More stories

  • in

    Extensive range contraction predicted under climate warming for two endangered mountaintop frogs from the rainforests of subtropical Australia

    Beniston, M., Diaz, H. F. & Bradley, R. S. Climatic change at high elevation sites: An overview. Clim. Change 36, 233–251 (1997).Article 

    Google Scholar 
    Chape, S., Spalding, M. & Jenkins, M. The world’s protected areas: Status, values, and prospects in the twenty-first century. Bioscience 59(7), 623–624 (2009).
    Google Scholar 
    Körner, C. Mountain biodiversity, its causes and function. Ambio 33, 11–17 (2004).Article 

    Google Scholar 
    Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).Article 

    Google Scholar 
    Forero-Medina, G., Joppa, L. & Pimm, S. L. Constraints to species’ elevational range shifts as climate changes. Conserv. Biol. 25, 163–171 (2011).Article 
    PubMed 

    Google Scholar 
    Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: Competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B 279, 2072–2080 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl. Acad. Sci. 115, 11982–11987 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024 (2011).Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar 
    Lenoir, J. & Svenning, J. C. Climate-related range shifts: A global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).Article 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar 
    Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl. Acad. Sci. 117, 4211–4217 (2020).Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e200114 (2016).Article 

    Google Scholar 
    Orians, G. H. & Milewski, A. V. Ecology of Australia: The effects of nutrient-poor soils and intense fires. Biol. Rev. 82, 393–423 (2007).Article 
    PubMed 

    Google Scholar 
    Laurance, W. F. et al. The 10 Australian ecosystems most vulnerable to tipping points. Biol. Cons. 144, 1472–1480 (2011).Article 

    Google Scholar 
    Rahbek, C. et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity?. Science 365, 1108–1113 (2019).Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar 
    Williams, S. E., Bolitho, E. E. & Fox, S. Climate change in Australian tropical rainforests: An impending environmental catastrophe. Proc. R. Soc. Lond. B 270, 1887–1892 (2003).Article 

    Google Scholar 
    Mahony, M.J. The amphibians. in Remnants of Gondwana: A Natural and Social History of the Gondwana Rainforests of Australia. (eds. Kitching, R.L., Braithwaite, R., & Cavanaugh, J.) (Surrey Beatty & Sons, 2010).Kooyman, R. M., Watson, J. & Wilf, P. Protect Australia’s gondwana rainforests. Science 367, 1083–1083 (2020).Article 
    PubMed 
    ADS 

    Google Scholar 
    Narsey, S. et al. (2020). Impact of climate change on cloud forests in the Gondwana Rainforests of Australia World Heritage Area. Earth Systems and Climate Change Hub Report.Newell, D. An update on frog declines from the forests of subtropical eastern Australia in Status of Conservation and Decline of Amphibians: Australia, New Zealand, and Pacific Islands (eds. Heatwole H. and Rowley J. L.) 29–37 (CSIRO, 2018).DAWE. Bushfire Impacts Vol. 2021 (Commonwealth Department of Agriculture Water and Environment, 2020).
    Google Scholar 
    Collins, L. et al. The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire. Environ. Res. Lett. 16, 044029 (2021).Article 
    ADS 

    Google Scholar 
    Filkov, A. I., Ngo, T., Matthews, S., Telfer, S. & Penman, T. D. Impact of Australia’s catastrophic 2019/20 bushfire season on communities and environment: Retrospective analysis and current trends. J. Saf. Sci. Resil. 1, 44–56 (2020).
    Google Scholar 
    Blunden, J. & Arndt, D. S. State of the climate in 2019. Bull. Am. Meteor. Soc. 101, S1–S429 (2020).Article 

    Google Scholar 
    Zhongming, Z., Linong, L., Wangqiang, Z. & Wei, L. AR6 Climate Change 2021: The Physical Science Basis (Springer, 2021).
    Google Scholar 
    Laidlaw, M. J., McDonald, W. J. F., Hunter, R. J., Putland, D. A. & Kitching, R. L. The potential impacts of climate change on Australian subtropical rainforest. Aust. J. Bot. 59, 440–449 (2011).Article 

    Google Scholar 
    Blaustein, A. R. et al. Direct and indirect effects of climate change on amphibian populations. Diversity 2, 281–313 (2010).Article 

    Google Scholar 
    Li, Y., Cohen, J. M. & Rohr, J. R. Review and synthesis of the effects of climate change on amphibians. Integr. Zool. 8, 145–161 (2013).Article 
    PubMed 

    Google Scholar 
    Carey, C. & Alexander, M. A. Climate change and amphibian declines: Is there a link?. Divers. Distrib. 9, 111–121 (2003).Article 

    Google Scholar 
    Cohen, J. M., Civitello, D. J., Venesky, M. D., McMahon, T. A. & Rohr, J. R. An interaction between climate change and infectious disease drove widespread amphibian declines. Glob. Change Biol. 25, 927–937 (2019).Article 
    ADS 

    Google Scholar 
    Geyle, H. M. et al. Red hot frogs: Identifying the Australian frogs most at risk of extinction. Pac. Conserv. Biol. 28, 211–223 (2021).Article 

    Google Scholar 
    Gillespie, G. R. et al. Status and priority conservation actions for Australian frog species. Biol. Conserv. 247, 108543 (2020).Article 

    Google Scholar 
    Almeida, A. M. et al. Prediction scenarios of past, present, and future environmental suitability for the Mediterranean species Arbutus unedo L. Sci. Rep. 12, 1–15 (2022).Article 

    Google Scholar 
    Lima, V. P. et al. Climate change threatens native potential agroforestry plant species in Brazil. Sci. Rep. 12, 1–14 (2022).Article 
    ADS 

    Google Scholar 
    Tiwari, S. et al. Modelling the potential risk zone of Lantana camara invasion and response to climate change in eastern India. Ecol. Process. 11(1), 1–13 (2022).Article 

    Google Scholar 
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    Galante, P. J. et al. The challenge of modeling niches and distributions for data-poor species: a comprehensive approach to model complexity. Ecography 41, 726–736 (2018).Article 

    Google Scholar 
    Li, J. et al. Climate refugia of snow leopards in High Asia. Biol. Conserv. 203, 188–196 (2016).Article 

    Google Scholar 
    Searcy, C. A. & Shaffer, B. H. Do ecological niche models accurately identify climatic determinants of species ranges?. Am. Nat. 187, 423–435 (2016).Article 
    PubMed 

    Google Scholar 
    Melo-Merino, S. M., Reyes-Bonilla, H. & Lira-Noriega, A. Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecol. Model. 415, 108857 (2020).Article 

    Google Scholar 
    Anstis, M. Tadpoles and Frogs of Australia (New Holland Publishers Pty Limited, 2017).
    Google Scholar 
    Knowles, R., Mahony, M., Armstrong, J. & Donnellan, S. Systematics of sphagnum frogs of the Genus Philoria (Anura: Myobatrachidae) in Eastern Australia, with the description of two new species. Rec. Aust. Mus. 56, 57–74 (2004).Article 

    Google Scholar 
    Mahony, M. J. et al. A new species of Philoria (Anura: Limnodynastidae) from the uplands of the Gondwana Rainforests world heritage area of eastern Australia. Zootaxa 5104, 209–241 (2022).Article 
    PubMed 

    Google Scholar 
    Bolitho, L. J., Rowley, J. J. L., Hines, H. B. & Newell, D. Occupancy modelling reveals a highly restricted and fragmented distribution in a threatened montane frog (Philoria kundagungan) in subtropical Australian rainforests. Aust. J. Zool. 67, 231–240 (2021).Article 

    Google Scholar 
    Heard, G. et al. Post-fire impact assessment for priority frogs: northern Philoria. (NESP Threatened Species Recovery Hub Project 8.1.3 report, Brisbane, 2021).Vanderwal, J. All Future Climate Layers for Australia: 1 km Resolution (James Cook University, 2012).
    Google Scholar 
    Torkkola, J. J., Chauvenet, A. L. M., Hines, H. & Oliver, P. M. Distributional modelling, megafires and data gaps highlight probable underestimation of climate change risk for two lizards from Australia’s montane rainforests. Austral Ecol. 47(2), 365–379 (2021).Article 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Geoscience, A. Digital Elevation Model (DEM) 25 Metre Grid of Australia derived from LiDAR. (Geoscience Australia, 2015).Thuiller, W., Georges, D., Engler, R. & Breiner, F. (2014). biomod2: Ensemble platform for species distribution modeling. R package version 3.1-64. http://CRANR-project.org/package=biomod2. Accessed Feb 2021.Feng, X., Park, D. S., Liang, Y., Pandey, R. & Papeş, M. Collinearity in ecological niche modeling: Confusions and challenges. Ecol. Evol. 9, 10365–10376 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thuiller, W. BIOMOD: Optimising predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).Article 
    ADS 

    Google Scholar 
    MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G. & Franklin, A. B. Estimating site occupancy, colonisation, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207 (2003).Article 

    Google Scholar 
    Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl. Acad. Sci. 117, 19656–19657 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar 
    Campos-Cerqueira, M. & Mitchell Aide, T. Lowland extirpation of anuran populations on a tropical mountain. PeerJ 2017, 1–10 (2017).
    Google Scholar 
    Pounds, J. A., Fogden, M. P. L. & Campbell, J. H. Biological response to climate change on a tropical mountain. Nature 398, 611–615 (1999).Article 
    CAS 
    ADS 

    Google Scholar 
    Raxworthy, C. J. et al. Extinction vulnerability of tropical montane endemism from warming and upslope displacement: A preliminary appraisal for the highest massif in Madagascar. Glob. Change Biol. 14, 1703–1720 (2008).Article 
    ADS 

    Google Scholar 
    Fordham, D. A. et al. Extinction debt from climate change for frogs in the wet tropics. Biol. Lett. 12, 20160236 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoffmann, E. P., Williams, K., Hipsey, M. R. & Mitchell, N. J. Drying microclimates threaten persistence of natural and translocated populations of threatened frogs. Biodivers. Conserv. 30(1), 15–34 (2020).Article 

    Google Scholar 
    Scheele, B. C., Driscoll, D. A., Fischer, J. & Hunter, D. A. Decline of an endangered amphibian during an extreme climatic event. Ecosphere 3, 101 (2012).Article 

    Google Scholar 
    Legge, S. et al. Rapid assessment of the biodiversity impacts of the 2019–2020 Australian megafires to guide urgent management intervention and recovery and lessons for other regions. Divers. Distrib. 28, 571–591 (2022).Article 

    Google Scholar 
    Canadell, J. G. et al. Multi-decadal increase of forest burned area in Australia is linked to climate change. Nat. Commun. 12, 6921 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Hisano, M., Searle, E. B. & Chen, H. Y. H. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev. 93, 439–456 (2018).Article 
    PubMed 

    Google Scholar 
    Holz, A., Wood, S. W., Veblen, T. T. & Bowman, D. M. J. S. Effects of high-severity fire drove the population collapse of the subalpine Tasmanian endemic conifer Athrotaxis cupressoides. Glob. Change Biol. 21, 445–458 (2015).Article 
    ADS 

    Google Scholar 
    Hutley, L. B., Doley, D., Yates, D. J. & Boonsaner, A. Water balance of an australian subtropical rainforest at altitude: The ecological and physiological significance of intercepted cloud and fog. Aust. J. Bot. 45, 311–329 (1997).Article 

    Google Scholar 
    Godfree, R. C. et al. Implications of the 2019–2020 megafires for the biogeography and conservation of Australian vegetation. Nat. Commun. 12, 1023 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Hennessy, K. et al. Climate Change Impacts on Fire-Weather in South-East Australia (Commonwealth Scientific and Industrial Research Organisation, 2005).
    Google Scholar 
    Moriondo, M. et al. Potential impact of climate change on fire risk in the Mediterranean area. Clim. Res. 31, 85–95 (2006).Article 

    Google Scholar 
    Pitman, A. J., Narisma, G. T. & McAneney, J. The impact of climate change on the risk of forest and grassland fires in Australia. Clim. Change 84, 383–401 (2007).Article 
    ADS 

    Google Scholar 
    Caughley, G. Directions in conservation biology. J. Anim. Ecol. 63, 215–244 (1994).Article 

    Google Scholar 
    Scheele, B. C. et al. Conservation translocations for amphibian species threatened by chytrid fungus: A review, conceptual framework, and recommendations. Conserv. Sci. Pract. 3, e524 (2021).
    Google Scholar 
    Rudin-Bitterli, T. S., Evans, J. P. & Mitchell, N. J. Geographic variation in adult and embryonic desiccation tolerance in a terrestrial-breeding frog. Evolution 74, 1186–1199 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ashcroft, M. B. Identifying refugia from climate change. J. Biogeogr. 37, 1407–1413 (2010).
    Google Scholar 
    Keppel, G. et al. Refugia: Identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).Article 

    Google Scholar 
    Selwood, K. E. & Zimmer, H. C. Refuges for biodiversity conservation: A review of the evidence. Biol. Conserv. 245, 108502 (2020).Article 

    Google Scholar  More

  • in

    Cutmarked bone of drought-tolerant extinct megafauna deposited with traces of fire, human foraging, and introduced animals in SW Madagascar

