More stories

  • in

    Plastic adjustments in xylem vessel traits to drought events in three Cedrela species from Peruvian Tropical Andean forests

    Bruijnzeel, L. A., Mulligan, M. & Scatena, F. N. Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrol. Processes 25, 25 (2011).
    Google Scholar 
    Myster, R. W. The Andean Cloud Forest. Andean Cloud Forest https://doi.org/10.1007/978-3-030-57344-7 (2021).Article 

    Google Scholar 
    Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).Article 
    ADS 

    Google Scholar 
    Hu, J. & Riveros-Iregui, D. A. Life in the clouds: are tropical montane cloud forests responding to changes in climate?. Oecologia 180, 1061–1073 (2016).Article 
    ADS 

    Google Scholar 
    Peterson, A. T. Ecological niche conservatism: A time-structured review of evidence. J. Biogeogr. 38, 817–827 (2011).Article 

    Google Scholar 
    Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).Article 

    Google Scholar 
    Johnstone, J. F. et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).Article 

    Google Scholar 
    Trugman, A. T. et al. Tree carbon allocation explains forest drought-kill and recovery patterns. Ecol. Lett. 21, 1552–1560 (2018).Article 
    CAS 

    Google Scholar 
    Hacket-Pain, A. J., Friend, A. D., Lageard, J. G. A. & Thomas, P. A. The influence of masting phenomenon on growth-climate relationships in trees: explaining the influence of previous summers’ climate on ring width. Tree Physiol. 00, 1–12 (2015).
    Google Scholar 
    Lourenço, J. et al. Hydraulic tradeoffs underlie local variation in tropical forest functional diversity and sensitivity to drought. New Phytol. https://doi.org/10.1111/nph.17944 (2022).Article 

    Google Scholar 
    Fonti, P., von Arx, G., García-González, I. & Sass-Klaassen, U. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 185, 42–53 (2010).Article 

    Google Scholar 
    Jupa, R., Krabičková, D., Plichta, R., Mayr, S. & Gloser, V. Do angiosperm tree species adjust intervessel lateral contact in response to soil drought?. Physiol. Plant. 20, 1–11. https://doi.org/10.1111/ppl.13435 (2021).Article 
    CAS 

    Google Scholar 
    Peters, J. M. R. et al. Living on the edge: a continental-scale assessment of forest vulnerability to drought. Glob. Change Biol. 20, 1–22. https://doi.org/10.1111/gcb.15641 (2021).Article 
    CAS 

    Google Scholar 
    Rita, A., Borghetti, M., Todaro, L. & Saracino, A. Interpreting the climatic effects on xylem functional traits in two Mediterranean oak species: the role of extreme climatic events. Front. Plant Sci. 7, 1–11 (2016).Article 

    Google Scholar 
    Rodríguez-Ramírez, E. C., Vázquez-García, J. A., García-González, I., Alcántara-Ayala, O. & Luna-Vega, I. Drought effects on the plasticity in vessel traits of two endemic Magnolia species in the tropical montane cloud forests of eastern Mexico. J. Plant Ecol. 13, 331–340. https://doi.org/10.1093/jpe/rtaa019 (2020).Article 

    Google Scholar 
    Aide, T. M. & Grau, H. R. Globalization, migration and Latin American ecosystems. Science 305, 1915–1917 (2004).Article 

    Google Scholar 
    Oliveira, R. S., Eller, C. B., Bittencourt, P. R. L. & Mulligan, M. The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates. Ann. Bot. 113, 909–920 (2014).Article 

    Google Scholar 
    Pereyra-Espinoza, M. J., Inga-Guillen, G. J., Santos-Morales, M. & Rodríguez-Arisméndiz, R. Potencialidad de Cedrela odorata (Meliaceae) para estudios dendrocronológicos en la selva central del Perú. Rev. Biol. Trop. 62, 783–793 (2014).Article 

    Google Scholar 
    Layme-Huaman, E. T., Ferrero, M. E., Palacios-Lazaro, K. S. & Requena-Rojas, E. J. Cedrela nebulosa: A novel species for dendroclimatological studies in the montane tropics of South America. Dendrochronologia 50, 105–112 (2018).Article 

    Google Scholar 
    Rodríguez-Ramírez, E. C., Valdez-Nieto, J. A., Vázquez-García, J. A., Dieringer, G. & Luna-Vega, I. Plastic responses of Magnolia schiedeana Schltdl., a relict-endangered Mexican cloud forest tree, to climatic events: Evidences from leaf venation and wood vessel anatomy. Forests 11, 25 (2020).Article 

    Google Scholar 
    Carlquist, S. Ecological factors in wood evolution: a floristic approach. Am. J. Bot. 64, 887–896 (2020).Article 

    Google Scholar 
    Speer, B. J. H. Fundamentals of tree-ring research. 509 (2010). https://doi.org/10.1002/gea.20357.Rita, A., Cherubini, P., Leonardi, S., Todaro, L. & Borghetti, M. Functional adjustments of xylem anatomy to climatic variability: Insights from long-Term Ilex aquifolium tree-ring series. Tree Physiol. 35, 817–828 (2015).Article 

    Google Scholar 
    Paredes-Villanueva, K., López, L. & Navarro Cerrillo, R. M. Regional chronologies of Cedrela fissilis and Cedrela angustifolia in three forest types and their relation to climate. Trees Struct. Funct. 30, 1581–1593 (2016).Article 

    Google Scholar 
    Köhl, M., Lotfiomran, N. & Gauli, A. Influence of local climate and ENSO on the growth of Cedrela odorata L. in Suriname. Atmosphere 13, 1119 (2022).Article 
    ADS 

    Google Scholar 
    Menezes, I. R. N., Aragão, J. R. V., Pagotto, M. A. & Lisi, C. S. Teleconnections and edaphoclimatic effects on tree growth of Cedrela odorata L in a seasonally dry tropical forest in Brazil. Dendrochronologia 72, 125923 (2022).Article 

    Google Scholar 
    Jiménez-Rodríguez, C. D., Coenders-Gerrits, M., Schilperoort, B., González-Angarita, A. D. P. & Savenije, H. Vapor plumes in a tropical wet forest: Spotting the invisible evaporation. Hydrol. Earth Syst. Sci. 25, 619–635 (2021).Article 
    ADS 

    Google Scholar 
    Bräuning, A. et al. Climatic control of radial growth of Cedrela montana in a humid mountain rainforest in southern Ecuador. Erdkunde 63, 337–345 (2009).Article 

    Google Scholar 
    Goldsmith, G. R., Matzke, N. J. & Dawson, T. E. The incidence and implications of clouds for cloud forest plant water relations. Ecol. Lett. 16, 307–314 (2013).Article 

    Google Scholar 
    Toledo, M. et al. Climate is a stronger driver of tree and forest growth rates than soil and disturbance. J. Ecol. 99, 254–264 (2011).Article 

    Google Scholar 
    Pandey, S., Carrer, M., Castagneri, D. & Petit, G. Xylem anatomical responses to climate variability in Himalayan birch trees at one of the world’s highest forest limit. Perspect. Plant Ecol. Evol. Syst. 33, 34–41 (2018).Article 

    Google Scholar 
    Bose, A. K. et al. Growth and resilience responses of Scots pine to extreme droughts across Europe depend on predrought growth conditions. Glob. Change Biol. 26, 4521–4537 (2020).Article 
    ADS 

    Google Scholar 
    Aloni, R. Ecophysiological implications of vascular differentiation and plant evolution. Trees Struct. Funct. 29, 25 (2015).Article 

    Google Scholar 
    Venegas-González, A., von Arx, G., Chagas, M. P. & Filho, M. T. Plasticity in xylem anatomical traits of two tropical species in response to intra-seasonal climate variability. Trees Struct. Funct. 29, 423–435 (2015).Article 

    Google Scholar 
    Fonti, P. et al. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 185, 42–53 (2010).Article 

    Google Scholar 
    Scholz, A., Klepsch, M., Karimi, Z. & Jansen, S. How to quantify conduits in wood?. Front. Plant Sci. 4, 1–11 (2013).Article 

    Google Scholar 
    García-González, I., Souto-Herrero, M. & Campelo, F. Ring-porosity and earlywood vessels: a review on extracting environmental information through time. IAWA J. 37, 295–314 (2016).Article 

    Google Scholar 
    Scholz, A., Stein, A., Choat, B. & Jansen, S. How drought and deciduousness shape xylem plasticity in three Costa Rican woody plant species. IAWA J. 35, 337–355 (2014).Article 

    Google Scholar 
    von Arx, G., Kueffer, C. & Fonti, P. Quantifying plasticity in vessel grouping—added value from the image analysis tool ROXAS. IAWA J. 34, 433–445 (2013).Article 

    Google Scholar 
    Koecke, A. V., Muellner-Riehl, A. N., Pennington, T. D., Schorr, G. & Schnitzler, J. Niche evolution through time and across continents: The story of Neotropical Cedrela (Meliaceae). Am. J. Bot. 100, 1800–1810 (2013).Article 

    Google Scholar 
    Sperry, J. S. & Saiendra, N. Z. Intra- and inter-plant variation in xylem cavitation in Betula occidentalis. Plant. Cell Environ. 17, 1233–1241 (1994).Article 

    Google Scholar 
    Rodríguez-Ramírez, E. C., Crispín-DelaCruz, D. B., Ticse-Otarola, G. & Requena-Rojas, E. J. Assessing the hydric deficit on two Polylepis species from the Peruvian Andean mountains: Xylem vessel anatomic adjusting. Forest 13, 633 (2022).
    Google Scholar 
    Islam, M., Rahman, M. & Bräuning, A. Xylem anatomical responses of diffuse porous Chukrasia tabularis to climate in a South Asian moist tropical forest. For. Ecol. Manage. 412, 9–20 (2018).Article 

    Google Scholar 
    Abrantes, J., Campelo, F., García-González, I. & Nabais, C. Environmental control of vessel traits in Quercus ilex under Mediterranean climate: Relating xylem anatomy to function. Trees Struct. Funct. 27, 655–662 (2013).Article 

    Google Scholar 
    Fahey, T. J., Sherman, R. E. & Tanner, E. V. J. Tropical montane cloud forest: environmental drivers of vegetation structure and ecosystem function. J. Trop. Ecol. 20, 1–13 (2015).
    Google Scholar 
    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).Article 
    ADS 

    Google Scholar 
    FAO-UNESCO. Soil Map of the World: Revised Legend (World Soil Resources Report 60. FAO-UNESCO, 1998).Stokes, M. & Smiley, T. L. An Introduction to Tree-Ring Dating (University of Arizona Press, 1996).
    Google Scholar 
    Speer, J. H. Oak mast history from dendrochronology: A new technique demonstrated in the Southern Appalachian region. Science 20, 257 (2001).
    Google Scholar 
    Schulman, E. Dendroclimatic Changes in Semiarid America (University of Arizona Press, 1956).
    Google Scholar 
    Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43, 69–78 (1983).
    Google Scholar 
    Grissino-Mayer, H. D. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree Ring Res. 57, 205–221 (2001).
    Google Scholar 
    Wigley, T. M. L., Briffa, K. R. & Jones, P. D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 23, 201–213 (1984).Article 
    ADS 

    Google Scholar 
    Cook, E. RCSigFree, Software Specialized in Dendrochronology (2017).Barichivich, J., Sauchyn, D. J. & Lara, A. Climate signals in high elevation tree-rings from the semiarid Andes of north-central Chile: responses to regional and large-scale variability. Palaeogeogr. Palaeoclimatol. Palaeoecol. 281, 320–333 (2009).Article 

    Google Scholar 
    Briffa, K. R. Interpreting high-resolution proxy climate data-The example of dendroclimatology. In Analysis of Climate Variability vol 0500 (eds von Storch, H. et al.) 77–94 (Springer, 1999).Chapter 

    Google Scholar 
    Marengo, J. A., Nobre, C. A., Tomasella, J., Cardoso, M. F. & Oyama, M. D. Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005. Philos. Trans. R. Soc. B Biol. Sci. 363, 1773–1778 (2008).Article 
    CAS 

    Google Scholar 
    Jimenez, J. C. et al. Spatio-temporal patterns of thermal anomalies and drought over tropical forests driven by recent extreme climatic anomalies. Philos. Trans. R. Soc. B Biol. Sci. 373, 25 (2018).Article 

    Google Scholar 
    Gloor, M. et al. Recent Amazon climate as background for possible ongoing Special Section. Glob. Biogeochem. Cycles 29, 1384–1399 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Mooney, C. Z., Mooney, C. F., Duval, R. D. & Duvall, R. Bootstrapping: A Nonparametric Approach to Statistical Inference (Sage Publications, 1993).Book 

    Google Scholar 
    Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).Article 

    Google Scholar 
    Lloret, F., Keeling, E. G. & Sala, A. Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests Published by Wiley on behalf of Nordic Society Oikos Stable. https://www.jstor.org/stable/41316009 Linked references are available on JSTOR for. Oikos 120, 1909–1920 (2011).Baker, J. C. A., Santos, G. M., Gloor, M. & Brienen, R. J. W. Does Cedrela always form annual rings? Testing ring periodicity across South America using radiocarbon dating. Trees Struct. Funct. 31, 1999–2009 (2017).Article 

    Google Scholar 
    Palacios, W. A., Santiana, J. & Iglesias, J. A new species of Cedrela (Meliaceae) from the eastern flanks of Ecuador. Phytotaxa 393, 84–88 (2019).Article 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).Article 
    CAS 

    Google Scholar 
    Souto-Herrero, M., Rozas, V. & García-González, I. Earlywood vessels and latewood width explain the role of climate on wood formation of Quercus pyrenaica Willd. across the Atlantic-Mediterranean boundary in NW Iberia. For. Ecol. Manage. 425, 126–137 (2018).Article 

    Google Scholar 
    Oksanen, J. et al. Vegan: Community ecology package. R Package version 2.4-1. https://cran.r-project.org/web/packages/vegan/index.html. (2016).Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Media Vol 35 (Springer, 2016).Book 
    MATH 

    Google Scholar 
    Ver Hoef, J. M. & Boveng, P. L. Binomial Regression: How should we model overdispersed count data?. Ecology 88, 2766–2772 (2007).Article 

    Google Scholar 
    Karger, D., Nobis, M., Normand, S., Graham, C. & Zimmermann, N. CHELSA-TraCE21k v1.0. Downscaled transient temperature and precipitation data since the last glacial maximum. Clim. Past Discuss. https://doi.org/10.5194/cp-2021-30 (2021).Hurvich, C. M. & Tsai, C. L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, 2011). https://doi.org/10.1007/978-1-4419-7976-6.Book 
    MATH 

