More stories

  • in

    Sexual dimorphism and reproductive biology of the Asian bockadam snake (Cerberus schneiderii) in West Java

    Stocks, G., Seales, L., Paniagua, F., Maehr, E. & Bruna, E. M. The geographical and institutional distribution of ecological research in the tropics. Biotropica 40, 397–404 (2008).Article 

    Google Scholar 
    Bernstein, J. M., Murphy, J. C., Voris, H. K., Brown, R. M. & Ruane, S. Phylogenetics of mud snakes (Squamata: Serpentes: Homalopsidae): A paradox of both undescribed diversity and taxonomic inflation. Mol. Phylogenet. Evol. 160, 107109 (2021).Article 
    PubMed 

    Google Scholar 
    Murphy, J. C., Voris, H. K. & Karns, D. R. The dog-faced water snakes, a revision of the genus Cerberus Cuvier, (Squamata, Serpentes, Homalopsidae), with the description of a new species. Zootaxa 3484, 1–34 (2012).Article 

    Google Scholar 
    Stuart, B. L. The harvest and trade of reptiles at U Minh Thuong National Park, southern Viet Nam. Traffic Bull. 20, 25–34 (2004).
    Google Scholar 
    Brooks, S. E., Allison, E. H. & Reynolds, J. D. Vulnerability of Cambodian water snakes: Initial assessment of the impact of hunting at Tonle Sap Lake. Biol. Conserv. 139, 401–414 (2007).Article 

    Google Scholar 
    Murphy, J. C. Homalopsid Snakes (Evolution in the Mud (Krieger Publishing, Malabar, 2007).
    Google Scholar 
    Karns, D. R., Murphy, J. C. & Voris, H. K. Semi-aquatic snake communities of the central plain region of Thailand. Trop. Nat. Hist. 10, 1–25 (2010).
    Google Scholar 
    Jayne, B. C., Voris, H. K. & Heang, K. B. Diet, feeding behavior, growth, and numbers of a population of Cerberus rynchops (Serpentes: Homalopsinae) in Malaysia: a contribution in celebration of the distinguished scholarship of Robert F. Inger on the occasion of his sixty-fifth birthday. Fieldiana Zoology, Series 50 (Field Museum of Natural History, Chicago, IL, 1988).Chim, C. K. & Diong, C. H. A mark-recapture study of a dog-faced water snake Cerberus schneiderii (Colubridae: Homalopsidae) population in Sungei Buloh Wetland Reserve Singapore. Raffles Bull. Zool. 61, 811–825 (2013).
    Google Scholar 
    Shine, R., Ambariyanto, Harlow, P. S. & Mumpuni. Ecological attributes of two commercially-harvested python species in northern Sumatra. J. Herpet. 33, 249–257 (1999).Natusch, D. J., Lyons, J. A., Riyanto, A., Khadiejah, S. & Shine, R. Detailed biological data are informative, but robust trends are needed for informing sustainability of wildlife harvesting: A case study of reptile offtake in Southeast Asia. Biol. Conserv. 233, 83–92 (2019).Article 

    Google Scholar 
    Natusch, D. J., Lyons, J. A., Riyanto, A. & Shine, R. Harvest effects on blood pythons in North Sumatra. J. Wildl. Manage. 84, 249–255 (2020).Article 

    Google Scholar 
    Shine, R., Harlow, P. S. & Keogh, J. S. The influence of sex and body size on food habits of a giant tropical snake, Python reticulatus. Funct. Ecol. 12, 248–258 (1988).Article 

    Google Scholar 
    Shine, R., Harlow, P. S. & Keogh, J. S. The allometry of life-history traits: Insights from a study of giant snakes (Python reticulatus). J. Zool. 244, 405–414 (1998).Article 

    Google Scholar 
    Shine, R. & Harlow, P. S. Reticulated pythons in Sumatra: biology, harvesting and sustainability. Biol. Conserv. 87, 349–357 (1999).Article 

    Google Scholar 
    Hoesel, J. K. P. Ophidia Javanica (Museum Zoologicum Bogoriense, Kebun Raya, Indonesia, 1959).Voris, H. K. & Murphy, J. C. The prey and predators of homalopsine snakes. J. Nat. Hist. 36, 1621–1632 (2002).Article 

    Google Scholar 
    Wall, F. A popular treatise on the common Indian Snakes. Part 26. J. Bombay Nat. Hist. Soc. 26, 89–97 (1918).Gorman, G. C., Licht, P. & McCollum, F. Annual reproductive patterns in three species of marine snakes from the central Philippines. J. Herpetol. 15, 335–354 (1981).Article 

    Google Scholar 
    Auffenberg, W. The herpetofauna of Komodo, with notes on adjacent areas. Bull. Florida State Mus. Biol. Sci. 25, 39–156 (1980).
    Google Scholar 
    Alcala, A. C. Guide to Philippine Flora and Fauna. Vol. X. Amphibians and Reptiles (Natural Resource Management Center, Ministry of Natural Resources and the University of the Philippines, Manila, Philippines, 1986).Harlow, P. S. & Taylor, J. E. Reproductive ecology of the jacky dragon (Amphibolurus muricatus): An agamid lizard with temperature-dependent sex determination. Austral. Ecol. 25, 640–652 (2000).Article 

    Google Scholar 
    Saint Girons, H. & Pfeffer, P. Notes sur l’ecologie des serpents du Cambodge. Zool. Mededelingen 47, 65–87 (1972).Kusrini, M. D. et al. Abundance, demography, and harvesting of water snakes from agricultural landscapes in West Java, Indonesia. Wildl. Res. In review (2022).Shine, R. Sexual differences in morphology and niche utilization in an aquatic snake Acrochordus arafurae. Oecologia 69, 260–267 (1986).Article 
    PubMed 

    Google Scholar 
    Houston, D. & Shine, R. Sexual dimorphism and niche divergence: Feeding habits of the Arafura filesnake. J. Anim. Ecol. 62, 737–748 (1993).Article 

    Google Scholar 
    Shine, R., Reed, R., Shetty, S. & Cogger, H. Relationships between sexual dimorphism and niche partitioning within a clade of sea-snakes (Laticaudinae). Oecologia 133, 45–53 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vincent, S. E., Herrel, A. & Irschick, D. J. Sexual dimorphism in head shape and diet in the cottonmouth snake (Agkistrodon piscivorus). J. Zool. 264, 53–59 (2004).Article 

    Google Scholar 
    Perkins, M. W., Cloyed, C. S. & Eason, P. K. Intraspecific dietary variation in niche partitioning within a community of ecologically similar snakes. Evol. Ecol. 34, 1017–1035 (2020).Article 

    Google Scholar 
    Shine, R. & Goiran, C. Sexual dimorphism in size and shape of the head in the sea snake Emydocephalus annulatus (Hydrophiinae, Elapidae). Sci. Rep. 11, 20026 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shine, R. Intersexual dietary divergence and the evolution of sexual dimorphism in snakes. Am. Nat. 138, 103–122 (1991).Article 

    Google Scholar 
    Bonnet, X., Shine, R., Naulleau, G. & Vacher-Vallas, M. Sexual dimorphism in snakes: Different reproductive roles favour different body plans. Proc. R. Soc. B 265, 179–183 (1998).Article 
    PubMed Central 

    Google Scholar 
    Shine, R., Olsson, M. M., Moore, I. T., LeMaster, M. P. & Mason, R. T. Why do male snakes have longer tails than females?. Proc. R. Soc. B 266, 2147–2151 (1999).Article 
    PubMed Central 

    Google Scholar  More

  • in

    Vultures for climate

    Pablo Ignacio Plaza and Sergio Agustín Lambertucci from the National University of Comahue and the Argentine Research Council in Argentina quantified the contribution of vultures to reducing greenhouse gas emissions by developing two contrasting scenarios. The first assumes that all the dead animals that the vultures can consume are disposed of, whereas in the second scenario, the dead animals are left to decompose in the environment without scavengers. The results show that the current vulture population can reduce emissions by up to 60.7 teragrams CO2 equivalent per year. A decline in vulture populations decreases their mitigation capacity by 30%. The study highlights that vultures are essential to keep our climate cool. More

