More stories

  • in

    Extensive range contraction predicted under climate warming for two endangered mountaintop frogs from the rainforests of subtropical Australia

    Beniston, M., Diaz, H. F. & Bradley, R. S. Climatic change at high elevation sites: An overview. Clim. Change 36, 233–251 (1997).Article 

    Google Scholar 
    Chape, S., Spalding, M. & Jenkins, M. The world’s protected areas: Status, values, and prospects in the twenty-first century. Bioscience 59(7), 623–624 (2009).
    Google Scholar 
    Körner, C. Mountain biodiversity, its causes and function. Ambio 33, 11–17 (2004).Article 

    Google Scholar 
    Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).Article 

    Google Scholar 
    Forero-Medina, G., Joppa, L. & Pimm, S. L. Constraints to species’ elevational range shifts as climate changes. Conserv. Biol. 25, 163–171 (2011).Article 
    PubMed 

    Google Scholar 
    Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: Competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B 279, 2072–2080 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl. Acad. Sci. 115, 11982–11987 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024 (2011).Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar 
    Lenoir, J. & Svenning, J. C. Climate-related range shifts: A global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).Article 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar 
    Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl. Acad. Sci. 117, 4211–4217 (2020).Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e200114 (2016).Article 

    Google Scholar 
    Orians, G. H. & Milewski, A. V. Ecology of Australia: The effects of nutrient-poor soils and intense fires. Biol. Rev. 82, 393–423 (2007).Article 
    PubMed 

    Google Scholar 
    Laurance, W. F. et al. The 10 Australian ecosystems most vulnerable to tipping points. Biol. Cons. 144, 1472–1480 (2011).Article 

    Google Scholar 
    Rahbek, C. et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity?. Science 365, 1108–1113 (2019).Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar 
    Williams, S. E., Bolitho, E. E. & Fox, S. Climate change in Australian tropical rainforests: An impending environmental catastrophe. Proc. R. Soc. Lond. B 270, 1887–1892 (2003).Article 

    Google Scholar 
    Mahony, M.J. The amphibians. in Remnants of Gondwana: A Natural and Social History of the Gondwana Rainforests of Australia. (eds. Kitching, R.L., Braithwaite, R., & Cavanaugh, J.) (Surrey Beatty & Sons, 2010).Kooyman, R. M., Watson, J. & Wilf, P. Protect Australia’s gondwana rainforests. Science 367, 1083–1083 (2020).Article 
    PubMed 
    ADS 

    Google Scholar 
    Narsey, S. et al. (2020). Impact of climate change on cloud forests in the Gondwana Rainforests of Australia World Heritage Area. Earth Systems and Climate Change Hub Report.Newell, D. An update on frog declines from the forests of subtropical eastern Australia in Status of Conservation and Decline of Amphibians: Australia, New Zealand, and Pacific Islands (eds. Heatwole H. and Rowley J. L.) 29–37 (CSIRO, 2018).DAWE. Bushfire Impacts Vol. 2021 (Commonwealth Department of Agriculture Water and Environment, 2020).
    Google Scholar 
    Collins, L. et al. The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire. Environ. Res. Lett. 16, 044029 (2021).Article 
    ADS 

    Google Scholar 
    Filkov, A. I., Ngo, T., Matthews, S., Telfer, S. & Penman, T. D. Impact of Australia’s catastrophic 2019/20 bushfire season on communities and environment: Retrospective analysis and current trends. J. Saf. Sci. Resil. 1, 44–56 (2020).
    Google Scholar 
    Blunden, J. & Arndt, D. S. State of the climate in 2019. Bull. Am. Meteor. Soc. 101, S1–S429 (2020).Article 

    Google Scholar 
    Zhongming, Z., Linong, L., Wangqiang, Z. & Wei, L. AR6 Climate Change 2021: The Physical Science Basis (Springer, 2021).
    Google Scholar 
    Laidlaw, M. J., McDonald, W. J. F., Hunter, R. J., Putland, D. A. & Kitching, R. L. The potential impacts of climate change on Australian subtropical rainforest. Aust. J. Bot. 59, 440–449 (2011).Article 

    Google Scholar 
    Blaustein, A. R. et al. Direct and indirect effects of climate change on amphibian populations. Diversity 2, 281–313 (2010).Article 

    Google Scholar 
    Li, Y., Cohen, J. M. & Rohr, J. R. Review and synthesis of the effects of climate change on amphibians. Integr. Zool. 8, 145–161 (2013).Article 
    PubMed 

    Google Scholar 
    Carey, C. & Alexander, M. A. Climate change and amphibian declines: Is there a link?. Divers. Distrib. 9, 111–121 (2003).Article 

    Google Scholar 
    Cohen, J. M., Civitello, D. J., Venesky, M. D., McMahon, T. A. & Rohr, J. R. An interaction between climate change and infectious disease drove widespread amphibian declines. Glob. Change Biol. 25, 927–937 (2019).Article 
    ADS 

    Google Scholar 
    Geyle, H. M. et al. Red hot frogs: Identifying the Australian frogs most at risk of extinction. Pac. Conserv. Biol. 28, 211–223 (2021).Article 

    Google Scholar 
    Gillespie, G. R. et al. Status and priority conservation actions for Australian frog species. Biol. Conserv. 247, 108543 (2020).Article 

    Google Scholar 
    Almeida, A. M. et al. Prediction scenarios of past, present, and future environmental suitability for the Mediterranean species Arbutus unedo L. Sci. Rep. 12, 1–15 (2022).Article 

    Google Scholar 
    Lima, V. P. et al. Climate change threatens native potential agroforestry plant species in Brazil. Sci. Rep. 12, 1–14 (2022).Article 
    ADS 

    Google Scholar 
    Tiwari, S. et al. Modelling the potential risk zone of Lantana camara invasion and response to climate change in eastern India. Ecol. Process. 11(1), 1–13 (2022).Article 

    Google Scholar 
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    Galante, P. J. et al. The challenge of modeling niches and distributions for data-poor species: a comprehensive approach to model complexity. Ecography 41, 726–736 (2018).Article 

    Google Scholar 
    Li, J. et al. Climate refugia of snow leopards in High Asia. Biol. Conserv. 203, 188–196 (2016).Article 

    Google Scholar 
    Searcy, C. A. & Shaffer, B. H. Do ecological niche models accurately identify climatic determinants of species ranges?. Am. Nat. 187, 423–435 (2016).Article 
    PubMed 

    Google Scholar 
    Melo-Merino, S. M., Reyes-Bonilla, H. & Lira-Noriega, A. Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecol. Model. 415, 108857 (2020).Article 

    Google Scholar 
    Anstis, M. Tadpoles and Frogs of Australia (New Holland Publishers Pty Limited, 2017).
    Google Scholar 
    Knowles, R., Mahony, M., Armstrong, J. & Donnellan, S. Systematics of sphagnum frogs of the Genus Philoria (Anura: Myobatrachidae) in Eastern Australia, with the description of two new species. Rec. Aust. Mus. 56, 57–74 (2004).Article 

    Google Scholar 
    Mahony, M. J. et al. A new species of Philoria (Anura: Limnodynastidae) from the uplands of the Gondwana Rainforests world heritage area of eastern Australia. Zootaxa 5104, 209–241 (2022).Article 
    PubMed 

    Google Scholar 
    Bolitho, L. J., Rowley, J. J. L., Hines, H. B. & Newell, D. Occupancy modelling reveals a highly restricted and fragmented distribution in a threatened montane frog (Philoria kundagungan) in subtropical Australian rainforests. Aust. J. Zool. 67, 231–240 (2021).Article 

    Google Scholar 
    Heard, G. et al. Post-fire impact assessment for priority frogs: northern Philoria. (NESP Threatened Species Recovery Hub Project 8.1.3 report, Brisbane, 2021).Vanderwal, J. All Future Climate Layers for Australia: 1 km Resolution (James Cook University, 2012).
    Google Scholar 
    Torkkola, J. J., Chauvenet, A. L. M., Hines, H. & Oliver, P. M. Distributional modelling, megafires and data gaps highlight probable underestimation of climate change risk for two lizards from Australia’s montane rainforests. Austral Ecol. 47(2), 365–379 (2021).Article 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Geoscience, A. Digital Elevation Model (DEM) 25 Metre Grid of Australia derived from LiDAR. (Geoscience Australia, 2015).Thuiller, W., Georges, D., Engler, R. & Breiner, F. (2014). biomod2: Ensemble platform for species distribution modeling. R package version 3.1-64. http://CRANR-project.org/package=biomod2. Accessed Feb 2021.Feng, X., Park, D. S., Liang, Y., Pandey, R. & Papeş, M. Collinearity in ecological niche modeling: Confusions and challenges. Ecol. Evol. 9, 10365–10376 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thuiller, W. BIOMOD: Optimising predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).Article 
    ADS 

    Google Scholar 
    MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G. & Franklin, A. B. Estimating site occupancy, colonisation, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207 (2003).Article 

    Google Scholar 
    Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl. Acad. Sci. 117, 19656–19657 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar 
    Campos-Cerqueira, M. & Mitchell Aide, T. Lowland extirpation of anuran populations on a tropical mountain. PeerJ 2017, 1–10 (2017).
    Google Scholar 
    Pounds, J. A., Fogden, M. P. L. & Campbell, J. H. Biological response to climate change on a tropical mountain. Nature 398, 611–615 (1999).Article 
    CAS 
    ADS 

    Google Scholar 
    Raxworthy, C. J. et al. Extinction vulnerability of tropical montane endemism from warming and upslope displacement: A preliminary appraisal for the highest massif in Madagascar. Glob. Change Biol. 14, 1703–1720 (2008).Article 
    ADS 

    Google Scholar 
    Fordham, D. A. et al. Extinction debt from climate change for frogs in the wet tropics. Biol. Lett. 12, 20160236 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoffmann, E. P., Williams, K., Hipsey, M. R. & Mitchell, N. J. Drying microclimates threaten persistence of natural and translocated populations of threatened frogs. Biodivers. Conserv. 30(1), 15–34 (2020).Article 

    Google Scholar 
    Scheele, B. C., Driscoll, D. A., Fischer, J. & Hunter, D. A. Decline of an endangered amphibian during an extreme climatic event. Ecosphere 3, 101 (2012).Article 

    Google Scholar 
    Legge, S. et al. Rapid assessment of the biodiversity impacts of the 2019–2020 Australian megafires to guide urgent management intervention and recovery and lessons for other regions. Divers. Distrib. 28, 571–591 (2022).Article 

    Google Scholar 
    Canadell, J. G. et al. Multi-decadal increase of forest burned area in Australia is linked to climate change. Nat. Commun. 12, 6921 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Hisano, M., Searle, E. B. & Chen, H. Y. H. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev. 93, 439–456 (2018).Article 
    PubMed 

    Google Scholar 
    Holz, A., Wood, S. W., Veblen, T. T. & Bowman, D. M. J. S. Effects of high-severity fire drove the population collapse of the subalpine Tasmanian endemic conifer Athrotaxis cupressoides. Glob. Change Biol. 21, 445–458 (2015).Article 
    ADS 

    Google Scholar 
    Hutley, L. B., Doley, D., Yates, D. J. & Boonsaner, A. Water balance of an australian subtropical rainforest at altitude: The ecological and physiological significance of intercepted cloud and fog. Aust. J. Bot. 45, 311–329 (1997).Article 

    Google Scholar 
    Godfree, R. C. et al. Implications of the 2019–2020 megafires for the biogeography and conservation of Australian vegetation. Nat. Commun. 12, 1023 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Hennessy, K. et al. Climate Change Impacts on Fire-Weather in South-East Australia (Commonwealth Scientific and Industrial Research Organisation, 2005).
    Google Scholar 
    Moriondo, M. et al. Potential impact of climate change on fire risk in the Mediterranean area. Clim. Res. 31, 85–95 (2006).Article 

    Google Scholar 
    Pitman, A. J., Narisma, G. T. & McAneney, J. The impact of climate change on the risk of forest and grassland fires in Australia. Clim. Change 84, 383–401 (2007).Article 
    ADS 

    Google Scholar 
    Caughley, G. Directions in conservation biology. J. Anim. Ecol. 63, 215–244 (1994).Article 