    Google Scholar 
    ‘glm2’, P. http://mirror.psu.ac.th/pub/cran/web/packages/glm2/glm2.pdf. Accessed 20 Mar 2020. 4–11 http://mirror.psu.ac.th/pub/cran/web/packages/glm2/glm2.pdf (2020).Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 25 (2015).Article 

    Google Scholar 
    Barton, K. Package ‘ MuMIn ’ Version 1.46.0. R Package (2022). More

  • in

    Author Correction: Adult sex ratios: causes of variation and implications for animal and human societies

    Department of Anthropology, East Carolina University, Greenville, NC, USARyan SchachtDepartment of Environmental Science, Policy and Management and Museum of Vertebrate Zoology, University of California, Berkeley, CA, 94720, USASteven R. BeissingerDepartment of Ecology and Evolution, University of Lausanne, 1015, Lausanne, SwitzerlandClaus WedekindEcology & Evolution, Research School of Biology, The Australian National University, Acton, Canberra, 2601, AustraliaMichael D. JennionsMARBEC Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, FranceBenjamin GeffroyELKH-PE Evolutionary Ecology Research Group, University of Pannonia, 8210, Veszprém, HungaryAndrás LikerBehavioural Ecology Research Group, Center for Natural Sciences, University of Pannonia, 8210, Veszprém, HungaryAndrás LikerBehavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute of Primate Biology, 37077, Göttingen, GermanyPeter M. KappelerDepartment of Sociobiology/Anthropology, University of Göttingen, 37077, Göttingen, GermanyPeter M. KappelerGroningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG, Groningen, The NetherlandsFranz J. WeissingDepartment of Anthropology, University of Utah, Salt Lake City, UT, USAKaren L. KramerInstitute of Global Health, University College London, London, UKTherese HeskethCentre for Global Health, Zhejiang University School of Medicine, Hangzhou, P.R. ChinaTherese HeskethIHPE Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, FranceJérôme BoissierStockholm University Demography Unit, Sociology Department, Stockholm University, 106 91, Stockholm, SwedenCaroline UgglaKem C. Gardner Policy Institute, David Eccles School of Business, University of Utah, Salt Lake City, UT, USAMike HollingshausMilner Centre for Evolution, University of Bath, Bath, BA2 7AY, UKTamás SzékelyELKH-DE Reproductive Strategies Research Group, Department of Zoology and Human Biology, University of Debrecen, H-4032, Debrecen, HungaryTamás Székely More

  • in

    World leaders must step up to put biodiversity deal on path to success

    Pristine ecosystems such as mangrove forests protect against the effects of climate change.Credit: Karine Aigner/Nature Picture Library

    The Paris climate agreement, signed in December 2015, ranks as one of the most momentous global treaties ever negotiated, setting a crucial goal to seek to limit warming to 1.5–2 °C above pre-industrial levels. At the time, the opening ceremony of the COP21 climate-change conference that led to the agreement also held the record for the largest number of world leaders ever to attend a United Nations event in a single day — more than 150. The two things are probably more than coincidence.Now biodiversity is hoping for its Paris moment. The long-delayed COP15 conference, starting on 7 December in Montreal, Canada, aims to seal a bold new international deal committing countries to precise targets to curb species loss and to protect and restore nature.Many factors suggest the time is ripe. The problem of biodiversity loss is more prominent than ever before. As ecologist Sandra Díaz wrote in Nature last week, researchers have assembled the strongest evidence base yet ahead of COP15, the Fifteenth Conference of the Parties to the Convention on Biological Diversity (S. Díaz Nature 612, 9; 2022). Initiatives such as the Dasgupta Review, commissioned by the UK government, have made plain that the protection of biodiversity is an economic necessity.
    COP15 biodiversity plan risks being alarmingly diluted
    There is also much greater public awareness of how pollution and habitat destruction threaten the health of ecosystems on which we depend for food, clean water and disease prevention, and a better understanding of nature’s crucial role in mitigating climate change — for example, by storing carbon in soils and trees — as well as in helping us to adapt to its impacts. Mangrove forests, for instance, are hugely effective in stopping influxes of seawater from tsunamis and sea-level rise.But when it comes to getting stalled negotiations motoring again, the scale of support by world leaders that was a feature of climate’s road to Paris is currently lacking.Change cannot come too soon. Nature is on the brink. Of 20 decadal targets to preserve nature that were set in Aichi, Japan, in 2010, not a single one had been fully met by 2020. That, coupled with underfunding and lack of regard for the rights of Indigenous peoples who steward much of the world’s remaining biodiversity, means more species than ever are at risk of extinction. Serious impacts on human wealth and health from biodiversity loss loom ever larger. Yet over the past three years, four difficult rounds of negotiations aiming to agree on a framework to replace Aichi have not yielded results. Hundreds of issues remain unresolved.
    COVID delays are frustrating the world’s plans to save biodiversity
    Many experts worry that the lacklustre progress made at COP27, the climate summit held last month in Sharm El-Sheikh, Egypt, augur badly for the biodiversity meeting. But there is also reason for hope. The agreement made at COP27 to establish a ‘loss and damage’ fund to compensate low- and middle-income countries (LMICs) for climate impacts indicates that richer nations are open to talking about funding, which has also been a major sticking point in biodiversity negotiations.Global funding for biodiversity is severely in the red. A UN estimate published last week suggests that only US$154 billion per year flows to ‘nature-based solutions’ from all sources, including government aid and private investment — a number the UN says needs to triple by 2030. Many LMICs — which are home to much of the world’s remaining biodiversity — would like rich nations to put fresh finance into a new multilateral fund. One option is that such a fund could compensate LMICs for bio-diversity loss and associated damages driven by the consumption of products in rich nations through international trade.A second major sticking point is how to fairly and equitably share the benefits of digital sequence information — genetic data collected from plants, animals and other organisms. Communities in biodiversity-rich regions where genetic material is collected have little control over the commercialization of the data, and no way to recoup financial or other benefits. A multipurpose fund for bio-diversity could provide a simple and effective way to share the benefits of these data and support other conservation needs of LMICs.Another reason to hope for a breakthrough is the forthcoming change in Brazil’s leadership. Conservation organizations such as the wildlife charity WWF have accused the world’s most biodiverse nation of deliberately obstructing previous negotiations, holding up agreement on targets such as protecting at least 30% of the world’s land and seas by 2030. But Brazil’s incoming president, Luiz Inácio Lula da Silva, has signalled that the environment is one of his top priorities. Although he does not take over until January 2023, he is thought to be sending an interim team of negotiators to Montreal.
    Crucial biodiversity summit will go ahead in Canada, not China: what scientists think
    All negotiators face a Herculean task to get a deal over the line at COP15, with many issues in the text still unresolved and contested. What’s needed above all is global leadership to empower national negotiators to reach a strong deal, including a new fund of some kind for biodiversity. More than 90 heads of state and heads of government have signed a pledge to tackle the nature crisis. At the time of writing, only Justin Trudeau, the host nation’s prime minster, has confirmed that he is to attend in person.The no-shows send the wrong signal. It’s also true at the time of writing that neither Canada nor China — the original intended host of COP15 and still the meeting’s chair — has issued formal invitations. But leaders have regularly attended climate COPs for more than a decade. This shows in the ambition of climate agreements, if not in their implementation. Research communities and civil society must continue to pressure leaders to engage similarly with the biodiversity agenda. Otherwise, the world risks failing to grasp this opportunity to secure the kind of ambitious deal that nature — and humanity — desperately needs. More

  • in

    Compound heat and moisture extreme impacts on global crop yields under climate change

    Ray, D. K., Gerber, J. S., Macdonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).Article 

    Google Scholar 
    Frieler, K. et al. Understanding the weather signal in national crop-yield variability. Earths Future 5, 605–616 (2017).Article 

    Google Scholar 
    Vogel, E. et al. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 14, 054010 (2019).Article 

    Google Scholar 
    Zscheischler, J. et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 1, 333–347 (2020).Article 

    Google Scholar 
    Ridder, N. N., Ukkola, A. M., Pitman, A. J. & Perkins-Kirkpatrick, S. E. Increased occurrence of high impact compound events under climate change. npj Clim. Atmos. Sci. 5, 3 (2022).Article 

    Google Scholar 
    Lesk, C. & Anderson, W. Decadal variability modulates trends in concurrent heat and drought over global croplands. Environ. Res. Lett. 16, 055024 (2021).Article 

    Google Scholar 
    Sarhadi, A., Ausín, M. C., Wiper, M. P., Touma, D. & Diffenbaugh, N. S. Multidimensional risk in a nonstationary climate: joint probability of increasingly severe warm and dry conditions. Sci. Adv. 4, eaau3487 (2018).Article 

    Google Scholar 
    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).Article 

    Google Scholar 
    Lobell, D. B., Bänziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1, 42–45 (2011).Article 

    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).Article 

    Google Scholar 
    Buckley, T. N. How do stomata respond to water status? New Phytol. 224, 21–36 (2019).Article 

    Google Scholar 
    Miralles, D. G., Gentine, P., Seneviratne, S. I. & Teuling, A. J. Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann. NY Acad. Sci. 1436, 19–35 (2019).Article 

    Google Scholar 
    Mueller, B. & Seneviratne, S. I. Hot days induced by precipitation deficits at the global scale. Proc. Natl Acad. Sci. USA 109, 12398–12403 (2012).Article 

    Google Scholar 
    Cohen, I., Zandalinas, S. I., Huck, C., Fritschi, F. B. & Mittler, R. Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiol. Plant 171, 66–76 (2021).Article 

    Google Scholar 
    Ostmeyer, T. et al. Impacts of heat, drought, and their interaction with nutrients on physiology, grain yield, and quality in field crops. Plant Physiol. Rep. 25, 549–568 (2020).Article 

    Google Scholar 
    Matiu, M., Ankerst, D. P. & Menzel, A. Interactions between temperature and drought in global and regional crop yield variability during 1961–2014. PLoS ONE 12, e0178339 (2017).Article 

    Google Scholar 
    Scheff, J., Mankin, J. S., Coats, S. & Liu, H. CO2-plant effects do not account for the gap between dryness indices and projected dryness impacts in CMIP6 or CMIP5. Environ. Res. Lett. 16, 034018 (2021).Article 

    Google Scholar 
    Ukkola, A. M., De Kauwe, M. G., Roderick, M. L., Abramowitz, G. & Pitman, A. J. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys. Res. Lett. 47, e2020GL087820 (2020).Article 

    Google Scholar 
    Allan, R. P. et al. Advances in understanding large-scale responses of the water cycle to climate change. Ann. NY Acad. Sci. 1472, 49–75 (2020).Article 

    Google Scholar 
    Ault, T. R. On the essentials of drought in a changing climate. Science 368, 256–260 (2020).Article 

    Google Scholar 
    Fowler, H. J. et al. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ. 2, 107–122 (2021).Article 

    Google Scholar 
    Raymond, C. et al. Understanding and managing connected extreme events. Nat. Clim. Change 10, 611–621 (2020).Article 

    Google Scholar 
    Mills, G. et al. Closing the global ozone yield gap: quantification and cobenefits for multistress tolerance. Glob. Chang. Biol. 24, 4869–4893 (2018).Article 

    Google Scholar 
    Pandey, P., Irulappan, V., Bagavathiannan, M. V. & Senthil-Kumar, M. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front. Plant Sci. 8, 537 (2017).Article 

    Google Scholar 
    Couasnon, A. et al. Measuring compound flood potential from river discharge and storm surge extremes at the global scale. Nat. Hazards Earth Syst. Sci. 20, 489–504 (2020).Article 

    Google Scholar 
    Nguyen, L. T. T. et al. Flooding and prolonged drought have differential legacy impacts on soil nitrogen cycling, microbial communities and plant productivity. Plant Soil 431, 371–387 (2018).Article 

    Google Scholar 
    Medrano, H., Escalona, J. M., Bota, J., Gulías, J. & Flexas, J. Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann. Bot. 89, 895–905 (2002).Article 

    Google Scholar 
    Scafaro, A. P. et al. Responses of leaf respiration to heatwaves. Plant Cell Environ. 44, 2090–2101 (2021).Article 

    Google Scholar 
    Atkin, O. K. & Tjoelker, M. G. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8, 343–351 (2003).Article 

    Google Scholar 
    Lukac, M., Gooding, M. J., Griffiths, S. & Jones, H. E. Asynchronous flowering and within-plant flowering diversity in wheat and the implications for crop resilience to heat. Ann. Bot. 109, 843–850 (2012).Article 

    Google Scholar 
    Coast, O., Murdoch, A. J., Ellis, R. H., Hay, F. R. & Jagadish, K. S. V. Resilience of rice (Oryza spp.) pollen germination and tube growth to temperature stress. Plant. Cell Environ. 39, 26–37 (2016).Article 

    Google Scholar 
    Li, Y., Guan, K., Schnitkey, G. D., Delucia, E. & Peng, B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Chang. Biol. https://doi.org/10.1111/gcb.14628 (2019).Article 

    Google Scholar 
    Tian, L. X. et al. How does the waterlogging regime affect crop yield? A global meta-analysis. Front. Plant Sci. 12, 634898 (2021).Article 

    Google Scholar 
    Langan, P. et al. Phenotyping for waterlogging tolerance in crops: current trends and future prospects. J. Exp. Bot. https://doi.org/10.1093/jxb/erac243 (2022).Article 

    Google Scholar 
    Tong, C. et al. Opportunities for improving waterlogging tolerance in cereal crops — physiological traits and genetic mechanisms. Plants 10, 1560 (2021).Article 

    Google Scholar 
    Colmer, T. D., Cox, M. C. H. & Voesenek, L. A. C. J. Root aeration in rice (Oryza sativa): evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations. New Phytol. 170, 767–778 (2006).Article 

    Google Scholar 
    Hattori, Y. et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460, 1026–1030 (2009).Article 

    Google Scholar 
    Prasad, P. V. V., Pisipati, S. R., Momčilović, I. & Ristic, Z. Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J. Agron. Crop Sci. 197, 430–441 (2011).Article 

    Google Scholar 
    Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. & Mittler, R. Abiotic and biotic stress combinations. New Phytol. 203, 32–43 (2014).Article 

    Google Scholar 
    Hussain, H. A. et al. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci. Rep. 9, 3890 (2019).Article 

