More stories

  • in

    Semi-field and surveillance data define the natural diapause timeline for Culex pipiens across the United States

    Way, M. J., Hopkins, B. & Smith, P. M. Photoperiodism and diapause in insects. Nature 164, 615 (1949).Article 
    PubMed 

    Google Scholar 
    Beck, S. Photoperiod induction of diapause in an insect. Biol. Bull. 122, 1–12 (1962).Article 

    Google Scholar 
    Denlinger, D. L. & Armbruster, P. A. Mosquito diapause. Annu. Rev. Entomol. 59, 73–93 (2014).Article 
    PubMed 

    Google Scholar 
    Readio, J., Chen, M. H. & Meola, R. Juvenile hormone biosynthesis in diapausing and nondiapausing Culex pipiens (Diptera: Culicidae). J. Med. Entomol. 36, 355–360 (1999).Article 
    PubMed 

    Google Scholar 
    Eldridge, B. F. & Bailey, C. L. Experimental hibernation studies in Culex pipiens (Diptera: Culicidae): reactivation of ovarian development and blood-feeding in prehibernating females. J. Med Entomol. 15, 462–467 (1979).Article 
    PubMed 

    Google Scholar 
    Spielman, A. & Wong, J. Environmental control of ovarian diapause in Culex pipiens. Ann. Entomol. Soc. Am. 66, 905–907 (1973).Article 

    Google Scholar 
    Sanburg, L. L. & Larsen, J. R. Effect of photoperiod and temperature on ovarian development in Culex pipiens pipiens. J. Insect Physiol. 19, 1173–1190 (1973).Article 
    PubMed 

    Google Scholar 
    Eldridge, B. F. The effect of temperature and photoperiod on blood-feeding and ovarian development in mosquitoes of the Culex pipiens complex. Am. J. Trop. Med. Hyg. 17, 133–140 (1968).Article 
    PubMed 

    Google Scholar 
    Bowen, M. F. Patterns of sugar feeding in diapausing and nondiapausing Culex pipiens (Diptera: Culicidae) females. J. Med. Entomol. 29, 843–849 (1992).Article 
    PubMed 

    Google Scholar 
    Robich, R. M. & Denlinger, D. L. Diapause in the mosquito Culex pipiens evokes a metabolic switch from blood feeding to sugar gluttony. Proc. Natl Acad. Sci. USA 102, 15912–15917 (2005).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eldridge, B. F. Environmental control of ovarian development in mosquitoes of the Culex pipiens complex. Am. Assoc. Adv. Sci. 151, 826–828 (1966).
    Google Scholar 
    Vinogradova, A. B. Culex pipiens Pipiens Mosquitoes: Taxonomy, Distribution, Ecology, Physiology, Genetics, Applied Importance And Control (Pensoft, 2000).Benoit, J. B. & Denlinger, D. L. Suppression of water loss during adult diapause in the northern house mosquito, Culex pipiens. J. Exp. Biol. 210, 217–226 (2007).Article 
    PubMed 

    Google Scholar 
    Li, A. & Denlinger, D. L. Pupal cuticle protein is abundant during early adult diapause in the mosquito Culex pipiens. J. Med. Entomol. 46, 1382–1386 (2009).Article 
    PubMed 

    Google Scholar 
    Yang, L., Denlinger, D. L. & Piermarini, P. M. The diapause program impacts renal excretion and molecular expression of aquaporins in the northern house mosquito, Culex pipiens. J. Insect Physiol. 98, 141–148 (2017).Article 
    PubMed 

    Google Scholar 
    King, B., Li, S., Liu, C., Kim, S. J. & Sim, C. Suppression of glycogen synthase expression reduces glycogen and lipid storage during mosquito overwintering diapause. J. Insect Physiol. 120, 103971 (2020).Article 
    PubMed 

    Google Scholar 
    Sim, C. & Denlinger, D. L. Transcription profiling and regulation of fat metabolism genes in diapausing adults of the mosquito Culex pipiens. Physiol. Genomics 39, 202–209 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sim, C. & Denlinger, D. L. Insulin signaling and FOXO regulate the overwintering diapause of the mosquito Culex pipiens. Proc. Natl Acad. Sci. USA 105, 6777–6781 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhou, G. & Miesfeld, R. L. Energy metabolism during diapause in Culex pipiens mosquitoes. J. Insect Physiol. 55, 40–46 (2009).Article 
    PubMed 

    Google Scholar 
    Chang, J. et al. Solid-state NMR reveals differential carbohydrate utilization in diapausing Culex pipiens. Sci. Rep. 6, 37350 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Madder, D. J., Surgeoner, G. A. & Helson, B. V. Induction of diapause in Culex pipiens and Culex restuans (Diptera: Culicidae) in Southern Ontario. Can. Entomol. 115, 877–883 (1983).Article 

    Google Scholar 
    Spielman, A. Effect of synthetic juvenile hormone on ovarian diapause of Culex pipiens mosquitoes. J. Med. Entomol. 11, 223–225 (1974).Article 
    PubMed 

    Google Scholar 
    Sim, C. & Denlinger, D. L. Insulin signaling and the regulation of insect diapause. Front. Physiol. 4, 189 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robich, R. M., Rinehart, J. P., Kitchen, L. J. & Denlinger, D. L. Diapause-specific gene expression in the northern house mosquito, Culex pipiens L., identified by suppressive subtractive hybridization. J. Insect Physiol. 53, 235–245 (2007).Article 
    PubMed 

    Google Scholar 
    Sim, C., Kang, D. S., Kim, S., Bai, X. & Denlinger, D. L. Identification of FOXO targets that generate diverse features of the diapause phenotype in the mosquito Culex pipiens. Proc. Natl Acad. Sci. USA 112, 3811–3816 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kang, D. S., Cotten, M. A., Denlinger, D. L. & Sim, C. Comparative transcriptomics reveals key gene expression differences between diapausing and non-diapausing adults of Culex pipiens. PLoS ONE 11, e0154892 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spielman, A. Structure and seasonality of nearctic Culex pipiens populations. Ann. N. Y. Acad. Sci. 951, 220–234 (2001).Article 
    PubMed 

    Google Scholar 
    Wilton, D. P. & Smith, G. C. Ovarian diapause in three geographic strains of Culex pipiens (Diptera: Culicidae). J. Med. Entomol. 22, 524–528 (1985).Article 
    PubMed 

    Google Scholar 
    Eldridge, B. F. Diapause and related phenomena in Culex mosquitoes: their relation to arbovirus disease ecology. In: Current Topics in Vector Research (ed. Harris, K. F.) 1–28 (Springer, 1987).Meuti, M. E., Short, C. A. & Denlinger, D. L. Mom matters: diapause characteristics of Culex pipiens-Culex quinquefasciatus (Diptera: Culicidae) hybrid mosquitoes. J. Med. Entomol. 52, 131–137 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, C. et al. Understanding the regulation of overwintering diapause molecular mechanisms in Culex pipiens pallens through comparative proteomics. Sci. Rep. 9, 6845 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Dunphy, B. M. et al. Long-term surveillance defines spatial and temporal patterns implicating Culex tarsalis as the primary vector of West Nile virus. Sci. Rep. 9, 6637 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dunphy, B. M., Rowley, W. A. & Bartholomay, L. C. A Taxonomic checklist of the mosquitoes of Iowa. J. Am. Mosq. Control Assoc. 30, 119–121 (2014).Article 
    PubMed 

    Google Scholar 
    Sucaet, Y., Van Hemert, J., Tucker, B. & Bartholomay, L. C. A web-based relational database for monitoring and analyzing mosquito population dynamics. J. Med. Entomol. 45, 775–784 (2008).Article 
    PubMed 

    Google Scholar 
    Ryan, S. F., Valella, P., Thivierge, G., Aardema, M. L. & Scriber, J. M. The role of latitudinal, genetic and temperature variation in the induction of diapause of Papilio glaucus (Lepidoptera: Papilionidae). Insect Sci. 25, 328–336 (2018).Article 
    PubMed 

    Google Scholar 
    Huang, L. et al. Diapause incidence and critical day length of Asian corn borer (Ostrinia furnacalis) populations exhibit a latitudinal cline in both pure and hybrid strains. J. Pest Sci. 93, 559–568 (2020).Article 

    Google Scholar 
    Bradshaw, W. E. Geography of photoperiodic response in diapausing mosquito. Nature 262, 384–386 (1976).Article 
    PubMed 

    Google Scholar 
    Bradshaw, W. E. & Lounibos, L. P. Evolution of dormancy and its photoperiodic control in pitcher-plant mosquitoes. Nature 31, 546–567 (1977).
    Google Scholar 
    Kothera, L., Zimmerman, E. M., Richards, C. M. & Savage, H. M. Microsatellite characterization of subspecies and their hybrids in Culex pipiens complex (Diptera: Culicidae) mosquitoes along a North-South transect in the central United States. J. Med. Entomol. 46, 236–248 (2009).Article 
    PubMed 

    Google Scholar 
    Darsie, R. F. R. & Ward, R. A. R. Identification and Geographical Distribution of the Mosquitoes of North America, North of Mexico (University Press of Florida, 2005).Huang, S., Molaei, G. & Andreadis, T. G. Reexamination of Culex pipiens hybridization zone in the eastern United States by ribosomal DNA-based single nucleotide polymorphism markers. Am. J. Trop. Med. Hyg. 85, 434–441 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reisen, W. K. Overwintering studies on Culex tarsalis (Diptera: Culicidae) in Kern County, California: life stages sensitive to diapause induction cues. Ann. Entomol. Soc. Am. 79, 674–676 (1986).Article 

    Google Scholar 
    Haba, Y. & McBride, L. Origin and status of Culex pipiens mosquito ecotypes. Curr. Biol. 32, R237–R246 (2022).Article 
    PubMed 

    Google Scholar 
    Holzapfel, C. M. & Bradshaw, W. E. Geography of larval dormancy in the tree-hole mosquito, Aedes triseriatus (Say). Can. J. Zool. 59, 1014–1021 (1981).Article 

    Google Scholar 
    Rinehart, J. P., Robich, R. M. & Denlinger, D. L. Enhanced cold and desiccation tolerance in diapausing adults of Culex pipiens, and a role for Hsp70 in response to cold shock but not as a component of the diapause program. J. Med. Entomol. 43, 713–722 (2006).Article 
    PubMed 

    Google Scholar 
    Faraji, A. & Gaugler, R. Experimental host preference of diapause and non-diapause induced Culex pipiens pipiens (Diptera: Culicidae). Parasit. Vectors 8, 389 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Washino, R. K. The physiological ecology of gonotrophic dissociation and related phenomena in mosquitoes. J. Med. Entomol. 13, 381–388 (1977).Article 
    PubMed 

    Google Scholar 
    Christophers, S. The development of the egg follicle in Anophelines. Paludism 1, 73–88 (1911).
    Google Scholar 
    Nelms, B. M., Macedo, P. A., Kothera, L., Savage, H. M. & Reisen, W. K. Overwintering biology of Culex (Diptera: Culicidae) mosquitoes in the Sacramento Valley of California. J. Med. Entomol. 50, 773–790 (2013).Article 
    PubMed 

    Google Scholar 
    Diniz, D. F. A., De Albuquerque, C. M. R., Oliva, L. O., De Melo-Santos, M. A. V. & Ayres, C. F. J. Diapause and quiescence: dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success. Parasites Vectors 10, 1–13 (2017).Article 

    Google Scholar 
    Kingsolver, J. G. & Nagle, A. Evolutionary divergence in thermal sensitivity and diapause of field and laboratory populations of Manduca sexta. Physiol. Biochem. Zool. 80, 473–479 (2007).Article 
    PubMed 

    Google Scholar 
    Brent, C. S. & Spurgeon, D. W. Diapause response of laboratory reared and native lygus hesperus knight (Hemiptera: Miridae). Environ. Entomol. 40, 455–461 (2011).Article 

    Google Scholar 
    Rinehart, J. P., Yocum, G. D., Leopold, R. A. & Robich, R. M. Cold storage of Culex pipiens in the absence of diapause. J. Med. Entomol. 47, 1071–1076 (2014).Article 

    Google Scholar 
    Arora, A. K., Sim, C., Severson, D. W. & Kang, D. S. Random forest analysis of impact of abiotic factors on Culex pipiens and Culex quinquefasciatus occurrence. Front. Ecol. Evol. 9, 773360 (2022).Article 

    Google Scholar 
    Focks, D. A., Linda, S. B., Craig Jnr, G. B., Hawley, W. A. & Pumpuni, C. B. Aedes albopictus (Diptera: Culicidae): a statistical model of the role of temperature, photoperiod, and geography in the induction of egg diapause. J. Med. Entomol. 31, 278–286 (1994).Article 
    PubMed 

    Google Scholar 
    Urbanski, J. et al. Rapid adaptive evolution of photoperiodic response during invasion and range expansion across a climatic gradient. Am. Nat. 179, 490–500 (2012).Article 
    PubMed 

    Google Scholar 
    Kothera, L., Godsey, M. S., Doyle, M. S. & Savage, H. M. Characterization of Culex pipiens complex (Diptera: Culicidae) populations in Colorado, USA using microsatellites. PLoS ONE 7, e0047602 (2012).Article 

    Google Scholar 
    Kothera, L., Nelms, B. M., Reisen, W. K. & Savage, H. M. Population genetic and admixture analyses of Culex pipiens complex (Diptera: Culicidae) populations in California, United States. Am. J. Trop. Med. Hyg. 89, 1154–1167 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kothera, L. et al. Bloodmeal, Host selection, and genetic admixture analyses of Culex pipiens Complex (Diptera: Culicidae) mosquitoes in Chicago, IL. J. Med. Entomol. 57, 78–87 (2020).Article 
    PubMed 

    Google Scholar 
    Huang, S., Molaei, G. & Andreadis, T. G. Genetic insights into the population structure of Culex pipiens (Diptera: Culicidae) in the Northeastern United States by using microsatellite analysis. Am. J. Trop. Med Hyg. 79, 518–527 (2008).Article 
    PubMed 

    Google Scholar 
    Barr, A. R. The Distribution of Culex p. pipiens and Cp quinquefasciatus in North America. Am. J. Trop. Med. Hyg. 6, 153–165 (1957).Article 
    PubMed 

    Google Scholar 
    Iltis, W. G. Biosystematics of the Culex pipiens Complex in Northern California. Thesis, University of California, Davis. (1966).Urbanelli, S., Silvestrini, F., Reisen, W. K., De Vito, E. & Bullini, L. Californian hybrid zone between Culex pipiens pipiens and Cx. p. quinquefasciatus revisited (Diptera: Culicidae). J. Med. Entomol. 34, 116–127 (1997).Article 
    PubMed 

    Google Scholar 
    Nelms, B. M. et al. Phenotypic variation among Culex pipiens complex (Diptera: Culicidae) populations from the Sacramento Valley, California: Horizontal and vertical transmission of West Nile virus, diapause potential, autogeny, and host selection. Am. J. Trop. Med. Hyg. 89, 1168–1178 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dodson, B. L., Kramer, L. D. & Rasgon, J. L. Effects of larval rearing temperature on immature development and West Nile virus vector competence of Culex tarsalis. Parasit. Vectors 5, 199 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ciota, A. T., Matacchiero, A. C., Marm Kilpatrick, A. & Kramer, L. D. The effect of temperature on life history traits of Culex mosquitoes. J. Med Entomol. 51, 55–62 (2014).Article 
    PubMed 

    Google Scholar 
    Carrington, L. B., Seifert, S. N., Willits, N. H., Lambrechts, L. & Scott, T. W. Large diurnal temperature fluctuations negatively influence Aedes aegypti (Diptera: Culicidae) life-history traits. J. Med. Entomol. 50, 43–51 (2013).Article 
    PubMed 

    Google Scholar 
    Lambrechts, L. et al. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc. Natl Acad. Sci. USA 108, 7460–7465 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karki, S., Brown, W. M., Uelmen, J., O’Hara Ruiz, M. & Smith, R. L. The drivers of West Nile virus human illness in the Chicago, Illinois, USA area: fine scale dynamic effects of weather, mosquito infection, social, and biological conditions. PLoS ONE 15, e0227160 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andreadis, T. G., Anderson, J. F., Vossbrinck, C. R. & Main, A. J. Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999–2003. Vector-Borne Zoonotic Dis. 4, 360–378 (2004).Article 
    PubMed 

