al. Nitrogen deposition accelerates soil carbon sequestration in tropical forests. Proc. Natl Acad. Sci. USA 118, e2020790118 (2021).Article 

    Google Scholar 
    Zhou, G. Y. et al. Old-growth forests can accumulate carbon in soils. Science 314, 1417–1417 (2006).Article 

    Google Scholar 
    Tian, J. et al. Long-term nitrogen addition modifies microbial composition and functions for slow carbon cycling and increased sequestration in tropical forest soil. Glob. Change Biol. 25, 3267–3281 (2019).Article 

    Google Scholar 
    Huang, N. et al. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv. 6, eabb8508 (2020).Article 

    Google Scholar 
    Lu, X. K. et al. Effect of simulated N deposition on soil exchangeable cations in three forest types of subtropical China. Pedosphere 19, 189–198 (2009).Article 

    Google Scholar 
    Fang, Y., Gundersen, P., Mo, J. & Zhu, W. Nitrogen leaching in response to increased nitrogen inputs in subtropical monsoon forests in southern China. For. Ecol. Manage. 257, 332–342 (2009).Article 

    Google Scholar 
    Chen, X. M. et al. Effects of nitrogen deposition on soil organic carbon fractions in the subtropical forest ecosystems of S. China. J. Plant Nutr. Soil Sci. 175, 947–953 (2012).Article 

    Google Scholar 
    Fang, H. J. et al. 13C abundance, water-soluble and microbial biomass carbon as potential indicators of soil organic carbon dynamics in subtropical forests at different successional stages and subject to different nitrogen loads. Plant Soil 320, 243–254 (2009).Article 

    Google Scholar 
    Liu, L. et al. Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests. Sci. Rep. 5, 14378–14378 (2014).Article 

    Google Scholar 
    Chen, H. et al. Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition: hypothesis testing. Funct. Ecol. 30, 305–313 (2015).Article 

    Google Scholar 
    Lu, X., Mao, Q., Gilliam, F. S., Luo, Y. & Mo, J. Nitrogen deposition contributes to soil acidification in tropical ecosystems. Glob. Change Biol. 20, 3790–3801 (2014).Article 

    Google Scholar 
    Mao, Q. G. Impacts of Long-Term Nitrogen and Phosphorus Addition on Understory Plant Diversity in Subtropical Forests in Southern China. Doctoral Thesis, Univ. Chinese Academy of Sciences (2017).Xing, A. J. et al. High-level nitrogen additions accelerate soil respiration reduction over time in a boreal forest. Ecol. Lett. https://doi.org/10.1111/ele.14065 (2022).Cao, J. et al. Plant–bacteria–soil response to frequency of simulated nitrogen deposition has implications for global ecosystem change. Funct. Ecol. 34, 723–734 (2020).Article 

    Google Scholar 
    Mo, J. M., Brown, S., Peng, S. L. & Kong, G. H. Nitrogen availability in disturbed, rehabilitated and mature forests of tropical China. For. Ecol. Manage. 175, 573–583 (2003).Article 

    Google Scholar 
    Huang, Z. L., Ding, M. M., Zhang, Z. P. & Yi, W. M. The hydrological processes and nitrogen dynamics in a monsoon evergreen broad-leafed forest of Dinghushan. Acta Phytoecol. Sin. 18, 194–199 (1994).
    Google Scholar 
    Wright, R. F. & Rasmussen, L. Introduction to the NITREX and EXMAN projects. For. Ecol. Manage. 101, 1–7 (1998).Article 

    Google Scholar 
    Gundersen, P. et al. Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. For. Ecol. Manage. 101, 37–55 (1998).Article 

    Google Scholar 
    Aber, J. D. et al. Plant and soil responses to chronic nitrogen additions at the Harvard Forest, Massachusetts. Ecol. Appl. 3, 156–166 (1993).Article 

    Google Scholar 
    Cleveland, C. C. & Townsend, A. R. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proc. Natl Acad. Sci. USA 103, 10316–10321 (2006).Article 

    Google Scholar 
    Song, X. et al. Nitrogen addition increased CO2 uptake more than non-CO2 greenhouse gases emissions in a Moso bamboo forest. Sci. Adv. 6, eaaw5790 (2020).Article 

    Google Scholar 
    Lu, X. et al. Long-term nitrogen addition decreases carbon leaching in nitrogen-rich forest ecosystems. Biogeosciences 10, 3931–3941 (2013).Article 