  • in

    Heated beetles

    The long-term resilience of species to increasing temperature relies on both individual survival and successful reproduction. High temperatures have been shown to readily impair the production and function of gametes (particularly sperm), and species occurrence has been shown to map closely to sterilizing (rather than lethal) temperatures. However, the impacts of temperature on sexual selection — the competition for mating partners or their gametes — remains relatively unexplored. More

  • in

    A non-avian dinosaur with a streamlined body exhibits potential adaptations for swimming

    Dinosauria Owen, 1842Theropoda Marsh, 1881Dromaeosauridae Matthew and Brown, 1922Halszkaraptorinae Cau et al., 2017Revised diagnosisSmall dromaeosaurids that possess dorsoventrally flattened premaxillae, premaxillary bodies perforated by many neurovascular foramina, enlarged and closely packed premaxillary teeth that utilized delayed replacement patterns, reduced anterior maxillary teeth, dorsolateral placement of retracted external nares, greatly elongated cervical vertebrae, anterior cervical vertebrae with round lobes formed by the postzygapophyses, horizontal zygapophyses, and pronounced zygapophyseal laminae in the anterior caudal vertebrae, mediolaterally compressed ulnae with sharp posterior margins, second and third metacarpals with similar thicknesses, shelf-like supratrochanteric processes on the ilia, elongated fossae that border posterolateral ridges on the posterodistal surfaces of the femoral shafts, and third metatarsals in which the proximal halves are unconstricted and anteriorly convex.Natovenator polydontus gen. et sp. nov.HolotypeMPC-D 102/114 (Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia) is a mostly articulated skeleton with a nearly complete skull (See Supplementary Table 1 for measurements).Locality and horizonBaruungoyot Formation (Upper Cretaceous), Hermiin Tsav, Omnogovi Province, Mongolia13 (Supplementary Fig. 5).EtymologyNatovenator, from the Latin nato (swim) and venator (hunter), in reference to the hypothesized swimming behaviour and piscivorous diet of the new taxon; polydontus, from the Greek polys (many) and odous (tooth) in reference to the unusually many teeth.DiagnosisA small halszkaraptorine dromaeosaurid with the following autapomorphies: wide groove delimited by a pair of ridges on the anterodorsal surface of the premaxilla, premaxilla with an elongated internarial process that overlies nasal and extends posterior to the external naris, 13 premaxillary teeth with large and incisiviform crowns, first three anteriormost maxillary teeth are greatly reduced and are clustered together with the following tooth without any separations by interdental septa, anteroposteriorly long external naris (about 30% of the preorbital skull length), paroccipital process with a anteroposteriorly broad dorsal surface, elongate maxillary process of the palatine that extends anteriorly beyond the middle of the antorbital fenestra, pterygoid with a deep fossa on the medial surface of the quadrate ramus, distinct posterolaterally oriented projection on the lateral surface of atlas, absence of pleurocoels in cervical vertebrae (not confirmed in the missing fifth cervical centrum), posterolaterally oriented and nearly horizontal proximal shafts in the dorsal ribs, hourglass-shaped metacarpal II with distinctly concave medial and lateral surfaces.DescriptionThe skull of Natovenator is nearly complete, although the preorbital region has been affected by compression and is slightly offset from the rest of the skull (Figs. 1c, d, 2a–d and Supplementary Figs. 1, 2). Near the tip of the snout, the premaxilla is marked by a broad groove. The body of the premaxilla is also dorsoventrally low and is perforated by numerous foramina that lead into a complex network of neurovascular chambers (Supplementary Fig. 1b) as in Halszkaraptor4. Similarly, the external naris is positioned posteriorly and is level with the premaxilla-maxilla contact (Fig. 2a, b), although it is marginally behind this position in Halszkaraptor4. It is also dorsally placed compared to those of other non-avian theropods and faces dorsolaterally. The exceptionally long external naris and accordingly elongated internarial process of Natovenator (Fig. 2c) are unique among dromaeosaurids but comparable to those in aquatic toothed birds14 as well as in therizinosaurs15,16. The frontal is similar to those of other halszkaraptorines4,17 in that it is vaulted to accommodate a large orbit and has little contribution to the supratemporal fossa. A sharp nuchal crest is formed by the parietal and the squamosal (Supplementary Fig. 2a–e). The latter also produces a shelf that extends over the quadrate head as in other dromaeosaurids18. The paroccipital process curves gently on the occiput and has a broad dorsal surface that tapers laterally (Fig. 2f and Supplementary Fig. 2b, e). Its ventrolateral orientation is reminiscent of Mahakala17 but is different from the more horizontal paroccipital process of Halszkaraptor4. The occipital condyle is long and constricted at its base. A shallow dorsal tympanic recess on the lateral wall of the braincase is different from the deep one of Mahakala17. The palatine is tetraradiate with a greatly elongated maxillary process, which extends anteriorly beyond the level of the mid-antorbital fenestra. The pterygoid is missing its anterior portion (Fig. 2g and Supplementary Fig. 2a–e). A deep fossa on the medial surface of the thin quadrate ramus is not seen in any other dromaeosaurids. The mandibles of Natovenator preserve most of the elements, especially those on the left side (Fig. 1a, b, d and Supplementary Figs. 1a, 2). Each jaw is characterized by a slender dentary with nearly parallel dorsal and ventral margins, a surangular partially fused with the articular, a distinctive surangular shelf, and a fan-shaped retroarticular process that protrudes dorsomedially. The upper dentition of Natovenator is heterodont as the premaxillary teeth are morphologically distinct from the maxillary teeth (Fig. 2a, b, e and Supplementary Fig. 1a, c). There are unusually numerous premaxillary teeth tightly packed without any separation of the alveoli by bony septa. The roots of the teeth are long, and the crowns are tall and incisiviform as in Halszkaraptor4. Moreover, the large replacement teeth in the premaxilla suggest that the replacement of the premaxillary teeth was delayed as in Halszkaraptor4. However, the number of teeth in each premaxilla is 13 in Natovenator, whereas it is only 11 in Halszkaraptor4. In the maxilla, the three most anterior maxillary teeth are markedly shorter than the premaxillary teeth and the more posterior maxillary teeth. This pattern is also observed in Halszkaraptor, although the number of shorter maxillary teeth differs as it has two reduced ones7. Both the maxillary and dentary teeth have sharp fang-like crowns that lack serrations. Although posteriormost parts are poorly preserved, there are at least 23 alveoli in each of the maxilla and dentary, which suggests high numbers of teeth in both elements.The neck of Natovenator, as preserved, is twisted and includes ten elongated cervical vertebrae, although most of the 5th cervical is missing (Figs. 1, 3a–d). This elongation of the cervicals results in a noticeably longer neck than those of most dromaeosaurids and is estimated to be longer than the dorsal series. It is, however, proportionately shorter than that of Halszkaraptor, which has a neck as long as its dorsal and sacral vertebra combined4. Another peculiarity in the neck of the Natovenator is a pronounced posterolaterally extending projection on the neurapophysis of the atlas (Fig. 3a and Supplementary Fig. 2b, c, e). The postzygapophyses of each anterior cervical are fused into a single lobe-like process as in Halszkaraptor4. Pleurocoels are absent in the cervical vertebrae. In contrast, Halszkaraptor has pleurocoels on its 7th–9th cervicals4. A total of 12 dorsal vertebrae are preserved (Figs. 1a, b, 3e, 4a and Supplementary Figs. 3a–d). They all lack pleurocoels, and their parapophyses on the anterior and mid-dorsals are placed high on the anterodorsal end of each centrum. Interestingly, the positions of the parapophyses are similar to those of hesperornithiforms19,20,21 rather than other dromaeosaurids such as Deinonychus22 or Velociraptor23. The preserved dorsal ribs, articulated with the second to seventh dorsals, are flattened and posteriorly oriented (Figs. 1, 3e, 4a–d). The proximal shafts are also nearly horizontal, which is indicative of a dorsoventrally compressed ribcage. Each proximal caudal vertebra has a long centrum and horizontal zygapophyses with expanded laminae (Fig. 3f and Supplementary Fig. 3e–i), all of which are characters shared with other halszkaraptorines4,17. The forelimb elements are partially exposed (Figs. 1a, b, 2a–d, 3e, g). The nearly complete right humerus is proportionately short and distally flattened like that of Halszkaraptor4. The shaft of the ulna is mediolaterally compressed to produce a sharp posterior margin as in Halszkaraptor4 and Mahakala17. Metacarpal III is robust and is only slightly longer than metacarpal II. Similarly, metacarpal III is almost as thick and long as other second metacarpals of other halszkaraptorines4,17. The femur has a long ridge on its posterior surface, which is another characteristic shared among halszkaraptorines4. Typically for a dromaeosaurid, metatarsals II and III have ginglymoid distal articular surfaces (Fig. 3h and Supplementary Fig. 4f, h). The ventral surface of metatarsal III is invaded by a ridge near the distal end, unlike other halszkaraptorines (Fig. 3h)4,5,17,24.Phylogenetic analysisThe phylogenetic analysis found more than 99,999 most parsimonious trees (CI = 0.23, RI = 0.55) with 6574 steps. Deinonychosaurian monophyly is not supported by the strict consensus tree (Supplementary Fig. 6). Instead, Dromaeosauridae was recovered as a sister clade to a monophyletic clade formed by Troodontidae and Avialae, which is consistent with the results of Cau et al.4 and Cau7. Halszkaraptorinae is positioned at the base of Dromaeosauridae as in Cau et al.4, although there are claims that dromaeosaurid affinities of halszkaraptorines are not well supported25. Nine (seven ambiguous and two unambiguous) synapomorphies support the inclusion of Halszkaraptorinae in Dromaeosauridae. The two unambiguous synapomorphies are the anterior tympanic recess at the same level as the basipterygoid process and the presence of a ventral flange on the paroccipital process. A total of 20 synapomorphies (including one unambiguous synapomorphy) unite the four halszkaraptorines, including Natovenator (Supplementary Fig. 7). In Halszkaraptorinae, Halszkaraptor is the earliest branching taxon, and the remaining three taxa form an unresolved clade supported by three ambiguous synapomorphies (characters 121/1, 569/0, and 1153/1). Two of these synapomorphies are related to the paroccipital process (characters 121 and 569), which is not preserved in Hulsanpes5,24. The other is the presence of an expansion on the medial margin of the distal half of metatarsal III, which is not entirely preserved in the Natovenator. When scored as 0 for this character, Natovenator branches off from the unresolved clade. It suggests that the medial expansion of the dorsal surface of metatarsal III could be a derived character among halszkaraptorines. More

