Dynamic monitoring and analysis of factors influencing ecological environment quality in northern Anhui, China, based on the Google Earth Engine
Zhao, Q. G., Huang, G. Q. & Ma, Y. Q. The ecological environment conditions and construction of an ecological civilization in China. Acta Ecol. Sin. 36, 6328–6335 (2016).
Google Scholar
Jiang, Y. China’s water scarcity. J. Environ. Manag. 90, 3185–3196 (2009).Article
Google Scholar
Jacob, D. J. & Winner, D. A. Effect of climate change on air quality. Atmos. Environ. 43, 51–63 (2009).Article
ADS
CAS
Google Scholar
Shahmohamadi, P., Che-Ani, A. I., Ramly, A., Maulud, K. N. A. & Mohd-Nor, M. F. I. Reducing urban heat island effects: A systematic review to achieve energy consumption balance. Int. J. Phys. Sci. 5, 626–636 (2010).
Google Scholar
Shan, W. et al. Ecological environment quality assessment based on remote sensing data for land consolidation. J. Clean. Prod. 239, 118126 (2019).Article
Google Scholar
Cheng, R. et al. Decomposing reflectance spectra to track gross primary production in a subalpine evergreen forest. Biogeosciences 17, 4523–4544 (2020).Article
ADS
CAS
Google Scholar
Ochoa-Gaona, S. et al. A multi-criterion index for the evaluation of local tropical forest conditions in Mexico. For. Ecol. Manag. 260, 618–627 (2010).Article
Google Scholar
Zuromski, L. M. et al. Solar-induced fluorescence detects interannual variation in gross primary production of coniferous forests in the western United States. Geophys. Res. Lett. 45, 7184–7193 (2018).Article
ADS
Google Scholar
Wingard, G. L. & Lorenz, J. J. Integrated conceptual ecological model and habitat indices for the southwest Florida coastal wetlands. Ecol. Ind. 44, 92–107 (2014).Article
Google Scholar
Zhou, X. H., Zhang, F., Zhang, H. W., Zhang, X. L. & Yuan, J. A study of soil salinity inversion based on multispectral remote sensing index in Ebinur lake wetland nature reserve. Spectrosc. Spectral Anal. 39, 1229–1235 (2019).CAS
Google Scholar
Jiang, M. Z., Chen, H. Y., Chen, Q. H., Wu, H. Y. & Chen, P. Wetland ecosystem integrity and its variation in an estuary using the EBLE index. Ecol. Ind. 48, 252–262 (2015).Article
Google Scholar
Lv, J. X. et al. Wetland loss identification and evaluation based on landscape and remote sensing indices in Xiong’an new area. Remote Sens. 11, 2834 (2019).Article
ADS
Google Scholar
Bi, X. et al. Assessment of spatio-temporal variation and driving mechanism of ecological environment quality in the arid regions of Central Asia, Xinjiang. Int. J. Environ. Res. Public Health 18, 7111 (2021).Article
PubMed
PubMed Central
Google Scholar
Leroux, L. et al. Maize yield estimation in West Africa from crop process-induced combinations of multi-domain remote sensing indices. Eur. J. Agron. 108, 11–26 (2019).Article
Google Scholar
Liran, O., Shir, O. M., Levy, S., Grunfeld, A. & Shelly, Y. Novel remote sensing index of electron transport rate predicts primary production and crop health in L. sativa and Z. mays. Remote Sens. 12, 1718 (2020).Article
ADS
Google Scholar
Zang, Y. Z. et al. Remote sensing index for mapping canola flowers using MODIS data. Remote Sens. 12, 3912 (2020).Article
ADS
Google Scholar
Jia, T. X., Zhang, X. Q. & Dong, R. C. Long-term spatial and temporal monitoring of cyanobacteria blooms using MODIS on Google Earth Engine: A case study in Taihu lake. Remote Sens. 11, 2269 (2019).Article
ADS
Google Scholar
Bai, Y. Analysis of vegetation dynamics in the Qinling-Daba Mountains region from MODIS time series data. Ecol. Ind. 129, 108029 (2021).Article
Google Scholar
Zhang, M., Lin, H., Long, X. R. & Cai, Y. T. Analyzing the spatiotemporal pattern and driving factors of wetland vegetation changes using 2000–2019 time-series Landsat data. Sci. Total Environ. 780, 146615 (2021).Article
ADS
CAS
PubMed
Google Scholar
Qu, C., Li, P. J. & Zhang, C. M. A spectral index for winter wheat mapping using multi-temporal Landsat NDVI data of key growth stages. ISPRS J. Photogramm. Remote Sens. 175, 431–447 (2021).Article
ADS
Google Scholar
Fu, Y. C., Lu, X. Y., Zhao, Y. L., Zeng, X. T. & Xia, L. L. Assessment impacts of weather and land use/land cover (LULC) change on urban vegetation net primary productivity (NPP): A case study in Guangzhou, China. Remote Sens. 5, 4125–4144 (2013).Article
ADS
Google Scholar
Kulkarni, K. & Vijaya, P. NDBI based prediction of land use land cover change. J. Indian Soc. Remote Sens. 49, 2523–2537 (2021).Article
Google Scholar
Li, C. Y. & Zhang, N. Analysis of the daytime urban heat island mechanism in East China. J. Geophys. Res.-Atmos. 126, 2020 (2021).