    Google Scholar 
    Anderson, J. F. & Main, A. J. Importance of vertical and horizontal transmission of West Nile virus by Culex pipiens in the northeastern United States. J. Infect. Dis. 194, 1577–1579 (2006).Article 
    PubMed 

    Google Scholar 
    Nasci, R. S. et al. West Nile virus in overwintering Culex mosquitoes, New York City, 2000. Emerg. Infect. Dis. 7, 742–744 (2001).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kampen, H., Tews, B. A. & Werner, D. First evidence of West Nile virus overwintering in mosquitoes in Germany. Viruses 13, 1–7 (2021).Article 

    Google Scholar 
    Farajollahi, A. et al. Detection of West Nile viral RNA from an overwintering pool of Culex pipens pipiens (Diptera: Culicidae) in New Jersey, 2003. J. Med. Entomol. 42, 490–494 (2005).Article 
    PubMed 

    Google Scholar 
    Baqar, S., Hayes, C. G., Murphy, J. R. & Watts, D. M. Vertical transmission of West Nile virus by Culex and Aedes species mosquitoes. Am. J. Trop. Med. Hyg. 48, 757–762 (1993).Article 
    PubMed 

    Google Scholar 
    Miller, B. R. et al. First field evidence for natural vertical transmission of West Nile virus in Culex univittatus complex mosquitoes from Rift Valley Province, Kenya. Am. J. Trop. Med. Hyg. 62, 240–246 (2000).Article 
    PubMed 

    Google Scholar 
    Peffers, C. S., Pomeroy, L. W. & Meuti, M. E. Critical photoperiod and its potential to predict mosquito distributions and control medically important pests. J. Med. Entomol. 58, 1610–1618 (2021).Article 
    PubMed 

    Google Scholar 
    Bradshaw, W. E. & Holzapfel, C. M. Genetic shift in photoperiodic response correlated with global warming. Proc. Natl Acad. Sci. USA 98, 14509–14511 (2001).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reiter, P. Climate change and mosquito-borne disease. Environ. Health Perspect. 109, 141–161 (2001).PubMed 
    PubMed Central 

    Google Scholar 
    Colón-González, F. J. et al. Projecting the risk of mosquito-borne diseases in a warmer and more populated world: a multi-model, multi-scenario intercomparison modelling study. Lancet Planet. Heal. 5, e404–e414 (2021).Article 

    Google Scholar 
    Barreaux, A. M. G., Stone, C. M., Barreaux, P. & Koella, J. C. The relationship between size and longevity of the malaria vector Anopheles gambiae (s.s.) depends on the larval environment. Parasites Vectors 11, 485 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Handel, E. & Day, J. F. Correlation between wing length and protein content of mosquitoes. J. Am. Mosq. Control Assoc. 5, 180–182 (1989).PubMed 

    Google Scholar 
    Ferreira-De-Freitas, L., Thrun, N. B., Tucker, B. J., Melidosian, L. & Bartholomay, L. C. An evaluation of characters for the separation of two Culex species (Diptera: Culicidae) based on material from the Upper Midwest. J. Insect Sci. 20, 21 (2020).Harrington, L. C. & Poulson, R. L. Considerations for accurate identification of adult Culex restuans (Diptera: Culicidae) in field studies. J. Med. Entomol. 45, 1–8 (2008).Article 
    PubMed 

    Google Scholar  More

  • in

    Green synthesis of zinc oxide nanoparticles using Sea Lavender (Limonium pruinosum L. Chaz.) extract: characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials

    Becker, J., Manske, C. & Randl, S. Green chemistry and sustainability metrics in the pharmaceutical manufacturing sector. Curr. Opin. Green Sustain. Chem. https://doi.org/10.1016/j.cogsc.2021.100562 (2022).Article 

    Google Scholar 
    Rajasekharreddy, P., Rani, P. U. & Sreedhar, B. Qualitative assessment of silver and gold nanoparticle synthesis in various plants: A photobiological approach. J. Nanoparticle Res. 12, 25 (2010).Article 

    Google Scholar 
    Mahmoud, A. E. D. Eco-friendly reduction of graphene oxide via agricultural byproducts or aquatic macrophytes. Mater. Chem. Phys. 253, 123336 (2020).Article 
    CAS 

    Google Scholar 
    Mahmoud, A. E. D., Stolle, A. & Stelter, M. Sustainable synthesis of high-surface-area graphite oxide via dry ball milling. ACS Sustain. Chem. Eng. 6, 25 (2018).Article 

    Google Scholar 
    Mellinas, C., Jiménez, A. & del Carmen Garrigós, M. Microwave-assisted green synthesis and antioxidant activity of selenium nanoparticles using theobroma cacao. l. bean shell extract. Molecules 24, 25 (2019).Article 

    Google Scholar 
    Ahmed, S., Saifullah, A. M., Swami, B. L. & Ikram, S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci. 9, 25 (2016).
    Google Scholar 
    Ebadi, M. et al. A bio-inspired strategy for the synthesis of zinc oxide nanoparticles (ZnO NPs) using the cell extract of cyanobacterium: Nostoc sp EA03: From biological function to toxicity evaluation. RSC Adv. 9, 25 (2019).Article 

    Google Scholar 
    Mahmoud, A. E. D. & Fawzy, M. Nanosensors and nanobiosensors for monitoring the environmental pollutants. Top. Min. Metallurg. Mater. Eng. https://doi.org/10.1007/978-3-030-68031-2_9 (2021).Article 

    Google Scholar 
    Mousavi, S. M. et al. Green synthesis of silver nanoparticles toward bio and medical applications: Review study. Artif. Cells Nanomed. Biotechnol. 46, 3. https://doi.org/10.1080/21691401.2018.1517769 (2018).Article 
    CAS 

    Google Scholar 
    Hussain, I., Singh, N. B., Singh, A., Singh, H. & Singh, S. C. Green synthesis of nanoparticles and its potential application. Biotechnol. Lett. 38, 25. https://doi.org/10.1007/s10529-015-2026-7 (2016).Article 
    CAS 

    Google Scholar 
    Singh, P., Kim, Y. J., Zhang, D. & Yang, D. C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 34, 25. https://doi.org/10.1016/j.tibtech.2016.02.006 (2016).Article 
    CAS 

    Google Scholar 
    Nilavukkarasi, M., Vijayakumar, S. & Prathipkumar, S. Capparis zeylanica mediated bio-synthesized ZnO nanoparticles as antimicrobial, photocatalytic and anti-cancer applications. Mater. Sci. Energy Technol. 3, 25 (2020).
    Google Scholar 
    Hussain, A. et al. Biogenesis of ZnO nanoparticles using: Pandanus odorifer leaf extract: Anticancer and antimicrobial activities. RSC Adv. 9, 25 (2019).Article 

    Google Scholar 
    Mohamed Isa, E. D., Shameli, K., Che Jusoh, N. W., Mohamad Sukri, S. N. A. & Ismail, N. A. Variation of green synthesis techniques in fabrication of zinc oxide nanoparticles—a mini review. IOP Conf. Ser. Mater. Sci. Eng. 1051, 25 (2021).Article 

    Google Scholar 
    Loganathan, S., Shivakumar, M. S., Karthi, S., Nathan, S. S. & Selvam, K. Metal oxide nanoparticle synthesis (ZnO-NPs) of Knoxia sumatrensis (Retz.) DC. Aqueous leaf extract and It’s evaluation of their antioxidant, anti-proliferative and larvicidal activities. Toxicol. Rep. 8, 25 (2021).
    Google Scholar 
    Mahmoud, A. E. D., El-Maghrabi, N., Hosny, M. & Fawzy, M. Biogenic synthesis of reduced graphene oxide from Ziziphus spina-christi (Christ’s thorn jujube) extracts for catalytic, antimicrobial, and antioxidant potentialities. Environ. Sci. Pollut. Res. 20, 1–16 (2022).
    Google Scholar 
    Ahmar Rauf, M., Oves, M., Ur Rehman, F., Rauf Khan, A. & Husain, N. Bougainvillea flower extract mediated zinc oxide’s nanomaterials for antimicrobial and anticancer activity. Biomed. Pharmacother. 116, 25 (2019).Article 

    Google Scholar 
    Chabattula, S. C. et al. Anticancer therapeutic efficacy of biogenic Am-ZnO nanoparticles on 2D and 3D tumor models. Mater. Today Chem. 22, 25 (2021).
    Google Scholar 
    Berehu, H. M. et al. Cytotoxic potential of biogenic zinc oxide nanoparticles synthesized from swertia chirayita leaf extract on colorectal cancer cells. Front. Bioeng. Biotechnol. 9, 25 (2021).Article 

    Google Scholar 
    Khezri, K., Saeedi, M. & Maleki Dizaj, S. Application of nanoparticles in percutaneous delivery of active ingredients in cosmetic preparations. Biomed. Pharmacother. 106, 25. https://doi.org/10.1016/j.biopha.2018.07.084 (2018).Article 
    CAS 

    Google Scholar 
    Smijs, T. G. & Pavel, S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnol. Sci. Appl. 4, 25. https://doi.org/10.2147/nsa.s19419 (2011).Article 

    Google Scholar 
    Nasrollahzadeh, M. S. et al. Zinc oxide nanoparticles as a potential agent for antiviral drug delivery development: A systematic literature review. Curr. Nanosci. 18, 25 (2021).
    Google Scholar 
    Perera, W. P. T. D. et al. Albumin grafted coaxial electrosparyed polycaprolactone-zinc oxide nanoparticle for sustained release and activity enhanced antibacterial drug delivery. RSC Adv. 12, 25 (2022).Article 

    Google Scholar 
    Shalaby, M. A., Anwar, M. M. & Saeed, H. Nanomaterials for application in wound healing: Current state-of-the-art and future perspectives. J. Polym. Res. 29, 25. https://doi.org/10.1007/s10965-021-02870-x (2022).Article 
    CAS 

    Google Scholar 
    Kaushik, M. et al. Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles. Appl. Surf. Sci. 479, 25 (2019).Article 

    Google Scholar 
    Espitia, P. J. P., Otoni, C. G. & Soares, N. F. F. Zinc oxide nanoparticles for food packaging applications. Antimicrob. Food Packag. https://doi.org/10.1016/B978-0-12-800723-5.00034-6.4 (2016).Article 

    Google Scholar 
    Doan Thi, T. U. et al. Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities. RSC Adv. 10, 25 (2020).Article 

    Google Scholar 
    Shobha, N. et al. Synthesis and characterization of Zinc oxide nanoparticles utilizing seed source of Ricinus communis and study of its antioxidant, antifungal and anticancer activity. Mater. Sci. Eng. C 97, 25 (2019).Article 

    Google Scholar 
    Zahran, M. A. & Willis, A. J. The vegetation of Egypt. Plant Veget. 2, 25 (2009).
    Google Scholar 
    El-Borady, O. M., Fawzy, M. & Hosny, M. Antioxidant, anticancer and enhanced photocatalytic potentials of gold nanoparticles biosynthesized by common reed leaf extract. Appl. Nanosci. (Switzerland) https://doi.org/10.1007/s13204-021-01776-w (2021).Article 

    Google Scholar 
    Hosny, M., Fawzy, M., Abdelfatah, A. M., Fawzy, E. E. & Eltaweil, A. S. Comparative study on the potentialities of two halophytic species in the green synthesis of gold nanoparticles and their anticancer, antioxidant and catalytic efficiencies. Adv. Powder Technol. 32, 25 (2021).Article 

    Google Scholar 
    Vijayakumar, S. et al. Acalypha fruticosa L. Leaf extract mediated synthesis of ZnO nanoparticles: Characterization and antimicrobial activities. Mater. Today Proc. 23, 25 (2019).
    Google Scholar 
    Fatimah, I., Pradita, R. Y. & Nurfalinda, A. Plant extract mediated of ZnO nanoparticles by using ethanol extract of mimosa pudica leaves and coffee powder. Proced. Eng. 148, 25 (2016).Article 

    Google Scholar 
    Heneidy, S. Z. & Bidak, L. M. Potential uses of plant species of the coastal mediterranean region, Egypt. Pak. J. Biol. Sci. 7, 1010–1023 (2004).Article 

    Google Scholar 
    Manousaki, E. & Kalogerakis, N. Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind. Eng. Chem. Res. 50, 25 (2011).Article 

    Google Scholar 
    Zengin, G., Aumeeruddy-Elalfi, Z., Mollica, A., Yilmaz, M. A. & Mahomoodally, M. F. In vitro and in silico perspectives on biological and phytochemical profile of three halophyte species—a source of innovative phytopharmaceuticals from nature. Phytomedicine 38, 35–44 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Xin, P. et al. Surface water and groundwater interactions in salt marshes and their impact on plant ecology and coastal biogeochemistry. Rev. Geophys. 60, 5. https://doi.org/10.1029/2021RG000740 (2022).Article 

    Google Scholar 
    International Union for Conservation of Nature. International Union for Conservation of Nature Natural Resources IUCN Red List Categories and Criteria (IUCN, 2001).
    Google Scholar 
    Boulos, L. Flora of Egypt Vol 417 21–22 (Al Hadara Publishing, 1999).
    Google Scholar 
    Safawo, T., Sandeep, B. V., Pola, S. & Tadesse, A. Synthesis and characterization of zinc oxide nanoparticles using tuber extract of anchote (Coccinia abyssinica (Lam.) Cong.) for antimicrobial and antioxidant activity assessment. Open Nano 3, 25 (2018).
    Google Scholar 
    Soltanian, S. et al. Biosynthesis of zinc oxide nanoparticles using hertia intermedia and evaluation of its cytotoxic and antimicrobial activities. https://doi.org/10.1007/s12668-020-00816-z/Published.Ogbole, O. O., Segun, P. A. & Adeniji, A. J. In vitro cytotoxic activity of medicinal plants from Nigeria ethnomedicine on Rhabdomyosarcoma cancer cell line and HPLC analysis of active extracts. BMC Complement Altern. Med. 17, 25 (2017).Article 

    Google Scholar 
    Slater, T. F., Sawyer, B. & Sträuli, U. Studies on succinate-tetrazolium reductase systems. III Points of coupling of four different tetrazolium salts. Biochim. Biophys. Acta 77, 25 (1963).Article 

    Google Scholar 
    Alley, M. C. et al. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 48, 25 (1988).
    Google Scholar 
    van de Loosdrecht, A. A., Beelen, R. H. J., Ossenkoppele, G. J., Broekhoven, M. G. & Langenhuijsen, M. M. A. C. A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J. Immunol. Methods 174, 25 (1994).
    Google Scholar 
    Gonelimali, F. D. et al. Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front. Microbiol. 9, 25 (2018).Article 

    Google Scholar 
    Aldalbahi, A. et al. Greener synthesis of zinc oxide nanoparticles: Characterization and multifaceted applications. Molecules 25, 25 (2020).Article 

    Google Scholar 
    López-Cuenca, S. et al. High-yield synthesis of zinc oxide nanoparticles from bicontinuous microemulsions. J. Nanomater. 2011, 25 (2011).Article 

    Google Scholar 
    Sajadi, S. M. et al. Natural iron ore as a novel substrate for the biosynthesis of bioactive-stable ZnO@CuO@iron ore NCs: A magnetically recyclable and reusable superior nanocatalyst for the degradation of organic dyes, reduction of Cr(vi) and adsorption of crude oil aromatic compounds, including PAHs. RSC Adv. 8, 62. https://doi.org/10.1039/c8ra06028b (2018).Article 
    CAS 

    Google Scholar 
    Meena, P. L., Poswal, K. & Surela, A. K. Facile synthesis of ZnO nanoparticles for the effective photodegradation of malachite green dye in aqueous solution. Water Environ. J. 36, 25 (2022).Article 

    Google Scholar 
    El-Belely, E. F. et al. Green synthesis of zinc oxide nanoparticles (Zno-nps) using arthrospira platensis (class: Cyanophyceae) and evaluation of their biomedical activities. Nanomaterials 11, 25 (2021).Article 

    Google Scholar 
    Faye, G., Jebessa, T. & Wubalem, T. Biosynthesis, characterisation and antimicrobial activity of zinc oxide and nickel doped zinc oxide nanoparticles using Euphorbia abyssinica bark extract (2021). https://doi.org/10.1049/nbt2.12072.Dulta, K., Koşarsoy Ağçeli, G., Chauhan, P., Jasrotia, R. & Chauhan, P. K. A novel approach of synthesis zinc oxide nanoparticles by Bergenia ciliata rhizome extract: Antibacterial and anticancer potential. J. Inorg. Organomet. Polym. Mater. 31, 25 (2021).Article 