    Google Scholar 
    Scheele, B. C. et al. Conservation translocations for amphibian species threatened by chytrid fungus: A review, conceptual framework, and recommendations. Conserv. Sci. Pract. 3, e524 (2021).
    Google Scholar 
    Rudin-Bitterli, T. S., Evans, J. P. & Mitchell, N. J. Geographic variation in adult and embryonic desiccation tolerance in a terrestrial-breeding frog. Evolution 74, 1186–1199 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ashcroft, M. B. Identifying refugia from climate change. J. Biogeogr. 37, 1407–1413 (2010).
    Google Scholar 
    Keppel, G. et al. Refugia: Identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).Article 

    Google Scholar 
    Selwood, K. E. & Zimmer, H. C. Refuges for biodiversity conservation: A review of the evidence. Biol. Conserv. 245, 108502 (2020).Article 

    Google Scholar  More

  • in

    Speciated mechanism in Quaternary cervids (Cervus and Capreolus) on both sides of the Pyrenees: a multidisciplinary approach

    Petronio, C. Les cervidés endémiques des îles méditerranéennes. Quaternaire 3–4, 259–264 (1990).
    Google Scholar 
    Liouville, M. Variabilité du Cerf élaphe (Cervus elaphus LINNE 1758) au cours du pléistocène moyen et supérieur en Europe occidentale : Approches morphométrique, paléoécologique et cynégétique (Museum National d’Histoire Naturelle, Paris, 2007).
    Google Scholar 
    van der Made, J., Stefaniak, K. & Marciszak, A. The polish fossil record of the wolf canis and the deer alces, capreolus, megaloceros, dama and cervus in an evolutionary perspective. Quatern. Int. 326–327, 406–430 (2014).
    Google Scholar 
    Guadelli, J.-L. Contribution à l’étude des zoocénoses préhistoriques en Aquitaine (Würm ancien et interstade würmiem. Universite de Bordeaux, Talence, 1987).
    Google Scholar 
    Guadelli, J.-L. Les cerfs du würm ancien en Aquitaine. Paléo 8, 99–108 (1996).
    Google Scholar 
    Defleur, A. et al. Le niveau moustérien de la grotte de l’Adaouste (Jouques, Bouches-du-Rhône): Approche culturelle et paléoenvironnements. Bull. Mus. anthropol. préhist. Monaco 37, 11–48 (1994).
    Google Scholar 
    Tournepiche, J.-F. Les grands mammifères pléistocènes de Poitou-Charente. Paléo 8, 109–141 (1996).
    Google Scholar 
    Delagnes, A. et al. Le gisement Pléistocène moyen et supérieur d’artenac (Saint-Mary, Charente): Premier bilan interdisciplinaire. Bull. Soc. Prehist. Fr. 96, 469–496 (1999).
    Google Scholar 
    Valensi, P., Psathi, E. & Lacombat, F. Le cerf élaphe dans les sites du Paléolithique moyen du Sud-Est de la France et de la Ligurie. Intérêts biostratigraphique, environnemental et taphonomique. In Acts of the XIVth UISPP Congress, Session 3: Paleoecology, General Sessions and Posters, 2–8 september 2001 97–105 (BAR International Series, 2004).Steele, T. E. Variation in mortality profiles of red deer (Cervus elaphus) in middle palaeolithic assemblages from western Europe. Int. J. Osteoarchaeol. 14, 307–320 (2004).
    Google Scholar 
    Croitor, R. A new form of wapiti cervus canadensis Erxleben, 1777 (Cervidae, Mammalia) from the late pleistocene of France. Palaeoworld 29, 789–806 (2020).
    Google Scholar 
    Meiri, M. et al. Subspecies dynamics in space and time: A study of the red deer complex using ancient and modern DNA and morphology. J. Biogeogr. 45, 367–380 (2018).
    Google Scholar 
    Queirós, J. et al. Red deer in Iberia: Molecular ecological studies in a southern refugium and inferences on European postglacial colonization history. PLoS ONE 14, e0210282 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Carranza, J., Salinas, M., de Andrés, D. & Pérez-González, J. Iberian red deer: paraphyletic nature at mtDNA but nuclear markers support its genetic identity. Ecol. Evol. 6, 905–922 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Rey-Iglesia, A., Grandal-d’Anglade, A., Campos, P. F. & Hansen, A. J. Mitochondrial DNA of pre-last glacial maximum red deer from NW Spain suggests a more complex phylogeographical history for the species. Ecol. Evol. 7, 10690–10700 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Geist, V. Deer of the world: Their evolution, behaviour, and ecology (Stackpole Books, Pennsylvania, 1998).
    Google Scholar 
    Rivals, F. & Lister, A. M. Dietary flexibility and niche partitioning of large herbivores through the pleistocene of Britain. Quatern. Sci. Rev. 146, 116–133 (2016).ADS 

    Google Scholar 
    Berlioz, E. Ecologie alimentaire et paléoenvironnements des cervidés européens du Pleistocène inférieur: le message des texutures de micro-usure dentaire (University of Poitiers, Poitiers, 2017).
    Google Scholar 
    Saarinen, J., Eronen, J., Fortelius, M., Seppä, H. & Lister, A. M. Patterns of diet and body mass of large ungulates from the pleistocene of Western Europe, and their relation to vegetation. Palaeontol. Electron. 19.3.32A, 1–58 (2016).
    Google Scholar 
    Stefano, G. D., Pandolfi, L., Petronio, C. & Salari, L. The morphometry and the occurrence of cervus elaphus (Mammalia, Cervidae) from the late Pleistocene of the Italian peninsula. Riv. Ital. Paleontol. Stratigr. 121, 103–120 (2015).
    Google Scholar 
    Terada, C., Tatsuzawa, S. & Saitoh, T. Ecological correlates and determinants in the geographical variation of deer morphology. Oecologia 169, 981–994 (2012).PubMed 
    ADS 

    Google Scholar 
    Sommer, R. S., Fahlke, J. M., Schmölcke, U., Benecke, N. & Zachos, F. E. Quaternary history of the European roe deer capreolus capreolus. Mammal Rev. 39, 1–16 (2009).
    Google Scholar 
    Lorenzini, R. et al. European Roe Deer Capreolus capreolus (Linnaeus, 1758). In Handbook of the Mammals of Europe (eds Hackländer, F. & Zachos, F. E.) 1–32 (Springer, Cham, 2022).
    Google Scholar 
    Lorenzini, R., Garofalo, L., Qin, X., Voloshina, I. & Lovari, S. Global phylogeography of the genus capreolus (Artiodactyla: Cervidae), a palaearctic meso-mammal. Zool. J. Linn. Soc. 170, 209–221 (2014).
    Google Scholar 
    Tixier, H. & Duncan, P. Are European roe deer browsers? A review of variations in the composition of their diets. Rev. Ecol. 51, 3–17 (1996).
    Google Scholar 
    Merceron, G., Viriot, L. & Blondel, C. Tooth microwear pattern in roe deer (Capreolus capreolus L.) from Chizé (Western France) and relation to food composition. Small Rumin. Res. 53, 125–132 (2004).
    Google Scholar 
    Delibes, J. R. Ecología y comportamiento del corzo (Capreolus capreolus L. 1758) en la Sierra de Grazalema (Cádiz) (Universidad Complutense, Complutense, 1996).
    Google Scholar 
    Hewitt, G. M. The genetic legacy of the quaternary ice ages. Nature 405, 907–913 (2000).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: Individualistic responses of species in space and time. Proc. R. Soc. Lond. B. Biol. Sci. 277, 661–671 (2010).
    Google Scholar 
    Álvarez-Lao, D. J. & García, N. Geographical distribution of pleistocene cold-adapted large mammal faunas in the Iberian peninsula. Quatern. Int. 233, 159–170 (2011).
    Google Scholar 
    Lumley, H. de. Le Paléolithique inférieur et moyen du Midi méditerranéen dans son cadre géologique. Tome I. Ligurie—Provence. Gall. Préhist. 5, (1969).Texier, P.-J. L’industrie moustérienne de l’abri pié-lombard (Tourettes-sur-Loup, Alpes-Maritimes). Bull. Soc. Préhist. Fr. 71, 429–448 (1974).
    Google Scholar 
    Texier, P.-J. et al. L’abri pié lombard à tourrettes-sur-loup (Alpes-Maritimes): Anciennes fouilles (1971–1985), nouvelles données. Bull. Mus.Anthropol.e Préhistor. Monaco 51, 19–49 (2011).
    Google Scholar 
    Tomasso, A. Territoires, systèmes de mobilité et systèmes de production : La fin du Paléolithique supérieur dans l’arc liguro-provençal (University of Nice Sophia Antipolis Nice, and University of Pisa, 2014).
    Google Scholar 
    Pelletier, M., Desclaux, E., Brugal, J.-P. & Texier, P.-J. The exploitation of rabbits for food and pelts by last interglacial neandertals. Quatern. Sci. Rev. 224, 105972 (2019).
    Google Scholar 
    Valladas, H. et al. Datations par la thermoluminescence de gisements moustériens du sud de la France. L’Anthropologie 91, 211–226 (1987).
    Google Scholar 
    Yokoyama, Y. et al. ESR dating of stalagmites of the Caune de l’Arago, the Grotte du Lazaret, the Grotte du Vallonnet and the abri Pié Lombard : a comparison with the U-Th method. In Third Specialist Seminar on TL and ESR Dating (eds. Hackens, T., Mejdahl, V., Bowman, S. G. E., Wintle, A. G. & Aitken, M. J.) 381–389 (1983).Romero, A. J., Fernández-Lomana, J. C. D. & Brugal, J.-P. Aves de caza. Estudio tafonómico y zooarqueológico de los restos avianos de los niveles musterienses de pié lombard (Alpes-Maritimes, Francia). Munibe Antropol. Arkeol. 68, 73–84 (2017).
    Google Scholar 
    Lumley (de), M.-A. Les néandertaliens dans le midi méditerranéen. In La Préhistoire française vol. T. 1 (Editions du CNRS, 1976).Porraz, G. En marge du milieu alpin. Dynamiques de formation des ensembles lithiques et modes d’occupation des territoires au paléolithique moyen (Université de Provence, Marseille, 2005).
    Google Scholar 
    Porraz, G. Middle Paleolithic mobile toolkits in shor-tterm human occupations: Two case studies. Eur. Prehist. 6, 33–55 (2009).
    Google Scholar 
    Roussel, A., Gourichon, L., Valensi, P. & Brugal, J.-P. Homme, gibier et environnement au Paléolithique moyen. Regards sur la gestion territoriale de l’espace semi-montagnard du Midi de la France. In Biodiversités, environnements et sociétés depuis la Préhistoire : nouveaux marqueurs et approches intégrées 87–99 (Éditions APDCA, 2021).Renault-Miskovsky, J. & Texier, J. Intérêt de l’analyse pollinique détaillée dans les concrétions de grotte .Application à l’abri pié-lombard (Tourettes-sur-Loup, Alpes maritimes). Quaternaire 17, 129–134 (1980).
    Google Scholar 
    Rosell, J. et al. A resilient landscape at teixoneres cave (MIS 3; Moià, Barcelona, Spain): The Neanderthals as disrupting agent. Quatern. Int. 435, 195–210 (2017).
    Google Scholar 
    Rosell, J. et al. Mossegades i Levallois: les noves intervencionsa la cova de les teixoneres (Moià, Bages). Trib d’Arqueologia 29–43 (2008).Rosell, J. et al. Los ocupaciones en la Cova de les Teixoneres (Moià, Barcelona): relaciones espaciales y grado de competencia entre hienas, osos y neandertales durante el Pleistoceno Superior. In Actas de la 1a Reunión de Científicos sobre Cubiles de Hiena (y Otros Grandes Carnívoros) en los Yacimientos Arqueológicos de la Península Ibérica (392–402) (eds Arriaza, M. C. et al.) (Museo Arqueológico Regional, 2010).
    Google Scholar 
    Rosell, J. et al. A stop along the way: The role of Neanderthal groups at level III of teixoneres cave (Moià, Barcelona, Spain). Quaternaire 21, 139–154 (2010).
    Google Scholar 
    Rosell, J. et al. Cova del toll y cova de les Teixoneres (Moià, Barcelona). In Los cazadores recolectores del Pleistoceno y del Holoceno en Iberia y el estrecho de Gibraltar (eds. Sala, R., Carbonell, E., Bermudez de Castro, J. M. & Arsuaga, J. L.) 302–307 (2014).Zilio, L. et al. Examining Neanderthal and carnivore occupations of teixoneres cave (Moià, Barcelona, Spain) using archaeostratigraphic and intra-site spatial analysis. Sci. Rep. 11, 4339 (2021).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Tissoux, H. et al. Datation par les séries de l’uranium des occupations moustériennes de la grotte de teixoneres (Moia, Province de Barcelone, Espagne). Quaternaire 17, 27–33 (2006).
    Google Scholar 
    Talamo, S. et al. The radiocarbon approach to Neanderthals in a carnivore den site: A well-defined chronology for teixoneres cave (Moià, Barcelona, Spain). Radiocarbon 58, 247–265 (2016).CAS 

