McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. 110, 3229–3236 (2013).Article
CAS
PubMed
PubMed Central
Google Scholar
Archibald, J. M. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25, R911–R921 (2015).Article
CAS
PubMed
Google Scholar
Moran, N. A. Symbiosis as an adaptive process and source of phenotypic complexity. Proc. Natl. Acad. Sci. U.S.A. 104(Suppl 1), 8627–8633 (2007).Article
CAS
PubMed
PubMed Central
Google Scholar
Hurst, G. D. D. Extended genomes: Symbiosis and evolution. Interface Focus. https://doi.org/10.1098/rsfs.2017.0001 (2017).Article
PubMed
PubMed Central
Google Scholar
Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165–190 (2008).Article
CAS
PubMed
Google Scholar
Kikuchi, Y., Hosokawa, T. & Fukatsu, T. Insect-microbe mutualism without vertical transmission: A stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl. Environ. Microbiol. 73, 4308–4316 (2007).Article
CAS
PubMed
PubMed Central
Google Scholar
Kikuchi, Y., Hosokawa, T. & Fukatsu, T. An ancient but promiscuous host-symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J. 5, 446–460 (2011).Article
PubMed
Google Scholar
Hu, Y. et al. Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome. Nat. Commun. 9, 2440. https://doi.org/10.1038/s41467-018-03357-y (2018).Article
CAS
PubMed
PubMed Central
Google Scholar
Salem, H. et al. Drastic genome reduction in an herbivore’s pectinolytic symbiont. Cell 171, 1520–1531 (2017).Article
CAS
PubMed
Google Scholar
Bennett, G. M. & Moran, N. A. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole. Proc. Natl. Acad. Sci. 112, 10169–10176 (2015).Article
CAS
PubMed
PubMed Central
Google Scholar
Campbell, M. A. et al. Changes in endosymbiont complexity drive host-level compensatory adaptations in cicadas. MBio 9, e02104-18 (2018).Article
PubMed
PubMed Central
Google Scholar
Buchner, P. Symbiosis in animals which suck plant juices. In Endosymbiosis of Animals with Plant Microorganisms 210–432 (Interscience, 1965).
Google Scholar
McCutcheon, J. P., McDonald, B. R. & Moran, N. A. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc. Natl. Acad. Sci. 106, 15394–15399 (2009).Article
CAS
PubMed
PubMed Central
Google Scholar
Christensen, H. & Fogel, M. L. Feeding ecology and evidence for amino acid synthesis in the periodical cicada (Magicicada). J. Insect Physiol. 57, 211–219 (2011).Article
CAS
PubMed
Google Scholar
McCutcheon, J. P., McDonald, B. R. & Moran, N. A. Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLoS Genet. 5, e1000565 (2009).Article
PubMed
PubMed Central
Google Scholar
Campbell, M. A. et al. Genome expansion via lineage splitting and genome reduction in the cicada endosymbiont Hodgkinia. Proc. Natl. Acad. Sci. 112, 10192–10199 (2015).Article
CAS
PubMed
PubMed Central
Google Scholar
Müller, H. J. Neuere vorstellungen über verbreitung und phylogenie der endosymbiosen der zikaden. Z. Morphol. Oekol. Tiere 61, 190–210 (1962).Article
Google Scholar
Müller, H. J. Zur systematik und phylogenie der zikaden-endosymbiosen. Biol. Zent. 68, 343–368 (1949).
Google Scholar
Matsuura, Y. et al. Recurrent symbiont recruitment from fungal parasites in cicadas. Proc. Natl. Acad. Sci. 115, E5970–E5979 (2018).Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou, W. et al. Analysis of inter-individual bacterial variation in gut of cicada Meimuna mongolica (Hemiptera: Cicadidae). J. Insect Sci. 15, 1–6 (2015).Article
Google Scholar
Zheng, Z., Wang, D., He, H. & Wei, C. Bacterial diversity of bacteriomes and organs of reproductive, digestive and excretory systems in two cicada species (Hemiptera: Cicadidae). PLoS One 12, 1–21 (2017).