  • in

    Temporal patterns of soil carbon emission in tropical forests under long-term nitrogen deposition

    Arneth, A. et al. Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci. 3, 525–532 (2010).Article 

    Google Scholar 
    Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCC, 2015).IPCC Special Report on Climate Change and Land (eds Shukla, P. R. et al.) (IPCC, 2019).Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F. & Erasmi, S. Greenhouse gas emissions from soils—a review. Geochemistry 76, 327–352 (2016).Article 

    Google Scholar 
    Schlesinger, W. H. & Bernhardt, E. S. Biogeochemistry: An Analysis of Global Change 3rd edn (Elsevier, 2013).Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).Article 

    Google Scholar 
    Ackerman, D., Millet, D. B. & Chen, X. Global estimates of inorganic nitrogen deposition across four decades. Glob. Biogeochem. Cycles 33, 100–107 (2019).Article 

    Google Scholar 
    Du, E. Rise and fall of nitrogen deposition in the United States. Proc. Natl Acad. Sci. USA 113, E3594–E3595 (2016).Article 

    Google Scholar 
    Schmitz, A. et al. Responses of forest ecosystems in Europe to decreasing nitrogen deposition. Environ. Pollut. 244, 980–994 (2019).Article 

    Google Scholar 
    Hietz, P. et al. Long-term change in the nitrogen cycle of tropical forests. Science 334, 664–666 (2011).Article 

    Google Scholar 
    Fang, Y. T., Gundersen, P., Mo, J. M. & Zhu, W. X. Input and output of dissolved organic and inorganic nitrogen in subtropical forests of South China under high air pollution. Biogeosciences 5, 339–352 (2008).Article 

    Google Scholar 
    Yu, G. et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 12, 424–429 (2019).Article 

    Google Scholar 
    Liu, L. L. & Greaver, T. L. A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol. Lett. 13, 819–828 (2010).Article 

    Google Scholar 
    LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).Article 

    Google Scholar 
    Reich, P. B. et al. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol. Lett. 11, 793–801 (2008).Article 

    Google Scholar 
    Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).Article 

    Google Scholar 
    Mo, J. et al. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Glob. Change Biol. 14, 403–412 (2008).Article 

    Google Scholar 
    Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).Article 

    Google Scholar 
    Zhong, Y., Yan, W. & Shangguan, Z. The effects of nitrogen enrichment on soil CO2 fluxes depending on temperature and soil properties. Glob. Ecol. Biogeogr. 25, 475–488 (2016).Article 

    Google Scholar 
    Deng, L. et al. Soil GHG fluxes are altered by N deposition: new data indicate lower N stimulation of the N2O flux and greater stimulation of the calculated C pools. Glob. Change Biol. 26, 2613–2629 (2020).Article 

    Google Scholar 
    Hagedorn, F., Kammer, A., Schmidt, M. W. I. & Goodale, C. L. Nitrogen addition alters mineralization dynamics of 13C-depleted leaf and twig litter and reduces leaching of older DOC from mineral soil. Glob. Change Biol. 18, 1412–1427 (2012).Article 

    Google Scholar 
    Du, Y. et al. Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests. Glob. Change Biol. 20, 3222–3228 (2014).Article 

    Google Scholar 
    Yan, T. et al. Negative effect of nitrogen addition on soil respiration dependent on stand age: evidence from a 7-year field study of larch plantations in northern China. Agr. For. Meteorol. 262, 24–33 (2018).Article 

    Google Scholar 
    Xing, A. et al. Nonlinear responses of ecosystem carbon fluxes to nitrogen deposition in an old-growth boreal forest. Ecol. Lett. 25, 77–78 (2021).Article 

    Google Scholar 
    Melillo, J. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105 (2017).Article 

    Google Scholar 
    Gao, Q. et al. Stimulation of soil respiration by elevated CO2 is enhanced under nitrogen limitation in a decade-long grassland study. Proc. Natl Acad. Sci. USA 117, 33317–33324 (2020).Article 

    Google Scholar 
    Liu, X. J. et al. Nitrogen deposition and its ecological impact in China: an overview. Environ. Pollut. 159, 2251–2264 (2011).Article 

    Google Scholar 
    Zhu, F. F., Yoh, M., Gilliam, F. S., Lu, X. K. & Mo, J. M. Nutrient limitation in three lowland tropical forests in southern China receiving high nitrogen deposition: insights from fine root responses to nutrient additions. PLoS ONE 8, e82661 (2013).Article 

    Google Scholar 
    Wang, C. et al. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biol. Biochem. 121, 103–112 (2018).Article 

    Google Scholar 
    Priess, J. & Fölster, H. Microbial properties and soil respiration in submontane forests of Venezuelian Guyana: characteristics and response to fertilizer treatments. Soil Biol. Biochem. 33, 503–509 (2001).Article 

    Google Scholar 
    He, T., Wang, Q., Wang, S. & Zhang, F. Nitrogen addition altered the effect of belowground C allocation on soil respiration in a subtropical forest. PLoS ONE 11, e0155881 (2016).Article 

    Google Scholar 
    Fan, H. et al. Nitrogen deposition promotes ecosystem carbon accumulation by reducing soil carbon emission in a subtropical forest. Plant Soil 379, 361–371 (2014).Article 

    Google Scholar 
    Zheng, M. et al. Effects of nitrogen and phosphorus additions on nitrous oxide emission in a nitrogen-rich and two nitrogen-limited tropical forests. Biogeosciences 13, 3503–3517 (2016).Article 

    Google Scholar 
    Lu, X. et al. Nitrogen deposition accelerates soil carbon sequestration in tropical forests. Proc. Natl Acad. Sci. USA 118, e2020790118 (2021).Article 

    Google Scholar 
    Zhou, G. Y. et al. Old-growth forests can accumulate carbon in soils. Science 314, 1417–1417 (2006).Article 