    Each sedimentary sequence from the three excavated ponds (Tampolove [TAMP], Ankatoke [ANKA], and Andranobe [ANDR]) includes a layer of clay (defined as zone 2), which separates the surface soil formation (zone 1) from the underlying fossiliferous muddy sand and bedrock (zone 3, Figs. S4–S7 & S9). Details regarding the composition of this sediment and its microfossils are given in Appendix-Results-Excavation (Figs. S9–S12).Subfossils and chronologyCoastal survey recovered mostly zebu bones on exposed sandy surfaces, some pygmy hippo and giant tortoise bones on the margins of shallow ponds, and giant tortoise carapace under overhanging limestone outcrops (Appendix-Results-Survey, Fig. S3). A high proportion of surface bone failed 14C analysis (~ 55%, Table S1), yet the successfully analyzed specimens (n = 8) span up to 3390–3220 calibrated years before present (cal BP, PSUAMS 8681, 3150 ± 15 14C BP, a hippo molar). Pond deposits that are relatively deep include bones that cover a relatively long period of time (Figs. S14–S16, Dataset S6). This span ranges from ~ 6000 years at TAMP (~ 120 cm deep) to ~ 2500 years at ANDR (~ 100 cm deep), with the oldest bones present in the fossiliferous sedimentary zone 3 and scarce bones in the overlying clay (zone 2).Zone 3Most bones in this layer are relatively intact and include readily identifiable pygmy hippo long bones and cranial fragments (e.g., Fig. S13a,f), giant tortoise carapace and plastron fragments (Fig. S13d), ratite eggshell and long bones (Fig. S13c,m), and crocodile scutes, cranial fragments, and teeth (Fig. S13b). Scarce bones of a duck (genus Anas) were recovered at ANDR. Remains of subfossil lemurs were scarce or absent, but they may be represented by an unknown type of bone fragment identified through protein fingerprinting (ANDR-1-5-55, Dataset S3). The widespread success of collagen extraction from these bones attests to the excellent preservation of organics in this zone. ANKA also includes keratin (mostly in the form of crocodile claws, e.g., Fig. S13i), as well as two rounded agates found associated with ratite eggshell (Fig. S13m).Remains of a juvenile pygmy hippo were recovered from both TAMP and ANDR (a femur and tibia, respectively, Dataset S3). The epiphyses of some of the pygmy hippo long bones have gnaw marks (Fig. S13f), and none of the bones include chop marks. In association with these bones towards the top of this zone are some large ( > 1 cm diameter) charcoal fragments and scarce bones of bushpig (Fig. S13k) and zebu (Fig. S13e). Protein fingerprinting identified a screened fragment of a non-zebu bovid in ANKA zone 3 and confirmed that a tentatively identified bushpig canine fragment (ANKA 1-4-151) belonged to a hippo. This zone at TAMP and ANDR also includes occasional mangrove whelk (Terebralia palustris) shells (Fig. S13g). These whelks currently live at least ~ 500 m distant from these ponds, and whelk shells at ANDR each have an irregular hole above the operculum.The span of time represented by bones in zone 3 ranges up to ~ 4000 years (~ 6000–2000 cal BP at TAMP, Fig. S14). Confirmed introduced animal bones from zone 3 failed direct 14C analysis. There are multiple examples of directly 14C-dated bone in close stratigraphic association that nonetheless differ in age by  > 1000 years, and there are a couple of examples of bones from the same individual that are separated stratigraphically. For example, two giant tortoise carapace and plastron fragments from TAMP that have indistinguishable 14C ages are separated by 22 cm of sediment (PSUAMS 8670 comes from 112 cm depth, and PSUAMS 8668 comes from 90 cm depth).Although ANKA produced what is thus far the oldest directly 14C dated pygmy hippo bone from a coastal subfossil site (PSUAMS 9383, 4380 ± 25 BP, 5030–4840 cal BP), the mean calibrated age of hippos from the Tampolove excavations (n = 11, x̄ = 2858 cal BP, SD = 972 yr) is significantly less than that of the giant tortoises (n = 9, x̄ = 4582 cal BP, SD = 705 yr, t(18) = − 4.4, p  2000 years older than a closely associated charcoal sample (38 cm depth, PSUAMS 8849, 575 ± 30 14C BP, 630–510 cal BP), which makes this molar comparable in age to bone from zone 3. Consequently, the youngest directly 14C-dated ancient bone from the Tampolove excavations comes from the lowermost zone 3: a pygmy hippo’s vertebra recovered at 90 cm depth at TAMP (PSUAMS 8730, 1865 ± 15 14C BP, 1819–1705 cal BP). Though poorly constrained in time, the deposition of zone 2 sediment came sometime within the past two millennia, which witnessed marine regression and dry intervals recorded in both the δ18O record of a nearby speleothem27 and the salinization of a nearby pan36. Previously directly 14C-dated bone collected around Tampolove attests to the local persistence of at least pygmy hippos and giant tortoises until the start of the last millennium (n = 15), and an atlas from Lamboara/Lamboharana is in fact the most recent confidently dated pygmy hippo bone from the island (PSUAMS 5629, 1100 ± 15 14C BP, 980–930 cal BP).Figure 4Cutmarked pygmy hippo femur recovered from Tampolove during recent excavation at ~ 40 cm depth (TAMP-1-2-61, above), and previously-recovered and directly 14C-dated (~ 3500 and 1600 cal BP37) cutmarked pygmy hippo femora from the nearby site of Lamboara/Lamboharana that are currently housed in the National Museum of Natural History in Paris (MAD 1709 & MAD 1710, below). Four views highlight three locations of cutmarks on the broken shaft of TAMP-1-2-61, and the inset frames show 20 × magnification of these areas, with corresponding orientations given by red lines. Note that the false color insets of TAMP-1-2-61 are meant to highlight linear edges and crevices, and the overview photos of all three femur fragments are on the same scale.Full size imageZone 1A fragment of iron (from TAMP, 16 cm depth) and sparse ceramic fragments (from ANKA, 3 & 9 cm depth) are present only in zone 1, and three 14C dates from TAMP and ANKA suggest that these specimens span the past ~ 200 years (Figs. S14–S15).CharcoalThe directly 14C dated charcoal spans all three stratigraphic zones yet consistently dates to the past millennium (Figs. S14–16). Multiple charcoal samples from different excavated ponds have practically indistinguishable 14C ages (Table S2), and much of the charcoal from Tampolove formed during peaks in the deposition of macrocharcoal at nearby Namonte (17 km distant; Fig. 5A). The onset of directly 14C-dated charcoal deposition approximately coincides with a decrease in Asafora speleothem δ18O values and with multiple directly 14C-dated first and final local occurrences of large animals. While directly 14C dated charcoal is limited to the past millennium, microcharcoal particles were abundant in all TAMP sediment samples (x̄ ± SD = 2.0 × 106 ± 2.8 × 106 particles). Additionally, microcharcoal is relatively abundant near the bottom of TAMP and ANKA, which contains bones that span ~ 6000–2000 cal BP (Fig. 5B).Figure 5Records of fire, drought, and faunal turnover from the vicinity of Tampolove within the past 1200 years, with dashed horizontal lines for reference (5A), and macrocharcoal concentrations from the excavated ponds, with depth intervals containing directly 14C-dated charcoal that spans the past millennium marked in red (5B). The past 1200 years includes the entire summed calibrated distribution of the 10 directly dated prebomb charcoal fragments from the Tampolove excavations. The calibrated probability distributions associated with the latest dates from endemic megafauna bone (giant tortoises and pygmy hippos) and earliest dates from introduced animal bone (zebu cattle and bushpigs) are shown as black distributions, and 95% of each distribution is bracketed. Considering directly dated remains within the past 4 ka from hippos (n = 26), giant tortoises (n = 18), and zebu (n = 9) and the assumption that bones were deposited uniformly over time, the grey distributions and bracketed 95% credible intervals give estimates of extirpation and arrival times. As in Fig. 3, the red line on the Asafora record follows from BCPA.Full size image More

  • in

    Dark wing pigmentation as a mechanism for improved flight efficiency in the Larinae

    Caro, T., Izzo, A., Reiner, R. C., Walker, H. & Stankowich, T. The function of zebra stripes. Nat. Commun. 5, 3535 (2014).Article 
    PubMed 

    Google Scholar 
    Merilaita, S., Scott-Samuel, N. E. & Cuthill, I. C. How camouflage works. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160341 (2017).Article 

    Google Scholar 
    Rowland, H. M. From Abbott Thayer to the present day: what have we learned about the function of countershading? Philos. Trans. R. Soc. B Biol. Sci. 364, 519–527 (2009).Article 

    Google Scholar 
    Rogalla, S. et al. The evolution of darker wings in seabirds in relation to temperature-dependent flight efficiency. J. R. Soc. Interface 18, 20210236.Malling Olsen, K. Gulls of the World. (Princeton University Press, 2018).Jawor, J. M. & Breitwisch, R. Melanin Ornaments, Honesty, and Sexual Selection. Auk 120, 249–265 (2003).Article 

    Google Scholar 
    Field, D. J. et al. Melanin Concentration Gradients in Modern and Fossil Feathers. PLOS ONE 8, e59451 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McNamara, M. E. et al. Decoding the Evolution of Melanin in Vertebrates. Trends Ecol. Evol. 36, 430–443 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dufour, P. et al. Plumage colouration in gulls responds to their non-breeding climatic niche. Glob. Ecol. Biogeogr. 29, 1704–1715 (2020).Article 

    Google Scholar 
    Hassanalian, M., Abdelmoula, H., Ben Ayed, S. & Abdelkefi, A. Thermal impact of migrating birds’ wing color on their flight performance: Possibility of new generation of biologically inspired drones. J. Therm. Biol. 66, 27–32 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hassanalian, M., Throneberry, G., Ali, M., Ben Ayed, S. & Abdelkefi, A. Role of wing color and seasonal changes in ambient temperature and solar irradiation on predicted flight efficiency of the Albatross. J. Therm. Biol. 71, 112–122 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Spear, L. B. & Ainley, D. G. Flight behaviour of seabirds in relation to wind direction and wing morphology. Ibis 139, 221–233 (1997).Article 

    Google Scholar 
    Sullivan, T. N., Meyers, M. A. & Arzt, E. Scaling of bird wings and feathers for efficient flight. Sci. Adv. 5, eaat4269.Pennycuick, C. J. Modelling the Flying Bird. (Elsevier, 2008).Buffo, J., Fritschen, L. J. & Murphy, J. L. Direct Solar Radiation on Various Slopes from 0 to 60 Degrees North Latitude. (Pacific Northwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture, 1972).Hansen, T. F. Stabilizing Selection and the Comparative Analysis of Adaptation. Evolution 51, 1341–1351 (1997).Article 
    PubMed 

    Google Scholar 
    Hansen, T. F., Pienaar, J. & Orzack, S. H. A Comparative Method for Studying Adaptation to a Randomly Evolving Environment. Evolution 62, 1965–1977 (2008).PubMed 

    Google Scholar 
    Roulin, A. Condition-dependence, pleiotropy and the handicap principle of sexual selection in melanin-based colouration. Biol. Rev. 91, 328–348 (2016).Article 
    PubMed 

    Google Scholar 
    Rayner, J. M. V. FORM AND FUNCTION IN AVIAN FLIGHT. in Current Ornithology vol. 5 1–66 (Plenum Press, 1988).Schreiber, E. A. & Burger, J. Biology of Marine Birds. (CRC Press, 2001).Clusella Trullas, S., van Wyk, J. H. & Spotila, J. R. Thermal melanism in ectotherms. J. Therm. Biol. 32, 235–245 (2007).Article 

    Google Scholar 
    Shamoun-Baranes, J. & van Loon, E. Energetic influence on gull flight strategy selection. J. Exp. Biol. 209, 3489–3498 (2006).Article 
    PubMed 

    Google Scholar 
    Pennycuick, C. J. & Lighthill, M. J. The flight of petrels and albatrosses (procellariiformes), observed in South Georgia and its vicinity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 300, 75–106 (1982).Article 

    Google Scholar 
    Rogalla, S., Shawkey, M. D. & D’Alba, L. Thermal effects of plumage coloration. Ibis 164, 933–948 (2022).Article 

    Google Scholar 
    Flinks, H. & Salewski, V. Quantifying the effect of feather abrasion on wing and tail lengths measurements. J. Ornithol. 153, 1053–1065 (2012).Article 

    Google Scholar 
    Hill, G. E. Sexiness, Individual Condition, and Species Identity: The Information Signaled by Ornaments and Assessed by Choosing Females. Evol. Biol. 42, 251–259 (2015).Article 

    Google Scholar 
    Sonsthagen, S. A. et al. Recurrent hybridization and recent origin obscure phylogenetic relationships within the ‘white-headed’ gull (Larus sp.) complex. Mol. Phylogenet. Evol. 103, 41–54 (2016).Article 
    PubMed 

    Google Scholar 
    Howell, S. & Dunn, J. A reference guide to gulls of the Americas. (Houghton Mifflin Company, 2007).Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).Article 
    PubMed 

    Google Scholar 
    Yalden, D. Wing area, wing growth and wing loading of Common Sandpipers Actitis hypoleucos. Wader Study Group Bull. 119, 84–88 (2012).
    Google Scholar 
    Ho, L. S. T. & Ane, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).Article 
    PubMed 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (2021).Cooper, N., Thomas, G. H., Venditti, C., Meade, A. & Freckleton, R. P. A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies. Biol. J. Linn. Soc. 118, 64–77 (2016).Article 

    Google Scholar 
    Harmon, L. J. Phylogenetic Comparative Methods: Learning from Trees. (CreateSpace Independent Publishing Platform, 2018).Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    Douma, J. C. & Weedon, J. T. Analysing continuous proportions in ecology and evolution: a practical introduction to beta and Dirichlet regression. Methods Ecol. Evol. 10, 1412–1430 (2019).Article 

    Google Scholar 
    Li, M. & Bolker, B. wzmli/phyloglmm: First release of phylogenetic comparative analysis in lme4-verse. https://doi.org/10.5281/zenodo.2639887 (2019).Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11, 54–71 (2006).Article 
    PubMed 

    Google Scholar 
    Goumas, M. Dark wing pigmentation as a mechanism for improved flight efficiency in the Larinae. Zenodo, https://doi.org/10.5281/zenodo.7156454 (2022). More

  • in

    Soil structure and microbiome functions in agroecosystems

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).Article 

    Google Scholar 
    Tscharntke, T. et al. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 151, 53–59 (2012).Article 

    Google Scholar 
    DeFries, R. S., Foley, J. A. & Asner, G. P. Land-use choices: balancing human needs and ecosystem function. Front. Ecol. Environ. 2, 249–257 (2004).Article 

    Google Scholar 
    Matson, P. A., Parton, W. J., Power, A. G. & Swift, M. J. Agricultural intensification and ecosystem properties. Science 277, 504–509 (1997).Article 

    Google Scholar 
    Zabel, F. et al. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 10, 2844 (2019).Article 

    Google Scholar 
    Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 21, 973–985 (2015).Article 

    Google Scholar 
    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).Article 

    Google Scholar 
    Mehrabi, Z., Ellis, E. C. & Ramankutty, N. The challenge of feeding the world while conserving half the planet. Nat. Sustain. 1, 409–412 (2018).Article 

    Google Scholar 
    Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A. & Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 132, 105078 (2019).Article 

    Google Scholar 
    Pereira, P., Bogunovic, I., Muñoz-Rojas, M. & Brevik, E. C. Soil ecosystem services, sustainability, valuation and management. Curr. Opin. Environ. Sci. Health 5, 7–13 (2018).Article 

    Google Scholar 
    Bai, Z. G., Dent, D. L., Olsson, L. & Schaepman, M. E. Proxy global assessment of land degradation. Soil Use Manage. 24, 223–234 (2008).Article 