    Google Scholar 
    Faisal, S. et al. Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans: Their characterizations and biological and environmental applications. ACS Omega 6, 25 (2021).Article 

    Google Scholar 
    Adams, R. P. Identification of essential oil components by gas chromatography/mass spectrometry. J. Am. Soc. Mass Spectrometry 8, 25 (2007).
    Google Scholar 
    VStein, S., Mirokhin, D., Tchekhovskoi, D., & Nist, G. M. The NIST Mass Spectral Search Program for the NIST/EPA/NIH Mass Spectra Library. Gaithersburg, MD: Standard Reference Data Program of the National Institute of Standards and Technology (2002).Mahmoud, A. E. D., Hosny, M., El-Maghrabi, N. & Fawzy, M. Facile synthesis of reduced graphene oxide by Tecoma stans extracts for efficient removal of Ni (II) from water: Batch experiments and response surface methodology. Sustain. Environ. Res. 32, 25 (2022).Article 

    Google Scholar 
    Balasubramani, G. et al. GC-MS analysis of bioactive components and synthesis of gold nanoparticle using Chloroxylon swietenia DC leaf extract and its larvicidal activity. J. Photochem. Photobiol. B 148, 25 (2015).Article 

    Google Scholar 
    Barzinjy, A. A. & Azeez, H. H. Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt. SN Appl. Sci. 2, 25 (2020).Article 

    Google Scholar 
    Anitha, R., Ramesh, K. V., Ravishankar, T. N., Sudheer Kumar, K. H. & Ramakrishnappa, T. Cytotoxicity, antibacterial and antifungal activities of ZnO nanoparticles prepared by the Artocarpus gomezianus fruit mediated facile green combustion method. J. Sci. Adv. Mater. Devices 3, 25 (2018).
    Google Scholar 
    Chandra, H., Patel, D., Kumari, P., Jangwan, J. S. & Yadav, S. Phyto-mediated synthesis of zinc oxide nanoparticles of Berberis aristata: Characterization, antioxidant activity and antibacterial activity with special reference to urinary tract pathogens. Mater. Sci. Eng. C 102, 25 (2019).Article 

    Google Scholar 
    Majeed, S., Danish, M., Ismail, M. H., Ansari, M. T. & Ibrahim, M. N. M. Anticancer and apoptotic activity of biologically synthesized zinc oxide nanoparticles against human colon cancer HCT-116 cell line- in vitro study. Sustain. Chem. Pharm. 14, 25 (2019).
    Google Scholar 
    Miri, A., Khatami, M., Ebrahimy, O. & Sarani, M. Cytotoxic and antifungal studies of biosynthesized zinc oxide nanoparticles using extract of Prosopis farcta fruit. Green Chem. Lett. Rev. 13, 25. https://doi.org/10.1080/17518253.2020.1717005 (2020).Article 
    CAS 

    Google Scholar 
    Ahamed, M., Akhtar, M. J., Khan, M. A. M. & Alhadlaq, H. A. Enhanced anticancer performance of eco-friendly-prepared Mo-ZnO/RGO nanocomposites: Role of oxidative stress and apoptosis. ACS Omega 7, 25 (2022).Article 

    Google Scholar 
    Al-Mohaimeed, A. M., Al-Onazi, W. A. & El-Tohamy, M. F. Multifunctional eco-friendly synthesis of ZnO nanoparticles in biomedical applications. Molecules 27, 25 (2022).Article 

    Google Scholar 
    Schreyer, M., Guo, L., Thirunahari, S., Gao, F. & Garland, M. Simultaneous determination of several crystal structures from powder mixtures: The combination of powder X-ray diffraction, band-target entropy minimization and Rietveld methods. J. Appl. Crystallogr. 47, 25 (2014).Article 

    Google Scholar 
    Pu, Y., Niu, Y., Wang, Y., Liu, S. & Zhang, B. Statistical morphological identification of low-dimensional nanomaterials by using TEM. Particuology 61, 11–17 (2022).Article 
    CAS 

    Google Scholar 
    Wu, C. M., Baltrusaitis, J., Gillan, E. G. & Grassian, V. H. Sulfur dioxide adsorption on ZnO nanoparticles and nanorods. J. Phys. Chem. C 115, 10164–10172 (2011).Article 
    CAS 

    Google Scholar 
    Saranya, S., Vijayaranai, K., Pavithra, S., Raihana, N. & Kumanan, K. In vitro cytotoxicity of zinc oxide, iron oxide and copper nanopowders prepared by green synthesis. Toxicol. Rep. 4, 25 (2017).
    Google Scholar 
    Chelladurai, M. et al. Anti-skin cancer activity of Alpinia calcarata ZnO nanoparticles: Characterization and potential antimicrobial effects. J Drug Deliv. Sci. Technol. 61, 102180 (2021).Article 
    CAS 

    Google Scholar 
    Lingaraju, K., Naika, H. R., Nagabhushana, H. & Nagaraju, G. Euphorbia heterophylla (L.) mediated fabrication of ZnO NPs: Characterization and evaluation of antibacterial and anticancer properties. Biocatal. Agric. Biotechnol. 18, 25 (2019).Article 

    Google Scholar 
    Sana, S. S. et al. Crotalaria verrucosa leaf extract mediated synthesis of zinc oxide nanoparticles: Assessment of antimicrobial and anticancer activity. Molecules 25, 25 (2020).Article 

    Google Scholar 
    Bisht, G. & Rayamajhi, S. ZnO nanoparticles: A promising anticancer agent. Nanobiomedicine https://doi.org/10.5772/63437 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bharath, B., Perinbam, K., Devanesan, S., AlSalhi, M. S. & Saravanan, M. Evaluation of the anticancer potential of Hexadecanoic acid from brown algae Turbinaria ornata on HT–29 colon cancer cells. J. Mol. Struct. 1235, 25 (2021).Article 

    Google Scholar 
    Selim, Y. A., Azb, M. A., Ragab, I., Abd El-Azim, H. M. & M.,. Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Sci. Rep. 10, 25 (2020).Article 

    Google Scholar 
    Medini, F. et al. Phytochemical analysis, antioxidant, anti-inflammatory, and anticancer activities of the halophyte Limonium densiflorum extracts on human cell lines and murine macrophages. South Afr. J. Bot. 99, 25 (2015).Article 

    Google Scholar 
    Pan, M. H., Ghai, G. & Ho, C. T. Food bioactives, apoptosis, and cancer. Mol. Nutr. Food Res. 52, 20. https://doi.org/10.1002/mnfr.200700380 (2008).Article 
    CAS 

    Google Scholar 
    Abdallah, H. M. & Ezzat, S. M. Effect of the method of preparation on the composition and cytotoxic activity of the essential oil of Pituranthos tortuosus. Z. Nat. Sect. C J. Biosci. 66 C, 25 (2011).
    Google Scholar 
    Iqbal, J. et al. Green synthesis of zinc oxide nanoparticles using Elaeagnus angustifolia L. leaf extracts and their multiple in vitro biological applications. Sci. Rep. 11, 25 (2021).Article 

    Google Scholar 
    Norouzi Jobie, F., Ranjbar, M., Hajizadeh Moghaddam, A. & Kiani, M. Green synthesis of zinc oxide nanoparticles using Amygdalus scoparia Spach stem bark extract and their applications as an alternative antimicrobial, anticancer, and anti-diabetic agent. Adv. Powder Technol. 32, 21 (2021).Article 

    Google Scholar 
    Chen, F. C., Huang, C. M., Yu, X. W. & Chen, Y. Y. Effect of nano zinc oxide on proliferation and toxicity of human gingival cells. Hum. Exp. Toxicol. 41, 15 (2022).Article 

    Google Scholar 
    Sajjad, A. et al. Photoinduced fabrication of zinc oxide nanoparticles: Transformation of morphological and biological response on light irradiance. ACS Omega 6, 75 (2021).Article 

    Google Scholar 
    Sohail, M. F. et al. Green synthesis of zinc oxide nanoparticles by neem extract as multi-facet therapeutic agents. J. Drug Deliv. Sci. Technol. 59, 15 (2020).
    Google Scholar 
    Lopes, M., Sanches-Silva, A., Castilho, M., Cavaleiro, C. & Ramos, F. Halophytes as source of bioactive phenolic compounds and their potential applications. Crit. Rev. Food Sci. Nutr. 20, 20. https://doi.org/10.1080/10408398.2021.1959295 (2021).Article 
    CAS 

    Google Scholar 
    Bouarab-Chibane, L. et al. Antibacterial properties of polyphenols: Characterization and QSAR (quantitative structure-activity relationship) models. Front. Microbiol. 10, 77 (2019).Article 

    Google Scholar 
    Guimarães, A. C. et al. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 24, 11 (2019).Article 

    Google Scholar 
    Sirelkhatim, A. et al. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7, 219–242. https://doi.org/10.1007/s40820-015-0040-x (2015).Article 
    CAS 

    Google Scholar 
    Singh, T. A. et al. A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Adv. Coll. Interface Sci. 295, 25. https://doi.org/10.1016/j.cis.2021.102495 (2021).Article 
    CAS 

    Google Scholar 
    Gao, Y. et al. Biofabrication of zinc oxide nanoparticles from Aspergillus niger, their antioxidant, antimicrobial and anticancer activity. J. Clust. Sci. 30, 11 (2019).Article 

    Google Scholar 
    Luo, Q. et al. Terpenoid composition and antioxidant activity of extracts from four chemotypes of Cinnamomum camphora and their main antioxidant agents. Biofuels Bioprod. Biorefin. 16, 510–522 (2022).Article 
    CAS 

    Google Scholar 
    Bose, J., Rodrigo-Moreno, A. & Shabala, S. ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot. 65, 25. https://doi.org/10.1093/jxb/ert430 (2014).Article 
    CAS 

    Google Scholar  More

  • in

    Local-scale feedbacks influencing cold-water coral growth and subsequent reef formation

    Henry, L.-A. & Roberts, J. M. Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic. Deep Sea Res. I(54), 654–672 (2007).
    Google Scholar 
    Buhl-Mortensen, L. et al. First observations of the structure and megafaunal community of a large Lophelia reef on the Ghanaian shelf (the Gulf of Guinea). Deep Sea Res. II(137), 148–156 (2017).
    Google Scholar 
    Price, D. M. et al. Using 3D photogrammetry from ROV video to quantify cold-water coral reef structural complexity and investigate its influence on biodiversity and community assemblage. Coral Reefs 38, 1007–1021 (2019).
    Google Scholar 
    Roberts, J. M., Wheeler, A. J. & Freiwald, A. Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312, 543–547 (2006).CAS 
    PubMed 

    Google Scholar 
    Henry, L. A., Nizinski, M. S. & Ross, S. W. Occurrence and biogeography of hydroids (Cnidaria: Hydrozoa) from deep-water coral habitats off the southeastern United States. Deep. Res. I(55), 788–800 (2008).
    Google Scholar 
    Henry, L.-A. & Roberts, J. M. Global Biodiversity in Cold-Water Coral Reef Ecosystems. In Marine Animal Forests (eds Rossi, S. et al.) 1–21 (Springer, 2016). https://doi.org/10.1007/978-3-319-17001-5_6-1.Chapter 

    Google Scholar 
    De Mol, B. et al. Large deep-water coral banks in the Porcupine Basin, southwest of Ireland. Mar. Geol. 188, 193–231 (2002).
    Google Scholar 
    Dorschel, B., Hebbeln, D., Rüggeberg, A., Dullo, W. C. & Freiwald, A. Growth and erosion of a cold-water coral covered carbonate mound in the Northeast Atlantic during the Late Pleistocene and Holocene. Earth Planet. Sci. Lett. 233, 33–44 (2005).CAS 

    Google Scholar 
    Hebbeln, D., Van Rooij, D. & Wienberg, C. Good neighbours shaped by vigorous currents: Cold-water coral mounds and contourites in the North Atlantic. Mar. Geol. 378, 171–185 (2016).
    Google Scholar 
    Wheeler, A. J. et al. Morphology and environment of cold-water coral carbonate mounds on the NW European margin. Int. J. Earth Sci. 96, 37–56 (2007).CAS 

    Google Scholar 
    Lo Iacono, C., Savini, A. & Basso, D. Cold-water carbonate bioconstructions. in Submarine Geomorphology, 425–455 (Springer, 2018).Hebbeln, D. Highly variable submarine landscapes in the Alborán sea created by cold-water corals. In Mediterranean Cold-Water Corals: Past, Present and Future (eds Orejas, C. & Jiménez, C.) 61–65 (Springer, 2019). https://doi.org/10.1007/978-3-319-91608-8_8.Chapter 

    Google Scholar 
    Addamo, A. M. et al. Merging scleractinian genera: The overwhelming genetic similarity between solitary Desmophyllum and colonial Lophelia. BMC Evol. Biol. 16, 1–17 (2016).
    Google Scholar 
    Wienberg, C. & Titschack, J. Framework-forming scleractinian cold-water corals through space and time: A late quaternary north atlantic perspective. in Marine Animal Forests 1–34 (Springer, 2017). https://doi.org/10.1007/978-3-319-17001-5_16-1Maier, C., Weinbauer, M. G. & Gattuso, J.-P. Fate of mediterranean scleractinian cold-water corals as a result of global climate change: A synthesis. In Mediterranean Cold-Water Corals: Past, Present and Future (eds Orejas, C. & Jiménez, C.) 517–529 (Springer, 2019). https://doi.org/10.1007/978-3-319-91608-8_44.Chapter 

    Google Scholar 
    Reynaud, S. & Ferrier-Pagès, C. Biology and ecophysiology of mediterranean cold-water corals. In Mediterranean Cold-Water Corals: Past, Present and Future (eds Orejas, C. & Jiménez, C.) 391–404 (Springer, 2019). https://doi.org/10.1007/978-3-319-91608-8_35.Chapter 

    Google Scholar 
    Hennige, S. J. et al. Using the Goldilocks principle to model coral ecosystem engineering. Proc. R. Soc. B Biol. Sci. 288, 20211260 (2021).CAS 

    Google Scholar 
    LoIacono, C. et al. The West Melilla cold water coral mounds, Eastern Alboran Sea: Morphological characterization and environmental context. Deep Sea Res. II(99), 316–326 (2014).
    Google Scholar 
    Mortensen, P. B., Hovland, T., Fosså, J. H. & Furevik, D. M. Distribution, abundance and size of Lophelia pertusa coral reefs in mid-Norway in relation to seabed characteristics. J. Mar. Biol. Assoc. 81, 581–597 (2001).
    Google Scholar 
    Mienis, F. et al. Hydrodynamic controls on cold-water coral growth and carbonate-mound development at the SW and SE Rockall Trough Margin, NE Atlantic. Ocean. Deep. Res. I(54), 1655–1674 (2007).
    Google Scholar 
    Davies, A. J. et al. Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef Complex. Limnol. Oceanogr. 54, 620–629 (2009).
    Google Scholar 
    Mohn, C. et al. Linking benthic hydrodynamics and cold-water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic. Prog. Oceanogr. 122, 92–104 (2014).
    Google Scholar 
    Mienis, F. et al. Cold-water coral growth under extreme environmental conditions, the Cape Lookout area, NW Atlantic. Biogeosciences 11, 2543–2560 (2014).
    Google Scholar 
    Grasmueck, M. et al. Autonomous underwater vehicle (AUV) mapping reveals coral mound distribution, morphology, and oceanography in deep water of the Straits of Florida. Geophys. Res. Lett. 33, L23616 (2006).
    Google Scholar 
    Correa, T. B. S., Eberli, G. P., Grasmueck, M., Reed, J. K. & Correa, A. M. S. Genesis and morphology of cold-water coral ridges in a unidirectional current regime. Mar. Geol. 326–328, 14–27 (2012).
    Google Scholar 
    Lavaleye, M. et al. Cold-water corals on the tisler reef: Preliminary observations on the dynamic reef environment. Oceanography 22, 76–84 (2009).
    Google Scholar 
    Mortensen, P. B. et al. Seascape description of anunusual coral reef area off Vesteraålen, Northern Norway. in 4th International Symposium on deep-sea corals. (2008).Cathalot, C. et al. Cold-water coral reefs and adjacent sponge grounds: Hotspots of benthic respiration and organic carbon cycling in the deep sea. Front. Mar. Sci. 2, 37 (2015).
    Google Scholar 
    Buhl-Mortensen, P. & Sundahl, H. Environmental control of cold-water coral reef morphology. in 7th International Symposium on deep-sea corals. (2019).van der Kaaden, A.-S., van Oevelen, D., Rietkerk, M., Soetaert, K. & van de Koppel, J. Spatial self-organization as a new perspective on cold-water coral mound development. Front. Mar. Sci. 7, 631 (2020).
    Google Scholar 
    Buhl-Mortensen, L. et al. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar. Ecol. 31, 21–50 (2010).
    Google Scholar 
    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386 (1994).
    Google Scholar 
    Mienis, F., Bouma, T., Witbaard, R., van Oevelen, D. & Duineveld, G. Experimental assessment of the effects of coldwater coral patches on water flow. Mar. Ecol. Prog. Ser. 609, 101–117 (2019).CAS 

