Extensive range contraction predicted under climate warming for two endangered mountaintop frogs from the rainforests of subtropical Australia
Beniston, M., Diaz, H. F. & Bradley, R. S. Climatic change at high elevation sites: An overview. Clim. Change 36, 233–251 (1997).Article
Google Scholar
Chape, S., Spalding, M. & Jenkins, M. The world’s protected areas: Status, values, and prospects in the twenty-first century. Bioscience 59(7), 623–624 (2009).
Google Scholar
Körner, C. Mountain biodiversity, its causes and function. Ambio 33, 11–17 (2004).Article
Google Scholar
Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).Article
Google Scholar
Forero-Medina, G., Joppa, L. & Pimm, S. L. Constraints to species’ elevational range shifts as climate changes. Conserv. Biol. 25, 163–171 (2011).Article
PubMed
Google Scholar
Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: Competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B 279, 2072–2080 (2012).Article
PubMed
PubMed Central
Google Scholar
Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl. Acad. Sci. 115, 11982–11987 (2018).Article
CAS
PubMed
PubMed Central
ADS
Google Scholar
Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024 (2011).Article
CAS
PubMed
ADS
Google Scholar
Lenoir, J. & Svenning, J. C. Climate-related range shifts: A global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).Article
Google Scholar
Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).Article
CAS
PubMed
ADS
Google Scholar
Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl. Acad. Sci. 117, 4211–4217 (2020).Article
PubMed
PubMed Central
ADS
Google Scholar
Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e200114 (2016).Article
Google Scholar
Orians, G. H. & Milewski, A. V. Ecology of Australia: The effects of nutrient-poor soils and intense fires. Biol. Rev. 82, 393–423 (2007).Article
PubMed
Google Scholar
Laurance, W. F. et al. The 10 Australian ecosystems most vulnerable to tipping points. Biol. Cons. 144, 1472–1480 (2011).Article
Google Scholar
Rahbek, C. et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity?. Science 365, 1108–1113 (2019).Article
CAS
PubMed
ADS
Google Scholar
Williams, S. E., Bolitho, E. E. & Fox, S. Climate change in Australian tropical rainforests: An impending environmental catastrophe. Proc. R. Soc. Lond. B 270, 1887–1892 (2003).Article
Google Scholar
Mahony, M.J. The amphibians. in Remnants of Gondwana: A Natural and Social History of the Gondwana Rainforests of Australia. (eds. Kitching, R.L., Braithwaite, R., & Cavanaugh, J.) (Surrey Beatty & Sons, 2010).Kooyman, R. M., Watson, J. & Wilf, P. Protect Australia’s gondwana rainforests. Science 367, 1083–1083 (2020).Article
PubMed
ADS
Google Scholar
Narsey, S. et al. (2020). Impact of climate change on cloud forests in the Gondwana Rainforests of Australia World Heritage Area. Earth Systems and Climate Change Hub Report.Newell, D. An update on frog declines from the forests of subtropical eastern Australia in Status of Conservation and Decline of Amphibians: Australia, New Zealand, and Pacific Islands (eds. Heatwole H. and Rowley J. L.) 29–37 (CSIRO, 2018).DAWE. Bushfire Impacts Vol. 2021 (Commonwealth Department of Agriculture Water and Environment, 2020).
Google Scholar
Collins, L. et al. The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire. Environ. Res. Lett. 16, 044029 (2021).Article
ADS
Google Scholar
Filkov, A. I., Ngo, T., Matthews, S., Telfer, S. & Penman, T. D. Impact of Australia’s catastrophic 2019/20 bushfire season on communities and environment: Retrospective analysis and current trends. J. Saf. Sci. Resil. 1, 44–56 (2020).
Google Scholar
Blunden, J. & Arndt, D. S. State of the climate in 2019. Bull. Am. Meteor. Soc. 101, S1–S429 (2020).Article
Google Scholar
Zhongming, Z., Linong, L., Wangqiang, Z. & Wei, L. AR6 Climate Change 2021: The Physical Science Basis (Springer, 2021).
