More stories

  • in

    Global distribution and climate sensitivity of the tropical montane forest nitrogen cycle

    von Humboldt, A., and A. Bonpland. Essai sur la geographiedes plantes. Chez Levrault, Schoell et Campagnie, Libraries, Paris.(1805).Malhi, Y. et al. Introduction: elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Glob. Change Biol. 16, 3171–3175 (2010).Article 

    Google Scholar 
    Nottingham, A. T. et al. Climate warming and soil carbon in tropical forests: insights from an elevation gradient in the Peruvian Andes. BioScience 65, 906–921 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Malhi, Y. et al. The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. N. Phytologist 214, 1019–1032 (2017).Article 
    CAS 

    Google Scholar 
    Nottingham, A. T. et al. Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm. Biogeosciences 12, 6071–6083 (2015).Article 

    Google Scholar 
    Nottingham, A. T. et al. Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology 99, 2455–2466 (2018).Article 
    PubMed 

    Google Scholar 
    Jenny, H., Bingham, F. & Padillasaravia, B. Nitrogen and organic matter contents of equatorial soils of Colombia, South-America. Soil Sci. 66, 173–186 (1948).Article 
    CAS 

    Google Scholar 
    Tanner, E., Vitousek, P. & Cuevas, E. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79, 10–22 (1998).Article 

    Google Scholar 
    Vitousek, P. M., Matson, P. A. & Turner, D. R. Elevational and age gradients in Hawaiian montane rainforest: foliar and soil nutrients. Oecologia 77, 565–570 (1988).Article 
    PubMed 

    Google Scholar 
    Vitousek, P. M. & Sanford, R. L. Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Syst. 17, 137–167 (1986).Article 

    Google Scholar 
    Krishnaswamy, J., John, R. & Joseph, S. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Glob. Change Biol. 20, 203–215 (2014).Article 

    Google Scholar 
    Duque, A. et al. Mature Andean forests as globally important carbon sinks and future carbon refuges. Nat. Commun. 12, 2138 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fadrique, B. et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564, 207–212 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nottingham, A. T. et al. Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecol. Lett. 22, 1889–1899 (2019).Article 
    PubMed 

    Google Scholar 
    Marrs, R. H., Proctor, J., Heaney, A. & Mountford, M. D. Changes in soil nitrogen-mineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica. J. Ecol. 76, 466–482 (1988).Grubb, P. J. Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annu. Rev. Ecol. Syst. 8, 83–107 (1977).Article 
    CAS 

    Google Scholar 
    Wolf, K., Veldkamp, E., Homeier, J. & Martinson, G. O. Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Glob. Biogeochem. Cycles 25, GB4009 (2011).Barthel, M. et al. Low N2O and variable CH4 fluxes from tropical forest soils of the Congo Basin. Nat. Commun. 13, 330 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brookshire, E. N. J., Hedin, L. O., Newbold, J. D., Sigman, D. M. & Jackson, J. K. Sustained losses of bioavailable nitrogen from montane tropical forests. Nat. Geosci. 5, 123–126 (2012).Article 
    CAS 

    Google Scholar 
    Rütting, T. et al. Leaky nitrogen cycle in pristine African montane rainforest soil. Glob. Biogeochem. Cycles 29, 1754–1762 (2015).Article 

    Google Scholar 
    Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 47, 151–163 (1996).Article 
    CAS 

    Google Scholar 
    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Poggio, L. et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. SOIL 7, 217–240 (2021).Article 
    CAS 

    Google Scholar 
    Bauters, M. et al. Parallel functional and stoichiometric trait shifts in South American and African forest communities with elevation. Biogeosciences 14, 5313–5321 (2017).Article 
    CAS 

    Google Scholar 
    Dalling, J. W., Heineman, K., González, G. & Ostertag, R. Geographic, environmental and biotic sources of variation in the nutrient relations of tropical montane forests. J. Tropical Ecol. 32, 368–383 (2016).Article 

    Google Scholar 
    Porder, S., Vitousek, P., Chadwick, O., Chamberlain, C. & Hilley, G. Uplift, erosion, and phosphorus limitation in terrestrial ecosystems. Ecosystems 10, 158–170 (2007).Article 
    CAS 

    Google Scholar 
    Houlton, B. Z., Morford, S. L. & Dahlgren, R. A. Convergent evidence for widespread rock nitrogen sources in Earth’s surface environment. Science 360, 58–62 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hilton, R. G., Galy, A., West, A. J., Hovius, N. & Roberts, G. G. Geomorphic control on the delta N-15 of mountain forests. Biogeosciences 10, 1693–1705 (2013).Article 
    CAS 

    Google Scholar 
    Vitousek, P. M., Van Cleve, K., Balakrishnan, N. & Mueller-Dombois, D. Soil development and nitrogen turnover in montane rainforest soils on Hawai’i. Biotropica 268–274 (1983).Taylor, P. G. et al. Temperature and rainfall interact to control carbon cycling in tropical forests. Ecol. Lett. 20, 779–788 (2017).Article 
    PubMed 

    Google Scholar 
    Houlton, B. & Bai, E. Imprint of denitrifying bacteria on the global terrestrial biosphere. Proc. Natl Acad. Sci. USA 106, 21713–21716 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).Article 
    CAS 

    Google Scholar 
    Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant and Soil 396, 1–26 (2015).Högberg, P. Tansley Review No. 95. 15N Natural Abundance in Soil-Plant Systems. N. Phytologist 137, 179–203 (1997).Article 

    Google Scholar 
    Martinelli, L. et al. Nitrogen stable isotopic composition of leaves and soil: Tropical versus temperate forests. Biogeochemistry 46, 45–65 (1999).Article 
    CAS 

    Google Scholar 
    Amundson, R. et al. Global patterns of the isotopic composition of soil and plant nitrogen. Glob. Biogeochem. Cycles 17, (2003).Craine, J. M. et al. Convergence of soil nitrogen isotopes across global climate gradients. Sci. Rep. 5, 8280 (2015).Mooshammer, M. et al. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nat. Commun. 5, 3694 (2014).Camenzind, T., Hättenschwiler, S., Treseder, K. K., Lehmann, A. & Rillig, M. C. Nutrient limitation of soil microbial processes in tropical forests. Ecol. Monogr. 88, 4–21 (2018).Article 

    Google Scholar 
    Mariotti, A., Pierre, D., Vedy, J. C., Bruckert, S. & Guillemot, J. The abundance of natural nitrogen 15 in the organic matter of soils along an altitudinal gradient (Chablais, Haute Savoie, France). Catena 7, 293–300 (1980).Article 
    CAS 

    Google Scholar 
    Sena‐Souza, J. P., Houlton, B. Z., Martinelli, L. A. & Nardoto, G. B. Reconstructing continental-scale variation in soil δ15N: a machine learning approach in South America. Ecosphere 11, e03223 (2020).Article 

    Google Scholar 
    Nottingham, A. T., Bååth E., Reischke, S., Salinas, N. & Meir, P. Adaptation of soil microbial growth to temperature: Using a tropical elevation gradient to predict future changes. Glob. change Biol. 25, 827–838 (2019).Liu, Y. et al. A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: latitudinal patterns and mechanisms. Glob. Change Biol. 23, 455–464 (2017).Article 

    Google Scholar 
    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zimmermann, M. & Bird, M. I. Temperature sensitivity of tropical forest soil respiration increase along an altitudinal gradient with ongoing decomposition. Geoderma 187–188, 8–15 (2012).Article 

    Google Scholar 
    Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17, 798–818 (2011).Article 

    Google Scholar 
    Wright, S. J. Plant responses to nutrient addition experiments conducted in tropical forests. Ecol. Monogr. 89, e01382 (2019).Article 

    Google Scholar 
    Brookshire, E. N. J., Gerber, S., Menge, D. N. L. & Hedin, L. O. Large losses of inorganic nitrogen from tropical rainforests suggest a lack of nitrogen limitation. Ecol. Lett. 15, 9–16 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Corrales, A., Henkel, T. W. & Smith, M. E. Ectomycorrhizal associations in the tropics—biogeography, diversity patterns and ecosystem roles. N. Phytologist 220, 1076–1091 (2018).Article 

    Google Scholar 
    Zeng, Z. et al. Deforestation-induced warming over tropical mountain regions regulated by elevation. Nat. Geosci. 1–7 https://doi.org/10.1038/s41561-020-00666-0 (2020).Nogués-Bravo, D., Araújo, M. B., Errea, M. P. & Martínez-Rica, J. P. Exposure of global mountain systems to climate warming during the 21st Century. Glob. Environ. Change 17, 420–428 (2007).Article 

    Google Scholar 
    Weintraub, S. R., Cole, R. J., Schmitt, C. G. & All, J. D. Climatic controls on the isotopic composition and availability of soil nitrogen across mountainous tropical forest. Ecosphere 7, e01412 (2016).Article 

    Google Scholar 
    Brookshire, E. N. J. & Thomas, S. A. Ecosystem consequences of tree monodominance for nitrogen cycling in lowland tropical forest. PLoS ONE 8, e70491 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kitayama, K. & Iwamoto, K. Patterns of natural 15N abundance in the leaf-to-soil continuum of tropical rain forests differing in N availability on Mount Kinabalu, Borneo. Plant Soil 229, 203–212 (2001).Article 
    CAS 

    Google Scholar 
    Bauters, M. et al. Contrasting nitrogen fluxes in African tropical forests of the Congo Basin. Ecol. Monogr. 89, e01342 (2019).Article 

    Google Scholar 
    Proctor, J., Edwards, I. D., Payton, R. W. & Nagy, L. Zonation of forest vegetation and soils of Mount Cameroon, West Africa. Plant Ecol. 192, 251–269 (2007).Article 

    Google Scholar 
    Grubb, P. J. & Stevens, P. F. The Forests of the Fatima Basin and Mt Kerigomna, Papua New Guinea with a Review of Montane and Subalpine Rainforests in Papuasia (Department of Human Geography, Research School of Pacific Studies…, 2017).Dieleman, W. I. J., Venter, M., Ramachandra, A., Krockenberger, A. K. & Bird, M. I. Soil carbon stocks vary predictably with altitude in tropical forests: Implications for soil carbon storage. Geoderma 204–205, 59–67 (2013).Article 

    Google Scholar 
    Kapos, V., Rhind, J., Edwards, M., Price, M. F. & Ravilious, C. in Forests in sustainable mountain development: a state of knowledge report for 2000. Task Force on Forests in Sustainable Mountain Development. 4–19 (CABI, 2000). https://doi.org/10.1079/9780851994468.0004.Sexton, J. O. et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digital Earth 6, 427–448 (2013).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org (2022).Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48, https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Bartoń K. MuMIn: Multi-Model Inference. R package version 1.43.17 (2020).Grömping, U. Relative Importance for Linear Regression in R: The Package Relaimpo. J. Stat. Softw. 17, 1–27 (2006).Article 

    Google Scholar 
    Baty, F. et al. A Toolbox for Nonlinear Regression in R: The Package nlstools. J. Stat. Softw. 66, 1–21 (2015).Article 

    Google Scholar  More

  • in

    Finding space for nature in cities: the considerable potential of redundant car parking

    Butt, N. et al. Opportunities for biodiversity conservation as cities adapt to climate change. Geo Geogr. Environ. 5, 52 (2018).
    Google Scholar 
    Norton, B. A. et al. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 134, 127–138 (2015).Article 

    Google Scholar 
    Ossola, A. et al. Small vegetated patches greatly reduce urban surface temperature during a summer heatwave in Adelaide, Australia. Landsc. Urban Plan. 209, 104046 (2021).Article 

    Google Scholar 
    Grey, V., Livesley, S. J., Fletcher, T. D. & Szota, C. Tree pits to help mitigate runoff in dense urban areas. J. Hydrol. 565, 400–410 (2018).Article 

    Google Scholar 
    Szota, C. et al. Street tree stormwater control measures can reduce runoff but may not benefit established trees. Landsc. Urban Plan. 182, 144–155 (2019).Article 

    Google Scholar 
    Liu, L. & Jensen, M. B. Green infrastructure for sustainable urban water management: Practices of five forerunner cities. Cities 74, 126–133 (2018).Article 

    Google Scholar 
    Astell-Burt, T. & Feng, X. Association of urban green space with mental health and general health among adults in Australia. JAMA Netw. Open 2, 198209 (2019).Article 

    Google Scholar 
    Astell Burt, T. et al. More green, less lonely? A longitudinal cohort study. Int. J. Epidemiol. 51, 99–110 (2022).Article 

    Google Scholar 
    Astell-Burt, T., Navakatikyan, M. A. & Feng, X. Urban green space, tree canopy and 11-year risk of dementia in a cohort of 109,688 Australians. Env. Int. 145, 106102 (2020).Article 

    Google Scholar 
    Feng, X. & Astell-Burt, T. Residential green space quantity and quality and child well-being: a longitudinal study. Am. J. Prev. Med. 53, 616–624 (2017).Article 