    Google Scholar 
    Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15–19 (2006).Article 

    Google Scholar 
    Choudhury, F. K., Rivero, R. M., Blumwald, E. & Mittler, R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 90, 856–867 (2017).Article 

    Google Scholar 
    Van Der Wiel, K., Selten, F. M., Bintanja, R., Blackport, R. & Screen, J. A. Ensemble climate-impact modelling: extreme impacts from moderate meteorological conditions. Environ. Res. Lett. 15, 034050 (2020).Article 

    Google Scholar 
    Moore, C. E. et al. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. J. Exp. Bot. 72, 2822–2844 (2021).Article 

    Google Scholar 
    Fahad, S. et al. Crop production under drought and heat stress: plant responses and management options. Front. Plant Sci. 8, 1147 (2017).Article 

    Google Scholar 
    Zandalinas, S. I., Fritschi, F. B. & Mittler, R. Signal transduction networks during stress combination. J. Exp. Bot. 71, 1734–1741 (2020).Article 

    Google Scholar 
    Zhang, H. & Sonnewald, U. Differences and commonalities of plant responses to single and combined stresses. Plant J. 90, 839–855 (2017).Article 

    Google Scholar 
    Zscheischler, J. & Seneviratne, S. I. Dependence of drivers affects risks associated with compound events. Sci. Adv. 3, e1700263 (2017).Article 

    Google Scholar 
    Horton, R. M., Mankin, J. S., Lesk, C., Coffel, E. & Raymond, C. A review of recent advances in research on extreme heat events. Curr. Clim. Change Rep. 2, 242–259 (2016).Article 

    Google Scholar 
    Trenberth, K. E. & Shea, D. J. Relationships between precipitation and surface temperature. Geophys. Res. Lett. 32, L14703 (2005).Article 

    Google Scholar 
    Miralles, D. G., Teuling, A. J., Van Heerwaarden, C. C. & De Arellano, J. V. G. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 7, 345–349 (2014).Article 

    Google Scholar 
    Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).Article 

    Google Scholar 
    Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).Article 

    Google Scholar 
    Koster, R. D., Chang, Y., Wang, H. & Schubert, S. D. Impacts of local soil moisture anomalies on the atmospheric circulation and on remote surface meteorological fields during boreal summer: a comprehensive analysis over North America. J. Clim. 29, 7345–7364 (2016).Article 

    Google Scholar 
    Zhou, S. et al. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Change 11, 38–44 (2021).Article 

    Google Scholar 
    Berg, A., Lintner, B., Findell, K. & Giannini, A. Soil moisture influence on seasonality and large-scale circulation in simulations of the West African monsoon. J. Clim. 30, 2295–2317 (2017).Article 

    Google Scholar 
    Lesk, C. et al. Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields. Nat. Food 2, 683–691 (2021).Article 

    Google Scholar 
    Wei, Z. et al. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys. Res. Lett. 44, 2792–2801 (2017).Article 

    Google Scholar 
    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).Article 

    Google Scholar 
    Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).Article 

    Google Scholar 
    Teuling, A. J. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722–727 (2010).Article 

    Google Scholar 
    Raymond, C. et al. Increasing spatiotemporal proximity of heat and precipitation extremes in a warming world quantified by a large model ensemble. Environ. Res. Lett. 17, 035005 (2022).Article 

    Google Scholar 
    Raymond, C. et al. On the controlling factors for globally extreme humid heat. Geophys. Res. Lett. 48, e2021GL096082 (2021).Article 

    Google Scholar 
    Speizer, S., Raymond, C., Ivanovich, C. & Horton, R. M. Concentrated and intensifying humid heat extremes in the IPCC AR6 regions. Geophys. Res. Lett. 49, e2021GL097261 (2022).Article 

    Google Scholar 
    Ning, G. et al. Rising risks of compound extreme heat‐precipitation events in China. Int. J. Climatol. https://doi.org/10.1002/joc.7561 (2022).Article 

    Google Scholar 
    Thiery, W. et al. Warming of hot extremes alleviated by expanding irrigation. Nat. Commun. 11, 290 (2020).Article 

    Google Scholar 
    Mueller, N. D. et al. Global relationships between cropland intensification and summer temperature extremes over the last 50 years. J. Clim. 30, 7505–7528 (2017).Article 

    Google Scholar 
    Siebert, S., Ewert, F., Eyshi Rezaei, E., Kage, H. & Graß, R. Impact of heat stress on crop yield — on the importance of considering canopy temperature. Environ. Res. Lett. 9, 044012 (2014).Article 

    Google Scholar 
    Singh, D. et al. Distinct influences of land cover and land management on seasonal climate. J. Geophys. Res. Atmos. 123, 12017–12039 (2018).Article 

    Google Scholar 
    Luan, X. & Vico, G. Canopy temperature and heat stress are increased by compound high air temperature and water stress and reduced by irrigation — a modeling analysis. Hydrol. Earth Syst. Sci. 25, 1411–1423 (2021).Article 

    Google Scholar 
    Siebert, S., Webber, H., Zhao, G. & Ewert, F. Heat stress is overestimated in climate impact studies for irrigated agriculture. Environ. Res. Lett. 12, 054023 (2017).Article 

    Google Scholar 
    Sinha, R. et al. Differential regulation of flower transpiration during abiotic stress in annual plants. New Phytol. https://doi.org/10.1111/nph.18162 (2022).Article 

    Google Scholar 
    He, Y., Lee, E. & Mankin, J. S. Seasonal tropospheric cooling in Northeast China associated with cropland expansion. Environ. Res. Lett. 15, 034032 (2020).Article 

    Google Scholar 
    Alter, R. E., Douglas, H. C., Winter, J. M. & Eltahir, E. A. B. Twentieth century regional climate change during the summer in the Central United States attributed to agricultural intensification. Geophys. Res. Lett. 45, 1586–1594 (2018).Article 

    Google Scholar 
    Sánchez, B., Rasmussen, A. & Porter, J. R. Temperatures and the growth and development of maize and rice: a review. Glob. Chang. Biol. 20, 408–417 (2014).Article 

    Google Scholar 
    Prasad, P. V. V., Bheemanahalli, R. & Jagadish, S. V. K. Field crops and the fear of heat stress — opportunities, challenges and future directions. Field Crops Res. 200, 114–121 (2017).Article 

    Google Scholar 
    Schauberger, B. et al. Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun. 8, 13931 (2017).Article 

    Google Scholar 
    Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).Article 

    Google Scholar 
    Sadok, W. & Jagadish, S. V. K. The hidden costs of nighttime warming on yields. Trends Plant Sci. 25, 644–651 (2020).Article 

    Google Scholar 
    Troy, T. J., Kipgen, C. & Pal, I. The impact of climate extremes and irrigation on US crop yields. Environ. Res. Lett. 10, 054013 (2015).Article 

    Google Scholar 
    Cook, B. I., Shukla, S. P., Puma, M. J. & Nazarenko, L. S. Irrigation as an historical climate forcing. Clim. Dyn. 44, 1715–1730 (2015).Article 

    Google Scholar 
    Li, Y. et al. Quantifying irrigation cooling benefits to maize yield in the US Midwest. Glob. Chang. Biol. 26, 3065–3078 (2020).Article 

    Google Scholar 
    Entekhabi, B. D. et al. The Soil Moisture Active Passive (SMAP). IEEE Proc. 98, 704–716 (2010).Article 

    Google Scholar 
    Ortiz-Bobea, A., Wang, H., Carrillo, C. M. & Ault, T. R. Unpacking the climatic drivers of US agricultural yields. Environ. Res. Lett. 14, 064003 (2019).Article 

    Google Scholar 
    Rigden, A. J., Mueller, N. D., Holbrook, N. M., Pillai, N. & Huybers, P. Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields. Nat. Food 1, 127–133 (2020).Article 

    Google Scholar 
    Proctor, J., Rigden, A., Chan, D. & Huybers, P. Accurate specification of water availability shows its importance for global crop production. Preprint at EarthArXiv https://doi.org/10.31223/X5ZS7P (2021).Article 

    Google Scholar 
    Carter, E. K., Melkonian, J., Riha, S. J. & Shaw, S. B. Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize. Environ. Res. Lett. 11, 094012 (2016).Article 

    Google Scholar 
    Hamed, R., Van Loon, A. F., Aerts, J. & Coumou, D. Impacts of compound hot-dry extremes on US soybean yields. Earth Syst. Dyn. 12, 1371–1391 (2021).Article 

    Google Scholar 
    Feng, S., Hao, Z., Zhang, X. & Hao, F. Probabilistic evaluation of the impact of compound dry-hot events on global maize yields. Sci. Total Environ. 689, 1228–1234 (2019).Article 

    Google Scholar 
    Haqiqi, I., Grogan, D. S., Hertel, T. W. & Schlenker, W. Quantifying the impacts of compound extremes on agriculture. Hydrol. Earth Syst. Sci. 25, 551–564 (2021).Article 

    Google Scholar 
    Zhu, P., Zhuang, Q., Archontoulis, S. V., Bernacchi, C. & Müller, C. Dissecting the nonlinear response of maize yield to high temperature stress with model-data integration. Glob. Chang. Biol. 25, 2470–2484 (2019).Article 

    Google Scholar 
    Jin, Z. et al. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches. Glob. Chang. Biol. 22, 3112–3126 (2016).Article 

    Google Scholar 
    Filipa Silva Ribeiro, A., Russo, A., Gouveia, C. M., Páscoa, P. & Zscheischler, J. Risk of crop failure due to compound dry and hot extremes estimated with nested copulas. Biogeosciences 17, 4815–4830 (2020).Article 

    Google Scholar 
    Hsiao, J., Swann, A. L. S. & Kim, S. H. Maize yield under a changing climate: the hidden role of vapor pressure deficit. Agric. For. Meteorol. 279, 107692 (2019).Article 

    Google Scholar 
    Heinicke, S., Frieler, K., Jägermeyr, J. & Mengel, M. Global gridded crop models underestimate yield responses to droughts and heatwaves. Environ. Res. Lett. 17, 044026 (2022).Article 

    Google Scholar 
    Cook, B. I. et al. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earths Future 8, e2019EF001461 (2020).Article 

    Google Scholar 
    He, Y., Hu, X., Xu, W., Fang, J. & Shi, P. Increased probability and severity of compound dry and hot growing seasons over world’s major croplands. Sci. Total Environ. 824, 153885 (2022).Article 

    Google Scholar 
    Wu, Y. et al. Global observations and CMIP6 simulations of compound extremes of monthly temperature and precipitation. GeoHealth 5, e2021GH000390 (2021).Article 

    Google Scholar 
    Zhang, Y., Hao, Z., Zhang, X. & Hao, F. Anthropogenically forced increases in compound dry and hot events at the global and continental scales. Environ. Res. Lett. 17, 024018 (2022).Article 

    Google Scholar 
    Chen, Y., Liao, Z., Shi, Y., Tian, Y. & Zhai, P. Detectable increases in sequential flood-heatwave events across China during 1961–2018. Geophys. Res. Lett. 48, e2021GL092549 (2021).
    Google Scholar 
    Raymond, C., Matthews, T. & Horton, R. M. The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 6, eaaw1838 (2020).Article 

    Google Scholar 
    Vogel, M. M. et al. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture–temperature feedbacks. Geophys. Res. Lett. 44, 1511–1519 (2017).Article 

    Google Scholar 
    Garcia-Herrera, R., Díaz, J., Trigo, R. M., Luterbacher, J. & Fischer, E. M. A review of the European summer heat wave of 2003. Crit. Rev. Environ. Sci. Technol. 40, 267–306 (2010).Article 

    Google Scholar 
    Wegren, S. Food security and Russia’s 2010 drought. Eurasian Geogr. Econ. 52, 140–156 (2011).Article 

    Google Scholar 
    Christian, J. I., Basara, J. B., Hunt, E. D., Otkin, J. A. & Xiao, X. Flash drought development and cascading impacts associated with the 2010 Russian heatwave. Environ. Res. Lett. 15, 094078 (2020).Article 

    Google Scholar 
    Glotter, M. & Elliott, J. Simulating US agriculture in a modern Dust Bowl drought. Nat. Plants 3, 16193 (2016).Article 

    Google Scholar 
    Yuan, X., Wang, L. & Wood, E. F. Anthropogenic intensification of southern African flash droughts as exemplified by the 2015/16 season. Bull. Am. Meteorol. Soc. 99, S86–S90 (2018).Article 

    Google Scholar 
    Ben-Ari, T. et al. Causes and implications of the unforeseen 2016 extreme yield loss in the breadbasket of France. Nat. Commun. 9, 1627 (2018).Article 

    Google Scholar 
    Gampe, D. et al. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Change 11, 772–779 (2021).Article 

    Google Scholar 
    Iizumi, T. & Ramankutty, N. Changes in yield variability of major crops for 1981–2010 explained by climate change. Environ. Res. Lett. 11, 034003 (2016).Article 

    Google Scholar 
    Brás, T. A., Seixas, J., Carvalhais, N. & Jagermeyr, J. Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environ. Res. Lett. 16, 065012 (2021).Article 

    Google Scholar 
    Lobell, D. B., Deines, J. M. & Di Tommaso, S. Changes in the drought sensitivity of US maize yields. Nat. Food 1, 729–735 (2020).Article 

    Google Scholar 
    Seneviratne, S. I. et al. Climate extremes, land–climate feedbacks and land-use forcing at 1.5 °C. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20160450 (2018).Article 

    Google Scholar 
    Pfleiderer, P., Schleussner, C. F., Kornhuber, K. & Coumou, D. Summer weather becomes more persistent in a 2 °C world. Nat. Clim. Change 9, 666–671 (2019).Article 

    Google Scholar 
    Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).Article 

    Google Scholar 
    Dai, A., Zhao, T. & Chen, J. Climate change and drought: a precipitation and evaporation perspective. Curr. Clim. Chang. Rep. 4, 301–312 (2018).Article 

    Google Scholar 
    Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).Article 

    Google Scholar 
    Lesk, C., Coffel, E. & Horton, R. Net benefits to US soy and maize yields from intensifying hourly rainfall. Nat. Clim. Change 10, 819–822 (2020).Article 

    Google Scholar 
    Goulart, H. M. D., Van Der Wiel, K., Folberth, C., Balkovic, J. & Van Den Hurk, B. Weather-induced crop failure events under climate change: a storyline approach. Earth Syst. Dyn. https://doi.org/10.5194/esd-2021-40 (2021).Article 