    Google Scholar 
    Ackerman, D., Millet, D. B. & Chen, X. Global estimates of inorganic nitrogen deposition across four decades. Glob. Biogeochem. Cycles 33, 100–107 (2019).Article 

    Google Scholar 
    Tang, X., Liu, S., Zhou, G., Zhang, D. & Zhou, C. Soil–atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China. Glob. Change Biol. 12, 546–560 (2006).Article 

    Google Scholar 
    Lei, J. et al. Temporal changes in global soil respiration since 1987. Nat. Commun. 12, 403 (2021).Article 

    Google Scholar  More

  • in

    Greater evolutionary divergence of thermal limits within marine than terrestrial species

    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).Article 
    CAS 

    Google Scholar 
    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).Article 
    CAS 

    Google Scholar 
    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).Article 
    CAS 

    Google Scholar 
    Hughes, A. R. et al. Predicting the sensitivity of marine populations to rising temperatures. Front. Ecol. Environ. 17, 17–24 (2019).Article 

    Google Scholar 
    Sunday, J. et al. Thermal tolerance patterns across latitude and elevation. Philos. Trans. R. Soc. B 374, 20190036 (2019).Article 

    Google Scholar 
    Bennett, S., Duarte, C. M., Marbà, N. & Wernberg, T. Integrating within-species variation in thermal physiology into climate change ecology. Philos. Trans. R. Soc. B 374, 20180550 (2019).Article 

    Google Scholar 
    Sasaki, M. C. & Dam, H. G. Integrating patterns of thermal tolerance and phenotypic plasticity with population genetics to improve understanding of vulnerability to warming in a widespread copepod. Glob. Change Biol. 25, 4147–4164 (2019).Article 

    Google Scholar 
    Kelly, M. W., Sanford, E. & Grosberg, R. K. Limited potential for adaptation to climate change in a broadly distributed marine crustacean. Proc. R. Soc. B 279, 349–356 (2012).Article 

    Google Scholar 
    Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).Article 

    Google Scholar 
    Moran, E. V., Hartig, F. & Bell, D. M. Intraspecific trait variation across scales: implications for understanding global change responses. Glob. Change Biol. 22, 137–150 (2016).Article 

    Google Scholar 
    Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. USA 116, 10418–10423 (2019).Article 
    CAS 

    Google Scholar 
    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).Article 

    Google Scholar 
    Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).Article 
    CAS 

    Google Scholar 
    Gunderson, A. R. & Stillman, J. H. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B 282, 20150401 (2015).Article 

    Google Scholar 
    Barley, J. M. et al. Limited plasticity in thermally tolerant ectotherm populations: evidence for a trade-off. Proc. R. Soc. B 288, 202110765 (2021).Article 

    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).Article 

    Google Scholar 
    Grummer, J. A. et al. Aquatic landscape genomics and environmental effects on genetic variation. Trends Ecol. Evol. 34, 641–654 (2019).Article 

    Google Scholar 
    Kinlan, B. P. & Gaines, S. D. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84, 2007–2020 (2003).Article 

    Google Scholar 
    Lester, S. E., Ruttenberg, B. I., Gaines, S. D. & Kinlan, B. P. The relationship between dispersal ability and geographic range size. Ecol. Lett. 10, 745–758 (2007).Article 

    Google Scholar 
    Kinlan, B. P., Gaines, S. D. & Lester, S. E. Propagule dispersal and the scales of marine community process. Diversity Distrib. 11, 139–148 (2005).Article 

    Google Scholar 
    Mayr, E. Animal Species and Evolution (Harvard Univ. Press, 2014).Haldane, J. B. S. The relation between density regulation and natural selection. Proc. R. Soc. Lond. B 145, 306–308 (1956).Article 
    CAS 

    Google Scholar 
    Marshall, D. J., Monro, K., Bode, M., Keough, M. J. & Swearer, S. Phenotype–environment mismatches reduce connectivity in the sea. Ecol. Lett. 13, 128–140 (2010).Article 
    CAS 

    Google Scholar 
    Burgess, S. C., Treml, E. A. & Marshall, D. J. How do dispersal costs and habitat selection influence realized population connectivity? Ecology 93, 1378–1387 (2012).Article 

    Google Scholar 
    Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Annu. Rev. Mar. Sci. 3, 509–535 (2011).Article 

    Google Scholar 
    Caplat, P. et al. Looking beyond the mountain: dispersal barriers in a changing world. Front. Ecol. Environ. 14, 261–268 (2016).Article 