    Google Scholar 
    Knobel, P. et al. Quality of urban green spaces influences residents’ use of these spaces, physical activity, and overweight/obesity. Environ. Pollut. 271, 116393 (2021).Article 
    CAS 

    Google Scholar 
    Haaland, C. & van den Bosch, C. K. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For.Urban Green 14, 760–771 (2015).Article 

    Google Scholar 
    Russo, A. & Cirella, G. T. Modern compact cities: How much greenery do we need? Int. J. Environ. Res. Public Health 15, 2180 (2018).Article 

    Google Scholar 
    Garrard, G. E., Williams, N. S. G., Mata, L., Thomas, J. & Bekessy, S. A. Biodiversity sensitive urban design. Conserv. Lett. 11, 1–10 (2018).Article 

    Google Scholar 
    Eaton, T. T. Approach and case-study of green infrastructure screening analysis for urban stormwater control. J. Environ. Manage. 209, 495–504 (2018).Article 

    Google Scholar 
    Maes, M. J. A., Jones, K. E., Toledano, M. B. & Milligan, B. Mapping synergies and trade-offs between urban ecosystems and the sustainable development goals. Environ. Sci. Policy 93, 181–188 (2019).Article 

    Google Scholar 
    Astell-Burt, T., Feng, X., Mavoa, S., Badland, H. M. & Giles-Corti, B. Do low-income neighbourhoods have the least green space? A cross-sectional study of Australia’s most populous cities. BMC Public Health 14, 19–21 (2014).Article 

    Google Scholar 
    Coutts, A. M., Tapper, N. J., Beringer, J., Loughnan, M. & Demuzere, M. Watering our cities: The capacity for Water Sensitive Urban Design to support urban cooling and improve human thermal comfort in the Australian context. Prog. Phys. Geogr. 37, 2–28 (2013).Article 

    Google Scholar 
    Intergovernmental Panel on Climate Change. Climate Change 2022: Impacts, Adaptation and Vulnerability | Climate Change 2022: Impacts, Adaptation and Vulnerability. IPCC Sixth Assessment Report https://www.ipcc.ch/report/ar6/wg2/ (2022).Davies, C. & Lafortezza, R. Urban green infrastructure in Europe: Is greenspace planning and policy compliant? Land Use Policy 69, 93–101 (2017).Article 

    Google Scholar 
    Faivre, N., Fritz, M., Freitas, T., de Boissezon, B. & Vandewoestijne, S. Nature-based solutions in the EU: Innovating with nature to address social, economic and environmental challenges. Environ. Res. 159, 509–518 (2017).Article 
    CAS 

    Google Scholar 
    Meerow, S. & Newell, J. P. Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landsc. Urban Plan. 159, 62–75 (2017).Article 

    Google Scholar 
    City of Los Angeles. L.A.’s Green New Deal: Sustainability Plan 2019. https://plan.lamayor.org/ (2019).City of Paris. Urban forests soon on four emblematic sites. https://www.paris.fr/pages/des-forets-urbaines-bientot-sur-quatre-sites-emblematiques-6899/ (2019).Brisbane City Council. Brisbane’s urban forest. https://www.brisbane.qld.gov.au/clean-and-green/natural-environment-and-water/plants-trees-and-gardens/brisbanes-trees/brisbanes-urban-forest (2019).Cortinovis, C., Olsson, P., Boke-Olén, N. & Hedlund, K. Scaling up nature-based solutions for climate-change adaptation: Potential and benefits in three European cities. Urban For. Urban Green. 67, 127450 (2022).Furchtlehner, J., Lehner, D. & Lička, L. Sustainable streetscapes: design approaches and examples of Viennese practice. Sustainability 14, 961 (2022).Schmidt, S., Guerrero, P. & Albert, C. Advancing sustainable development goals with localised nature-based solutions: Opportunity spaces in the Lahn river landscape, Germany. J. Environ. Manage. 309, 114696 (2022).Article 

    Google Scholar 
    Gómez Martín, E., Giordano, R., Pagano, A., van der Keur, P. & Máñez Costa, M. Using a system thinking approach to assess the contribution of nature based solutions to sustainable development goals. Sci. Total Environ. 738, 139693 (2020).Article 

    Google Scholar 
    Bush, J. & Doyon, A. Building urban resilience with nature-based solutions: How can urban planning contribute? Cities 95, 102483 (2019).Article 

    Google Scholar 
    Brink, E. et al. Cascades of green: A review of ecosystem-based adaptation in urban areas. Glob. Environ. Chang. 36, 111–123 (2016).Article 

    Google Scholar 
    Oke, C. et al. Cities should respond to the biodiversity extinction crisis. npj Urban Sustain. 1, 9–12 (2021).Article 

    Google Scholar 
    Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).Article 

    Google Scholar 
    Spotswood, E. N. et al. Nature inequity and higher COVID-19 case rates in less-green neighbourhoods in the United States. Nat. Sustain. 4, 1092–1098 (2021).Article 

    Google Scholar 
    Moglia, M. et al. Accelerating a green recovery of cities: Lessons from a scoping review and a proposal for mission-oriented recovery towards post-pandemic urban resilience. Dev. Built Environ. 7, 100052 (2021).Article 

    Google Scholar 
    OECD. Focus on green recovery. https://www.oecd.org/coronavirus/en/themes/green-recovery (2021).European Commission. A European Green Deal. https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (2021).UNEP. Smart, Sustainable and Resilient cities: the Power of Nature-based Solutions. https://www.unep.org/resources/report/smart-sustainable-and-resilient-cities-power-nature-based-solutions (2021).Croeser, T. et al. Diagnosing delivery capabilities on a large international nature-based solutions project. npj Urban Sustain. 1, 32 (2021).Article 

    Google Scholar 
    McPhillips, L. E. & Matsler, A. M. Temporal evolution of green stormwater infrastructure strategies in three us cities. Front. Built. Environ. 4, 1–14 (2018).Article 

    Google Scholar 
    Spahr, K. M., Bell, C. D., McCray, J. E. & Hogue, T. S. Greening up stormwater infrastructure: Measuring vegetation to establish context and promote cobenefits in a diverse set of US cities. Urban For. Urban Green 48, 126548 (2020).Article 

    Google Scholar 
    Hamel, P. & Tan, L. Blue–Green Infrastructure for Flood and Water Quality Management in Southeast Asia: Evidence and Knowledge Gaps. Environ. Manage. 69, 699–718 (2021)City of Melbourne. Elizabeth Street Integrated Water Cycle Management Plan. http://urbanwater.melbourne.vic.gov.au/industry/our-strategies/elizabeth-street-catchment-iwcm-plan/#:~:text =The Elizabeth Street Catchment Integrated,within the municipality of Melbourne. (2015).Phelan, K., Hurley, J. & Bush, J. Land-use planning’s role in urban forest strategies: recent local government approaches in Australia. Urban Policy Res 37, 215–226 (2019).Article 

    Google Scholar 
    Bradford, J. B. & D’Amato, A. W. Recognizing trade-offs in multi-objective land management. Front. Ecol. Environ. 10, 210–216 (2012).Article 

    Google Scholar 
    Kindler, J. Linking ecological and development objectives: Trade-offs and imperatives. Ecol. Appl. 8, 591–600 (1998).Article 

    Google Scholar 
    UN Habitat. Streets as Public Spaces and Drivers of Urban Prosperity. https://unhabitat.org/streets-as-public-spaces-and-drivers-of-urban-prosperity (2013).De Gruyter, C., Zahraee, S. M. & Young, W. Street space allocation and use in Melbourne’s activity centres: Working paper. https://apo.org.au/sites/default/files/resource-files/2021-09/apo-nid314604.pdf (2021).Shoup, D. C. The trouble with minimum parking requirements. Transp. Res. Part A Policy Pract. 33, 549–574 (1999).Article 

    Google Scholar 
    Barter, P. A. A parking policy typology for clearer thinking on parking reform. Int. J. Urb. Sci. 5934, 136–156 (2015).Taylor, E. J. Transport Strategy Refresh Background Paper: Parking. https://s3.ap-southeast-2.amazonaws.com/hdp.au.prod.app.com-participate.files/2615/2963/7455/Transport_Strategy_Refresh_-_Background_paper_-_Car_Parking.pdf (2018).Guo, Z. & Schloeter, L. Street standards as parking policy: rethinking the provision of residential street parking in American Suburbs. J. Plan. Educ. Res. 33, 456–470 (2013).Article 
    CAS 

    Google Scholar 
    Taylor, D. E. Free parking for free people: German road laws and rights as constraints on local car parking management. Transp. Policy 101, 23–33 (2021).Article 

    Google Scholar 
    Pierce, G., Willson, H. & Shoup, D. Optimizing the use of public garages: Pricing parking by demand. Transp. Policy 44, 89–95 (2015).Article 

    Google Scholar 
    Taylor, E. J. Parking policy: The politics and uneven use of residential parking space in Melbourne. Land Use Policy 91, 103706 (2020).Article 

    Google Scholar 
    Thigpen, C. G. & Volker, J. M. B. Repurposing the paving: The case of surplus residential parking in Davis, CA. Cities 70, 111–121 (2017).Article 

    Google Scholar 
    Volker, J. M. B. & Thigpen, C. G. Not enough parking, you say? A study of garage use and parking supply for single-family homes in Sacramento and implications for ADUs. J. Transp. Land Use 15, 183–206 (2022).Article 

    Google Scholar 
    Rosenblum, J., Hudson, A. W. & Ben-Joseph, E. Parking futures: An international review of trends and speculation. Land Use Policy 91, 104054 (2020).Article 

    Google Scholar 
    Gössling, S. Why cities need to take road space from cars – and how this could be done. J. Urban Des. 25, 443–448 (2020).Article 

    Google Scholar 
    Clements, R. Parking: an opportunity to deliver sustainable transport. in Handbook of Sustainable Transport 280–288 (Edward Elgar Publishing, 2020). https://doi.org/10.4337/9781789900477.00041.Barter, P. A. Off-street parking policy surprises in Asian cities. Cities 29, 23–31 (2012).Article 

    Google Scholar 
    Shao, C., Yang, H., Zhang, Y. & Ke, J. A simple reservation and allocation model of shared parking lots. Transp. Res. Part C Emerg. Technol. 71, 303–312 (2016).Article 

    Google Scholar 
    Pojani, D. et al. Setting the agenda for parking research in other cities. in Parking: An International Perspective 245–260 (Elsevier, 2019).Guo, Z. Home parking convenience, household car usage, and implications to residential parking policies. Transp. Policy 29, 97–106 (2013).Article 
    CAS 

    Google Scholar 
    Scheiner, J., Faust, N., Helmer, J., Straub, M. & Holz-Rau, C. What’s that garage for? Private parking and on-street parking in a high-density urban residential neighbourhood. J. Transp. Geogr. 85, 102714 (2020).Article 

    Google Scholar 
    Inci, E. Economics of Transportation A review of the economics of parking. Econ. Transp. 4, 50–63 (2015).Article 

    Google Scholar 
    Arnott, R. Spatial competition between parking garages and downtown parking policy. Transp. Policy 13, 458–469 (2006).Article 

    Google Scholar 
    Marsden, G. The evidence base for parking policies-a review. Transp. Policy 13, 447–457 (2006).Article 

    Google Scholar 
    Taylor, E. “Fight the towers! Or kiss your car park goodbye”: How often do residents assert car parking rights in Melbourne planning appeals? Plan. Theory Pract. 15, 328–348 (2014).Article 

    Google Scholar 
    Kimpton, A. et al. Contemporary parking policy, practice, and outcomes in three large Australian cities. Prog. Plann. 153, 100506 (2020).Article 

    Google Scholar 
    Taylor, E. J. Journey into an immense heart of car parking. Plan. Theory Pract. 20, 448–455 (2019).Article 

    Google Scholar 
    Van Ommeren, J. N., Wentink, D. & Rietveld, P. Empirical evidence on cruising for parking. Transp. Res. Part A Policy Pract. 46, 123–130 (2012).Article 

    Google Scholar 
    Croeser, T. et al. Patterns of tree removal and canopy change on public and private land in the City of Melbourne. Sustain. Cities Soc. 56, 102096 (2020).Article 

    Google Scholar 
    Hurley, J. et al. Urban vegetation cover change in Melbourne. https://cur.org.au/cms/wp-content/uploads/2019/07/urban-vegetation-cover-change.pdf (2019).Hartigan, M., Fitzsimons, J., Grenfell, M. & Kent, T. Developing a metropolitan-wide urban forest strategy for a large, expanding and densifying capital city: Lessons from Melbourne, Australia. Land 10, 809 (2021).Article 

