Analysis of influencing factors of phenanthrene adsorption by different soils in Guanzhong basin based on response surface method
Surface morphology analysisSEM images were shown in Fig. 1. It showed that the contour of three soils were fairly clear before adsorption. But it became fuzzier and the degree of cementation was increased when phenanthrene was adsorbed on the soils. According to the surface morphology, the silty sand (A) had furrows on the surface before adsorption compared with the fairly smooth without any furrows after adsorption (B). The silts (C) were flaky and the lamellar accumulation decreased (D). The loess (E) had a smooth surface with some flaky and rod like structure, after adsorption (F), the surface of loess increased in clay-like structure.Figure 1SEM micrographs of the three soil samples. (A) Silty sand; (B) Adsorbing 5 h of Silty sand; (C) Silts; (D) Adsorbing 5 h of Silts; (E) Loess; (F) Adsorbing 5 h of Loess.Full size imageAdsorption and desorption experimentsAdsorption and desorption kineticsAdsorption kinetics is one of the most important characteristics governing solute uptake rate and represents adsorption efficiency33. The sorption and desorption kinetics of phenanthrene in three soils were shown in Fig. 2. The results showed that the adsorption processes among all soils were similar. The kinetics of phenanthrene in soils was completed in two steps: a “fast” adsorption and a “slow” adsorption. The adsorption amount increased during 0-18h. It was a rapid reaction from 0 to 200 minutes. From 200 to 600 minutes, the adsorption amount increased slightly into balance. This phenomenon was due to the adsorption of phenanthrene occurred on the surface of soil organic matter. With the increase of time, soil surface adsorption sites were gradually saturated, causing the decrease of adsorption rate until reaching the equilibrium. Phenanthrene was a hydrophobic substance. It was easy to reach the soil surface and adhere to the grain surface. The results were consistent with the study of had also found that the balance time was approximately 18h and the adsorption amount increased with the adsorption reaction time34. Under the same conditions, loess had the highest adsorption capacity, which was mainly due to the highest organic content 18. The maximum phenanthrene sorption capacities ranked as follows: loess > silty sand > silts. As shown in Fig. 2, phenanthrene desorption in soils was relatively quick and its desorption equilibrium time was 3h. To reach an adequate desorption balance while remaining consistent with the adsorption reaction time, the balance time of the adsorption–desorption experiment was set at 18h. Generally, PAHs below 4 cycles could reach the adsorption equilibrium for about 16~24h.Figure 2(a)Adsorption equilibration curves of phenanthrene sorption in soils. (b) Desorption equilibration curves of phenanthrene sorption in soils.Full size imagePseudo-second-order and Elovich models were used to study the phenanthrene adsorption mechanism (Table 3). Phenanthrene sorption kinetics were satisfactorily described by a pseudo-second-order model with coefficients of determination (R2) ranging from 0.99875 to 0.99847, compared with R2 values of 0.26508–0.73901 for the Elovich model. This well-fitting pseudo-second-order model indicated that the rate-limiting step was chemical adsorption, including electronic forces through sharing or exchange of electrons35,36. Moreover, it suggested that sorption was governed by the availability of sorption sites on the soil surfaces instead of by the phenanthrene concentration in solution.Table 3 Constants and coeffients of determination of Pseudo-second-order kinetics and Elovich models of sorption.Full size tableAdsorption and desorption isothermsThe isotherm was used for quantitative analysis of phenanthrene transport from liquid to solid phase and for understanding the nature of interactions between phenanthrene and the soil matrix. The sorption and desorption isotherms of phenanthrene in soils were shown in Fig. 3. The data showed that phenanthrene adsorption and desorption capacities of three soils varied markedly due to their different physicochemical properties. With the increase of phenanthrene concentration, the adsorbed amount increased. At the same temperature, the adsorption capacity of silty sand was minimum while loess was maximum. This is mainly related to the soil physicochemical properties. At the same initial concentration, the temperature increase from 20 °C to 40 °C showed that the adsorption and desorption capacity decreased with temperature increase. On the one hand, the rise of temperature can increase the phenanthrene solubility in the liquid phase. On the other hand, it could reduce various forces between the soil surface and phenanthrene37.Figure 3(a)20 °C adsorption isotherms for phenanthrene in soils. (b)30 °C adsorption isotherms for phenanthrene in soils. (c)40 °C adsorption isotherms for