    Google Scholar 
    Nickols, K. J., Wilson White, J., Largier, J. L. & Gaylord, B. Marine population connectivity: reconciling large-scale dispersal and high self-retention. Am. Nat. 185, 196–211 (2015).Article 

    Google Scholar 
    Pinsky, M. L., Comte, L. & Sax, D. F. Unifying climate change biology across realms and taxa. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2022.04.011 (2022).Fourcade, Y. et al. Habitat amount and distribution modify community dynamics under climate change. Ecol. Lett. 24, 950–957 (2021).Article 

    Google Scholar 
    Kappes, H., Tackenberg, O. & Haase, P. Differences in dispersal- and colonization-related traits between taxa from the freshwater and the terrestrial realm. Aquat. Ecol. 48, 73–83 (2014).Article 
    CAS 

    Google Scholar 
    Kinlan, B. P. & Gaines, S. D. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84, 2007–2020 (2003).Article 

    Google Scholar 
    Kappes, H. & Haase, P. Slow, but steady: dispersal of freshwater molluscs. Aquat. Sci. 74, 1–14 (2012).Article 

    Google Scholar 
    Sasaki, M. & Dam, H. G. Global patterns in copepod thermal tolerance. J. Plankton Res. 43, 598–609 (2021).Article 

    Google Scholar 
    Cereja, R. Critical thermal maxima in aquatic ectotherms. Ecol. Indic. 119, 106856 (2020).Article 

    Google Scholar 
    Vinagre, C. et al. Upper thermal limits and warming safety margins of coastal marine species – Indicator baseline for future reference. Ecol. Indic. 102, 644–649 (2019).Article 

    Google Scholar 
    Muñoz, M. M. The Bogert effect, a factor in evolution. Evolution 76, 49–66 (2022).Article 

    Google Scholar 
    Muñoz, M. M. & Bodensteiner, B. L. Janzen’s hypothesis meets the Bogert effect: connecting climate variation, thermoregulatory behavior, and rates of physiological evolution. Integr. Org. Biol. 1, oby002 (2019).Spence, A. R. & Tingley, M. W. The challenge of novel abiotic conditions for species undergoing climate-induced range shifts. Ecography 43, 1571–1590 (2020).Article 

    Google Scholar 
    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).Article 
    CAS 

    Google Scholar 
    Steele, J. H., Brink, K. H. & Scott, B. E. Comparison of marine and terrestrial ecosystems: suggestions of an evolutionary perspective influenced by environmental variation. ICES J. Mar. Sci. 76, 50–59 (2019).Article 

    Google Scholar 
    Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).Article 

    Google Scholar 
    Chuang, A. & Peterson, C. R. Expanding population edges: theories, traits, and trade-offs. Glob. Change Biol. 22, 494–512 (2016).Article 

    Google Scholar 
    Bennett, J. M. et al. The evolution of critical thermal limits of life on Earth. Nat. Commun. 12, 1198 (2021).Article 
    CAS 

    Google Scholar 
    Gaston, K. J. et al. Macrophysiology: a conceptual reunification. Am. Nat. 174, 595–612 (2009).Article 

    Google Scholar 
    Button, K. S. et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013).Article 
    CAS 

    Google Scholar 
    Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).Article 
    CAS 

    Google Scholar 
    Cooper, H., Hedges, L. V. & Valentine, J. C. The Handbook of Research Synthesis and Meta-Analysis (Russel Sage Foundation, 2009).Gleser, L. & Olkin, I. in The Handbook of Research Synthesis and Meta-Analysis (eds Cooper, H. et al.) Ch. 19 (Russel Sage Foundation, 2009).Huey, R. B., Hertz, P. E. & Sinervo, B. Behavioral drive versus behavioral inertia in evolution: a null model approach. Am. Nat. 161, 357–366 (2003).Article 

    Google Scholar 
    Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).Article 
    CAS 

    Google Scholar 
    Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer ‘cold-blooded’’ animals against climate warming. Proc. Natl Acad. Sci. USA 10, 3835–3840 (2009).Article 

    Google Scholar 
    Denney, D. A., Jameel, M. I., Bemmels, J. B., Rochford, M. E. & Anderson, J. T. Small spaces, big impacts: contributions of micro-environmental variation to population persistence under climate change. AoB Plants 12, plaa005 (2020).Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).Article 
    CAS 

    Google Scholar 
    Clusella-Trullas, S., Garcia, R. A., Terblanche, J. S. & Hoffmann, A. A. How useful are thermal vulnerability indices? Trends Ecol. Evol. 36, 1000–1010 (2021).Article 