    Google Scholar 
    Tian, J. et al. Long-term nitrogen addition modifies microbial composition and functions for slow carbon cycling and increased sequestration in tropical forest soil. Glob. Change Biol. 25, 3267–3281 (2019).Article 

    Google Scholar 
    Huang, N. et al. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv. 6, eabb8508 (2020).Article 

    Google Scholar 
    Lu, X. K. et al. Effect of simulated N deposition on soil exchangeable cations in three forest types of subtropical China. Pedosphere 19, 189–198 (2009).Article 

    Google Scholar 
    Fang, Y., Gundersen, P., Mo, J. & Zhu, W. Nitrogen leaching in response to increased nitrogen inputs in subtropical monsoon forests in southern China. For. Ecol. Manage. 257, 332–342 (2009).Article 

    Google Scholar 
    Chen, X. M. et al. Effects of nitrogen deposition on soil organic carbon fractions in the subtropical forest ecosystems of S. China. J. Plant Nutr. Soil Sci. 175, 947–953 (2012).Article 

    Google Scholar 
    Fang, H. J. et al. 13C abundance, water-soluble and microbial biomass carbon as potential indicators of soil organic carbon dynamics in subtropical forests at different successional stages and subject to different nitrogen loads. Plant Soil 320, 243–254 (2009).Article 

    Google Scholar 
    Liu, L. et al. Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests. Sci. Rep. 5, 14378–14378 (2014).Article 

    Google Scholar 
    Chen, H. et al. Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition: hypothesis testing. Funct. Ecol. 30, 305–313 (2015).Article 

    Google Scholar 
    Lu, X., Mao, Q., Gilliam, F. S., Luo, Y. & Mo, J. Nitrogen deposition contributes to soil acidification in tropical ecosystems. Glob. Change Biol. 20, 3790–3801 (2014).Article 

    Google Scholar 
    Mao, Q. G. Impacts of Long-Term Nitrogen and Phosphorus Addition on Understory Plant Diversity in Subtropical Forests in Southern China. Doctoral Thesis, Univ. Chinese Academy of Sciences (2017).Xing, A. J. et al. High-level nitrogen additions accelerate soil respiration reduction over time in a boreal forest. Ecol. Lett. https://doi.org/10.1111/ele.14065 (2022).Cao, J. et al. Plant–bacteria–soil response to frequency of simulated nitrogen deposition has implications for global ecosystem change. Funct. Ecol. 34, 723–734 (2020).Article 

    Google Scholar 
    Mo, J. M., Brown, S., Peng, S. L. & Kong, G. H. Nitrogen availability in disturbed, rehabilitated and mature forests of tropical China. For. Ecol. Manage. 175, 573–583 (2003).Article 

    Google Scholar 
    Huang, Z. L., Ding, M. M., Zhang, Z. P. & Yi, W. M. The hydrological processes and nitrogen dynamics in a monsoon evergreen broad-leafed forest of Dinghushan. Acta Phytoecol. Sin. 18, 194–199 (1994).
    Google Scholar 
    Wright, R. F. & Rasmussen, L. Introduction to the NITREX and EXMAN projects. For. Ecol. Manage. 101, 1–7 (1998).Article 

    Google Scholar 
    Gundersen, P. et al. Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. For. Ecol. Manage. 101, 37–55 (1998).Article 

    Google Scholar 
    Aber, J. D. et al. Plant and soil responses to chronic nitrogen additions at the Harvard Forest, Massachusetts. Ecol. Appl. 3, 156–166 (1993).Article 

    Google Scholar 
    Cleveland, C. C. & Townsend, A. R. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proc. Natl Acad. Sci. USA 103, 10316–10321 (2006).Article 

    Google Scholar 
    Song, X. et al. Nitrogen addition increased CO2 uptake more than non-CO2 greenhouse gases emissions in a Moso bamboo forest. Sci. Adv. 6, eaaw5790 (2020).Article 

    Google Scholar 
    Lu, X. et al. Long-term nitrogen addition decreases carbon leaching in nitrogen-rich forest ecosystems. Biogeosciences 10, 3931–3941 (2013).Article 

    Google Scholar 
    Ackerman, D., Millet, D. B. & Chen, X. Global estimates of inorganic nitrogen deposition across four decades. Glob. Biogeochem. Cycles 33, 100–107 (2019).Article 

    Google Scholar 
    Tang, X., Liu, S., Zhou, G., Zhang, D. & Zhou, C. Soil–atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China. Glob. Change Biol. 12, 546–560 (2006).Article 

    Google Scholar 
    Lei, J. et al. Temporal changes in global soil respiration since 1987. Nat. Commun. 12, 403 (2021).Article 

    Google Scholar  More

  • in

    Greater evolutionary divergence of thermal limits within marine than terrestrial species

    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).Article 
    CAS 

    Google Scholar 
    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).Article 
    CAS 

    Google Scholar 
    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).Article 
    CAS 

    Google Scholar 
    Hughes, A. R. et al. Predicting the sensitivity of marine populations to rising temperatures. Front. Ecol. Environ. 17, 17–24 (2019).Article 

    Google Scholar 
    Sunday, J. et al. Thermal tolerance patterns across latitude and elevation. Philos. Trans. R. Soc. B 374, 20190036 (2019).Article 

    Google Scholar 
    Bennett, S., Duarte, C. M., Marbà, N. & Wernberg, T. Integrating within-species variation in thermal physiology into climate change ecology. Philos. Trans. R. Soc. B 374, 20180550 (2019).Article 

    Google Scholar 
    Sasaki, M. C. & Dam, H. G. Integrating patterns of thermal tolerance and phenotypic plasticity with population genetics to improve understanding of vulnerability to warming in a widespread copepod. Glob. Change Biol. 25, 4147–4164 (2019).Article 

    Google Scholar 
    Kelly, M. W., Sanford, E. & Grosberg, R. K. Limited potential for adaptation to climate change in a broadly distributed marine crustacean. Proc. R. Soc. B 279, 349–356 (2012).Article 

    Google Scholar 
    Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).Article 

    Google Scholar 
    Moran, E. V., Hartig, F. & Bell, D. M. Intraspecific trait variation across scales: implications for understanding global change responses. Glob. Change Biol. 22, 137–150 (2016).Article 

    Google Scholar 
    Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. USA 116, 10418–10423 (2019).Article 
    CAS 

    Google Scholar 
    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).Article 

    Google Scholar 
    Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).Article 
    CAS 

    Google Scholar 
    Gunderson, A. R. & Stillman, J. H. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B 282, 20150401 (2015).Article 

    Google Scholar 
    Barley, J. M. et al. Limited plasticity in thermally tolerant ectotherm populations: evidence for a trade-off. Proc. R. Soc. B 288, 202110765 (2021).Article 

    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).Article 

    Google Scholar 
    Grummer, J. A. et al. Aquatic landscape genomics and environmental effects on genetic variation. Trends Ecol. Evol. 34, 641–654 (2019).Article 

    Google Scholar 
    Kinlan, B. P. & Gaines, S. D. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84, 2007–2020 (2003).Article 

    Google Scholar 
    Lester, S. E., Ruttenberg, B. I., Gaines, S. D. & Kinlan, B. P. The relationship between dispersal ability and geographic range size. Ecol. Lett. 10, 745–758 (2007).Article 

    Google Scholar 
    Kinlan, B. P., Gaines, S. D. & Lester, S. E. Propagule dispersal and the scales of marine community process. Diversity Distrib. 11, 139–148 (2005).Article 

    Google Scholar 
    Mayr, E. Animal Species and Evolution (Harvard Univ. Press, 2014).Haldane, J. B. S. The relation between density regulation and natural selection. Proc. R. Soc. Lond. B 145, 306–308 (1956).Article 
    CAS 

    Google Scholar 
    Marshall, D. J., Monro, K., Bode, M., Keough, M. J. & Swearer, S. Phenotype–environment mismatches reduce connectivity in the sea. Ecol. Lett. 13, 128–140 (2010).Article 
    CAS 

    Google Scholar 
    Burgess, S. C., Treml, E. A. & Marshall, D. J. How do dispersal costs and habitat selection influence realized population connectivity? Ecology 93, 1378–1387 (2012).Article 