    Google Scholar 
    Stockmann, U., Minasny, B. & McBratney, A. B. How fast does soil grow? Geoderma 216, 48–61 (2014).Article 

    Google Scholar 
    Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).Article 

    Google Scholar 
    Wilhelm, R. C., van Es, H. M. & Buckley, D. H. Predicting measures of soil health using the microbiome and supervised machine learning. Soil Biol. Biochem. 164, 108472 (2022).Article 

    Google Scholar 
    König, S., Vogel, H.-J., Harms, H. & Worrich, A. Physical, chemical and biological effects on soil bacterial dynamics in microscale models. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00053 (2020).Six, J., Frey, S. D., Thiet, R. K. & Batten, K. M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 70, 555–569 (2006).Article 

    Google Scholar 
    Status of the World’s Soil Resources (SWSR) — Main Report, 650 (FAO/Intergovernmental Technical Panel on Soils, 2015).Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–790 (2010).Article 

    Google Scholar 
    Gougoulias, C., Clark, J. M. & Shaw, L. J. The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J. Sci. Food Agric. 94, 2362–2371 (2014).Article 

    Google Scholar 
    Naylor, D. et al. Soil microbiomes under climate change and implications for carbon cycling. Annu. Rev. Environ. Resour. 45, 29–59 (2020).Article 

    Google Scholar 
    Berg, I. A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 77, 1925–1936 (2011).Article 

    Google Scholar 
    Yuan, H., Ge, T., Chen, C., O’Donnell, A. G. & Wu, J. Significant role for microbial autotrophy in the sequestration of soil carbon. Appl. Environ. Microbiol. 78, 2328–2336 (2012).Article 

    Google Scholar 
    Stevenson, F. J. Humus Chemistry: Genesis, Composition, Reactions 2nd edition (Wiley, 1994).Liang, C., Amelung, W., Lehmann, J. & Kästner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Change Biol. 25, 3578–3590 (2019).Article 

    Google Scholar 
    Crowther, T. W. et al. Biotic interactions mediate soil microbial feedbacks to climate change. Proc. Natl Acad. Sci. USA 112, 7033–7038 (2015).Article 

    Google Scholar 
    Angel, R., Claus, P. & Conrad, R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J. 6, 847–862 (2012).Article 

    Google Scholar 
    Conrad, R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 1, 285–292 (2009).Article 

    Google Scholar 
    Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).Article 

    Google Scholar 
    Dutta, H. & Dutta, A. The microbial aspect of climate change. Energy Ecol. Environ. 1, 209–232 (2016).Article 

    Google Scholar 
    Hu, H.-W., Chen, D. & He, J.-Z. Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 39, 729–749 (2015).Article 

    Google Scholar 
    Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).Article 

    Google Scholar 
    Marschner, P. in Nutrient Cycling in Terrestrial Ecosystems (eds Petra, M. & Zdenko, R.) 159–182 (Springer, 2007).Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).Article 

    Google Scholar 
    Saccá, M. L., Barra Caracciolo, A., Di Lenola, M. & Grenni, P. Soil Biological Communities and Ecosystem Resilience (eds Martin, L., Paola, G. & Mauro, G.) 9–24 (Springer, 2017).Jetten, M. S. M. The microbial nitrogen cycle. Environ. Microbiol. 10, 2903–2909 (2008).Article 

    Google Scholar 
    Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).Article 

    Google Scholar 
    Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of Earth’s nitrogen cycle. Science 330, 192–196 (2010).Article 

    Google Scholar 
    Clark, I. M., Hughes, D. J., Fu, Q., Abadie, M. & Hirsch, P. R. Metagenomic approaches reveal differences in genetic diversity and relative abundance of nitrifying bacteria and archaea in contrasting soils. Sci. Rep. 11, 15905 (2021).Article 

    Google Scholar 
    Philippot, L., Hallin, S. & Schloter, M. in Advances in Agronomy Vol. 96, 249–305 (Academic, 2007).Hayatsu, M., Tago, K. & Saito, M. Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci. Plant Nutr. 54, 33–45 (2008).Article 

    Google Scholar 
    Mackey, K. R. M. & Paytan, A. in Encyclopedia of Microbiology 3rd edition (ed. Moselio, S.) 322–334 (Academic, 2009).Richardson, A. E., Barea, J.-M., McNeill, A. M. & Prigent-Combaret, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant. Soil. 321, 305–339 (2009).Article 

    Google Scholar 
    Richardson, A. E. & Simpson, R. J. Soil microorganisms mediating phosphorus availability. Plant. Physiol. 156, 989–996 (2011).Article 

    Google Scholar 
    Li, J.-t. et al. A comprehensive synthesis unveils the mysteries of phosphate-solubilizing microbes. Biol. Rev. 96, 2771–2793 (2021).Article 

    Google Scholar 
    Kobae, Y. Dynamic phosphate uptake in arbuscular mycorrhizal roots under field conditions. Front. Env. Sci. https://doi.org/10.3389/fenvs.2018.00159 (2019).Oberson, A. & Joner, E. J. in Organic Phosphorus in the Environment (eds Turner, B. L. et al.) 133–164 (CABI, 2005).Compant, S., Samad, A., Faist, H. & Sessitsch, A. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J. Adv. Res. 19, 29–37 (2019).Article 

    Google Scholar 
    Eichmann, R., Richards, L. & Schäfer, P. Hormones as go-betweens in plant microbiome assembly. Plant J. 105, 518–541 (2021).Article 

    Google Scholar 
    Nascimento, F. X., Hernandez, A. G., Glick, B. R. & Rossi, M. J. The extreme plant-growth-promoting properties of Pantoea phytobeneficialis MSR2 revealed by functional and genomic analysis. Environ. Microbiol. 22, 1341–1355 (2020).Article 

    Google Scholar 
    Valliere, J. M., Wong, W. S., Nevill, P. G., Zhong, H. & Dixon, K. W. Preparing for the worst: utilizing stress-tolerant soil microbial communities to aid ecological restoration in the Anthropocene. Ecol. Solut. Evid. 1, e12027 (2020).Article 

    Google Scholar 
    Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).Article 

    Google Scholar 
    Rolfe, S. A., Griffiths, J. & Ton, J. Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes. Curr. Opin. Microbiol. 49, 73–82 (2019).Article 

    Google Scholar 
    Costa, O. Y. A., Raaijmakers, J. M. & Kuramae, E. E. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01636 (2018).Sharma, A. et al. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9, 285 (2019).Article 

    Google Scholar 
    Singh, D. P. et al. Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress. Sci. Rep. 10, 4818 (2020).Article 

    Google Scholar 
    Bárzana, G., Aroca, R., Bienert, G. P., Chaumont, F. & Ruiz-Lozano, J. M. New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol. Plant Microbe Interact. 27, 349–363 (2014).Article 

    Google Scholar 
    Gamalero, E. & Glick, B. R. Bacterial modulation of plant ethylene levels. Plant Physiol. 169, 13–22 (2015).Article 

    Google Scholar 
    Le Pioufle, O., Ganoudi, M., Calonne-Salmon, M., Ben Dhaou, F. & Declerck, S. Rhizophagus irregularis MUCL 41833 improves phosphorus uptake and water use efficiency in maize plants during recovery from drought stress. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.00897 (2019).Begum, N. et al. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.01068 (2019).Köhl, J., Kolnaar, R. & Ravensberg, W. J. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.00845 (2019).Hu, L. et al. Root exudate metabolites drive plant–soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9, 2738 (2018).Article 

    Google Scholar 
    Granato, E. T., Meiller-Legrand, T. A. & Foster, K. R. The evolution and ecology of bacterial warfare. Curr. Biol. 29, R521–R537 (2019).Article 

    Google Scholar 
    Shah, P. A. & Pell, J. K. Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 61, 413–423 (2003).Article 

    Google Scholar 
    Soares, F. Ed. F., Sufiate, B. L. & de Queiroz, J. H. Nematophagous fungi: far beyond the endoparasite, predator and ovicidal groups. Agric. Nat. Resour. 52, 1–8 (2018).
    Google Scholar 
    Nordbring-Hertz, B., Jansson, H.-B. & Tunlid, A. in eLS (Wiley, 2011); https://doi.org/10.1002/9780470015902.a0000374.pub3.Tian, B., Yang, J. & Zhang, K.-Q. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol. Ecol. 61, 197–213 (2007).Article 

    Google Scholar 
    Shafi, J., Tian, H. & Ji, M. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol. Biotechnol. Equip. 31, 446–459 (2017).Article 

    Google Scholar 
    Bravo, A., Likitvivatanavong, S., Gill, S. S. & Soberón, M. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41, 423–431 (2011).Article 

    Google Scholar 
    Schnepf, E. et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775–806 (1998).Article 

    Google Scholar 
    Wei, J.-Z. et al. Bacillus thuringiensis crystal proteins that target nematodes. Proc. Natl Acad. Sci. USA 100, 2760–2765 (2003).Article 

    Google Scholar 
    Flury, P. et al. Insect pathogenicity in plant-beneficial pseudomonads: phylogenetic distribution and comparative genomics. ISME J. 10, 2527–2542 (2016).Article 

    Google Scholar 
    Vurukonda, S. S. K. P., Giovanardi, D. & Stefani, E. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int. J. Mol. Sci. 19, 952 (2018).Article 

    Google Scholar 
    Whipps, J. M. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52, 487–511 (2001).Article 

    Google Scholar 
    MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. Science 373, 61–65 (2021).Article 

    Google Scholar 
    Sharma, A. et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 1, 1446 (2019).Article 

    Google Scholar 
    Gworek, B., Kijeńska, M., Wrzosek, J. & Graniewska, M. Pharmaceuticals in the soil and plant environment: a review. Water Air Soil Pollut. 232, 145 (2021).Article 

    Google Scholar 
    Tang, F. H. M., Lenzen, M., McBratney, A. & Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 14, 206–210 (2021).Article 

    Google Scholar 
    Zumstein, M. T. et al. Biodegradation of synthetic polymers in soils: tracking carbon into CO2 and microbial biomass. Sci. Adv. 4, eaas9024 (2018).Article 

    Google Scholar 
    Singh, B. & Singh, K. Microbial degradation of herbicides. Crit. Rev. Microbiol. 42, 245–261 (2016).
    Google Scholar 
    Teng, Y. & Chen, W. Soil microbiomes — a promising strategy for contaminated soil remediation: a review. Pedosphere 29, 283–297 (2019).Article 

    Google Scholar 
    Vogt, C. & Richnow, H. H. in Geobiotechnology II: Energy Resources, Subsurface Technologies, Organic Pollutants and Mining Legal Principles (eds Schippers, A. et al.) 123–146 (Springer, 2014).Mishra, S. et al. Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2021.632059 (2021).Rolli, E. et al. ‘Cry-for-help’ in contaminated soil: a dialogue among plants and soil microbiome to survive in hostile conditions. Environ. Microbiol. 23, 5690–5703 (2021).Article 

    Google Scholar 
    Wilpiszeski, R. L. et al. Soil aggregate microbial communities: towards understanding microbiome interactions at biologically relevant scales. Appl. Environ. Microbiol. https://doi.org/10.1128/aem.00324-19 (2019).Blott, S. J. & Pye, K. Particle size scales and classification of sediment types based on particle size distributions: review and recommended procedures. Sedimentology 59, 2071–2096 (2012).Article 

    Google Scholar 
    Totsche, K. U. et al. Microaggregates in soils. J. Plant Nutr. Soil Sci. 181, 104–136 (2018).Article 

    Google Scholar 
    Martin, J. P., Martin, W. P., Page, J. B., Raney, W. A. & de Ment, J. D. in Advances in Agronomy Vol. 7 (ed. Norman, A. G.) 1–37 (Academic, 1955).Chotte, J.-L. in Microorganisms in Soils: Roles in Genesis and Functions (eds Varma, A. & Buscot, F.) 107–119 (Springer, 2005).Oades, J. M. Soil organic matter and structural stability: mechanisms and implications for management. Plant. Soil. 76, 319–337 (1984).Article 

    Google Scholar 
    Six, J., Elliott, E. T. & Paustian, K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 32, 2099–2103 (2000).Article 

    Google Scholar 
    Six, J., Bossuyt, H., Degryze, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79, 7–31 (2004).Article 

    Google Scholar 
    Schlüter, S. et al. Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime. Nat. Commun. 13, 2098 (2022).Article 

    Google Scholar 
    Acosta, J. A., Martínez-Martínez, S., Faz, A. & Arocena, J. Accumulations of major and trace elements in particle size fractions of soils on eight different parent materials. Geoderma 161, 30–42 (2011).Article 

    Google Scholar 
    Sessitsch, A., Weilharter, A., Gerzabek, M. H., Kirchmann, H. & Kandeler, E. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl. Environ. Microbiol. 67, 4215–4224 (2001).Article 

    Google Scholar 
    Zhang, Q. et al. Fatty-acid profiles and enzyme activities in soil particle-size fractions under long-term fertilization. Soil Sci. Soc. Am. J. 80, 97–111 (2016).Article 

    Google Scholar 
    Hemkemeyer, M., Christensen, B. T., Martens, R. & Tebbe, C. C. Soil particle size fractions harbour distinct microbial communities and differ in potential for microbial mineralisation of organic pollutants. Soil Biol. Biochem. 90, 255–265 (2015).Article 

    Google Scholar 
    Briar, S. S. et al. The distribution of nematodes and soil microbial communities across soil aggregate fractions and farm management systems. Soil Biol. Biochem. 43, 905–914 (2011).Article 

    Google Scholar 
    Hemkemeyer, M., Dohrmann, A. B., Christensen, B. T. & Tebbe, C. C. Bacterial preferences for specific soil particle size fractions revealed by community analyses. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.00149 (2018).Hemkemeyer, M., Christensen, B. T., Tebbe, C. C. & Hartmann, M. Taxon-specific fungal preference for distinct soil particle size fractions. Eur. J. Soil Biol. 94, 103103 (2019).Article 

    Google Scholar 
    Christensen, B. T. & Olesen, J. E. Nitrogen mineralization potential of organomineral size separates from soils with annual straw incorporation. Eur. J. Soil Sci. 49, 25–36 (1998).Article 

    Google Scholar 
    Christensen, B. T. Decomposability of organic matter in particle size fractions from field soils with straw incorporation. Soil Biol. Biochem. 19, 429–435 (1987).Article 

    Google Scholar 
    Luo, G. et al. Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions. Biol. Fertil. Soils 53, 375–388 (2017).Article 