    Google Scholar 
    van der Kaaden, A.-S. et al. Feedbacks between hydrodynamics and cold-water coral mound development. Deep Sea Res. I 178, 103641 (2021).
    Google Scholar 
    Mortensen, P. B., Hovland, M., Brattegard, T. & Farestveit, R. Deep water bioherms of the scleractinian coral Lophelia pertusa (L.) at 64° n on the norwegian shelf: Structure and associated megafauna. Sarsia 80, 145–158 (1995).
    Google Scholar 
    Corbera, G. et al. Ecological characterisation of a Mediterranean cold-water coral reef: Cabliers Coral Mound Province (Alboran Sea, western Mediterranean). Prog. Oceanogr. 175, 245–262 (2019).
    Google Scholar 
    Kano, A. et al. Age constraints on the origin and growth history of a deep-water coral mound in the northeast Atlantic drilled during Integrated Ocean Drilling Program Expedition 307. Geology 35, 1051–1054 (2007).CAS 

    Google Scholar 
    Douarin, M. et al. Growth of north-east Atlantic cold-water coral reefs and mounds during the Holocene: A high resolution U-series and 14C chronology. Earth Planet. Sci. Lett. 375, 176–187 (2013).CAS 

    Google Scholar 
    Orejas, C., Gori, A. & Gili, J. M. Growth rates of live Lophelia pertusa and Madrepora oculata from the Mediterranean Sea maintained in aquaria. Coral Reefs 27, 255–255 (2008).
    Google Scholar 
    Orejas, C. et al. Long-term growth rates of four Mediterranean cold-water coral species maintained in aquaria. Mar. Ecol. Prog. Ser. 429, 57–65 (2011).
    Google Scholar 
    Lartaud, F., Mouchi, V., Chapron, L., Meistertzheim, A.-L. & Le Bris, N. Growth Patterns of Mediterranean Calcifying Cold-Water Corals. in Mediterranean Cold-Water Corals: Past, Present and Future 405–422 (2019). https://doi.org/10.1007/978-3-319-91608-8_36.Büscher, J. V. et al. In situ growth and bioerosion rates of Lophelia pertusa in a Norwegian fjord and open shelf cold-water coral habitat. PeerJ 2019, 1–10 (2019).
    Google Scholar 
    Form, A. U. & Riebesell, U. Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Glob. Chang. Biol. 18, 843–853 (2012).
    Google Scholar 
    Maier, C., Watremez, P., Taviani, M., Weinbauer, M. G. & Gattuso, J. P. Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals. Proc. R. Soc. B Biol. Sci. 279, 1716–1723 (2012).CAS 

    Google Scholar 
    Lunden, J. J., McNicholl, C. G., Sears, C. R., Morrison, C. L. & Cordes, E. E. Acute survivorship of the deep-sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation. Front. Mar. Sci. 1, 78 (2014).
    Google Scholar 
    Gori, A., Reynaud, S., Orejas, C., Gili, J. M. & Ferrier-Pagès, C. Physiological performance of the cold-water coral Dendrophyllia cornigera reveals its preference for temperate environments. Coral Reefs 33, 665–674 (2014).
    Google Scholar 
    Huvenne, V. A. I. et al. Sediment dynamics and palaeo-environmental context at key stages in the Challenger cold-water coral mound formation: Clues from sediment deposits at the mound base. Deep. Res. I(56), 2263–2280 (2009).
    Google Scholar 
    Bartzke, G. et al. Investigating the prevailing hydrodynamics around a cold-water coral colony using a physical and a numerical approach. Front. Mar. Sci. 8, 3304 (2021).
    Google Scholar 
    Downs, C. A. et al. Cellular diagnostics and coral health: Declining coral health in the Florida Keys. Mar. Pollut. Bull. 51, 558–569 (2005).CAS 
    PubMed 

    Google Scholar 
    Ayala, A., Muñoz, M. F. & Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Long. 2014, 1–10 (2014).CAS 

    Google Scholar 
    Oh, T. J., Kim, I. G., Park, S. Y., Kim, K. C. & Shim, H. W. NAD-dependent malate dehydrogenase protects against oxidative damage in Escherichia coli K-12 through the action of oxaloacetate. Environ. Toxicol. Pharmacol. 11, 9–14 (2002).CAS 
    PubMed 

    Google Scholar 
    Dade, L., Hogg, A. & Boudreau, B. Physics of Flow Above the Sediment-Water Interface (Oxford University Press, 2001).
    Google Scholar 
    Gass, S. E. & Roberts, J. M. The occurrence of the cold-water coral Lophelia pertusa (Scleractinia) on oil and gas platforms in the North Sea: Colony growth, recruitment and environmental controls on distribution. Mar. Pollut. Bull. 52, 549–559 (2006).CAS 
    PubMed 

    Google Scholar 
    Brooke, S. & Young, C. M. In situ measurement of survival and growth of Lophelia pertusa in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 397, 153–161 (2009).
    Google Scholar 
    Lartaud, F. et al. A new approach for assessing cold-water coral growth in situ using fluorescent calcein staining. Aquat. Living Resour. 26, 187–196 (2013).
    Google Scholar 
    Sebens, K. P., Witting, J. & Helmuth, B. Effects of water flow and branch spacing on particle capture by the reef coral Madracis mirabilis (Duchassaing and Michelotti). J. Exp. Mar. Bio. Ecol. 211, 1–28 (1997).
    Google Scholar 
    Sebens, K. P., Grace, S. P., Helmuth, B., Maney, E. J. Jr. & Miles, J. S. Water flow and prey capture by three scleractinian corals, Madracis mirabilis, Montastrea cavernosa and Porites porites, in a field enclosure. Mar. Biol. 131, 347–360 (1998).
    Google Scholar 
    Purser, A., Larsson, A. I., Thomsen, L. & van Oevelen, D. The influence of flow velocity and food concentration on Lophelia pertusa (Scleractinia) zooplankton capture rates. J. Exp. Mar. Bio. Ecol. 395, 55–62 (2010).
    Google Scholar 
    Orejas, C. et al. The effect of flow speed and food size on the capture efficiency and feeding behaviour of the cold-water coral Lophelia pertusa. J. Exp. Mar. Bio. Ecol. 481, 34–40 (2016).
    Google Scholar 
    Duineveld, G. C. A. et al. Spatial and tidal variation in food supply to shallow cold-water coral reefs of the Mingulay Reef complex (Outer Hebrides, Scotland). Mar. Ecol. Prog. Ser. 444, 97–115 (2012).
    Google Scholar 
    De Clippele, L. H. et al. The effect of local hydrodynamics on the spatial extent and morphology of cold-water coral habitats at Tisler Reef, Norway. Coral Reefs 37, 253–266 (2018).PubMed 

    Google Scholar 
    Jokiel, P. L. Effects of water motion on reef corals. J. Exp. Mar. Biol. Ecol. 35, 87–97 (1978).
    Google Scholar 
    Shashar, N., Cohen, Y. & Loya, Y. Extreme diel fluctuations of oxygen in diffusive boundary layers surrounding stony corals. Biol. Bull. 185, 455–461 (1993).CAS 
    PubMed 

    Google Scholar 
    Finelli, C. M., Helmuth, B. S. T., Pentcheff, N. D. & Wethey, D. S. Water flow influences oxygen transport and photosynthetic efficiency in corals. Coral Reefs 25, 47–57 (2006).
    Google Scholar 
    Atkinson, M. J. & Bilger, R. W. Effects of water velocity on phosphate uptake in coral reef-hat communities. Limnol. Oceanogr. 37, 273–279 (1992).CAS 

    Google Scholar 
    Mass, T., Genin, A., Shavit, U., Grinstein, M. & Tchernov, D. Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. Proc. Natl. Acad. Sci. 107, 2527–2531 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Comeau, S., Edmunds, P. J., Lantz, C. A. & Carpenter, R. C. Water flow modulates the response of coral reef communities to ocean acidification. Sci. Rep. 4, 6681 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Larsson, A., Lundälv, T. & van Oevelen, D. Skeletal growth, respiration rate and fatty acid composition in the cold-water coral Lophelia pertusa under varying food conditions. Mar. Ecol. Prog. Ser. 483, 169–184 (2013).
    Google Scholar 
    Baussant, T., Nilsen, M., Ravagnan, E., Westerlund, S. & Ramanand, S. Physiological responses and lipid storage of the coral Lophelia pertusa at varying food density. J. Toxicol. Environ. Health. A 80, 266–284 (2017).CAS 
    PubMed 

    Google Scholar 
    Bouma, T. J. et al. Spatial flow and sedimentation patterns within patches of epibenthic structures: Combining field, flume and modelling experiments. Cont. Shelf Res. 27, 1020–1045 (2007).
    Google Scholar 
    Brooke, S. D., Holmes, M. W. & Young, C. M. Sediment tolerance of two different morphotypes of the deep-sea coral Lophelia pertusa from the Gulf of Mexico. Mar. Ecol. Prog. Ser. 390, 137–144 (2009).
    Google Scholar 
    Bøe, R. et al. Giant sandwaves in the Hola glacial trough off Vesterålen, North Norway. Mar. Geol. 267, 36–54 (2009).
    Google Scholar 
    Huvenne, V. A. I. et al. The Magellan mound province in the Porcupine Basin. Int. J. Earth Sci. 96, 85–101 (2007).CAS 

    Google Scholar 
    De Haas, H. et al. Morphology and sedimentology of (clustered) cold-water coral mounds at the south Rockall Trough margins, NE Atlantic Ocean. Facies 55, 1–26 (2009).
    Google Scholar 
    Lim, A., Huvenne, V. A. I., Vertino, A., Spezzaferri, S. & Wheeler, A. J. New insights on coral mound development from groundtruthed high-resolution ROV-mounted multibeam imaging. Mar. Geol. 403, 225–237 (2018).
    Google Scholar 
    Olariaga, A., Gori, A., Orejas, C. & Gili, J. M. Development of an autonomous aquarium system for maintaining deep corals. Oceanography 22, 44–45 (2009).
    Google Scholar 
    Davies, A. J. et al. Short-term environmental variability in cold-water coral habitat at Viosca Knoll, Gulf of Mexico. Deep Sea Res. I(57), 199–212 (2010).
    Google Scholar 
    Mienis, F. et al. The influence of near-bed hydrodynamic conditions on cold-water corals in the Viosca Knoll area, Gulf of Mexico. Deep Sea Res. I(60), 32–45 (2012).
    Google Scholar 
    Flo, E., Garcés, E., Manzanera, M. & Camp, J. Coastal inshore waters in the NW Mediterranean: Physicochemical and biological characterization and management implications. Estuar. Coast. Shelf Sci. 93, 279–289 (2011).CAS 

    Google Scholar 
    Davies, P. S. Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar. Biol. 101, 389–395 (1989).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Core Team, 2018).Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).CAS 
    PubMed 

    Google Scholar 
    Thérond, P., Auger, J., Legrand, A. & Jouannet, P. α-tocopherol in human spermatozoa and seminal plasma: Relationships with motility, antioxidant enzymes and leukocytes. Mol. Hum. Reprod. 2, 739–744 (1996).PubMed 

    Google Scholar 
    Beers, R. F. & Sizer, I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195, 133–140 (1952).CAS 
    PubMed 

    Google Scholar 
    Kalghatgi, S. et al. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells. Sci. Transl. Med. 5, 1–10 (2013).
    Google Scholar  More

  • in

    Experimental climate change impacts on Baltic coastal wetland plant communities

    Kimmel, K., Kull, A., Salm, J. & Mander, Ü. The status, conservation and sustainable use of Estonian wetlands. Wetl. Ecol. Manag. 18, 375–395. https://doi.org/10.1007/s11273-008-9129-z (2008).Article 

    Google Scholar 
    Engle, V. Estimating the provision of ecosystem services by Gulf of Mexico coastal wetlands. Wetlands 31, 179–193. https://doi.org/10.1007/s13157-010-0132-9 (2011).Article 

    Google Scholar 
    Ward, R., Teasdale, P., Burnside, N., Joyce, C. & Sepp, K. Recent rates of sedimentation on irregularly flooded Boreal Baltic coastal wetlands: Responses to recent changes in sea level. Geomorphology 217, 61–72. https://doi.org/10.1016/j.geomorph.2014.03.045 (2014).Article 

    Google Scholar 
    Villoslada Peciña, M. et al. Country-scale mapping of ecosystem services provided by semi-natural grasslands. Sci. Total Environ. 661, 212–225. https://doi.org/10.1016/j.scitotenv.2019.01.174 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lima, M., Ward, R. & Joyce, C. Environmental drivers of sediment carbon storage in temperate seagrass meadows. Hydrobiologia 847, 1773–1792. https://doi.org/10.1007/s10750-019-04153-5 (2019).Article 
    CAS 

    Google Scholar 
    Ward, R. Sedimentary response of Arctic coastal wetlands to sea level rise. Geomorphology 370, 107400. https://doi.org/10.1016/j.geomorph.2020.107400 (2020).Article 

    Google Scholar 
    Akumu, C., Pathirana, S., Baban, S. & Bucher, D. Examining the potential impacts of sea level rise on coastal wetlands in north-eastern NSW, Australia. J. Coast. Conserv. 15, 15–22. https://doi.org/10.1007/s11852-010-0114-3 (2010).Article 

    Google Scholar 
    Ward, R. Carbon sequestration and storage in Norwegian Arctic coastal wetlands: Impacts of climate change. Sci. Total Environ. 748, 141343. https://doi.org/10.1016/j.scitotenv.2020.141343 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hossain, M., Hein, L., Rip, F. & Dearing, J. Integrating ecosystem services and climate change responses in coastal wetlands development plans for Bangladesh. Mitig. Adapt. Strateg. Glob. Chang. 20, 241–261. https://doi.org/10.1007/s11027-013-9489-4 (2015).Article 

    Google Scholar 
    Ward, R., Friess, D., Day, R. & Mackenzie, R. Impacts of climate change on global mangrove ecosystems: A regional comparison. Ecosyst. Health Sustain. 4, 1–25 (2016).
    Google Scholar 
    Graham, L. P. et al. Climate change. In The Baltic Sea Area Draft HELCOM Thematic Assessment. (Helsinki Commission, Baltic Marine Environmental Protection Commission, 2007).BACC. Assessment of Climate Change for the Baltic Sea Basin. (Springer Science & Business Media, 2008).
    Google Scholar 
    Rivis, R. et al. Trends in the development of Estonian coastal land cover and landscapes caused by natural changes and human impact. J. Coast. Conserv. 20, 199–209. https://doi.org/10.1007/s11852-016-0430-3 (2016).Article 

    Google Scholar 
    Cubasch, U. et al. Projections of future climate change. in IPCC Climate Change 2001: The Scientific Basis Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2001).Mafi-Gholami, D., Zenner, E., Jaafari, A. & Ward, R. Modeling multi-decadal mangrove leaf area index in response to drought along the semi-arid southern coasts of Iran. Sci. Total Environ. 656, 1326–1336. https://doi.org/10.1016/j.scitotenv.2018.11.462 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    IPCC. Global Warming of 1.5 ºC. Ipcc.ch. https://www.ipcc.ch/sr15/ (2008).Omstedt, A., Pettersen, C., Rodhe, J. & Winsor, P. Baltic Sea climate: 200 yr of data on air temperature, sea level variation, ice cover, and atmospheric circulation. Clim. Res. 25, 205–216 (2004).Article 