    Google Scholar 
    Franke, J. A. et al. Agricultural breadbaskets shift poleward given adaptive farmer behavior under climate change. Glob. Chang. Biol. 28, 167–181 (2022).Article 

    Google Scholar 
    Jägermeyr, J. et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2, 873–885 (2021).Article 

    Google Scholar 
    Waha, K. et al. Multiple cropping systems of the world and the potential for increasing cropping intensity. Glob. Environ. Chang. 64, 102131 (2020).Article 

    Google Scholar 
    Zhu, T., Fonseca De Lima, C. F. & De Smet, I. The heat is on: how crop growth, development, and yield respond to high temperature. J. Exp. Bot. 72, 7359–7373 (2021).
    Google Scholar 
    Lizaso, J. I. et al. Impact of high temperatures in maize: phenology and yield components. Field Crops Res. 216, 129–140 (2018).Article 

    Google Scholar 
    Rezaei, E. E., Siebert, S. & Ewert, F. Intensity of heat stress in winter wheat — phenology compensates for the adverse effect of global warming. Environ. Res. Lett. 10, 024012 (2015).Article 

    Google Scholar 
    Liu, K. et al. Climate change shifts forward flowering and reduces crop waterlogging stress. Environ. Res. Lett. 16, 094017 (2021).Article 

    Google Scholar 
    Bagley, J. et al. The influence of photosynthetic acclimation to rising CO2 and warmer temperatures on leaf and canopy photosynthesis models. Global Biogeochem. Cycles https://doi.org/10.1002/2014GB004848 (2015).Article 

    Google Scholar 
    Hossain, M. A. et al. Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms. Protoplasma 255, 399–412 (2018).Article 

    Google Scholar 
    Wolz, K. J., Wertin, T. M., Abordo, M., Wang, D. & Leakey, A. D. B. Diversity in stomatal function is integral to modelling plant carbon and water fluxes. Nat. Ecol. Evol. 1, 1292–1298 (2017).Article 

    Google Scholar 
    Ainsworth, E. A. & Long, S. P. 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Glob. Chang. Biol. 27, 27–49 (2021).Article 

    Google Scholar 
    Toreti, A. et al. Narrowing uncertainties in the effects of elevated CO2 on crops. Nat. Food 1, 775–782 (2020).Article 

    Google Scholar 
    Myers, S. S. et al. Climate change and global food systems: potential impacts on food security and undernutrition. Annu. Rev. Public Health 38, 259–277 (2017).Article 

    Google Scholar 
    Skinner, C. B., Poulsen, C. J. & Mankin, J. S. Amplification of heat extremes by plant CO2 physiological forcing. Nat. Commun. 9, 1094 (2018).Article 

    Google Scholar 
    Houshmandfar, A., Fitzgerald, G. J., Armstrong, R., Macabuhay, A. A. & Tausz, M. Modelling stomatal conductance of wheat: an assessment of response relationships under elevated CO2. Agric. For. Meteorol. 214–215, 117–123 (2015).Article 

    Google Scholar 
    Chavan, S. G., Duursma, R. A., Tausz, M. & Ghannoum, O. Elevated CO2 alleviates the negative impact of heat stress on wheat physiology but not on grain yield. J. Exp. Bot. 70, 6447–6459 (2019).Article 

    Google Scholar 
    Gray, S. B. et al. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat. Plants 2, 16132 (2016).Article 

    Google Scholar 
    Coffel, E. D. et al. Future hot and dry years worsen Nile basin water scarcity despite projected precipitation increases. Earths Future 7, 967–977 (2019).Article 

    Google Scholar 
    Mishra, V., Thirumalai, K., Singh, D. & Aadhar, S. Future exacerbation of hot and dry summer monsoon extremes in India. npj Clim. Atmos. Sci. 3, 10 (2020).Article 

    Google Scholar 
    Bevacqua, E., Zappa, G., Lehner, F. & Zscheischler, J. Precipitation trends determine future occurrences of compound hot–dry events. Nat. Clim. Change 12, 350–355 (2022).Article 

    Google Scholar 
    Seager, R. et al. Climate variability and change of Mediterranean-type climates. J. Clim. 32, 2887–2915 (2019).Article 

    Google Scholar 
    Vogel, M. M., Hauser, M. & Seneviratne, S. I. Projected changes in hot, dry and wet extreme events’ clusters in CMIP6 multi-model ensemble. Environ. Res. Lett. 15, 094021 (2020).Article 

    Google Scholar 
    Zhou, S. et al. Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl Acad. Sci. USA 116, 18848–18853 (2019).Article 

    Google Scholar 
    Byrne, M. P. Amplified warming of extreme temperatures over tropical land. Nat. Geosci. 14, 837–841 (2021).Article 

    Google Scholar 
    McDermid, S. S. et al. Disentangling the regional climate impacts of competing vegetation responses to elevated atmospheric CO2. J. Geophys. Res. Atmos. 126, e2020JD034108 (2021).Article 

    Google Scholar 
    Swann, A. L. S., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).Article 

    Google Scholar 
    Ali, H., Fowler, H. J., Lenderink, G., Lewis, E. & Pritchard, D. Consistent large-scale response of hourly extreme precipitation to temperature variation over land. Geophys. Res. Lett. https://doi.org/10.1029/2020GL090317 (2021).Article 

    Google Scholar 
    Dai, A., Rasmussen, R. M., Liu, C., Ikeda, K. & Prein, A. F. A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations. Clim. Dyn. 55, 343–368 (2020).Article 

    Google Scholar 
    Fishman, R. More uneven distributions overturn benefits of higher precipitation for crop yields. Environ. Res. Lett. 11, 024004 (2016).Article 

    Google Scholar 
    Shortridge, J. Observed trends in daily rainfall variability result in more severe climate change impacts to agriculture. Clim. Chang. 157, 429–444 (2019).Article 

    Google Scholar 
    Guan, K., Sultan, B., Biasutti, M., Baron, C. & Lobell, D. B. What aspects of future rainfall changes matter for crop yields in West Africa? Geophys. Res. Lett. 42, 8001–8010 (2015).Article 

    Google Scholar 
    Byrne, M. P. & O’Gorman, P. A. Trends in continental temperature and humidity directly linked to ocean warming. Proc. Natl Acad. Sci. USA 115, 4863–4868 (2018).Article 

    Google Scholar 
    Coffel, E. D., Horton, R. M. & De Sherbinin, A. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century. Environ. Res. Lett. 13, 014001 (2018).Article 

    Google Scholar 
    Matthews, T. Humid heat and climate change. Prog. Phys. Geogr. 42, 391–405 (2018).Article 

    Google Scholar 
    McKinnon, K. A. & Poppick, A. Estimating changes in the observed relationship between humidity and temperature using noncrossing quantile smoothing splines. J. Agric. Biol. Environ. Stat. 25, 292–314 (2020).Article 

    Google Scholar 
    Parsons, L. A. et al. Global labor loss due to humid heat exposure underestimated for outdoor workers. Environ. Res. Lett. 17, 014050 (2022).Article 

    Google Scholar 
    Ridder, N. N., Pitman, A. J. & Ukkola, A. M. Do CMIP6 climate models simulate global or regional compound events skillfully? Geophys. Res. Lett. 48, e2020GL091152 (2021).Article 

    Google Scholar 
    Hao, Z., Aghakouchak, A. & Phillips, T. J. Changes in concurrent monthly precipitation and temperature extremes. Environ. Res. Lett. 8, 034014 (2013).Article 

    Google Scholar 
    Zhang, B. & Soden, B. J. Constraining climate model projections of regional precipitation change. Geophys. Res. Lett. 46, 10522–10531 (2019).Article 

    Google Scholar 
    Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).Article 

    Google Scholar 
    Butler, E. E., Mueller, N. D. & Huybers, P. Peculiarly pleasant weather for US maize. Proc. Natl Acad. Sci. USA 115, 11935–11940 (2018).Article 

    Google Scholar 
    Lombardozzi, D. L. et al. Simulating agriculture in the Community Land Model Version 5. J. Geophys. Res. Biogeosci. 125, e2019JG005529 (2020).Article 

    Google Scholar 
    Puma, M. J. & Cook, B. I. Effects of irrigation on global climate during the 20th century. J. Geophys. Res. Atmos. 115, D16120 (2010).Article 

    Google Scholar 
    Coffel, E. D., Lesk, C., Winter, J. M., Osterberg, E. C. & Mankin, J. S. Crop–climate feedbacks boost US maize and soy yields. Environ. Res. Lett. 17, 024012 (2022).Article 

    Google Scholar 
    Mueller, N. D. et al. Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Clim. Change 6, 317–322 (2016).Article 

    Google Scholar 
    Zaveri, E. & B. Lobell, D. The role of irrigation in changing wheat yields and heat sensitivity in India. Nat. Commun. 10, 4144 (2019).Article 

    Google Scholar 
    DeLucia, E. H. et al. Are we approaching a water ceiling to maize yields in the United States? Ecosphere 10, e02773 (2019).Article 

    Google Scholar 
    Cook, B. I. et al. Divergent regional climate consequences of maintaining current irrigation rates in the 21st century. J. Geophys. Res. Atmos. 125, e2019JD031814 (2020).Article 

    Google Scholar 
    Tigchelaar, M., Battisti, D. S., Naylor, R. L. & Ray, D. K. Future warming increases probability of globally synchronized maize production shocks. Proc. Natl Acad. Sci. USA 115, 6644–6649 (2018).Article 

    Google Scholar 
    Liu, W. et al. Future climate change significantly alters interannual wheat yield variability over half of harvested areas. Environ. Res. Lett. 16, 094045 (2021).Article 

    Google Scholar 
    Wang, X. et al. Global irrigation contribution to wheat and maize yield. Nat. Commun. 12, 1235 (2021).Article 

    Google Scholar 
    Rosa, L., Chiarelli, D. D., Rulli, M. C., Dell’Angelo, J. & D’Odorico, P. Global agricultural economic water scarcity. Sci. Adv. 6, eaaz6031 (2020).Article 

    Google Scholar 
    Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).Article 

    Google Scholar 
    Livneh, B. & Badger, A. M. Drought less predictable under declining future snowpack. Nat. Clim. Change 10, 452–458 (2020).Article 

    Google Scholar 
    Elliott, J. et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl Acad. Sci. USA 111, 3239–3244 (2014).Article 

    Google Scholar 
    Jägermeyr, J. et al. Integrated crop water management might sustainably halve the global food gap. Environ. Res. Lett. 11, 025002 (2016).Article 

    Google Scholar 
    Rosa, L. et al. Potential for sustainable irrigation expansion in a 3 °C warmer climate. Proc. Natl Acad. Sci. USA 117, 29526–29534 (2020).Article 

    Google Scholar 
    Gleeson, T., Wada, Y., Bierkens, M. F. P. & Van Beek, L. P. H. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).Article 

    Google Scholar 
    Bhattarai, N. et al. The impact of groundwater depletion on agricultural production in India. Environ. Res. Lett. 16, 085003 (2021).Article 

    Google Scholar 
    Nie, W. et al. Irrigation water demand sensitivity to climate variability across the contiguous United States. Water Resour. Res. 57, e2020WR027738 (2021).Article 

    Google Scholar 
    Wu, W.-Y. et al. Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nat. Commun. 11, 3710 (2020).Article 

    Google Scholar 
    Jain, M. et al. Groundwater depletion will reduce cropping intensity in India. Sci. Adv. 7, eabd2849 (2021).Article 

    Google Scholar 
    Kerr, R. B., Hasegawa, T. & Lasco, R. Food, fibre and other ecosystem products. In IPCC WGII Sixth Assessment Report 11–13 Ch. 5 (IPCC, 2022).Zandalinas, S. I. & Mittler, R. Plant responses to multifactorial stress combination. New Phytol. 234, 1161–1167 (2022).Article 

    Google Scholar 
    Barrett, C. B. et al. Bundling innovations to transform agri-food systems. Nat. Sustain. 3, 974–976 (2020).Article 

    Google Scholar 
    Peng, B. & Guan, K. Harmonizing climate-smart and sustainable agriculture. Nat. Food 2, 853–854 (2021).Article 

    Google Scholar 
    Zabel, F. et al. Large potential for crop production adaptation depends on available future varieties. Glob. Chang. Biol. 27, 3870–3882 (2021).Article 

    Google Scholar 
    Challinor, A. J., Koehler, A.-K., Ramirez-Villegas, J., Whitfield, S. & Das, B. Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat. Clim. Change 6, 954–958 (2016).Article 

    Google Scholar 
    Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).Article 

    Google Scholar 
    Vogel, E. & Meyer, R. Climate Change, Climate Extremes, and Global Food Production — Adaptation in the Agricultural Sector. Resilience: The Science of Adaptation to Climate Change (Elsevier Inc., 2018).Lal, R. Soil health and carbon management. Food Energy Secur. 5, 212–222 (2016).Article 

    Google Scholar 
    Davis, K. F., Downs, S. & Gephart, J. A. Towards food supply chain resilience to environmental shocks. Nat. Food 2, 54–65 (2021).Article 

    Google Scholar 
    Baldos, U. L. C. & Hertel, T. W. The role of international trade in managing food security risks from climate change. Food Secur. 7, 275–290 (2015).Article 

    Google Scholar 
    Deguines, N. et al. Large-scale trade-off between agricultural intensification and crop pollination services. Front. Ecol. Environ. 12, 212–217 (2014).Article 

    Google Scholar 
    Vyas, S., Dalhaus, T., Kropff, M., Aggarwal, P. & Meuwissen, M. P. M. Mapping global research on agricultural insurance. Environ. Res. Lett. 16, 103003 (2021).Article 

    Google Scholar 
    Hazell, P. & Varangis, P. Best practices for subsidizing agricultural insurance. Glob. Food Sec. 25, 100326 (2020).Article 

    Google Scholar 
    Funk, C. et al. Recognizing the famine early warning systems network over 30 years of drought early warning science advances and partnerships promoting global food security. Bull. Am. Meteorol. Soc. 100, 1011–1027 (2019).Article 

    Google Scholar 
    Reichstein, M., Riede, F. & Frank, D. More floods, fires and cyclones — plan for domino effects on sustainability goals. Nature 592, 347–349 (2021).Article 

    Google Scholar 
    Müller, C. et al. Exploring uncertainties in global crop yield projections in a large ensemble of crop models and CMIP5 and CMIP6 climate scenarios. Environ. Res. Lett. 16, 034040 (2021).Article 