Google Scholar
Wang, Z. A. et al. Environmental and anthropogenic drivers of surface urban heat island intensity: A case-study in the Yangtze River Delta, China. Ecol. Indic. 128, 107845 (2021).Article
Google Scholar
Zhao, Y. J. et al. Impact of urban expansion on rain island effect in Jinan City, North China. Remote Sens. 13, 2989 (2021).Article
ADS
Google Scholar
Xu, H. Q. A remote sensing urban ecological index and its application. Acta Ecol. Sin. 33, 7853–7862 (2013).
Google Scholar
Gou, R. K. & Zhao, J. Eco-environmental quality monitoring in Beijing, China, using an RSEI-based approach combined with random forest algorithms. IEEE Access 8, 196657–196666 (2020).Article
Google Scholar
Jing, Y. Q. et al. Assessment of spatial and temporal variation of ecological environment quality in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China. Ecol. Indic. 110, 107518 (2020).Article
Google Scholar
Airiken, M., Zhang, F., Chan, N. W. & Kung, H. T. Assessment of spatial and temporal ecological environment quality under land use change of urban agglomeration in the North Slope of Tianshan, China. Environ. Sci. Pollut. Res. 29, 12282–12299 (2022).Article
Google Scholar
Ji, J. W., Wang, S. X., Zhou, Y., Liu, W. L. & Wang, L. T. Studying the eco-environmental quality variations of Jing-Jin-Ji urban agglomeration and its driving factors in different ecosystem service regions from 2001 to 2015. IEEE Access 8, 154940–154952 (2020).Article
Google Scholar
Liu, Z. S., Wang, L. Y. & Li, B. Quality assessment of ecological environment based on Google Earth Engine: A case study of the Zhoushan Islands. Front. Ecol. Evol. 10, 918756 (2022).Article
Google Scholar
Xiong, Y. et al. Assessment of spatial-temporal changes of ecological environment quality based on RSEI and GEE: A case study in Erhai Lake Basin, Yunnan province, China. Ecol. Indic. 125, 107518 (2021).Article
Google Scholar
Zhang, Q. F. et al. Recent oasis dynamics and ecological security in the Tarim River Basin, Central Asia. Sustainability 14, 3372 (2022).Article
Google Scholar
Yuan, B. D. et al. Spatiotemporal change detection of ecological quality and the associated affecting factors in Dongting Lake Basin, based on RSEI. J. Clean. Prod. 302, 126995 (2021).Article
Google Scholar
Gao, W. L., Zhang, S. W., Rao, X. Y., Lin, X. & Li, R. S. Landsat TM/OLI-based ecological and environmental quality survey of Yellow River Basin, Inner Mongolia section. Remote Sens. 13, 4477 (2021).Article
ADS
Google Scholar
Zhu, Q. et al. Relationship between ecological quality and ecosystem services in a red soil hilly watershed in southern China. Ecol. Ind. 121, 107119 (2021).Article
Google Scholar
Huang, H. P., Chen, W., Zhang, Y., Qiao, L. & Du, Y. Y. Analysis of ecological quality in Lhasa metropolitan area during 1990–2017 based on remote sensing and Google Earth Engine platform. J. Geogr. Sci. 31, 265–280 (2021).Article
Google Scholar
Fan, C., Gui, F., Wang, L. Z. & Zhao, S. Evaluation of environmental quality based on remote sensing data in the coastal lands of eastern China. J. Coastal Res. 36, 1229–1236 (2020).Article
Google Scholar
Phan, T. N., Kuch, V. & Lehnert, L. W. Land cover classification using Google Earth Engine and random forest classifier—The role of image composition. Remote Sens. 12, 2411 (2020).Article
ADS
Google Scholar
Binh, N. A. et al. Thirty-year dynamics of LULC at the Dong Thap Muoi area, southern Vietnam, using Google Earth Engine. ISPRS Int. J. Geo Inf. 10, 226 (2021).Article
Google Scholar
Yang, G. X. et al. AGTOC: A novel approach to winter wheat mapping by automatic generation of training samples and one-class classification on Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 102, 102446 (2021).Inman, V. L. & Lyons, M. B. Automated inundation mapping over large areas using Landsat data and Google Earth Engine. Remote Sens. 12, 1348 (2020).Article
ADS
Google Scholar
Long, X. R., Li, X. Y., Lin, H. & Zhang, M. Mapping the vegetation distribution and dynamics of a wetland using adaptive-stacking and Google Earth Engine based on multi-source remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 102, 102453 (2021).