    Google Scholar 
    Wanders, N., van Vliet, M. T. H., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. High-resolution global water temperature modeling. Water Resour. Res. 55, 2760–2778 (2019).Article 

    Google Scholar 
    Todgham, A. E. & Stillman, J. H. Physiological responses to shifts in multiple environmental stressors: relevance in a changing world. Integr. Comp. Biol. 53, 539–544 (2013).Article 

    Google Scholar 
    Hoffmann, A. A. & Sgró, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).Article 
    CAS 

    Google Scholar 
    Pespeni, M. H. & Palumbi, S. R. Signals of selection in outlier loci in a widely dispersing species across an environmental mosaic. Mol. Ecol. 22, 3580–3597 (2013).Article 
    CAS 

    Google Scholar 
    Hoey, J. A. & Pinsky, M. L. Genomic signatures of environmental selection despite near-panmixia in summer flounder. Evolut. Appl. 11, 1732–1747 (2018).Article 
    CAS 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).Article 
    CAS 

    Google Scholar 
    Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of Anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).Article 

    Google Scholar 
    Morelli, T. L. et al. Managing Climate Change refugia for climate adaptation. PLoS ONE 11, e0159909 (2016).Article 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Annu. Rev. Mar. Sci. 1, 443–466 (2009).Article 

    Google Scholar 
    Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Internal Med. 151, 264–270 (2009).Article 

    Google Scholar 
    O’Dea, R. E. et al. Preferred reporting items for systematic reviews and meta-analyses in ecology and evolutionary biology: a PRISMA extension. Biol. Rev. https://doi.org/10.1111/brv.12721 (2021).Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372, 89 (2021).Bennett, J. M. et al. GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5, 180022 1198 (2018).Lancaster, L. T. & Humphreys, A. M. Global variation in the thermal tolerances of plants. Proc. Natl Acad. Sci. USA 117, 13580–13587 (2020).Article 
    CAS 

    Google Scholar 
    Rohatgi, A. WebPlotDigitizer (2020); https://automeris.io/WebPlotDigitizerAssis, J. et al. Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).Article 

    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).Article 

    Google Scholar 
    Dee, D. P. et al. The ERA–interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorolog. Soc. 137, 553–597 (2011).Article 

    Google Scholar 
    Helmuth, B. et al. Climate change and latitudinal patterns of intertidal thermal stress. Science 298, 1015–1017 (2002).Article 
    CAS 

    Google Scholar 
    Helmuth, B. Thermal biology of rocky intertidal mussels: quantifying body temperature using climatological data. Ecology 80, 15–34 (1999).Article 

    Google Scholar 
    Bell, E. C. Environmental and morphological influences on thallus temperature and desiccation of the intertidal alga Mastocarpus papillatus Kützing. J. Exp. Mar. Biol. Ecol. 191, 29–55 (1995).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Software 36, 1–48 (2010).Article 

    Google Scholar 
    Sasaki, M. et al. Data for ‘greater local adaptation to temperature in the ocean than on land’. figshare https://doi.org/10.6084/m9.figshare.20173571 (2022). More