    Google Scholar 
    Hao, Z., Hao, F., Xia, Y., Singh, V. P. & Zhang, X. A monitoring and prediction system for compound dry and hot events. Environ. Res. Lett. 14, 114034 (2019).Article 

    Google Scholar 
    Benami, E. et al. Uniting remote sensing, crop modelling and economics for agricultural risk management. Nat. Rev. Earth Environ. 2, 140–159 (2021).Article 

    Google Scholar 
    Famine Early Warning System Network. East Africa seasonal monitor. FEWS https://fews.net/sites/default/files/documents/reports/EAST_AFRICA_Seasonal_Monitor_20_May_2022_1.pdf (2022).Becker-Reshef, I. et al. The GEOGLAM crop monitor for AMIS: assessing crop conditions in the context of global markets. Glob. Food Sec. 23, 173–181 (2019).Article 

    Google Scholar 
    GEOGLAM Crop Monitor. Special report: unprecedented 4th consecutive poor rainfall season for the Horn of Africa. Crop Monitor https://cropmonitor.org/documents/SPECIAL/reports/Special_Report_20220523_East_Africa.pdf (2022).Geange, S. R. et al. The thermal tolerance of photosynthetic tissues: a global systematic review and agenda for future research. New Phytol. 229, 2497–2513 (2021).Article 

    Google Scholar 
    Reynolds, M. P. et al. Harnessing translational research in wheat for climate resilience. J. Exp. Bot. 72, 5134–5157 (2021).Article 

    Google Scholar 
    Makondo, C. C. & Thomas, D. S. G. Climate change adaptation: linking indigenous knowledge with western science for effective adaptation. Environ. Sci. Policy 88, 83–91 (2018).Article 

    Google Scholar 
    Sharafi, L., Zarafshani, K., Keshavarz, M., Azadi, H. & Van Passel, S. Farmers’ decision to use drought early warning system in developing countries. Sci. Total Environ. 758, 142761 (2021).Article 

    Google Scholar 
    Fischer, K. Why new crop technology is not scale-neutral — A critique of the expectations for a crop-based African Green Revolution. Res. Policy 45, 1185–1194 (2016).Article 

    Google Scholar 
    Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).Article 

    Google Scholar 
    Glauber, J., Baldwin, K., Antón, J. & Ziebinska, U. Design principles for agricultural risk management policies. OECD Food Agric. Fish. Pap. https://doi.org/10.1787/1048819f-en (2021).Article 

    Google Scholar 
    Annan, F. & Schlenker, W. Federal crop insurance and the disincentive to adapt to extreme heat. Am. Econ. Rev. 105, 262–266 (2015).Article 

    Google Scholar 
    Deryugina, T. & Konar, M. Impacts of crop insurance on water withdrawals for irrigation. Adv. Water Resour. 110, 437–444 (2017).Article 

    Google Scholar 
    Agrimonti, C., Lauro, M. & Visioli, G. Smart agriculture for food quality: facing climate change in the 21st century. Crit. Rev. Food Sci. Nutr. 61, 971–981 (2021).Article 

    Google Scholar 
    Sloat, L. L. et al. Climate adaptation by crop migration. Nat. Commun. 11, 1243 (2020).Article 

    Google Scholar 
    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).Article 

    Google Scholar 
    Willmott, C. J. & Matsuura, K. Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950–1999). University of Delaware http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts.html (2000).Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations — the CRU TS3.10 dataset. Int. J. Clim. 34, 623–642 (2014).Article 

    Google Scholar 
    Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).Article 

    Google Scholar 
    Beyer, R. M., Hua, F., Martin, P. A., Manica, A. & Rademacher, T. Relocating croplands could drastically reduce the environmental impacts of global food production. Commun. Earth Environ. 3, 49 (2022).Article 

    Google Scholar  More

  • in

    Prioritize gender equality to meet global biodiversity goals

    Parties to the Convention on Biological Diversity will meet this month to finalize the post-2020 Global Biodiversity Framework and the text for the stand-alone target on gender equality (Target 22). This target aims to reshape conservation policy and practice to make them more inclusive, equitable and effective.
    Competing Interests
    The authors declare no competing interests. More

  • in

    The evolutionary process of invasion in the fall armyworm (Spodoptera frugiperda)

    Pimentel, D. et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 84, 1–20 (2001).Article 

    Google Scholar 
    Hulme, P. E. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).Article 

    Google Scholar 
    Bebber, D. P., Holmes, T. & Gurr, S. J. The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 23, 1398–1407 (2014).Article 

    Google Scholar 
    Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576 (2021).Article 

    Google Scholar 
    McNeely, J. A. As the world gets smaller, the chances of invasion grow. Euphytica 148, 5–15 (2006).Article 

    Google Scholar 
    Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl. Acad. Sci. USA 115, E2264–E2273 (2018).Article 

    Google Scholar 
    Roques, A. et al. Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200 years. Biol. Invasions 18, 907–920 (2016).Article 

    Google Scholar 
    de Poorter, M. & Browne, M. The Global Invasive Species Database (GISD) and international information exchange: Using global expertise to help in the fight against invasive alien species. Plant Prot. Plant Health Eur. 9–11, 49–54 (2005).
    Google Scholar 
    Tay, W. T. & Gordon, K. H. J. Going global: Genomic insights into insect invasions. Curr. Opin. Insect Sci. 31, 123–130 (2019).Article 

    Google Scholar 
    Paini, D. R. et al. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. USA 113, 7575–7579 (2016).Article 

    Google Scholar 
    Prentis, P. J., Wilson, J. R. U., Dormontt, E. E., Richardson, D. M. & Lowe, A. J. Adaptive evolution in invasive species. Trends Plant Sci. 13, 288–294 (2008).Article 

    Google Scholar 
    Bertelsmeier, C. Globalization and the anthropogenic spread of invasive social insects. Curr. Opin. Insect Sci. 46, 16–23 (2021).Article 

    Google Scholar 
    Crawley, M. J. et al. The population biology of invaders. Philos. Trans. R. Soc. Lond. B 314, 711–731 (1986).Article 

    Google Scholar 
    Petren, K. & Case, T. J. An experimental demonstration of exploitation competition in an ongoing invasion. Ecology 77, 118–132 (1996).Article 

    Google Scholar 
    Kowarik, I. Time lags in biological invasions with regard to the success and failure of alien species. Plant Invasions Gen. Asp. Spec. Probl. 1, 15–38 (1995).
    Google Scholar 
    Andrews, K. L. The whorlworm, Spodoptera frugiperda. Cent. Am. Neighb. Areas Fla. Entomol. 63, 456–467 (1980).Article 

    Google Scholar 
    Sparks, A. N. A review of the biology of the fall armyworm. Fla. Entomol. 1, 82–87 (1979).Article 

    Google Scholar 
    Westbrook, J. K., Nagoshi, R. N., Meagher, R. L., Fleischer, S. J. & Jairam, S. Modeling seasonal migration of fall armyworm moths. Int. J. Biometeorol. 60, 255–267 (2016).Article 

    Google Scholar 
    Gutiérrez-Moreno, R. et al. Field-evolved resistance of the Fall Armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico. J. Econ. Entomol. 112, 792–802 (2019).Article 

    Google Scholar 
    Blanco, C. A. et al. Susceptibility of isofamilies of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Cry1Ac and Cry1Fa proteins of Bacillus thuringiensis. Southw. Entomol. 35, 409–416 (2010).Article 

    Google Scholar 
    Storer, N. P. et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J. Econ. Entomol. 103, 1031–1038 (2010).Article 

    Google Scholar 
    Chandrasena, D. I. et al. Characterization of field-evolved resistance to Bacillus thuringiensis-derived Cry1F δ-endotoxin in Spodoptera frugiperda populations from Argentina. Pest Manag. Sci. 74, 746–754 (2018).Article 

    Google Scholar 
    Pashley, D. P. Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): A sibling species complex?. Ann. Entomol. Soc. Am. 79, 898–904 (1986).Article 

    Google Scholar 
    Pashley, D. P. & Martin, J. A. Reproductive incompatibility between host strains of the Fall Armyworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 80, 731–733 (1987).Article 

    Google Scholar 
    Dumas, P. et al. Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: Two host strains or two distinct species?. Genetica 143, 305–316 (2015).Article 

    Google Scholar 
    Lu, Y. J., Kochert, G. D., Isenhour, D. J. & Adang, M. J. Molecular characterization of a strain-specific repeated DNA sequence in the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). Insect Mol. Biol. 3, 123–130 (1994).Article 

    Google Scholar 
    Pashley, D. P. Host-associated differentiation in armyworms (Lepidoptera: Noctuidae): An allozymic and mtDNA perspective. in Electrophoretic Studies on Agricultural Pests, vol. 39, 103–114 (Clarendon Press, 1989).Nagoshi, R. N. The fall armyworm Triosephosphate Isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann. Entomol. Soc. Am. 103, 283–292 (2010).Article 

    Google Scholar 
    Dumas, P. et al. Phylogenetic molecular species delimitations unravel potential new species in the pest genus Spodoptera Guenée, 1852 (Lepidoptera, Noctuidae). PLoS ONE 10, e0122407 (2015).Article 

    Google Scholar 
    Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A. & Tamò, M. First report of outbreaks of the Fall Armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 11, e0165632 (2016).Article 

    Google Scholar 
    Day, R. et al. Fall armyworm: impacts and implications for Africa. Outlooks Pest Manag. 28, 196–201 (2017).Article 

    Google Scholar 
    Nuss, E. T. & Tanumihardjo, S. A. Maize: A paramount staple crop in the context of global nutrition. Compr. Rev. Food Sci. Food Saf. 9, 417–436 (2010).Article 

    Google Scholar 
    Zhang, L. et al. Genetic structure and insecticide resistance characteristics of fall armyworm populations invading China. Mol. Ecol. Resour. 20, 1682–1696 (2020).Article 

    Google Scholar 
    Zhang, D. et al. Insecticide resistance monitoring for the invasive populations of fall armyworm, Spodoptera frugiperda in China. J. Integr. Agric. 20, 783–791 (2021).Article 

    Google Scholar 
    Gui, F. et al. Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda. Protein Cell 1, 1–19 (2020).
    Google Scholar 
    Schlum, K. A. et al. Whole genome comparisons reveal panmixia among fall armyworm (Spodoptera frugiperda) from diverse locations. BMC Genomics 22, 179 (2021).Article 

    Google Scholar 
    Stokstad, E. New crop pest takes Africa at lightning speed. Science 356, 473–474 (2017).Article 

    Google Scholar 
    Nagoshi, R. N. et al. The fall armyworm strain associated with most rice, millet, and pasture infestations in the Western Hemisphere is rare or absent in Ghana and Togo. PLoS ONE 16, e0253528 (2021).Article 

    Google Scholar 
    Caniço, A., Mexia, A. & Santos, L. Farmers’ knowledge, perception and management practices of fall armyworm (Spodoptera frugiperda Smith) in Manica province, Mozambique. NeoBiota 68, 127 (2021).Article 

    Google Scholar 
    Nagoshi, R. N. et al. Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the Greater Antilles. PLoS ONE 12, e0181982 (2017).Article 

    Google Scholar 
    Nagoshi, R. N., Goergen, G., Plessis, H. D., van den Berg, J. & Meagher, R. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci. Rep. 9, 8311 (2019).Article 

    Google Scholar 
    Create your own Custom Map. MapChart https://mapchart.net/index.html.Sharanabasappa, S. et al. First report of the Fall armyworm, Spodoptera frugiperda (J E Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manag. Hortic. Ecosyst. 24, 23–29 (2018).
    Google Scholar 
    Liu, H. et al. Chromosome level draft genomes of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), an alien invasive pest in China. BioRxiv https://doi.org/10.1101/671560 (2019).Article 

    Google Scholar 
    Gimenez, S. et al. Adaptation by copy number variation increases insecticide resistance in the fall armyworm. Commun. Biol. 3, 664 (2020).Article 

    Google Scholar 
    Gouin, A. et al. Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci. Rep. 7, 11816 (2017).Article 

    Google Scholar 
    Nam, K. et al. Positive selection alone is sufficient for whole genome differentiation at the early stage of speciation process in the fall armyworm. BMC Evol. Biol. 20, 152 (2020).Article 

    Google Scholar 
    Fiteni, E. et al. Host-plant adaptation as a driver of incipient speciation in the fall armyworm (Spodoptera frugiperda). BMC Ecol. Evol. 22, 133 (2022).Article 

    Google Scholar 
    Tay, W. T. et al. Global population genomic signature of Spodoptera frugiperda (fall armyworm) supports complex introduction events across the Old World. Commun. Biol. 5, 1–15 (2022).Article 

    Google Scholar 
    Guan, F. et al. Whole-genome sequencing to detect mutations associated with resistance to insecticides and Bt proteins in Spodoptera frugiperda. Insect Sci. https://doi.org/10.1111/1744-7917.12838 (2020).Article 

    Google Scholar 
    Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).Article 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).Article 

    Google Scholar 
    Cruickshank, T. E. & Hahn, M. W. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol. Ecol. 23, 3133–3157 (2014).Article 

    Google Scholar 
    Pavlidis, P., Živković, D., Stamatakis, A. & Alachiotis, N. SweeD: likelihood-based detection of selective sweeps in thousands of genomes. Mol. Biol. Evol. 30, 2224–2234 (2013).Article 

    Google Scholar 
    Charlesworth, B., Morgan, M. T. & Charlesworth, D. The effect of deleterious mutations on neutral molecular variation. Genetics 134, 1289–1303 (1993).Article 

    Google Scholar 
    Aikio, S., Duncan, R. P. & Hulme, P. E. Lag-phases in alien plant invasions: separating the facts from the artefacts. Oikos 119, 370–378 (2010).Article 

    Google Scholar 
    Morimoto, N., Kiritani, K., Yamamura, K. & Yamanaka, T. Finding indications of lag time, saturation and trading inflow in the emergence record of exotic agricultural insect pests in Japan. Appl. Entomol. Zool. 54, 437–450 (2019).Article 

    Google Scholar 
    Aagaard, K. & Lockwood, J. Exotic birds show lags in population growth. Divers. Distrib. 20, 547–554 (2014).Article 

    Google Scholar 
    Azzurro, E., Maynou, F., Belmaker, J., Golani, D. & Crooks, J. A. Lag times in Lessepsian fish invasion. Biol. Invasions 18, 2761–2772 (2016).Article 