    Google Scholar 
    Räisänen, J. Future climate change in the Baltic Sea Region and environmental impacts. Oxf. Res. Encycl. Clim. Sci. https://doi.org/10.1093/acrefore/9780190228620.013.634 (2017).Article 

    Google Scholar 
    Dippner, J. W. et al. Climate-related marine ecosystem change. in Team, B. A. Assessment of Climate Change for the Baltic Sea Basin. (SSBM, 2008).Ward, R., Burnside, N., Joyce, C., Sepp, K. & Teasdale, P. Improved modelling of the impacts of sea level rise on coastal wetland plant communities. Hydrobiologia 774, 203–216. https://doi.org/10.1007/s10750-015-2374-2 (2016).Article 

    Google Scholar 
    Vuorinen, I. Proportion of copepod biomass declines with decreasing salinity in the Baltic Sea. ICES Mar. Sci. 55, 767–774. https://doi.org/10.1006/jmsc.1998.0398 (1998).Article 

    Google Scholar 
    Berg, M., Joyce, C. & Burnside, N. Differential responses of abandoned wet grassland plant communities to reinstated cutting management. Hydrobiologia 692, 83–97. https://doi.org/10.1007/s10750-011-0826-x (2011).Article 

    Google Scholar 
    Short, F., Kosten, S., Morgan, P., Malone, S. & Moore, G. Impacts of climate change on submerged and emergent wetland plants. Aquat. Bot. 135, 3–17. https://doi.org/10.1016/j.aquabot.2016.06.006 (2016).Article 

    Google Scholar 
    Ward, R., Burnside, N., Joyce, C. & Sepp, K. Importance of microtopography in determining plant community distribution in Baltic coastal wetlands. J. Coast. Res. 321, 1062–1070. https://doi.org/10.2112/JCOASTRES-D-15-00065.1 (2016).Article 

    Google Scholar 
    Burnside, N., Joyce, C., Puurmann, E. & Scott, D. Use of vegetation classification and plant indicators to assess grazing abandonment in Estonian coastal wetlands. J. Veg. Sci. 18, 645–654. https://doi.org/10.1111/j.1654-1103.2007.tb02578.x (2007).Article 

    Google Scholar 
    Ward, R., Burnside, N., Joyce, C. & Sepp, K. The use of medium point density LiDAR elevation data to determine plant community types in Baltic coastal wetlands. Ecol. Indic. 33, 96–104. https://doi.org/10.1016/j.ecolind.2012.08.016 (2013).Article 

    Google Scholar 
    Goud, E., Watt, C. & Moore, T. Plant community composition along a peatland margin follows alternate successional pathways after hydrologic disturbance. Acta Oecol. 91, 65–72. https://doi.org/10.1016/j.actao.2018.06.006 (2018).Article 

    Google Scholar 
    Moreno, J., Terrones, A., Juan, A. & Alonso, M. Halophytic plant community patterns in Mediterranean saltmarshes: Shedding light on the connection between abiotic factors and the distribution of halophytes. Plant Soil 430, 185–204. https://doi.org/10.1007/s11104-018-3671-0 (2018).Article 
    CAS 

    Google Scholar 
    Sharpe, P. & Baldwin, A. Tidal marsh plant community response to sea-level rise: A mesocosm study. Aquat. Bot. 101, 34–40. https://doi.org/10.1016/j.aquabot.2012.03.015 (2012).Article 

    Google Scholar 
    Lindig-Cisneros, R. & Zedler, J. Phalaris arundinacea seedling establishment: Effects of canopy complexity in fen, mesocosm, and restoration experiments. J. Bot. 80, 617–624. https://doi.org/10.1139/b02-042 (2002).Article 

    Google Scholar 
    Ahn, C. & Mitsch, W. Scaling considerations of mesocosm wetlands in simulating large created freshwater marshes. Ecol. Eng. 18, 327–342. https://doi.org/10.1016/S0925-8574(01)00092-1 (2002).Article 

    Google Scholar 
    Brotherton, S. & Joyce, C. Extreme climate events and wet grasslands: Plant traits for ecological resilience. Hydrobiologia 750, 229–243. https://doi.org/10.1007/s10750-014-2129-5 (2015).Article 

    Google Scholar 
    Stewart, R. I. et al. Mesocosm experiments as a tool for ecological climate-change research. Adv. Ecol. Res. AP. 48, 71–181 (2013).Article 

    Google Scholar 
    Kont, A., Ratas, U. & Puurmann, E. Sea-level rise impact on coastal areas of Estonia. Clim. Change 36, 175–184. https://doi.org/10.1023/A:1005352715752 (1997).Article 

    Google Scholar 
    Short, F. & Neckles, H. The effects of global climate change on seagrasses. Aquat. Bot. 63, 169–196. https://doi.org/10.1016/S0304-3770(98)00117-X (1999).Article 

    Google Scholar 
    Engels, J., Rink, F. & Jensen, K. Stress tolerance and biotic interactions determine plant zonation patterns in estuarine marshes during seedling emergence and early establishment. J. Ecol. 99, 277–287. https://doi.org/10.1111/j.1365-2745.2010.01745.x (2010).Article 

    Google Scholar 
    Rayner, D. et al. Intertidal wetland vegetation dynamics under rising sea levels. Sci. Total Environ. 766, 144237. https://doi.org/10.1016/j.scitotenv.2020.144237 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Toogood, S. & Joyce, C. Effects of raised water levels on wet grassland plant communities. Appl. Veg. Sci. 12, 283–294. https://doi.org/10.1111/j.1654-109X.2009.01028.x (2009).Article 

    Google Scholar 
    Humphreys, A., Gorsky, A., Bilkovic, D. & Chambers, R. Changes in plant communities of low-salinity tidal marshes in response to sea-level rise. Ecosphere https://doi.org/10.1002/ecs2.3630 (2021).Article 

    Google Scholar 
    Jarvis, J. C., McKenna, S. A. & Rasheed, M. A. Seagrass seed bank spatial structure and function following a large-scale decline. Mar. Ecol. Prog. Ser. 665, 75–87. https://doi.org/10.3354/meps13668 (2021).Article 

    Google Scholar 
    Elsey-Quirk, T. & Leck, M. Patterns of seed bank and vegetation diversity along a tidal freshwater river. Am. J. Bot. 102, 1996–2012. https://doi.org/10.3732/ajb.1500314 (2015).Article 
    PubMed 

    Google Scholar 
    Jutila, H. Germination in Baltic coastal wetland meadows: Similarities and differences between vegetation and seed bank. Plant Ecol. 166, 275–293 (2003).Article 

    Google Scholar 
    Ellenberg, H. Zeigerwerte der Gefässpflanzen Mitteleuropas. 42–111. (Scr. Geobot., 1979).Joshi, R. et al. Salt adaptation mechanisms of halophytes: Improvement of salt tolerance in crop plants. in Elucidation of Abiotic Stress Signaling in Plants. (Springer, 2015).Tessier, M., Gloaguen, J. & Lefeuvre, J. Factors affecting the population dynamics of Suaeda maritima at initial stages of development. Plant Ecol. 147, 193–203 (2000).Article 

    Google Scholar 
    Hanslin, H. & Eggen, T. Salinity tolerance during germination of seashore halophytes and salt-tolerant grass cultivars. Seed Sci. Res. 15, 43–50. https://doi.org/10.1079/SSR2004196 (2005).Article 

    Google Scholar 
    Köster, T. et al. The management of the coastal grasslands of Estonia. WIT Trans. Ecol. Environ. https://doi.org/10.2495/CENV040051 (2004).Article 

    Google Scholar 
    Spencer, T. et al. Global coastal wetland change under sea-level rise and related stresses: The DIVA wetland change model. Glob. Planet. Change 139, 15–30. https://doi.org/10.1016/j.gloplacha.2015.12.018 (2016).Article 

    Google Scholar 
    Marani, M., D’Alpaos, A., Lanzoni, S., Carniello, L. & Rinaldo, A. Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon. Geophys. Res. Lett. https://doi.org/10.1029/2007GL030178 (2007).Article 

    Google Scholar 
    Petersen, K., Frank, H., Paytan, A. & Bar-Zeev, E. Impacts of seawater desalination on coastal environments. Sustain. Desalin. Handb. https://doi.org/10.1016/B978-0-12-809240-8.00011-3 (2018).Article 

    Google Scholar 
    Rannap, R. et al. Coastal meadow management for threatened waders has a strong supporting impact on meadow plants and amphibians. J. Nat. Conserv. 35, 77–91. https://doi.org/10.1016/j.jnc.2016.12.004 (2017).Article 

    Google Scholar 
    Krauss, K. et al. How mangrove forests adjust to rising sea level. New Phytol. 202, 19–34. https://doi.org/10.1111/nph.12605 (2014).Article 
    PubMed 

    Google Scholar 
    Kirwan, M. et al. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. https://doi.org/10.1029/2010GL045489 (2010).Article 

    Google Scholar 
    Burnside, N., Joyce, C., Berg, M. & Puurman, E. The relationship between microtopography and vegetation in Estonian coastal wetlands: Implications for climate change. Publ. Inst. Geogr. Univ. Tartu. 106, 19–23 (2008).
    Google Scholar 
    Hulisz, P., Piernik, A., Mantilla-Contreras, J. & Elvisto, T. Main driving factors for seacoast vegetation in the southern and eastern Baltic. Wetlands 36, 909–919. https://doi.org/10.1007/s13157-016-0803-2 (2016).Article 

    Google Scholar 
    Gough, L. & Grace, J. Effects of flooding, salinity and herbivory on coastal plant communities, Louisiana, United States. Oecologia 117, 527–535. https://doi.org/10.1007/s004420050689 (1998).Article 
    PubMed 

    Google Scholar 
    Hannerz, F. & Destouni, G. Spatial characterization of the Baltic sea drainage basin and its unmonitored catchments. Ambio 35, 214–219. https://doi.org/10.1579/05-A-022R.1 (2006).Article 
    PubMed 

    Google Scholar 
    Kont, A., Jaagus, J. & Aunap, R. Climate change scenarios and the effect of sea-level rise for Estonia. Glob. Planet. Change 36, 1–15. https://doi.org/10.1016/S0921-8181(02)00149-2 (2003).Article 

    Google Scholar 
    von Storch, H. & Omstedt, A. Introduction and summary. in Team, B. A. Assessment of Climate Change for the Baltic Sea Basin. (SSBM, 2008).Stigebrandt, A. Physical oceanography of the Baltic Sea. in A Systems Analysis of the Baltic Sea. 19–74 (Springer, 2001).Ingerpuu, N. & Sarv, M. Effect of grazing on plant diversity of coastal meadows in Estonia. Ann. Bot. Fenn. 52, 84–92. https://doi.org/10.5735/085.052.0210 (2015).Article 

    Google Scholar 
    Moinardeau, C., Mesléard, F., Ramone, H. & Dutoit, T. Short-term effects on diversity and biomass on grasslands from artificial dykes under grazing and mowing treatments. Environ. Conserv. 46, 132–139. https://doi.org/10.1017/S0376892918000346 (2019).Article 

    Google Scholar 
    Tardella, F. M., Bricca, A., Goia, I. G. & Catorci, A. How mowing restores montane Mediterranean grasslands following cessation of traditional livestock grazing. Agric. Ecosyst. Environ. 295, 1158. https://doi.org/10.1016/j.agee.2020.106880 (2020).Article 

    Google Scholar 
    Lindborg, R. & Eriksson, O. Historical landscape connectivity affects present plant species diversity. Ecology 85, 1840–1845. https://doi.org/10.1890/04-0367 (2004).Article 

    Google Scholar 
    Villoslada Peciña, M., Bergamo, T., Ward, R., Joyce, C. & Sepp, K. A novel UAV-based approach for biomass prediction and grassland structure assessment in coastal meadows. Ecol. Indic. 122, 107227. https://doi.org/10.1016/j.ecolind.2020.107227 (2021).Article 

    Google Scholar 
    Villoslada, M. et al. Fine scale plant community assessment in coastal meadows using UAV based multispectral data. Ecol. Indic. 111, 105979. https://doi.org/10.1016/j.ecolind.2019.105979 (2020).Article 

    Google Scholar 
    Araya, Y., Gowing, D. & Dise, N. A controlled water-table depth system to study the influence of fine-scale differences in water regime for plant growth. Aquat. Bot. 92, 70–74. https://doi.org/10.1016/j.aquabot.2009.10.004 (2010).Article 

    Google Scholar 
    Koch, E. et al. Non-linearity in ecosystem services: Temporal and spatial variability in coastal protection. Front. Ecol. Environ. 7, 29–37. https://doi.org/10.1890/080126 (2009).Article 

    Google Scholar 
    Church, J. & White, N. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 32, 585–602. https://doi.org/10.1007/s10712-011-9119-1 (2011).Article 

    Google Scholar 
    Goodwillie, C., McCoy, M. & Peralta, A. Long-term nutrient enrichment, mowing, and ditch drainage interact in the dynamics of a wetland plant community. Ecosphere. https://doi.org/10.1002/ecs2.3252 (2020).Article 

    Google Scholar 
    Kindt, R. & Coe, R. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. in World Agroforestry | Transforming Lives and Landscapes with Trees. http://www.worldagroforestry.org/output/tree-diversity-analysis (2005).Oksanen, J. et al. CRAN—Package Vegan. Cran.r-project.org. https://CRAN.R-project.org/package=vegan. (2022).Wickham, H. Create Elegant Data Visualisations Using the Grammar of Graphics. Ggplot2.tidyverse.org. https://ggplot2.tidyverse.org (2016).Avolio, M. et al. A comprehensive approach to analyzing community dynamics using rank abundance curves. Ecosphere. https://doi.org/10.1002/ecs2.2881 (2019).Article 

    Google Scholar 
    Curtis, J. & McIntosh, R. The interrelations of certain analytic and synthetic phytosociological characters. Ecology 31, 434–455. https://doi.org/10.2307/1931497 (1950).Article 

    Google Scholar 
    Porto, A. B., do Prado, M. A., Rodrigues, L. D. S. & Overbeck, G. E. Restoration of subtropical grasslands degraded by non-native pine plantations: Effects of litter removal and hay transfer. Restor. Ecol. https://doi.org/10.1111/rec.13773 (2022).Article 

    Google Scholar 
    Cáceres, M. D. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecol. 90, 3566–3574. https://doi.org/10.1890/08-1823.1 (2009).Article 

    Google Scholar 
    Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. https://dplyr.tidyverse.org; https://github.com/tidyverse/dplyr (2022). More

  • in

    Increased fire activity under high atmospheric oxygen concentrations is compatible with the presence of forests

    Lenton, T. & Watson, A. J. Revolutions That Made the Earth. (Oxford University Press, 2011).Lovelock, J. The Ages of Gaia: A Biography of Our Living Earth. (Oxford University Press, USA, 2000).Falkowski, P. G. The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science 309, 2202–2204 (2005).Article 
    PubMed 

    Google Scholar 
    Holland, H. D. The oxygenation of the atmosphere and oceans. Philos. Trans. R. Soc. B: Biol. Sci. 361, 903–915 (2006).Article 

    Google Scholar 
    Lenton, T. M. Fire feedbacks on atmospheric oxygen. In Fire phenomena and the Earth system: an interdisciplinary guide to fire science (ed. Belcher, C. M.) 289–308 (John Wiley & Sons, 2013).Belcher, C. M., Yearsley, J. M., Hadden, R. M., McElwain, J. C. & Rein, G. Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proc. Natl Acad. Sci. 107, 22448–22453 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cope, M. J. & Chaloner, W. G. Fossil charcoal as evidence of past atmospheric composition. Nature 283, 647–649 (1980).Article 

    Google Scholar 
    Watson, A. J. Consequences for the biosphere of forest and grassland fires. (University of Reading, 1978).Belcher, C. M. & McElwain, J. C. Limits for combustion in low O2 redefine paleo atmospheric predictions for the Mesozoic. Science 321, 1197–1200 (2008).Article 
    PubMed 

    Google Scholar 
    Wildman, R. A., Hickey, L. J., Dickinson, M. B. & Wildman, C. B. Burning of forest materials under late Paleozoic high atmospheric oxygen levels. Geology 32, 457–460 (2004).Kump, L. R. The rise of atmospheric oxygen. Nature 451, 277–278 (2008).Article 
    PubMed 