    Google Scholar 
    Department of Environment Land Water and Planning. Port Phillip Bay Environmental Management Plan. https://www.marineandcoasts.vic.gov.au/coastal-programs/port-phillip-bay (2017).City of Melbourne. Urban Forest Strategy. https://www.melbourne.vic.gov.au/community/greening-the-city/urban-forest/Pages/urban-forest-strategy.aspx (2014).City of Melbourne. Total Watermark: City as a Catchment (2014 Update). (2014).City of Melbourne. Nature in the City Strategy. https://www.melbourne.vic.gov.au/community/greening-the-city/urban-nature/Pages/nature-in-the-city-strategy.aspx (2017).Li, F. & Guo, Z. Do parking standards matter? Evaluating the London parking reform with a matched-pair approach. Transp. Res. Part A Policy Pract 67, 352–365 (2014).Article 

    Google Scholar 
    Ríos Flores, R. A., Vicentini, V. L. & Acevedo-Daunas, R. M. Practical Guidebook: Parking and Travel Demand Management Policies in Latin America. https://publications.iadb.org/en/publication/17409/practical-guidebook-parking-and-travel-demand-management-policies-latin-america (2015).Mingardo, G., van Wee, B. & Rye, T. Urban parking policy in Europe: A conceptualization of past and possible future trends. Transp. Res. Part A Policy Pract. 74, 268–281 (2015).Article 

    Google Scholar 
    Barter, P. A. Parking requirements in some major Asian cities. Transp. Res. Rec. 2245, 79–86 (2011)Taylor, E. J. & van Bemmel-Misrachi, R. The elephant in the scheme: Planning for and around car parking in Melbourne, 1929–2016. Land use policy 60, 287–297 (2017).Article 

    Google Scholar 
    City of Melbourne. Transport Strategy 2030. https://www.melbourne.vic.gov.au/parking-and-transport/transport-planning-projects/Pages/transport-strategy.aspx (2020).City of Melbourne. Total Watermark. https://www.clearwatervic.com.au/user-data/resource-files/City-of-Melbourne-Total-Watermark-Strategy.pdf (2009).Roy, A. H. et al. Impediments and solutions to sustainable, watershed-scale urban stormwater management: Lessons from Australia and the United States. Environ. Manag. 42, 344–359 (2008).Article 

    Google Scholar 
    City of Melbourne. Annual Report 2020-2021. https://www.melbourne.vic.gov.au/SiteCollectionDocuments/annual-report-2020-21.pdf (2021).Sprei, F., Hult, Å., Hult, C. & Roth, A. Review of the effects of developments with low parking requirements. ECEEE Summer Study Proc. 2019-June, 1079–1086 (2019).
    Google Scholar 
    Langemeyer, J. et al. Creating urban green infrastructure where it is needed – A spatial ecosystem service-based decision analysis of green roofs in Barcelona. Sci. Total Environ. 707, 135487 (2019).Article 

    Google Scholar 
    Ossola, A. et al. Landscape and Urban Planning Small vegetated patches greatly reduce urban surface temperature during a summer heatwave in Adelaide, Australia. Landsc. Urban Plan. 209, 104046 (2021).Article 

    Google Scholar 
    Dhakal, K. P. & Chevalier, L. R. Managing urban stormwater for urban sustainability: Barriers and policy solutions for green infrastructure application. J. Environ. Manage. 203, 171–181 (2017).Article 

    Google Scholar 
    Siqueira, F. F. et al. Small landscape elements double connectivity in highly fragmented areas of the Brazilian Atlantic Forest. Front. Ecol. Evol. 9, 1–14 (2021).Article 

    Google Scholar 
    Mimet, A., Kerbiriou, C., Simon, L., Julien, J. F. & Raymond, R. Contribution of private gardens to habitat availability, connectivity and conservation of the common pipistrelle in Paris. Landsc. Urban Plan. 193, 103671 (2020).Article 

    Google Scholar 
    Braschler, B., Dolt, C. & Baur, B. The function of a set-aside railway bridge in connecting urban habitats for animals: A case study. Sustain 12, 1194 (2020).Article 

    Google Scholar 
    Kirk, H., Threlfall, C. G., Soanes, K. & Parris, K. Linking Nature in the City Part Two: Applying the Connectivity Index. https://nespurban.edu.au/wp-content/uploads/2021/02/Linking-nature-in-the-city-Part-2.pdf (2020).Ossola, A., Locke, D., Lin, B. & Minor, E. Yards increase forest connectivity in urban landscapes. Landsc. Ecol. 34, 2935–2948 (2019).Article 

    Google Scholar 
    Lindenmayer, D. Small patches make critical contributions to biodiversity conservation. Proc. Natl. Acad. Sci. USA 116, 717–719 (2019).Article 
    CAS 

    Google Scholar 
    Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl. Acad. Sci. USA 116, 909–914 (2019).Article 
    CAS 

    Google Scholar 
    Rolf, W., Peters, D., Lenz, R. & Pauleit, S. Farmland–an Elephant in the room of urban green infrastructure? Lessons learned from connectivity analysis in three German cities. Ecol. Indic. 94, 151–163 (2018).Article 

    Google Scholar 
    Marissa Matsler, A. Making ‘green’ fit in a ‘grey’ accounting system: The institutional knowledge system challenges of valuing urban nature as infrastructural assets. Environ. Sci. Policy 99, 160–168 (2019).Article 

    Google Scholar 
    Meerow, S. The politics of multifunctional green infrastructure planning in New York City. Cities 100, 102621 (2020).Article 

    Google Scholar 
    Wolf, K. L. & Robbins, A. S. T. Metro nature, environmental health, and economic value. Environ. Health Perspect. 123, 390–398 (2015).Article 

    Google Scholar 
    Bell, J. F., Wilson, J. S. & Liu, G. C. Neighborhood greenness and 2-year changes in body mass index of children and youth. Am. J. Prev. Med. 35, 547–553 (2008).Article 

    Google Scholar 
    Miller, S. M. & Montalto, F. A. Stakeholder perceptions of the ecosystem services provided by Green Infrastructure in New York City. Ecosyst. Serv. 37, 100928 (2019).Article 

    Google Scholar 
    Janhäll, S. Review on urban vegetation and particle air pollution – Deposition and dispersion. Atmos. Environ. 105, 130–137 (2015).Article 

    Google Scholar 
    Li, L., Uyttenhove, P. & Vaneetvelde, V. Planning green infrastructure to mitigate urban surface water flooding risk–A methodology to identify priority areas applied in the city of Ghent. Landsc. Urban Plan. 194, 103703 (2020).Article 

    Google Scholar 
    Haghighatafshar, S. et al. Efficiency of blue-green stormwater retrofits for flood mitigation–Conclusions drawn from a case study in Malmö, Sweden. J. Environ. Manage. 207, 60–69 (2018).Article 

    Google Scholar 
    Croeser, T., Garrard, G., Sharma, R., Ossola, A. & Bekessy, S. Choosing the right nature-based solutions to meet diverse urban challenges. Urban For. Urban Green 65, 127337 (2021).Article 

    Google Scholar 
    Hansen, R., Olafsson, A. S., van der Jagt, A. P. N., Rall, E. & Pauleit, S. Planning multifunctional green infrastructure for compact cities: What is the state of practice? Ecol. Indic. 96, 99–110 (2019).Article 

    Google Scholar 
    Roy Morgan. Return of Corporate Workforce. https://www.melbourne.vic.gov.au/SiteCollectionDocuments/roy-morgan-report-return-to-the-workplace.pdf (2020).Bloomberg CityLab. A Modest Proposal to Eliminate 11,000 Urban Parking Spots. https://www.bloomberg.com/news/articles/2019-03-29/amsterdam-s-plan-to-eliminate-11-000-parking-spots (2019).World Economic Forum. Paris halves street parking and asks residents what they want to do with the space. https://www.weforum.org/agenda/2020/12/paris-parking-spaces-greenery-cities/ (2020).Urry, J. The ‘System’ of automobility. Theory, Cult. Soc. 21, 25–39 (2004).Article 

    Google Scholar 
    Docherty, I., Marsden, G. & Anable, J. The governance of smart mobility. Transp. Res. Part A Policy Pract 115, 114–125 (2018).Article 

    Google Scholar 
    Burdett, R. & Rode, P. Shaping cities in an urban age. (Phaidon Press Inc, 2018).Egerer, M., Haase, D., Frantzeskaki, N. & Andersson, E. Urban change as an untapped opportunity for climate adaptation. npj Urban Sustain. https://doi.org/10.1038/s42949-021-00024-y (2021).Article 

    Google Scholar 
    New York City Department of Environmental Protection. NYC Green Infrastructure Annual Report. https://www1.nyc.gov/assets/dep/downloads/pdf/water/stormwater/green-infrastructure/gi-annual-report-2020.pdf (2020).Eggimann, S. The potential of implementing superblocks for multifunctional street use in cities. Nat. Sustain. (2022) https://doi.org/10.1038/s41893-022-00855-2.City of Melbourne. Open Data Platform. https://data.melbourne.vic.gov.au/ (2022).City of Melbourne. Off-street car parks with capacity and type. https://data.melbourne.vic.gov.au/Transport/Off-street-car-parks-with-capacity-and-type/krh5-hhjn (2020).Ding, C. & Cao, X. How does the built environment at residential and work locations a ff ect car ownership? An application of cross-classi fi ed multilevel model. J. Transp. Geogr. 75, 37–45 (2019).Article 

    Google Scholar 
    Scheiner, J., Faust, N., Helmer, J., Straub, M. & Holz-rau, C. What’ s that garage for? Private parking and on-street parking in a high- density urban residential neighbourhood. J. Transp. Geogr. 85, 102714 (2020).Article 

    Google Scholar 
    Arnold, J. E., Graesch, A. P., Ochs, E. & Ragazzini, E. Life at Home in the Twenty-First Century in Life at home in the twenty-first century: 32 families open their doors. (ISD LLC, 2012).Beck, M. J., Hensher, D. A. & Wei, E. Slowly coming out of COVID-19 restrictions in Australia: Implications for working from home and commuting trips by car and public transport. J. Transp. Geogr. 88, 102846 (2020).Article 

    Google Scholar 
    Hensher, D. A., Ho, C. Q. & Reck, D. J. Mobility as a service and private car use: Evidence from the Sydney MaaS trial. Transp. Res. Part A Policy Pract 145, 17–33 (2021).Article 

    Google Scholar 
    ESRI. ArcGIS Network Analyst Extension. https://www.esri.com/en-us/arcgis/products/arcgis-network-analyst/overview (2022).Daniels, R. & Mulley, C. Explaining walking distance to public transport: The dominance of public transport supply. J. Transp. Land Use 6, 5–20 (2013).Article 

    Google Scholar 
    Sanders, J., Grabosky, J. & Cowie, P. Establishing maximum size expectations for urban trees with regard to designed space. Arboric. Urban For. 39, 68–73 (2013).
    Google Scholar 
    Grey, V., Livesley, S. J., Fletcher, T. D. & Szota, C. Establishing street trees in stormwater control measures can double tree growth when extended waterlogging is avoided. Landsc. Urban Plan. 178, 122–129 (2018).Article 

    Google Scholar 
    Kirk, H. et al. Linking nature in the city: A framework for improving ecological connectivity across the City of Melbourne. https://nespurban.edu.au/wp-content/uploads/2019/03/Kirk_Ramalho_et_al_Linking_nature_in_the_city_03Jul18_lowres.pdf (2018).Jaeger, J. A. G. Landscape division, splitting index, and effective mesh size: New measures of landscape fragmentation. Landsc. Ecol 15, 115–130 (2000).Article 

    Google Scholar 
    Spanowicz, A. G. & Jaeger, J. A. G. Measuring landscape connectivity: On the importance of within-patch connectivity. Landsc. Ecol. 34, 2261–2278 (2019).Article 

    Google Scholar 
    Casalegno, S., Anderson, K., Cox, D. T. C., Hancock, S. & Gaston, K. J. Ecological connectivity in the three-dimensional urban green volume using waveform airborne lidar. Sci. Rep. 7, 1–8 (2017).Article 

    Google Scholar 
    Garrard, G. E., McCarthy, M. A., Vesk, P. A., Radford, J. Q. & Bennett, A. F. A predictive model of avian natal dispersal distance provides prior information for investigating response to landscape change. J. Anim. Ecol 81, 14–23 (2012).Article 

    Google Scholar 
    Duncan, D. Pollination of Black-anther flax lily (Dianella revoluta) in fragmented New South Wales Mallee: A report to the Australian Flora Foundation. 12, http://aff.org.au/wpcontent/uploads/Duncan_Dianella_final.pdf (2003).Pebesma, E. Simple features for R: Standardized support for spatial vector. Data. R J. 10, 439–446 (2018).
    Google Scholar 
    Imteaz, M. A., Ahsan, A., Rahman, A. & Mekanik, F. Modelling stormwater treatment systems using MUSIC: Accuracy. Resour. Conserv. Recycl. 71, 15–21 (2013).Article 

    Google Scholar 
    Melbourne Water. Raingardens. https://www.melbournewater.com.au/building-and-works/stormwater-management/options-treating-stormwater/raingardens#:~:text=Designing a raingarden,2%25 of the catchment area. (2017). More