Google Scholar
Laidlaw, M. J., McDonald, W. J. F., Hunter, R. J., Putland, D. A. & Kitching, R. L. The potential impacts of climate change on Australian subtropical rainforest. Aust. J. Bot. 59, 440–449 (2011).Article
Google Scholar
Blaustein, A. R. et al. Direct and indirect effects of climate change on amphibian populations. Diversity 2, 281–313 (2010).Article
Google Scholar
Li, Y., Cohen, J. M. & Rohr, J. R. Review and synthesis of the effects of climate change on amphibians. Integr. Zool. 8, 145–161 (2013).Article
PubMed
Google Scholar
Carey, C. & Alexander, M. A. Climate change and amphibian declines: Is there a link?. Divers. Distrib. 9, 111–121 (2003).Article
Google Scholar
Cohen, J. M., Civitello, D. J., Venesky, M. D., McMahon, T. A. & Rohr, J. R. An interaction between climate change and infectious disease drove widespread amphibian declines. Glob. Change Biol. 25, 927–937 (2019).Article
ADS
Google Scholar
Geyle, H. M. et al. Red hot frogs: Identifying the Australian frogs most at risk of extinction. Pac. Conserv. Biol. 28, 211–223 (2021).Article
Google Scholar
Gillespie, G. R. et al. Status and priority conservation actions for Australian frog species. Biol. Conserv. 247, 108543 (2020).Article
Google Scholar
Almeida, A. M. et al. Prediction scenarios of past, present, and future environmental suitability for the Mediterranean species Arbutus unedo L. Sci. Rep. 12, 1–15 (2022).Article
Google Scholar
Lima, V. P. et al. Climate change threatens native potential agroforestry plant species in Brazil. Sci. Rep. 12, 1–14 (2022).Article
ADS
Google Scholar
Tiwari, S. et al. Modelling the potential risk zone of Lantana camara invasion and response to climate change in eastern India. Ecol. Process. 11(1), 1–13 (2022).Article
Google Scholar
Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).Article
Google Scholar
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article
Google Scholar
Galante, P. J. et al. The challenge of modeling niches and distributions for data-poor species: a comprehensive approach to model complexity. Ecography 41, 726–736 (2018).Article
Google Scholar
Li, J. et al. Climate refugia of snow leopards in High Asia. Biol. Conserv. 203, 188–196 (2016).Article
Google Scholar
Searcy, C. A. & Shaffer, B. H. Do ecological niche models accurately identify climatic determinants of species ranges?. Am. Nat. 187, 423–435 (2016).Article
PubMed
Google Scholar
Melo-Merino, S. M., Reyes-Bonilla, H. & Lira-Noriega, A. Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecol. Model. 415, 108857 (2020).Article
Google Scholar
Anstis, M. Tadpoles and Frogs of Australia (New Holland Publishers Pty Limited, 2017).
Google Scholar
Knowles, R., Mahony, M., Armstrong, J. & Donnellan, S. Systematics of sphagnum frogs of the Genus Philoria (Anura: Myobatrachidae) in Eastern Australia, with the description of two new species. Rec. Aust. Mus. 56, 57–74 (2004).Article
Google Scholar
Mahony, M. J. et al. A new species of Philoria (Anura: Limnodynastidae) from the uplands of the Gondwana Rainforests world heritage area of eastern Australia. Zootaxa 5104, 209–241 (2022).Article
PubMed
Google Scholar
Bolitho, L. J., Rowley, J. J. L., Hines, H. B. & Newell, D. Occupancy modelling reveals a highly restricted and fragmented distribution in a threatened montane frog (Philoria kundagungan) in subtropical Australian rainforests. Aust. J. Zool. 67, 231–240 (2021).Article
Google Scholar
Heard, G. et al. Post-fire impact assessment for priority frogs: northern Philoria. (NESP Threatened Species Recovery Hub Project 8.1.3 report, Brisbane, 2021).Vanderwal, J. All Future Climate Layers for Australia: 1 km Resolution (James Cook University, 2012).
Google Scholar
Torkkola, J. J., Chauvenet, A. L. M., Hines, H. & Oliver, P. M. Distributional modelling, megafires and data gaps highlight probable underestimation of climate change risk for two lizards from Australia’s montane rainforests. Austral Ecol. 47(2), 365–379 (2021).Article
Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article
Google Scholar
Geoscience, A. Digital Elevation Model (DEM) 25 Metre Grid of Australia derived from LiDAR. (Geoscience Australia, 2015).Thuiller, W., Georges, D., Engler, R. & Breiner, F. (2014). biomod2: Ensemble platform for species distribution modeling. R package version 3.1-64. http://CRANR-project.org/package=biomod2. Accessed Feb 2021.Feng, X., Park, D. S., Liang, Y., Pandey, R. & Papeş, M. Collinearity in ecological niche modeling: Confusions and challenges. Ecol. Evol. 9, 10365–10376 (2019).Article
PubMed
PubMed Central
Google Scholar
Thuiller, W. BIOMOD: Optimising predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).Article
ADS
Google Scholar
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G. & Franklin, A. B. Estimating site occupancy, colonisation, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207 (2003).Article
Google Scholar
Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl. Acad. Sci. 117, 19656–19657 (2020).Article
CAS
PubMed
PubMed Central
ADS
Google Scholar
Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).Article
CAS
PubMed
ADS
Google Scholar
Campos-Cerqueira, M. & Mitchell Aide, T. Lowland extirpation of anuran populations on a tropical mountain. PeerJ 2017, 1–10 (2017).