    Google Scholar 
    Mummey, D., Holben, W., Six, J. & Stahl, P. Spatial stratification of soil bacterial populations in aggregates of diverse soils. Microb. Ecol. 51, 404–411 (2006).Article 

    Google Scholar 
    Ranjard, L. et al. Heterogeneous cell density and genetic structure of bacterial pools associated with various soil microenvironments as determined by enumeration and DNA fingerprinting approach (RISA). Microb. Ecol. 39, 263–272 (2000).
    Google Scholar 
    Raynaud, X. & Nunan, N. Spatial ecology of bacteria at the microscale in soil. PLoS One 9, e87217 (2014).Article 

    Google Scholar 
    Rillig, M. C., Muller, L. A. H. & Lehmann, A. Soil aggregates as massively concurrent evolutionary incubators. ISME J. 11, 1943–1948 (2017).Article 

    Google Scholar 
    Trivedi, P. et al. Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content. Environ. Microbiol. 19, 3070–3086 (2017).Article 

    Google Scholar 
    Borer, B., Tecon, R. & Or, D. Spatial organization of bacterial populations in response to oxygen and carbon counter-gradients in pore networks. Nat. Commun. 9, 769 (2018).Article 

    Google Scholar 
    Kong, A. Y. Y., Hristova, K., Scow, K. M. & Six, J. Impacts of different N management regimes on nitrifier and denitrifier communities and N cycling in soil microenvironments. Soil Biol. Biochem. 42, 1523–1533 (2010).Article 

    Google Scholar 
    Bhattacharyya, S. S. et al. Soil carbon sequestration, greenhouse gas emissions, and water pollution under different tillage practices. Sci. Total Environ. 826, 154161 (2022).Article 

    Google Scholar 
    Zhang, W. et al. Differences in the nitrous oxide emission and the nitrifier and denitrifier communities among varying aggregate sizes of an arable soil in China. Geoderma 389, 114970 (2021).Article 

    Google Scholar 
    Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).Article 

    Google Scholar 
    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).Article 

    Google Scholar 
    Hartmann, M., Frey, B., Mayer, J., Mader, P. & Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9, 1177–1194 (2015).Article 

    Google Scholar 
    Degrune, F. et al. The pedological context modulates the response of soil microbial communities to agroecological management. Front. Ecol. Environ. 7, 261 (2019).Article 

    Google Scholar 
    Longepierre, M. et al. Limited resilience of the soil microbiome to mechanical compaction within four growing seasons of agricultural management. ISME Commun. 1, 44 (2021).Article 

    Google Scholar 
    Delitte, M., Caulier, S., Bragard, C. & Desoignies, N. Plant microbiota beyond farming practices: a review. Front. Sustain. Food Syst. https://doi.org/10.3389/fsufs.2021.624203 (2021).Hobbs, P. R., Sayre, K. & Gupta, R. The role of conservation agriculture in sustainable agriculture. Phil. Trans. R. Soc. B 363, 543–555 (2008).Article 

    Google Scholar 
    Van den Putte, A., Govers, G., Diels, J., Gillijns, K. & Demuzere, M. Assessing the effect of soil tillage on crop growth: a meta-regression analysis on European crop yields under conservation agriculture. Eur. J. Agron. 33, 231–241 (2010).Article 

    Google Scholar 
    Six, J. et al. Soil organic matter, biota and aggregation in temperate and tropical soils — effects of no-tillage. Agronomie 22, 755–775 (2002).Article 

    Google Scholar 
    Young, I. M. & Ritz, K. Tillage, habitat space and function of soil microbes. Soil Tillage Res. 53, 201–213 (2000).Article 

    Google Scholar 
    Degrune, F. et al. Temporal dynamics of soil microbial communities below the seedbed under two contrasting tillage regimes. Front. Microbiol. 8, 1127 (2017).Article 

    Google Scholar 
    Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).Article 

    Google Scholar 
    Babin, D. et al. Impact of long-term agricultural management practices on soil prokaryotic communities. Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2018.11.002 (2018).Article 

    Google Scholar 
    Srour, A. Y. et al. Microbial communities associated with long-term tillage and fertility treatments in a corn–soybean cropping system. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.01363 (2020).Cania, B. et al. Site-specific conditions change the response of bacterial producers of soil structure-stabilizing agents such as exopolysaccharides and lipopolysaccharides to tillage intensity. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00568 (2020).Cooper, H. V., Sjögersten, S., Lark, R. M. & Mooney, S. J. To till or not to till in a temperate ecosystem? Implications for climate change mitigation. Environ. Res. Lett. 16, 054022 (2021).Article 

    Google Scholar 
    Mangalassery, S. et al. To what extent can zero tillage lead to a reduction in greenhouse gas emissions from temperate soils? Sci. Rep. 4, 4586 (2014).Article 

    Google Scholar 
    Abdalla, M. et al. Conservation tillage systems: a review of its consequences for greenhouse gas emissions. Soil Use Manage. 29, 199–209 (2013).Article 

    Google Scholar 
    Six, J. et al. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Glob. Change Biol. 10, 155–160 (2004).Article 

    Google Scholar 
    van Kessel, C. et al. Climate, duration, and N placement determine N2O emissions in reduced tillage systems: a meta-analysis. Glob. Change Biol. 19, 33–44 (2013).Article 

    Google Scholar 
    Hamza, M. A. & Anderson, W. K. Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil Tillage Res. 82, 121–145 (2005).Article 

    Google Scholar 
    Schäffer, B., Stauber, M., Mueller, T. L., Muller, R. & Schulin, R. Soil and macro-pores under uniaxial compression. I. Mechanical stability of repacked soil and deformation of different types of macro-pores. Geoderma 146, 183–191 (2008).Article 

    Google Scholar 
    Hartmann, M. et al. Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J. 8, 226–244 (2014).Article 

    Google Scholar 
    Sitaula, B. K., Hansen, S., Sitaula, J. I. B. & Bakken, L. R. Methane oxidation potentials and fluxes in agricultural soil: effects of fertilisation and soil compaction. Biogeochemistry 48, 323–339 (2000).Article 

    Google Scholar 
    Sitaula, B. K., Hansen, S., Sitaula, J. I. B. & Bakken, L. R. Effects of soil compaction on N2O emission in agricultural soil. Chemosphere Glob. Change Sci. 2, 367–371 (2000).Article 

    Google Scholar 
    Beckett, C. T. S. et al. Compaction conditions greatly affect growth during early plant establishment. Ecol. Eng. 106, 471–481 (2017).Article 

    Google Scholar 
    Reichert, J. M., Suzuki, L. E. A. S., Reinert, D. J., Horn, R. & Håkansson, I. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil Tillage Res. 102, 242–254 (2009).Article 

    Google Scholar 
    von Wilpert, K. & Schäffer, J. Ecological effects of soil compaction and initial recovery dynamics: a preliminary study. Eur. J. For. Res. 125, 129–138 (2006).Article 

    Google Scholar 
    Tim Chamen, W. C., Moxey, A. P., Towers, W., Balana, B. & Hallett, P. D. Mitigating arable soil compaction: a review and analysis of available cost and benefit data. Soil Tillage Res. 146, 10–25 (2015).Article 

    Google Scholar 
    Beillouin, D., Ben-Ari, T., Malézieux, E., Seufert, V. & Makowski, D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob. Change Biol. 27, 4697–4710 (2021).Article 

    Google Scholar 
    Smith, R. G., Gross, K. L. & Robertson, G. P. Effects of crop diversity on agroecosystem function: crop yield response. Ecosystems 11, 355–366 (2008).Article 

    Google Scholar 
    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).Article 

    Google Scholar 
    Galindo-Castañeda, T., Lynch, J. P., Six, J. & Hartmann, M. Improving soil resource uptake by plants through capitalizing on synergies between root architecture and anatomy and root-associated microorganisms. Front. Plant Sci. https://doi.org/10.3389/fpls.2022.827369 (2022).Venter, Z. S., Jacobs, K. & Hawkins, H.-J. The impact of crop rotation on soil microbial diversity: a meta-analysis. Pedobiologia 59, 215–223 (2016).Article 

    Google Scholar 
    Stefan, L., Hartmann, M., Engbersen, N., Six, J. & Schöb, C. Positive effects of crop diversity on productivity driven by changes in soil microbial composition. Front. Microbiol. 12, 660749 (2021).Article 

    Google Scholar 
    Peralta, A. L., Sun, Y., McDaniel, M. D. & Lennon, J. T. Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere 9, e02235 (2018).Article 

    Google Scholar 
    Abdalla, M. et al. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Glob. Change Biol. 25, 2530–2543 (2019).Article 

    Google Scholar 
    Bacq-Labreuil, A., Crawford, J., Mooney, S. J., Neal, A. L. & Ritz, K. Cover crop species have contrasting influence upon soil structural genesis and microbial community phenotype. Sci. Rep. 9, 7473 (2019).Article 

    Google Scholar 
    Kong, A. Y. Y. & Six, J. Microbial community assimilation of cover crop rhizodeposition within soil microenvironments in alternative and conventional cropping systems. Plant Soil 356, 315–330 (2012).Article 

    Google Scholar 
    Kim, N., Zabaloy, M. C., Guan, K. & Villamil, M. B. Do cover crops benefit soil microbiome? A meta-analysis of current research. Soil Biol. Biochem. 142, 107701 (2020).Article 

    Google Scholar 
    Alahmad, A. et al. Cover crops in arable lands increase functional complementarity and redundancy of bacterial communities. J. Appl. Ecol. 56, 651–664 (2019).Article 

    Google Scholar 
    Cloutier, M. L. et al. Fungal community shifts in soils with varied cover crop treatments and edaphic properties. Sci. Rep. 10, 6198 (2020).Article 

    Google Scholar 
    Finney, D. M., Buyer, J. S. & Kaye, J. P. Living cover crops have immediate impacts on soil microbial community structure and function. J. Soil Water Conserv. 72, 361–373 (2017).Article 

    Google Scholar 
    Vukicevich, E., Lowery, T., Bowen, P., Úrbez-Torres, J. R. & Hart, M. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agron. Sustain. Dev. 36, 48 (2016).Article 

    Google Scholar 
    Sanz-Cobena, A. et al. Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems? Sci. Total Environ. 466-467, 164–174 (2014).Article 

    Google Scholar 
    Basche, A. D., Miguez, F. E., Kaspar, T. C. & Castellano, M. J. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. J. Soil Water Conserv. 69, 471–482 (2014).Article 

    Google Scholar 
    Tribouillois, H., Constantin, J. & Justes, E. Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers. Glob. Change Biol. 24, 2513–2529 (2018).Article 

    Google Scholar 
    Vanlauwe, B. et al. Integrated soil fertility management: operational definition and consequences for implementation and dissemination. Outlook Agric. 39, 17–24 (2010).Article 

    Google Scholar 
    Barzman, M. et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 35, 1199–1215 (2015).Article 

    Google Scholar 
    Francioli, D. et al. Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.01446 (2016).Lentendu, G. et al. Effects of long-term differential fertilization on eukaryotic microbial communities in an arable soil: a multiple barcoding approach. Mol. Ecol. 23, 3341–3355 (2014).Article 

    Google Scholar 
    Lori, M., Symnaczik, S., Mäder, P., De Deyn, G. & Gattinger, A. Organic farming enhances soil microbial abundance and activity — a meta-analysis and meta-regression. PLoS One 12, e0180442 (2017).Article 

    Google Scholar 
    Bebber, D. P. & Richards, V. R. A meta-analysis of the effect of organic and mineral fertilizers on soil microbial diversity. Appl. Soil Ecol. 175, 104450 (2022).Article 

    Google Scholar 
    Rillig, M. C., Tsang, A. & Roy, J. Microbial community coalescence for microbiome engineering. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.01967 (2016).Loaiza Puerta, V., Pujol Pereira, E. I., Wittwer, R., van der Heijden, M. & Six, J. Improvement of soil structure through organic crop management, conservation tillage and grass-clover ley. Soil Tillage Res. 180, 1–9 (2018).Article 

    Google Scholar 
    Řezáčová, V. et al. Organic fertilization improves soil aggregation through increases in abundance of eubacteria and products of arbuscular mycorrhizal fungi. Sci. Rep. 11, 12548 (2021).Article 

    Google Scholar 
    Fonte, S. J., Kong, A. Y. Y., van Kessel, C., Hendrix, P. F. & Six, J. Influence of earthworm activity on aggregate-associated carbon and nitrogen dynamics differs with agroecosystem management. Soil Biol. Biochem. 39, 1014–1022 (2007).Article 

    Google Scholar 
    Fu, B., Chen, L., Huang, H., Qu, P. & Wei, Z. Impacts of crop residues on soil health: a review. Environ. Pollut. Bioavailab. 33, 164–173 (2021).Article 

    Google Scholar 
    Blanco-Canqui, H. & Lal, R. Crop residue removal impacts on soil productivity and environmental quality. Crit. Rev. Plant Sci. 28, 139–163 (2009).Article 

    Google Scholar 
    Yang, H. et al. Wheat straw return influences nitrogen-cycling and pathogen associated soil microbiota in a wheat–soybean rotation system. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.01811 (2019).Enebe, M. C. & Babalola, O. O. Soil fertilization affects the abundance and distribution of carbon and nitrogen cycling genes in the maize rhizosphere. AMB Express 11, 24 (2021).Article 

    Google Scholar 
    Skinner, C. et al. The impact of long-term organic farming on soil-derived greenhouse gas emissions. Sci. Rep. 9, 1702 (2019).Article 

    Google Scholar 
    Lazcano, C., Zhu-Barker, X. & Decock, C. Effects of organic fertilizers on the soil microorganisms responsible for N2O emissions: a review. Microorganisms https://doi.org/10.3390/microorganisms9050983 (2021).Tilston, E. L., Pitt, D. & Groenhof, A. C. Composted recycled organic matter suppresses soil-borne diseases of field crops. N. Phytol. 154, 731–740 (2002).Article 

    Google Scholar 
    Bonanomi, G., Antignani, V., Capodilupo, M. & Scala, F. Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol. Biochem. 42, 136–144 (2010).Article 

    Google Scholar 
    Briceño, G., Palma, G. & Durán, N. Influence of organic amendment on the biodegradation and movement of pesticides. Crit. Rev. Environ. Sci. Technol. 37, 233–271 (2007).Article 

    Google Scholar 
    Lehmann, J. & Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation (Routledge, 2015).Wang, D., Fonte, S. J., Parikh, S. J., Six, J. & Scow, K. M. Biochar additions can enhance soil structure and the physical stabilization of C in aggregates. Geoderma 303, 110–117 (2017).Article 