    Google Scholar 
    Álvarez-Lao, D. J., Rivals, F., Sánchez-Hernández, C., Blasco, R. & Rosell, J. Ungulates from teixoneres cave (Moià, Barcelona, Spain): Presence of cold-adapted elements in NE Iberia during the MIS 3. Palaeogeogr. Palaeoclimatol. Palaeoecol. 466, 287–302 (2017).
    Google Scholar 
    Rufà, A., Blasco, R., Rivals, F. & Rosell, J. Leporids as a potential resource for predators (hominins, mammalian carnivores, raptors): An example of mixed contribution from level III of teixoneres cave (MIS 3, Barcelona, Spain). C.R. Palevol. 13, 665–680 (2014).
    Google Scholar 
    Rufà, A., Blasco, R., Rivals, F. & Rosell, J. Who eats whom? Taphonomic analysis of the avian record from the middle paleolithic site of teixoneres cave (Moià, Barcelona, Spain). Quatern. Int. 421, 103–115 (2016).
    Google Scholar 
    Sánchez-Hernández, C., Rivals, F., Blasco, R. & Rosell, J. Short, but repeated Neanderthal visits to teixoneres cave (MIS 3, Barcelona, Spain): A combined analysis of tooth microwear patterns and seasonality. J. Archaeol. Sci. 49, 317–325 (2014).
    Google Scholar 
    Sánchez-Hernández, C., Rivals, F., Blasco, R. & Rosell, J. Tale of two timescales: Combining tooth wear methods with different temporal resolutions to detect seasonality of Palaeolithic hominin occupational patterns. J. Archaeol. Sci. Rep. 6, 790–797 (2016).
    Google Scholar 
    Picin, A. et al. Neanderthal mobile toolkit in short-term occupations at teixoneres cave (Moia, Spain). J. Archaeol. Sci. Rep. 29, 102165 (2020).
    Google Scholar 
    Fernández-García, M. et al. New insights in Neanderthal palaeoecology using stable oxygen isotopes preserved in small mammals as palaeoclimatic tracers in teixoneres cave (Moià, northeastern Iberia). Archaeol. Anthropol. Sci. 14, 106 (2022).
    Google Scholar 
    Ochando, J. et al. Neanderthals in a highly diverse, mediterranean-Eurosiberian forest ecotone: The pleistocene pollen record of teixoneres cave, Northeastern Spain. Quatern. Sci. Rev. 241, 106429 (2020).
    Google Scholar 
    López-García, J. M. et al. A multidisciplinary approach to reconstructing the chronology and environment of Southwestern European Neanderthals: The contribution of teixoneres cave (Moià, Barcelona, Spain). Quatern. Sci. Rev. 43, 33–44 (2012).ADS 

    Google Scholar 
    Sánchez-Hernández, C. et al. Dietary traits of ungulates in northeastern Iberian Peninsula: Did these Neanderthal preys show adaptive behaviour to local habitats during the middle palaeolithic?. Quatern. Int. 557, 47–62 (2020).
    Google Scholar 
    Fortelius, M. & Solounias, N. Functional characterization of ungulate molars using the abrasion-attrition wear gradient: A new method for reconstructing paleodiets. Am. Mus. Novit. 3301, 1–36 (2000).
    Google Scholar 
    Rivals, F., Solounias, N. & Mihlbachler, M. C. Evidence for geographic variation in the diets of late pleistocene and early holocene bison in North America, and differences from the diets of recent bison. Quatern. Res. 68, 338–346 (2007).ADS 

    Google Scholar 
    King, T., Andrews, P. & Boz, B. Effect of taphonomic processes on dental microwear. Am. J. Phys. Anthropol. 108, 359–373 (1999).CAS 
    PubMed 

    Google Scholar 
    Uzunidis, A. et al. The impact of sediment abrasion on tooth microwear analysis: An experimental study. Archaeol. Anthropol. Sci. 13, 134 (2021).
    Google Scholar 
    Kaiser, T. M. & Solounias, N. Extending the tooth mesowear method to extinct and extant equids. Geodiversitas 25, 321–345 (2003).
    Google Scholar 
    Xafis, A., Nagel, D. & Bastl, K. Which tooth to sample? A methodological study of the utility of premolar/non-carnassial teeth in the microwear analysis of mammals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 487, 229–240 (2017).
    Google Scholar 
    Meadow, R. H. Early animal domestication in South Asia a first report of the faunal remains from mehrgarh Pakistan. In South Asian Archaeology (ed. Härtel, H.) 143–179 (Dietrich Reimer, Berlin, 1979).
    Google Scholar 
    Meadow, R. H. The use of size index scaling techniques for research on archaeozoological collections from the Middle East. In Historici Animalium ex. Ossibus Festschrift Angela Von Den Driesch Zum 65 Geburtstag (eds Becker, C. et al.) 285–300 (Verlag Marie Leidorf, Rahden, 1999).
    Google Scholar 
    Simpson, G. G. Large pleistocene felines of North America. Pleistocene felines North Am. 1136, 1–28 (1941).
    Google Scholar 
    Valli, A. M. F. & Guérin, C. L. gisement pléistocène supérieur de la grotte de Jaurens à Nespouls, Corrèze, France: Les cervidae (Mammalia, Artiodactyla). Publ. mus. Conflu. 1, 41–81 (2000).
    Google Scholar 
    Janis, C. M. The correlation between diet and dental wear in herbivorous mammals and its relationship to the determination of diets of extinct species. In Evolutionary Paleobiology of Behavior and Coevolution (ed. Boucot, A. J.) 241–259 (Elsevier, Amsterdam, 1990).
    Google Scholar 
    Heintz, E. Les Cervidés villafranchiens de France et d’Espagne (Museum National d’Histoire Naturelle, Parise, 1970).
    Google Scholar 
    Magniez, P. Etude paléontologique des artiodactyles de la grotte Tournal (Bize-Minervois, Aude, France) étude taphonomique, archéozoologique et paléoécologique des grands Mammifères dans leur cadre biostratigraphique et paléoenvironnemental (Université de Perpignan, Perpignan, 2010).
    Google Scholar 
    Cucchi, T., Hulme-Beaman, A., Yuan, J. & Dobney, K. Early neolithic pig domestication at Jiahu, Henan Province, China: clues from molar shape analyses using geometric morphometric approaches. J. Archaeol. Sci. 38, 11–22 (2011).
    Google Scholar 
    Evin, A. et al. The long and winding road: Identifying pig domestication through molar size and shape. J. Archaeol. Sci. 40, 735–743 (2013).
    Google Scholar 
    Pelletier, M., Kotiaho, A., Niinimäki, S. & Salmi, A.-K. Identifying early stages of reindeer domestication in the archaeological record: A 3D morphological investigation on forelimb bones of modern populations from Fennoscandia. Archaeol. Anthropol. Sci. 12, 169 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Bignon, O., Baylac, M., Vigne, J.-D. & Eisenmann, V. Geometric morphometrics and the population diversity of late glacial horses in Western Europe (Equus caballus arcelini): Phylogeographic and anthropological implications. J. Archaeol. Sci. 32, 375–391 (2005).
    Google Scholar 
    Pelletier, M. Morphological diversity, evolution and biogeography of early pleistocene rabbits (Genus Oryctolagus). Palaeontology 64, 817–838 (2021).
    Google Scholar 
    Curran, S. C. Expanding ecomorphological methods: Geometric morphometric analysis of cervidae post-crania. J. Archaeol. Sci. 39, 1172–1182 (2012).
    Google Scholar 
    Curran, S. C. Exploring eucladoceros ecomorphology using geometric morphometrics. Anat. Rec. 298, 291–313 (2015).
    Google Scholar 
    Cucchi, T. et al. Taxonomic and phylogenetic signals in bovini cheek teeth: Towards new biosystematic markers to explore the history of wild and domestic cattle. J. Archaeol. Sci. 109, 104993 (2019).
    Google Scholar 
    Jeanjean, M. et al. Sorting the flock: Quantitative identification of sheep and goat from isolated third lower molars and mandibles through geometric morphometrics. J. Archaeol. Sci. 141, 105580 (2022).
    Google Scholar 
    Herrera, P. L. Différences entre les dents jugales deciduales du cerf elaphe (Cervus Elaphus L.) et du boeuf domestique (Bos Taurus L.). Rev. Paléobiol. 8, 77 (1989).
    Google Scholar 
    Pfeiffer, T. Die stellung von dama (Cervidae, Mammalia) im system plesiometacarpaler hirsche des pleistozäns. Phylogenetische reconstruktion-metrische analyse. Cour Forsch. Senckenberg. 211, 1–218 (1999).
    Google Scholar 
    Rohlf, F. J. TPSDig, version 2.17 (Stony Brook, NY: Department of Ecology and Evolution, State University of New York, 2013).Bookstein, F. L. Morphometric Tools for Landmark Data: Geometry and Biology (Cambridge University Press, Cambridge, 1992).MATH 

    Google Scholar 
    Schlager, S. Morpho: Calculations and visualizations related to geometric morphometrics. (2013).Bookstein, F. L. Size and shape spaces for landmark data in two dimensions. Stat. Sci. 1, 181–222 (1986).MATH 

    Google Scholar 
    Kaiser, T. M. & Schulz, E. Tooth wear gradients in zebras as an environmental proxy—a pilot study. Mitt. Hambg. Zool. Mus. Inst. 103, 187–210 (2006).
    Google Scholar 
    Louys, J., Ditchfield, P., Meloro, C., Elton, S. & Bishop, L. C. Stable isotopes provide independent support for the use of mesowear variables for inferring diets in African antelopes. Proc. R. Soc. B. Biol. Sci. 279, 4441–4446 (2012).CAS 

    Google Scholar 
    Schulz, E. & Kaiser, T. M. Historical distribution, habitat requirements and feeding ecology of the genus equus (Perissodactyla). Mammal Rev. 43, 111–123 (2013).
    Google Scholar 
    Ulbricht, A., Maul, L. C. & Schulz, E. Can mesowear analysis be applied to small mammals? A pilot-study on leporines and murines. Mamm. Biol. 80, 14–20 (2015).
    Google Scholar 
    Danowitz, M., Hou, S., Mihlbachler, M., Hastings, V. & Solounias, N. A combined-mesowear analysis of late miocene giraffids from North Chinese and Greek localities of the pikermian biome. Palaeogeogr. Palaeoclimatol. Palaeoecol. 449, 194–204 (2016).
    Google Scholar 
    Marom, N., Garfinkel, Y. & Bar-Oz, G. Times in between: A zooarchaeological analysis of ritual in Neolithic Sha’ar Hagolan. Quatern. Int. 464, 216–225 (2018).
    Google Scholar 
    Ackermans, N. L. et al. Mesowear represents a lifetime signal in sheep (Ovis aries) within a long-term feeding experiment. Palaeogeogr. Palaeoclimatol. Palaeoecol. 553, 109793 (2020).
    Google Scholar 
    Mihlbachler, M. C., Rivals, F., Solounias, N. & Semprebon, G. M. Dietary change and evolution of horses in North America. Science 331, 1178–1181 (2011).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Rivals, F., Rindel, D. & Belardi, J. B. Dietary ecology of extant guanaco (Lama guanicoe) from Southern Patagonia: Seasonal leaf browsing and its archaeological implications. J. Archaeol. Sci. 40, 2971–2980 (2013).
    Google Scholar 
    Rivals, F., Uzunidis, A., Sanz, M. & Daura, J. Faunal dietary response to the heinrich event 4 in southwestern Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 473, 123–130 (2017).
    Google Scholar 
    Uzunidis, A., Rivals, F. & Brugal, J.-P. Relation between morphology and dietary traits in horse jugal upper teeth during the middle pleistocene in Southern France. Quat. Rev. Assoc. franc. l’étude Quat. 28, 303–312 (2017).
    Google Scholar 
    Uzunidis, A. Dental wear analyses of middle pleistocene site of Lunel-Viel (Hérault, France): Did equus and bos live in a wetland?. Quatern. Int. 557, 39–46 (2020).
    Google Scholar 
    Solounias, N. & Semprebon, G. Advances in the reconstruction of ungulate ecomorphology with application to early fossil equids. Am. Mus. Novit. 3366, 49 (2002).
    Google Scholar 
    Semprebon, G., Godfrey, L. R., Solounias, N., Sutherland, M. R. & Jungers, W. L. Can low-magnification stereomicroscopy reveal diet?. J. Hum. Evol. 47, 115–144 (2004).PubMed 