phenanthrene in soils. (d) 20 °C desorption isotherms for phenanthrene in soils. (e) 30 °C desorption isotherms for phenanthrene in soils. (f) 40 °C desorption isotherms for phenanthrene in soils.Full size imageThe Freundlich isotherm was used mainly for adsorption surfaces with nonuniform energy distribution, and the Langmuir isotherm was used for monolayer adsorption on perfectly smooth and homogeneous surfaces38. The experimental data were fitted with the Langmuir and Freundlich adsorption models, and the isotherm parameters logKF, 1/n, KL, qmax and the coefficient of determination (R2) of phenanthrene in soils were listed in Table 4.Table 4 Isotherm parameters for Phenanthrene sorption in soils.Full size tableAs shown in Table 4, according to the coefficients of determination (R2), all soils were better fitted with the Freundlich model, which assumes that phenanthrene sorption and desorption occurs on a heterogeneous surface with the possibility of sorption being multi-layered39. This phenomenon has also been observed in humic acid and nanometer clay mineral40. It showed that the soil adsorption of organic matter was not only surface adsorption but also the process of soil organic matter distribution41,42,43 reached the equilibrium isotherm fitted well with the Freundlich equation when studying the adsorption behavior of aromatic compounds by solids.Adsorption and desorption thermodynamicsTo clarify the adsorption mechanisms, the thermodynamic parameters mentioned earlier were calculated and presented in Table 5. Generally, the value of Gibbs free energy changeΔG0 indicated the spontaneity of a chemical reaction. Therefore, it could evaluate whether sorption was relate to spontaneous interaction44. Negative values of ΔG0 indicated that the feasibility and spontaneous nature. The research was under the temperature range about 293–313 K. For adsorption process, all soils ΔG0 was 0 and desorption ΔH 1, P temperature > phenanthrene concentration > pH. In the interaction, the phenanthrene concentration and organic matter have a significant effect on the silt adsorption rate. The coefficient of determination of the silt complex correlation is R2 = 0.9464, indicating that the response model has a good fit, and the experimental error is within the acceptable range. Adjusting the complex correlation coefficient R2 = 0.8982 indicates that the regression relationship can explain 89.82% of the change in the dependent variable. Therefore, this The model can be used to analyze and predict the effect of different factors on the adsorption rate of phenanthrene.3D response surface analysisIn response surface optimization, the three-dimensional response surface graph reflects the influence of the interaction of the other two variables on the response value, and the slope of the response surface reflects the significance of the interaction of the two variables on the response value. The more significant the interaction effect is on the response value, when the slope is gentle, the effect is not significant. If the contour map is elliptical, it indicates that the interaction between the two variables is significant, and if the contour map is circular, it is not significant46. In addition, the slope and density of the contour line also reflect the influence of the variable on the response value. The steeper the contour line and the greater the density, the greater the influence of the variable on the response value47.
(1) Loess Fig. 5 is a three-dimensional response surface diagram of the interaction between initial phenanthrene concentration and pH to phenanthrene adsorption on loess. It can be seen from the figure that the slope of the response surface graph is steep, and the contour line is an approximate circle, indicating that the interaction between phenanthrene concentration and pH is not significant for the response value. With the increase of pH, the adsorption rate of phenanthrene on loess showed a slow decline at first to the lowest point at 6, and then gradually increased. When the soil pH was close to 6, with the increase of the initial phenanthrene concentration, the adsorption rate of loess also showed a trend of first decreasing and then increasing. According to the F value, F = 0.337, P = 0.5532 > 0.05, it can be concluded that soil pH and initial phenanthrene concentration of the solution have no significant interaction on the adsorption rate of loess.
Figure 6 shows the effects of initial phenanthrene concentration and organic matter on phenanthrene adsorption on Loess under the condition that pH value and temperature are at the central point. It can be seen from the figure that the initial phenanthrene concentration and soil organic matter contour are steep, indicating that their interaction is significant. The range of phenanthrene adsorption rate is 70 ~ 95, and the change of surface is steep. From the Loess error analysis, it can be seen that if f value is 6.05 and P value is 0.0275 More