Google Scholar
Wang, D., Huang, Z., He, H. & Wei, C. Comparative analysis of microbial communities associated with bacteriomes, reproductive organs and eggs of the cicada Subpsaltria yangi. Arch. Microbiol. 200, 227–235 (2018).Article
CAS
PubMed
Google Scholar
Dillon, R. J. & Dillon, V. M. The gut bacteria of insects: Nonpathogenic interactions. Annu. Rev. Entomol. 49, 71–92 (2004).Article
CAS
PubMed
Google Scholar
Ng, S. H., Stat, M., Bunce, M. & Simmons, L. W. The influence of diet and environment on the gut microbial community of field crickets. Ecol. Evol. 8, 4704–4720 (2018).Article
PubMed
PubMed Central
Google Scholar
Nishida, A. H. & Ochman, H. Rates of gut microbiome divergence in mammals. Mol. Ecol. 27, 1884–1897 (2018).Article
PubMed
PubMed Central
Google Scholar
Douglas, A. E. & Werren, J. H. Holes in the hologenome: Why host–microbe symbioses are not holobionts. MBio 7, e02099 (2016).Article
CAS
PubMed
PubMed Central
Google Scholar
Grueneberg, J., Engelen, A. H., Costa, R. & Wichard, T. Macroalgal morphogenesis induced by waterborne compounds and bacteria in coastal seawater. PLoS One 11, e0146307 (2016).Article
PubMed
PubMed Central
Google Scholar
Lin, J. D., Lemay, M. A. & Parfrey, L. W. Diverse bacteria utilize alginate within the microbiome of the giant kelp Macrocystis pyrifera. Front. Microbiol. 9, 1914 (2018).Article
PubMed
PubMed Central
Google Scholar
Coon, K. L., Vogel, K. J., Brown, M. R. & Strand, M. R. Mosquitoes rely on their gut microbiota for development. Mol. Ecol. 23, 2727–2739 (2014).Article
CAS
PubMed
PubMed Central
Google Scholar
Coon, K. L., Brown, M. R. & Strand, M. R. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Mol. Ecol. 25, 5806–5826 (2016).Article
CAS
PubMed
PubMed Central
Google Scholar
Kwong, W. K. et al. Dynamic microbiome evolution in social bees. Sci. Adv. 3, 1–17 (2017).Article
Google Scholar
Brooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis: Relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 14, 1–29 (2016).Article
Google Scholar
Kropáčková, L. et al. Codiversification of gastrointestinal microbiota and phylogeny in passerines is not explained by ecological divergence. Mol. Ecol. 26, 5292–5304 (2017).Article
PubMed
Google Scholar
Hird, S. M., Sánchez, C., Carstens, B. C. & Brumfield, R. Comparative gut microbiota of 59 neotropical bird species. Front. Microbiol. 6, 1403. https://doi.org/10.3389/fmicb.2015.01403 (2015).Article
PubMed
PubMed Central
Google Scholar
Hu, Y., Lukasik, P., Moreau, C. S. & Russell, J. A. Correlates of gut community composition across an ant species (Cephalotes varians) elucidate causes and consequences of symbiotic variability. Mol. Ecol. 23, 1284–1300 (2014).Article
PubMed
Google Scholar
Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnz117 (2019).Article
PubMed
Google Scholar
Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl. Acad. Sci. 114, 9641–9646 (2017).Article
CAS
PubMed
PubMed Central
Google Scholar
Shapira, M. Gut microbiotas and host evolution: Scaling up symbiosis. Trends Ecol. Evol. 31, 539–549 (2016).Article
PubMed
Google Scholar
Marshall, D. C. et al. Inflation of molecular clock rates and dates: Molecular phylogenetics, biogeography, and diversification of a global cicada radiation from Australasia (Hemiptera: Cicadidae: Cicadettini). Syst. Biol. 65, 16–34 (2016).Article
PubMed
Google Scholar
Lane, D. H. The recognition concept of speciation applied in an analysis of putative hybridization in New Zealand cicadas of the genus Kikihia (Insects: Hemiptera: Tibicinidae). Speciation and the Recognition Concept: Theory and Application (The Johns Hopkins Univ Press, 1995).
Google Scholar
Cooley, J. R. & Marshall, D. C. Sexual signaling in periodical cicadas, Magicicada spp. (Hemiptera: Cicadidae). Behaviour 138, 827–855 (2001).Article
Google Scholar
Fleming, C. A. Adaptive Radiation in New Zealand Cicadas (American Philosophical Society, 1975).