  • in

    Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance

    Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby, DenmarkPatrick Munk, Christian Brinch, Frederik Duus Møller, Thomas N. Petersen, Rene S. Hendriksen, Anne Mette Seyfarth, Jette S. Kjeldgaard, Christina Aaby Svendsen & Frank M. AarestrupCentre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UKBram van Bunnik & Mark WoolhouseCentre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, SwedenFanny Berglund & D. G. Joakim LarssonDepartment of Viroscience, Erasmus MC, Rotterdam, The NetherlandsMarion KoopmansInstitute of Public Health, Tirana, AlbaniaArtan BegoUniversidad de Buenos Aires, Buenos Aires, ArgentinaPablo PowerMelbourne Water Corporation, Melbourne, AustraliaCatherine Rees & Kris CoventryCharles Darwin University, Darwin, AustraliaDionisia LambrinidisUniversity of Copenhagen, Frederiksberg C, DenmarkElizabeth Heather Jakobsen Neilson & Yaovi Mahuton Gildas HounmanouCharles Darwin University, Darwin Northern Territory, AustraliaKaren GibbCanberra Hospital, Canberra, AustraliaPeter CollignonALS Water, Scoresby, AustraliaSusan CassarAustrian Agency for Health and Food Safety (AGES), Vienna, AustriaFranz AllerbergerUniversity of Dhaka, Dhaka, BangladeshAnowara Begum & Zenat Zebin HossainEnvironmental Protection Department, Bridgetown, St. Michael, BarbadosCarlon WorrellLaboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Brussels, BelgiumOlivier VandenbergAQUAFIN NV, Aartselaar, BelgiumIlse PietersPolytechnic School of Abomey-Calavi, Abomey-Calavi, BeninDougnon Tamègnon VictorienUniversidad Catσlica Boliviana San Pablo, La Paz, BoliviaAngela Daniela Salazar Gutierrez & Freddy SoriaPublic Health Institute of the Republic of Srpska, Faculty of Medicine University of Banja Luka, Banja Luka, Bosnia and HerzegovinaVesna Rudić GrujićPublic Health Institute of the Republic of Srpska, Banja Luka, Bosnia and HerzegovinaNataša MazalicaBotswana International University of Science and Technology, Palapye, BotswanaTeddie O. RahubeUniversidade Federal de Minas Gerais, Belo Horizonte, BrazilCarlos Alberto Tagliati & Larissa Camila Ribeiro de SouzaOswaldo Cruz Institute, Rio de Janeiro, BrazilDalia RodriguesVale Institute of Technology, Belιm, PA, BrazilGuilherme OliveiraNational Center of Infectious and Parasitic Diseases, Sofia, BulgariaIvan IvanovUniversity of Ouagadougou, Ouagadougou, Burkina FasoBonkoungou Isidore Juste & Traoré OumarInstitut Pasteur du Cambodge, Phnom Penh, CambodiaThet Sopheak & Yith VuthyCentre Pasteur du Cameroun, Yaoundι, CameroonAntoinette Ngandijo, Ariane Nzouankeu & Ziem A. Abah Jacques OlivierUniversity of Regina, Regina, CanadaChristopher K. YostEau Terre Environnement Research Centre (INRS-ETE), Quebec City G1K 9A9, Canada and Indian Institute of Technology, Jammu, IndiaPratik KumarEau Terre Environnement Research Centre (INRS-ETE), Quebec City G1K 9A9, Canada and Lassonde School of Enginerring, York University, Toronto, CanadaSatinder Kaur BrarUniversity of N’Djamena, N’Djamena, ChadDjim-Adjim TaboEscuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, ChileAiko D. AdellInstitute of Public Health, Santiago, ChileEsteban Paredes-Osses & Maria Cristina MartinezCentro de Biotecnologνa de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Talca, ChileSara Cuadros-OrellanaGuangdong Provincial Center for Disease Control and Prevention, Guangzhou, ChinaChangwen Ke, Huanying Zheng & Li BaishengThe Hong Kong Polytechnic University, Hong Kong, ChinaLok Ting Lau & Teresa ChungShantou University Medical College, Shantou, ChinaXiaoyang JiaoNanjing University of Information Science and Technology, Nanjing, ChinaYongjie YuCenter for Disease Control and Prevention of Henan province, Zhengzhou, ChinaZhao JiaYongColombian Integrated Program for Antimicrobial Resistance Surveillance – Coipars, CI Tibaitatα, Corporaciσn Colombiana de Investigaciσn Agropecuaria (AGROSAVIA), Tibaitatα – Mosquera, Cundinamarca, ColombiaJohan F. Bernal Morales, Maria Fernanda Valencia & Pilar Donado-GodoyInstitut Pasteur de Côte d’Ivoire, Abidjan, Côte d’IvoireKalpy Julien CoulibalyUniversity of Zagreb, Zagreb, CroatiaJasna HrenovicAndrija Stampar Teaching Institute of Public Health, Zagreb, CroatiaMatijana JergovićVeterinary Research Institute, Brno, Czech RepublicRenáta KarpíškováCentre de Recherche en Sciences Naturelles de Lwiro (CRSN-LWIRO), Bukavu, Democratic Republic of CongoZozo Nyarukweba DeogratiasBIOFOS A/S, Copenhagen K, DenmarkBodil ElsborgTechnical University of Denmark, Kgs., Lyngby, DenmarkLisbeth Truelstrup Hansen & Pernille Erland JensenSuez Canal University, Ismailia, EgyptMohamed AbouelnagaUniversity of Sadat City, Sadat City, EgyptMohamed Fathy SalemMinistry of Health, Environmental Microbiology, Tallinn, EstoniaMarliin KoolmeisterAddis Ababa University, Addis Ababa, EthiopiaMengistu Legesse & Tadesse EgualeUniversity of Helsinki, Helsinki, FinlandAnnamari HeikinheimoFrench Institute Search Pour L’exploitation De La Mer (Ifremer), Nantes, FranceSoizick Le Guyader & Julien SchaefferInstituto Nacional de Investigaciσn en Salud Pϊblica-INSPI (CRNRAM), Galαpagos, Quito, EcuadorJose Eduardo VillacisNational Public Health Laboratories, Ministry of Health and Social Welfare, Kotu, GambiaBakary SannehNational Center for Disease Control and Public Health, Tbilisi, GeorgiaLile MalaniaRobert Koch Institute, Berlin, GermanyAndreas Nitsche & Annika BrinkmannTechnische Universitδt Dresden, Institute of Hydrobiology, Dresden, GermanySara Schubert, Sina Hesse & Thomas U. BerendonkUniversity for Development Studies, Tamale, GhanaCourage Kosi Setsoafia SabaUniversity of Ghana, Accra, GhanaJibril MohammedKwame Nkrumah University of Science and Technology, Kumasi, PMB, GhanaPatrick Kwame FegloCouncil for Scientific and Industrial Research Water Research Institute, Accra, GhanaRegina Ama BanuVeterinary Research Institute of Thessaloniki, Hellenic Agricultural Organisation-DEMETER, Thermi, GreeceCharalampos KotzamanidisAthens Water Supply and Sewerage Company (EYDAP S.A.), Athens, GreeceEfthymios LytrasUniversidad de San Carlos de Guatemala, Guatemala City, GuatemalaSergio A. LickesSemmelweis University, Institute of Medical Microbiology, Budapest, HungaryBela KocsisUniversity of Veterinary Medicine, Budapest, HungaryNorbert SolymosiUniversity of Iceland, Reykjavνk, IcelandThorunn R. ThorsteinsdottirCochin University of Science and Technology, Cochin, IndiaAbdulla Mohamed HathaKasturba Medical College, Manipal, IndiaMamatha BallalApollo Diagnostics, Mangalore, IndiaSohan Rodney BangeraShiraz University of Medical Sciences, Shiraz, IranFereshteh FaniShahid Beheshti University of Medical Sciences, Tehran, IranMasoud AlebouyehNational University of Ireland Galway, Galway, IrelandDearbhaile Morris, Louise O’Connor & Martin CormicanBen Gurion University of the Negev and Ministry of Health, Beer-Sheva, IsraelJacob Moran-GiladIstituto Zooprofilattico Sperimentale del Lazio e della Toscana, Rome, ItalyAntonio Battisti, Elena Lavinia Diaconu & Patricia AlbaCNR – Water Research Institute, Verbania, ItalyGianluca Corno & Andrea Di CesareNational Institute of Infectious Diseases, Tokyo, JapanJunzo Hisatsune, Liansheng Yu, Makoto Kuroda, Motoyuki Sugai & Shizuo KayamaNational Center of Expertise, Taldykorgan, KazakhstanZeinegul ShakenovaMount Kenya University, Thika, KenyaCiira KiiyukiaKenya Medical Research Institute, Nairobi, KenyaEric Ng’enoUniversity of Prishtina “Hasan Prishtina” & National Institute of Public Health of Kosovo, Pristina, KosovoLul RakaKuwait Institute for Scientific Research, Kuwait City, KuwaitKazi Jamil, Saja Adel Fakhraldeen & Tareq AlaatiInstitute of Food Safety, Riga, LatviaAivars Bērziņš, Jeļena Avsejenko, Kristina Kokina, Madara Streikisa & Vadims BartkevicsAmerican University of Beirut, Beirut, LebanonGhassan M. MatarCentral Michigan University & Michigan