Aphid species specializing on milkweed harbor taxonomically similar bacterial communities that differ in richness and relative abundance of core symbionts
Barbosa, P., Krischik, V. A. & Jones, C. G. Microbial mediation of plant-herbivore interactions (John Wiley & Sons, 1991).
 Google Scholar 
 Berenbaum, M. R. Allelochemicals in insect–microbe–plant interactions; agents provocateurs in the
 coevolutionary arms race. In Nov. Asp. Insect-Plant Interact. (eds Barbosa, P. & Letourneau, D. K.) 97–123 (1988).Mason, C. J., Jones, A. G. & Felton, G. W. Co-option of microbial associates by insects and their impact on plant–folivore interactions. Plant Cell Environ. 42, 1078–1086 (2019).Article 
 CAS 
 Google Scholar 
 Sugio, A., Dubreuil, G., Giron, D. & Simon, J.-C. Plant–insect interactions under bacterial influence: Ecological implications and underlying mechanisms. J. Exp. Bot. 66, 467–478 (2015).Article 
 CAS 
 Google Scholar 
 Hansen, A. K. & Moran, N. A. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol. Ecol. 23, 1473–1496 (2014).Article 
 Google Scholar 
 Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).Article 
 CAS 
 Google Scholar 
 Pineda, A. et al. Helping plants to deal with insects: The role of beneficial soil-borne microbes. Trends Plant Sci. 15, 507–514 (2010).Article 
 CAS 
 Google Scholar 
 Hammer, T. J. & Bowers, M. D. Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 179, 1–14 (2015).Article 
 ADS 
 Google Scholar 
 Liu, H. et al. An ecological loop: Host microbiomes across multitrophic interactions. Trends Ecol. Evol. 34, 1118–1130 (2019).Article 
 Google Scholar 
 Grunseich, J. M., Thompson, M. N., Aguirre, N. M. & Helms, A. M. The role of plant-associated microbes in mediating host-plant selection by insect herbivores. Plants 9, 6 (2020).Article 
 CAS 
 Google Scholar 
 Ferrari, J. et al. Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol. Entomol. 29, 60–65 (2004).Article 
 Google Scholar 
 McLean, A. H. et al. Insect symbionts in food webs. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150325 (2016).Article 
 Google Scholar 
 Giron, D., Dedeine, F., Dubreuil, G. et al. Influence of microbial symbionts on plant–insect interactions. In: Advances in botanical research. Elsevier, pp 225–257 (2017).Jones, A. G., Mason, C. J., Felton, G. W. & Hoover, K. Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Sci. Rep. 9, 1–11 (2019).Article 
 Google Scholar 
 Xu, T.-T., Jiang, L.-Y., Chen, J. & Qiao, G.-X. Host plants influence the symbiont diversity of Eriosomatinae (Hemiptera: Aphididae). Insects 11, 217. https://doi.org/10.3390/insects11040217 (2020).Article 
 Google Scholar 
 Qin, M. et al. Microbiota associated with Mollitrichosiphum aphids (Hemiptera: Aphididae: Greenideinae): Diversity, host species specificity and phylosymbiosis. Environ. Microbiol. 23(4), 2184–2198. https://doi.org/10.1111/1462-2920.15391 (2021).Article 
 CAS 
 Google Scholar 
 Douglas, A. E. Microbial brokers of insect-plant interactions revisited. J. Chem. Ecol. 39, 952–961 (2013).Article 
 CAS 
 Google Scholar 
 Engel, P. & Moran, N. A. The gut microbiota of insects–diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).Article 
 CAS 
 Google Scholar 
 Chung, S. H. et al. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses. Sci. Rep. 7, 1–13 (2017).
 Google Scholar 
 Holt, J. R. et al. Differences in microbiota between two multilocus lineages of the sugarcane aphid (Melanaphis sacchari) in the continental United States. Ann. Entomol. Soc. Am. 113(4), 257–265 (2020).Article 
 CAS 
 Google Scholar 
 McLean, A. H., Godfray, H. C. J., Ellers, J. & Henry, L. M. Host relatedness influences the composition of aphid microbiomes. Environ. Microbiol. Rep. 11, 808–816 (2019).Article 
 Google Scholar 
 Jones, R. T., Sanchez, L. G. & Fierer, N. A cross-taxon analysis of insect-associated bacterial diversity. PLoS ONE 8, e61218 (2013).Article 
 ADS 
 CAS 
 Google Scholar 
 Najar-Rodríguez, A. J. et al. The microbial flora of Aphis gossypii: Patterns across host plants and geographical space. J. Invertebr. Pathol. 100, 123–126. https://doi.org/10.1016/j.jip.2008.10.005 (2009).Article 
 Google Scholar 
 Blankenchip, C. L., Michels, D. E., Braker, H. E. & Goffredi, S. K. Diet breadth and exploitation of exotic plants shift the core microbiome of tropical herbivorous beetles. PeerJ. Prepr. 6, e26692v1 (2018).