    Google Scholar 
    Wang, J., Xiong, Z. & Kuzyakov, Y. Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy 8, 512–523 (2016).Article 

    Google Scholar 
    Lehmann, J. et al. Biochar effects on soil biota — a review. Soil Biol. Biochem. 43, 1812–1836 (2011).Article 

    Google Scholar 
    Liu, X., Shi, Y., Zhang, Q. & Li, G. Effects of biochar on nitrification and denitrification-mediated N2O emissions and the associated microbial community in an agricultural soil. Environ. Sci. Pollut. Res. 28, 6649–6663 (2021).Article 

    Google Scholar 
    Zhang, L. et al. Effects of biochar application on soil nitrogen transformation, microbial functional genes, enzyme activity, and plant nitrogen uptake: a meta-analysis of field studies. GCB Bioenergy 13, 1859–1873 (2021).Article 

    Google Scholar 
    Deb, D., Kloft, M., Lässig, J. & Walsh, S. Variable effects of biochar and P solubilizing microbes on crop productivity in different soil conditions. Agroecol. Sustain. Food Syst. 40, 145–168 (2016).Article 

    Google Scholar 
    Li, X., Wang, T., Chang, S. X., Jiang, X. & Song, Y. Biochar increases soil microbial biomass but has variable effects on microbial diversity: a meta-analysis. Sci. Total Environ. 749, 141593 (2020).Article 

    Google Scholar 
    Yoo, G., Lee, Y. O., Won, T. J., Hyun, J. G. & Ding, W. Variable effects of biochar application to soils on nitrification-mediated N2O emissions. Sci. Total Environ. 626, 603–611 (2018).Article 

    Google Scholar 
    Verhoeven, E. et al. Toward a better assessment of biochar–nitrous oxide mitigation potential at the field scale. J. Environ. Qual. 46, 237–246 (2017).Article 

    Google Scholar 
    He, Y. et al. Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy 9, 743–755 (2017).Article 

    Google Scholar 
    Wang, W. et al. Biochar application alleviated negative plant–soil feedback by modifying soil microbiome. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00799 (2020).Duan, M. et al. Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce. Environ. Pollut. 224, 787–795 (2017).Article 

    Google Scholar 
    Liu, Y., Lonappan, L., Brar, S. K. & Yang, S. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: a review. Sci. Total Environ. 645, 60–70 (2018).Article 

    Google Scholar 
    du Jardin, P. Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. 196, 3–14 (2015).Article 

    Google Scholar 
    Le Mire, G. et al. Review: implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. Biotechnol. Agron. Soc. Environ. 20, 1–15 (2016).
    Google Scholar 
    Leggett, M. et al. Soybean response to inoculation with Bradyrhizobium japonicum in the United States and Argentina. Agron. J. 109, 1031–1038 (2017).Article 

    Google Scholar 
    Coniglio, A., Mora, V., Puente, M. & Cassán, F. in Microbial Probiotics for Agricultural Systems: Advances in Agronomic Use (eds Zúñiga-Dávila, D. et al.) 45–70 (Springer, 2019).Alori, E. T., Dare, M. O. & Babalola, O. O. in Sustainable Agriculture Reviews (ed. Lichtfouse, E.) 281–307 (Springer, 2017).Rillig, M. C. & Mummey, D. L. Mycorrhizas and soil structure. N. Phytol. 171, 41–53 (2006).Article 

    Google Scholar 
    Mawarda, P. C., Le Roux, X., Dirk van Elsas, J. & Salles, J. F. Deliberate introduction of invisible invaders: a critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil. Biol. Biochem. 148, 107874 (2020).Article 

    Google Scholar 
    Liu, X., Le Roux, X. & Salles, J. F. The legacy of microbial inoculants in agroecosystems and potential for tackling climate change challenges. iScience 25, 103821 (2022).Article 

    Google Scholar 
    Cornell, C. et al. Do bioinoculants affect resident microbial communities? A meta-analysis. Front. Agron. https://doi.org/10.3389/fagro.2021.753474 (2021).Bender, S. F., Schlaeppi, K., Held, A. & Van der Heijden, M. G. A. Establishment success and crop growth effects of an arbuscular mycorrhizal fungus inoculated into Swiss corn fields. Agric. Ecosyst. Environ. 273, 13–24 (2019).Article 

    Google Scholar 
    Schreiter, S. et al. Soil type-dependent effects of a potential biocontrol inoculant on indigenous bacterial communities in the rhizosphere of field-grown lettuce. FEMS Microbiol. Ecol. 90, 718–730 (2014).Article 

    Google Scholar 
    Mueller, U. G. & Sachs, J. L. Engineering microbiomes to improve plant and animal health. Trends Microbiol. 23, 606–617 (2015).Article 

    Google Scholar 
    Kennedy, T. L., Suddick, E. C. & Six, J. Reduced nitrous oxide emissions and increased yields in California tomato cropping systems under drip irrigation and fertigation. Agric. Ecosyst. Environ. 170, 16–27 (2013).Article 

    Google Scholar 
    Fonte, S. J., Barrios, E. & Six, J. Earthworms, soil fertility and aggregate-associated soil organic matter dynamics in the Quesungual agroforestry system. Geoderma 155, 320–328 (2010).Article 

    Google Scholar 
    Pauli, N., Barrios, E., Conacher, A. J. & Oberthür, T. Soil macrofauna in agricultural landscapes dominated by the Quesungual slash-and-mulch agroforestry system, western Honduras. Appl. Soil. Ecol. 47, 119–132 (2011).Article 

    Google Scholar 
    Eichorst, S. A. et al. Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiv106 (2015).Musat, N., Musat, F., Weber, P. K. & Pett-Ridge, J. Tracking microbial interactions with NanoSIMS. Curr. Opin. Biotechnol. 41, 114–121 (2016).Article 

    Google Scholar 
    Bronick, C. J. & Lal, R. Soil structure and management: a review. Geoderma 124, 3–22 (2005).Article 

    Google Scholar  More

  • in

    Composition and metabolic potential of microbiomes associated with mesopelagic animals from Monterey Canyon

    McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA. 2013;110:3229–36.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hammer TJ, Sanders JG, Fierer N. Not all animals need a microbiome. FEMS Microbiol Lett. 2019;366:fnz117.Article 
    CAS 
    PubMed 

    Google Scholar 
    Bagge LE, Osborn KJ, Johnsen S. Nanostructures and monolayers of spheres reduce surface reflections in hyperiid amphipods. Curr Biol. 2016;26:3071–6.Article 
    CAS 
    PubMed 

    Google Scholar 
    Apprill A. Marine animal microbiomes: toward understanding host–microbiome interactions in a changing ocean. Front Mar Sci. 2017;4:222.Article 

    Google Scholar 
    Wilkins LGE, Leray M, O’Dea A, Yuen B, Peixoto RS, Pereira TJ, et al. Host-associated microbiomes drive structure and function of marine ecosystems. PLoS Biol. 2019;17:e3000533.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moitinho-Silva L, Nielsen S, Amir A, Gonzalez A, Ackermann GL, Cerrano C, et al. The sponge microbiome project. GigaScience. 2017;6:gix077.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Oppen MJH, Blackall LL. Coral microbiome dynamics, functions and design in a changing world. Nat Rev Microbiol. 2019;17:557–67.Article 
    PubMed 

    Google Scholar 
    Henehan MJ, Hull PM, Penman DE, Rae JWB, Schmidt DN. Biogeochemical significance of pelagic ecosystem function: an end-Cretaceous case study. Phil Trans R Soc B. 2016;371:20150510.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Corte D, Srivastava A, Koski M, Garcia JAL, Takaki Y, Yokokawa T, et al. Metagenomic insights into zooplankton-associated bacterial communities. Environ Microbiol. 2018;20:492–505.Article 
    PubMed 

    Google Scholar 
    Egerton S, Culloty S, Whooley J, Stanton C, Ross RP. The gut microbiota of marine fish. Front Microbiol. 2018;9:873.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scott JJ, Adam TC, Duran A, Burkepile DE, Rasher DB. Intestinal microbes: an axis of functional diversity among large marine consumers. Proc R Soc B. 2020;287:20192367.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sanders JG, Beichman AC, Roman J, Scott JJ, Emerson D, McCarthy JJ, et al. Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores. Nat Commun. 2015;6:8285.Article 
    CAS 
    PubMed 

    Google Scholar 
    Preheim SP, Boucher Y, Wildschutte H, David LA, Veneziano D, Alm EJ, et al. Metapopulation structure of Vibrionaceae among coastal marine invertebrates. Environ Microbiol. 2011;13:265–75.Article 
    CAS 
    PubMed 

    Google Scholar 
    Sullam KE, Essinger SD, Lozupone CA, O’Connor MP, Rosen GL, Knight R, et al. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol Ecol. 2012;21:3363–78.Article 
    PubMed 

    Google Scholar 
    Huang Q, Sham RC, Deng Y, Mao Y, Wang C, Zhang T, et al. Diversity of gut microbiomes in marine fishes is shaped by host‐related factors. Mol Ecol. 2020;29:5019–34.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Webb TJ, Vanden Berghe E, O’Dor R. Biodiversity’s big wet secret: the global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean. PLoS ONE. 2010;5:e10223.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Irigoien X, Klevjer TA, Røstad A, Martinez U, Boyra G, Acuña JL, et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat Commun. 2014;5:3271.Article 
    PubMed 

    Google Scholar 
    Drazen JC, Sutton TT. Dining in the deep: the feeding ecology of deep-sea fishes. Annu Rev Mar Sci. 2017;9:337–66.Article 

    Google Scholar 
    Boyd PW, Claustre H, Levy M, Siegel DA, Weber T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature. 2019;568:327–35.Article 
    CAS 
    PubMed 

    Google Scholar 
    Klevjer TA, Irigoien X, Røstad A, Fraile-Nuez E, Benítez-Barrios VM, Kaartvedt S. Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers. Sci Rep. 2016;6:19873.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davison PC, Checkley DM, Koslow JA, Barlow J. Carbon export mediated by mesopelagic fishes in the northeast Pacific Ocean. Prog Oceanogr. 2013;116:14–30.Article 

    Google Scholar 
    Steinberg DK, Landry MR. Zooplankton and the ocean carbon cycle. Annu Rev Mar Sci. 2017;9:413–44.Article 

    Google Scholar 
    Stenvers VI, Hauss H, Osborn KJ, Neitzel P, Merten V, Scheer S, et al. Distribution, associations and role in the biological carbon pump of Pyrosoma atlanticum (Tunicata, Thaliacea) off Cabo Verde, NE Atlantic. Sci Rep. 2021;11:9231.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robinson C, Steinberg DK, Anderson TR, Aristegui J, Carlson CA, Frost JR, et al. Mesopelagic zone ecology and biogeochemistry–a synthesis. Deep Sea Res II. 2010;57:1504–18.Article 
    CAS 

    Google Scholar 
    Iacuaniello CM. An examination of intestinal microbiota of mesopelagic fish reveals microbial community diversity across fish families. Master’s Thesis, University of California San Diego. 2019.Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.Article 
    PubMed 

    Google Scholar 
    Bernal A, Olivar MP, Maynou F, Fernández de Puelles ML. Diet and feeding strategies of mesopelagic fishes in the western Mediterranean. Prog Oceanogr. 2015;135:1–17.Article 

    Google Scholar 
    Bollens SM, Frost BW, Lin TS. Recruitment, growth, and diel vertical migration of Euphausia pacifica in a temperate fjord. Mar Biol. 1992;114:219–28.Article 

    Google Scholar 
    Hoving HJT, Neitzel P, Hauss H, Christiansen S, Kiko R, Robison BH, et al. In situ observations show vertical community structure of pelagic fauna in the eastern tropical North Atlantic off Cape Verde. Sci Rep. 2020;10:21798.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Judkins H, Vecchione M. Vertical distribution patterns of cephalopods in the northern Gulf of Mexico. Front Mar Sci. 2020;7:47.Article 

    Google Scholar 
    Miya M, Nemoto T. Reproduction, growth and vertical distribution of the meso- and bathypelagic fish Cyclothone atraria (Pisces: Gonostomatidae) in Sagami Bay, Central Japan. Deep Sea Res I. 1987;34:1565–77.Article 

    Google Scholar 
    Osborn KJ. Phylogenetics and ecology of pelagic munnopsid isopods (Crustacea, Asellota). Dissertation, University of California Berkeley. 2007.Pearcy WG, Forss CA. Depth distribution of oceanic shrimps (Decapoda; Natantia) off Oregon. J Fish Res Bd Can. 1966;23:1135–43.Article 

    Google Scholar 
    Russell FS. The vertical distribution of marine macroplankton. An observation on diurnal changes. J Mar Biol Ass. 1925;13:769–809.Article 

    Google Scholar 
    Watanabe H, Moku M, Kawaguchi K, Ishimaru K, Ohno A. Diel vertical migration of myctophid fishes (family Myctophidae) in the transitional waters of the western North Pacific. Fish Oceanogr. 1999;8:115–27.Article 

    Google Scholar 
    Madin LP. Gelatinous grazers: an underestimated force in ocean carbon cycles. 4th International Zooplankton Production Symposium, May 28–June 1. Hiroshima, Japan. 2007.Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–22.Article 
    CAS 
    PubMed 

    Google Scholar 
    Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN. Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes. 2007;7:544–8.Article 
    CAS 

    Google Scholar 
    Geller J, Meyer C, Parker M, Hawk H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all‐taxa biotic surveys. Mol Ecol Resour. 2013;13:851–61.Article 
    CAS 
    PubMed 

    Google Scholar 
    Leray M, Yang JY, Meyer CP, Mills SC, Agudelo N, Ranwez V, et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front Zool. 2013;10:34.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.Article 
    CAS 
    PubMed 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res. 2013;41:D590–6.Article 
    CAS 
    PubMed 

    Google Scholar 
    Robeson MS II, O’Rourke DR, Kaehler BD, Ziemski M, Dillon MR, Foster JT, et al. RESCRIPt: reproducible sequence taxonomy reference database management. PLoS Comput Biol. 2021;17:e1009581.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Janssen S, McDonald D, Gonzalez A, Navas-Molina JA, Jiang L, Xu ZZ, et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. mSystems. 2018;3:e00021–18.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McMurdie PJ, Holmes S. phyloseq: an R Package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria; 2021.Hillmann B, Al-Ghalith GA, Shields-Cutler RR, Zhu Q, Knight R, Knights D. SHOGUN: a modular, accurate and scalable framework for microbiome quantification. Bioinformatics. 2020;36:4088–90.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Al-Ghalith G, Knights D. Faster and lower-memory metagenomic profiling with UTree. https://doi.org/10.5281/zenodo.998252.Jovel J, Patterson J, Wang W, Hotte N, O’Keefe S, Mitchel T, et al. Characterization of the gut microbiome using 16S or shotgun metagenomics. Front Microbiol. 2016;7:459.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    DeWitt FA, Cailliet GM. Feeding habits of two bristlemouth fishes, Cyclothone acclinidens and C. signata (Gonostomatidae). Copeia. 1972;1972:868.Article 

