Experimental climate change impacts on Baltic coastal wetland plant communities
Kimmel, K., Kull, A., Salm, J. & Mander, Ü. The status, conservation and sustainable use of Estonian wetlands. Wetl. Ecol. Manag. 18, 375–395. https://doi.org/10.1007/s11273-008-9129-z (2008).Article
Google Scholar
Engle, V. Estimating the provision of ecosystem services by Gulf of Mexico coastal wetlands. Wetlands 31, 179–193. https://doi.org/10.1007/s13157-010-0132-9 (2011).Article
Google Scholar
Ward, R., Teasdale, P., Burnside, N., Joyce, C. & Sepp, K. Recent rates of sedimentation on irregularly flooded Boreal Baltic coastal wetlands: Responses to recent changes in sea level. Geomorphology 217, 61–72. https://doi.org/10.1016/j.geomorph.2014.03.045 (2014).Article
Google Scholar
Villoslada Peciña, M. et al. Country-scale mapping of ecosystem services provided by semi-natural grasslands. Sci. Total Environ. 661, 212–225. https://doi.org/10.1016/j.scitotenv.2019.01.174 (2019).Article
CAS
PubMed
Google Scholar
Lima, M., Ward, R. & Joyce, C. Environmental drivers of sediment carbon storage in temperate seagrass meadows. Hydrobiologia 847, 1773–1792. https://doi.org/10.1007/s10750-019-04153-5 (2019).Article
CAS
Google Scholar
Ward, R. Sedimentary response of Arctic coastal wetlands to sea level rise. Geomorphology 370, 107400. https://doi.org/10.1016/j.geomorph.2020.107400 (2020).Article
Google Scholar
Akumu, C., Pathirana, S., Baban, S. & Bucher, D. Examining the potential impacts of sea level rise on coastal wetlands in north-eastern NSW, Australia. J. Coast. Conserv. 15, 15–22. https://doi.org/10.1007/s11852-010-0114-3 (2010).Article
Google Scholar
Ward, R. Carbon sequestration and storage in Norwegian Arctic coastal wetlands: Impacts of climate change. Sci. Total Environ. 748, 141343. https://doi.org/10.1016/j.scitotenv.2020.141343 (2020).Article
CAS
PubMed
Google Scholar
Hossain, M., Hein, L., Rip, F. & Dearing, J. Integrating ecosystem services and climate change responses in coastal wetlands development plans for Bangladesh. Mitig. Adapt. Strateg. Glob. Chang. 20, 241–261. https://doi.org/10.1007/s11027-013-9489-4 (2015).Article
Google Scholar
Ward, R., Friess, D., Day, R. & Mackenzie, R. Impacts of climate change on global mangrove ecosystems: A regional comparison. Ecosyst. Health Sustain. 4, 1–25 (2016).
Google Scholar
Graham, L. P. et al. Climate change. In The Baltic Sea Area Draft HELCOM Thematic Assessment. (Helsinki Commission, Baltic Marine Environmental Protection Commission, 2007).BACC. Assessment of Climate Change for the Baltic Sea Basin. (Springer Science & Business Media, 2008).
Google Scholar
Rivis, R. et al. Trends in the development of Estonian coastal land cover and landscapes caused by natural changes and human impact. J. Coast. Conserv. 20, 199–209. https://doi.org/10.1007/s11852-016-0430-3 (2016).Article
Google Scholar
Cubasch, U. et al. Projections of future climate change. in IPCC Climate Change 2001: The Scientific Basis Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2001).Mafi-Gholami, D., Zenner, E., Jaafari, A. & Ward, R. Modeling multi-decadal mangrove leaf area index in response to drought along the semi-arid southern coasts of Iran. Sci. Total Environ. 656, 1326–1336. https://doi.org/10.1016/j.scitotenv.2018.11.462 (2019).Article
CAS
PubMed
Google Scholar
IPCC. Global Warming of 1.5 ºC. Ipcc.ch. https://www.ipcc.ch/sr15/ (2008).Omstedt, A., Pettersen, C., Rodhe, J. & Winsor, P. Baltic Sea climate: 200 yr of data on air temperature, sea level variation, ice cover, and atmospheric circulation. Clim. Res. 25, 205–216 (2004).Article
Google Scholar
Räisänen, J. Future climate change in the Baltic Sea Region and environmental impacts. Oxf. Res. Encycl. Clim. Sci. https://doi.org/10.1093/acrefore/9780190228620.013.634 (2017).Article