  • in

    The impact of natural fibers’ characteristics on mechanical properties of the cement composites

    The structure and microstructure of the fibresThe surfaces of the natural fibres are presented from Figs. 6, 7, 8, 9, 10 and of the synthetic fibres are presented in Figs. 11 and 12.Figure 6SEM of jute fibre [Fot.M.Kurpińska].Full size imageFigure 7SEM of bamboo fibre [Fot.M.Kurpińska].Full size imageFigure 8SEM of sisal fibre [Fot.M.Kurpińska].Full size imageFigure 9SEM of cotton fibre [Fot.M.Kurpińska].Full size imageFigure 10SEM of ramie fibre [Fot.M.Kurpińska].Full size imageFigure 11SEM of polymer fibre [Fot.M.Kurpińska].Full size imageFigure 12SEM of polypropylene (PP) fibre [Fot.M.Kurpińska].Full size imageThe basic components of natural fibres influencing their properties are cellulose, hemicellulose, lignin, waxes, oils, and pectin. Cellulose is mainly composed of three elements such as carbon, hydrogen, and oxygen, and it is the material basis that forms the cell wall natural fibre. Typically, cellulose remains in the form of micro-fibrils within the cell wall of a plant. Cellulose is the main factor affecting the tensile strength along natural fibre and the cellulose content is closely related to the plant’s age and content decreases with the increasing age of the plant6.Hemicellulose is an amorphous substance offering a low degree of polymerization and it exists between fibres. Hemicellulose is a complex polysaccharide with xylan as the predominant chain, and the branches mainly include 4-O-methyl-D-glucuronic acid, L-arabinose, and D-xylose. Lignin is a kind of polymer with complex structures and of many types. The basic units of lignin include: guaiacyl, syringyl monomers, and p-hydroxyphenyl monomers. The structural units in lignin are mainly connected by ether bonds and carbon–carbon single bonds. Usually, lignin is not evenly distributed in the plant fibre wall9.In addition to three main components, lignin often contains various sugars, fats, protein substances, and a small amount of ash elements. These chemical compositions affect not only the properties of natural fibres, but also the possibility of a specific application of fibre. The composition of individual natural fibres and their properties are presented in Table 1. Figure 6a–c shows longitudinal and cross-sectional views of the untreated jute fibre. Externally, the fibre is smooth and shiny. The presence of hemicellulose influences the high hygroscopicity of jute fibres. The structure of the jute fibre shows that the fibre swells when it absorbs water. Possible swelling of the fibre in the cross-section by approx. 30%. The microscope scans of indicate the succinylated regions. This is due to the chemical bonding of the succinic anhydride molecule with the hydroxyl group of the cellulose present in the fibre. The encircled region in the top side shows an unsuccinylated region with naturally waxy impurities16.Figure 7a shows the scanning electron micrograph (SEM) of the bamboo fibre. According to the SEM analysis, the microstructure of bamboo is anisotropic. At the Fig. 7b–c it can be recognized that the orientation of cellulose fibrils was placed almost along the fibre axis which may affect to maximize the modulus of elasticity. Factors affect the mechanical properties of bamboo fibres are the chemical composition and structure of bamboo fibres, moisture content, age of bamboo, etc. In addition, the age of the plant affects the chemical composition and structure of fibre. These factors and the natural humidity influence their change of mechanical properties. The hemicellulose content directly influences the tensile strength. This parameter increases with the decrease in the hemicellulose content in the bamboo fibre18.The cell structure of bamboo fibres is complex, and the middle layer of the cell wall has a multi-layer structure. The lignification of the thin and thick layers in the multilayer structure varies. The multi-layered cell wall structure leads to better fracture resistance and promotes internal sliding between the cell wall layers during tension. The angle of the microfiber alignment is also an important factor influencing the mechanical properties of the fibre. Typically, the tensile strength and modulus of elasticity of a fibre increase as the angle between the interposition of the microfibers decreases. Hence, the smaller microfibril angle is an important factor that contributes to the good mechanical properties of bamboo fibre. Large voids between bamboo fibre molecules can be seen, which impact good hygroscopicity19. The moisture content is an important factor affecting the mechanical properties of bamboo fibres. Figure 8a–c shows the morphology of the sisal fibre. The surface of the sisal fibre has higher roughness, and it increases the bonding area between the fibre and cement paste. This leads to increase the mechanical properties of the composites38.Figure 9a–c shows images of the cotton fibres. At the microscope image, a cotton fibre looks like a twisted ribbon or a collapsed and twisted tube. These twists are called convolutions: there are about 60 convolutions per centimetre. The weaves give the cotton an uneven surface of the fibres, which increases the friction between the fibres, but at the same time they can prevent fibres from evenly dispersing in the cement matrix. The outer layer, the cuticle is a thin film of mostly fats and waxes. Figure 9b shows the waxy layer surface with some smooth grooves. The waxy layer forms a thin sheet over the primary wall that forms grooves on the cotton surface19. The cotton fibre surface comprises non-cellulosic materials and amorphous cellulose in which the fibrils are arranged in a criss-cross pattern. Owing to the non-structured orientation of cellulose and non-cellulosic materials, the wall surface is unorganized and open. This gives flexibility to the fibre. The basic ingredients, responsible for the complicated interconnections in the primary wall, are cellulose, hemicelluloses, pectin, proteins, and ions. In the core of fibre, only the crystalline cellulose is present, what is highly ordered and has a compact structure with the cellulose fibrils lying parallel to one another18.SEM micrograph of the surface and cross section of the ramie fibre are shown at Fig. 10a–c. The surface of the ramie fibres is dense but porous. There are many micropores and continuous bubbles in the porous structure of a single bundle of a ramie fibre Fig. 10c. This structure has some effect for low absorption of water, moreover, it is also related to the fibre distribution in the cement composites. In case of the short ramie fibre, due to its random distribution in composites, the strength of the composite may be affected. Cellulose, lignin, and hemicellulose weight materials can form a dense layer on the surface of the ramie fibres, so the water absorptivity is low. This special structure of the fibre with a dense matrix, and at the same time, with a characteristic pore arrangement has an influence on the adhesion of the cement matrix and the strength of the cement composite18.The surface and cross section of multifilament macrofibre is demonstrated at Fig. 11a–c. From the chemical point of view, this type of fibres belongs to the polymers from the group of polyolefins, composed of units of the formula: –[CH2CH (CH3)]–. They are obtained by low-pressure polymerization of propylene. They are made of 100% pure co-polymer twisted bundles of multifilament fibres Fig. 11c. Polypropylene is one of two most commonly used plastics, in addition to polyethylene. Polypropylene is a hydrocarbon thermoplastic polymer2.Figure 12a–c shows the structure of a bundle of polypropylene (PP) fibres in the form of a 3D mesh. They are made of isotactic polypropylene, called propylene, CH2=CHCH3 obtained from crude oil. They are one of the finest polypropylene fibres. The surface of the fibres is smooth Fig. 12b 2.The consistency—fluidityThe results of fluidity are shown at Fig. 13. The fluidity of the composite not modified with fibres is 145 mm and is a reference to other test results. The use of bamboo fibres increased the composite fluidity and composite flow by 8.6% (157.5 mm). The use of polymer fibers and jute increased the consistency by about 7%, while the use of sisal fibres by 3%. The use of PP fibres (122.5 mm) had the greatest impact on the loss of consistency by 15.5%. The use of cotton and frame fibres resulted in a reduction of workability and consistency by 13.8% and 3.5%, respectively.Figure 13Results of fluidity test.Full size imageBased on the research results, it was found that in the case of using bamboo fibres characterizing a high absorption of 120–145%, the consistency of composite increased by 8.2% compared to the consistency of composite without fibres. In the case of a change in consistency, the chemical composition of natural fibres, their surface, and the total length in the volume of composite are significant, too. There is a noticeable regularity related to the cellulose content in natural fibres. If the higher cellulose content, it reduces the consistency of the composite. For example, the cellulose content in bamboo fibres is the lowest and amounts to 40–45%, while the cellulose content in cotton fibres is the highest, ranging from 80 to 94%. It can also be recognized that consistency and workability will be influenced by the hemicellulose content.The higher the hemicellulose content, it impacts the higher consistency of the composite. It is similar referring to the content of lignin. It was noticed that the higher the lignin content, the higher the composite consistency was found. Regarding the total length of the fibres, a regularity is apparent that the greater the total length of fibres, e.g., in the case of cotton fibres, the greater decrease in consistency is visible. In the case of polymer and polypropylene (PP) fibres, the consistency is influenced by the surface of the fibre, the number of fibres, and their total length in the volume of the composite. Increasing the total length of PP fibres by approx. 15% resulted in a reduction of the consistency of approx. 20%.Flexural and compressive strengthAssigning mechanical properties of fibre reinforced composite, particular emphasis was placed on the determination of the flexural strength of the composite. This parameter was appointed by the 3-point test. Figure 14. shows the flexural strength of plain composite and 7 groups of different fibre reinforced composites on the 2nd, 7th, 28th, and 56th days.Figure 14Flexural strength test results.Full size imageIt can be seen that the bending strength of composites with the addition of natural fibres, ramie, bamboo, jute, and sisal are similar. The bending strength of composites with PP and polymer fibres is lower. It should be noted that the strength of the cotton fibre-reinforced composite is much lower than that of all the others tested. The reason may be the low tensile strength of the cotton fibres used. When mixing the composites, a tendency to create conglomerates of cotton fibres was also noticed, which may affect the strength of the composites.The test results clearly show that the effectiveness of the added natural fibres depends on the chemical composition and mechanical properties, and above all, on their adhesion to the cement matrix. The adhesion of the natural fibre to the cement matrix has a significant influence on the mechanical properties of the cement composite, in particular on compression and bending strength. The highest bending strength was achieved by cement composites modified with ramie fibres. Ramie fibres are characterized by the highest tensile strength among the tested synthetic and natural fibres, ranging from 400 to 1000 MPa. The results of the compressive strength are shown in Fig. 15.Figure 15Compressive strength test results.Full size imageThe analysis of the test results shows that the use of dispersed fibres reduced the early compressive strength after 2 days from 8.5 to 33%. The exception is the ramie fibres, the use of which increased the early strength by 6.6%. Within 28 days, as in the case of early strength, the use of all types of synthetic and natural fibres resulted in a decrease in strength from 4.6 to 26.5%. The exception is the use of ramie fibres, which increased the compressive strength by 7.2% after 28 days. After 56 days, a decrease in strength was noticed in the case of using PP and polymer synthetic fibres as well as natural cotton and bamboo from 5.5 to 11.9%.On the other hand, the increase in compressive strength after 56 days from 5.8 to 16.4% was visible in the case of using fibres such as sisal, jute and ramie. The highest compressive strength was achieved by the composite with a ramie fibre. The fibre of the ramie is characterized by the highest modulus of elasticity ranging from 24.5 to 128 GPa and is over 100% higher than the Young’s modulus of the other fibres.Shrinkage testFigure 16A shows that the samples after demolding showed expansion for about 2 days, and from the third day after demolding, the length of the samples was shortened. The lowest degree of expansion in the first days was shown by samples without fibres and samples containing cotton fibres. In this case, the expansion did not exceed 0.02 mm/m. However, the same samples finally showed the highest shrinkage after 180 days, which was 0.06 mm/m.Figure 16Testing the change in length of samples.Full size imageThe highest expansion within 48 h after deformation was shown by samples containing sisal fibres, while these samples finally after 180 days showed the lowest deformation of the length of the samples, which was 0.001 mm/m. The samples containing the synthetic fibres showed an expansion of about 0.02–0.03 mm/m in 48 h and the final shrinkage after 180 days was 0.03 mm/m for both the polymer and PP fibre samples. The bamboo and ramie fibres initially showed an expansion of 0.04–0.06 mm/m while their final shrinkage was 0.02 mm/m. The samples with jute fibres showed an expansion of 0.04 mm/m and the final shrinkage of the samples was 0.04 mm/m. Figure 16a,b shows the results of testing the change in length of samples over time.After 180 days, the total deformation of the samples was determined. Samples containing sisal fibers showed a slight expansion of about 0.001 mm/m, while the highest deformation (shrinkage) was shown for composite samples without fibers and with cotton fibres, which was 0.06 mm/m. Samples with bamboo, jute, PP, polymer and ramie fibres showed a shrinkage from 0.02 to 0.04 mm/m. Only the samples containing the sisal fibre showed a slight expansion of 0.001 mm/m.Ultimately, the samples containing sisal fibres were characterized by the lowest deformability. This phenomenon is related to the fibre structure and the total length of the fibres in a sample with dimensions of 40 × 40 × 160mm. For example, in a sample containing sisal fibres, their total length is 5856.7 m. Otherwise, a sample containing jute fibres, their total length in the sample is only 7.4 m. Therefore it was found that the fibre structure, its diameter, the cellulose content and the total length of the fibres in the element are important factors of deformation as a result of shrinkage or expansion of the fibre reinforced composite.Water absorption of composite testHigher water absorption (8.5%) compared to the composite without fibres was noticed in the case of using both synthetic fibres and with the exception of the use of ramie fibres, which caused a slight reduction in water absorption to 8.2%. It can be recognized that the water absorption rate of the 8 groups of samples is slightly different, the highest is the polymer fibre-reinforced composite (9.2%); the lowest water absorption rate refers to ramie fibre-reinforced composite (8.2%). The difference in water absorption rates is presented at Fig. 17.Figure 17Water absorption of composite (%).Full size imageExcept for cotton fibre-reinforced composite, the water absorption rate of another plant fibre-reinforced composite is lower than that of synthetic fibre-reinforced composite. Probably because of the fact that ramie, sisal, and jute fibres all have good moisture absorption and release properties. It is commonly known that plant fibre-reinforced cement-based materials have reduced strength and initial properties due to their performance degradation in a humid environment, so their long-term durability could become problematic. Sisal fibres (with noticed absorption of 95–100%) have absorbed more cement slurry on their surface than jute fibres (absorption of fibre 7–12%). This phenomenon could be explained by the fact that the slurry became the impregnation of the fibre. The absorbability of the composite was tested after the composite had completely hardened. Probably a fibre that is characterized by high absorption—sisal is very well “embedded” in the matrix, therefore the bending strength results for composites with sisal fibre were higher by 8–10%. More