    Google Scholar 
    Grine, F. E. Dental evidence for dietary differences in australopithecus and paranthropus: A quantitative analysis of permanent molar microwear. J. Hum. Evol. 15, 783–822 (1986).
    Google Scholar 
    Teaford, M. F. & Oyen, O. J. In vivo and in vitro turnover in dental microwear. Am. J. Phys. Anthropol. 80, 447–460 (1989).CAS 
    PubMed 

    Google Scholar 
    Winkler, D. E. et al. The turnover of dental microwear texture: Testing the” last supper” effect in small mammals in a controlled feeding experiment. Palaeogeogr. Palaeoclimatol. Palaeoecol. 557, 109930 (2020).
    Google Scholar 
    Walker, A., Hoeck, H. N. & Perez, L. Microwear of mammalian teeth as an indicator of diet. Science 201, 908–910 (1978).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Janis, C. M. & Lister, A. M. The morphology of the lower fourth premolaras a taxonomic character in the ruminantia (Mammalia; Artiodactyla), and the systematic position of triceromeryx. J. Paleontol. 59, 405–410 (1985).
    Google Scholar 
    Croitor, R. Animal husbandry and hunting. Bone material use ineconomic activities. In Kravchenko, E. A. (eds.) From Bronze to Iron: Pale-oeconomy of the Habitants of the Inkerman Valley (According the Materialof Excavations in Uch-Bash and Saharnaya Golovka Settlements). 191–222 (Institute of Archaeology of National Academy of Sciences of Ukraine, 2016).Geist, V. & Bayer, M. Sexual dimorphism in the cervidae and its relation to habitat. J. Zool. 214, 45–53 (1988).
    Google Scholar 
    Fichant, R. Le cerf: Biologie, comportement, gestion (Gerfaut Editions, 2003).
    Google Scholar 
    Arellano-Moullé, A. Les cervidés des niveaux moustériens de la grotte du Prince (Grimaldi, Vintimille, Italie) Etude paléontologique. Bull. Mus. Anthropol. Préhist. Monaco 39, 53–58 (1997).
    Google Scholar 
    Brugal, J. .-P. . La. faune des grands mammifères de l’abri des Canalettes – matériel 1980–1986. In L’abri des Canalettes Un habitat moustérien sur les grands Causses Nant Aveyron, 89–137 (ed. Meignen, L.) (CNRS Éditions, Paris, 1993).
    Google Scholar 
    La Gerber, J. P. faune des grands mammifères du Würm ancien dans le sud-est de la France (Université de Provence, Marseille, 1973).
    Google Scholar 
    Alonso, D. A. Analisis paleobiologico de los ungulados del pleistoceno superior de la meseta norte (Universidad de Salamanca, Salamanca, 2015).
    Google Scholar 
    Sanchez, B. La fauna de mamíferos del pleistoceno superior del Abric Romani (Capellades, Barcelona). Adas de Paleontol. 331–347 (1989).Clot, A. Le chevreuil, Capreolus capreolus (L.) (Ceervidae, Artiodactyla) dans le pléistocène de Ge$$rde (H.-P.) et des pyrénées. Bull. Soc. Hist. Nat. Toulouse 125, 83–86 (1989).
    Google Scholar 
    Vanpé, C. Mating systems and sexual selection in ungulates. New insights from a territorial species with low sexual size dimorphism: the European roe deer (Capreolus capreolus). (Université Paul Sabatier, Toulouse III and Swedish University of Agricultural Sciences, 2007).Horcajada-Sánchez, F. & Barja, I. Local ecotypes of roe deer populations (Capreolus capreolus L.) in relation to morphometric features and fur colouration in the centre of the Iberian Peninsula. Pol. J Ecol. 64, 113–124 (2016).
    Google Scholar 
    Semprebon, G. M., Sise, P. J. & Coombs, M. C. Potential bark and fruit browsing as revealed by Stereomicrowear analysis of the peculiar clawed herbivores known as Chalicotheres (Perissodactyla, Chalicotherioidea). J. Mammal. Evol. 18, 33–55 (2011).
    Google Scholar 
    Rivals, F. et al. Palaeoecology of the mammoth steppe fauna from the late pleistocene of the North Sea and Alaska: Separating species preferences from geographic influence in paleoecological dental wear analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 286, 42–54 (2010).
    Google Scholar 
    Rivals, F., Takatsuki, S., Albert, R. M. & Macià, L. Bamboo feeding and tooth wear of three sika deer (Cervus nippon) populations from northern Japan. J. Mammal. 95, 1043–1053 (2014).
    Google Scholar 
    Lister, A. M. Evolutionary and ecological origins of British deer. Proc. R. Soc. Edinb. Sect. B. Biol. Sci. 82, 205–229 (1984).
    Google Scholar 
    Coulson, T., Guinness, F., Pemberton, J. & Clutton-Brock, T. The demographic consequences of releasing a population of red deer from culling. Ecology 85, 411–422 (2004).
    Google Scholar 
    Nussey, D. H., Clutton-Brock, T. H., Elston, D. A., Albon, S. D. & Kruuk, L. E. B. Phenotypic plasticity in a maternal trait in red deer. J. Anim. Ecol. 74, 387–396 (2005).
    Google Scholar 
    Frevert, W. Rominten (BLV Bayerischer Landwirtschaftsverlag, 1977).
    Google Scholar 
    Clutton-Brock, T. H. & Albon, S. D. Winter mortality in red deer (Cervus elaphus). J. Zool. 198, 515–519 (1982).
    Google Scholar 
    Loison, A. & Langvatn, R. Short- and long-term effects of winter and spring weather on growth and survival of red deer in Norway. Oecologia 116, 489–500 (1998).PubMed 
    ADS 

    Google Scholar 
    Torres-Porras, J., Carranza, J. & Pérez-González, J. Combined effects of drought and density on body and antler size of male iberian red deer cervus elaphus hispanicus: Climate change implications. Wildl. Biol. 15, 213–221 (2009).
    Google Scholar 
    Bugalho, M. N., Milne, J. A. & Racey, P. A. The foraging ecology of red deer (Cervus elaphus) in a mediterranean environment: Is a larger body size advantageous?. J. Zool. 255, 285–289 (2001).
    Google Scholar 
    Köhler, M. Skeleton and habitat of recent and fossil ruminants (F. Pfeil, Germany, 1993).
    Google Scholar 
    Boessneck, J. Zur grosse des mitteleuropaischen Rehes Capreolus capreolus L. in alluvial-vorgeschichtlicher und friiher historischer zeit. Z. f. Siiugetierkunde 21, 121–131 (1958).
    Google Scholar 
    Jensen, P. Body size trends of roe deer (Capreolus capreolus) from danish mesolithic sites. J. Dan. Archaeol. 10, 51–58 (1991).
    Google Scholar 
    Braza, F., San José, C., Aragon, S. & Delibes, J. R. El corzo andaluz. (Junta de Andalucía, 1994).Fandos, P. Skull biometry of spanish roe deer (Capreolus capreolus). Folia Zool. 43, 11–20 (1994).
    Google Scholar 
    Costa, L. First data on the size of north-Iberian roe bucks (Capreolus capreolus). Mammalia 59, 447–451 (1995).
    Google Scholar 
    Klein, D. R. & Strandgaard, H. Factors affecting growth and body size of roe deer. J. Wildl. Manag. 36, 64–79 (1972).
    Google Scholar  More

  • in

    Response of Canola productivity to integration between mineral nitrogen with yeast extract under poor fertility sandy soil condition