    Google Scholar 
    Fauchald K, Jumars PA. The diet of worms: a study of polychaete feeding guilds. Oceanogr Mar Biol Annu Rev. 1979;17:193–284.
    Google Scholar 
    Flock ME, Hopkins TL. Species composition, vertical distribution, and food habits of the sergestid shrimp assemblage in the eastern Gulf of Mexico. J Crustacean Biol. 1992;12:210–23.Article 

    Google Scholar 
    Uttal L, Buck KR. Dietary study of the midwater polychaete Poeobius meseres in Monterey Bay, California. Mar Biol. 1996;125:333–43.Article 

    Google Scholar 
    Tanimata N, Yamamura O, Sakurai Y, Azumaya T. Dietary shift and feeding intensity of Stenobrachius leucopsarus in the Bering Sea. J Oceanogr. 2008;64:185–94.Article 

    Google Scholar 
    Hoving HJT, Robison BH. Vampire squid: detritivores in the oxygen minimum zone. Proc R Soc B. 2012;279:4559–67.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berning M. The feeding ecology of two species of holopelagic munnopsid isopods from the North Pacific (Acanthamunnopsis milleri and Munneurycope murrayi) using SEM analysis. Honors Thesis, Florida State University. 2014.Du X, Peterson W. Feeding rates and selectivity of adult Euphausia pacifica on natural particle assemblages in the coastal upwelling zone off Oregon, USA, 2010. J Plankton Res. 2014;36:1031–46.Article 

    Google Scholar 
    Henschke N, Everett JD, Richardson AJ, Suthers IM. Rethinking the role of salps in the ocean. Trends Ecol Evol. 2016;31:720–33.Article 
    PubMed 

    Google Scholar 
    Gruber-Vodicka HR, Seah BKB, Pruesse E. phyloFlash: rapid small-subunit rRNA profiling and targeted assembly from metagenomes. mSystems. 2020;5:e00920–20.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karlicki M, Antonowicz S, Karnkowska A. Tiara: deep learning-based classification system for eukaryotic sequences. Bioinformatics. 2022;38:344–50.Article 
    CAS 

    Google Scholar 
    Levy Karin E, Mirdita M, Söding J. MetaEuk—sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics. Microbiome. 2020;8:48Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH.UniProt Consortium UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics. 2015;31:926–32.Article 
    CAS 
    PubMed 

    Google Scholar 
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chamberlain SA, Szöcs E. taxize: taxonomic search and retrieval in R. F1000Res. 2013;2:191.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7.Article 
    CAS 
    PubMed 

    Google Scholar 
    Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome. 2017;5:27.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McKnight DT, Huerlimann R, Bower DS, Schwarzkopf L, Alford RA, Zenger KR. Methods for normalizing microbiome data: an ecological perspective. Methods Ecol Evol. 2019;10:389–400.Article 

    Google Scholar 
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. 2020.Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013;10:1200–2.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Molnár K, Ostoros G, Dunams-Morel D, Rosenthal B. Eimeria that infect fish are diverse and are related to, but distinct from, those that infect terrestrial vertebrates. Infect Genet Evol. 2012;12:1810–5.Article 
    PubMed 

    Google Scholar 
    Domozych D. Algal cell walls. In: John Wiley & Sons, Ltd, editor. eLS. 1st ed. Wiley, Hoboken, NJ; 2019. p. 1–11.Gallet A, Koubbi P, Léger N, Scheifler M, Ruiz-Rodriguez M, Suzuki MT, et al. Low-diversity bacterial microbiota in Southern Ocean representatives of lanternfish genera Electrona, Protomyctophum and Gymnoscopelus (family Myctophidae). PLoS ONE. 2019;14:e0226159.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reji L, Tolar BB, Chavez FP, Francis CA. Depth-differentiation and seasonality of planktonic microbial assemblages in the Monterey Bay upwelling system. Front Microbiol. 2020;11:1075.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Corte D, Lekunberri I, Sintes E, Garcia J, Gonzales S, Herndl G. Linkage between copepods and bacteria in the North Atlantic Ocean. Aquat Microb Ecol. 2014;72:215–25.Article 

    Google Scholar 
    Russell SL. Transmission mode is associated with environment type and taxa across bacteria-eukaryote symbioses: a systematic review and meta-analysis. FEMS Microbiol Lett. 2019;366:fnz013.Article 
    CAS 
    PubMed 

    Google Scholar 
    Akbar S, Li X, Ding Z, Liu Q, Huang J, Zhou Q, et al. Disentangling diet- and medium-associated microbes in shaping Daphnia gut microbiome. Microb Ecol. 2022;84:911–21. https://doi.org/10.1007/s00248-021-01900-x.Eckert EM, Anicic N, Fontaneto D. Freshwater zooplankton microbiome composition is highly flexible and strongly influenced by the environment. Mol Ecol. 2021;30:1545–58.Article 
    PubMed 

    Google Scholar 
    Rakusa-Suszczewski S. Predation of chaetognatha by Tomopteris helgolandica Greff. ICES J Mar Sci. 1968;32:226–31.Article 

    Google Scholar 
    Aldredge AL, Silver MW. Characteristics, dynamics and significance of marine snow. Prog Oceanogr. 1988;20:41–82.Article 

    Google Scholar 
    Jumars PA, Dorgan KM, Lindsay SM. Diet of worms emended: an update of polychaete feeding guilds. Ann Rev Mar Sci. 2015;7:497–520.Article 
    PubMed 

    Google Scholar 
    Pfenning-Butterworth A, Cooper RO, Cressler CE. Daily feeding rhythm linked to microbiome composition in two zooplankton species. PLoS ONE. 2022;17:e0263538.Pappalardo P, Collins AG, Pagenkopp Lohan KM, Hanson KM, Truskey SB, et al. The role of taxonomic expertise in interpretation of metabarcoding studies. ICES J Mar Sci. 2021;78:3397–410.Article 

    Google Scholar 
    Hunt DE, Gevers D, Vahora NM, Polz MF. Conservation of the chitin utilization pathway in the Vibrionaceae. Appl Environ Microbiol. 2008;74:44–51.Article 
    CAS 
    PubMed 

    Google Scholar 
    Turner JT. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog Oceanogr. 2015;130:205–48.Article 

    Google Scholar 
    Chavez FP. Forcing and biological impact of onset of the 1992 El Niño in central California. Geophys Res Lett. 1996;23:265–8.Article 

    Google Scholar 
    Pennington TJ, Chavez FP. Seasonal fluctuations of temperature, salinity, nitrate, chlorophyll and primary production at station H3/M1 over 1989-96 in Monterey Bay, California. Deep Sea Res II. 2000;47:947–73.Article 
    CAS 

    Google Scholar  More

  • in

    Fertilization treatments affect soil CO2 emission through regulating soil bacterial community composition in the semiarid Loess Plateau

    Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).Article 
    CAS 

    Google Scholar 
    Shakoor, A. et al. Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils—A global meta-analysis. J. Clean Prod. 278, 124019. https://doi.org/10.1016/j.jclepro.2020.124019 (2021).Article 
    CAS 

    Google Scholar 
    Wu, L. et al. Soil organic matter priming and carbon balance after straw addition is regulated by long-term fertilization. Soil Biol. Biochem. 135, 383–391 (2019).Article 
    CAS 

    Google Scholar 
    Chen, F. et al. Effects of N addition and precipitation reduction on soil respiration and its components in a temperate forest. Agr. Forest. Meteorol. 271, 336–345 (2019).Article 

    Google Scholar 
    Lei, J. et al. Temporal changes in global soil respiration since 1987. Nat. Commun. 12, 1–9 (2021).
    Google Scholar 
    Wang, R. et al. Nitrogen application increases soil respiration but decreases temperature sensitivity: Combined effects of crop and soil properties in a semiarid agroecosystem. Geoderma 353, 320–330 (2019).Article 
    CAS 

    Google Scholar 
    Du, K. et al. Influence of no-tillage and precipitation pulse on continuous soil respiration of summer maize affected by soil water in the North China Plain. Sci. Total Environ. 766, 144384. https://doi.org/10.1016/j.scitotenv.2020.144384 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, X. & Chen, H. Y. Plant diversity loss reduces soil respiration across terrestrial ecosystems. Global Change Biol. 25, 1482–1492 (2019).Article 

    Google Scholar 
    Lang, A. K., Jevon, F. V., Ayres, M. P. & Matthes, J. H. Higher soil respiration rate beneath arbuscular mycorrhizal trees in a northern hardwood forest is driven by associated soil properties. Ecosystems 23, 1243–1253 (2020).Article 
    CAS 

    Google Scholar 
    Huang, N. et al. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv. 6, eabb8508 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xiao, H. et al. The regulatory effects of biotic and abiotic factors on soil respiration under different land-use types. Ecol. Indic. 127, 107787. https://doi.org/10.1016/j.ecolind.2021.107787 (2021).Article 
    CAS 

    Google Scholar 
    Liu, Y.-R. et al. New insights into the role of microbial community composition in driving soil respiration rates. Soil Biol. Biochem. 118, 35–41 (2018).Article 
    CAS 

    Google Scholar 
    Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E. E. & van der Heijden, M. G. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 10, 1–10 (2019).Article 
    CAS 

    Google Scholar 
    Chen, L.-F. et al. Linkages between soil respiration and microbial communities following afforestation of alpine grasslands in the northeastern Tibetan Plateau. Appl. Soil Ecol. 161, 103882. https://doi.org/10.1016/j.apsoil.2021.103882 (2021).Article 

    Google Scholar 
    Choudhary, M. et al. Long-term effects of organic manure and inorganic fertilization on sustainability and chemical soil quality indicators of soybean-wheat cropping system in the Indian mid-Himalayas. Agr. Ecosyst. Environ. 257, 38–46 (2018).Article 

    Google Scholar 
    Zhang, M. et al. Increasing yield and N use efficiency with organic fertilizer in Chinese intensive rice cropping systems. Field Crop. Res. 227, 102–109 (2018).Article 

    Google Scholar 
    Bonanomi, G. et al. Repeated applications of organic amendments promote beneficial microbiota, improve soil fertility and increase crop yield. Appl. Soil Ecol. 156, 103714. https://doi.org/10.1016/j.apsoil.2020.103714 (2020).Article 

    Google Scholar 
    Gai, X. et al. Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain. Agr. Water Manage. 208, 384–392 (2018).Article 

    Google Scholar 
    Lai, R. et al. Manure fertilization increases soil respiration and creates a negative carbon budget in a Mediterranean maize (Zea mays L.)-based cropping system. Catena 151, 202–212 (2017).Article 
    CAS 

    Google Scholar 
    Yan, T. et al. Negative effect of nitrogen addition on soil respiration dependent on stand age: Evidence from a 7-year field study of larch plantations in northern China. Agr. Forest Meteorol. 262, 24–33 (2018).Article 

    Google Scholar 
    Peng, Q. et al. Effects of nitrogen fertilization on soil respiration in temperate grassland in Inner Mongolia. China. Environ. Earth Sci. 62, 1163–1171 (2011).Article 
    CAS 

    Google Scholar 
    Zeng, J. et al. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol. Biochem. 92, 41–49 (2016).Article 
    CAS 

    Google Scholar 
    Levine, U. Y., Teal, T. K., Robertson, G. P. & Schmidt, T. M. Agriculture’s impact on microbial diversity and associated fluxes of carbon dioxide and methane. ISME J. 5, 1683–1691 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, Q., Liu, Z., Zhou, J., Xu, X. & Zhu, Y. Long-term straw mulching with nitrogen fertilization increases nutrient and microbial determinants of soil quality in a maize–wheat rotation on China’s Loess Plateau. Sci. Total. Environ. 775, 145930. https://doi.org/10.1016/j.scitotenv.2021.145930 (2021).Article 
    CAS 

    Google Scholar 
    Wang, J. et al. The impact of fertilizer amendments on soil autotrophic bacteria and carbon emissions in maize field on the semiarid Loess Plateau. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.664120 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Subke, J. A., Inglima, I. & Francesca Cotrufo, M. Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Global Change Biol. 12, 921–943 (2006).Article 

    Google Scholar 
    Yan, W., Zhong, Y., Liu, J. & Shangguan, Z. Response of soil respiration to nitrogen fertilization: Evidence from a 6-year field study of croplands. Geoderma 384, 114829. https://doi.org/10.1016/j.geoderma.2020.114829 (2021).Article 
    CAS 

    Google Scholar 
    Lamptey, S., Xie, J., Li, L., Coulter, J. A. & Jagadabhi, P. S. Influence of organic amendment on soil respiration and maize productivity in a semi-arid environment. Agronomy 9, 611. https://doi.org/10.3390/agronomy9100611 (2019).Article 
    CAS 

    Google Scholar 
    Chen, Z. et al. Nitrogen fertilization stimulated soil heterotrophic but not autotrophic respiration in cropland soils: A greater role of organic over inorganic fertilizer. Soil Biol. Biochem. 116, 253–264 (2018).Article 
    CAS 

    Google Scholar 
    Zheng, J., Zhang, X., Li, L., Zhang, P. & Pan, G. Effect of long-term fertilization on C mineralization and production of CH4 and CO2 under anaerobic incubation from bulk samples and particle size fractions of a typical paddy soil. Agr. Ecosyst. Environ. 120, 129–138 (2007).Article 
    CAS 

    Google Scholar 
    Shen, J., Zhang, L., Guo, J., Ray, J. & He, J. Impact of long-term fertilization practices on the abundance and composition of soil bacterial communities in Northeast China. Appl. Soil Ecol. 46, 119–124 (2010).Article 

    Google Scholar 
    Chen, Q., An, X., Zheng, B., Ma, Y. & Su, J. Long-term organic fertilization increased antibiotic resistome in phyllosphere of maize. Sci. Total. Environ. 645, 1230–1237 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, W., Yu, C., Wang, X. & Hai, L. Increased abundance of nitrogen transforming bacteria by higher C/N ratio reduces the total losses of N and C in chicken manure and corn stover mix composting. Bioresource Technol. 297, 122410. https://doi.org/10.1016/j.biortech.2019.122410 (2020).Article 
    CAS 