  • in

    Long-term, basin-scale salinity impacts from desalination in the Arabian/Persian Gulf

    Al-Mutawa, A. M., Al Murbati, W. M., Al Ruwaili, N. A., Al Orafi, A. S., Al Orafi, A., Al Arafati, A., Nasrullah, A., Al Bahow, M. R., Al Anzi, S. M., Rashisi, M. & Al Moosa, S. Z. Desalination in the gcc. the history, the present & the future. Available from: https://www.gcc-sg.org/en-us/CognitiveSources/DigitalLibrary/Lists/DigitalLibrary/WaterandElectricity/1414489603.pdf Second edition, The Cooperation Council for the Arab States of the Gulf (GCC) General Secretariat (2014).Global Water Intelligence. DesalData. https://www.desaldata.com/. Accessed 2022-05-01 (2022).Sharifinia, M., Afshari Bahmanbeigloo, Z., Smith Jr, W. O., Yap, C. K. & Keshavarzifard, M. Prevention is better than cure: Persian gulf biodiversity vulnerability to the impacts of desalination plants. Glob. Change Biol. 25(12), 4022–4033 (2019).Article 

    Google Scholar 
    Connor, R. The United Nations World Water Development Report 2015: Water for a Sustainable World. Number 79. UNESCO, (2015).Al-Senafy, M., Al-Fahad, K. & Hadi, K. Water management strategies in the Arabian gulf countries. In Developments in Water Science, volume 50, pages 221–224. Elsevier, (2003).Ulrichsen, K.C.. Internal and external security in the arab gulf states. Middle East Policy16(2), 39 (2009).Verner, D. Adaptation to a changing climate in the Arab countries: a case for adaptation governance and leadership in building climate resilience. Number 79. World Bank Publications, (2012).Einav, R., Harussi, K. & Perry, D. The footprint of the desalination processes on the environment. Desalination 152(1–3), 141–154 (2003).Article 

    Google Scholar 
    Dawoud, M. A. Environmental impacts of seawater desalination: Arabian Gulf case study. Int. J. Environ. Sustain.1(3) (2012).Chow, A. C. et al. Numerical prediction of background buildup of salinity due to desalination brine discharges into the Northern Arabian Gulf. Water 11(11), 2284 (2019).Article 

    Google Scholar 
    Lee, K. & Jepson, W. Environmental impact of desalination: A systematic review of life cycle assessment. Desalination 509, 115066 (2021).Article 

    Google Scholar 
    Hosseini, H. et al. Marine health of the Arabian gulf: Drivers of pollution and assessment approaches focusing on desalination activities. Mar. Pollut. Bull. 164, 112085 (2021).Article 
    PubMed 

    Google Scholar 
    Le Quesne, W. J. F. et al. Is the development of desalination compatible with sustainable development of the Arabian Gulf?. Mar. Pollut. Bull. 173, 112940 (2021).Article 
    PubMed 

    Google Scholar 
    Kress, N., & Galil, B. Impact of seawater desalination by reverse osmosis on the marine environment. Efficient Desalination by Reverse Osmosis: A guide to RO practice. IWA, London, UK, pp. 177–202 (2015).Reynolds, R. M. Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman: Results from the Mt Mitchell expedition. Mar. Pollut. Bull. 27, 35–59 (1993).Article 

    Google Scholar 
    Swift, S. A. & Bower, A. S. Formation and circulation of dense water in the Persian/Arabian Gulf. J. Geophys. Res. Oceans 108(C1), 1–4 (2003).Article 

    Google Scholar 
    Pous, S. P., Carton, X., & Lazure, P. Hydrology and circulation in the strait of hormuz and the Gulf of Oman: Results from the gogp99 experiment: 1. strait of hormuz. J. Geophys. Res. Oceans109(C12), (2004).Pous, S., Lazure, P. & Carton, X. A model of the general circulation in the persian gulf and in the strait of hormuz: Intraseasonal to interannual variability. Cont. Shelf Res. 94, 55–70 (2015).Article 

    Google Scholar 
    Johns, W. E., Yao, F., Olson, D. B., Josey, S. A., Grist, J. P. & Smeed, D. A. Observations of seasonal exchange through the Straits of Hormuz and the inferred heat and freshwater budgets of the Persian Gulf. J. Geophys. Res. Oceans108(C12) (2003).Hassanzadeh, S., Hosseinibalam, F. & Rezaei-Latifi, A. Numerical modelling of salinity variations due to wind and thermohaline forcing in the Persian gulf. Appl. Math. Model. 35(3), 1512–1537 (2011).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Price, A. R. G. Western Arabian gulf echinoderms in high salinity waters and the occurrence of dwarfism. J. Nat. Hist. 16(4), 519–527 (1982).Article 

    Google Scholar 
    Sheppard, C. R. C. Similar trends, different causes: Responses of corals to stressed environments in Arabian seas. In Proceedings of the 6th International Coral Reef Symposium Townsville, Australia, volume 3, pp. 297–302 (1988).Coles, S. L. & Jokiel, P. L. Effects of salinity on coral reefs. In Connell, D. W., & Hawker, D. W. editors, Pollution in tropical aquatic systems, pp. 147–166. CRC Press, Florida (1992).Coles, S. L. Coral species diversity and environmental factors in the Arabian gulf and the Gulf of Oman: A comparison to the Indo-Pacific region. Atoll Res. Bull. (2003).D’Agostino, D. et al. Growth impacts in a changing ocean: Insights from two coral reef fishes in an extreme environment. Coral Reefs 40(2), 433–446 (2021).Article 

    Google Scholar 
    Bœuf, G. & Payan, P. How should salinity influence fish growth?. Compar. Biochem. Physiol. Part C Toxicol. Pharmacol. 130(4), 411–423 (2001).Article 

    Google Scholar 
    Baudron, A. R., Needle, C. L., Rijnsdorp, A. D. & Marshall, C. T. Warming temperatures and smaller body sizes: Synchronous changes in growth of north sea fishes. Glob. Change Biol. 20(4), 1023–1031 (2014).Article 

    Google Scholar 
    Dore, M. H. I. Forecasting the economic costs of desalination technology. Desalination 172(3), 207–214 (2005).Article 

    Google Scholar 
    Karagiannis, I. C. & Soldatos, P. G. Water desalination cost literature: Review and assessment. Desalination 223(1–3), 448–456 (2008).Article 

    Google Scholar 
    Al Barwani, H. H. & Purnama, A. Evaluating the effect of producing desalinated seawater on hypersaline Arabian Gulf. Eur. J. Sci. Res. 22(2), 279–285 (2008).
    Google Scholar 
    Lee, W. & Kaihatu, J. M. Effects of desalination on hydrodynamic process in Persian Gulf. Coast. Eng. Proc. 36, 3–3 (2018).Article 

    Google Scholar 
    Ibrahim, H. D. & Eltahir, E. A. B. Impact of brine discharge from seawater desalination plants on Persian/Arabian gulf salinity. J. Environ. Eng. 145(12), 04019084 (2019).Article 

    Google Scholar 
    Campos, E. J. D. et al. Impacts of brine disposal from water desalination plants on the physical environment in the Persian/Arabian Gulf. Environ. Res. Commun. 2(12), 125003 (2020).Article 

    Google Scholar 
    Ibrahim, H. D., Xue, P. & Eltahir, E. A. B. Multiple salinity equilibria and resilience of Persian/Arabian Gulf basin salinity to brine discharge. Front. Mar. Sci. 7, 573 (2020).Article 

    Google Scholar 
    Ibrahim, H. D. Simulated effects of seawater desalination on Persian/Arabian Gulf exchange flow. J. Environ. Eng. 148(4), 04022012 (2022).Article 

    Google Scholar 
    Purnama, A. Assessing the environmental impacts of seawater desalination on the hypersalinity of arabian/persian gulf. In The Arabian Seas: Biodiversity, Environmental Challenges and Conservation Measures, pp. 1229–1245. Springer, (2021).GEBCO Compilation Group. The GEBCO_2021 grid: A continuous terrain model of the global oceans and land, (2021).Stommel, H. Thermohaline convection with two stable regimes of flow. Tellus 13(2), 224–230 (1961).Article 

    Google Scholar 
    Nakamura, M., Stone, P. H. & Marotzke, J. Destabilization of the thermohaline circulation by atmospheric eddy transports. J. Clim. 7(12), 1870–1882 (1994).Article 

    Google Scholar 
    Pasquero, C. & Tziperman, E. Effects of a wind-driven gyre on thermohaline circulation variability. J. Phys. Oceanogr. 34(4), 805–816 (2004).Article 

    Google Scholar 
    Lucarini, V. & Stone, P. H. Thermohaline circulation stability: A box model study. part ii: coupled atmosphere-ocean model. J. Clim. 18(4), 514–529 (2005).Article 

    Google Scholar 
    Wunsch, C. Thermohaline loops, stommel box models, and the sandström theorem. Tellus A Dyn. Meteorol. Oceanogr. 57(1), 84–99 (2005).
    Google Scholar 
    Privett, D. W. Monthly charts of evaporation from the N. Indian Ocean (including the Red Sea and the Persian Gulf). Q. J. R. Meteorol. Soc. 85(366), 424–428 (1959).Article 

    Google Scholar 
    Chao, S.-Y., Kao, T. W. & Al-Hajri, K. R. A numerical investigation of circulation in the Arabian Gulf. J. Geophys. Res. Oceans 97(C7), 11219–11236 (1992).Article 

    Google Scholar 
    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146(730), 1999–2049 (2020).Article 

    Google Scholar 
    Thoppil, P. G. & Hogan, P. J. Persian Gulf response to a wintertime shamal wind event. Deep Sea Res. Part I 57(8), 946–955 (2010).Article 

    Google Scholar 
    Paparella, F., Chenhao, X., Vaughan, G. O. & Burt, J. A. Coral bleaching in the Persian/Arabian Gulf is modulated by summer winds. Front. Mar. Sci. 6, 205 (2019).Article 

    Google Scholar 
    Gutiérrez, J.M., Jones, R. G., Narisma, G.T., Alves, L.M., Amjad, M., Gorodetskaya, I.V., Grose, M., Klutse, N.A.B., Krakovska, S., Li, J., Martínez-Castro, D., Mearns, L.O., Mernild, S.H., Ngo-Duc, T., van den Hurk, B. & Yoon, J.-H. Atlas. In V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou, editors, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, (2021). Available from http://interactive-atlas.ipcc.ch/.Alosairi, Y., Imberger, J., & Falconer, R. A. Mixing and flushing in the Persian Gulf (Arabian Gulf). J. Geophys. Res. Oceans116(C3) (2011).Whitehead, J. A. Internal hydraulic control in rotating fluids – applications to oceans. Geophys. Astrophys. Fluid Dyn. 48(1–3), 169–192 (1989).Article 
    MATH 

    Google Scholar 
    Dougherty, W. W., Yates, D. N., Pereira, J. E., Monaghan, A., Steinhoff, D., Ferrero, B., Wainer, I., Flores-Lopez, F., Galaitsi, S., & Kucera, P., et al. The energy–water–health nexus under climate change in the united arab emirates: Impacts and implications. In Climate Change and Energy Dynamics in the Middle East, pp. 131–180. Springer, (2019).Al-Shehhi, M. R., Song, H., Scott, J. & Marshall, J. Water mass transformation and overturning circulation in the Arabian gulf. J. Phys. Oceanogr. 51(11), 3513–3527 (2021).
    Google Scholar 
    Hausfather, Z. & Peters, G. P. Emissions-the “business as usual’’ story is misleading. Nature 577, 618–620 (2020).Article 
    PubMed 