    Google Scholar 
    McDonnell, A. M. & Dang, C. H. Basic review of the cytochrome P450 system. J. Adv. Pract. Oncol. 4, 263–268 (2013).
    Google Scholar 
    Giraudo, M. et al. Cytochrome P450s from the fall armyworm (Spodoptera frugiperda): responses to plant allelochemicals and pesticides. Insect Mol. Biol. 24, 115–128 (2015).Article 

    Google Scholar 
    Cao, W. et al. Multi-faceted epigenetic dysregulation of gene expression promotes esophageal squamous cell carcinoma. Nat. Commun. 11, 3675 (2020).Article 

    Google Scholar 
    Yainna, S. et al. Geographic monitoring of insecticide resistance mutations in native and invasive populations of the Fall Armyworm. Insects 12, 468 (2021).Article 

    Google Scholar 
    Tapadia, M. G. & Lakhotia, S. C. Expression of mdr49 and mdr65 multidrug resistance genes in larval tissues of Drosophila melanogaster under normal and stress conditions. Cell Stress Chaperones 10, 7–11 (2005).Article 

    Google Scholar 
    Lin, H. et al. Characterization and expression profiling of serine protease inhibitors in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). BMC Genomics 18, 162 (2017).Article 

    Google Scholar 
    de Fouchier, A. et al. Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire. Nat. Commun. 8, 15709 (2017).Article 

    Google Scholar 
    Tataroglu, O. & Emery, P. The molecular ticks of the Drosophila circadian clock. Curr. Opin. Insect Sci. 7, 51–57 (2015).Article 

    Google Scholar 
    Hänniger, S. et al. Genetic basis of allochronic differentiation in the fall armyworm. BMC Evol. Biol. 17, 68 (2017).Article 

    Google Scholar 
    Schöfl, G., Heckel, D. G. & Groot, A. T. Time-shifted reproductive behaviours among fall armyworm (Noctuidae: Spodoptera frugiperda) host strains: Evidence for differing modes of inheritance. J. Evol. Biol. 22, 1447–1459 (2009).Article 

    Google Scholar 
    Haenniger, S. et al. Sexual communication of Spodoptera frugiperda from West Africa: Adaptation of an invasive species and implications for pest management. Sci. Rep. 10, 2892 (2020).Article 

    Google Scholar 
    Feder, J. L. et al. Genome-wide congealing and rapid transitions across the speciation continuum during speciation with gene flow. J. Hered. 105, 810–820 (2014).Article 

    Google Scholar 
    Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: Rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article 

    Google Scholar 
    McKenna, A. et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).Article 

    Google Scholar 
    Lu, Y. & Adang, M. J. Distinguishing fall armyworm (Lepidoptera: Noctuidae) strains using a diagnostic mitochondrial DNA marker. Fla. Entomol. 1, 48–55 (1996).Article 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article 

    Google Scholar 
    Meng, G., Li, Y., Yang, C. & Liu, S. MitoZ: A toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 47, e63–e63 (2019).Article 

    Google Scholar 
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).Article 

    Google Scholar 
    Tamura, K. et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).Article 

    Google Scholar 
    Li, H. Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics 27, 718–719 (2011).Article 

    Google Scholar 
    Rentería, M. E., Cortes, A. & Medland, S. E. Using PLINK for genome-wide association studies (GWAS) and data analysis. Methods Mol. Biol. 1019, 193–213 (2013).Article 

    Google Scholar 
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).
    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).Article 

    Google Scholar 
    Ernst, M. D. Permutation methods: a basis for exact inference. Stat. Sci. 4, 676–685 (2004).MathSciNet 
    MATH 

    Google Scholar 
    Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).Article 

    Google Scholar 
    Kergoat, G. J. et al. A novel reference dated phylogeny for the genus Spodoptera Guenée (Lepidoptera: Noctuidae: Noctuinae): New insights into the evolution of a pest-rich genus. Mol. Phylogenet. Evol. 161, 107161 (2021).Article 

    Google Scholar 
    Lefort, V., Desper, R. & Gascuel, O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32, 2798–2800 (2015).Article 

    Google Scholar 
    Plotree, D. & Plotgram, D. PHYLIP-phylogeny inference package (version 3.2). Cladistics 5, 163–166 (1989).
    Google Scholar 
    Nelson, D. R. The cytochrome p450 homepage. Hum. Genomics 4, 1–7 (2009).Article 

    Google Scholar  More

  • in

    Exploring the response of a key Mediterranean gorgonian to heat stress across biological and spatial scales

    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change. 9, 306–312 (2019).Article 

    Google Scholar 
    Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Global Change Biol. 15, 1090–1103 (2009).Article 

    Google Scholar 
    Hoeksema, B. W. & Matthews, J. L. Contrasting bleaching patterns in mushroom coral assemblages at Koh Tao Gulf of Thailand. Coral Reefs 30, 95 (2011).Article 

    Google Scholar 
    Coleman, M. A., Minne, A. J. P., Vranken, S. & Wernberg, T. Genetic tropicalisation following a marine heatwave. Sci. Rep. 10, 12726 (2020).Article 

    Google Scholar 
    Hutchinson G. E. Concluding remarks. – Cold Spring Harb. Symp. Quant. Biol. 22: 415–427 (1957).Lavergne, S., Mouquet, N., Thuiller, W. & Ronce, O. Biodiversity and climate change: Integrating evolutionary and ecological responses of species and communities. Ann. Rev. Ecol. Evol. Syst. 41, 321–350 (2010).Article 

    Google Scholar 
    King, N. G., McKeown, N. J., Smale, D. A. & Moore, P. J. The importance of phenotypic plasticity and local adaptation in driving intraspecific variability in thermal niches of marine macrophytes. Ecography 41(9), 1469–1484 (2018).Article 

    Google Scholar 
    Thomas, L. et al. Mechanisms of thermal tolerance in reef-building corals across a fine-grained environmental mosaic: Lessons from Ofu American Samoa. Front. Mar. Sci. 4, 434 (2018).Article 

    Google Scholar 
    Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Phil. Trans. R. Soc. B. 37420180174 (2019).Howells, E. et al. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat. Clim. Change 2, 116–120 (2012).Article 

    Google Scholar 
    Haguenauer, A., Zuberer, F., Ledoux, J.-B. & Aurelle, D. Adaptive abilities of the Mediterranean red coral Corallium rubrum in a heterogeneous and changing environment: from population to functional genetics. J. Exp. Mar. Biol. Ecol. 449, 349–357 (2013).Article 

    Google Scholar 
    Linares, C., Cebrian, E., Kipson, S. & Garrabou, J. Does thermal history influence the tolerance of temperate gorgonians to future warming?. Mar. Environ. Res. 89, 45–52 (2013).Article 

    Google Scholar 
    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).Article 

    Google Scholar 
    Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).Article 

    Google Scholar 
    Chakravarti, L. J., Beltran, V. H. & van Oppen, M. J. Rapid thermal adaptation in photosymbionts of reefbuilding corals. Glob. Chang. Biol. 23, 4675–4688 (2017).Article 

    Google Scholar 
    Krueger, T. et al. Common reef-building coral in the northern Red Sea resistant to elevated temperature and acidification. R. Soc. Open Sci. 4, 170038 (2017).Article 

    Google Scholar 
    Middlebrook, R., Hoegh-Guldberg, O. & Leggat, W. The effect of thermal history on the susceptibility of reef building corals to thermal stress. J. Exp. Biol. 211, 1050–1056 (2008).Article 

    Google Scholar 
    Bellantuono, A. J., Granados-Cifuentes, C., Miller, D. J., Hoegh-Guldberg, O. & Rodriguez-Lanetty, M. Coral thermal tolerance: Tuning gene expression to resist thermal stress. PLoS ONE 7, e50685 (2012).Article 

    Google Scholar 
    Hawkins, T. D. & Warner, M. E. Warm preconditioning protects against acute heat-induced respiratory dysfunction and delays bleaching in a symbiotic sea anemone. J. Exp. Biol. 220, 969–983 (2017).
    Google Scholar 
    Williams, D. E., Miller, M. W., Bright, A. J., Pausch, R. E. & Valdivia, A. Thermal stress exposure, bleaching response, and mortality in the threatened coral Acropora palmata. Bull. Mar. Poll. 124, 189–197 (2017).Article 

    Google Scholar 
    Hughes, T. P. et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Change 9, 40–43 (2019).Article 

    Google Scholar 
    Ferrier-Pagès, C. et al. Physiological response of the symbiotic gorgonian Eunicella singularis to a long-term temperature increase. J. Exp. Biol. 212, 3007–3015 (2009).Article 

    Google Scholar 
    Rodolfo-Metalpa, R. et al. Thermally tolerant corals have limited capacity to acclimatize to future warming. Global Change Biol. 20, 3036–3049 (2014).Article 

    Google Scholar 
    Ledoux, J-B., Aurelle, D., Bensoussan, N, Marschal, C., Feral & Garrabou, J. Potential for adaptive evolution at species range margins: contrasting interactions between red coral populations and their environment in a changing ocean. Ecol. Evol. 5, 1178–1192 (2015).Crisci, C. et al. Regional and local environmental conditions do not shape the response to warming of a marine habitat-forming species. Sci. Rep. 7, 5069 (2017).Article 

    Google Scholar 
    Jurriaans, S. & Hoogenboom M. O. Thermal performance of scleractinian corals along a latitudinal gradient on the Great Barrier Reef. Phil. Trans. R. Soc. B. 37420180546 (2019).Cerrano, C. et al. Catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-western Mediterranean), Summer 1999. Ecol. Lett. 3, 284–293 (2000).Article 

    Google Scholar 
    Garrabou, J., Gómez-Gras, D., Medrano, A., Cerrano, C., Ponti, M., et al. Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea. Global. Chang. Biol. (in press).Rossi, S. et al. Temporal variation in protein, carbohydrate, and lipid concentrations in Paramuricea clavata (Anthozoa, Octocorallia): evidence for summer–autumn feeding constraints. Mar Biol. 149, 643–651 (2006).Article 

    Google Scholar 
    Coma, R. et al. Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc. Natl. Acad. Sci. U.S.A. 106, 6176–6181 (2009).Article 

    Google Scholar 
    Kipson, S. Ecology of gorgonian dominated communities in the Eastern Adriatic Sea. PhD thesis. University of Zagreb, Zagreb, 160 pp. (2013).Bally, M. & Garrabou, J. Thermodependent bacterial pathogens and mass mortalities in temperate benthic communities: a new case of emerging disease linked to climate change. Global Change Biol. 13, 2078–2088 (2007).Article 

    Google Scholar 
    Vezzulli, L., Previati, M., Pruzzo, C., Marchese, A., Bourne. D. G. & Cerrano C. Vibrio infections triggering mass mortality events in a warming Mediterranean Sea. Environ. Microbiol. 12, 2007–2019 (2010).Corinaldesi, C. et al. Changes in coral forest microbiomes predict the impact of marine heatwaves on habitat-forming species down to mesophotic depths. Sci. Total Environ. 823, 153701 (2022).Article 

    Google Scholar 
    Tignat-Perrier, R. et al. The effect of thermal stress on the physiology and bacterial communities of two key Mediterranean gorgonians. Appl. Environ. Microbiol. 88(6), e0234021 (2022).Article 

    Google Scholar 
    Arizmendi-Mejía, R. et al. Demographic responses to warming: reproductive maturity and sex influence vulnerability in an octocoral. Coral Reefs 34, 1207–1216 (2015).Article 

    Google Scholar 
    Arizmendi-Mejía, R. et al. Combining genetic and demographic data for the conservation of a mediterranean marine habitat-forming species. PLoS ONE 10, e0119585 (2015).Article 

    Google Scholar 
    Ponti, M. et al. Ecological shifts in Mediterranean coralligenous assemblages related to gorgonian forest loss. PLoS ONE 9(7), e102782 (2014).Article 

    Google Scholar 
    Ponti, M., Turicchia, E., Ferro, F., Cerrano, C. & Abbiati, M. The understorey of gorgonian forests in mesophotic temperate reefs. Aquat. Conserv. Mar. Freshw. Ecosyst. 28(5), 1153–1166 (2018).Gómez-Gras, D. et al. Climate change transforms the functional identity of Mediterranean coralligenous assemblages. Ecol. Lett. 24(5), 1038–1051 (2021).Article 

    Google Scholar 
    Boavida, J., Assis, J., Silva, I., & Serrão, E. A. Overlooked habitat of a vulnerable gorgonian revealed in the Mediterranean and Eastern Atlantic by ecological niche modelling. Sci. Rep. 6(1) (2016).Linares, C., Doak, D., Coma, R., Diaz, D. & Zabala, M. Life history and viability of a long-lived marine invertebrate: The octocoral Paramuricea clavata. Ecology 88, 918–928 (2007).Article 

    Google Scholar 
    Coma, R., Ribes, M., Zabala, M. & Gili, J. M. Growth in a modular colonial marine invertebrates. Estuar. Coast. Shef Sci. 47, 459–470 (1998).Article 

    Google Scholar 
    Linares, C. et al. Early life history of the Mediterranean gorgonian Paramuricea clavata: Implication for population dynamics. Invertebr. Biol. 127, 1–11 (2008).Article 

    Google Scholar 
    Mokhtar-Jamaï, K. et al. From global to local genetic structuring in the red gorgonian Paramuricea clavata: The interplay between oceanographic conditions and limited larval dispersal. Mol. Ecol. 20, 3291–3305 (2011).Article 

    Google Scholar 
    Ledoux, J. et al. Postglacial range expansion shaped the spatial genetic structure in a marine habitat-forming species: Implications for conservation plans in the Eastern Adriatic Sea. J. Biogeogr. 45, 2645–2657 (2018).Article 

    Google Scholar 
    Dias, V. et al. High coral bycatch in bottom-set gillnet coastal fisheries reveals rich coral habitats in Southern Portugal. Front. Mar. Sci. 7, 1–16 (2020).Article 

    Google Scholar 
    Cebrian, E., Linares, C., Marshall, C. & Garrabou, J. Exploring the effects of invasive algae on the persistence of gorgonian populations. Biol. Invas. 14, 2647–2656 (2012).Article 

    Google Scholar 
    Mateos-Molina, D. et al. Assessing consequences of land cover changes on sediment deliveries to coastal waters at regional level over the last two decades in the northwestern Mediterranean Sea. Ocean Coast. Manag. 116, 435–442 (2015).Article 