    Photosynthetic pigmentsBased on the analysis of variance, data of Photosynthetic pigments as presented in Table 1 indicate that photosynthetic pigments as chlorophyll a (Chl. a) had non-significant for three Canola genotypes AD201 (G1), Topaz (G2) and SemuDNK 234/84 (G3), but chlorophyll b (Chl. b) and chlorophyll a/b ratio (Chl. a/b) had significant difference for three genotypes. Chl. a, Chl. b and Chl. a/b were positively responded to different N application i.e. without nitrogen fertilization (control F0), 95 kg N ha−1 (F1), 120 kg N ha−1 (F2) and 142 kg N ha−1 (F3) (without yeast); and integrated between nitrogen fertilization and yeast extract (YE) treatments as follows: 95 kg N ha−1 + YE (F4), 120 kg N ha−1 + YE (F5) and 142 kg N ha−1 (F6) (with yeast), data indicated that F5 and F6 gave the highest values of Chl. a and Chl. a/b ratio and lowest values of Chl. b Table 1. Interaction data showed that three Canola genotypes that were fertilized with N without yeast or with yeast had a slight difference with statistically significant in chl. a. The highest values of Chl. an obtained by G2 under F5 treatment followed by G1 under F6 treatments. In respect to Chl. a/b ratio, statistical analysis showed that Interaction between Canola genotypes treated with N applications without or with yeast had a significant difference whereas the highest values were recorded when Canola genotypes G3 and G2 fertilized with F6 and F5 with slight differences. While the interaction was significant between N treatments and Canola genotypes for Chl. b. and Canola genotype (G1) gave the highest value when treated with F1. Generally, F6 and F5 improve the contents of chl. a and chl. a/b ratio for three Canola genotypes Table 1. Chl. contents were increased in plants grown under middle and high N conditions as compared with plants grown under low N conditions, which significantly affected photochemical processes20. N is a fundamental element for leaf plants, insufficient N supply lead to decreased photosynthetic rate in plants21, this occurs to many factors such as a decrease in pigment degradation22, reduction in stomatal conductance23 and a decline in the light and dark reaction of photosynthesis. Canola is a nitrophilous plant, wherein a high concentration of NO3 in the culture media results in higher Chl. contents in the plant leave compared with controls20. The Chl. a/b ratio can be a valuable indicator of N element within a leaf because this ratio must be positively related to the ratio of PSII cores to light-harvesting chlorophyll-protein complex (LHCII)24. LHCII contains the majority of Chl. b, consequently it has a lower Chl a/b ratio than other Chl. binding proteins associated with PSII25. Thus, Chl. a/b ratios should increase with decreasing N availability, especially under high light conditions26, the Chl. a/b ratio and the ratio of PSII to Chl. are independent of N availability for spinach27, and lower Chl. a/b ratios were noticed when plants were subjected to low N28, while Kitajima and Hogan29 revealed that the Chl. a/b ratio increased when Chl. content decreased in response to N restriction in photosynthetic cotyledons in leaves of seedlings of four tropical woody species in the Bignoniaceae, and Bungard et al.30 demonstrated that there is a tiny response in Chl. a/b ratios to light or N. The yeast includes bio-regulators i.e. plant growth regulators and endogenous plant hormones, which enhance photosynthesis, also it produces 5-Aminolevulinic acid which is vital to tetrapyrrole biosynthesis and biochemical processes in plants, including heme and Chl. biosynthesis25.Table 1 Photosynthetic pigments for the three Canola genotypes under different N applications without and with yeast extract.Full size tableYield and its attributesComparing of mean data through the Duncan Multiple Range Test in the probability level of 5%, data showed significant differences among the Canola genotypes for the highest plant (cm), branches number/plant, and pods number/plant. On contrary, there wasn’t a significant difference for seed number/pods, seed yield (t ha−1), biological yield (t ha−1), and harvest index, wherein G2 gave the highest value for the highest plant (cm). In the same trend, G2 gave the highest values of branches No./plant and pods No./plant followed by G3 for the previous two treats Table 2. All examined N without or with yeast caused a significant difference in yield and its attributes, wherein F6 positively affected on abovementioned traits and gave the highest values on the highest plant (cm), branches No./plant, pods No./plant, seed No./pods, seed yield (t ha−1), and harvest index. While the highest values of biological yield (t ha−1) were obtained with F3, F6, and F5, respectively Table 2.Table 2 Growth, yield and its attributes for the three Canola genotypes under different N applications without and with yeast extract.Full size tableThe interaction between the Canola genotype and different N rates without or with yeast extract as shown in Table 2, demonstrated a significant difference. Data showed that the highest values of plant height and pods No./plant were recorded by G2 under F6 and the highest values of branches No./plant, seed No./pods, and seed yield (t ha−1) got by G3 and G2 under F6. There was a slight difference with statistically significant biological yield (t ha−1) and highest values established by G1 under F3 and F6; and G2 and G3 under F3, F5, and F6 respectively; and the highest values of harvest index recorded by G1, G2 and G3. under F6. Generally, data proved that 142 kg N/ h−1 + YE (F6) was enhanced the yield and its components of three Canola genotypes i.e. AD201 (G1), Topaz (G2), and SemuDNK 234/84 (G3). Many researchers reported that there are significant differences among Canola varieties and growth and yield traits are significantly increased by increasing N rates11. Increasing N fertilizer rates significantly increased most of the yield and its components31, N enhances metabolites synthesized by the plant which leads to more transformation of photosynthesis to reproductive parts, and induces different physiological mechanisms to access the nutrient32. Yeast extract as bio-fertilizer had a significant and positive effect on plant height and yield traits of Canola. The role of bread yeast in increasing the growth and yield traits; may be due to the content of yeast to many important nutrients elements i.e. N, Mg, Ca, Zn, Cu, and Fe, and the production of some growth regulators such as Auxin and Gibberellin and cytokinin which is necessary for plant biological processers especially photosynthesis and cell division and elongation33. Also, Yeast extract had stimulatory effects on cell division and enlargement, protein and nucleic acid synthesis, and chlorophyll formation34, in addition to its content of cryoprotective agent, i.e. sugars, protein, amino acids, and also several vitamins35. Consequently, it improves growth, flowering, and fruit set and formation and increases yield34.Correlation of Canola seed yield and chlorophyll a/b ratioPartial correlation coefficients of Canola seed yield and Chl. a/b ratio is given in Fig. 1. This result showed that seed yield was positively correlated with Chl. a/b ratio when the amount of N applied without or with yeast extract is increased. Chl. a/b ratio can be an important indicator of N within a leaf, this ratio must be positively related to photosynthesis and biological processers which reflect on seed yield.Figure 1Correlation of Canola seed yield (t/h) and chlorophyll a/b ratio as affected by different nitrogen rates without and with yeast extract.Full size imageCorrelation of Canola seed yield and its attributesCorrelations of seed yield and yield components of Canola are a function of the plant height, number of branches/plant, number of pods/plant, and number of seeds/pod as shown in Fig. 2a–d. These results proved that grain yield was strongly positively correlated with some of the abovementioned traits when N fertilization increased without or with yeast extract. Sufficient N contributes to enhance physiological processes, improves growth, flowering, seed formation, and the seed yield finally.Figure 2(a) Correlation of Canola seed yield (t/h) and plant height (cm) as affected by different nitrogen rates without and with yeast extract, (b) Correlation of Canola seed yield (t/h) and branch No/plant as affected by different nitrogen rates without and with yeast extract, (c) Correlation of Canola seed yield (t/h) and pods No/ plant as affected by different nitrogen rates without and with yeast extract, and (d) Correlation of Canola seed yield (t/h) and seeds No/ pod as affected by different nitrogen rates without and with yeast extract.Full size imageChemical propertiesRegarding results of the oil yield (t ha−1), seed oil %, protein %, N % in seed, and N% in straw as presented in Table 3, data showed significant differences among three Canola genotypes; AD201 (G1), Topaz (G2) and SemuDNK 234/84 (G3), excepted oil yield had non-significant difference. G1 was surpassed in oil %; G2, G3 surpassed in protein % and N % in seed, and G3 surpassed in N% in straw. Different N fertilization applies without or with yeast extract had a significant effect on the abovementioned traits, wherein F6 treatment gave the highest oil yield, protein %, N % in seed, and N% in straw, while seed oil % significantly increased with F1 and F4 treatments. There was significant interaction concerning with abovementioned traits, Table 3, as well as the highest values of seed oil yield (t ha−1), protein % in seeds, and nitrogen % in seeds were obtained with G1, G2, and G3 when treated with F6. Wherein the highest values of oil % were obtained by G1 under F1 and F4 treatments. Concerning N% in straw was increased by increasing the rate of N fertilizer application and the highest value was recorded by adding F6 to G336. Seed oil percentage was decreased by increasing nitrogen rates; the effect of interaction between Canola cultivars and nitrogen fertilization treatments was significant on seed oil. % High rates of N led to decreases in seed oil % and increase in protein concentrations in Canola seed37, the increase in seed protein % because N is an integral part of protein and the protein of Canola.Table 3 Effect of different N applications without and with yeast extract on oil yield, oil %, protein %, N % in seed and N% in straw for the three Canola genotypes.Full size tableCorrelation of Canola seed yield and seed oil percentageA strong negative correlation was detected between seed oil percentage as shown in Fig. 3. The result indicates that seed oil percentage decreases with increasing in different N fertilization rates without or with yeast extract. That’s a negative correlation between seed yield and seed oil %; it might be due to N application which results in delaying maturity leading to poor seed filling and a greater proportion of green seed38.Figure 3Correlation of Canola seed yield (t h−1) and oil % as affected by different nitrogen rates without and with yeast extract.Full size imagePhysico-chemical properties of Canola oilThe effects of different N application rates without or with yeast extract on Canola genotypes on physico-chemical properties i.e. Acid value (mg g−1), saponification number (mg g−1) and peroxide value (mg kg−1) were shown in Table 4. Data of chemical properties of Canola oil showed significant differences among Canola genotypes, the highest acid value and peroxide value were obtained from G2 followed by G1 and G3, respectively, while the highest saponification number was obtained by G3 followed by G1 and G2, respectively.Table 4 Oil properties for three Canola genotypes under different N applications without and with yeast extract.Full size tableData had significant differences among different N application rates without or with yeast extract, by increasing the N rated from F0 to F6 caused decreases in Acid value, Saponification number, and peroxide value. Also, data showed a significant interaction between Canola genotypes and different N application rates without or with yeast extract for all abovementioned traits, wherein the highest values of saponification number were obtained by G1 and G3 under F0 treatment. In addition, the highest values of peroxide value and the acid value were obtained by G2 with F0. The acid value is a physicochemical indicator38, wherein oils which have higher acid value posse poor quality39, on another hand, Low acid value of Canola genotype shows their higher oil quality. The peroxide value varied between 7.1 and 9.06 meq. O2/kg indicates that the tested vegetable oils are fresh, and the lowest initial peroxide value is suitable for consumption40. High saponification value indicated that Canola oil possesses normal triglycerides and may be useful in the production of liquid soap and shampoo41. Saponification number was significantly different among genotypes and a higher nitrogen rate resulted in an increase in the unsaponifiable matter and led to a decrease in oil acid value and saponification value42.Fatty acids composition percentages in Canola oilThe main values of fatty acids composition percentages in Canola oil were determined and calculated in the second season Table 5. Gas–liquid chromatographic analysis showed that, saturated fatty acids (Palmitic, 16:0, Stearic, 18:0, Arachidic, 20:0, and Behenic, 22:0) represent about 9.1 of the total fatty acids. Palmitic was the dominant acid among the saturated ones. In respect of unsaturated fatty acids i.e., Oleic acid (18:1), Linoleic (18:2), Linolenic (18:3), and Erucic (22:1), they all represent about 90.9% of total fatty acids. Therefore, Oleic acid (18:1) was the major fatty acid in Canola oil (59.43%) followed by Linoleic (20.80%) and Linolenic (9.02%). Erucic acid was less than 2%.Table 5 Saturated and unsaturated fatty acids (%) in seeds of the three Canola genotypes and different N applications without and with yeast extract.Full size tableData in Table 5, showed slight differences in saturated fatty acids between Canola varieties. AD201(G1) variety contained more amount of Palmitic (4.78%) and Stearic (1.52%) acids followed by Topaz (G2) for Palmitic and SemuDNK 234/84 (V3) for Stearic. However, Behenic acid (1.20%) was higher in G3 than G2 (1.17%), while G2 was the highest in Arachidic acid than G3 variety. These results are in line with those obtained by El Habbasha et al.43. They reported that AD 201, Silvo, and Topas (G2) were different in their oil contents of saturated and unsaturated fatty acids. Canola varieties were also slightly differed in their content of the unsaturated fatty acids Table 5, G3 variety contained more amounts of Oleic (60.36%) acid followed by the G2 variety. G1 recorded the lowest amount of Oleic acid (58.36%) in comparison with the other two varieties. On the other hand, G1 showed a high increment in Linoleic and Linolenic acids followed by G3 for Linoleic and Linolenic acids. The second oil quality breeding objective is to reduce the percentage of Linolenic acid from the percent 8–10% to less than 3% while maintaining or increasing the level of Linoleic acid44. Lower Linolenic acid is desired to improve the storage characteristics of the oil, while higher Linolenic acid content may be nutritionally desirable. Similar observations were reported by Ref.45. Topaz variety recorded the highest value for Erucic acid (1.77%) followed by AD201 variety, whereas Semu DNK gave the lowest value (1.45%). The increase in Erucic acid content in the Topaz variety may be due to the decrease in Oleic acid content46. Stated that the concentrations of Oleic and Erucic acids were negatively correlated and a high Oleic acid concentration ( > 50%) was always associated with a low Erucic acid concentration ( More

  • in

    Community succession and functional prediction of microbial consortium with straw degradation during subculture at low temperature

    Changes of straw degradation characteristics at different culture stagesCorn straw degradation ratioCorn straw weight loss in M44 at F1 reached 35.90% at 15 ℃ for 21 days, which was greater than that at F5, F8, and F11 by 2.33%, 3.01%, and 3.35%, respectively. There were no significant differences between F8 and F11(Fig. 1).Figure 1Corn straw degradation ratio was measured at different culture stages. The same small letter means there was no significant difference, and different small letters indicate significant differences at p  More