    Google Scholar 
    Al-Ghouti, M. A., Al-Kaabi, M. A., Ashfaq, M. Y. & Da’na, D. A. Produced water characteristics, treatment and reuse: A review. J. Water Process Eng. 28, 222–239 (2019).Article 

    Google Scholar 
    Riegl, B. M. & Purkis, S. J. Coral reefs of the gulf: adaptation to climatic extremes in the world’s hottest sea. In Coral reefs of the Gulf, pp. 1–4. Springer, (2012).Burt, J. A. et al. Insights from extreme coral reefs in a changing world. Coral Reefs 39(3), 495–507 (2020).Article 

    Google Scholar 
    D’Agostino, D. et al. The influence of thermal extremes on coral reef fish behaviour in the Arabian/Persian gulf. Coral Reefs 39(3), 733–744 (2020).Article 

    Google Scholar 
    Lachkar, Z., Mehari, M., Lévy, M., Paparella, F., & Burt, J.A. Recent expansion and intensification of hypoxia in the Arabian gulf and its drivers. Front. Mar. Sci. 1616 (2022).De Verneil, A., Burt, J. A., Mitchell, M., & Paparella, F. Summer oxygen dynamics on a southern Arabian Gulf coral reef. Front. Mar. Sci. 1676 (2021).Petersen, K. L. et al. Impact of brine and antiscalants on reef-building corals in the gulf of aqaba-potential effects from desalination plants. Water Res. 144, 183–191 (2018).Article 
    PubMed 

    Google Scholar 
    Sanchez-Lizaso, J. L. et al. Salinity tolerance of the mediterranean seagrass posidonia oceanica: recommendations to minimize the impact of brine discharges from desalination plants. Desalination 221(1–3), 602–607 (2008).Article 

    Google Scholar 
    Cambridge, M. L., Zavala-Perez, A., Cawthray, G. R., Mondon, J. & Kendrick, G. A. Effects of high salinity from desalination brine on growth, photosynthesis, water relations and osmolyte concentrations of seagrass posidonia australis. Mar. Pollut. Bull. 115(1–2), 252–260 (2017).Article 
    PubMed 

    Google Scholar 
    Cambridge, M. L. et al. Effects of desalination brine and seawater with the same elevated salinity on growth, physiology and seedling development of the seagrass posidonia australis. Mar. Pollut. Bull. 140, 462–471 (2019).Article 
    PubMed 

    Google Scholar 
    Kelaher, B. P., Clark, G. F., Johnston, E. L. & Coleman, M. A. Effect of desalination discharge on the abundance and diversity of reef fishes. Environ. Sci. Technol. 54(2), 735–744 (2019).Article 
    PubMed 

    Google Scholar 
    Gegner, H. M. et al. High salinity conveys thermotolerance in the coral model aiptasia. Biol. Open 6(12), 1943–1948 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Ochsenkühn, M. A., Röthig, T., D’Angelo, C., Wiedenmann, J. & Voolstra, C. R. The role of floridoside in osmoadaptation of coral-associated algal endosymbionts to high-salinity conditions. Sci. Adv. 3(8), e1602047 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gegner, H. M. et al. High levels of floridoside at high salinity link osmoadaptation with bleaching susceptibility in the cnidarian-algal endosymbiosis. Biol. Open 8(12), bio045591 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thoppil, P. G. & Hogan, P. J. A modeling study of circulation and eddies in the Persian Gulf. J. Phys. Oceanogr. 40(9), 2122–2134 (2010).Article 

    Google Scholar 
    Pous, S., Carton, X. & Lazure, P. A process study of the tidal circulation in the Persian gulf. Open J. Mar. Sci. 2(04), 131–140 (2012).Article 

    Google Scholar 
    Haney, R. L. Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr. 1(4), 241–248 (1971).Article 

    Google Scholar  More

  • in

    Field research stations are key to global conservation targets

    A theme is emerging in this year’s United Nations conferences on biodiversity (COP15), climate change (COP27) and the international wildlife trade (COP19): countries are struggling to meet key conservation targets. We argue that field research stations are an effective — but imperilled and overlooked — tool that can help policy frameworks to meet those targets. We write on behalf of 149 experts from 47 countries.
    Competing Interests
    The authors declare no competing interests. More

  • in

    COP15 biodiversity plan risks being alarmingly diluted

    I was filled with hope when I read the first draft of the Global Biodiversity Framework (GBF) in mid-2021. It seemed that the parties to the United Nations Convention on Biodiversity had learnt from bitter experience — the failure of the Aichi Biodiversity Targets, set for the previous decade. Instead of vague aims, the draft framework incorporated most of the advice that the scientific community, myself included, had marshalled. It contained ambitious quantitative thresholds, such as those for the area of ecosystem to be protected, the percentage of genetic diversity to be maintained, and percentage reductions for overall extinction rates, pesticide use and subsidies harmful to biodiversity.Then came the square brackets. In the world of policy, these mark proposed amendments that the parties do not yet agree on. The square brackets proliferated at an alarming rate throughout the GBF text, enclosing, neutralizing and paralysing goals and targets. By July 2021, in a version about 10,200 words long, there were more than 900 pairs of square brackets.Brackets germinated with particular vigour in sections that could make the greatest difference for a better future because of their precision, ambition or conceptual novelty. Almost all quantitative thresholds had been bracketed or had disappeared.
    The United Nations must get its new biodiversity targets right
    I applaud the new prominence given to gender justice (with a new dedicated Target 22) and to financial resources and capacity building (Target 19). I wonder why other key aspects have not received the same treatment, and have instead been compressed almost beyond recognition. For example, the first draft highlighted that species, ecosystems, genetic diversity and nature’s contribution to people each needed their own specific, verifiable outcomes. Now they have coagulated into one vague yet verbose paragraph.This thicket of square brackets smothers the GBF and the hopes of those of us who see transformative change as the only way forward for life on Earth as we know it.In a titanic effort, a streamlined proposal from the Informal Group on the GBF has halved the brackets to be considered by the parties when they meet in Montreal, Canada, for the 15th Conference of the Parties (COP15) on 7–19 December.We need a text with teeth — and far fewer brackets. This much we have learnt in the 30 years since the foundational 1992 Rio Summit drew attention to the impact of human activities on the environment: a strong, precise, ambitious text does not in itself ensure successful implementation, but a weak, vague, toothless text almost guarantees failure.It was no surprise when the Convention on Biological Diversity officially declared the failure of its ten-year Aichi Targets. People involved at the international interface of biodiversity science and policy were already discussing how to do better in the next decade with the GBF.
    Crucial biodiversity summit will go ahead in Canada, not China: what scientists think
    The scientific community rose to the occasion. In just three years, we produced the first-ever intergovernmental appraisal of life on Earth and what it means to people: The Global Assessment Report on Biodiversity and Ecosystem Services from IPBES (the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services), which I co-chaired. It was ready in time for the original 2020 date for COP15, before the global disruption caused by COVID-19. It was the most comprehensive ever synthesis of published information on the topic, an inclusive conceptual framework involving various disciplines and knowledge systems, and unprecedented participation of Indigenous peoples.Then, in 2020, we assembled an interdisciplinary team of more than 60 biodiversity scientists across the world, and within a few months produced detailed suggestions for the goals of the GBF. Since then, we have made the best of the many pandemic postponements by issuing a stream of specific, evidence-based recommendations on targets, scenarios and implementation.The scientific advice is convergent. First, the GBF needs to explicitly address each facet of biodiversity; none is a good substitute or umbrella for the others. Second, the biodiversity goals must be more ambitious than ever, accompanied by equally ambitious targets for concrete action and sufficient resources to make them happen. Third, the targets need to be precise, traceable and coordinated.Fourth, formally protecting a proportion of the planet’s most pristine ecosystems will by itself fall far short. Nature must be mainstreamed, incorporated in decisions made for the landscapes in which we live and work every day, well beyond protected areas. Finally, and most crucially, targets must focus on the root causes of biodiversity loss: the ways in which we consume, trade and allocate subsidies, incentives and safeguards.From previous experience, I expected objections to certain sections— pesticides and subsidies, say — but they are everywhere. Only 2 of the 22 targets have no brackets. Ironing out objections takes precious time. Because the framework can be enshrined only by consensus, too many objections can lead to too much compromise.Now, to avert failure, we exhort the governments gathering in Montreal to be brave, long-sighted and open-hearted, and to produce a visionary, ambitious biodiversity framework, grounded in knowledge. The awareness and mobilization of their constituencies has never been greater, the evidence in their hands never clearer. If not now, when?

    Competing Interests
    The author declares no competing interests. More

  • in

    Lack of host phylogenetic structure in the gut bacterial communities of New Zealand cicadas and their interspecific hybrids

    McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. 110, 3229–3236 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Archibald, J. M. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25, R911–R921 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Moran, N. A. Symbiosis as an adaptive process and source of phenotypic complexity. Proc. Natl. Acad. Sci. U.S.A. 104(Suppl 1), 8627–8633 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hurst, G. D. D. Extended genomes: Symbiosis and evolution. Interface Focus. https://doi.org/10.1098/rsfs.2017.0001 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165–190 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kikuchi, Y., Hosokawa, T. & Fukatsu, T. Insect-microbe mutualism without vertical transmission: A stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl. Environ. Microbiol. 73, 4308–4316 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kikuchi, Y., Hosokawa, T. & Fukatsu, T. An ancient but promiscuous host-symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J. 5, 446–460 (2011).Article 
    PubMed 

    Google Scholar 
    Hu, Y. et al. Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome. Nat. Commun. 9, 2440. https://doi.org/10.1038/s41467-018-03357-y (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salem, H. et al. Drastic genome reduction in an herbivore’s pectinolytic symbiont. Cell 171, 1520–1531 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bennett, G. M. & Moran, N. A. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole. Proc. Natl. Acad. Sci. 112, 10169–10176 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Campbell, M. A. et al. Changes in endosymbiont complexity drive host-level compensatory adaptations in cicadas. MBio 9, e02104-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buchner, P. Symbiosis in animals which suck plant juices. In Endosymbiosis of Animals with Plant Microorganisms 210–432 (Interscience, 1965).
    Google Scholar 
    McCutcheon, J. P., McDonald, B. R. & Moran, N. A. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc. Natl. Acad. Sci. 106, 15394–15399 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Christensen, H. & Fogel, M. L. Feeding ecology and evidence for amino acid synthesis in the periodical cicada (Magicicada). J. Insect Physiol. 57, 211–219 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    McCutcheon, J. P., McDonald, B. R. & Moran, N. A. Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLoS Genet. 5, e1000565 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Campbell, M. A. et al. Genome expansion via lineage splitting and genome reduction in the cicada endosymbiont Hodgkinia. Proc. Natl. Acad. Sci. 112, 10192–10199 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Müller, H. J. Neuere vorstellungen über verbreitung und phylogenie der endosymbiosen der zikaden. Z. Morphol. Oekol. Tiere 61, 190–210 (1962).Article 

    Google Scholar 
    Müller, H. J. Zur systematik und phylogenie der zikaden-endosymbiosen. Biol. Zent. 68, 343–368 (1949).
    Google Scholar 
    Matsuura, Y. et al. Recurrent symbiont recruitment from fungal parasites in cicadas. Proc. Natl. Acad. Sci. 115, E5970–E5979 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhou, W. et al. Analysis of inter-individual bacterial variation in gut of cicada Meimuna mongolica (Hemiptera: Cicadidae). J. Insect Sci. 15, 1–6 (2015).Article 

    Google Scholar 
    Zheng, Z., Wang, D., He, H. & Wei, C. Bacterial diversity of bacteriomes and organs of reproductive, digestive and excretory systems in two cicada species (Hemiptera: Cicadidae). PLoS One 12, 1–21 (2017).
    Google Scholar 
    Wang, D., Huang, Z., He, H. & Wei, C. Comparative analysis of microbial communities associated with bacteriomes, reproductive organs and eggs of the cicada Subpsaltria yangi. Arch. Microbiol. 200, 227–235 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dillon, R. J. & Dillon, V. M. The gut bacteria of insects: Nonpathogenic interactions. Annu. Rev. Entomol. 49, 71–92 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ng, S. H., Stat, M., Bunce, M. & Simmons, L. W. The influence of diet and environment on the gut microbial community of field crickets. Ecol. Evol. 8, 4704–4720 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nishida, A. H. & Ochman, H. Rates of gut microbiome divergence in mammals. Mol. Ecol. 27, 1884–1897 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Douglas, A. E. & Werren, J. H. Holes in the hologenome: Why host–microbe symbioses are not holobionts. MBio 7, e02099 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grueneberg, J., Engelen, A. H., Costa, R. & Wichard, T. Macroalgal morphogenesis induced by waterborne compounds and bacteria in coastal seawater. PLoS One 11, e0146307 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin, J. D., Lemay, M. A. & Parfrey, L. W. Diverse bacteria utilize alginate within the microbiome of the giant kelp Macrocystis pyrifera. Front. Microbiol. 9, 1914 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coon, K. L., Vogel, K. J., Brown, M. R. & Strand, M. R. Mosquitoes rely on their gut microbiota for development. Mol. Ecol. 23, 2727–2739 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coon, K. L., Brown, M. R. & Strand, M. R. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Mol. Ecol. 25, 5806–5826 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kwong, W. K. et al. Dynamic microbiome evolution in social bees. Sci. Adv. 3, 1–17 (2017).Article 