    Google Scholar 
    Gómez-Gras, D. et al. Population collapse of habitat-forming species in the Mediterranean: a long-term study of gorgonian populations affected by recurrent marine heatwaves. Proc. R. Soc. B. 288, 20212384 (2021).Article 

    Google Scholar 
    Otero, M. M., Numa, C., Bo, M., Orejas, C., Garrabou, J. et al., Overview of the conservation status of Mediterranean anthozoans. IUCN, Malaga, Spain, 73 (2017).Bensoussan, N., Cebrian, E., Dominici, J. M., Kersting, D. K., Kipson, S., et al. Using CMEMS and the Mediterranean Marine protected Area sentinel network to track ocean warming effects in coastal areas. In: Copernicus Marine Service Ocean State Report. J. Oper. Oceanogr. 3 (2019).Garrabou, J. et al. Collaborative database to track mass mortality events in the Mediterranean Sea. Front. Mar. Sci. 6, 707 (2019).Article 

    Google Scholar 
    Gómez-Gras, D. et al. Response diversity in Mediterranean coralligenous assemblages facing climate change: insights from a multi-specific thermotolerance experiment. Ecol. Evol. 9(7), 4168–4180 (2019).Article 

    Google Scholar 
    Cox, D. R. Regression models and life tables (with discussion). J. R. Stat. Soc. Series B 34, 187–220 (1972).MATH 

    Google Scholar 
    Kaplan, E. L. & Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 (1958).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Mantel, N. Evaluation of survival data and two new rank order statistics arising in its consideration. C. Chemoth. Rep. 50(3), 163–170 (1966).
    Google Scholar 
    Galli, G., Solidoro, C. & Lovato, T. Marine heat waves hazard 3D maps and the risk for low motility organisms in a warming Mediterranean Sea. Fronts Mar. Sci. 4 (2017).Darmaraki, S. et al. Future evolution of marine heatwaves in the mediterranean sea. Clim. Dyn. 53, 1371–1392 (2019).Article 

    Google Scholar 
    Coles, S. L., Jokiel, P. L. & Lewis, C. R. Thermal tolerance in tropical versus subtropical Pacific reef corals. Pac. Sci. 30, 156–166 (1976).
    Google Scholar 
    Bay, R. A. & Palumbi, S. R. Rapid acclimation ability mediated by transcriptome changes in reef-building corals. Genome Biol. Evol. 7, 1602–1612 (2015).Article 

    Google Scholar 
    Fangue, N. A., Hofmeister, M. & Schulte, P. M. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish Fundulus heteroclitus. J. Exp. Biol. 209, 2859–2872 (2006).Article 

    Google Scholar 
    Jensen, L. F. et al. Local adaptation in brown trout early life-history traits: Implications for climate change adaptability. Proc. R. Soc. B Biol. Sci. 275, 2859–2868 (2008).Article 

    Google Scholar 
    Kuo, E. S. L. & Sanford, E. Geographic variation in the upper thermal limits of an intertidal snail: implications for climate envelope models. Mar. Ecol.: Prog. Ser. 388, 137–146 (2009).Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9, 1671 (2018).Article 

    Google Scholar 
    Thompson, D. M. & van Woesik, R. Corals escape bleaching in regions that recently and historically experienced frequent thermal stress. Proc. R. Soc. Biol. Sci. B 276, 2893–2901 (2009).Article 

    Google Scholar 
    Gates, R. D. & Edmunds, P. J. The physiological mechanisms of acclimatization in tropical reef corals. Am. Zool. 39, 30–43 (1999).Article 

    Google Scholar 
    West-Eberhard, M. J. Developmental plasticity and evolution (Oxford University Press, 2003).Book 

    Google Scholar 
    Brown, B. E., Dunne, R. P., Edwards, A. J., Sweet, M. J. & Phongsuwan, N. Decadal environmental ’memory’ in a reef coral?. Mar. Biol. 162, 479–483 (2015).Article 

    Google Scholar 
    Torda, G. et al. Rapid adaptive responses to climate change in corals. Nat. Clim. Change 7, 627 (2017).Article 

    Google Scholar 
    Liew, Y. J. et al. Intergenerational epigenetic inheritance in reef-building corals. Nat. Clim. Change 10, 254–259 (2020).Article 

    Google Scholar 
    Howells, E. J., Abrego, D., Liew, Y. J., Burt, J. A., Meyer, E. & Aranda, M. Enhancing the heat tolerance of reef-building corals to future warming. Sci. Adv. 7, eabg6070 (2021).Palstra, F. P. & Ruzzante, D. E. Genetic estimates of contemporary effective population size: What can they tell us about the importance of genetic stochasticity for wild population persistence?. Mol. Ecol. 17, 3428–3447 (2008).Article 

    Google Scholar 
    Hague, M. & Routman, E. Does population size affect genetic diversity? A test with sympatric lizard species. Heredity 116, 92–98 (2016).Article 

    Google Scholar 
    Gurgel, C. F. D., Camacho, O., Minne, A. J., Wernberg, T. & Coleman, M. A. Marine heatwave drives cryptic loss of genetic diversity in underwater forests. Curr. Biol. 30(7), 1199–1206 (2020).Article 

    Google Scholar 
    Ledoux, J.-B. et al. Assessing the impact of population decline on mating system in the overexploited Mediterranean red coral. Aquat. Conserv: Mar. Freshw. Ecosyst. 30(6), 1149–1159 (2020).Article 

    Google Scholar 
    Howells, E. J., Berkelmans, R., van Oppen, M. J. H., Willis, B. L. & Bay, L. K. Historical thermal regimes define limits to coral acclimatization. Ecology 94, 1078–1088 (2013).Article 

    Google Scholar 
    Spielman, D., Brook, B. W. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. Proc. Nat. Acad. Sci. USA 101, 15261–15264 (2004).Article 

    Google Scholar 
    Frankham, R., Bradshaw, C. J. A. & Brook, B. W. Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol. Cons. 170, 56–63 (2014).Article 

    Google Scholar 
    Gori, A. et al. Effects of food availability on the sexual reproduction and biochemical composition of the Mediterranean gorgonian Paramuricea clavata. J. Exp. Mar. Biol. Ecol. 444, 38–45 (2013).Article 

    Google Scholar 
    Darmaraki, S., Somot, S., Sevault, F. & Nabat, P. Past variability of Mediterranean Sea marine heatwaves. Geophys. Res. Lett. 46, 9813–9823 (2019).Article 

    Google Scholar 
    Bongaerts, P., Ridgway, T., Sampayo, E. M. & Hoegh-Guldberg, O. Assessing the ‘deep reef refugia’ hypothesis: Focus on Caribbean reefs. Coral Reefs 29, 309–327 (2010).Article 

    Google Scholar 
    Pilczynska, J. et al. Genetic diversity increases with depth in red gorgonian populations of the Mediterranean Sea and the Atlantic Ocean. Peer J 7, e6794 (2019).Article 

    Google Scholar 
    Gugliotti, E. F., DeLorenzo, M. E. & Etnoyer, P. J. Depth-dependent temperature variability in the Southern California bight with implications for the cold-water gorgonian octocoral Adelogorgia phyllosclera. J. Exp. Mar. Biol. Ecol. 514–515, 118–126 (2019).Article 

    Google Scholar 
    Aurelle, D. et al. Genetic insights into recolonization processes of Mediterranean octocorals. Mar. Biol. 167, 73 (2020).Article 

    Google Scholar 
    Morikawa, M. K., & Palumbi, S. R. Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proc. Nat. Acad. Sci. USA 116(21), 10586 LP–10591 (2019).Crisci, C., Bensoussan, N., Romano, J. C. & Garrabou, J. Temperature anomalies and mortality events in marine communities: Insights on factors behind differential mortality impacts in the NW Mediterranean. PLoS ONE 6, e23814 (2011).Article 

    Google Scholar 
    Brener-Raffalli, K., Vidal-Dupiol, J., Adjeroud, M., Rey, O., Romans, P., et al. Gene expression plasticity and frontloading promote thermotolerance in Pocilloporid corals. bioRxiv 398602 (2018).Ledoux, J. B. et al. The Genome Sequence of the Octocoral Paramuricea clavata – A Key resource to study the impact of climate change in the Mediterranean. G3 10(9), 2941–2952 (2020).Article 