  • in

    Extinction magnitude of animals in the near future

    Selection of environmental-biotic events to be studiedIn global warming events associated with mass extinctions, the current environmental changes are similar to those recorded during the end-Ordovician, end-Guadalupian, and end-Permian mass extinctions. Therefore, I analyzed global surface temperature anomalies, mercury pollution concentrations, and deforestation percentages in these three mass extinctions and in the current crisis. The asteroid impact at the K–Pg boundary and nuclear war cause the formation of stratospheric soot aerosols distributed globally, thus inducing sunlight reductions and global cooling (impact winter and nuclear winter). I also analyzed stratospheric soot aerosols as a possible cause of future extinctions.Most likely case and worst caseThe most likely case corresponds to the reduction of CO2 emissions resulting from human conduct, the protection of forests, and the introduction of anti-pollution measures in the future under the Paris Agreement on Climate change and Sustainable Development Goals (SDGs). The worst case corresponds to the scenario in which humans fail to stop increasing global surface temperatures, pollution, and deforestation until 2100–2200 CE.I use the average of the RCP4.5 and RCP6.0 cases in the Intergovernmental Panel on Climate Change (IPCC)8 as the most likely case of GHG emissions, representing the middle of the four potential GHG emissions cases (RCP2.6, 4.5, 6.0, and 8.5) in Fifth Assessment Report of the IPCC8, approximately corresponding to the middle of SSP2-4.5 and SSP3-7.0 in Sixth Assessment Report of the IPCC9. The timing of decreased global GHG emissions is 2060–2080 CE. Therefore, I use the average GHG emissions and global surface temperature anomalies of the RCP4.5 and RCP6.0 cases as the most likely values and those of the RCP8.5 case as the worst-case scenario, marked by stopping GHG emissions from 2090 to 2100 CE8,9, as this case corresponds to the highest GHG emissions8,9.Surface temperature anomaly, environment, and extinction magnitude dataData on surface temperature anomalies and extinction percentages are from Kaiho4. Changes in industrial GHG emissions and global surface temperature anomalies are sourced from the Fifth and Sixth Assessment Report of the IPCC8,9.Pollution can be represented by mercury concentrations measured in sedimentary rocks recording mass extinctions8 and in recent sediments deposited in seas and lakes25,26 because mercury is toxic to plants and animals and because its sources include volcanic eruptions, meteorite impacts, and the combustion of fossil fuels10,33, which are common sources of pollutants, and because it can be commonly measured from sedimentary rocks recording mass extinctions33. The mercury concentration is related to the CO2 emission amount during global warming because of the common sources of mercury and CO2 (volcanism and fossil fuel combustion influencing global warming). Thus, the future mercury concentrations are estimated based on the CO2 emission amounts estimated by the IPCC8,9. Since mercury and the other pollutants mainly come from oil, coal, and vegetation33, the amount of mercury released should change in parallel with industrial CO2 emissions because there is a good correlation between mercury and CO2 emissions11.Deforestation occurs by the expansion of agricultural areas and urban areas, which are strongly related to human populations13,28. Thus, future deforestation percentages are estimated based on estimated future population data27 (Supplementary Table S2). The severity of deforestation in each event is expressed by the occupancy % of the deforested area in the pre-event forest area in (i) the Permian–Triassic transition marked by the largest mass extinction based on plant fossil records24 and (ii) 2005–2015 CE as a representative of the Anthropocene epoch12,13,28 based on the actual forest area relative to the pre-agriculture phase before 4000 BP. Deforestation is related to the human population because agriculture and urbanization have caused deforestation13,28. I estimate the past and future deforestation percentage using human population data in the past and future21 based on the parallel growth of the human population and deforestation13,28.Amount of stratospheric soot was calculated using a method of Kaiho and Oshima34 (Supplementary Table S1). I obtained global surface temperature anomaly caused by stratospheric soot using Fig. 5 of Kaiho and Oshima34.I then use those data to estimate the future extinction magnitude based on the assumption that the Earth and contemporary life at the time of each crisis are more or less mutually comparable throughout time and to the present day.I estimate the magnitude of the species animal extinction crisis between 2000 and 2500 CE using Figs. 1, 2 and Supplementary Tables S1 and S2 in each cause under the most likely case and worst case under three nuclear war scenarios (zero, minor, and major; Fig. 2d)15 in the PETM and mass extinction cases, respectively (Supplementary Tables S3, S4; Fig. 3). Finally, I estimate the magnitude of current animal extinction crisis by the four causes as an average of the species extinction magnitude by the four causes in Fig. 3. I use two different contribution rates of temperature anomalies, pollution, deforestation, and stratospheric soot by nuclear wars, 1:0.2:0.1:1 for marine animals and 1:0.5:1:1 for terrestrial tetrapods (different contribution case considering lower influence of pollution and deforestation to marine animals rather than terrestrial animals) and 1:1:1:1 for marine animals and 1:1:1:1 for terrestrial tetrapods (equal contribution case considering high influence of pollution and deforestation to marine animals via rain and soil erosion) (Supplementary Tables S5–S9). These contribution rates are estimated as end-members to show ranges of animal species extinction magnitude (%). More

  • in

    Ecologists should create space for a wide range of expertise

    Madhusudan Katti says ecology would benefit from including perspectives from all of Earth’s inhabitants.Credit: Marc Hall

    Decolonizing science

    Science is steeped in injustice and exploitation. Scientific insights from marginalized people have been erased, natural history specimens have been taken without consent and genetics data have been manipulated to back eugenics movements. Without acknowledgement and redress of this legacy, many people from minority ethnic groups have little trust in science and certainly don’t feel welcome in academia — an ongoing barrier to the levels of diversity that many universities claim to pursue.
    In the next of a short series of articles about decolonizing the biosciences, Madhusudan Katti suggests five shifts that ecologists need to make to unravel the effects of colonization on their field. Katti, an evolutionary ecologist at North Carolina State University in Raleigh, would also like to see stronger inclusion of uncredentialed experts and Indigenous communities in research.

    Last year, my colleagues and I wrote a paper highlighting five shifts that would help to decolonize ecology (C. H. Trisos et al. Nature Ecol. Evol. 5, 1205–1212; 2021). Ecologists need to improve how they incorporate varied perspectives, approaches and interpretations from the diverse peoples inhabiting Earth’s natural environments. The five shifts are: the individual need to decolonize one’s mind; understand the history of colonization and how it shaped Western ecology; facilitate access to and dissemination of data; recognize diverse scientific expertise; and establish inclusive research groups. Although it can be difficult to make reforms given how resistant institutions are to change, we are optimistic because we have received invitations to speak on these issues. People are ready for these conversations.
    Decolonizing science toolkit
    My colleagues and I developed a workshop around the five shifts. We have conducted the workshop at my institution, and at the annual conference of the Society for Integrative and Comparative Biology. For each of the shifts, I have participants brainstorm and write down challenges and solutions that might lead to progress in these areas for their own research departments or institutions. We address them, shuffle groups and suggest policy changes and future action.Some organizations are already moving forward with some low-hanging fruit, such as making data and published results more accessible. However, open-access publishing models put an even greater burden of publication costs on authors and perpetuate inequalities, because early-career researchers and those in the global south often can’t afford them.The most contentious area tends to be the reluctance of academia to accept non-credentialed expertise such as traditional knowledge. Universities are in the business of giving out credentials in the form of degrees. If academia no longer requires a PhD, that can be a challenge to that model. There are also few, if any, incentives or rewards to spend time working towards decolonizing academia, even though it takes time and effort away from furthering individual careers.As an Indian American, I would like to see institutions expand antiracism conversations rather than introduce new checklists of things to do. For example, at annual meetings, it would be great to see scientific societies make more connections with the Indigenous communities where we work and invite them to share their perspectives.
    This interview has been edited for length and clarity. More

  • in

    Fertilization treatments affect soil CO2 emission through regulating soil bacterial community composition in the semiarid Loess Plateau

    Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).Article 
    CAS 

    Google Scholar 
    Shakoor, A. et al. Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils—A global meta-analysis. J. Clean Prod. 278, 124019. https://doi.org/10.1016/j.jclepro.2020.124019 (2021).Article 
    CAS 

    Google Scholar 
    Wu, L. et al. Soil organic matter priming and carbon balance after straw addition is regulated by long-term fertilization. Soil Biol. Biochem. 135, 383–391 (2019).Article 
    CAS 

    Google Scholar 
    Chen, F. et al. Effects of N addition and precipitation reduction on soil respiration and its components in a temperate forest. Agr. Forest. Meteorol. 271, 336–345 (2019).Article 

    Google Scholar 
    Lei, J. et al. Temporal changes in global soil respiration since 1987. Nat. Commun. 12, 1–9 (2021).
    Google Scholar 
    Wang, R. et al. Nitrogen application increases soil respiration but decreases temperature sensitivity: Combined effects of crop and soil properties in a semiarid agroecosystem. Geoderma 353, 320–330 (2019).Article 
    CAS 

    Google Scholar 
    Du, K. et al. Influence of no-tillage and precipitation pulse on continuous soil respiration of summer maize affected by soil water in the North China Plain. Sci. Total Environ. 766, 144384. https://doi.org/10.1016/j.scitotenv.2020.144384 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, X. & Chen, H. Y. Plant diversity loss reduces soil respiration across terrestrial ecosystems. Global Change Biol. 25, 1482–1492 (2019).Article 

    Google Scholar 
    Lang, A. K., Jevon, F. V., Ayres, M. P. & Matthes, J. H. Higher soil respiration rate beneath arbuscular mycorrhizal trees in a northern hardwood forest is driven by associated soil properties. Ecosystems 23, 1243–1253 (2020).Article 
    CAS 

    Google Scholar 
    Huang, N. et al. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv. 6, eabb8508 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xiao, H. et al. The regulatory effects of biotic and abiotic factors on soil respiration under different land-use types. Ecol. Indic. 127, 107787. https://doi.org/10.1016/j.ecolind.2021.107787 (2021).Article 
    CAS 

    Google Scholar 
    Liu, Y.-R. et al. New insights into the role of microbial community composition in driving soil respiration rates. Soil Biol. Biochem. 118, 35–41 (2018).Article 
    CAS 

    Google Scholar 
    Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E. E. & van der Heijden, M. G. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 10, 1–10 (2019).Article 
    CAS 

    Google Scholar 
    Chen, L.-F. et al. Linkages between soil respiration and microbial communities following afforestation of alpine grasslands in the northeastern Tibetan Plateau. Appl. Soil Ecol. 161, 103882. https://doi.org/10.1016/j.apsoil.2021.103882 (2021).Article 

    Google Scholar 
    Choudhary, M. et al. Long-term effects of organic manure and inorganic fertilization on sustainability and chemical soil quality indicators of soybean-wheat cropping system in the Indian mid-Himalayas. Agr. Ecosyst. Environ. 257, 38–46 (2018).Article 

    Google Scholar 
    Zhang, M. et al. Increasing yield and N use efficiency with organic fertilizer in Chinese intensive rice cropping systems. Field Crop. Res. 227, 102–109 (2018).Article 

    Google Scholar 
    Bonanomi, G. et al. Repeated applications of organic amendments promote beneficial microbiota, improve soil fertility and increase crop yield. Appl. Soil Ecol. 156, 103714. https://doi.org/10.1016/j.apsoil.2020.103714 (2020).Article 

    Google Scholar 
    Gai, X. et al. Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain. Agr. Water Manage. 208, 384–392 (2018).Article 

    Google Scholar 
    Lai, R. et al. Manure fertilization increases soil respiration and creates a negative carbon budget in a Mediterranean maize (Zea mays L.)-based cropping system. Catena 151, 202–212 (2017).Article 
    CAS 

    Google Scholar 
    Yan, T. et al. Negative effect of nitrogen addition on soil respiration dependent on stand age: Evidence from a 7-year field study of larch plantations in northern China. Agr. Forest Meteorol. 262, 24–33 (2018).Article 

    Google Scholar 
    Peng, Q. et al. Effects of nitrogen fertilization on soil respiration in temperate grassland in Inner Mongolia. China. Environ. Earth Sci. 62, 1163–1171 (2011).Article 
    CAS 

    Google Scholar 
    Zeng, J. et al. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol. Biochem. 92, 41–49 (2016).Article 
    CAS 

    Google Scholar 
    Levine, U. Y., Teal, T. K., Robertson, G. P. & Schmidt, T. M. Agriculture’s impact on microbial diversity and associated fluxes of carbon dioxide and methane. ISME J. 5, 1683–1691 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, Q., Liu, Z., Zhou, J., Xu, X. & Zhu, Y. Long-term straw mulching with nitrogen fertilization increases nutrient and microbial determinants of soil quality in a maize–wheat rotation on China’s Loess Plateau. Sci. Total. Environ. 775, 145930. https://doi.org/10.1016/j.scitotenv.2021.145930 (2021).Article 
    CAS 

    Google Scholar 
    Wang, J. et al. The impact of fertilizer amendments on soil autotrophic bacteria and carbon emissions in maize field on the semiarid Loess Plateau. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.664120 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Subke, J. A., Inglima, I. & Francesca Cotrufo, M. Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Global Change Biol. 12, 921–943 (2006).Article 