Google Scholar
Hu, Y. F., Dong, Y. & Nacun, B. An automatic approach for land-change detection and land updates based on integrated NDVI timing analysis and the CVAPS method with GEE support. ISPRS J. Photogram. Remote Sens. 146, 347–359 (2018).Article
ADS
Google Scholar
Mahdianpari, M. et al. A large-scale change monitoring of wetlands using time series Landsat imagery on Google Earth Engine: A case study in Newfoundland. Gisci. Remote Sens. 57, 1102–1124 (2020).Article
Google Scholar
Brovelli, M. A., Sun, Y. & Yordanov, V. Monitoring forest change in the Amazon using multi-temporal remote sensing data and machine learning classification on Google Earth Engine. ISPRS Int. J. Geo Inf. 9, 580 (2020).Article
Google Scholar
Yin, H. R. et al. Analysis of spatial heterogeneity and influencing factors of ecological environment quality in China’s north-south transitional zone. Int. J. Environ. Res. Public Health 19, 2236 (2022).Article
PubMed
PubMed Central
Google Scholar
Xinran, N., Zhenqi, H., Mengying, R., Qi, Z. & Huang, S. Remote-sensing evaluation and temporal and spatial change detection of ecological environment quality in coal-mining areas. Remote Sens. 14, 345 (2022).Article
Google Scholar
Li, H. et al. Exploring spatial distributions of increments in soil heavy metals and their relationships with environmental factors using GWR. Stoch. Environ. Res. Risk Assess. 35, 2173–2186 (2021).Article
Google Scholar
Wang, J. F. & Xu, C. D. Geodetector: Principle and prospective. Acta Geogr. Sin. 72, 116–134 (2017).
Google Scholar
Peng, S., Ding, Y., Liu, W. & Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data. 11, 1931–1946 (2019).Article
ADS
Google Scholar
Hu, X. S. & Xu, H. Q. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from Fuzhou City, China. Ecol. Indic. 89, 11–21 (2018).Article
Google Scholar
Yu, G. Q., Yang, H. B., Tian, Z. Z. & Zhang, B. S. Eco-environment quality assessment of Miyun county based on RS and GIS. Proc. Environ. Sci. 10, 2601–2607 (2011).Article
Google Scholar
Chen, S. L., Zhu, Z. H., Liu, X. T. & Yang, L. Variation in vegetation and its driving force in the Pearl river delta region of China. Int. J. Environ. Res. Public Health 19, 10343 (2022).Article
PubMed
PubMed Central
Google Scholar
Zhu, D. Y., Chen, T., Zhen, N. & Niu, R. Q. Monitoring the effects of open-pit mining on the eco-environment using a moving window-based remote sensing ecological index. Environ. Sci. Pollut. Res. 27, 15716–15728 (2020).Article
Google Scholar
Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A. & Skakun, S. Exploring Google Earth Engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping. Front. Earth Sci. 5, 1–10 (2017).Article
Google Scholar
Kumar, L. & Mutanga, O. Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sens. 10, 1509 (2018).Article
ADS
Google Scholar
Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article
ADS
Google Scholar
Parastatidis, D., Mitraka, Z., Chrysoulakis, N. & Abrams, M. Online global land surface temperature estimation from Landsat. Remote Sens. 9, 1208 (2017).Article
ADS
Google Scholar
Kennedy, R. E. et al. Implementation of the LandTrendr algorithm on Google Earth Engine. Remote Sens. 10, 691 (2018).Article
ADS
Google Scholar
Huang, H. B. et al. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens. Environ. 202, 166–176 (2017).Article
ADS
Google Scholar
Ying, L. et al. Estimation of remote sensing based ecological index along the Grand Canal based on PCA-AHP-TOPSIS methodology. Ecol. Ind. 122, 107214 (2021).Article
Google Scholar
He, X., Li, M., Guo, H. & Tian, Z. Evaluation of ecological environment of Songshan scenic area based on GF-1 data. in IOP Conference Series: Materials Science and Engineering. Vol. 392. 042029 (2018).Yi, Z., Jiyun, S., Xiangren, L. & Meng, Z. Spatio-temporal evolution and driving factors of eco-environmental quality based on RSEI in Chang-Zhu-Tan metropolitan circle, central China. Ecol. Ind. 144, 109436 (2022).Article
Google Scholar
Wan, H. L., Huo, F., Niu, Y. F., Zhang, W. & Zhang, Q. R. Dynamic monitoring and analysis of ecological environment change in Cangzhou city based on RSEI model considering PM2.5 concentration. Prog. Geophys. 36, 953–960 (2021).
Google Scholar
Wang, J., Ma, J. L., Xie, F. F. & Xu, X. J. Improvement of remote sensing ecological index in arid regions: Taking Ulan Buh Desert as an example. Chin. J. Appl. Ecol. 31, 3795–3804 (2020).
Google Scholar More