    Google Scholar 
    Brooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis: Relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 14, 1–29 (2016).Article 

    Google Scholar 
    Kropáčková, L. et al. Codiversification of gastrointestinal microbiota and phylogeny in passerines is not explained by ecological divergence. Mol. Ecol. 26, 5292–5304 (2017).Article 
    PubMed 

    Google Scholar 
    Hird, S. M., Sánchez, C., Carstens, B. C. & Brumfield, R. Comparative gut microbiota of 59 neotropical bird species. Front. Microbiol. 6, 1403. https://doi.org/10.3389/fmicb.2015.01403 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hu, Y., Lukasik, P., Moreau, C. S. & Russell, J. A. Correlates of gut community composition across an ant species (Cephalotes varians) elucidate causes and consequences of symbiotic variability. Mol. Ecol. 23, 1284–1300 (2014).Article 
    PubMed 

    Google Scholar 
    Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnz117 (2019).Article 
    PubMed 

    Google Scholar 
    Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl. Acad. Sci. 114, 9641–9646 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shapira, M. Gut microbiotas and host evolution: Scaling up symbiosis. Trends Ecol. Evol. 31, 539–549 (2016).Article 
    PubMed 

    Google Scholar 
    Marshall, D. C. et al. Inflation of molecular clock rates and dates: Molecular phylogenetics, biogeography, and diversification of a global cicada radiation from Australasia (Hemiptera: Cicadidae: Cicadettini). Syst. Biol. 65, 16–34 (2016).Article 
    PubMed 

    Google Scholar 
    Lane, D. H. The recognition concept of speciation applied in an analysis of putative hybridization in New Zealand cicadas of the genus Kikihia (Insects: Hemiptera: Tibicinidae). Speciation and the Recognition Concept: Theory and Application (The Johns Hopkins Univ Press, 1995).
    Google Scholar 
    Cooley, J. R. & Marshall, D. C. Sexual signaling in periodical cicadas, Magicicada spp. (Hemiptera: Cicadidae). Behaviour 138, 827–855 (2001).Article 

    Google Scholar 
    Fleming, C. A. Adaptive Radiation in New Zealand Cicadas (American Philosophical Society, 1975).
    Google Scholar 
    Dugdale, J. S. & Fleming, C. A. New Zealand cicadas of the genus Maoricicada (Homoptera: Tibicinidae). N. Z. J. Zool. 5, 295–340 (1978).Article 

    Google Scholar 
    Marshall, D. C., Hill, K. B. R., Cooley, J. R. & Simon, C. Hybridization, mitochondrial DNA phylogeography, and prediction of the early stages of reproductive isolation: Lessons from New Zealand cicadas (genus Kikihia). Syst. Biol. 60, 482–502 (2011).Article 
    PubMed 

    Google Scholar 
    Bolyen, E. et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. Report No.: e27295v2. PeerJ https://doi.org/10.7287/peerj.preprints.27295v2 (2018).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davis, N. M., Proctor, D., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226. https://doi.org/10.1101/221499 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lemmon, A. R., Emme, S. A. & Lemmon, E. M. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 61, 727–744 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Simon, C. et al. Off-target capture data, endosymbiont genes and morphology reveal a relict lineage that is sister to all other singing cicadas. Biol. J. Linn. Soc. Lond. https://doi.org/10.1093/biolinnean/blz120 (2019).Article 

    Google Scholar 
    Owen, C. L. et al. Detecting and removing sample contamination in phylogenomic data: An example and its implications for Cicadidae phylogeny (Insecta: Hemiptera). Syst. Biol. 71, 1504–1523 (2022).Article 
    PubMed 

    Google Scholar 
    Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner. Report No.: LBNL-7065E. https://www.osti.gov/biblio/1241166-bbmap-fast-accurate-splice-aware-aligner (Lawrence Berkeley National Lab. (LBNL), 2014).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nurk, S. et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In Research in Computational Molecular Biology 158–170 (Springer, 2013).Chapter 

    Google Scholar 
    Łukasik, P. et al. One hundred mitochondrial genomes of cicadas. J. Hered. 110, 247–256 (2019).Article 
    PubMed 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. https://doi.org/10.1093/bib/bbx108 (2017).Article 
    PubMed Central 

    Google Scholar 
    Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hahn, C., Bachmann, L. & Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—A baiting and iterative mapping approach. Nucleic Acids Res. 41, e129 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, M. A., Pfeiffer, W., Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE) 1–8 (2010).Buckley, T. R., Cordeiro, M., Marshall, D. C. & Simon, C. Differentiating between hypotheses of lineage sorting and introgression in New Zealand alpine cicadas (Maoricicada Dugdale). Syst. Biol. 55, 411–425 (2006).Article 
    PubMed 

    Google Scholar 
    Marshall, D. C., Slon, K., Cooley, J. R., Hill, K. B. R. & Simon, C. Steady Plio-Pleistocene diversification and a 2-million-year sympatry threshold in a New Zealand cicada radiation. Mol. Phylogenet. Evol. 48, 1054–1066 (2008).Article 
    PubMed 

    Google Scholar 
    Bator, J., Marshall, D. C., Leston, A., Cooley, J. & Simon, C. Phylogeography of the endemic red-tailed cicadas of New Zealand (Hemiptera: Cicadidae: Rhodopsalta): Molecular, morphological and bioacoustical confirmation of the existence of Hudson’s Rhodopsalta microdora. Zool. J. Linn. Soc. 195, 1219–1244 (2022).Article 

    Google Scholar 
    Brumfield, K. D. et al. Gut microbiome insights from 16S rRNA analysis of 17-year periodical cicadas (Hemiptera: Magicicada spp.) Broods II, VI, and X. Sci. Rep. 12, 16967. https://doi.org/10.1038/s41598-022-20527-7 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rakitov, R. A. Structure and function of the Malpighian tubules, and related behaviors in juvenile cicadas: Evidence of homology with spittlebugs (Hemiptera: Cicadoidea & Cercopoidea). Zool. Anz. 241, 117–130 (2002).Article 

    Google Scholar 
    Andersen, P. C., Brodbeck, B. V. & Mizell, R. F. Feeding by the leafhopper, Homalodisca coagulata, in relation to xylem fluid chemistry and tension. J. Insect Physiol. 38, 611–622 (1992).Article 
    CAS 

    Google Scholar 
    Cheung, W. W. K. & Marshall, A. T. Water and ion regulation in cicadas in relation to xylem feeding. J. Insect Physiol. 19, 1801–1816 (1973).Article 
    CAS 

    Google Scholar 
    Williams, K. S. & Simon, C. The ecology, behavior, and evolution of periodical cicadas. Annu. Rev. Entomol. 40, 269–295 (1995).Article 
    CAS 

    Google Scholar 
    Logan, D. P., Rowe, C. A. & Maher, B. J. Life history of chorus cicada, an endemic pest of kiwifruit (Cicadidae: Homoptera). N. Z. Entomol. 37, 96–106 (2014).Article 

    Google Scholar 
    Buckley, T. R. & Simon, C. Evolutionary radiation of the cicada genus Maoricicada Dugdale (Hemiptera: Cicadoidea) and the origins of the New Zealand alpine biota. Biol. J. Linn. Soc. Lond. 91, 419–435 (2007).Article 

    Google Scholar 
    Banker, S. E., Wade, E. J. & Simon, C. The confounding effects of hybridization on phylogenetic estimation in the New Zealand cicada genus Kikihia. Mol. Phylogenet. Evol. 116, 172–181 (2017).Article 
    PubMed 

    Google Scholar 
    Groussin, M. et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat. Commun. 8, 14319 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sanders, J. G. et al. Stability and phylogenetic correlation in gut microbiota: Lessons from ants and apes. Mol. Ecol. 23, 1268–1283 (2014).Article 
    PubMed 

    Google Scholar 
    Wang, J. et al. Analysis of intestinal microbiota in hybrid house mice reveals evolutionary divergence in a vertebrate hologenome. Nat. Commun. 6, 6440 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brucker, R. M. & Bordenstein, S. R. The hologenomic basis of speciation. Science 466, 667–669 (2013).Article 

    Google Scholar 
    Chandler, J. A. & Turelli, M. Comment on “The hologenomic basis of speciation: Gut bacteria cause hybrid lethality in the genus Nasonia”. Science 345, 1011 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, Z. et al. Changes in the rumen microbiome and metabolites reveal the effect of host genetics on hybrid crosses. Environ. Microbiol. Rep. 8, 1016–1023 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Weintraub, P. G. & Beanland, L. Insect vectors of phytoplasmas. Annu. Rev. Entomol. 51, 91–111 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hopkins, D. L. Xylella fastidiosa: Xylem-limited bacterial pathogen of plants. Annu. Rev. Phytopathol. 27, 271–290 (1989).Article 

    Google Scholar 
    Karban, R. Why cicadas (Hemiptera: Cicadidae) develop so slowly. Biol. J. Linn. Soc. Lond. 135, 291–298 (2021).Article 

    Google Scholar 
    Krell, R. K., Boyd, E. A., Nay, J. E., Park, Y.-L. & Perring, T. M. Mechanical and insect transmission of Xylella fastidiosa to Vitis vinifera. Am. J. Enol. Vitic. 58, 211–216 (2007).Article 
    CAS 

    Google Scholar 
    Paião, F., Meneguim, A. M., Casagrande, E. C., Lovato, L. & Leite, R. P. Levantamento de espécies de cigarras e transmissão de Xylella fastidiosa em cafeeiro. http://www.sbicafe.ufv.br/handle/123456789/1457 (2003).Elbeaino, T. et al. Identification of three potential insect vectors of Xylella fastidiosa in southern Italy. Phytopathol. Mediterr. 53, 328–332 (2014).
    Google Scholar  More

  • in

    Spatial and temporal changes in moth assemblages along an altitudinal gradient, Jeju-do island

    Thornton, I. Island Colonization: The Origin and Development of Island Communities (Cambridge University Press, 2007).Book 

    Google Scholar 
    Weigelt, P., Jetz, W. & Kreft, H. Bioclimatic and physical characterization of the world’s islands. Proc. Natl Acad. Sci. 110, 15307–15312 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vitousek, P., Adsersen, H. & Loope, L. Introduction. In Islands: Biological Diversity and Ecosystem Function (eds Vitousek, P. et al.) 1–6 (Berlin, 1995).Chapter 

    Google Scholar 
    Whittaker, R. J. & Fernández-Palacios, J. M. Island Biogeography: Ecology, Evolution, and Conservation (Oxford University Press, 2007).
    Google Scholar 
    Lomolino, M., Brown, J. & Sax, D. Island biogeography theory. In The Theory of Island Biogeography Revisited (eds Losos, J. & Ricklefs, R.) 13–51 (Princeton University Press, 2010).
    Google Scholar 
    Colom, P., Carreras, D. & Stefanescu, C. Long-term monitoring of Menorcan butterfly populations reveals widespread insular biogeographical patterns and negative trends. Biodivers. Conserv. 28, 1837–1851 (2019).Article 

    Google Scholar 
    Preston, F. W. The canonical distribution of commonness and rarity, part II. Ecology 43, 410–432 (1962).Article 

    Google Scholar 
    Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge University Press, 1995).Book 

    Google Scholar 
    Drakare, S., Lennon, J. J. & Hillebrand, H. The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol. Lett. 9(2), 215–227 (2006).Article 
    PubMed 

    Google Scholar 
    Field, R. et al. Spatial species-richness gradients across scales: A meta-analysis. J. Biogeogr. 36, 132–147 (2009).Article 

    Google Scholar 
    Brehm, G., Süssenbach, D. & Fiedler, K. Unique elevational diversity patterns of geometrid moths in an Andean montane rainforest. Ecography 26, 456–466 (2003).Article 

    Google Scholar 
    Brehm, G., Colwell, R. K. & Kluge, J. The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Glob. Ecol. Biogeogr. 16, 205–219 (2007).Article 

    Google Scholar 
    Beck, J. & Kitching, I. J. Drivers of moth species richness on tropical altitudinal gradients: A cross-regional comparison. Glob. Ecol. Biogeogr. 18, 361–371 (2009).Article 

    Google Scholar 
    Ashton, L. A. et al. Altitudinal patterns of moth diversity in tropical and subtropical A ustralian rainforests. Aust. Ecol. 41, 197–208 (2016).Article 