    Google Scholar 
    Yan, W., Zhong, Y., Liu, J. & Shangguan, Z. Response of soil respiration to nitrogen fertilization: Evidence from a 6-year field study of croplands. Geoderma 384, 114829. https://doi.org/10.1016/j.geoderma.2020.114829 (2021).Article 
    CAS 

    Google Scholar 
    Lamptey, S., Xie, J., Li, L., Coulter, J. A. & Jagadabhi, P. S. Influence of organic amendment on soil respiration and maize productivity in a semi-arid environment. Agronomy 9, 611. https://doi.org/10.3390/agronomy9100611 (2019).Article 
    CAS 

    Google Scholar 
    Chen, Z. et al. Nitrogen fertilization stimulated soil heterotrophic but not autotrophic respiration in cropland soils: A greater role of organic over inorganic fertilizer. Soil Biol. Biochem. 116, 253–264 (2018).Article 
    CAS 

    Google Scholar 
    Zheng, J., Zhang, X., Li, L., Zhang, P. & Pan, G. Effect of long-term fertilization on C mineralization and production of CH4 and CO2 under anaerobic incubation from bulk samples and particle size fractions of a typical paddy soil. Agr. Ecosyst. Environ. 120, 129–138 (2007).Article 
    CAS 

    Google Scholar 
    Shen, J., Zhang, L., Guo, J., Ray, J. & He, J. Impact of long-term fertilization practices on the abundance and composition of soil bacterial communities in Northeast China. Appl. Soil Ecol. 46, 119–124 (2010).Article 

    Google Scholar 
    Chen, Q., An, X., Zheng, B., Ma, Y. & Su, J. Long-term organic fertilization increased antibiotic resistome in phyllosphere of maize. Sci. Total. Environ. 645, 1230–1237 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, W., Yu, C., Wang, X. & Hai, L. Increased abundance of nitrogen transforming bacteria by higher C/N ratio reduces the total losses of N and C in chicken manure and corn stover mix composting. Bioresource Technol. 297, 122410. https://doi.org/10.1016/j.biortech.2019.122410 (2020).Article 
    CAS 

    Google Scholar 
    Chen, X. et al. Microbial carbon use efficiency, biomass turnover, and necromass accumulation in paddy soil depending on fertilization. Agr. Ecosyst. Environ. 292, 106816. https://doi.org/10.1016/j.agee.2020.106816 (2020).Article 
    CAS 

    Google Scholar 
    Wang, J. et al. Nitrogen application increases soil microbial carbon fixation and maize productivity on the semiarid Loess Plateau. Plant Soil https://doi.org/10.1007/s11104-022-05457-7 (2022).Article 

    Google Scholar 
    Li, J. et al. The more straw we deep-bury, the more soil TOC will be accumulated: When soil bacteria abundance keeps growing. J. Soil Sediment 22, 162–171 (2022).Article 

    Google Scholar 
    Siczek, A., Frąc, M., Wielbo, J. & Kidaj, D. Benefits of flavonoids and straw mulch application on soil microbial activity in pea rhizosphere. Int. J. Environ. Sci. Te. 15, 755–764 (2018).Article 
    CAS 

    Google Scholar 
    Zhao, S. et al. Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils. Appl. Soil Ecol. 138, 123–133 (2019).Article 

    Google Scholar 
    Zhang, S. et al. Cow manure application effectively regulates the soil bacterial community in tea plantation. BMC Microbiol. 20, 1–11 (2020).Article 

    Google Scholar 
    Jiang, Y. et al. Crop rotations alter bacterial and fungal diversity in paddy soils across East Asia. Soil Biol. Biochem. 95, 250–261 (2016).Article 
    CAS 

    Google Scholar 
    Drenovsky, R., Vo, D., Graham, K. & Scow, K. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb. Ecol. 48, 424–430 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rath, K. M., Fierer, N., Murphy, D. V. & Rousk, J. Linking bacterial community composition to soil salinity along environmental gradients. ISME J. 13, 836–846 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhao, F. et al. Changes of the organic carbon content and stability of soil aggregates affected by soil bacterial community after afforestation. CATENA 171, 622–631 (2018).Article 
    CAS 

    Google Scholar 
    Goldfarb, K. C. et al. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front. Microbiol. 2, 94. https://doi.org/10.3389/fmicb.2011.00094 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhao, J. et al. Response of soil microbial community to vegetation reconstruction modes in mining areas of the Loess Plateau, China. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.714967 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, Y. et al. Fertilization shapes bacterial community structure by alteration of soil pH. Front. Microbiol. 8, 1325. https://doi.org/10.3389/fmicb.2017.01325 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, X. et al. Organic amendments drive shifts in microbial community structure and keystone taxa which increase C mineralization across aggregate size classes. Soil Biol. Biochem. 153, 108062. https://doi.org/10.1016/j.soilbio.2020.108062 (2021).Article 
    CAS 

    Google Scholar 
    Lin, Y. et al. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biol. Biochem. 134, 187–196 (2019).Article 
    CAS 

    Google Scholar 
    Woyke, T. et al. Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 443, 950–955 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, B., Zhang, J., Liu, Y., Shi, P. & Wei, G. Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biol. Biochem. 118, 178–186 (2018).Article 
    CAS 

    Google Scholar 
    Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324 (2010).Article 
    PubMed 

    Google Scholar 
    Deng, Y. et al. Molecular ecological network analyses. BMC Bioinf. 13, 1–20 (2012).Article 

    Google Scholar 
    Liao, H. et al. Complexity of bacterial and fungal network increases with soil aggregate size in an agricultural Inceptisol. Appl. Soil Ecol. 154, 103640. https://doi.org/10.1016/j.apsoil.2020.103640 (2020).Article 

    Google Scholar 
    Herren, C. M. & McMahon, K. D. Keystone taxa predict compositional change in microbial communities. Environ. Microbiol. 20, 2207–2217 (2018).Article 
    PubMed 

    Google Scholar 
    Zhang, C., Jiao, S., Shu, D. & Wei, G. Inter-phylum negative interactions affect soil bacterial community dynamics and functions during soybean development under long-term nitrogen fertilization. Stress Biol. 1, 1–13 (2021).Article 
    CAS 

    Google Scholar 
    Su, Y. G., Huang, G., Lin, Y. J. & Zhang, Y. M. No synergistic effects of water and nitrogen addition on soil microbial communities and soil respiration in a temperate desert. CATENA 142, 126–133 (2016).Article 
    CAS 

    Google Scholar 
    Yang, C. et al. Assessing the effect of soil salinization on soil microbial respiration and diversities under incubation conditions. Appl. Soil Ecol. 155, 103671. https://doi.org/10.1016/j.apsoil.2020.103671 (2020).Article 

    Google Scholar 
    Banerjee, S. et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 97, 188–198 (2016).Article 
    CAS 

    Google Scholar 
    Chen, L.-F., He, Z.-B., Zhao, W.-Z., Kong, J.-Q. & Gao, Y. Empirical evidence for microbial regulation of soil respiration in alpine forests. Ecol. Indic. 126, 107710. https://doi.org/10.1016/j.ecolind.2021.107710 (2021).Article 
    CAS 

    Google Scholar 
    Liu, S. et al. Decoupled diversity patterns in bacteria and fungi across continental forest ecosystems. Soil Biol. Biochem. 144, 107763. https://doi.org/10.1016/j.soilbio.2020.107763 (2020).Article 
    CAS 

    Google Scholar 
    Lynch, M. D. & Neufeld, J. D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217–229 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, L. et al. Competitive interaction with keystone taxa induced negative priming under biochar amendments. Microbiome 7, 1–18 (2019).
    Google Scholar 
    Chiba, A. et al. Soil bacterial diversity is positively correlated with decomposition rates during early phases of maize litter decomposition. Microorganisms 9, 357 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, S., Wang, S., Fan, M., Wu, Y. & Shangguan, Z. Interactions between biochar and nitrogen impact soil carbon mineralization and the microbial community. Soil Till. Res. 196, 104437. https://doi.org/10.1016/j.still.2019.104437 (2020).Article 

    Google Scholar 
    Bao, S. Soil agrochemical analysis 30 (China Agricultural Press, Beijing, Chinese, 2000).
    Google Scholar 
    Zhai, L., Liu, H., Zhang, J., Huang, J. & Wang, B. Long-term application of organic manure and mineral fertilizer on N2O and CO2 emissions in a red soil from cultivated maize-wheat rotation in China. Agr. Sci. China 10, 1748–1757 (2011).Article 

    Google Scholar 
    Xia, W. et al. Autotrophic growth of nitrifying community in an agricultural soil. ISME J. 5, 1226–1236 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pruesse, E. et al. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids. Res. 35, 7188–7196 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B. 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    Layeghifard, M., Hwang, D. M. & Guttman, D. S. Disentangling interactions in the microbiome: A network perspective. Trends Microbiol. 25, 217–228 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Liaw, A. & Wiener, M. Classification and regression by randomForest. R news 2, 18–22 (2002).
    Google Scholar 
    Archer, E. rfPermute: Estimate permutation p-values for random Forest importance metrics. R package version 2(1), 81 (2020).MathSciNet 

    Google Scholar 
    Hooper, D., Coughlan, J. & Mullen, M. Structural equation modelling: Guidelines for determining model fit. Electron. J. Bus. Res. Methods 6(1), 53–60 (2008).
    Google Scholar  More

  • in

    Drivers and potential distribution of anthrax occurrence and incidence at national and sub-county levels across Kenya from 2006 to 2020 using INLA