Health Clinics, Saginaw, MI, USAZiad DaoudNational Food and Veterinary Risk Assessment Institute, Vilnius, LithuaniaAsta Pereckienė & Ceslova Butrimaite-AmbrozevicieneLuxembourg Institute of Science and Technology, Belvaux, LuxembourgChristian PennyInstitut Pasteur de Madagascar, Antananarivo, MadagascarAlexandra Bastaraud & Jean-Marc CollardUniversity of Antananarivo, Centre d’Infectiologie Charles Mιrieux, Antananarivo, MadagascarTiavina Rasolofoarison, Luc Hervé Samison & Mala Rakoto AndrianariveloUniversity of Malawi, Blantyre, MalawiDaniel Lawadi BandaMalaysian Genomics Resource Centre Berhad, Kuala Lumpur, MalaysiaArshana AminAIMST University, COMBio, Kedah, MalaysiaHeraa Rajandas & Sivachandran ParimannanWater Services Corporation, Luqa, MaltaDavid SpiteriEnvironmental Health Directorate, St. Venera, MaltaMalcolm Vella HaberUniversity of Mauritius, Reduit, MauritiusSunita J. SantchurnInstitute for Public Health Montenegro, Podgorica, MontenegroAleksandar Vujacic & Dijana DjurovicInstitut Pasteur du Maroc, Casablanca, MoroccoBrahim Bouchrif & Bouchra KarraouanCentro de Investigaηγo em Saϊde de Manhiηa (CISM), Maputo, MozambiqueDelfino Carlos VubilAgriculture and Forestry University, Kathmandu, NepalPushkar PalNational Institute for Public, Health and the Environment (RIVM), Bilthoven, The NetherlandsHeike Schmitt & Mark van PasselUniversity of Otago, Dunedin, New ZealandGert-Jan Jeunen & Neil GemmellUniversity of Otago, Christchurch, New ZealandStephen T. ChambersUniversity of Central America, Managua, NicaraguaFania Perez Mendoza & Jorge Huete-PιrezUniversidad Nacional Autσnoma de Nicaragua-Leσn, Leσn, NicaraguaSamuel VilchezUniversity of Ilorin, Ilorin, NigeriaAkeem Olayiwola Ahmed, Ibrahim Raufu Adisa & Ismail Ayoade OdetokunUniversity of Ibadan, Ibadan, NigeriaKayode FashaeNorwegian Institute of Public Health, Oslo, NorwayAnne-Marie Sørgaard & Astrid Louise WesterVEAS, Slemmestad, NorwayPia Ryrfors & Rune HolmstadUniversity of Agriculture, Faisalabad, PakistanMashkoor MohsinAga Khan University, Karachi, PakistanRumina Hasan & Sadia ShakoorLaboratorio Central de Salud Publica, Asuncion, ParaguayNatalie Weiler Gustafson & Claudia Huber SchillInstituto Nacional de Salud, Lima, PeruMaria Luz Zamudio RojasUniversidad de Piura, Piura, PeruJorge Echevarria Velasquez & Felipe Campos YauceWHO Environmental and Occupational Health, Manila, PhilippinesBonifacio B. MagtibayMaynilad Water Services, Inc., Quezon City, PhilippinesKris Catangcatang & Ruby SibuloNational Veterinary Research Institute, Pulawy, PolandDariusz WasylUniversidade Catσlica Portuguesa, CBQF – Centro de Biotecnologia e Quνmica Fina – Laboratσrio Associado, Escola Superior de Biotecnologia, Porto, PortugalCelia Manaia & Jaqueline RochaAguas do Tejo Atlantico, Lisboa, PortugalJose Martins & Pedro ÁlvaroGwangju Institute of Science and Technology, Gwangju, Republic of KoreaDoris Di Yoong Wen, Hanseob Shin & Hor-Gil HurKorea Advanced Institute of Science and Technology, Daejeon, Republic of KoreaSukhwan YoonInstitute of Public Health of the Republic of North Macedonia, Skopje, Republic of North MacedoniaGolubinka Bosevska & Mihail KochubovskiState Medical and Pharmaceutical University, Chișinău, Republic of MoldovaRadu CojocaruNational Agency for Public Health, Chișinău, Republic of MoldovaOlga BurduniucKing Abdullah University of Science and Technology, Thuwal, Saudi ArabiaPei-Ying HongUniversity of Edinburgh, Edinburgh, Scotland, UKMeghan Rose PerryInstitut Pasteur de Dakar, Dakar, SenegalAmy GassamaInstitute of Veterinary Medicine of Serbia, Belgrade, SerbiaVladimir RadosavljevicNanyang Technological University, Singapore, SingaporeMoon Y. F. Tay, Rogelio Zuniga-Montanez & Stefan WuertzPublic Health Authority of the Slovak Republic, Bratislava, SlovakiaDagmar Gavačová, Katarína Pastuchová & Peter TruskaNational Laboratory of Health, Environment and Food, Ljubljana, SloveniaMarija TrkovIndependent