Google Scholar
Dippner, J. W. et al. Climate-related marine ecosystem change. in Team, B. A. Assessment of Climate Change for the Baltic Sea Basin. (SSBM, 2008).Ward, R., Burnside, N., Joyce, C., Sepp, K. & Teasdale, P. Improved modelling of the impacts of sea level rise on coastal wetland plant communities. Hydrobiologia 774, 203–216. https://doi.org/10.1007/s10750-015-2374-2 (2016).Article
Google Scholar
Vuorinen, I. Proportion of copepod biomass declines with decreasing salinity in the Baltic Sea. ICES Mar. Sci. 55, 767–774. https://doi.org/10.1006/jmsc.1998.0398 (1998).Article
Google Scholar
Berg, M., Joyce, C. & Burnside, N. Differential responses of abandoned wet grassland plant communities to reinstated cutting management. Hydrobiologia 692, 83–97. https://doi.org/10.1007/s10750-011-0826-x (2011).Article
Google Scholar
Short, F., Kosten, S., Morgan, P., Malone, S. & Moore, G. Impacts of climate change on submerged and emergent wetland plants. Aquat. Bot. 135, 3–17. https://doi.org/10.1016/j.aquabot.2016.06.006 (2016).Article
Google Scholar
Ward, R., Burnside, N., Joyce, C. & Sepp, K. Importance of microtopography in determining plant community distribution in Baltic coastal wetlands. J. Coast. Res. 321, 1062–1070. https://doi.org/10.2112/JCOASTRES-D-15-00065.1 (2016).Article
Google Scholar
Burnside, N., Joyce, C., Puurmann, E. & Scott, D. Use of vegetation classification and plant indicators to assess grazing abandonment in Estonian coastal wetlands. J. Veg. Sci. 18, 645–654. https://doi.org/10.1111/j.1654-1103.2007.tb02578.x (2007).Article
Google Scholar
Ward, R., Burnside, N., Joyce, C. & Sepp, K. The use of medium point density LiDAR elevation data to determine plant community types in Baltic coastal wetlands. Ecol. Indic. 33, 96–104. https://doi.org/10.1016/j.ecolind.2012.08.016 (2013).Article
Google Scholar
Goud, E., Watt, C. & Moore, T. Plant community composition along a peatland margin follows alternate successional pathways after hydrologic disturbance. Acta Oecol. 91, 65–72. https://doi.org/10.1016/j.actao.2018.06.006 (2018).Article
Google Scholar
Moreno, J., Terrones, A., Juan, A. & Alonso, M. Halophytic plant community patterns in Mediterranean saltmarshes: Shedding light on the connection between abiotic factors and the distribution of halophytes. Plant Soil 430, 185–204. https://doi.org/10.1007/s11104-018-3671-0 (2018).Article
CAS
Google Scholar
Sharpe, P. & Baldwin, A. Tidal marsh plant community response to sea-level rise: A mesocosm study. Aquat. Bot. 101, 34–40. https://doi.org/10.1016/j.aquabot.2012.03.015 (2012).Article
Google Scholar
Lindig-Cisneros, R. & Zedler, J. Phalaris arundinacea seedling establishment: Effects of canopy complexity in fen, mesocosm, and restoration experiments. J. Bot. 80, 617–624. https://doi.org/10.1139/b02-042 (2002).Article
Google Scholar
Ahn, C. & Mitsch, W. Scaling considerations of mesocosm wetlands in simulating large created freshwater marshes. Ecol. Eng. 18, 327–342. https://doi.org/10.1016/S0925-8574(01)00092-1 (2002).Article
Google Scholar
Brotherton, S. & Joyce, C. Extreme climate events and wet grasslands: Plant traits for ecological resilience. Hydrobiologia 750, 229–243. https://doi.org/10.1007/s10750-014-2129-5 (2015).Article
Google Scholar
Stewart, R. I. et al. Mesocosm experiments as a tool for ecological climate-change research. Adv. Ecol. Res. AP. 48, 71–181 (2013).Article
Google Scholar
Kont, A., Ratas, U. & Puurmann, E. Sea-level rise impact on coastal areas of Estonia. Clim. Change 36, 175–184. https://doi.org/10.1023/A:1005352715752 (1997).Article
Google Scholar
Short, F. & Neckles, H. The effects of global climate change on seagrasses. Aquat. Bot. 63, 169–196. https://doi.org/10.1016/S0304-3770(98)00117-X (1999).Article