    Data sourcesWe analyzed records of confirmed and suspected livestock deaths attributed to anthrax occurring from 1 January 2006 to 31 December 2020 across Kenya (available online along with full code for the analysis in this paper https://github.com/spatialmodels/Kenyan_anthrax_model). The case records covering the entire country were reported from the Kenya Directorate of Veterinary Services (KDVS) located in Nairobi and the five Regional Veterinary Investigation Laboratories located in Nakuru, Eldoret, Karatina, Kericho, and Mariakani. The anthrax outbreaks were considered as any livestock (cattle, goats, sheep, pigs, camels) or wildlife deaths confirmed through clinical and laboratory diagnosis. Clinical diagnosis was defined as an acute disease accompanied by sudden death, bleeding from body orifices, swelling, lack of rigor mortis, and oedema of the neck and face in pigs. Laboratory confirmation was done through methylene blue staining to identify the characteristic bacterial capsule and the rod-shaped bacilli in clinical specimens collected from the infected carcasses.We extracted data from old paper records of livestock anthrax cases into Microsoft Excel. These records comprised the location of the livestock outbreaks, name of the farmer, number of animals dead and herd size, species affected, date, method of diagnosis, and the details of the reporting veterinary doctor. Since the locations of livestock anthrax outbreaks were reported at sub-county/district levels (districts refer to the old naming given to current sub-counties before the rollout of the current constitution), we recorded the geographic coordinates of livestock cases at the district level. During data cleaning, we removed duplicate coordinates, outliers, and entries with missing variables. In the end, we had 540 livestock cases that we used for analysis. The spatial granularity and prolonged surveillance period of these data allow for a more detailed perspective on the major drivers of anthrax across Kenya. We also collected wildlife data from the Kenya Wildlife Service (KWS). Most of the data from KWS was lacking information on the geographic coordinates of the outbreaks, so we visited the actual locations and collected the coordinates. We recorded 20 wildlife cases that we used to validate the performance of the spatial model.Processing socio-economic and ecological covariatesWe gathered geospatial data on ecological and socio-economic correlates of B. anthracis ecology and distribution. For the spatial model, we obtained the following variables: rainfall, vegetation, elevation, distance to permanent water bodies, and soil patterns. For the spatiotemporal models, we used human population estimates (total population, population density, and male and female population per sub-county), host population (livestock producing households, total number of indigenous, exotic dairy, and exotic beef cattle per sub-county), and agricultural practices that lead to soil disturbance (agricultural area under cultivation, number of farming households, and crop-producing households).We chose seven environmental covariates for the spatial model based on known correlates of B. anthracis suitability identified from previous peer-reviewed studies9,10,13,15,21,22,23. These comprised three soil variables, including soil pH (× 10) in H2O at a depth of 0 cm, exchangeable calcium at a depth of 0–20 cm, and soil water availability (volume of water per unit volume of soil) retrieved at a resolution of 250 m from the International Soil Reference and Information Centre (ISRIC) data hub (https://data.isric.org/geonetwork/srv/eng/catalog.search#/home). We used the shallowest depth available because although the bacterial spores can persist in the surface soil for up to five years and indefinitely in much deeper soils24, the spores in the surface soils are more likely to trigger host infection25. We retrieved monthly Enhanced Vegetation Index (EVI) data from 1 January 2006 to 31 December 2020 (180 tiles in total) from The Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices (MYD13A3 v.6) at a resolution of 1 km2 (https://lpdaac.usgs.gov/products/myd13a3v006/). The mean EVI was then calculated using QGIS by averaging all 180 tiles. EVI reduces variations in the canopy background and retains precision over dense vegetation conditions. Monthly Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) rainfall data from rain gauge and satellite observations was retrieved from the United States Geological Service (USGS) at a resolution of 0.05 degrees (https://climateserv.servirglobal.net/map). Since the rainfall data also comprised 180 tiles, the mean rainfall was calculated by averaging all 180 tiles using QGIS. We also collected data on the distance to permanent water bodies from a global hydrology map obtained from ArcGIS version 10.6.1.26 and elevation data at 1 km2 resolution from the Global Multi-resolution Terrain Elevation Data (GMTED2010) dataset available from USGS (Table 1).Table 1 Summary of the environmental variables used in the spatial model including variable name, unit, and spatial resolution.Full size tableFor the spatiotemporal sub-county-based models, we accessed the population data per sub-county (total population, male population, female population, and population density) from the 2019 Kenyan census report provided via the Humanitarian Data Exchange platform (https://data.humdata.org/dataset/kenya-population-per-county-from-census-report-2019). We also obtained data on livestock population (numbers of exotic dairy and beef cattle, and indigenous cattle), area of agricultural land in hectares, number of farming households, and the number of households actively practicing agriculture (crop production and livestock production) aggregated to the sub-county level from the 2019 Kenya Population and Housing Census volume IV provided by the OpenAfrica platform (https://open.africa/dataset/2019-kenya-population-and-housing-census).We conducted data exploration to check for outliers, collinearity, and the relationships between the covariates and the response variables. We used Cleveland dot plots to check for outliers. We measured collinearity using variance inflation factors (VIF), Pearson correlation coefficients, and pairs plots. For VIF scores, the covariates with scores higher than 3 were eliminated one-by-one until all the scores were equal to or less than 3. All the covariates included in the study had correlation coefficient values of less than 0.6 (Figs. 1, 2).Figure 1Results of correlation between covariates using Pearson’s correlation coefficient test for the spatial model. Correlation between covariates is shown by red numbers (negative correlation) and blue numbers (positive correlation). Correlations with a p-value  > 0.01 are regarded as insignificant and the correlation coefficient values are left blank. The figure was generated using R software v. 4.1.028.Full size imageFigure 2Results of correlation between covariates using Pearson’s correlation coefficient test for the spatiotemporal model. Correlation between covariates is shown by red numbers (negative correlation) and blue numbers (positive correlation). Correlations with a p-value  > 0.01 are regarded as insignificant and the correlation coefficient values are left blank. The figure was generated using R software v. 4.1.028.Full size imageSpatial model analysisWe used R version 4.1.0 together with the packages raster version 4.1.127, and R-INLA version 4.1.128 to conduct the data processing and statistical modelling. The R-INLA package applies the INLA framework in designing models. We used Quantum Global Information System (QGIS) version 3.16 (https://qgis.org) to create a 50 km buffer polygon around all the observed livestock outbreak points. We then created a 20 km2 grid within this buffer and counted the number of points within each grid cell to create a regular lattice with a given number of counts per cell. We then extracted the coordinates of the centroids of each cell to create marked locations with a given number of livestock cases per location. We essentially converted the data into a count process (number of livestock outbreaks per location). We had 95 cells with one or more counts which formed our new presence locations. We then randomly selected 95 pseudoabsences within the 50 km buffer polygon but at a distance of 10 km from the presence locations as shown in Fig. 3.Figure 3Spatial distribution of thinned livestock anthrax case locations across Kenya from 2006 to 2020. The map shows livestock anthrax case locations (n = 540) thinned to pixels of 20 km2 to form 95 new marked locations. The orange dots show the new presence locations which are marked points with colour intensity representing the number of livestock cases per location. The white triangles show the random pseudo-absence locations. The yellow squares are the wildlife cases obtained from the Kenya Wildlife Service. The green polygon is the background calibration buffer used to derive the random pseudo-absence locations. This map was generated using Quantum Geographical Information Systems (QGIS) v. 3.16.11 (https://www.qgis.org/en/site/forusers/download.html).Full size imageWe defined a Zero-inflated Poisson (ZIP) regression model with spatially correlated random effects, implemented as a generalized additive model (GAM) with anthrax incidence as the response variable. The model is defined as shown in Eqs. (1), (2), and (3)$${C}_{i} sim zero-inflated, Poisson left({mu }_{i},{p}_{i}right),$$
    (1)
    $$expectedleft({C}_{i}right)=left(1- {p}_{i}right)times {mu }_{i},$$
    (2)
    $$mathrm{log}left({mu }_{i}right)= alpha + sum_{j}{beta }_{j}{X}_{j,i}+ sum_{k}{delta }_{k,i}+{u}_{i},$$
    (3)
    where (Ci) denotes the observed number of anthrax livestock cases at location i, ({mu }_{i}) and ({p}_{i}) are parameters of the ZIP distribution. (expectedleft({C}_{i}right)) refers to the expected number of outbreaks at location i, (alpha) is the intercept, (beta) are the beta coefficients for the covariates, X is the matrix with all the covariates, (delta k) are the non-linear effects (cubic regression splines), and ({u}_{i}) is the spatial random effect at location i.To test whether the addition of the GAM smoothers and the spatially correlated random effects improved the fit of the model, we also considered candidate models without smoothers and spatial random effects. We tested three versions of the spatial model: the first used distance to water, elevation, and EVI as linear covariates without spatial random effects, the second applied non-linear terms to elevation and EVI also without spatial random effects, and the final model was similar to the second model but with the addition of spatial random effects. We then measured the DIC values of the candidate models to select the final spatial model.We conducted model validation by assessing the posterior distributions of the parameters and the residuals for adherence to the distributional assumptions. We checked whether the residuals were independent and normally distributed. We also plotted a sample variogram to check for any residual spatial auto-correlation using a well-defined method29. We then ran 1000 simulations to check whether the model was capable of handling zeros.The estimated model was used to map posterior predicted distributions for the incidence of anthrax disease (plotted as mean and 95% credible intervals). We validated the model using independent evaluation data withheld from the model calibration. This evaluation dataset comprises the wildlife cases collected from KWS. We then calculated the sensitivity by estimating the proportion of wildlife case locations correctly identified by the model, using the minimum presence training threshold (minimum value of the fitted presence training points).Spatiotemporal model analysisOur second objective was to investigate the socio-economic, population-based drivers of livestock anthrax risk at the sub-county level. These socioeconomic variables are usually collected at the sub-county level. Therefore, we developed a second areal model with the number of observations per sub-county as the new response variable. The occurrence data, gathered by the Kenya Directorate for Veterinary Services (KDVS), consisted of monthly case reports of livestock anthrax cases collected by all 290 sub-counties across Kenya between January 2006 to December 2020. We analyzed the whole monthly case time series from the year 2006 to 2020 and mapped out the annual counts of confirmed and suspected livestock anthrax cases across Kenya at the sub-county level to analyse the spatial and temporal trends throughout the surveillance period. The sub-county shapefiles that were used for mapping and modelling were derived from Humanitarian Data Exchange version 1.57.16 under a Creative Commons Attribution for Intergovernmental Organisations license (https://data.humdata.org/dataset/ken-administrative-boundaries).Due to the sparsity of data, we aggregated the monthly case counts and modelled the quarterly occurrence and incidence of anthrax at the sub-county-level scale, including spatial and temporal effects, to determine the spatial socio-economic drivers of livestock anthrax disease risk across Kenya. We used R-INLA version 4.1.1 (26) to conduct the data processing and statistical modelling. We used quarterly case counts that were confirmed per sub-county across the 15 years of surveillance (2006–2020) as a measure of anthrax incidence. Due to the zero-inflated and over-dispersed nature of the distribution, which is difficult to fit incidence counts, we employed a two-stage modelling approach using the hurdle model distribution to separately model anthrax occurrence (presence or absence) across all sub-counties via logistic regression, and incidence counts using a zero-inflated Poisson distribution. We were then able separately to estimate the contributions of the various socio-ecological factors that drive disease occurrence (the presence or absence of anthrax) and total incidence counts.We model the quarterly anthrax occurrence (n = 290 sub-counties over 60 quarters; 17,400 observations) where ({Y}_{i,t}) refers to the binary presence (denoted as 1) or absence (denoted as 0) of anthrax in sub-county i during year t, and ({P}_{i,t}) is the probability of anthrax occurrence, thus:$${Y}_{i,t} sim Bernoullileft({P}_{i,t}right).$$
    (4)
    We model quarterly anthrax incidence counts ({C}_{i,t}) using a zero-inflated Poisson process with parameters ({mu }_{i,t}) and ({p}_{i,t}) (see Eq. (5)). Equation (6) denotes the expected values for the ZIP distribution at sub-county i during year t.$${C}_{i,t} sim Zero-inflated, Poisson left({mu }_{i,t},{p}_{i,t}right),$$
    (5)
    $$expectedleft({C}_{i,t}right)=left(1- {p}_{i,t}right)times {mu }_{i,t}.$$
    (6)
    Both the Bernoulli and the ZIP distributions are modelled separately as functions of the covariates and the spatial and temporal random effects using a general linear predictor as shown in Eqs. (7) and (8):$$logit left({P}_{i,t}right)= alpha + sum_{j}{beta }_{j}{X}_{j,i}+{u}_{i,t}+{v}_{i,t}+{y}_{i,t},$$
    (7)
    $$mathrm{log}left({mu }_{i,t}right)= alpha + sum_{j}{beta }_{j}{X}_{j,i}+{u}_{i,t}+{v}_{i,t}+{y}_{i,t},$$
    (8)
    $${y}_{i,t}= {y}_{i,t-1}+ {w}_{i,t},$$
    (9)
    where α denotes the intercept; (X) signifies a matrix made up of the socio-economic covariates accompanied by their linear coefficients denoted as (beta); spatiotemporal reporting trends at the sub-county level were accounted for in the models using spatially structured (({u}_{i,t}); conditional autoregressive) and unstructured noise (({v}_{i,t}); i.i.d—independent and identically distributed) random-effects specified jointly as a Besag–York–Mollie model30,31, as well as temporally structured (({y}_{i,t})) random effects of the first order where ({w}_{i,t}) is a pure noise term that is normally distribute with a mean of zero and a variance of σ2. We used uninformative priors with a Gaussian distribution for the fixed effects and penalized complexity priors for the hyperparameters of all the random effects.For the two spatiotemporal models, we applied linear effects for all the variables: population density, total population, number of exotic dairy cattle, agricultural land area, and number of livestock producing households. We scaled the continuous covariates by standardizing them (to a mean of 0 and standard deviation of 1) before fitting the linear fixed effects.We used R-INLA to conduct model inference and selection and used DIC to evaluate the model fit for both the occurrence and incidence models. For both models (occurrence and incidence), we created 4 candidate models, compared them, and selected the model with the lowest DIC as the final model. The candidate models included: a baseline intercept only model; a second model with the intercept and covariates; a third model with the intercept, covariates, and the spatial random effects; and a fourth model with the intercept, covariates, spatial random effects, and a temporal trend.We evaluated the posterior distributions of the parameters and the residuals for adherence to the distributional assumptions. We assessed the residuals to check whether they were independent and normally distributed. We also plotted the residuals against the covariates to check for any non-linear patterns using a well-defined method29. We then ran 1000 simulations to check whether the model was capable of handling zeros.Ethics statementLicence to conduct the research was granted by the National Council for Science, Technology, and Innovation (NACOSTI) under reference number 651983, and the Kenya Wildlife Service under reference number KWS-0003-01-21. More