    Google Scholar 
    Chen, X. et al. Microbial carbon use efficiency, biomass turnover, and necromass accumulation in paddy soil depending on fertilization. Agr. Ecosyst. Environ. 292, 106816. https://doi.org/10.1016/j.agee.2020.106816 (2020).Article 
    CAS 

    Google Scholar 
    Wang, J. et al. Nitrogen application increases soil microbial carbon fixation and maize productivity on the semiarid Loess Plateau. Plant Soil https://doi.org/10.1007/s11104-022-05457-7 (2022).Article 

    Google Scholar 
    Li, J. et al. The more straw we deep-bury, the more soil TOC will be accumulated: When soil bacteria abundance keeps growing. J. Soil Sediment 22, 162–171 (2022).Article 

    Google Scholar 
    Siczek, A., Frąc, M., Wielbo, J. & Kidaj, D. Benefits of flavonoids and straw mulch application on soil microbial activity in pea rhizosphere. Int. J. Environ. Sci. Te. 15, 755–764 (2018).Article 
    CAS 

    Google Scholar 
    Zhao, S. et al. Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils. Appl. Soil Ecol. 138, 123–133 (2019).Article 

    Google Scholar 
    Zhang, S. et al. Cow manure application effectively regulates the soil bacterial community in tea plantation. BMC Microbiol. 20, 1–11 (2020).Article 

    Google Scholar 
    Jiang, Y. et al. Crop rotations alter bacterial and fungal diversity in paddy soils across East Asia. Soil Biol. Biochem. 95, 250–261 (2016).Article 
    CAS 

    Google Scholar 
    Drenovsky, R., Vo, D., Graham, K. & Scow, K. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb. Ecol. 48, 424–430 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rath, K. M., Fierer, N., Murphy, D. V. & Rousk, J. Linking bacterial community composition to soil salinity along environmental gradients. ISME J. 13, 836–846 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhao, F. et al. Changes of the organic carbon content and stability of soil aggregates affected by soil bacterial community after afforestation. CATENA 171, 622–631 (2018).Article 
    CAS 

    Google Scholar 
    Goldfarb, K. C. et al. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front. Microbiol. 2, 94. https://doi.org/10.3389/fmicb.2011.00094 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhao, J. et al. Response of soil microbial community to vegetation reconstruction modes in mining areas of the Loess Plateau, China. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.714967 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, Y. et al. Fertilization shapes bacterial community structure by alteration of soil pH. Front. Microbiol. 8, 1325. https://doi.org/10.3389/fmicb.2017.01325 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, X. et al. Organic amendments drive shifts in microbial community structure and keystone taxa which increase C mineralization across aggregate size classes. Soil Biol. Biochem. 153, 108062. https://doi.org/10.1016/j.soilbio.2020.108062 (2021).Article 
    CAS 

    Google Scholar 
    Lin, Y. et al. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biol. Biochem. 134, 187–196 (2019).Article 
    CAS 

    Google Scholar 
    Woyke, T. et al. Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 443, 950–955 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, B., Zhang, J., Liu, Y., Shi, P. & Wei, G. Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biol. Biochem. 118, 178–186 (2018).Article 
    CAS 

    Google Scholar 
    Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324 (2010).Article 
    PubMed 

    Google Scholar 
    Deng, Y. et al. Molecular ecological network analyses. BMC Bioinf. 13, 1–20 (2012).Article 

    Google Scholar 
    Liao, H. et al. Complexity of bacterial and fungal network increases with soil aggregate size in an agricultural Inceptisol. Appl. Soil Ecol. 154, 103640. https://doi.org/10.1016/j.apsoil.2020.103640 (2020).Article 

    Google Scholar 
    Herren, C. M. & McMahon, K. D. Keystone taxa predict compositional change in microbial communities. Environ. Microbiol. 20, 2207–2217 (2018).Article 
    PubMed 

    Google Scholar 
    Zhang, C., Jiao, S., Shu, D. & Wei, G. Inter-phylum negative interactions affect soil bacterial community dynamics and functions during soybean development under long-term nitrogen fertilization. Stress Biol. 1, 1–13 (2021).Article 
    CAS 

    Google Scholar 
    Su, Y. G., Huang, G., Lin, Y. J. & Zhang, Y. M. No synergistic effects of water and nitrogen addition on soil microbial communities and soil respiration in a temperate desert. CATENA 142, 126–133 (2016).Article 
    CAS 

    Google Scholar 
    Yang, C. et al. Assessing the effect of soil salinization on soil microbial respiration and diversities under incubation conditions. Appl. Soil Ecol. 155, 103671. https://doi.org/10.1016/j.apsoil.2020.103671 (2020).Article 

    Google Scholar 
    Banerjee, S. et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 97, 188–198 (2016).Article 
    CAS 

    Google Scholar 
    Chen, L.-F., He, Z.-B., Zhao, W.-Z., Kong, J.-Q. & Gao, Y. Empirical evidence for microbial regulation of soil respiration in alpine forests. Ecol. Indic. 126, 107710. https://doi.org/10.1016/j.ecolind.2021.107710 (2021).Article 
    CAS 

    Google Scholar 
    Liu, S. et al. Decoupled diversity patterns in bacteria and fungi across continental forest ecosystems. Soil Biol. Biochem. 144, 107763. https://doi.org/10.1016/j.soilbio.2020.107763 (2020).Article 
    CAS 

    Google Scholar 
    Lynch, M. D. & Neufeld, J. D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217–229 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, L. et al. Competitive interaction with keystone taxa induced negative priming under biochar amendments. Microbiome 7, 1–18 (2019).
    Google Scholar 
    Chiba, A. et al. Soil bacterial diversity is positively correlated with decomposition rates during early phases of maize litter decomposition. Microorganisms 9, 357 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, S., Wang, S., Fan, M., Wu, Y. & Shangguan, Z. Interactions between biochar and nitrogen impact soil carbon mineralization and the microbial community. Soil Till. Res. 196, 104437. https://doi.org/10.1016/j.still.2019.104437 (2020).Article 

    Google Scholar 
    Bao, S. Soil agrochemical analysis 30 (China Agricultural Press, Beijing, Chinese, 2000).
    Google Scholar 
    Zhai, L., Liu, H., Zhang, J., Huang, J. & Wang, B. Long-term application of organic manure and mineral fertilizer on N2O and CO2 emissions in a red soil from cultivated maize-wheat rotation in China. Agr. Sci. China 10, 1748–1757 (2011).Article 

    Google Scholar 
    Xia, W. et al. Autotrophic growth of nitrifying community in an agricultural soil. ISME J. 5, 1226–1236 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pruesse, E. et al. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids. Res. 35, 7188–7196 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B. 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    Layeghifard, M., Hwang, D. M. & Guttman, D. S. Disentangling interactions in the microbiome: A network perspective. Trends Microbiol. 25, 217–228 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Liaw, A. & Wiener, M. Classification and regression by randomForest. R news 2, 18–22 (2002).
    Google Scholar 
    Archer, E. rfPermute: Estimate permutation p-values for random Forest importance metrics. R package version 2(1), 81 (2020).MathSciNet 

    Google Scholar 
    Hooper, D., Coughlan, J. & Mullen, M. Structural equation modelling: Guidelines for determining model fit. Electron. J. Bus. Res. Methods 6(1), 53–60 (2008).
    Google Scholar  More

  • in

    Drivers and potential distribution of anthrax occurrence and incidence at national and sub-county levels across Kenya from 2006 to 2020 using INLA