Google Scholar
Engels, J., Rink, F. & Jensen, K. Stress tolerance and biotic interactions determine plant zonation patterns in estuarine marshes during seedling emergence and early establishment. J. Ecol. 99, 277–287. https://doi.org/10.1111/j.1365-2745.2010.01745.x (2010).Article
Google Scholar
Rayner, D. et al. Intertidal wetland vegetation dynamics under rising sea levels. Sci. Total Environ. 766, 144237. https://doi.org/10.1016/j.scitotenv.2020.144237 (2021).Article
CAS
PubMed
Google Scholar
Toogood, S. & Joyce, C. Effects of raised water levels on wet grassland plant communities. Appl. Veg. Sci. 12, 283–294. https://doi.org/10.1111/j.1654-109X.2009.01028.x (2009).Article
Google Scholar
Humphreys, A., Gorsky, A., Bilkovic, D. & Chambers, R. Changes in plant communities of low-salinity tidal marshes in response to sea-level rise. Ecosphere https://doi.org/10.1002/ecs2.3630 (2021).Article
Google Scholar
Jarvis, J. C., McKenna, S. A. & Rasheed, M. A. Seagrass seed bank spatial structure and function following a large-scale decline. Mar. Ecol. Prog. Ser. 665, 75–87. https://doi.org/10.3354/meps13668 (2021).Article
Google Scholar
Elsey-Quirk, T. & Leck, M. Patterns of seed bank and vegetation diversity along a tidal freshwater river. Am. J. Bot. 102, 1996–2012. https://doi.org/10.3732/ajb.1500314 (2015).Article
PubMed
Google Scholar
Jutila, H. Germination in Baltic coastal wetland meadows: Similarities and differences between vegetation and seed bank. Plant Ecol. 166, 275–293 (2003).Article
Google Scholar
Ellenberg, H. Zeigerwerte der Gefässpflanzen Mitteleuropas. 42–111. (Scr. Geobot., 1979).Joshi, R. et al. Salt adaptation mechanisms of halophytes: Improvement of salt tolerance in crop plants. in Elucidation of Abiotic Stress Signaling in Plants. (Springer, 2015).Tessier, M., Gloaguen, J. & Lefeuvre, J. Factors affecting the population dynamics of Suaeda maritima at initial stages of development. Plant Ecol. 147, 193–203 (2000).Article
Google Scholar
Hanslin, H. & Eggen, T. Salinity tolerance during germination of seashore halophytes and salt-tolerant grass cultivars. Seed Sci. Res. 15, 43–50. https://doi.org/10.1079/SSR2004196 (2005).Article
Google Scholar
Köster, T. et al. The management of the coastal grasslands of Estonia. WIT Trans. Ecol. Environ. https://doi.org/10.2495/CENV040051 (2004).Article
Google Scholar
Spencer, T. et al. Global coastal wetland change under sea-level rise and related stresses: The DIVA wetland change model. Glob. Planet. Change 139, 15–30. https://doi.org/10.1016/j.gloplacha.2015.12.018 (2016).Article
Google Scholar
Marani, M., D’Alpaos, A., Lanzoni, S., Carniello, L. & Rinaldo, A. Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon. Geophys. Res. Lett. https://doi.org/10.1029/2007GL030178 (2007).Article
Google Scholar
Petersen, K., Frank, H., Paytan, A. & Bar-Zeev, E. Impacts of seawater desalination on coastal environments. Sustain. Desalin. Handb. https://doi.org/10.1016/B978-0-12-809240-8.00011-3 (2018).Article
Google Scholar
Rannap, R. et al. Coastal meadow management for threatened waders has a strong supporting impact on meadow plants and amphibians. J. Nat. Conserv. 35, 77–91. https://doi.org/10.1016/j.jnc.2016.12.004 (2017).Article
Google Scholar
Krauss, K. et al. How mangrove forests adjust to rising sea level. New Phytol. 202, 19–34. https://doi.org/10.1111/nph.12605 (2014).Article
PubMed
Google Scholar
Kirwan, M. et al. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. https://doi.org/10.1029/2010GL045489 (2010).Article
Google Scholar
Burnside, N., Joyce, C., Berg, M. & Puurman, E. The relationship between microtopography and vegetation in Estonian coastal wetlands: Implications for climate change. Publ. Inst. Geogr. Univ. Tartu. 106, 19–23 (2008).