Google Scholar
Dugdale, J. S. & Fleming, C. A. New Zealand cicadas of the genus Maoricicada (Homoptera: Tibicinidae). N. Z. J. Zool. 5, 295–340 (1978).Article
Google Scholar
Marshall, D. C., Hill, K. B. R., Cooley, J. R. & Simon, C. Hybridization, mitochondrial DNA phylogeography, and prediction of the early stages of reproductive isolation: Lessons from New Zealand cicadas (genus Kikihia). Syst. Biol. 60, 482–502 (2011).Article
PubMed
Google Scholar
Bolyen, E. et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. Report No.: e27295v2. PeerJ https://doi.org/10.7287/peerj.preprints.27295v2 (2018).Article
Google Scholar
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).Article
CAS
PubMed
PubMed Central
Google Scholar
McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).Article
CAS
PubMed
PubMed Central
Google Scholar
Davis, N. M., Proctor, D., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226. https://doi.org/10.1101/221499 (2018).Article
CAS
PubMed
PubMed Central
Google Scholar
Lemmon, A. R., Emme, S. A. & Lemmon, E. M. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 61, 727–744 (2012).Article
CAS
PubMed
Google Scholar
Simon, C. et al. Off-target capture data, endosymbiont genes and morphology reveal a relict lineage that is sister to all other singing cicadas. Biol. J. Linn. Soc. Lond. https://doi.org/10.1093/biolinnean/blz120 (2019).Article
Google Scholar
Owen, C. L. et al. Detecting and removing sample contamination in phylogenomic data: An example and its implications for Cicadidae phylogeny (Insecta: Hemiptera). Syst. Biol. 71, 1504–1523 (2022).Article
PubMed
Google Scholar
Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner. Report No.: LBNL-7065E. https://www.osti.gov/biblio/1241166-bbmap-fast-accurate-splice-aware-aligner (Lawrence Berkeley National Lab. (LBNL), 2014).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article
CAS
PubMed
PubMed Central
Google Scholar
Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).Article
MathSciNet
CAS
PubMed
PubMed Central
Google Scholar
Nurk, S. et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In Research in Computational Molecular Biology 158–170 (Springer, 2013).Chapter
Google Scholar
Łukasik, P. et al. One hundred mitochondrial genomes of cicadas. J. Hered. 110, 247–256 (2019).Article
PubMed
Google Scholar
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. https://doi.org/10.1093/bib/bbx108 (2017).Article
PubMed Central
Google Scholar
Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).Article
PubMed
PubMed Central
Google Scholar
Hahn, C., Bachmann, L. & Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—A baiting and iterative mapping approach. Nucleic Acids Res. 41, e129 (2013).Article
CAS
PubMed
PubMed Central
Google Scholar
Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).Article
CAS
PubMed
PubMed Central
Google Scholar
Miller, M. A., Pfeiffer, W., Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE) 1–8 (2010).Buckley, T. R., Cordeiro, M., Marshall, D. C. & Simon, C. Differentiating between hypotheses of lineage sorting and introgression in New Zealand alpine cicadas (Maoricicada Dugdale). Syst. Biol. 55, 411–425 (2006).Article
PubMed
Google Scholar
Marshall, D. C., Slon, K., Cooley, J. R., Hill, K. B. R. & Simon, C. Steady Plio-Pleistocene diversification and a 2-million-year sympatry threshold in a New Zealand cicada radiation. Mol. Phylogenet. Evol. 48, 1054–1066 (2008).Article
PubMed
Google Scholar
Bator, J., Marshall, D. C., Leston, A., Cooley, J. & Simon, C. Phylogeography of the endemic red-tailed cicadas of New Zealand (Hemiptera: Cicadidae: Rhodopsalta): Molecular, morphological and bioacoustical confirmation of the existence of Hudson’s Rhodopsalta microdora. Zool. J. Linn. Soc. 195, 1219–1244 (2022).Article