    Google Scholar 
    Glasspool, I. J., Edwards, D. & Axe, L. Charcoal in the Silurian as evidence for the earliest wildfire. Geology 32, 381–383 (2004).Article 

    Google Scholar 
    Bowman, D. M. et al. Fire in the Earth system. Science 324, 481–484 (2009).Article 
    PubMed 

    Google Scholar 
    Quintiere, J. G. Principles of Fire Behaviour. (CRC Press Boca Raton, 1998).Pyne, S. J., Andrews, P. L. & Laven, R. D. Introduction to wildland fire. (John Eiley & Sons, Inc., 1996).Jones, T. P. & Chaloner, W. G. Fossil charcoal, its recognition and palaeoatmospheric significance. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 39–50 (1991).Article 

    Google Scholar 
    Glasspool, I. J. & Scott, A. C. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat. Geosci. 3, 627–630 (2010).Article 

    Google Scholar 
    Belcher, C. M., Collinson, M. E. & Scott, A. C. Fire phenomena and the Earth system: an interdisciplinary guide to fire science. In A 450‐Million‐Year History of Fire 229–249 (Wiley Online Library, 2013).Berner, R. A. & Landis, G. P. Chemical analysis of gaseous bubble inclusions in amber; the composition of ancient air? Am. J. Sci. 287, 757–762 (1987).Article 

    Google Scholar 
    Lane, N. Oxygen: The Molecule that Made the World. (Oxford University Press, 2002).Hopfenberg, H. B. et al. Is the air in amber ancient? Science 241, 717–721 (1988).Article 
    PubMed 

    Google Scholar 
    Carpenter, F. M. Studies on Carboniferous insects from Commentry, France; Part I. Introduction and families Protagriidae, Meganeuridae, and Campylopteridae. Bull. Geol. Soc. Am. 54, 527–554 (1943).Article 

    Google Scholar 
    Carpenter, F. M. Studies on Carboniferous insects from Commentry, France: Part II. The Megasecoptera. J. Paleontol. 25, 336–355 (1951).
    Google Scholar 
    Whyte, M. A. A gigantic fossil arthropod trackway. Nature 438, 576–576 (2005).Article 
    PubMed 

    Google Scholar 
    Carroll, R. L. Vertebrate Paleontology and Evolution. (Freeman, 1988).Graham, J. B., Aguilar, N. M., Dudley, R. & Gans, C. Implications of the late Palaeozoic oxygen pulse for physiology and evolution. Nature 375, 117–120 (1995).Article 

    Google Scholar 
    Harrison, J. F., Kaiser, A. & VandenBrooks, J. M. Atmospheric oxygen level and the evolution of insect body size. Proc. R. Soc. B: Biol. Sci. 277, 1937–1946 (2010).Article 

    Google Scholar 
    Hetz, S. K. & Bradley, T. J. Insects breathe discontinuously to avoid oxygen toxicity. Nature 433, 516–519 (2005).Article 
    PubMed 

    Google Scholar 
    Watson, A., Lovelock, J. E. & Margulis, L. Methanogenesis, fires and the regulation of atmospheric oxygen. Biosystems 10, 293–298 (1978).Article 
    PubMed 

    Google Scholar 
    Watson, A. J. & Lovelock, J. E. The dependence of flame spread and probability of ignition on atmospheric oxygen: an experimental investigation. In Fire phenomena and the Earth system: an interdisciplinary guide to fire science 273–287 (John Wiley & Sons, 2013).Thonicke, K., Venevsky, S., Sitch, S. & Cramer, W. The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model. Glob. Ecol. Biogeogr. 10, 661–677 (2001).Article 

    Google Scholar 
    Benson, R. P., Roads, J. O. & Weise, D. R. Climatic and weather factors affecting fire occurrence and behavior. Dev. Environ. Sci. 8, 37–59 (2008).
    Google Scholar 
    Babrauskas, V. Effective heat of combustion for flaming combustion of conifers. Can. J. For. Res. 36, 659–663 (2006).Article 

    Google Scholar 
    Madrigal, J., Guijarro, M., Hernando, C., Diez, C. & Marino, E. Effective heat of combustion for flaming combustion of Mediterranean forest fuels. Fire Technol. 47, 461–474 (2011).Article 

    Google Scholar 
    Rivera, J., de, D., Davies, G. M. & Jahn, W. Flammability and the heat of combustion of natural fuels: a review. Combust. Sci. Technol. 184, 224–242 (2012).Article 

    Google Scholar 
    Dibble, A. C., White, R. H. & Lebow, P. K. Combustion characteristics of north-eastern USA vegetation tested in the cone calorimeter: invasive versus non-invasive plants. Int. J. Wildland Fire 16, 426–443 (2007).Article 

    Google Scholar 
    Stein, W. E. et al. Mid-Devonian Archaeopteris roots signal revolutionary change in earliest fossil forests. Curr. Biol. 30, 421–431.e2 (2020).Article 
    PubMed 

    Google Scholar 
    Lenton, T. M. & Watson, A. J. Redfield revisited: 2. What regulates the oxygen content of the atmosphere? Glob. Biogeochem. Cycles 14, 249–268 (2000).Article 

    Google Scholar 
    Berner, R. A. The Phanerozoic Carbon Cycle: CO2 and O2. (Oxford University Press on Demand, 2004).Berner, R. A. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et. Cosmochimica Acta 70, 5653–5664 (2006).Article 

    Google Scholar 
    Berner, R. A. GEOCARB II: A revised model of atmospheric CO2 over phanerozoic time. Am. J. Sci. 294, 56–91 (1994).Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004).Article 

    Google Scholar 
    Lenton, T. M., Daines, S. J. & Mills, B. J. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth-Sci. Rev. 178, 1–28 (2018).Article 

    Google Scholar 
    Mills, B. J., Donnadieu, Y. & Goddéris, Y. Spatial continuous integration of Phanerozoic global biogeochemistry and climate. Gondwana Res. 100, 73–86 (2021).Article 

    Google Scholar 
    Kump, L. R. Terrestrial feedback in atmospheric oxygen regulation by fire and phosphorus. Nature 335, 152–154 (1988).Article 

    Google Scholar 
    Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans. vol. 2 (Princeton University Press, 2020).Lasaga, A. C. & Ohmoto, H. The oxygen geochemical cycle: dynamics and stability. Geochimica et. Cosmochimica Acta 66, 361–381 (2002).Article 

    Google Scholar 
    Van Cappellen, P. & Ingall, E. D. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science 271, 493–496 (1996).Article 
    PubMed 

    Google Scholar 
    Belcher, C. M. et al. The rise of angiosperms strengthened fire feedbacks and improved the regulation of atmospheric oxygen. Nat. Commun. 12, 503 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Belcher, C. M., Yearsley, J. M., Hadden, R. M., McElwain, J. C. & Rein, G. Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proc. Natl Acad. Sci. 107, 22448–22453 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berner, R. A. & Canfield, D. E. A new model for atmospheric oxygen over Phanerozoic time. Am. J. Sci. 289, 333–361 (1989).Article 
    PubMed 

    Google Scholar 
    Lenton, T. M. The role of land plants, phosphorus weathering and fire in the rise and regulation of atmospheric oxygen. Glob. Change Biol. 7, 613–629 (2001).Article 

    Google Scholar 
    Royer, D. L., Donnadieu, Y., Park, J., Kowalczyk, J. & Godderis, Y. Error analysis of CO2 and O2 estimates from the long-term geochemical model GEOCARBSULF. Am. J. Sci. 314, 1259–1283 (2014).Article 

    Google Scholar 
    Berner, R. A. Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model. Am. J. Sci. 306, 295–302 (2006).Article 

    Google Scholar 
    Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J. & Bradstock, R. A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16, 406–411 (2011).Article 
    PubMed 

    Google Scholar 
    Pausas, J. G. & Keeley, J. E. A burning story: the role of fire in the history of life. BioScience 59, 593–601 (2009).Article 

    Google Scholar 
    Bond, W. J., Woodward, F. I. & Midgley, G. F. The global distribution of ecosystems in a world without fire. N. Phytol.t 165, 525–538 (2005).Article 

    Google Scholar 
    Forkel, M. et al. Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences 16, 57–76 (2019).Article 

    Google Scholar 
    Lucht, W., Schaphoff, S., Erbrecht, T., Heyder, U. & Cramer, W. Terrestrial vegetation redistribution and carbon balance under climate change. Carbon Balance Manag. 1, 1–7 (2006).Article 

    Google Scholar 
    Wu, C. et al. Historical and future global burned area with changing climate and human demography. One Earth 4, 517–530 (2021).Article 

    Google Scholar 
    Thonicke, K. et al. The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model. Biogeosciences 7, 1991–2011 (2010).Article 

    Google Scholar 
    Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9, 161–185 (2003).Article 

    Google Scholar 
    Lovelock, J. E. Gaia: A New Look at Life on Earth. (Oxford Paperbacks, 2000).Lasslop, G. et al. Global ecosystems and fire: Multi‐model assessment of fire‐induced tree‐cover and carbon storage reduction. Glob. Change Biol. 26, 5027–5041 (2020).Article 

    Google Scholar 
    Quan, X. et al. Global fuel moisture content mapping from MODIS. Int. J. Appl. Earth Obs. Geoinf. 101, 102354 (2021).
    Google Scholar 
    Collinson, M. E. et al. Palynological evidence of vegetation dynamics in response to palaeoenvironmental change across the onset of the Paleocene‐Eocene Thermal Maximum at Cobham, Southern England. Grana 48, 38–66 (2009).Article 

    Google Scholar 
    Feurdean, A. & Vasiliev, I. The contribution of fire to the late Miocene spread of grasslands in eastern Eurasia (Black Sea region). Sci. Rep. 9, 1–7 (2019).Article 

    Google Scholar 
    Hollaar, T. P. et al. Wildfire activity enhanced during phases of maximum orbital eccentricity and precessional forcing in the Early Jurassic. Commun. Earth Environ. 2, 1–12 (2021).Article 

    Google Scholar 
    Zelitch, I. Photosynthesis, Photorespiration, and Plant Productivity. (Elsevier, 2012).Björkman, O. The effect of oxygen concentration on photosynthesis in higher plants. Physiol. Plant. 19, 618–633 (1966).Article 

    Google Scholar 
    Berner, R. A. & Kothavala, Z. GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301, 182–204 (2001).Article 

    Google Scholar 
    Baker, S. J., Hesselbo, S. P., Lenton, T. M., Duarte, L. V. & Belcher, C. M. Charcoal evidence that rising atmospheric oxygen terminated Early Jurassic ocean anoxia. Nat. Commun. 8, 1–7 (2017).Article 

    Google Scholar 
    Pfeiffer, M., Spessa, A. & Kaplan, J. O. A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0). Geosci. Model Dev. 6, 643–685 (2013).Article 

    Google Scholar 
    Cohen, J. D. The national fire-danger rating system: basic equations. vol. 82 (US Department of Agriculture, Forest Service, Pacific Southwest Forest and …, 1985). More

  • in

    Predicting the potential global distribution of an invasive alien pest Trioza erytreae (Del Guercio) (Hemiptera: Triozidae)

    McNeely JA. editor. Global strategy on invasive alien species. IUCN (2001).Perrings, C. et al. Biological invasion risks and the public good: An economic perspective. Conserv. Ecol. 6, 1 (2002).
    Google Scholar 
    Taylor, B. W. & Irwin, R. E. Linking economic activities to the distribution of exotic plants. Proc. Natl. Acad. Sci. U.S.A. 101, 17725–17730 (2004).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moore, B. A. Alien invasive species: Impacts on forests and forestry—A review (Forestry Department and Forest Resource Division FAO, FAO Corporate Document Repository, 2005).
    Google Scholar 
    McBeath, J. H. & McBeath, J. Invasive Species and Food Security 157–176 (In Environmental Change and Food Security in China. Springer, 2010).
    Google Scholar 
    Ziska, L. H., Blumenthal, D. M., Runion, G. B., Hunt, E. R. & Diaz-Soltero, H. Invasive species and climate change: An agronomic perspective. Clim. Change. 105, 13–42 (2011).Article 
    ADS 

    Google Scholar 
    Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. Proc. Natl. Acad. Sci. U.S.A. 113, 11261–11265 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Otero, R. P., Vázquez, J. P. M. & Del Estal, P. Detección de la psila africana de los cítricos, Trioza erytreae (Del Guercio, 1918) (Hemiptera: Psylloidea: Triozidae), en la Península Ibérica. Arquivos Entomolóxicos 13, 119–122 (2015).
    Google Scholar 
    van den Berg, M. A., Deacon, & V. E.,. Dispersal of the citrus psylla, Trioza erytreae (Hemiptera: Triozidae), in the absence of its host plants. Phytophylactica 20, 361–368 (1988).
    Google Scholar 
    CABI. Trioza erytreae. In: Invasive Species Compendium. Wallingford, UK: CAB International. www.cabi.org/isc. (2021).Lounsbury, C. P. Psyllidae or jumping plant lice in Report of the Government Entomologist for the year 1896. Cape of Good Hope, South Africa, (Unpublished report), 115–118 (1897).Ruíz-Rivero, O. et al. Insights into the origin of the invasive populations of Trioza erytreae in Europe using microsatellite markers and mtDNA barcoding approaches. Sci. Rep. 11, 1–15 (2021).Article 

    Google Scholar 
    Benhadi-Marín, J., Fereres, A. & Pereira, J.A. Potential areas of spread of Trioza erytreae over mainland Portugal and Spain. J. Pest Sci.1–12 (2021).Bové, J.M. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. Plant Pathol. 7–37 (2006).Laštuvka, Z. Climate change and its possible influence on the occurrence and importance of insect pests. Plant Prot. Sci. 45, S53–S62 (2009).Article 

    Google Scholar 
    Thomson, L. J., Macfadyen, S. & Hoffmann, A. A. Predicting the effects of climate change on natural enemies of agricultural pests. Biol. Control. 52, 296–306 (2010).Article 

    Google Scholar 
    Bajwa, A.A., Farooq, M., Al-Sadi, A.M., Nawaz, A., Jabran, K. & Siddique, K.H. Impact of climate change on biology and management of wheat pests. J. Crop Prot. 105304 (2020).Hamann, E., Blevins, C., Franks, S. J., Jameel, M. I. & Anderson, J. T. Climate change alters plant–herbivore interactions. New Phytol. 229, 1894–1910 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cornelissen, T. Climate change and its effects on terrestrial insects and herbivory patterns. Neotrop. Entomol. 40, 155–163 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Raffa, K. F. et al. Responses of tree-killing bark beetles to a changing climate. Clim. Change Insect Pests. 7, 173–201 (2015).Article 

    Google Scholar 
    Cocuzza, G. E. M. et al. A review on Trioza erytreae (African citrus psyllid), now in mainland Europe, and its potential risk as vector of huanglongbing (HLB) in citrus. J. Pest Sci. 90, 1–17 (2017).Article 

    Google Scholar 
    Vector of citrus greening disease. Aidoo, O. F., Tanga, C. M., Azrag, A. G., Mohamed, S. A., Khamis, F. M., Rasowo, B. A. … & Borgemeister, C. Temperature-based phenology model of African citrus triozid (Trioza erytreae Del Guercio). J. Appl. Entomol. 146, 1–2 (2021).
    Google Scholar 
    Catling, H. D., The bionomics of the South African citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: PsyUidae), 1. The influence of the flushing rhythm of citrus and factors which regulate flushing. J. Entomol. Soc. S. Afr. 32, 191–208 (1969).Green, G. C. E., & Catling, H. D. “Weather-induced mortality of the citrus psylla, Trioza erytreae (Del Guercio)(Homoptera: Psyllidae), a vector of greening virus, in some citrus producing areas of southern Africa.” Agric. Meteorol. 8, 305–317(1971).Vicente-Serrano, S. M., González-Hidalgo, J. C., de Luis, M. & Raventós, J. Drought patterns in the Mediterranean area: The Valencia region (eastern Spain). Clim. Res. 26, 5–15 (2004).Article 

    Google Scholar 
    Millán, M. M., Estrela, M. J. & Miró, J. Rainfall components: variability and spatial distribution in a Mediterranean Area (Valencia Region). J. Clim. 18, 2682–2705 (2005).Article 
    ADS 