    Google Scholar  More

  • in

    New globally distributed bacterial phyla within the FCB superphylum

    Identification, phylogeny, and distribution of five phylaTo advance our understanding of marine sediment microbial diversity, we obtained over 30 billion paired DNA sequences from 42 marine sediment samples (coastal and deep sea) (Supplementary Data 1). From this, we reconstructed over 8000 ( >50% complete, 95%) to genes from coastal waters (Venezuela), a hypersaline pond in Carpinteria (US), sediments in Garolim Bay (Korea), and others (Supplementary Data 6 and 7). The worldwide distribution of these five phyla suggests that they have potentially overlooked ecological roles across many environments.Detection of novel protein familiesTo explore novel metabolic capabilities of these bacteria, we employed a recently described approach to identify and characterize unknown genes exclusive to uncultivated taxa17. Using this computational method, we identified 1,934 novel protein families (NPFs) and 6,893 novel singletons (NSs) in the 55 MAGs. The former can be define as families that do not show any homology in broadly used databases (including eggNOG, pfamA, pfamB, and RefSeq, see “Methods”) while the latter (NSs) are NPFs that are detected only once in each given genome or group of genomes. To determine if this novelty was specific to the five phyla or distributed across other uncultivated prokaryotic taxa, we mapped these NPFs and NSs against a comprehensive dataset of 169,642 bacterial and archaeal genomes covered in Rodriguez del Río et al.17. Using an in-house pipeline (Supplementary Fig. 4), we found that 44.6% of these NPFs and NSs are present in other uncultured taxa, highlighting the novel and undescribed metabolic repertoire that these five phyla share with other uncultured prokaryotic lineages17. Specifically, we found that these proteins are also present in Marinisomatota, Bacteroidota, and WOR-3 from publicly available genomes obtained from both marine and terrestrial environments17. When comparing the total number of NPFs per genome in the novel bacterial phyla against the genomic dataset (approximately 170,000 genomes), we found that the novel taxa described in this study have a higher than average percentage of novel proteins per genome (5.68 ± 4.89%) (p  0.7) and widespread (coverage > 0.7) within each phylum are shown in dark purple bars. The number of novel protein families with conserved neighboring genes are shown in light gray bars. c, d, Selected examples of phylogenetic trees and novel protein family genomic context marked in gray with a black outline) in Blakebacterota and Arandabacterota. The protein families are similar between these two phyla and have conserved neighboring genes, including translation initiation factor IF-3 gene (infC), large subunit ribosomal protein L20 gene (rplT), phenylalanyl-tRNA synthetase genes (pheST), cell division protein gene (zapA), phosphodiesterase gene (ymdB), methenyltetrahydrofolate cyclohydrolase gene (folD), and exodeoxyribonuclease genes (xseAB). e Phylogenetic tree and genomic context of a novel protein family uniquely distributed in Joyebacterota. The novel protein family has conserved genomic neighbors related to energy conservation (Rnf complex genes, rnfABCDEG). The phylogeny was generated using FastTree2 and numbers on the top and bottom of the branch represent the bootstrap and branch length, respectively. Source data are provided as a Source Data file.Full size imageMetabolic pathways are often encoded by ‘genome neighborhoods’ (gene clusters and/or operons)18. Therefore, we calculated the genomic context conservation of the NPFs containing three or more sequences (3773 NPFs in total) and examined the annotation of genes found in genomic proximity of the NPFs to determine their potential function. Of the inspected families, 513 (14%) had a conservation score ≥ 0.9 (see “Methods”) indicating a high degree of conserved neighboring proteins. Manual annotation of these neighboring proteins indicated they are potentially involved in sulfur reduction, energy conservation, as well as the degradation of organics such as starch, fatty acids, and amino acids (highlighted in red in Supplementary Fig. 5). For example, a NPF predominantly found in Blakebacterota is neighbored by putative menaquinone reductases (QrcABCD), a conserved complex related to energy conservation in sulfate reducing bacteria19,20,21,22. However, metabolic annotations of Blakebacterota genomes that encode QrcABCD indicate that they largely lack the key enzymes for sulfate reduction, dissimilatory sulfite reductases (DsrABC), suggesting this QrcABCD complex may be involved in other bioenergetic contexts such as linking periplasmic hydrogen and formate oxidation to the menaquinone pool22.In some instances, we found NPFs coded near genes predicted to produce key proteins in nitrogen cycling. Two of the Joyebacterota MAGs code NPF neighboring proteins with homology to hydroxylamine dehydrogenases (HAO). HAO is a key enzyme in marine nitrogen cycling that has traditionally been thought to catalyze the oxidation of hydroxylamine (NH2OH) to nitrite (NO2−) in ammonia oxidizing bacteria. Recently, it has been suggested that HAO may also convert hydroxylamine to nitric oxide (NO) as an intermediate, which is then further oxidized to nitrite by an unknown mechanism. Hydroxylamine is also known to be an intermediate in the nitrogen cycle. It is a potential precursor of nitrous oxide (N2O), a potent greenhouse gas that is a byproduct of denitrification, nitrification23,24, and anaerobic ammonium oxidation25. The presence of HAO within the genomic context of these NPFs suggests they may be involved in mediating hydroxylamine metabolism, and thus may play an important role in nitrogen cycling.A number of NPFs are colocalized with genes predicted to be involved in the utilization of organic carbon. For example, one NPF found in Blakebacterota genomes is adjacent to a peptidase (PepQ; K01271) for dipeptide degradation. Another NPF, only detected in Blakebacterota, is neighbored by long-chain acyl-CoA synthetase (FadD; K01897), a key enzyme in fatty acid degradation (Supplementary Fig. 6). In Joyebacterota, as well as in publicly available Bacteroidetes and Latescibacteria we identified an NPF that is colocalized with amylo-alpha-1,6-glucosidase (Glycoside Hydrolase Family 57), suggesting a potential role in starch degradation.We also identified NPFs that are specific and very conserved in AABM5, Blakebacterota, Orphanbacterota, Arandabacterota, and Joyebacterota (2, 39, 3, 16, and 26 respectively). These NPFs were found in at least 70% of the MAGs belonging to each phylum, and rarely present in other genomes across the tree of life. Due to their unique nature, the 86 unique NPFs could be used as marker genes for future characterizations of the novel bacteria described in this study. When examining the genomic context of the phyla-specific NPFs, we found that more than half of the NPFs (49 of 86) shared the same gene order and are next to genes predicted to be involved in various catabolic and anabolic processes. For example, an NPF in Joyebacterota MAGs is adjacent to an Rnf complex26, which is important for energy conservation in numerous organisms21 (Fig. 2e). Also, two different NPFs in Blakebacterota and Arandabacterota MAGs were located next to tRNA synthesis genes (Fig. 2c, d). Additional phyla-specific NPFs were colocalized with genes predicted to be involved in other important processes, including peptidoglycan biosynthesis (Supplementary Fig. 6a), F-type ATPase (Supplementary Fig. 6b), acyl-CoA dehydrogenase, elements for transportation, sulfur assimilation (Supplementary Fig. 6c), and others (Supplementary Fig. 6d).Metabolic potential of the novel bacterial phylaIn addition to NPF-based analyses, we compared the predicted proteins in the novel lineages to a variety of databases and gene phylogenies to understand their metabolism (see “Methods”). The distribution of key metabolic proteins based on presence/absence of protein families (using MEBS: see methods) in the 61 MAGs is largely consistent with their phylogeny (Fig. 1a). Below, we detail the predicted metabolism of each novel bacterial phyla based on these analyses (Supplementary Fig. 5 and Supplementary Data 8 and 9, see details in Supplementary Information).JoyebacterotaJoyebacterota is composed of 20 MAGs predominantly reconstructed from hydrothermal vent sediments (blue, lower right side in the phylogeny shown in Fig. 1a). Metabolic inference suggests that these bacteria are obligate anaerobes encoding extracellular carbohydrate-active enzymes (CAZymes) with the potential to degrade pectate or pectin, photosynthetically fixed carbon in marine diatoms, macrophytes27, and terrestrial plants28. Furthermore, Joyebacterota seems to be involved in the sulfur cycle. Seven Joyebacterota MAGs encode sulfide:quinone oxidoreductases (SQR). Phylogenetic analysis indicate these SQR belong to the membrane-bound type I and III29. Interestingly, these SQR type I sequences are closely related to those sequences mostly found in terrestrial environments, e.g., freshwater, soil, and hot spring, while SQR-III  have been previously suggested to play a key role maintaining the sulfide homeostasis or bioenergetics in deep-sea sediments30. The presence of these pathways highlight the potential adaptation of Joyebacterota to several environments, contributing to recycling of carbon and sulfur.BlakebacterotaThe Blakebacterota phylum is composed of 11 MAGs predominantly reconstructed from the surface layer of GB sediments (0–6 cm). In this environment, temperatures range from 25 to 29 °C, CH4 measures 0.4–0.8 mM, CO2 reaches up to 10 mM, and SO42− concentrations are high (up to 28 mM)30. Metabolic inference using MEBS31 suggests Blakebacterota play an important role in N and S cycles. These findings were supported by the presence of key enzymes in these cycles. For example, we identified a nitrous oxide reductase in Blakebacterota, the only known enzyme to catalyze the reduction of nitrous oxide to nitrogen gas. This reaction acts as a sink for nitrous oxide, and thus is an important removal mechanism for this potent greenhouse gas. In addition to nitrogen cycling, we identified key genes involved in sulfur cycling in Blakebacterota. Six of the MAGs possess genes that code for SQR with sulfate or nitrous oxide as the final electron accepter. In addition, seven of the MAGs contain genes for thiosulfate dehydrogenase (doxD), which may convert thiosulfate to tetrathionate. Finally, one MAG is predicted to produce dimethyl sulfide (DMS) under oxic conditions via methanethiol S-methyltransferase (MddA) from methylate L-methionine or methanethiol (MeSH). Thus, these bacteria may play important roles in a variety of intermediate steps in nitrogen and sulfur cycling.ArandabacterotaLike Joyebacterota, Arandabacterota were largely recovered from shallow (2–14 cm) GB and deep (26–38 cm) BS sediments. This phylum contains 11 MAGs that are predicted to be anaerobic polysulfide and elemental sulfur reducers. They may mediate sulfur reduction via sulfhydrogenases (HydGB), which results in the production of sulfide32,33. Thus, Arandabacterota may contribute to sulfur cycling in marine sediments. Arandabacterota also code distinct hydrogenases, [NiFe] 3c and 4g types, (Fig. 3) for H2 oxidation. In addition, Arandabacterota may reduce nitrite via periplasmic dissimilatory nitrite reductases (NrfAH) present in Meg22_24_Bin_129, BHB10-38_Bin_9, and SY70-4-3_Bin_59. This mechanism for energy conservation is more efficient than polysulfide and elemental sulfur reduction. Therefore, they are likely to use sulfur species as electron donors in the absence of nitrite.Fig. 3: Maximum likelihood phylogenetic tree of NiFe hydrogenases from the novel phyla.The majority of NiFe hydrogenases identified from the five phyla in this study are highlighted in the gray background. Most hydrogenases are types 4g and 3c. Starred branches denote the minor NiFe hydrogenases identified in this study. Bootstrap values ≥ 80 are shown in circles. Source data are provided as a Source Data file.Full size imageOrphanbacterotaOrphanbacterota is composed of seven MAGs that were mostly obtained from the BS, and appear to be metabolically versatile, facultative aerobes. The BS has an average water depth of 18 m and is strongly influenced by anthropogenic activities in China, mainly the terrestrial input of nutrients and organic matter34. Orphanbacterota code a diversity of CAZymes for the degradation of complex carbohydrates. We identified genes coding for extracellular glycoside hydrolase family 16 (GH16), which may be involved in the degradation of laminarin, releasing glucose and oligosaccharides35. Six Orphanbacterota genomes also contain genes predicted to produce extracellular peptidases belonging to family M28 and S8, which are nonspecific peptidases (Supplementary Fig. 7 and Supplementary Data 10–14). The released amino acids could be taken up via ABC transporters coded by these bacteria.Consistent with their recovery from shallow sediment habitats (Supplementary Data 1), Orphanbacterota have a diverse repertoire of terminal cytochrome oxidase genes (Supplementary Data 9) suggesting they are capable of surviving in a range of oxygen concentrations. Based on the presence of isocitrate lyase and malate synthase, they may use the glyoxylate cycle for carbohydrate synthesis when sugar is not available, or use simple two-carbon compounds for energy conservation36,37. They also appear capable of reducing nitrate to nitrite via periplasmic nitrate reductases (NapAB)38. Moreover, they could reduce nitrate via the membrane-bound nitrate reductase for energy conservation and reducing nitrous oxide.One Orphanbacterota genome (M3-44_Bin_119) has genes predicted to mediate sulfate/sulfite reduction, including DsrABC, QmoABC, and membrane bound Rnf complexes (Supplementary Fig. 8a, b and Supplementary Data 8 and 9). Another Orphanbacterota (LQ108M_Bin_12) is predicted to contain diverse metabolic pathways, including MmdA for DMS production, SQR for sulfide oxidation, the Rnf complex for energy conservation21 or detoxification (Supplementary Fig. 8c), and sulfhydrogenases (HydABDG) for H2 oxidation. In addition to energy conservation and detoxification, sulfide oxidation is important for preventing the loss of sulfur through H2S volatilization. This is predicted to be an important process in sulfur-rich sediments, where large quantities of the self-produced H2S are produced during heterotrophic growth29.AABM5AABM5 (12 genomes, 7 obtained in this study) is an understudied bacterial group that has largely been recovered from shallow (4–12 cm) sediments in GB and deep (44–62 cm) sediments in BS. Despite the distinct environments where they have been found, genomes within this phylum have several shared metabolic abilities. In contrast to the strict anaerobic lifestyle that was previously reported in a subgroup within AABM5 (candidate division LCP–89)12, we predict they are facultative anaerobes. In support of this, we identified cytochrome c oxidase (CtaDCEF) and cytochrome bd ubiquinol oxidase (CydAB) for aerobic respiration39. In addition, we identified DsrABC in nine genomes (Supplementary Fig. 8 and Supplementary Data 15), indicating these organisms can potentially reduce sulfate/sulfite for energy conservation. Several AABM5 genomes are predicted to use H2 as an electron donor due to the presence of type 3c [NiFe] hydrogenase (MvhADG) (Fig. 3, Supplementary Fig. 9, and Supplementary Data 8 and 9). The metabolic versatility in this phylum better explains their global distribution.Ecological significance of the new phylaThese previously overlooked bacterial phyla appear to be involved in key biogeochemical processes in marine sediments, namely sulfur and nitrogen cycling, and the degradation of organic carbon. However, we did not find any evidence for complete autotrophic metabolisms (Wood-Ljungdahl pathway, Calvin–Benson–Bassham, reductive tricarboxylic acid, 3-hydroxypropionate bicycle, 3-hydroxypropionate-4-hydroxybutyrate, and dicarboxylate-4-hydroxybutyrate cycles) in any of these bacteria. Instead, they have a variety of pathways for the utilization of organic compounds as detailed above. These novel bacteria phyla (all except Blakebacterota) have the potential to degrade the algal glycan laminarin, one of the most important complex carbon compounds in the ocean40. These novel phyla encode extracellular laminarinases that specifically cleave the laminarin into more readily degradable sugars, e.g., glucose and oligosaccharide (Supplementary Fig. 7 and Supplementary Data 10–12). Laminarin glycan is produced in the surface ocean by microalgae that sequester CO2 as an important carbon sink in the oceans41. This is a key process of the global carbon cycle, and most studies have focused on understanding aerobic laminarin-degrading bacteria in the surface oceans41,42. Recently, it has been shown that laminarin plays a prominent role in oceanic carbon export and energy flow to higher trophic levels and the deep ocean40, yet the organisms responsible for laminarin degradation under anoxic conditions are unknown. The discovery of  these novel bacterial phyla opens new doors for future studies exploring laminarin degradation in the deep sea. In addition, most of them contain genes predicted to code for sulfatases. Blakebacterota, Orphanbacterota, Arandabacterota, and Joyebacterota code for arylsulfatase, mainly arylsulfatase A, for desulfation of galactosyl moiety of sulfatide. They also code choline sulfatase, iduronate 2-sulfatase and some uncharacterized sulfatases for different types of substrates43. This suggests they are capable of cleaving organic sulfate ester bonds as a source of sulfur and organic carbon on the ocean floor.Many metabolic processes identified here, including pathways for polysaccharide degradation, sulfur, and nitrogen metabolism are often incomplete (Fig. 4). This may be due to the incompleteness of these genomes, or it suggests that these processes occur via metabolic handoffs within the community. Some of the phyla are capable of mediating a variety of sulfur and nitrogen redox reactions (Fig. 4a, b). For example, four phyla code DsrABC, suggesting they play an overlooked role in inorganic matter degradation in marine sediments through sulfate reduction. The resultant sulfide may be reoxidized to sulfur intermediates and organic sulfur compounds by these newly described bacteria. Four phyla (Blakebacterota, Orphanbacterota, Arandabacterota, and Joyebacterota) code an SQR for producing elemental sulfur from sulfide. Methanethiol S-methyltransferase (MddA) is predicted to be produced by individual MAGs Blakebacterota (M3-38_Bin_215) and Orphanbacterota (LQ108M_Bin_12) for the production of DMS from methionine44. DMS is important in climate regulation and sulfur cycling in marine environments45,46, though little is known about the fate or production of DMS in anoxic environments like marine sediments. As detailed above, Blakebacterota contains genes for the conversion of thiosulfate to tetrathionate. Four phyla (AABM5, Orphanbacterota, Arandabacterota, and Joyebacterota) are predicted to disproportionate thiosulfate to sulfite via thiosulfate/3-mercaptopyruvate sulfurtransferase. Thus, we suspect these bacteria may be capable of mediating intermediate sulfur species in anoxic environments. These results provide a predictive framework for future physiological studiesto confirm our genomic-based predictions.Fig. 4: Genomic-based predictions of the potential metabolic role of the novel bacterial phyla.Key steps in the (a) sulfur and (b) nitrogen cycles predicted in the five bacterial phyla. Compounds (in gray triangle frames) were arranged according to the standard Gibbs free energy of formation of each sulfur or nitrogen compound (values next to the compound taken from Caspi et al.93). Star, square, triangle, pentagon, and diamond shapes correspond to AABM5, Blakebacterota, Orphanbacterota, Arandabacterota and Joyebacterota, respectively. Colored shapes represent the presence of genes in a given pathway. Fully colored shapes indicate the presence of genes in over 50% of the phyla. Half colored shapes signify that less than 50% of the phyla code for those genes. Uncolored shapes indicate presence of genes in only one MAG. Note that only pathways encoded in at least one MAG are shown. The red dotted line indicates the assimilatory process. The blue soild line indicates the confirmed pathway with phylogeny of key genes. c Phylogenetic tree and genomic context of a novel protein family (NPF) next to putative menaquinone reductase complex genes (qrcABCD) found in Blakebacterota and Orphanbacterota. d Phylogenetic tree and genomic context of a NPF next to hydroxylamine oxidoreductase genes (hao) in Joyebacterota.Full size imageIn addition to potential roles in sulfur cycling, the phyla described here may play key roles in nitrogen processes, for example several MAGs contain genes that code predicted hydroxylamine dehydrogenase proteins (HAO, confirmed by different databases)47,48. HAO is a precursor of nitrous oxide (N2O), a potent greenhouse gas and ozone destructing agent in the atmosphere. Marine N2O stems from nitrification and denitrification processes which depend on organic matter cycling and dissolved oxygen. Since hydroxylamine is a precursor of N2O, deciphering the organisms that can mediate the formation of N2O has important implications for Earth’s climate49. In addition, three phyla (AABM5, Blakebacterota, and Orphanbacterota) code for periplasmic and/or transmembrane nitrate reductase, and two phyla (AABM5 and Arandabacterota) are predicted to reduce nitrite via dissimilatory nitrite reductase.In recent years, there have been large advances in the exploration of novel microbial diversity. Genomic data has provided crucial insights into the ecological roles and biology of these new microbes. The recovery of bacterial genomes belonging to five overlooked, globally distributed phyla with considerably novel protein composition reminds us there is much to be learned about the microbial world. The identification of NPFs provides targets for future studies to elucidate the ecophysiology of these organisms. The presence of genes for organic carbon degradation and sulfur and nitrogen cycling in these new bacteria suggests they contribute to a variety of key processes in marine sediments. Thus, the addition of these bacterial genomes to ecosystem models will likely transform our understanding of how microbial communities drive carbon degradation and nutrient cycling in the oceans. More