    Google Scholar 
    Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Annu. Rev. Mar. Sci. 3, 509–535 (2011).Article 

    Google Scholar 
    Caplat, P. et al. Looking beyond the mountain: dispersal barriers in a changing world. Front. Ecol. Environ. 14, 261–268 (2016).Article 

    Google Scholar 
    Nickols, K. J., Wilson White, J., Largier, J. L. & Gaylord, B. Marine population connectivity: reconciling large-scale dispersal and high self-retention. Am. Nat. 185, 196–211 (2015).Article 

    Google Scholar 
    Pinsky, M. L., Comte, L. & Sax, D. F. Unifying climate change biology across realms and taxa. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2022.04.011 (2022).Fourcade, Y. et al. Habitat amount and distribution modify community dynamics under climate change. Ecol. Lett. 24, 950–957 (2021).Article 

    Google Scholar 
    Kappes, H., Tackenberg, O. & Haase, P. Differences in dispersal- and colonization-related traits between taxa from the freshwater and the terrestrial realm. Aquat. Ecol. 48, 73–83 (2014).Article 
    CAS 

    Google Scholar 
    Kinlan, B. P. & Gaines, S. D. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84, 2007–2020 (2003).Article 

    Google Scholar 
    Kappes, H. & Haase, P. Slow, but steady: dispersal of freshwater molluscs. Aquat. Sci. 74, 1–14 (2012).Article 

    Google Scholar 
    Sasaki, M. & Dam, H. G. Global patterns in copepod thermal tolerance. J. Plankton Res. 43, 598–609 (2021).Article 

    Google Scholar 
    Cereja, R. Critical thermal maxima in aquatic ectotherms. Ecol. Indic. 119, 106856 (2020).Article 

    Google Scholar 
    Vinagre, C. et al. Upper thermal limits and warming safety margins of coastal marine species – Indicator baseline for future reference. Ecol. Indic. 102, 644–649 (2019).Article 

    Google Scholar 
    Muñoz, M. M. The Bogert effect, a factor in evolution. Evolution 76, 49–66 (2022).Article 

    Google Scholar 
    Muñoz, M. M. & Bodensteiner, B. L. Janzen’s hypothesis meets the Bogert effect: connecting climate variation, thermoregulatory behavior, and rates of physiological evolution. Integr. Org. Biol. 1, oby002 (2019).Spence, A. R. & Tingley, M. W. The challenge of novel abiotic conditions for species undergoing climate-induced range shifts. Ecography 43, 1571–1590 (2020).Article 

    Google Scholar 
    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).Article 
    CAS 

    Google Scholar 
    Steele, J. H., Brink, K. H. & Scott, B. E. Comparison of marine and terrestrial ecosystems: suggestions of an evolutionary perspective influenced by environmental variation. ICES J. Mar. Sci. 76, 50–59 (2019).Article 

    Google Scholar 
    Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).Article 

    Google Scholar 
    Chuang, A. & Peterson, C. R. Expanding population edges: theories, traits, and trade-offs. Glob. Change Biol. 22, 494–512 (2016).Article 

    Google Scholar 
    Bennett, J. M. et al. The evolution of critical thermal limits of life on Earth. Nat. Commun. 12, 1198 (2021).Article 
    CAS 

    Google Scholar 
    Gaston, K. J. et al. Macrophysiology: a conceptual reunification. Am. Nat. 174, 595–612 (2009).Article 

    Google Scholar 
    Button, K. S. et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013).Article 
    CAS 

    Google Scholar 
    Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).Article 
    CAS 

    Google Scholar 
    Cooper, H., Hedges, L. V. & Valentine, J. C. The Handbook of Research Synthesis and Meta-Analysis (Russel Sage Foundation, 2009).Gleser, L. & Olkin, I. in The Handbook of Research Synthesis and Meta-Analysis (eds Cooper, H. et al.) Ch. 19 (Russel Sage Foundation, 2009).Huey, R. B., Hertz, P. E. & Sinervo, B. Behavioral drive versus behavioral inertia in evolution: a null model approach. Am. Nat. 161, 357–366 (2003).Article 

    Google Scholar 
    Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).Article 
    CAS 

    Google Scholar 
    Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer ‘cold-blooded’’ animals against climate warming. Proc. Natl Acad. Sci. USA 10, 3835–3840 (2009).Article 

    Google Scholar 
    Denney, D. A., Jameel, M. I., Bemmels, J. B., Rochford, M. E. & Anderson, J. T. Small spaces, big impacts: contributions of micro-environmental variation to population persistence under climate change. AoB Plants 12, plaa005 (2020).Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).Article 
    CAS 

    Google Scholar 
    Clusella-Trullas, S., Garcia, R. A., Terblanche, J. S. & Hoffmann, A. A. How useful are thermal vulnerability indices? Trends Ecol. Evol. 36, 1000–1010 (2021).Article 

    Google Scholar 
    Wanders, N., van Vliet, M. T. H., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. High-resolution global water temperature modeling. Water Resour. Res. 55, 2760–2778 (2019).Article 

    Google Scholar 
    Todgham, A. E. & Stillman, J. H. Physiological responses to shifts in multiple environmental stressors: relevance in a changing world. Integr. Comp. Biol. 53, 539–544 (2013).Article 

    Google Scholar 
    Hoffmann, A. A. & Sgró, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).Article 
    CAS 

    Google Scholar 
    Pespeni, M. H. & Palumbi, S. R. Signals of selection in outlier loci in a widely dispersing species across an environmental mosaic. Mol. Ecol. 22, 3580–3597 (2013).Article 
    CAS 

    Google Scholar 
    Hoey, J. A. & Pinsky, M. L. Genomic signatures of environmental selection despite near-panmixia in summer flounder. Evolut. Appl. 11, 1732–1747 (2018).Article 
    CAS 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).Article 
    CAS 

    Google Scholar 
    Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of Anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).Article 

    Google Scholar 
    Morelli, T. L. et al. Managing Climate Change refugia for climate adaptation. PLoS ONE 11, e0159909 (2016).Article 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Annu. Rev. Mar. Sci. 1, 443–466 (2009).Article 

    Google Scholar 
    Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Internal Med. 151, 264–270 (2009).Article 

    Google Scholar 
    O’Dea, R. E. et al. Preferred reporting items for systematic reviews and meta-analyses in ecology and evolutionary biology: a PRISMA extension. Biol. Rev. https://doi.org/10.1111/brv.12721 (2021).Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372, 89 (2021).Bennett, J. M. et al. GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5, 180022 1198 (2018).Lancaster, L. T. & Humphreys, A. M. Global variation in the thermal tolerances of plants. Proc. Natl Acad. Sci. USA 117, 13580–13587 (2020).Article 
    CAS 

    Google Scholar 
    Rohatgi, A. WebPlotDigitizer (2020); https://automeris.io/WebPlotDigitizerAssis, J. et al. Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).Article 

    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).Article 

    Google Scholar 
    Dee, D. P. et al. The ERA–interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorolog. Soc. 137, 553–597 (2011).Article 

    Google Scholar 
    Helmuth, B. et al. Climate change and latitudinal patterns of intertidal thermal stress. Science 298, 1015–1017 (2002).Article 
    CAS 

    Google Scholar 
    Helmuth, B. Thermal biology of rocky intertidal mussels: quantifying body temperature using climatological data. Ecology 80, 15–34 (1999).Article 

    Google Scholar 
    Bell, E. C. Environmental and morphological influences on thallus temperature and desiccation of the intertidal alga Mastocarpus papillatus Kützing. J. Exp. Mar. Biol. Ecol. 191, 29–55 (1995).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Software 36, 1–48 (2010).Article 

    Google Scholar 
    Sasaki, M. et al. Data for ‘greater local adaptation to temperature in the ocean than on land’. figshare https://doi.org/10.6084/m9.figshare.20173571 (2022). More

  • in

    Global distribution and climate sensitivity of the tropical montane forest nitrogen cycle

    von Humboldt, A., and A. Bonpland. Essai sur la geographiedes plantes. Chez Levrault, Schoell et Campagnie, Libraries, Paris.(1805).Malhi, Y. et al. Introduction: elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Glob. Change Biol. 16, 3171–3175 (2010).Article 