    Data sourcesWe analyzed records of confirmed and suspected livestock deaths attributed to anthrax occurring from 1 January 2006 to 31 December 2020 across Kenya (available online along with full code for the analysis in this paper https://github.com/spatialmodels/Kenyan_anthrax_model). The case records covering the entire country were reported from the Kenya Directorate of Veterinary Services (KDVS) located in Nairobi and the five Regional Veterinary Investigation Laboratories located in Nakuru, Eldoret, Karatina, Kericho, and Mariakani. The anthrax outbreaks were considered as any livestock (cattle, goats, sheep, pigs, camels) or wildlife deaths confirmed through clinical and laboratory diagnosis. Clinical diagnosis was defined as an acute disease accompanied by sudden death, bleeding from body orifices, swelling, lack of rigor mortis, and oedema of the neck and face in pigs. Laboratory confirmation was done through methylene blue staining to identify the characteristic bacterial capsule and the rod-shaped bacilli in clinical specimens collected from the infected carcasses.We extracted data from old paper records of livestock anthrax cases into Microsoft Excel. These records comprised the location of the livestock outbreaks, name of the farmer, number of animals dead and herd size, species affected, date, method of diagnosis, and the details of the reporting veterinary doctor. Since the locations of livestock anthrax outbreaks were reported at sub-county/district levels (districts refer to the old naming given to current sub-counties before the rollout of the current constitution), we recorded the geographic coordinates of livestock cases at the district level. During data cleaning, we removed duplicate coordinates, outliers, and entries with missing variables. In the end, we had 540 livestock cases that we used for analysis. The spatial granularity and prolonged surveillance period of these data allow for a more detailed perspective on the major drivers of anthrax across Kenya. We also collected wildlife data from the Kenya Wildlife Service (KWS). Most of the data from KWS was lacking information on the geographic coordinates of the outbreaks, so we visited the actual locations and collected the coordinates. We recorded 20 wildlife cases that we used to validate the performance of the spatial model.Processing socio-economic and ecological covariatesWe gathered geospatial data on ecological and socio-economic correlates of B. anthracis ecology and distribution. For the spatial model, we obtained the following variables: rainfall, vegetation, elevation, distance to permanent water bodies, and soil patterns. For the spatiotemporal models, we used human population estimates (total population, population density, and male and female population per sub-county), host population (livestock producing households, total number of indigenous, exotic dairy, and exotic beef cattle per sub-county), and agricultural practices that lead to soil disturbance (agricultural area under cultivation, number of farming households, and crop-producing households).We chose seven environmental covariates for the spatial model based on known correlates of B. anthracis suitability identified from previous peer-reviewed studies9,10,13,15,21,22,23. These comprised three soil variables, including soil pH (× 10) in H2O at a depth of 0 cm, exchangeable calcium at a depth of 0–20 cm, and soil water availability (volume of water per unit volume of soil) retrieved at a resolution of 250 m from the International Soil Reference and Information Centre (ISRIC) data hub (https://data.isric.org/geonetwork/srv/eng/catalog.search#/home). We used the shallowest depth available because although the bacterial spores can persist in the surface soil for up to five years and indefinitely in much deeper soils24, the spores in the surface soils are more likely to trigger host infection25. We retrieved monthly Enhanced Vegetation Index (EVI) data from 1 January 2006 to 31 December 2020 (180 tiles in total) from The Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices (MYD13A3 v.6) at a resolution of 1 km2 (https://lpdaac.usgs.gov/products/myd13a3v006/). The mean EVI was then calculated using QGIS by averaging all 180 tiles. EVI reduces variations in the canopy background and retains precision over dense vegetation conditions. Monthly Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) rainfall data from rain gauge and satellite observations was retrieved from the United States Geological Service (USGS) at a resolution of 0.05 degrees (https://climateserv.servirglobal.net/map). Since the rainfall data also comprised 180 tiles, the mean rainfall was calculated by averaging all 180 tiles using QGIS. We also collected data on the distance to permanent water bodies from a global hydrology map obtained from ArcGIS version 10.6.1.26 and elevation data at 1 km2 resolution from the Global Multi-resolution Terrain Elevation Data (GMTED2010) dataset available from USGS (Table 1).Table 1 Summary of the environmental variables used in the spatial model including variable name, unit, and spatial resolution.Full size tableFor the spatiotemporal sub-county-based models, we accessed the population data per sub-county (total population, male population, female population, and population density) from the 2019 Kenyan census report provided via the Humanitarian Data Exchange platform (https://data.humdata.org/dataset/kenya-population-per-county-from-census-report-2019). We also obtained data on livestock population (numbers of exotic dairy and beef cattle, and indigenous cattle), area of agricultural land in hectares, number of farming households, and the number of households actively practicing agriculture (crop production and livestock production) aggregated to the sub-county level from the 2019 Kenya Population and Housing Census volume IV provided by the OpenAfrica platform (https://open.africa/dataset/2019-kenya-population-and-housing-census).We conducted data exploration to check for outliers, collinearity, and the relationships between the covariates and the response variables. We used Cleveland dot plots to check for outliers. We measured collinearity using variance inflation factors (VIF), Pearson correlation coefficients, and pairs plots. For VIF scores, the covariates with scores higher than 3 were eliminated one-by-one until all the scores were equal to or less than 3. All the covariates included in the study had correlation coefficient values of less than 0.6 (Figs. 1, 2).Figure 1Results of correlation between covariates using Pearson’s correlation coefficient test for the spatial model. Correlation between covariates is shown by red numbers (negative correlation) and blue numbers (positive correlation). Correlations with a p-value  > 0.01 are regarded as insignificant and the correlation coefficient values are left blank. The figure was generated using R software v. 4.1.028.Full size imageFigure 2Results of correlation between covariates using Pearson’s correlation coefficient test for the spatiotemporal model. Correlation between covariates is shown by red numbers (negative correlation) and blue numbers (positive correlation). Correlations with a p-value  > 0.01 are regarded as insignificant and the correlation coefficient values are left blank. The figure was generated using R software v. 4.1.028.Full size imageSpatial model analysisWe used R version 4.1.0 together with the packages raster version 4.1.127, and R-INLA version 4.1.128 to conduct the data processing and statistical modelling. The R-INLA package applies the INLA framework in designing models. We used Quantum Global Information System (QGIS) version 3.16 (https://qgis.org) to create a 50 km buffer polygon around all the observed livestock outbreak points. We then created a 20 km2 grid within this buffer and counted the number of points within each grid cell to create a regular lattice with a given number of counts per cell. We then extracted the coordinates of the centroids of each cell to create marked locations with a given number of livestock cases per location. We essentially converted the data into a count process (number of livestock outbreaks per location). We had 95 cells with one or more counts which formed our new presence locations. We then randomly selected 95 pseudoabsences within the 50 km buffer polygon but at a distance of 10 km from the presence locations as shown in Fig. 3.Figure 3Spatial distribution of thinned livestock anthrax case locations across Kenya from 2006 to 2020. The map shows livestock anthrax case locations (n = 540) thinned to pixels of 20 km2 to form 95 new marked locations. The orange dots show the new presence locations which are marked points with colour intensity representing the number of livestock cases per location. The white triangles show the random pseudo-absence locations. The yellow squares are the wildlife cases obtained from the Kenya Wildlife Service. The green polygon is the background calibration buffer used to derive the random pseudo-absence locations. This map was generated using Quantum Geographical Information Systems (QGIS) v. 3.16.11 (https://www.qgis.org/en/site/forusers/download.html).Full size imageWe defined a Zero-inflated Poisson (ZIP) regression model with spatially correlated random effects, implemented as a generalized additive model (GAM) with anthrax incidence as the response variable. The model is defined as shown in Eqs. (1), (2), and (3)$${C}_{i} sim zero-inflated, Poisson left({mu }_{i},{p}_{i}right),$$
    (1)
    $$expectedleft({C}_{i}right)=left(1- {p}_{i}right)times {mu }_{i},$$
    (2)
    $$mathrm{log}left({mu }_{i}right)= alpha + sum_{j}{beta }_{j}{X}_{j,i}+ sum_{k}{delta }_{k,i}+{u}_{i},$$
    (3)
    where (Ci) denotes the observed number of anthrax livestock cases at location i, ({mu }_{i}) and ({p}_{i}) are parameters of the ZIP distribution. (expectedleft({C}_{i}right)) refers to the expected number of outbreaks at location i, (alpha) is the intercept, (beta) are the beta coefficients for the covariates, X is the matrix with all the covariates, (delta k) are the non-linear effects (cubic regression splines), and ({u}_{i}) is the spatial random effect at location i.To test whether the addition of the GAM smoothers and the spatially correlated random effects improved the fit of the model, we also considered candidate models without smoothers and spatial random effects. We tested three versions of the spatial model: the first used distance to water, elevation, and EVI as linear covariates without spatial random effects, the second applied non-linear terms to elevation and EVI also without spatial random effects, and the final model was similar to the second model but with the addition of spatial random effects. We then measured the DIC values of the candidate models to select the final spatial model.We conducted model validation by assessing the posterior distributions of the parameters and the residuals for adherence to the distributional assumptions. We checked whether the residuals were independent and normally distributed. We also plotted a sample variogram to check for any residual spatial auto-correlation using a well-defined method29. We then ran 1000 simulations to check whether the model was capable of handling zeros.The estimated model was used to map posterior predicted distributions for the incidence of anthrax disease (plotted as mean and 95% credible intervals). We validated the model using independent evaluation data withheld from the model calibration. This evaluation dataset comprises the wildlife cases collected from KWS. We then calculated the sensitivity by estimating the proportion of wildlife case locations correctly identified by the model, using the minimum presence training threshold (minimum value of the fitted presence training points).Spatiotemporal model analysisOur second objective was to investigate the socio-economic, population-based drivers of livestock anthrax risk at the sub-county level. These socioeconomic variables are usually collected at the sub-county level. Therefore, we developed a second areal model with the number of observations per sub-county as the new response variable. The occurrence data, gathered by the Kenya Directorate for Veterinary Services (KDVS), consisted of monthly case reports of livestock anthrax cases collected by all 290 sub-counties across Kenya between January 2006 to December 2020. We analyzed the whole monthly case time series from the year 2006 to 2020 and mapped out the annual counts of confirmed and suspected livestock anthrax cases across Kenya at the sub-county level to analyse the spatial and temporal trends throughout the surveillance period. The sub-county shapefiles that were used for mapping and modelling were derived from Humanitarian Data Exchange version 1.57.16 under a Creative Commons Attribution for Intergovernmental Organisations license (https://data.humdata.org/dataset/ken-administrative-boundaries).Due to the sparsity of data, we aggregated the monthly case counts and modelled the quarterly occurrence and incidence of anthrax at the sub-county-level scale, including spatial and temporal effects, to determine the spatial socio-economic drivers of livestock anthrax disease risk across Kenya. We used R-INLA version 4.1.1 (26) to conduct the data processing and statistical modelling. We used quarterly case counts that were confirmed per sub-county across the 15 years of surveillance (2006–2020) as a measure of anthrax incidence. Due to the zero-inflated and over-dispersed nature of the distribution, which is difficult to fit incidence counts, we employed a two-stage modelling approach using the hurdle model distribution to separately model anthrax occurrence (presence or absence) across all sub-counties via logistic regression, and incidence counts using a zero-inflated Poisson distribution. We were then able separately to estimate the contributions of the various socio-ecological factors that drive disease occurrence (the presence or absence of anthrax) and total incidence counts.We model the quarterly anthrax occurrence (n = 290 sub-counties over 60 quarters; 17,400 observations) where ({Y}_{i,t}) refers to the binary presence (denoted as 1) or absence (denoted as 0) of anthrax in sub-county i during year t, and ({P}_{i,t}) is the probability of anthrax occurrence, thus:$${Y}_{i,t} sim Bernoullileft({P}_{i,t}right).$$
    (4)
    We model quarterly anthrax incidence counts ({C}_{i,t}) using a zero-inflated Poisson process with parameters ({mu }_{i,t}) and ({p}_{i,t}) (see Eq. (5)). Equation (6) denotes the expected values for the ZIP distribution at sub-county i during year t.$${C}_{i,t} sim Zero-inflated, Poisson left({mu }_{i,t},{p}_{i,t}right),$$
    (5)
    $$expectedleft({C}_{i,t}right)=left(1- {p}_{i,t}right)times {mu }_{i,t}.$$
    (6)
    Both the Bernoulli and the ZIP distributions are modelled separately as functions of the covariates and the spatial and temporal random effects using a general linear predictor as shown in Eqs. (7) and (8):$$logit left({P}_{i,t}right)= alpha + sum_{j}{beta }_{j}{X}_{j,i}+{u}_{i,t}+{v}_{i,t}+{y}_{i,t},$$
    (7)
    $$mathrm{log}left({mu }_{i,t}right)= alpha + sum_{j}{beta }_{j}{X}_{j,i}+{u}_{i,t}+{v}_{i,t}+{y}_{i,t},$$
    (8)
    $${y}_{i,t}= {y}_{i,t-1}+ {w}_{i,t},$$
    (9)
    where α denotes the intercept; (X) signifies a matrix made up of the socio-economic covariates accompanied by their linear coefficients denoted as (beta); spatiotemporal reporting trends at the sub-county level were accounted for in the models using spatially structured (({u}_{i,t}); conditional autoregressive) and unstructured noise (({v}_{i,t}); i.i.d—independent and identically distributed) random-effects specified jointly as a Besag–York–Mollie model30,31, as well as temporally structured (({y}_{i,t})) random effects of the first order where ({w}_{i,t}) is a pure noise term that is normally distribute with a mean of zero and a variance of σ2. We used uninformative priors with a Gaussian distribution for the fixed effects and penalized complexity priors for the hyperparameters of all the random effects.For the two spatiotemporal models, we applied linear effects for all the variables: population density, total population, number of exotic dairy cattle, agricultural land area, and number of livestock producing households. We scaled the continuous covariates by standardizing them (to a mean of 0 and standard deviation of 1) before fitting the linear fixed effects.We used R-INLA to conduct model inference and selection and used DIC to evaluate the model fit for both the occurrence and incidence models. For both models (occurrence and incidence), we created 4 candidate models, compared them, and selected the model with the lowest DIC as the final model. The candidate models included: a baseline intercept only model; a second model with the intercept and covariates; a third model with the intercept, covariates, and the spatial random effects; and a fourth model with the intercept, covariates, spatial random effects, and a temporal trend.We evaluated the posterior distributions of the parameters and the residuals for adherence to the distributional assumptions. We assessed the residuals to check whether they were independent and normally distributed. We also plotted the residuals against the covariates to check for any non-linear patterns using a well-defined method29. We then ran 1000 simulations to check whether the model was capable of handling zeros.Ethics statementLicence to conduct the research was granted by the National Council for Science, Technology, and Innovation (NACOSTI) under reference number 651983, and the Kenya Wildlife Service under reference number KWS-0003-01-21. More

  • in

    Wildflower phenological escape differs by continent and spring temperature

    We used a hierarchical Bayesian modeling approach to evaluate the relationship between the spring phenology of tree and wildflower species and various climate drivers (see Methods). Following model selection, our final model structure included fixed effects of average spring (March–April) temperature and elevation, as well as species-level random effects. We show continental distributions of spring temperature values in Fig. 1b (means and standard deviations are listed in Table S2). We report estimates for spring temperature sensitivities from the final model structure in the main text. Parameter estimates for elevation sensitivities as well as the model performance of other potential drivers and combinations of drivers are reported in Tables S3 and S4. An extended discussion of model assumptions and limitations is included in the Supplementary Information.Sensitivity differences by strataTree leaf out phenology (LOD) was substantially more sensitive to average spring temperature in North America (mean = −3.62 days °C−1; 95% credible interval (CI) = [−3.76, −3.49]) than in Europe (mean = −2.79; CI = [−3.27, −2.30]) and Asia (mean = −2.62; CI = [−2.97, −2.26]; Fig. 2). These values are consistent with previously reported phenological sensitivities in North America7 (−5.5 to −3.3 days °C−1) and Europe8 (−4.1 to −3.0 days °C−1), as the credible intervals from our results overlap with the reported credible intervals of prior studies. However, the Asian LOD sensitivity was less sensitive than previously reported27 (−3.50 to −3.03 days °C−1), potentially owing to differences in species selection28 or model structure. Previously reported sensitivities were determined in separate studies using either observational data7,8 or long-term observation-based weather station data27. The general consistency between our findings suggests that phenology data from herbarium collections are good indicators of patterns in natural systems29,30,31, a point supported by a recent study of phenological sensitivity derived from herbaria and from observed citizen science data32. These herbarium-based results provide evidence that phenological sensitivity differs across the temperate forest biome (but see ref. 33 for evidence of differences in response to warming and chilling accumulation). To our knowledge, our study is the first to contrast overstory and understory phenology across multiple continents and, therefore, to find differences in phenological sensitivity between trees and forest wildflowers across continents. We recommend future studies explore these differences using alternative approaches and methodologies that focus on the physiological basis for and mechanisms that underlie these patterns.Fig. 2: Posterior estimated means and 95% credible intervals for spring temperature sensitivity.Shapes represent parameter estimates for wildflower First Flower Date (FFD, blue circles; n = 1418, 618, and 1060 for Asia, Europe, and North America, respectively) and canopy tree Leaf Out Date (LOD, yellow triangles; n = 899, 532, and 995, for Asia, Europe, and North America, respectively). Estimates are considered different from 0 if credible intervals do not overlap the dashed 0 line and are considered different from each other if credible intervals do not overlap.Full size imageIn contrast to trees, wildflower sensitivity to spring temperature was similar across all three continents and exhibited no strong differences (i.e., overlap in 95% Bayesian credible intervals) among continents (means and 95% credible intervals in brackets: North America = −3.14, [−3.28, −3.00]; Europe = −3.02, [−3.48, −2.56]; Asia = −3.12, [−3.36, −2.86]; Fig. 2). These values are also generally consistent with those reported elsewhere in the literature (i.e., 95% credible intervals overlap with those reported in other studies; −2.2, [−3.7, −0.76] days °C−1 in North America7 and −3.6, [−4.04, −3.18] days °C−1 in Europe9), although we are unaware of any studies that have estimated phenological sensitivity for Asian forest wildflowers in days °C−1. Ge et al.3 report herbaceous plant sensitivity of −5.71 days per decade in Asia (±7.90 standard deviation; based primarily on long-term observational data), which appears to be roughly consistent with our model results, but the difference in units makes this more speculative than the other comparisons. Discrepancies in mean responses between this study and others may be due in part to different types of data (herbarium specimens versus field observations) and to choice in focal taxa, as temperature sensitivity has been shown to vary widely across taxa28.Particularly noticeable in our results was that r2 coefficients of predicted versus observed phenology were much higher in North America (0.70 and 0.76 for wildflower and tree models, respectively) compared to Asian (0.40 and 0.44, respectively) and European models (0.41 and 0.25, respectively). This difference in model performance could be due to the higher interannual variability of spring temperatures in North America33, leading to greater selective pressure for strong sensitivity to spring temperatures in North American plants. This difference could explain why North American species exhibit higher correlation of phenology with average spring temperatures (Table S4). Alternatively, European and Asian species may have stronger phenological responses to alternative spring forcing windows, winter chilling temperatures, or photoperiod, relative to the March–April temperature period used in this study (see Methods). We think the latter explanation is unlikely, given the strong correlations of phenology with spring temperature across all continents (see Supplementary Information – Justification for March–April Temperature Window).Herbarium-based phenological models may be improved by accounting for spatial autocorrelation within the dataset. For example, Willems et al.9 found that including spatial autocorrelation significantly improved predictability of European herbaceous flowering phenology, even when accounting for multiple drivers of spring phenology. We followed a similar approach as their study and found similar improvements in model performance with the addition of spatial autocorrelation (Tables S3–S4) that had substantial positive effects on r2 values of Asian and European models. However, spatial distributions of specimens differed substantially among continents (see Figs. S2–S4), and these differences could lead to artifacts that make results unreliable to interpret (see Supplementary Information). Therefore, we focus here on results for models without spatial autocorrelation while acknowledging that spatial aggregation of herbarium specimens in Europe and Asia may be partially responsible for the relatively lower r2 values. We encourage other researchers to explore this question further both with our data set and other datasets.Climate change and spring light windowsThe relative difference between wildflower and tree sensitivity varied substantially among continents, with wildflowers being approximately equally as sensitive to spring temperature as trees in Asia and Europe but substantially less sensitive (i.e., 95% BCI do not overlap) than trees in North America (Fig. 2). Importantly, these differences were driven by changes in tree phenological sensitivities among continents and resulted in different expectations for spring light window duration (i.e., the difference in time between estimated wildflower flowering date and canopy tree leaf out date) on different continents under current climate conditions (Fig. 3), based on modeled leaf out and flowering under a climate scenario derived from average climate conditions from 2009–2018 (Fig. S5).Fig. 3: Current estimated phenological escape duration in northern temperate deciduous forests.Estimated mean difference between wildflower First Flower Date (FFD) and canopy tree Leaf Out Date (LOD) (in days) under current climate conditions (averaged from 2009–2018, see methods) in a Asia, b Europe, and c North America. Negative values indicate tree LOD is estimated to occur before wildflower FFD. Estimations were cropped by the estimated area of broadleaf and mixed-broadleaf forest (see methods). Dark gray regions indicate areas where the consensus land classification is More