 Google Scholar 
 Gauthier, J.-P., Outreman, Y., Mieuzet, L. & Simon, J.-C. Bacterial communities associated with host-adapted populations of pea aphids revealed by deep sequencing of 16S ribosomal DNA. PLoS ONE 10, e0120664 (2015).Article 
 Google Scholar 
 Wagner, S. M. et al. Facultative endosymbionts mediate dietary breadth in a polyphagous herbivore. Funct. Ecol. 29, 1402–1410 (2015).Article 
 Google Scholar 
 Guidolin, A. S. & Cônsoli, F. L. Symbiont diversity of Aphis (Toxoptera) citricidus (Hemiptera: Aphididae) as influenced by host plants. Microb. Ecol. 73, 201–210 (2017).Article 
 Google Scholar 
 Leonardo, T. E. & Muiru, G. T. Facultative symbionts are associated with host plant specialization in pea aphid populations. Proc. R. Soc. Lond. B Biol. Sci. 270, S209–S212 (2003).Article 
 Google Scholar 
 Xu, S., Jiang, L., Qiao, G. & Chen, J. The bacterial flora associated with the polyphagous aphid Aphis gossypii Glover (Hemiptera: Aphididae) is strongly affected by host plants. Microb. Ecol. 79, 971–984. https://doi.org/10.1007/s00248-019-01435-2 (2020).Article 
 CAS 
 Google Scholar 
 Ferrari, J., West, J. A., Via, S. & Godfray, H. C. J. Population genetic structure and secondary symbionts in host-associated populations of the pea aphid complex. Evolution 66, 375–390. https://doi.org/10.1111/j.1558-5646.2011.01436.x (2012).Article 
 Google Scholar 
 Brady, C. M. et al. Worldwide populations of the aphid Aphis craccivora are infected with diverse facultative bacterial symbionts. Microb. Ecol. 67, 195–204. https://doi.org/10.1007/s00248-013-0314-0 (2014).Article 
 Google Scholar 
 Henry, L. M., Maiden, M. C., Ferrari, J. & Godfray, H. C. J. Insect life history and the evolution of bacterial mutualism. Ecol. Lett. 18, 516–525 (2015).Article 
 Google Scholar 
 Simon, J.-C. et al. Host–based divergence in populations of the pea aphid: Insights from nuclear markers and the prevalence of facultative symbionts. Proc. R. Soc. Lond. B Biol. Sci. 270, 1703–1712. https://doi.org/10.1098/rspb.2003.2430 (2003).Article 
 Google Scholar 
 Brady, C. M. & White, J. A. Cowpea aphid (Aphis craccivora) associated with different host plants has different facultative endosymbionts. Ecol. Entomol. 38, 433–437. https://doi.org/10.1111/een.12020 (2013).Article 
 Google Scholar 
 Blackman, R. L. & Eastop, V. F. Aphids on the world’s herbaceous plants and shrubs, 2 Vol. set (John Wiley & Sons, 2008).
 Google Scholar 
 Züst, T. & Agrawal, A. A. Population growth and sequestration of plant toxins along a gradient of specialization in four aphid species on the common milkweed Asclepias syriaca. Funct. Ecol. 30, 547–556 (2016).Article 
 Google Scholar 
 Zytynska, S. E. & Weisser, W. W. The natural occurrence of secondary bacterial symbionts in aphids. Ecol. Entomol. 41, 13–26 (2016).Article 
 Google Scholar 
 Harrison, J. S. & Mondor, E. B. Evidence for an invasive aphid “Superclone”: Extremely low genetic diversity in Oleander aphid (Aphis nerii) populations in the Southern United States. PLoS ONE 6, e17524. https://doi.org/10.1371/journal.pone.0017524 (2011).Article 
 ADS 
 CAS 
 Google Scholar 
 Mooney, K., Jones, P. & Agrawal, A. Coexisting congeners: Demography, competition, and interactions with cardenolides for two milkweed-feeding aphids. Oikos 117, 450–458 (2008).Article 
 CAS 
 Google Scholar 
 Groeters, F. R. Geographic and clonal variation in the milkweed-oleander aphid, Aphis nerii (Homoptera: Aphididae), for winged morph production, life history, and morphology in relation to host plant permanence. Evol. Ecol. 3, 327–341 (1989).Article 
 Google Scholar 
 Dolan, R. W., Moore, M. E. Indiana Plant Atlas. [S.M. Landry and K.N. Campbell (original application development), USF Water Institute. University of South Florida]. Butler University Friesner Herbarium, Indianapolis, Indiana (2022).McMartin, K. A., Malcolm, S. B. Defense expression in the aphid Myzocallis asclepiadis. Final Report. Pierce Cedar Creek Institute, Hastings, MI (2008).Zaya, D. N., Pearse, I. S. & Spyreas, G. Long-term trends in Midwestern Milkweed abundances and their relevance to monarch butterfly declines. Bioscience 67, 343–356. https://doi.org/10.1093/biosci/biw186 (2017).Article 
 Google Scholar 
 Binetruy, F., Dupraz, M., Buysse, M. & Duron, O. Surface sterilization methods impact measures of internal microbial diversity in ticks. Parasit. Vectors 12, 268 (2019).Article 