    Google Scholar 
    Nottingham, A. T. et al. Climate warming and soil carbon in tropical forests: insights from an elevation gradient in the Peruvian Andes. BioScience 65, 906–921 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Malhi, Y. et al. The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. N. Phytologist 214, 1019–1032 (2017).Article 
    CAS 

    Google Scholar 
    Nottingham, A. T. et al. Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm. Biogeosciences 12, 6071–6083 (2015).Article 

    Google Scholar 
    Nottingham, A. T. et al. Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology 99, 2455–2466 (2018).Article 
    PubMed 

    Google Scholar 
    Jenny, H., Bingham, F. & Padillasaravia, B. Nitrogen and organic matter contents of equatorial soils of Colombia, South-America. Soil Sci. 66, 173–186 (1948).Article 
    CAS 

    Google Scholar 
    Tanner, E., Vitousek, P. & Cuevas, E. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79, 10–22 (1998).Article 

    Google Scholar 
    Vitousek, P. M., Matson, P. A. & Turner, D. R. Elevational and age gradients in Hawaiian montane rainforest: foliar and soil nutrients. Oecologia 77, 565–570 (1988).Article 
    PubMed 

    Google Scholar 
    Vitousek, P. M. & Sanford, R. L. Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Syst. 17, 137–167 (1986).Article 

    Google Scholar 
    Krishnaswamy, J., John, R. & Joseph, S. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Glob. Change Biol. 20, 203–215 (2014).Article 

    Google Scholar 
    Duque, A. et al. Mature Andean forests as globally important carbon sinks and future carbon refuges. Nat. Commun. 12, 2138 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fadrique, B. et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564, 207–212 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nottingham, A. T. et al. Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecol. Lett. 22, 1889–1899 (2019).Article 
    PubMed 

    Google Scholar 
    Marrs, R. H., Proctor, J., Heaney, A. & Mountford, M. D. Changes in soil nitrogen-mineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica. J. Ecol. 76, 466–482 (1988).Grubb, P. J. Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annu. Rev. Ecol. Syst. 8, 83–107 (1977).Article 
    CAS 

    Google Scholar 
    Wolf, K., Veldkamp, E., Homeier, J. & Martinson, G. O. Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Glob. Biogeochem. Cycles 25, GB4009 (2011).Barthel, M. et al. Low N2O and variable CH4 fluxes from tropical forest soils of the Congo Basin. Nat. Commun. 13, 330 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brookshire, E. N. J., Hedin, L. O., Newbold, J. D., Sigman, D. M. & Jackson, J. K. Sustained losses of bioavailable nitrogen from montane tropical forests. Nat. Geosci. 5, 123–126 (2012).Article 
    CAS 

    Google Scholar 
    Rütting, T. et al. Leaky nitrogen cycle in pristine African montane rainforest soil. Glob. Biogeochem. Cycles 29, 1754–1762 (2015).Article 

    Google Scholar 
    Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 47, 151–163 (1996).Article 
    CAS 

    Google Scholar 
    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Poggio, L. et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. SOIL 7, 217–240 (2021).Article 
    CAS 

    Google Scholar 
    Bauters, M. et al. Parallel functional and stoichiometric trait shifts in South American and African forest communities with elevation. Biogeosciences 14, 5313–5321 (2017).Article 
    CAS 

    Google Scholar 
    Dalling, J. W., Heineman, K., González, G. & Ostertag, R. Geographic, environmental and biotic sources of variation in the nutrient relations of tropical montane forests. J. Tropical Ecol. 32, 368–383 (2016).Article 

    Google Scholar 
    Porder, S., Vitousek, P., Chadwick, O., Chamberlain, C. & Hilley, G. Uplift, erosion, and phosphorus limitation in terrestrial ecosystems. Ecosystems 10, 158–170 (2007).Article 
    CAS 

    Google Scholar 
    Houlton, B. Z., Morford, S. L. & Dahlgren, R. A. Convergent evidence for widespread rock nitrogen sources in Earth’s surface environment. Science 360, 58–62 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hilton, R. G., Galy, A., West, A. J., Hovius, N. & Roberts, G. G. Geomorphic control on the delta N-15 of mountain forests. Biogeosciences 10, 1693–1705 (2013).Article 
    CAS 

    Google Scholar 
    Vitousek, P. M., Van Cleve, K., Balakrishnan, N. & Mueller-Dombois, D. Soil development and nitrogen turnover in montane rainforest soils on Hawai’i. Biotropica 268–274 (1983).Taylor, P. G. et al. Temperature and rainfall interact to control carbon cycling in tropical forests. Ecol. Lett. 20, 779–788 (2017).Article 
    PubMed 

    Google Scholar 
    Houlton, B. & Bai, E. Imprint of denitrifying bacteria on the global terrestrial biosphere. Proc. Natl Acad. Sci. USA 106, 21713–21716 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).Article 
    CAS 

    Google Scholar 
    Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant and Soil 396, 1–26 (2015).Högberg, P. Tansley Review No. 95. 15N Natural Abundance in Soil-Plant Systems. N. Phytologist 137, 179–203 (1997).Article 

    Google Scholar 
    Martinelli, L. et al. Nitrogen stable isotopic composition of leaves and soil: Tropical versus temperate forests. Biogeochemistry 46, 45–65 (1999).Article 
    CAS 

    Google Scholar 
    Amundson, R. et al. Global patterns of the isotopic composition of soil and plant nitrogen. Glob. Biogeochem. Cycles 17, (2003).Craine, J. M. et al. Convergence of soil nitrogen isotopes across global climate gradients. Sci. Rep. 5, 8280 (2015).Mooshammer, M. et al. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nat. Commun. 5, 3694 (2014).Camenzind, T., Hättenschwiler, S., Treseder, K. K., Lehmann, A. & Rillig, M. C. Nutrient limitation of soil microbial processes in tropical forests. Ecol. Monogr. 88, 4–21 (2018).Article 

    Google Scholar 
    Mariotti, A., Pierre, D., Vedy, J. C., Bruckert, S. & Guillemot, J. The abundance of natural nitrogen 15 in the organic matter of soils along an altitudinal gradient (Chablais, Haute Savoie, France). Catena 7, 293–300 (1980).Article 
    CAS 

    Google Scholar 
    Sena‐Souza, J. P., Houlton, B. Z., Martinelli, L. A. & Nardoto, G. B. Reconstructing continental-scale variation in soil δ15N: a machine learning approach in South America. Ecosphere 11, e03223 (2020).Article 

    Google Scholar 
    Nottingham, A. T., Bååth E., Reischke, S., Salinas, N. & Meir, P. Adaptation of soil microbial growth to temperature: Using a tropical elevation gradient to predict future changes. Glob. change Biol. 25, 827–838 (2019).Liu, Y. et al. A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: latitudinal patterns and mechanisms. Glob. Change Biol. 23, 455–464 (2017).Article 

    Google Scholar 
    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zimmermann, M. & Bird, M. I. Temperature sensitivity of tropical forest soil respiration increase along an altitudinal gradient with ongoing decomposition. Geoderma 187–188, 8–15 (2012).Article 

    Google Scholar 
    Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17, 798–818 (2011).Article 

    Google Scholar 
    Wright, S. J. Plant responses to nutrient addition experiments conducted in tropical forests. Ecol. Monogr. 89, e01382 (2019).Article 

    Google Scholar 
    Brookshire, E. N. J., Gerber, S., Menge, D. N. L. & Hedin, L. O. Large losses of inorganic nitrogen from tropical rainforests suggest a lack of nitrogen limitation. Ecol. Lett. 15, 9–16 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Corrales, A., Henkel, T. W. & Smith, M. E. Ectomycorrhizal associations in the tropics—biogeography, diversity patterns and ecosystem roles. N. Phytologist 220, 1076–1091 (2018).Article 

    Google Scholar 
    Zeng, Z. et al. Deforestation-induced warming over tropical mountain regions regulated by elevation. Nat. Geosci. 1–7 https://doi.org/10.1038/s41561-020-00666-0 (2020).Nogués-Bravo, D., Araújo, M. B., Errea, M. P. & Martínez-Rica, J. P. Exposure of global mountain systems to climate warming during the 21st Century. Glob. Environ. Change 17, 420–428 (2007).Article 