Google Scholar
Pounds, J. A., Fogden, M. P. L. & Campbell, J. H. Biological response to climate change on a tropical mountain. Nature 398, 611–615 (1999).Article
CAS
ADS
Google Scholar
Raxworthy, C. J. et al. Extinction vulnerability of tropical montane endemism from warming and upslope displacement: A preliminary appraisal for the highest massif in Madagascar. Glob. Change Biol. 14, 1703–1720 (2008).Article
ADS
Google Scholar
Fordham, D. A. et al. Extinction debt from climate change for frogs in the wet tropics. Biol. Lett. 12, 20160236 (2016).Article
PubMed
PubMed Central
Google Scholar
Hoffmann, E. P., Williams, K., Hipsey, M. R. & Mitchell, N. J. Drying microclimates threaten persistence of natural and translocated populations of threatened frogs. Biodivers. Conserv. 30(1), 15–34 (2020).Article
Google Scholar
Scheele, B. C., Driscoll, D. A., Fischer, J. & Hunter, D. A. Decline of an endangered amphibian during an extreme climatic event. Ecosphere 3, 101 (2012).Article
Google Scholar
Legge, S. et al. Rapid assessment of the biodiversity impacts of the 2019–2020 Australian megafires to guide urgent management intervention and recovery and lessons for other regions. Divers. Distrib. 28, 571–591 (2022).Article
Google Scholar
Canadell, J. G. et al. Multi-decadal increase of forest burned area in Australia is linked to climate change. Nat. Commun. 12, 6921 (2021).Article
CAS
PubMed
PubMed Central
ADS
Google Scholar
Hisano, M., Searle, E. B. & Chen, H. Y. H. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev. 93, 439–456 (2018).Article
PubMed
Google Scholar
Holz, A., Wood, S. W., Veblen, T. T. & Bowman, D. M. J. S. Effects of high-severity fire drove the population collapse of the subalpine Tasmanian endemic conifer Athrotaxis cupressoides. Glob. Change Biol. 21, 445–458 (2015).Article
ADS
Google Scholar
Hutley, L. B., Doley, D., Yates, D. J. & Boonsaner, A. Water balance of an australian subtropical rainforest at altitude: The ecological and physiological significance of intercepted cloud and fog. Aust. J. Bot. 45, 311–329 (1997).Article
Google Scholar
Godfree, R. C. et al. Implications of the 2019–2020 megafires for the biogeography and conservation of Australian vegetation. Nat. Commun. 12, 1023 (2021).Article
CAS
PubMed
PubMed Central
ADS
Google Scholar
Hennessy, K. et al. Climate Change Impacts on Fire-Weather in South-East Australia (Commonwealth Scientific and Industrial Research Organisation, 2005).
Google Scholar
Moriondo, M. et al. Potential impact of climate change on fire risk in the Mediterranean area. Clim. Res. 31, 85–95 (2006).Article
Google Scholar
Pitman, A. J., Narisma, G. T. & McAneney, J. The impact of climate change on the risk of forest and grassland fires in Australia. Clim. Change 84, 383–401 (2007).Article
ADS
Google Scholar
Caughley, G. Directions in conservation biology. J. Anim. Ecol. 63, 215–244 (1994).Article
Google Scholar
Scheele, B. C. et al. Conservation translocations for amphibian species threatened by chytrid fungus: A review, conceptual framework, and recommendations. Conserv. Sci. Pract. 3, e524 (2021).
Google Scholar
Rudin-Bitterli, T. S., Evans, J. P. & Mitchell, N. J. Geographic variation in adult and embryonic desiccation tolerance in a terrestrial-breeding frog. Evolution 74, 1186–1199 (2020).Article
CAS
PubMed
Google Scholar
Ashcroft, M. B. Identifying refugia from climate change. J. Biogeogr. 37, 1407–1413 (2010).
Google Scholar
Keppel, G. et al. Refugia: Identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).Article
Google Scholar
Selwood, K. E. & Zimmer, H. C. Refuges for biodiversity conservation: A review of the evidence. Biol. Conserv. 245, 108502 (2020).Article
Google Scholar More