 Google Scholar 
 Gohl, D. M. et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat. Biotechnol. 34, 942–949 (2016).Article 
 CAS 
 Google Scholar 
 Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522. https://doi.org/10.1073/pnas.1000080107 (2011).Article 
 ADS 
 Google Scholar 
 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
 CAS 
 Google Scholar 
 Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).Article 
 Google Scholar 
 Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
 CAS 
 Google Scholar 
 Jousselin, E. et al. Assessment of a 16S rRNA amplicon Illumina sequencing procedure for studying the microbiome of a symbiont-rich aphid genus. Mol. Ecol. Resour. 16, 628–640. https://doi.org/10.1111/1755-0998.12478 (2016).Article 
 CAS 
 Google Scholar 
 McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).Article 
 ADS 
 CAS 
 Google Scholar 
 Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 
 Google Scholar 
 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article 
 Google Scholar 
 Wright, E. S. Using DECIPHER v2. 0 to analyze big biological sequence data in R. R J. 8(1), 352 (2016).Article 
 Google Scholar 
 Schliep, K., Potts, A. A., Morrison, D. A. & Grimm, G. W. Intertwining phylogenetic trees and networks (No. e2054v1). PeerJ Preprints (2016).Hannula, S. E., Zhu, F., Heinen, R. & Bezemer, T. M. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nat. Commun. 10, 1–9 (2019).Article 
 CAS 
 Google Scholar 
 Gomes, S. I. et al. Microbiomes of a specialist caterpillar are consistent across different habitats but also resemble the local soil microbial communities. Anim. Microbiome 2, 1–12 (2020).Article 
 CAS 
 Google Scholar 
 Malacrinò, A. Host species identity shapes the diversity and structure of insect microbiota. Mol. Ecol. 31, 723–735. https://doi.org/10.1111/mec.16285 (2022).Article 
 Google Scholar 
 Colman, D. R., Toolson, E. C. & Takacs-Vesbach, C. D. Do diet and taxonomy influence insect gut bacterial communities?. Mol. Ecol. 21, 5124–5137 (2012).Article 
 CAS 
 Google Scholar 
 Pons, I., Renoz, F., Noël, C. & Hance, T. Circulation of the cultivable symbiont Serratia symbiotica in aphids is mediated by plants. Front. Microbiol. 10, 764. https://doi.org/10.3389/fmicb.2019.00764 (2019).Article 
 Google Scholar 
 Li, Q. et al. Plant-mediated horizontal transmission of Hamiltonella defensa in the wheat aphid Sitobion miscanthi. J. Agric. Food Chem. 66, 13367–13377. https://doi.org/10.1021/acs.jafc.8b04828 (2018).Article 
 CAS 
 Google Scholar 
 Jousselin, E., Cø eur d’Acier, A., Vanlerberghe-Masutti, F. & Duron, O. Evolution and diversity of A rsenophonus endosymbionts in aphids. Mol. Ecol. 22, 260–270 (2013).Article 
 Google Scholar 
 Nováková, E., Hypša, V. & Moran, N. A. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol. 9, 143 (2009).Article 
 Google Scholar 
 Chong, R. A. & Moran, N. A. Evolutionary loss and replacement of Buchnera, the obligate endosymbiont of aphids. ISME J. 12, 898–908 (2018).Article 
 CAS 
 Google Scholar 
 Wulff, J. A. & White, J. A. The endosymbiont Arsenophonus provides a general benefit to soybean aphid (Hemiptera: Aphididae) regardless of host plant resistance (Rag). Environ. Entomol. 44, 574–581 (2015).Article 
 CAS 
 Google Scholar 
 Ivens, A. B., Gadau, A., Kiers, E. T. & Kronauer, D. J. Can social partnerships influence the microbiome? Insights from ant farmers and their trophobiont mutualists. Mol. Ecol. 27, 1898–1914 (2018).Article 
 Google Scholar 
 Fischer, C. Y. et al. Bacteria may enhance species association in an ant–aphid mutualistic relationship. Chemoecology 25, 223–232 (2015).Article 
 CAS 
 Google Scholar 
 Smith, R. A., Mooney, K. A. & Agrawal, A. A. Coexistence of three specialist aphids on common Milkweed, Asclepias syriaca. Ecology 89, 2187–2196 (2009).Article 
 Google Scholar 
 Katayama, N., Tsuchida, T., Hojo, M. K. & Ohgushi, T. aphid genotype determines intensity of ant attendance: Do endosymbionts and honeydew composition matter?. Ann. Entomol. Soc. Am. 106, 761–770 (2013).Article 
 CAS 
 Google Scholar 
 Hansen, T. E. & Enders, L. S. Host Plant species influences the composition of milkweed and Monarch microbiomes. Front. Microbiol. https://doi.org/10.3389/fmicb.2022.840078 (2022).Article 
Google Scholar More
 