Google Scholar
Brumfield, K. D. et al. Gut microbiome insights from 16S rRNA analysis of 17-year periodical cicadas (Hemiptera: Magicicada spp.) Broods II, VI, and X. Sci. Rep. 12, 16967. https://doi.org/10.1038/s41598-022-20527-7 (2022).Article
CAS
PubMed
PubMed Central
Google Scholar
Rakitov, R. A. Structure and function of the Malpighian tubules, and related behaviors in juvenile cicadas: Evidence of homology with spittlebugs (Hemiptera: Cicadoidea & Cercopoidea). Zool. Anz. 241, 117–130 (2002).Article
Google Scholar
Andersen, P. C., Brodbeck, B. V. & Mizell, R. F. Feeding by the leafhopper, Homalodisca coagulata, in relation to xylem fluid chemistry and tension. J. Insect Physiol. 38, 611–622 (1992).Article
CAS
Google Scholar
Cheung, W. W. K. & Marshall, A. T. Water and ion regulation in cicadas in relation to xylem feeding. J. Insect Physiol. 19, 1801–1816 (1973).Article
CAS
Google Scholar
Williams, K. S. & Simon, C. The ecology, behavior, and evolution of periodical cicadas. Annu. Rev. Entomol. 40, 269–295 (1995).Article
CAS
Google Scholar
Logan, D. P., Rowe, C. A. & Maher, B. J. Life history of chorus cicada, an endemic pest of kiwifruit (Cicadidae: Homoptera). N. Z. Entomol. 37, 96–106 (2014).Article
Google Scholar
Buckley, T. R. & Simon, C. Evolutionary radiation of the cicada genus Maoricicada Dugdale (Hemiptera: Cicadoidea) and the origins of the New Zealand alpine biota. Biol. J. Linn. Soc. Lond. 91, 419–435 (2007).Article
Google Scholar
Banker, S. E., Wade, E. J. & Simon, C. The confounding effects of hybridization on phylogenetic estimation in the New Zealand cicada genus Kikihia. Mol. Phylogenet. Evol. 116, 172–181 (2017).Article
PubMed
Google Scholar
Groussin, M. et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat. Commun. 8, 14319 (2017).Article
CAS
PubMed
PubMed Central
Google Scholar
Sanders, J. G. et al. Stability and phylogenetic correlation in gut microbiota: Lessons from ants and apes. Mol. Ecol. 23, 1268–1283 (2014).Article
PubMed
Google Scholar
Wang, J. et al. Analysis of intestinal microbiota in hybrid house mice reveals evolutionary divergence in a vertebrate hologenome. Nat. Commun. 6, 6440 (2015).Article
CAS
PubMed
Google Scholar
Brucker, R. M. & Bordenstein, S. R. The hologenomic basis of speciation. Science 466, 667–669 (2013).Article
Google Scholar
Chandler, J. A. & Turelli, M. Comment on “The hologenomic basis of speciation: Gut bacteria cause hybrid lethality in the genus Nasonia”. Science 345, 1011 (2014).Article
CAS
PubMed
PubMed Central
Google Scholar
Li, Z. et al. Changes in the rumen microbiome and metabolites reveal the effect of host genetics on hybrid crosses. Environ. Microbiol. Rep. 8, 1016–1023 (2016).Article
CAS
PubMed
Google Scholar
Weintraub, P. G. & Beanland, L. Insect vectors of phytoplasmas. Annu. Rev. Entomol. 51, 91–111 (2006).Article
CAS
PubMed
Google Scholar
Hopkins, D. L. Xylella fastidiosa: Xylem-limited bacterial pathogen of plants. Annu. Rev. Phytopathol. 27, 271–290 (1989).Article
Google Scholar
Karban, R. Why cicadas (Hemiptera: Cicadidae) develop so slowly. Biol. J. Linn. Soc. Lond. 135, 291–298 (2021).Article
Google Scholar
Krell, R. K., Boyd, E. A., Nay, J. E., Park, Y.-L. & Perring, T. M. Mechanical and insect transmission of Xylella fastidiosa to Vitis vinifera. Am. J. Enol. Vitic. 58, 211–216 (2007).Article
CAS
Google Scholar
Paião, F., Meneguim, A. M., Casagrande, E. C., Lovato, L. & Leite, R. P. Levantamento de espécies de cigarras e transmissão de Xylella fastidiosa em cafeeiro. http://www.sbicafe.ufv.br/handle/123456789/1457 (2003).Elbeaino, T. et al. Identification of three potential insect vectors of Xylella fastidiosa in southern Italy. Phytopathol. Mediterr. 53, 328–332 (2014).
Google Scholar More