    Google Scholar 
    Maunsell, S. C. et al. Elevational turnover in the composition of leaf miners and their interactions with host plants in Australian subtropical rainforest. Aust. Ecol. 41, 238–247 (2016).Article 

    Google Scholar 
    McCain, C. M. Global analysis of reptile elevational diversity. Glob. Ecol. Biogeogr. 19, 541–553 (2010).
    Google Scholar 
    Yu, X. D., Lü, L., Luo, T. H. & Zhou, H. Z. Elevational gradient in species richness pattern of epigaeic beetles and underlying mechanisms at east slope of Balang Mountain in Southwestern China. PLoS ONE 8, e69177 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beck, J. et al. Elevational species richness gradients in a hyperdiverse insect taxon: A global meta-study on geometrid moths. Glob. Ecol. Biogeogr. 26, 412–424 (2017).Article 

    Google Scholar 
    Szewczyk, T. & McCain, C. M. A systematic review of global drivers of ant elevational diversity. PLoS ONE 11, e0155404 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rahbek, C. The elevational gradient of species richness: A uniform pattern?. Ecography 18, 200–205 (1995).Article 

    Google Scholar 
    Vitousek, P. M. Oceanic islands as model systems for ecological studies. J. Biogeogr. 29, 573–582 (2002).Article 

    Google Scholar 
    Kidane, Y. O., Steinbauer, M. J. & Beierkuhnlein, C. Dead end for endemic plant species? A biodiversity hotspot under pressure. Global Ecol. Conserv. 19, e00670 (2019).Article 

    Google Scholar 
    Meyer, W. M. III. et al. Ground-dwelling arthropod communities of a sky island mountain range in Southeastern Arizona, USA: Obtaining a baseline for assessing the effects of climate change. PLoS ONE 10, e0135210 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kong, W. S. Biogeography of Korean plants 335 (Geobook, 2007) (in Korean).
    Google Scholar 
    Kitching, R. L. et al. Moth assemblages as indicators of environmental quality in remnants of upland Australian rain forest. J. Appl. Ecol. 37, 284–297 (2000).Article 

    Google Scholar 
    Froidevaux, J. S., Broyles, M. & Jones, G. Moth responses to sympathetic hedgerow management in temperate farmland. Agric. Ecosyst. Environ. 270, 55–64 (2019).Article 
    PubMed 

    Google Scholar 
    Fox, R. The decline of moths in Great Britain: A review of possible causes. Insect Conserv. Div. 6, 5–19 (2013).Article 

    Google Scholar 
    Keret, N. M., Mutanen, M. J., Orell, M. I., Itämies, J. H. & Välimäki, P. M. Climate change-driven elevational changes among boreal nocturnal moths. Oecologia 192, 1085–1098 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wenzel, M., Schmitt, T., Weitzel, M. & Seitz, A. The severe decline of butterflies on western German calcareous grasslands during the last 30 years: A conservation problem. Biol. Conserv. 128, 542–552 (2006).Article 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).Article 
    PubMed 

    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).Article 

    Google Scholar 
    Zenker, M. M. et al. Diversity and composition of Arctiinae moth assemblages along elevational and spatial dimensions in Brazilian Atlantic Forest. J. Insect Conserv. 19, 129–140 (2015).Article 

    Google Scholar 
    Brehm, G. & Fiedler, K. Faunal composition of geometrid moths changes with altitude in an Andean montane rain forest. J. Biogeogr. 30, 431–440 (2003).Article 

    Google Scholar 
    McCain, C. M. & Grytnes, J. A. Elevational gradients in species richness. In Encyclopedia of Life Sciences (Wiley, Chichester, 2010).
    Google Scholar 
    Heinrich, B. The Hot-Blooded Insects: Strategies and Mechanisms of Thermoregulation 601 (Harvard University Press, 1993).Book 

    Google Scholar 
    Heinrich, B. Thermoregulation in Endothermic Insects: Body temperature is closely attuned to activity and energy supplies. Science 185, 747–756 (1974).Article 
    PubMed 

    Google Scholar 
    May, M. L. Insect thermoregulation. Annu. Rev. Entomol. 24, 313–349 (1979).Article 

    Google Scholar 
    Heidrich, L. et al. Noctuid and geometrid moth assemblages show divergent elevational gradients in body size and color lightness. Ecography 44, 1169–1179 (2021).Article 
    MathSciNet 

    Google Scholar 
    Holloway, J. D. Macrolepidoptera diversity in the Indo-Australian tropics, geographic, biotopic and taxonomic variations. Biol. J. Linn. Soc. 30, 325–341 (1987).Article 

    Google Scholar 
    Axmacher, J. C. et al. Diversity of geometrid moths (Lepidoptera: Geometridae) along an Afrotropical elevational rainforest transect. Divers. Distrib. 10, 293–302 (2004).Article 

    Google Scholar 
    Heinrich, B. & Mommsen, T. P. Flight of winter moths near 0°C. Science 228, 177–179 (1985).Article 
    PubMed 

    Google Scholar 
    Rydell, J. & Lancaster, W. C. Flight and thermoregulation in moths were shaped by predation from bats. Oikos 88, 13–18 (2000).Article 

    Google Scholar 
    Skou, P. The geometroid moths of North Europe. Entomonograph, Vol. 6. Brill, Leiden. (1986).Zahiri, R. et al. Molecular phylogenetics of Erebidae (Lepidoptera, noctuoidea). Syst. Entomol. 37, 102–124 (2012).Article 

    Google Scholar 
    Fiedler, K., Brehm, G., Hilt, N., Sussenbach, D. & Hauser, C. L. Variation of diversity patterns across moth families along a tropical altitudinal gradient. Ecol. Stud. 198, 167–179 (2008).Article 

    Google Scholar 
    Longino, J. T. & Colwell, R. K. Density compensation, species composition, and richness of ants on a neotropical elevational gradient. Ecosphere 2, 1–20 (2011).Article 

    Google Scholar 
    Beck, J. & Chey, V. K. Explaining the elevational diversity pattern of geometrid moths from Borneo: A test of five hypotheses. J. Biogeogr. 35, 1452–1464 (2008).Article 

    Google Scholar 
    Nogués-Bravo, D., Araújo, M. B., Romdal, T. & Rahbek, C. Scale effects and human impact on the elevational species richness gradients. Nature 453, 216–219 (2008).Article 
    PubMed 

    Google Scholar 
    Kwon, T. S. Ants foraging on grasses in South Korea: High diversity in Jeju Island and negative correlation with aphids. J. Asia-Pac. Biodivers. 10, 465–471 (2017).Article 

    Google Scholar 
    Han, E. K. et al. A disjunctive marginal edge of evergreen broad-leaved oak (Quercus gilva) in East Asia: The high genetic distinctiveness and unusual diversity of Jeju island populations and insight into a massive, independent postglacial colonization. Genes 11, 1114 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chi, Y., Shi, H., Wang, Y., Guo, Z. & Wang, E. Evaluation on island ecological vulnerability and its spatial heterogeneity. Mar. Pollut. Bull. 125, 216–241 (2017).Article 
    PubMed 

    Google Scholar 
    Vehviläinen, H., Koricheva, J. & Ruohomäki, K. Tree species diversity influences herbivore abundance and damage: Meta-analysis of long-term forest experiments. Oecologia 152, 287–298 (2007).Article 
    PubMed 

    Google Scholar 
    Root, R. B. Organization of plant–arthropod association in simple and diverse habitats: The fauna of collards (I. Brassica oleracea). Ecol. Monogr. 43, 95–124 (1973).Article 

    Google Scholar 
    Otway, S. J., Hector, A. & Lawton, J. H. Resource dilution effects on specialist insect herbivores in a grassland biodiversity experiment. J. Anim. Ecol. 74, 234–240 (2005).Article 

    Google Scholar 
    Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).Article 

    Google Scholar 
    Qian, H. Environment–richness relationships for mammals, birds, reptiles, and amphibians at global and regional scales. Ecol. Res. 25, 629–637 (2010).Article 

    Google Scholar 
    Major, J. A climatic index to vascular plant activity. Ecology 44, 485–498 (1963).Article 

    Google Scholar 
    Latham, R. E. & Ricklefs, R. E. Global patterns of tree species richness in moist forests: Energy-diversity theory does not account for variation in species richness. Oikos 67, 325–333 (1993).Article 

    Google Scholar 
    Francis, A. P. & Currie, D. J. A globally consistent richness-climate relationship for angiosperms. Am. Nat. 161, 523–536 (2003).Article 
    PubMed 

    Google Scholar 
    Storch, D. et al. Energy, range dynamics and global species richness patterns: Reconciling mid-domain effects and environmental determinants of avian diversity. Ecol. Lett. 9, 1308–1320 (2006).Article 
    PubMed 

    Google Scholar 
    Intachat, J., Holloway, J. D. & Staines, H. Effects of weather and phenology on the abundance and diversity of geometroid moths in a natural Malaysian tropical rain forest. J. Trop. Ecol. 17, 411–429 (2001).Article 

    Google Scholar 
    Choi, S. W. Effects of weather factors on the abundance and diversity of moths in a temperate deciduous mixed forest of Korea. Zool. Sci. 25, 53–58 (2008).Article 

    Google Scholar 
    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. 104, 5925–5930 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lennon, J. J., Koleff, P., Greenwood, J. J. D. & Gaston, K. J. The geographical structure of British bird distributions: Diversity, spatial turnover and scale. J. Anim. Ecol. 70, 966–979 (2001).Article 

    Google Scholar 
    Choi, S. W. A high mountain moth assemblage quickly recovers after fire. Ann. Entomol. Soc. Am. 111, 304–311 (2018).
    Google Scholar 
    van Swaay, C., Warren, M. & Loïs, G. Biotope use and trends of European butterflies. J. Insect Conserv. 10, 189–209 (2006).Article 

    Google Scholar 
    De Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. 110, 18561–18565 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).Article 
    PubMed 

    Google Scholar 
    Conrad, K. F., Warren, M. S., Fox, R., Parsons, M. S. & Woiwod, I. P. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol. Conserv. 132, 279–291 (2006).Article 

    Google Scholar 
    White, E. R. Minimum time required to detect population trends: The need for long-term monitoring programs. Bioscience 69, 40–46 (2019).Article 

    Google Scholar 
    Forister, M. L., Pelton, E. M. & Black, S. H. Declines in insect abundance and diversity: We know enough to act now. Conserv. Sci. Pract. 1, e80 (2019).
    Google Scholar 
    Didham, R. K. et al. Interpreting insect declines: Seven challenges and a way forward. Insect Conserv. Div. 13, 103–114 (2020).Article 

    Google Scholar 
    Kim, J. W., Boo, K. O., Choi, J. T. & Byun, Y. H. Climate Change of 100 Years on the Korean Peninsula (National Institute of Meteorological Science, 2018).
    Google Scholar 
    Kim, S. S., Beljaev, E. A. & Oh, S. H. Illustrated Catalogue of Geometridae in Korea (Lepidoptera: Geometrinae, Ennominae) (Korea Research Institute of Bioscience and Biotechnology & Center for Insect Systematics, 2001).
    Google Scholar 
    Kononenko, V.S., Ahn, S.B. & Ronkay, L. Illustrated catalogue of Noctuidae in Korea (Lepidoptera). Insects of Korea 3. KRIBB & CIS, Junghaengsa (1998).Shin, Y.H. Coloured illustrations of the moths of Korea. Academybook (2001).Kim, S.S., Choi, S.W., Sohn, J.C., Kim, T. & Lee, B.W. The Geometrid moths of Korea (Lepidoptera: Geometridae). Junghaengsa (2016).Kim, C. G. & Kim, N. W. Altitudinal pattern of evapotranspiration and water need for upland crops in Jeju Island. J. Korea Water Resour. Assoc. 48, 915–923 (2015).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Magurran, A. E. Ecological Diversity and its Measurement (Princeton University Press, 1988).Book 

    Google Scholar 
    Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn. (Springer, 2002).MATH 

    Google Scholar 
    R Development Core Team. R 4.0.3. R: A language and environment for statistical computing. R Foundation for statistical computing Vienna. Austria. URL http://www.R-project.org. (2020).Pohlert, T. Non-parametric trend tests and change-point detection. R-package version 0.0.1. (2020).Hipel, K. W. & McLeod, A. I. Time Series Modelling of Water Resources and Environmental Systems (Elsevier, 1994).
    Google Scholar 
    Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T. J. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62, 361–371 (2006).Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    Colwell, R. K. Estiamtes, Version 91: Statistical Estimation of Species Richness and Shared Species from Samples (University of Connecticut, 2013).
    Google Scholar 
    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Global Ecol. Biogeogr. 19, 134–143 (2010).Article 

    Google Scholar 
    Baselga, A. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob. Ecol. Biogeogr. 21, 1223–1232 (2012).Article 

    Google Scholar  More