    Google Scholar 
    Weintraub, S. R., Cole, R. J., Schmitt, C. G. & All, J. D. Climatic controls on the isotopic composition and availability of soil nitrogen across mountainous tropical forest. Ecosphere 7, e01412 (2016).Article 

    Google Scholar 
    Brookshire, E. N. J. & Thomas, S. A. Ecosystem consequences of tree monodominance for nitrogen cycling in lowland tropical forest. PLoS ONE 8, e70491 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kitayama, K. & Iwamoto, K. Patterns of natural 15N abundance in the leaf-to-soil continuum of tropical rain forests differing in N availability on Mount Kinabalu, Borneo. Plant Soil 229, 203–212 (2001).Article 
    CAS 

    Google Scholar 
    Bauters, M. et al. Contrasting nitrogen fluxes in African tropical forests of the Congo Basin. Ecol. Monogr. 89, e01342 (2019).Article 

    Google Scholar 
    Proctor, J., Edwards, I. D., Payton, R. W. & Nagy, L. Zonation of forest vegetation and soils of Mount Cameroon, West Africa. Plant Ecol. 192, 251–269 (2007).Article 

    Google Scholar 
    Grubb, P. J. & Stevens, P. F. The Forests of the Fatima Basin and Mt Kerigomna, Papua New Guinea with a Review of Montane and Subalpine Rainforests in Papuasia (Department of Human Geography, Research School of Pacific Studies…, 2017).Dieleman, W. I. J., Venter, M., Ramachandra, A., Krockenberger, A. K. & Bird, M. I. Soil carbon stocks vary predictably with altitude in tropical forests: Implications for soil carbon storage. Geoderma 204–205, 59–67 (2013).Article 

    Google Scholar 
    Kapos, V., Rhind, J., Edwards, M., Price, M. F. & Ravilious, C. in Forests in sustainable mountain development: a state of knowledge report for 2000. Task Force on Forests in Sustainable Mountain Development. 4–19 (CABI, 2000). https://doi.org/10.1079/9780851994468.0004.Sexton, J. O. et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digital Earth 6, 427–448 (2013).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org (2022).Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48, https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Bartoń K. MuMIn: Multi-Model Inference. R package version 1.43.17 (2020).Grömping, U. Relative Importance for Linear Regression in R: The Package Relaimpo. J. Stat. Softw. 17, 1–27 (2006).Article 

    Google Scholar 
    Baty, F. et al. A Toolbox for Nonlinear Regression in R: The Package nlstools. J. Stat. Softw. 66, 1–21 (2015).Article 

    Google Scholar  More

  • in

    Analysis toxicity by different methods and anxiolytic effect of the aqueous extract Lippia sidoides Cham.

    Singh, Y. D., Jena, B. & Ningthoujam, R. Potential bioactive molecules from natural products to combat against coronavirus. Adv. trad. Med. 1, 1–12. https://doi.org/10.1007/s13596-020-00496-w (2020).Article 
    CAS 

    Google Scholar 
    Badke, M. R. et al. Popular knowledge: The use of medicinal plants as therapeutic form in health care. Rev. Enferm. UFSM. 6, 225–234. https://doi.org/10.1590/S0104-07072012000200014 (2016).Article 

    Google Scholar 
    Macedo, J. G. F. et al. Analysis of the variability of therapeutic indications of medicinal species in the Northeast of Brazil: Comparative study. Evid. Based Complementary Altern. Med. 2018, 1–29. https://doi.org/10.1155/2018/6769193 (2018).Article 

    Google Scholar 
    Farias, J. C., Bomfim, B. L. S., Fonseca Filho, I. C., Silva, P. R. R. & Barros, R. F. M. Insecticides and repellents plants used in a rural community in northeast Brazilian. Revista Espacios. 37, 1–6 (2016).
    Google Scholar 
    Silva, M. G. V., Lima, D. R., Monteiro, J. A. & Magalhães, F. E. A. Anxiolytic-like effect of chrysophanol from Senna Cana Stem in Adult Zebrafish (Danio Rerio). Nat. Prod. Res. 22, 1–5. https://doi.org/10.1080/14786419.2021.1980788 (2021).Article 
    CAS 

    Google Scholar 
    Vincenzi, F., Borea, P. A. & Varani, K. Anxiolytic properties of A1 adenosine receptor PAMs. Oncotarget 8, 7216–7217. https://doi.org/10.18632/oncotarget.13802 (2017).Article 
    PubMed 

    Google Scholar 
    Silva, M. I. G., Gondim, A. P. S., Nunes, I. F. S. & Sousa, F. C. F. Utilização de fitoterápicos nas unidades básicas de atenção à saúde da família no município de Maracanaú (CE). Rev. Bras. Farmacog. 16, 455–462. https://doi.org/10.1590/S0102-695X2006000400003 (2006).Article 

    Google Scholar 
    Guimarães, L. G. L., Silva, M. L. M., Reis, P. C. J., Costa, M. T. R. & Alves, L. L. General characteristics, phytochemistry and pharmacognosy of Lippia sidoides. Nat. Prod. Commun. 10, 1861–1867. https://doi.org/10.1177/1934578X1501001116 (2015).Article 

    Google Scholar 
    Veras, H. L. H. et al. Synergistic antibiotic activity of volatile compounds from the essential oil of Lippia sidoides and thymol. Fitoterap. 83, 508–512. https://doi.org/10.1016/j.fitote.2011.12.024 (2012).Article 
    CAS 

    Google Scholar 
    Farias, E. M. F. G. et al. Antifungal activity of Lippia sidoides Cham. (Verbenaceae) against clinical isolates of Candida species. J. Herb. Med. 2, 63–67. https://doi.org/10.1016/j.hermed.2012.06.002 (2012).Article 

    Google Scholar 
    Cavalcanti, S. C. H. et al. Composition and acaricidal activity of Lippia sidoides essential oil Against two-spotted spider mite (Tetranychus urticae Koch). Bioresour. Technol. 101, 829–832. https://doi.org/10.1016/j.biortech.2009.08.053 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Monteiro, M. V. B., Leite, A. K. R. M., Bertini, L. M., Morais, S. M. & Nunes-Pinheiro, D. C. S. Topical anti-inflammatory, gastroprotective and antioxidant effects of the essential oil of Lippia sidoides Cham. Leaves. J. Ethnopharmacol. 111, 378–382. https://doi.org/10.1016/j.jep.2006.11.036 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Botelho, M. A. et al. Effect of a novel essential oil mouthrinse without alcohol on gingivitis: A double-blinded randomized controlled tria. J. Appl. Oral. Sci. 15, 175–180 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Botelho, M. A. et al. Comparative effect of an essential oil mouthrinse on plaque, gingivitis and salivary Streptococcus mutans levels: A double blind randomized study. Phytother. Res. 23, 1214–1219. https://doi.org/10.1002/ptr.2489 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Medeiros, M. G. F. et al. In vitro antileishmanial activity and cytotoxicity of essential oil from Lippia sidoides Cham. Parasitol. Inter. 60, 237–241. https://doi.org/10.1016/j.parint.2011.03.004 (2011).Article 
    CAS 

    Google Scholar 
    Gomide, M. S. et al. The effect of the essential oils from five different Lippia species on the viability of tumor cell lines. Rev. Bras. Farmacogn. 23, 895–902. https://doi.org/10.1590/S0102-695X2013000600006 (2013).Article 
    CAS 

    Google Scholar 
    Murade, V. et al. A plausible involvement of GABAA/benzodiazepine receptor in the anxiolytic-like effect of ethyl acetate fraction and quercetin isolated from Ricinus communis Linn. leaves in mice. Phytomed. Plus. 1, 100041. https://doi.org/10.1016/j.phyplu.2021.100041 (2021).Article 

    Google Scholar 
    Coleta, M., Campos, M. A., Cotrim, M. D., Lima, T. C. M. & Cunha, A. P. Assessment of luteolin (3′,4′,5,7-tetrahydroxyflavone) neuropharmacological activity. Behav. Brain Res. 189, 75–82. https://doi.org/10.1016/j.bbr.2007.12.010 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kosalec, I., Bakmaz, M., Pepeliniak, S. & Vladimir-Knezevic, S. Quantitative analysis of the flavonoids in raw propolis from northern Croatia. A Pharmaceut. 54, 65–72 (2004).CAS 