Google Scholar
Hulisz, P., Piernik, A., Mantilla-Contreras, J. & Elvisto, T. Main driving factors for seacoast vegetation in the southern and eastern Baltic. Wetlands 36, 909–919. https://doi.org/10.1007/s13157-016-0803-2 (2016).Article
Google Scholar
Gough, L. & Grace, J. Effects of flooding, salinity and herbivory on coastal plant communities, Louisiana, United States. Oecologia 117, 527–535. https://doi.org/10.1007/s004420050689 (1998).Article
PubMed
Google Scholar
Hannerz, F. & Destouni, G. Spatial characterization of the Baltic sea drainage basin and its unmonitored catchments. Ambio 35, 214–219. https://doi.org/10.1579/05-A-022R.1 (2006).Article
PubMed
Google Scholar
Kont, A., Jaagus, J. & Aunap, R. Climate change scenarios and the effect of sea-level rise for Estonia. Glob. Planet. Change 36, 1–15. https://doi.org/10.1016/S0921-8181(02)00149-2 (2003).Article
Google Scholar
von Storch, H. & Omstedt, A. Introduction and summary. in Team, B. A. Assessment of Climate Change for the Baltic Sea Basin. (SSBM, 2008).Stigebrandt, A. Physical oceanography of the Baltic Sea. in A Systems Analysis of the Baltic Sea. 19–74 (Springer, 2001).Ingerpuu, N. & Sarv, M. Effect of grazing on plant diversity of coastal meadows in Estonia. Ann. Bot. Fenn. 52, 84–92. https://doi.org/10.5735/085.052.0210 (2015).Article
Google Scholar
Moinardeau, C., Mesléard, F., Ramone, H. & Dutoit, T. Short-term effects on diversity and biomass on grasslands from artificial dykes under grazing and mowing treatments. Environ. Conserv. 46, 132–139. https://doi.org/10.1017/S0376892918000346 (2019).Article
Google Scholar
Tardella, F. M., Bricca, A., Goia, I. G. & Catorci, A. How mowing restores montane Mediterranean grasslands following cessation of traditional livestock grazing. Agric. Ecosyst. Environ. 295, 1158. https://doi.org/10.1016/j.agee.2020.106880 (2020).Article
Google Scholar
Lindborg, R. & Eriksson, O. Historical landscape connectivity affects present plant species diversity. Ecology 85, 1840–1845. https://doi.org/10.1890/04-0367 (2004).Article
Google Scholar
Villoslada Peciña, M., Bergamo, T., Ward, R., Joyce, C. & Sepp, K. A novel UAV-based approach for biomass prediction and grassland structure assessment in coastal meadows. Ecol. Indic. 122, 107227. https://doi.org/10.1016/j.ecolind.2020.107227 (2021).Article
Google Scholar
Villoslada, M. et al. Fine scale plant community assessment in coastal meadows using UAV based multispectral data. Ecol. Indic. 111, 105979. https://doi.org/10.1016/j.ecolind.2019.105979 (2020).Article
Google Scholar
Araya, Y., Gowing, D. & Dise, N. A controlled water-table depth system to study the influence of fine-scale differences in water regime for plant growth. Aquat. Bot. 92, 70–74. https://doi.org/10.1016/j.aquabot.2009.10.004 (2010).Article
Google Scholar
Koch, E. et al. Non-linearity in ecosystem services: Temporal and spatial variability in coastal protection. Front. Ecol. Environ. 7, 29–37. https://doi.org/10.1890/080126 (2009).Article
Google Scholar
Church, J. & White, N. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 32, 585–602. https://doi.org/10.1007/s10712-011-9119-1 (2011).Article
Google Scholar
Goodwillie, C., McCoy, M. & Peralta, A. Long-term nutrient enrichment, mowing, and ditch drainage interact in the dynamics of a wetland plant community. Ecosphere. https://doi.org/10.1002/ecs2.3252 (2020).Article
Google Scholar
Kindt, R. & Coe, R. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. in World Agroforestry | Transforming Lives and Landscapes with Trees. http://www.worldagroforestry.org/output/tree-diversity-analysis (2005).Oksanen, J. et al. CRAN—Package Vegan. Cran.r-project.org. https://CRAN.R-project.org/package=vegan. (2022).Wickham, H. Create Elegant Data Visualisations Using the Grammar of Graphics. Ggplot2.tidyverse.org. https://ggplot2.tidyverse.org (2016).Avolio, M. et al. A comprehensive approach to analyzing community dynamics using rank abundance curves. Ecosphere. https://doi.org/10.1002/ecs2.2881 (2019).Article
Google Scholar
Curtis, J. & McIntosh, R. The interrelations of certain analytic and synthetic phytosociological characters. Ecology 31, 434–455. https://doi.org/10.2307/1931497 (1950).Article
Google Scholar
Porto, A. B., do Prado, M. A., Rodrigues, L. D. S. & Overbeck, G. E. Restoration of subtropical grasslands degraded by non-native pine plantations: Effects of litter removal and hay transfer. Restor. Ecol. https://doi.org/10.1111/rec.13773 (2022).Article
Google Scholar
Cáceres, M. D. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecol. 90, 3566–3574. https://doi.org/10.1890/08-1823.1 (2009).Article
Google Scholar
Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. https://dplyr.tidyverse.org; https://github.com/tidyverse/dplyr (2022). More