consultant, Johannesburg, South AfricaKaren KeddyDaspoort Waste Water Treatment Works, Pretoria, South AfricaKerneels EsterhuyseKorea Advanced Institute of Science and Technology, Daejeon, South KoreaMin Joon SongSchool of Veterinary Sciences, Lugo, SpainMarcos Quintela-BalujaLabaqua, Santiago de Compostela, SpainMariano Gomez LopezIRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autonoma de Barcelona, Bellaterra, SpainMarta Cerdà-CuéllarUniversity of Kelaniya, Ragama, Sri LankaR. R. D. P. Perera, N. K. B. K. R. G. W. Bandara & H. I. PremasiriMedical Research Institute, Colombo, Sri LankaSujatha PathirageCaribbean Public Health Agency, Catries, Saint LuciaKareem CharlemagneThe Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenCarolin RutgerssonSwedish University of Agricultural Sciences, Uppsala, SwedenLeif Norrgren & Stefan ÖrnFederal Food Safety and Veterinary Office (FSVO), Bern, SwitzerlandRenate BossAra Region Bern AG, Herrenschwanden, SwitzerlandTanja Van der HeijdenCenters for Disease Control, Taipei, TaiwanYu-Ping HongKilimanjaro Clinical Research Institute, Moshi, TanzaniaHappiness Houka KumburuSokoine University of Agriculture, Morogoro, TanzaniaRobinson Hammerthon MdegelaFaculty of Science and Technology, Suratthani Rajabhat University, Surat Thani, ThailandKaknokrat ChonsinFaculty of Public Health, Mahidol University, Bangkok, ThailandOrasa SuthienkulFaculty of Medicine Siriraj Hospital, Bangkok, ThailandVisanu ThamlikitkulNational Institute for Public Health and the Environment (RIVM), Bilthoven, NetherlandsAna Maria de Roda HusmanNational Institute of Hygiene, Lomι, TogoBawimodom BidjadaAgence de Mιdecine Prιventive, Dapaong, TogoBerthe-Marie Njanpop-LafourcadeDivision of Integrated Surveillance of Health Emergencies and Response, Lomι, TogoSomtinda Christelle Nikiema-PessinabaPublic Health Institution of Turkey, Ankara, TurkeyBelkis LeventHatay Mustafa Kemal University, Hatay, TurkeyCemil KurekciMakerere University, Kampala, UgandaFrancis Ejobi & John Bosco KaluleAbu Dhabi Public Health Center, Abu Dhai, United Arab EmiratesJens ThomsenDubai municipality, WWTP Al Aweer, Dubai, UAEOuidiane ObaidiRashid Hospital, Dubai, UAELaila Mohamed JassimNorthumbrian Water, Northumbria House, Abbey Road, Pity Me, Durham, UKAndrew MooreUniversity of Exeter Medical School, Cornwall, UKAnne Leonard, Lihong Zhang & William H. GazeNewcastle University, Newcastle upon Tyne, UKDavid W. Graham & Joshua T. BunceBrightwater Treatment Plant, Woodinville, WA, USABrett LeforDepartment of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USADrew Capone & Joe BrownUniversity of North Carolina, Chapel Hill, USAEmanuele Sozzi & Mark D. SobseyUniversity of Washington, Seattle, WA, USAJohn Scott Meschke, Nicola Koren Beck, Pardi Sukapanpatharam & Phuong TruongBaylor University, Waco, USAMichael DavisColumbia Boulevard WWTP, Portland, USARonald LilienthalEastern Illinois University, Charleston, USASanghoon KangThe Ohio State University, Columbus Ohio, USAThomas E. WittumLaboratorio Tecnolσgico del Uruguay, Montevideo, UruguayNatalia Rigamonti & Patricia BaklayanInstitute of Public Health in Ho Chi Minh City, Ho Chi Minh, VietnamChinh Dang Van, Doan Minh Nguyen Tran & Nguyen Do PhucUniversity of Zambia, Lusaka, ZambiaGeoffrey KwendaF.M.A., M.K., and M.W. conceived the study and secured funding. R.S.H., A.M.S., C.A.A.S., and J.S.K. organized sample collection, material transfer, and logistics. F.D.M., P.M., and C.B. did quality control, sample selection, and outlier detection. P.M., C.B., F.D.M., T.N.P., and F.B. performed bioinformatics analyses. P.M. and C.B. carried out data and statistical analyses and visualization. P.M. and F.M.A. drafted the initial manuscript with input from C.B., B.v.B., D.G.J.L., M.W., and M.K. The Global Sewage Consortium authors carried out sewage sampling, filled in metadata and shipped the samples to DTU. All authors helped to review and improve the manuscript. More