    Google Scholar 
    Srivastava, V., Lafond, V. & Griess, V.C. Species distribution models (SDM): applications, benefits and challenges in invasive species management. CAB Rev. 14(10.1079) (2019).Halsch, C.A., Shapiro, A.M., Fordyce, J.A., Nice, C.C., Thorne, J.H., Waetjen, D.P. & Forister, M.L. Insects and recent climate change. Proc. Natl. Acad. Sci. U.S.A. 118 (2021).Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).Article 

    Google Scholar 
    Lobo, J. M., Jiménez-Valverde, A. & Hortal, J. The uncertain nature of absences and their importance in species distribution modelling. ECOGEG 33, 103–114 (2010).
    Google Scholar 
    Guisan, A., Thuiller, W. & Zimmermann, N.E. Habitat suitability and distribution models: with applications in R. Cambridge University Press. (2017).de la Vega, G. J. & Corley, J. C. Drosophila suzukii (Diptera: Drosophilidae) distribution modelling improves our understanding of pest range limits. Int. J. Pest Manag. 65, 217–227 (2019).Article 

    Google Scholar 
    Tavanpour, T., Sarafrazi, A., Mehrnejad, M.R. & Imani, S. Distribution modelling of Acrosternum spp. (Hemiptera: Pentatomidae) in south of Iran. Biologia, 74, 1627–1635 (2019).Barton, M. G. & Terblanche, J. S. Predicting performance and survival across topographically heterogeneous landscapes: the global pest insect Helicoverpa armigera (H übner, 1808) (L epidoptera: N octuidae). Austral. Entomol. 53, 249–258 (2014).Article 

    Google Scholar 
    Kearney, M. & Porter, W. P. Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).Article 
    PubMed 

    Google Scholar 
    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Shabani, F., Kumar, L. & Ahmadi, M. A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecol. Evol. 6, 5973–5986 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kearney, M. R., Wintle, B. A. & Porter, W. P. Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conserv. Lett. 3, 203–213 (2010).Article 

    Google Scholar 
    Moran, V. C. & Blowers, J. R. On the biology of the South African citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae). J. Entomol. Soc. S. Afr. 30, 96–106 (1967).
    Google Scholar 
    Samways, M.J. & Manicom, B.Q. Immigration, frequency distributions and dispersion patterns of the psyllid Trioza erytreae (Del Guercio) in a citrus orchard. J. Appl. Ecol. 463–472 (1983).Pérez-Rodríguez, J. et al. Classical biological control of the African citrus psyllid Trioza erytreae, a major threat to the European citrus industry. Sci. Rep. 9, 1–11 (2019).Article 

    Google Scholar 
    Aidoo, O. F. et al. Host suitability and feeding preference of the African citrus triozid Trioza erytreae Del Guercio (Hemiptera: Triozidae), natural vector of “Candidatus Liberibacter africanus”. J. Appl. Entomol. 143, 262–270 (2019).Article 

    Google Scholar 
    Moran, V. C. Preliminary observations on the choice of host plants by adults of the citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae). J. Entomol. Soc. S. Afr. 31, 403–410 (1968).
    Google Scholar 
    van den Berg, M. A., Deacon, V. E. & Thomas, C.D. Ecology of the citrus psylla, Trioza erytreae (Hemiptera: Triozidae). 3. Mating, fertility and oviposition. Phytophylactica. 23, 195–200 (1991).Khamis, F. M. et al. DNA barcode reference library for the African citrus triozid, Trioza erytreae (Hemiptera: Triozidae): Vector of African citrus greening. J. Econ. Entomol. 110, 2637–2646 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Aidoo, O. F. et al. The African citrus triozid Trioza erytreae Del Guercio (Hemiptera: Triozidae): temporal dynamics and susceptibility to entomopathogenic fungi in East Africa. Int. J. Trop. Insect Sci. 41, 563–573 (2021).Article 

    Google Scholar 
    Rasowo, B. A. et al. Diversity and phylogenetic analysis of endosymbionts from Trioza erytreae (Del Guercio) and its parasitoids in Kenya. J. Appl. Entomol. 145, 104–116 (2021).Article 

    Google Scholar 
    Espinosa-Zaragoza, S., Aguirre-Medina, J. F. & López-Martínez, V. Does the African Citrus psyllid, Trioza erytreae (Del Guercio) (Hemiptera: Triozidae), Represent a phytosanitary threat to the citrus industry in Mexico?. Insects. 12, 450 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aidoo, O.F., Tanga, C.M., Mohamed, S.A., Khamis, F.M., Baleba, S.B., Rasowo, B.A., Ambajo, J., Sétamou, M., Ekesi, S. & Borgemeister, C. Detection and monitoring of ‘Candidatus’ Liberibacter spp. vectors: African citrus triozid Trioza erytreae Del Guercio (Hemiptera: Triozidae) and Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae) in citrus groves in East Africa. Agric. For. Entomol. 22, 401–409 (2020a).Urbaneja-Bernat, P., Hernández-Suárez, E., Tena, A. & Urbaneja, A. Preventive measures to limit the spread of Trioza erytreae (Del Guercio) (Hemiptera: Triozidae) in mainland Europe. J. Appl. Entomol. 144, 553–559 (2020).Article 

    Google Scholar 
    Aidoo, O. F. et al. Size and shape analysis of Trioza erytreae Del Guercio (Hemiptera: Triozidae), vector of citrus huanglongbing disease. Pest Manag. Sci. 75, 760–771 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Arenas-Arenas, F. J., Duran-Vila, N., Quinto, J. & Hervalejo, A. Geographic spread and inter-annual evolution of populations of Trioza erytreae in the Iberian Peninsula. Plant Pathol. 101, 1151–1157 (2019).Article 

    Google Scholar 
    Kalyebi, A. et al. Detection and identification of etiological agents (Liberibacter spp.) associated with citrus greening disease in Uganda. J. Agric. Sci. 16, 43–54 (2015).
    Google Scholar 
    Kyalo Richard., Abdel-Rahman, E.M., Mohamed, S.A., Ekesi, S., Borgemeister, C. & Landmann, T. Importance of remotely-sensed vegetation variables for predicting the spatial distribution of African citrus triozid (Trioza erytreae) in Kenya. ISPRS Int. J. Geoinf. 7, 429 (2018).Benhadi-Marín, J., Fereres, A. & Pereira, J. A. A model to predict the expansion of Trioza erytreae throughout the Iberian Peninsula using a pest risk analysis approach. Insects. 11, 576 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moran, V. C. The development of the citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae), on Citrus limon and four indigenous host plants. J. Entomol. Soc. S. Afr. 31, 391–402 (1986).
    Google Scholar 
    Tamesse, J. L. Key for identification of the Hymenopteran parasitoids of the African citrus psylla Trioza erytreae Del Guercio (Hemiptera: Triozidae) in Cameroon. Afr. J. Agric. Res. 4, 085–091 (2009).
    Google Scholar 
    Hailu, T. & Wakgari, M. Distribution and damage of African citrus psyllids (Trioza erytreae) in Casimiroa edulis producing areas of the eastern zone of Ethiopia. Int. J. Environ. Agric. Biotech. 4, 741–750 (2019).
    Google Scholar 
    Urbaneja-Bernat, P. et al. Host range testing of Tamarixia dryi (Hymenoptera: Eulophidae) sourced from South Africa for classical biological control of Trioza erytreae (Hemiptera: Psyllidae) in Europe. Biol. Control. 135, 110–116 (2019).Article 

    Google Scholar 
    Hernández-Suárez, E., Pérez-Rodríguez, J., Suárez-Méndez, L., Urbaneja-Bernat, P., Rizza, R., Siverio, F., Piedra-Buena, A., Urbaneja, A. &Tena, A.. Control de Trioza erytreae en las Islas Canarias por el parasitoide Tamarixia dryi. Phytoma España. La revista profesional de sanidad vegetal. 28–32 (2021).Molina, P., Martínez-Ferrer, M. T., Campos-Rivela, J. M., Riudavets, J. & Agustí, N. Development of a PCR-based method for the screening of potential predators of the African citrus psyllid Trioza erytreae (Del Guercio). Biol. Control. 160, 104661 (2021).Article 
    CAS 

    Google Scholar 
    Kumar, S., Neven, L. G., & Yee, W. L. Evaluating correlative and mechanistic niche models for assessing the risk of pest establishment. Ecosphere. 5, (2014).Kriticos, D. J. et al. The potential distribution of invading Helicoverpa armigera in North America: Is it just a matter of time?. PLoS ONE 10, e0119618 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sutherst, R. W., Maywald, G. F. & Bourne, A. S. Including species interactions in risk assessments for global change. Glob. Chang. Biol. 13, 1843–1859 (2007).Article 
    ADS 

    Google Scholar 
    Shabani, F., Kumar, L. & Esmaeili, A. Use of CLIMEX, land use and topography to refine areas suitable for date palm cultivation in Spain under climate change scenarios. J. Earth Sci. Clim. Change. 4, 145 (2013).
    Google Scholar 
    Silva, R. S., Kumar, L., Shabani, F. & Picanço, M. C. Assessing the impact of global warming on worldwide open field tomato cultivation through CSIRO-Mk3•0 global climate model. J. Agric. Sci. 155, 407–420 (2016).Article 

    Google Scholar 
    Kriticos, D. J. et al. CliMond: Global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol. 3, 53–64 (2012).Article 

    Google Scholar 
    Catling, H. D. The bionomics of the South African citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae) 3. The influence of extremes of weather on survival. J. Ecol. Soc. S. Afr. 32, 273–290 (1969).Aubert, B. Trioza erytreae Del Guercio and Diaphorina citri Kuwayama (Homoptera: Psylloidea), the two vectors of citrus greening disease: biological aspects and possible control strategy. Fruits 42, 149–162 (1987).
    Google Scholar 
    Gordon, H. B., Rotstayn, L. D., Mcgregor, J. L., Dix, M. R., Kowalczyk, E. A., O’farrell, S. P., Waterman, L. J., Hirst, A. C., Wilson, S. G., Collier, M. A., Watterson, I. G. & Elliott, T. I. The CSIRO Mk3 Climate System Model. CSIRO Atmospheric Research Technical Paper No. 60. Canberra: CSIRO. (2002).Van Vuuren, D. P. & Carter, T. R. Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old. Clim. Change. 122, 415–429 (2013).Article 
    ADS 

    Google Scholar 
    Fecher, B., Friesike, S. & Hebing, M. What drives academic data sharing?. PLoS ONE 10, e0118053 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Imker, H. J., Luong, H., Mischo, W. H., Schlembach, M. C. & Wiley, C. An examination of data reuse practices within highly cited articles of faculty at a research university. J. Acad. Librariansh. 47, 102369 (2021).Article 

    Google Scholar 
    Aidoo, O. F. et al. Distribution, degree of damage and risk of spread of Trioza erytreae (Hemiptera: Triozidae) in Kenya. J. Appl. Entomol. 143, 822–833 (2019).Article 

    Google Scholar 
    Mack, R.N., Simberloff, D., Mark Lonsdale, W., Evans, H., Clout, M. & Bazzaz, F.A. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).EPPO. EPPO Global database. In: EPPO Global database, Paris, France: EPPO. https://gd.eppo.int/ (2021).Beattie, G.A.C., Holford, P., Mabberley, D.J., Haigh, A.M. and Broadbent, P. Australia and huanglongbing. Food & Fertilizer Technology Center. (2008).Beattie, G.A.C. & Barkley, P. Huanglongbing and its Vectors. A Pest Specific Contingency Plan for the Citrus and Nursery and Garden Industries (Version 2), February 2009. Horticulture Australia Ltd., Sydney (2009).Plant Biosecurity. Final pest risk analysis report for ‘Candidatus Liberibacter species’ and their vectors associated with Rutaceae. Department of Agriculture, Fisheries and Forestry, Canberra. (2011).Silva, R. S., Kumar, L., Shabani, F. & Picanço, M. C. Potential risk levels of invasive Neoleucinodes elegantalis (small tomato borer) in areas optimal for open-field Solanum lycopersicum (tomato) cultivation in the present and under predicted climate change. Pest. Manag. Sci. 73, 616–627 (2017).Article 
    PubMed 

    Google Scholar 
    Santana, P. A., Kumar, L., Da Silva, R. S. & Picanço, M. C. Global geographic distribution of Tuta absoluta as affected by climate change. J. Pest Sci. 92, 1373–1385 (2019).Article 

    Google Scholar 
    da Graça, J. V. Citrus greening disease. Annu. Rev. Phytopathol. 29, 109–136 (1991).Article 

    Google Scholar 
    Li, W., Levy, L. & Hartung, J. S. Quantitative distribution of ‘Candidatus Liberibacter asiaticus’ in citrus plants with citrus huanglongbing. Phytopathology 99, 139–144 (2009).Article 
    ADS 
    PubMed 

    Google Scholar 
    Tatineni, S. et al. In Planta Distribution of ‘Candidatus Liberbacter asiaticus’ as revealed by Polymerase Chain Reaction (PCR) and Real-time PCR. Phytopathology 98, 592–599 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Aubert, B. Historical perspectives of HLB in Asia. In: International Research Conference on Huanglongbing; Proceedings of the Meeting (eds. Gottwald RT, Graham HJ) Orlando, Florida. 16–24 (2008).microscopy and microarray analysis. Kim, J, S., Sagaram, U.S., Burns, J.K., Li, J.L. & Wang, N. Response of sweet orange (Citrus sinensis) to ‘Candidatus Liberibacter asiaticus’ infection. Phytopathology 99, 50–57 (2009).Article 

    Google Scholar 
    EPPO. Trioza erytreae. EPPO datasheets on pests recommended for regulation (2022). Available online. https://gd.eppo.int.Ajene, I. J. et al. Habitat suitability and distribution potential of Liberibacter species (“Candidatus Liberibacter asiaticus” and “Candidatus Liberibacter africanus”) associated with citrus greening disease. Divers. Distrib. 26, 575–588 (2020).Article 

    Google Scholar 
    Manjunath, K. Á., Halbert, S. E., Ramadugu, C. H., Webb, S. U. & Lee, R. F. Detection of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus huanglongbing in Florida. Phytopathology 98, 387–396 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Halbert, S. E. & Manjunath, K. L. Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: A literature review and assessment of risk in Florida. Fla. Entomol. 87, 330–353 (2004).Article 

    Google Scholar  More

  • in

    Extensive archaeobotanical data estimate carrying capacity, duration, and land use of the Late Bronze Age settlement site Březnice (Czech Republic)

    Landscape use and anthropogenic influenceThe site could have had a specific and maybe extraordinary position in the microregion or in the trade networks41,42. The idea for creating trenches may have spread along trade routes—either as a habit of migrating people or as an ideology in the area of South and West Bohemia, Southern Germany, and the Austrian Land Salzburg55,56,57.Creeks along the settlement were major landscape elements. The settlement itself is entirely situated in the landscape periphery2. Steep slopes above Židova strouha creek and Blatenský potok brooks fundamentally limit agricultural use of the hinterland on the Březnice site, based on a model of reconstruction of the landscape potential (Fig. 6). The slopes may have been covered with sparse forest or shrubs. They were also forested in the nineteenth century, at the time of maximum agricultural load on the landscape as historical maps prove (Fig. 7).Figure 7Březnice and Hvožďany: the map of the second military mapping. Site catchements81 are according to the walk distance83 are shown hatched.Full size imageFieldsIn terms of human nutrition, the fields were crucial. The arable field area consisted of the actually cultivated fields and fallows. Analysis of plant macroremains provides us with knowledge of the grown species and the weed spectrum. The potential area and location of fields are reconstructed by a model that combines the agricultural potential of the landscape and previously published knowledge of the economic needs of the economic unit2,5,60,61,62,63.There is a possibility to assume, according to the SCA, the location of fields in relatively drier parts of the settlement area. Areas suitable for fields were probably located eastward and northward of the site, about 10–15 min walking distance (Fig. 6). The burial site was located beyond the northern border of the area where our analysis predicted the existence of fields93.Areas located eastward and northward of the settlement are even drier nowadays. The wetter fields may have been located in the north and northeast of the settlement, in its immediate vicinity. Moist soil is still present in these places today. The seeds and fruits of weed plants appear to have been transferred into the settlement together with the harvest. After being cleaned they were deposited as waste or used for further purposes, e.g. as an organic ingredient in ceramics or in daub4. The drier fields could correspond to finds of the following plant species: Arenaria serpyllifolia, Clinopodium acinos, Galeopsis augustifolia, Geranium cf. columbinum, Medicago lupulina, Rumex acetosella, Scleranthus annuus. Conversely, the following plants may have grown in the wetter fields, as documented in features on the settlement: Echinochloa crus-galli, Fumaria officinalis, Persicaria lapatifolia, Rumex cf. acetosa, Stachys arvensis.Synanthropic vegetation and ruderal habitatsArchaeobotanical analysis recorded many plant species characteristic for ruderal vegetation (most frequented Chenopodium album, Atriplex sp., Galium spurium, Polygonum aviculare, Chenopodium ficifolium, Fallopia convolvulus, Galium aparine). One could expect the presence of ruderals in the settlement area and its nearest surroundings in places that have been intensively used by humans and animals. The plants on the site could have reached the buildings by direct sedimentation and accidental charring, use of the ruderal plants, or as a result of waste burning.Deforested grazing areasGrazing took place in the enclosures and in the forests, which were made more open. The grazing of domestic animals had to be regulated in order to avoid crop damage and free movement around the settlement area. Winter fodder for animals had to be obtained within the reach of the settlement area, which contributed to the further lowering density of the forest. The archaeobotanical data reflect the grazing habitats in forest and deforested areas. Detrended correspondence analysis shows two clusters of plant species compatible with such environment (Fig. 4). The question is the process by which the plants reached the settlements. Species which appear in the ordinary space between the grassland and woodland—shrub positions could have grown on grasslands and light forests (e.g. Lychnis flos-cuculi, Dianthus cf. armeria, Galium palustre, Festuca ovina, Juncus sp., Campanula cf. glomerata) species in the ordinary space between “ruderal” and “grassland” could have grown at both habitats, e.g. at the transition of the settlement to the open countryside (e.g. Achillea millefolium, Alopecurus pratense, Asperula cynanchica, Briza media, Festuca cf. pratensis, Galium cf. verum, Ranunculus cf. bulbosus, Silene vulgaris, Stellaria graminea, Trifolium pratense). Taxa displayed between the “field” and “grassland” could have grown for example on fallow lands or abandoned fields that have successively overgrown (e.g. Clinopodinum acinus, Plantago lanceolata, Trifolium repens, Polycnemum arvense, Trifolium arvense). Taxa typical for “field” and “woodland-shrub” significantly differ in Březnice (Fig. 8).Figure 8Březnice: detrended correspondence analysis (DCA) Displayed samples and botanical taxa: the first axis explains 44.57% variability, the first and the second axis together 50.47%.Full size imageThe archaeobotanical analysis captured multiple grassland types. Both drier and wetter environments can be reconstructed. Wetter areas were represented by e.g. Alopecurus pratense, Alopecurus geniculatus, Carex cf. hirta, Carex cf. vulpina, cf. Euphorbia palustris, Galium cf. palustre, Juncus sp., Lychnis flos-cuculi, Myosotis sp., Persicaria lapatifolia, Plantago lanceolata, Stachys cf. palustris, Stellaria graminea, Urtica dioica. Drier areas were represented by e.g. Asperula cynanchica, Briza media, Campanula cf. glomerata, Carex cf. contigua, Clinopodium acinos, Dianthus cf. armeria, Phleum sp., Festuca cf. ovina, Galeopsis augustifolia, Galium cf. verum, Medicago lupulina, Polycnemum arvense, Ranunculus cf. bulbosus, Scleranthus annuus, Silene vulgaris, Solanum nigrum, Spergula arvensis, Trifolium arvense, Vicia tetrasperma, Vicia cf. villosa (Fig. 8).The existence of grasslands is associated with long-term human activities94. The Bechyně region has been apparently continuously settled since the end of the Early Bronze Age34. The landscape around the settlements has always been influenced by human activity and a large part of it has been deforested or covered with a sparse pastoral forest. However, not all the settlement areas were occupied permanently3, and those which were unoccupied became overgrown.Meadows and pastures are much more suitable for the grazing of herbivores than a forest with a dense canopy. Forest-steppe or significantly open forest is a convenient combination ensuring sufficient grazing for animals and wood production. Grazing increased soil fertility, reduced weeds on ruderal sites, and prevented forest growth95. Our study recorded a wide spectrum of charred macroremains of plants, which grew in the grasslands. They could have reached the site in several ways. In the excrements of the animals coming from a grazing area96, as raw materials collected by humans for further use in the settlement economy (e.g. food, medicinal plants, dyeing plants, bedding, admixture of screed and ceramic earth and daub, etc.). Studies1,3,32 assume, that the area in the immediate vicinity of the site was probably forestless. Forests at least half an hour’s walking distance from the site was significantly influenced by human activity. With an increasing distance from the centre of the site, the forest was probably less affected by human activities. The character of woodland usually clearly corresponded with the environmental conditions of the location31. The current forest area is extremely unsuitable for usage (slopes, wetlands). We assume that the occurrence of woodlands and shrubs in the Late Bronze Age was much more widespread, even in less extreme habitats.Shrubs and forestSpecies of herbs from different forest and shrub environments were also frequently recorded in the archaeobotanical assemblage. In the environment of wet forests could have grown e.g. Alliaria petiolata, Galium cf. palustre, Galium odoratum, Galium sylvaticum, Lychnis flos-cuculi, Persicaria lapatifolia, Solanum dulcamara, Stachys cf. palustris. In the coastal shrubs and edges of wet forests could have occured e.g. Cuscuta cf. europea, cf. Euphorbia palustris, Chelidinium majus, Impatiens nolitangere, Juncus sp., Myosoton aquaticum, Urtica dioica, Veronica hederifolia. Suitable locations could have been along the streams that flowed around the settlement and were within a quarter-hour walk. On the edges of the forests and their glades could have grown e.g. Atropa bella-donna, Festuca cf. ovina, Galium aparine, Prunella vulgaris, Rumex acetosella, Silene dioica, Thymus sp. Light forests and slopes were suitable for e.g. for Campanula cf. glomerata, Carex cf. contigua, Dianthus cf. armeria, Geranium cf. columbinum (Fig. 8).The areas for hunting and harvesting of wild crops were also economically important. The fruits that could have been collected included Corylus avellana, Crataegus sp., Atropa bella-donna, Prunus spinosa, Quercus sp., Rubus ideaus, Rubus fruticosus, Sambucus nigra, Solanum nigrum, Solanum dulcamara; their remains were found in the infills of features. The source of the collected fruits was located mostly in the sparse forest, forest edges and shrubs.The forest was also a source of building material and firewood3. From this acreage, the firewood for one farm could have been collected from 10 hectares. The rest would be used for collecting fodder and forest grazing7. The map of the potential natural vegetation92 predicts acidophilous oak forests (Quercetea robori-petraeae, Fig. 7) for the majority of both settlement areas. These species-poor woodlands are characteristic of Quercus dominance and in places mixed with Betula, Pinus, Sorbus, and Tilia on both dry and wet acidic soils, and Fagus, Abies, or Picea at higher altitudes. The results of our anthracological analysis clearly documented the predominance of this vegetation type in the vicinity of both archaeological sites.In the valleys of the streams and rivers were reconstructed alluvial forests with Alnus and mesophilous oak-hornbeam woods. The archeobotanical analysis of charcoals and fragments of fruits detected presence of Quercus, Tilia, Corylus, Crataegus, and Carpinus. These macroremains indicate existence of mesophilous forests. The hornbeam is rare in southern Bohemia97, it is the first of the archaeobotanical finds from prehistory. Due to the structure of taxa, which was captured by archaeobotanical analysis in Březnice, meadows and alder tree woods may be assumed there. Results of archaeobotanical analysis also documented the presence of Salix/Populus, Alnus.The most dominant tree species discovered in the trench-like features was oak which was mainly used as a construction material (Fig. 5). Firs were used as construction wood, which is predominantly present in stake pits in Březnice. In Hvožďany, trench 1 contained a cultural layer with apparent remains of a destructed building with charcoals of fir, spruce, and pine which in this case also served as construction wood34. The material commonly available in the forests surrounding the settlement area served as firewood (Figs. 4, 5, 8, 9).Figure 9Hvožďany: detrended correspondence analysis (DCA) Displayed samples and botanical taxa: the first axis explains 64.08% variability, the first and the second axis together 72.12%.Full size imageTime of housing: landscape potential vs. human needsThe homestead management (construction, abandonment, destruction, reconstruction etc.) during the settlement´s lifespan is a long-term studied question98,99. The existence of a hierarchized Late Bronze Age settlement network was evident in the lowland settlement areas of the Czech Republic with the continuity of occupational activity. Two main types of settlement are usually recognized there: (1) long-term large settlements and (2) short-term small settlements100,101. Agricultural productivity, exploitation of natural resources in settlements areas, and trade networks differed in cases of small or large settlements102. From the archaeological evidence perspective, the South Bohemia region was sparsely populated and the presence of long-term large settlements areas was very rare34.Previous research (excavations and magnetometry survey) has led to the conclusion that the 70 trenches are depositions of 70 houses and each trench is a deposition of one original house4,5,58. Based on such data, there could be many settlement forms differing in the space and time. The possible size of the settlement could be derived from the comparison of demands for fields, pastures, and forests with carrying capacity.SCA model and prediction model when compared to the possible demand7 of the community show that forest and pastures were not limiting factor for the settlement sustainability. In case of fields, there could be four variants of the possible extent of the settlement connected with different intensity of landuse. (1) The optimal acreage of fields (69 ha) with optimal land-use (7.5 ha/household); (2) the maximal extent of the fields 104 ha with optimal land-use or optimal extent of the field systems with intensive land-use (5 ha); (3) the maximal extent of the fields 104 ha and intensive land-use (5 ha); (4) sub-optimal land-use and fields located outside of the reach and optimal soils (Table 2). This model is an ideal prediction. For better yield the farmer could travel longer time than is expected however poor soils on a sloped terrain in the close vicinity were probably used rather as pastures.Table 2 Březnice: possible duration of the settlement based on four land use strategies: light green-optimal extent of the fields (69 hectares), with 7.5 hectares of fields per homestead; dark green-maximal extent of the fields (104 ha) or more intensive use of the fields (5 ha/homestead); maximal use and maximal extent; red—not sustainable agriculture or location of fields on places outside predicted optimal areas.Full size tableDrawing upon the typological and radiocarbon dating, it is often impossible to find out what was the lifespan of the settlement on the actual site. In this case, the uncertainty of 14C dates gives us a maximum possible span 73–264 years (95% probability), probably for 107–192 years (68% probability) (Supplementary Table 1, Fig. 2). Typological dating indicates 100–150 years (1150–1000 BC).The model described above indicates that the hinterland of Březnice could have sustained up to 20 houses at the same time in case of the maximal extent of the fields and intensive land-use. In this case, the settlement would have lasted only 90 years. If the land was used extensively it could have bore maximum of 14 houses at the time. That would correspond to a duration of roughly 126 years. Optimal areas of field systems in combination with sufficiently large fallows could have been used by a maximum of nine houses present at the time (192 years). The crucial part of the model is ritual burning and rebuilding houses after one generation58.Models of potential spatial and temporal characteristics of the settlement derived from prediction modeling cannot be tested. Therefore we need to compare our predictions with the radiocarbon model. The shortest duration of the settlement based on prediction is 90 years which corresponds with the 72 years modelled from 14C data. Since the model does not reflect the maximal duration of dwelling, this limit has to be based only on 14C model (262 years at 95% probability. At the maximum possible landuse levels, the settlement could have lasted from 72/90 to 262 years. The optimal duration of the settlement based on prediction could be 192–262 years. Extensive but more demanding land-use could support the duration of the settlement from 126 to 262 years (Table 2).Březnice and Hvožďany: the interpretation of both settlement areas from an archaeobotanical perspectiveThe two similarly dated settlement areas in one microregion with high quality archaeobotanical data allow (based on archaeobotanical material) a detailed study of the behaviour of communities in the Late Bronze Age. Archaeobotanical assemblages bring the reconstruction of the environment where the communities of the settlements drew plant resources from. Although the number of plant remains from both sites is significantly different, the interpretation of the environment does not differ in broad terms. For both sites, a similar share of fields and ruderals was documented. The spectrum of cultivated species was also identical41. Both settlements were self-sufficient in plant production—both waste and production parts of cultivated plants were found in the assemblages21,34,41. Animal bones were not preserved due to the acidic soil. However, for the Late Bronze Age sites the types of the domestic103 and the hunted104 animals are known.According to the environmental model, a greater proportion of species in Březnice came from grassland rather than from woodland and shrubs (Fig. 4). According to the analysis of plant macroremains more deforestation was recorded (i.e. more fields and pastures) in Březnice than in Hvožďany (Figs. 4, 5, 8, 9). Predicted areas for fields were in case of Hvožďany from 27 to 130 ha. Hvožďany site could possibly have larger field systems, but further away than in case of Březnice settlement. In Hvožďany there have been documented many taxa typical also for ruderal sites and fields. Several taxa could have grown either on ruderal sites or grasslands. Three reconstructed environments (ruderals, fields, grasslands) in Hvožďany significantly differ from woodland—shrub (Figs. 8, 9). The large volume of analysed samples from Březnice brought a number of botanical taxa which was mostly found in only a few specimens but ultimately brought the opportunity to reconstruct the surroundings of the site in more detail. In Hvožďany, a common spectrum of plants was found (Fig. 9), which usually occurs at similar South Bohemian sites, e.g. Černýšovice, Rataje, Zhoř, Oldřichov, Písek—Bakaláře105,106. Nevertheless, it brings the possibility to reconstruct the surroundings at least in rough features.The archaeological field data does not allow us to reconstruct how many houses were on the Hvožďany site at the same time. Total inhabited area of ​​the settlement in Březnice is approximately 13 ha, at Hvožďany site it is altogether 5 ha. It suggests two explanations: either more people lived in Březnice than in Hvožďany or the settlement had a longer span (or both possibilities). However, both options mean greater deforestation in Březnice. The carrying capacity and landscape potential of the settlement in Hvožďany could not have been exhausted (Fig. 6). The area of high quality soil in a quarter/half hour’s walk from the site is sufficient for 3.6–25 houses (27–130 ha). Two community areas could have been separated by the Lužnice river (walking distance within one hour). The agricultural systems of the settlements were probably very similar. According to our models, both settlement sites would have only needed to exploit natural resources in their immediate hinterland, within an hour walking radius. The limiting factor is the availability of suitable land for fields.According to the archaeobotanical results, the landscape in Březnice was more affected by human activity than the one in Hvožďany. A greater number of species were found, evidenced by light woodland and shrubs and different types of grassland. In the vicinity of the settlement from which people drew resources, a light landscape can be assumed. So far there is no pollen profile available. Approximately 2 m of accumulated clay and sand without organics were sampled in the floodplain of the Židova strouha. About 20 km away from Březnice, the analysis was performed in Sepekov, which base could have corresponded to the Bronze Age (2920 ± 410 BP). The character of the vegetation based on the profile could be interpreted as wet and relatively nutritious fir woodland or fir alder woodland situated on a relatively small spring area at the edge of the water meadow of the Smutná river. The palaeobotanical record in this phase does not record any effect of the settlement on the vegetation present34. The profile containing the pollen record from the Borkovická blata is located about 10 km away from Březnice. As well as the profile from Sepekov, it reflects local peat bog vegetation of the subboreal character without significant indicators of human activity107.The conditions and availability of resources in the hinterland of both settlements were probably overall so good that the details did not matter much. In the vicinity of both settlements, there were a sufficient number of areas for fields, pastures, and cultural forests. The settlement areas of the Late Bronze Age in South Bohemia were probably in separate deforested niches. More

  • in

    Newer roots for agriculture

    Annual grains, domesticated from wild species, have dominated agriculture since the Neolithic. A new study reports how turning to high-yield perennial rice crops could maintain key ecosystem functions while supporting livelihoods.The past several decades have seen modest but growing investments in the development of perennial grain crops, including perennial counterparts of wheat, rice and sorghum suitable for the USA, China, Europe and Africa. One technique involves domesticating wild perennial species through continual selection of desirable traits over multiple generations3. A recently developed perennial grain currently grown for niche markets in the USA, Kernza, was domesticated from Thinopyrum intermedium, a wild relative of wheat. While yields of Kernza remain low compared with those of annual wheat, they are increasing. As with the development of perennial rice, plant breeders can also cross perennial species with domesticated annual relatives to produce perennial hybrids with desirable traits derived from the annual parent3. More