    Google Scholar 
    Cunha, F. A. B. et al. Eugenia uniflora leaves essential oil induces toxicity in Drosophila melanogaster: Involvement of oxidative stress mechanisms. Toxicol. Res. 4, 634–644. https://doi.org/10.1039/c4tx00162a (2015).Article 

    Google Scholar 
    Coulom, H. & Birman, S. Chronic exposure to rotenone models sporadic Parkinson’s disease in Drosophila melanogaster. J. Neurosci. 24, 10993–10998. https://doi.org/10.1523/JNEUROSCI.2993-04.2004 (2004).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barros, F. J. et al. Activity of essential oils of Piper aduncum anf and Cinnamomum zeylanicum by evaluating osmotic and morphologic fragility of erythrocytes. Eur. J. Integr. Med. 515, 1–8. https://doi.org/10.1016/j.eujim.2016.02.011 (2016).Article 

    Google Scholar 
    Meyer, B. N. et al. Brine Shrimp: A convenient general bioassay for active plant constituints. Planta Med. 45, 31–34. https://doi.org/10.1055/s-2007-971236 (1982).Article 
    CAS 
    PubMed 

    Google Scholar 
    de Magalhães, F. E. A. et al. Adult zebrafish: an alternative behavioral model of formalin-induced nociception. Zebrafish 4, 422–429. https://doi.org/10.1089/zeb.2017.1436 (2017).Article 
    CAS 

    Google Scholar 
    OECD guideline for testing acute toxicity in fishes, Test No. 1992. http://www.oecd.org/chemicalsafety/risk-assessment/1948241.pdf. (Acessado em 25 de octuber, 2021).Arellano-Aguilar, O. et al. Use of the zebrafish embryo toxicity test for use of the zebrafish embryo toxicity test for risk assessment purpose: Case study. J. Fish Sci. 4, 52–62 (2015).
    Google Scholar 
    Gonçalves, N. G. G. et al. Protein fraction from Artocarpus Altilis pulp exhibits antioxidant properties and reverses anxiety behavior in adult zebrafish via the serotoninergic system. J. Funct. Foods. 66, 103772. https://doi.org/10.1016/j.jff.2019.103772 (2020).Article 
    CAS 

    Google Scholar 
    Gebauer, D. L. et al. Effects of anxiolytics in zebrafish: Similarities and differences between benzodiazepines. Buspirone and Ethanol. Pharmacol. Biochem. Behav. 99, 480–486. https://doi.org/10.1016/j.pbb.2011.04.021 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Benneh, C. K. et al. Maerua Angolensis stem bark extract reverses anxiety and related behaviours in zebrafish—Involvement of GABAergic and 5-HT systems. J. Ethnopharmacol. 207, 129–145. https://doi.org/10.1016/j.jep.2017.06.012 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Santos, S. A., Vilela, C., Freire, C. S., Neto, C. P. & Silvestre, A. J. Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood. J. Chromatogr. B. 938, 65–74. https://doi.org/10.1016/j.jchromb.2013.08.034 (2013).Article 
    CAS 

    Google Scholar 
    Pereira, O. R., Peres, A. M., Silva, A. M. S., Domingues, M. R. M. & Cardoso, S. M. Simultaneous characterization and quantification of phenolic compounds in Thymus x citriodorus using a validated HPLC–UV and ESI–MS combined method. Food Res. Inter. 54, 1773–1780. https://doi.org/10.1016/j.foodres.2013.09.016.( (2013).Article 
    CAS 

    Google Scholar 
    Zhao, Y. et al. Characterization of phenolic constituents in Lithocarpus polystachyus. Royal Soc. Chem. https://doi.org/10.1039/c3ay41288a (2014).Article 

    Google Scholar 
    Petkovska, A., Gjamovski, V., Stanoeva, J. P. & Stefova, M. Characterization of the polyphenolic profiles of peel, flesh and leaves of malus domestica cultivars using UHPLC-DAD-HESI-MSn. Nat. Prod. Commun. https://doi.org/10.1177/1934578X1701200111 (2017).Article 
    PubMed 

    Google Scholar 
    Mena, P. et al. Rapid and comprehensive evaluation of (poly)phenolic compounds in pomegranate (Punica granatum L.) juice by UHPLC-MSn. Molecules 17, 14821–14840. https://doi.org/10.3390/molecules171214821 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ye, M., Han, J., Chen, H., Zheng, J. & Guo, D. Analysis of phenolic compounds in rhubarbs using liquid chromatography coupled with electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 18, 82–91. https://doi.org/10.1016/j.jasms.2006.08.009 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kang, J., Price, W., Ashton, J., Tapsell, L. C. & Johnson, S. Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MSn. Food Chem. 211, 215–226. https://doi.org/10.1016/j.foodchem.2016.05.052 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schutz, K., Kammerer, D. R., Carle, R. & Schieber, A. Characterization of phenolic acids and flavonoids in dandelion (Taraxacum officinale WEB. ex WIGG.) root and herb by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 19, 179–186. https://doi.org/10.1002/rcm.1767.15593267 (2005).Article 
    PubMed 

    Google Scholar 
    Hassan, K. O., Bedgood, D. R. Jr., Prenzler, P. D. & Robards, K. Chemical screening of olive biophenol extracts by hyphenated liquid chromatography. Anal. Chim. Acta 603, 176–189. https://doi.org/10.1016/j.aca.2007.09.044 (2007).Article 
    CAS 

    Google Scholar 
    Brito, A., Ramirez, J. E., Areche, C., Sepúlveda, B. & Simirgiotis, M. J. HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in Northern Chile. Molecules 19, 17400–17421. https://doi.org/10.3390/moléculas191117400 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McNab, H., Ferreira, E. S. B., Hulme, A. N. & Quye, A. Negative ion ESI–MS analysis of natural yellow dye flavonoids—An isotopic labelling study. Int. J. Mass Spectrometry. 284, 57–65. https://doi.org/10.1016/j.ijms.2008.05.039 (2009).Article 
    CAS 

    Google Scholar 
    Gouveia, S. & Castilho, P. C. Characterisation of phenolic acid derivatives and flavonoids from different morphological parts of Helichrysum obconicum by a RP-HPLC–DAD-()–ESI-MSn method. Food Chem. 129, 333–344. https://doi.org/10.1016/j.foodchem.2011.04.078 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Peter, S. R., Peru, K. M., Fahlman, B., McMartin, D. W. & Headley, J. V. The application of HPLC ESI MS in the investigation of the flavonoids and flavonoid glycosides of a Caribbean Lamiaceae plant with potential for bioaccumulation. J. Environ. Sci. Health B. 50, 819–826. https://doi.org/10.1080/03601234.2015.1058103 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rashid, N. A. A., Lau, B. F. & Kue, C. S. Differential toxicity and teratogenic effects of the hot water and cold water extracts of Lignosus rhinocerus (Cooke) Ryvarden sclerotium on zebrafish (Danio rerio) embryos. J. Ethnopharmacol. 285(114787), 2022. https://doi.org/10.1016/j.jep.2021.114787 (2022).Article 
    CAS 

    Google Scholar 
    Costa, S. M. O. et al. Chemical constituents from Lippia sidoides and cytotoxic activity. J. Nat. Prod. 64, 792–795. https://doi.org/10.1021/np0005917 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fabri, R. L., Nogueira, M. S., Moreira, J. R., Bouzada, M. L. M. & Scio, E. Identification of antioxidant and antimicrobial compounds of Lippia Species by bioautography. J. Med. Food. 14, 840–846. https://doi.org/10.1089/jmf.2010.0141 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Funari, C. S. et al. Chemical and antifungal investigations of six Lippia species (Verbenaceae) from Brazil. Food Chem. 135, 2086–2094. https://doi.org/10.1016/j.foodchem.2012.06.077 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Garmus, T. T., Paviani, L. C., Queiroga, C. L. & Cabral, F. A. Extraction of phenolic compounds from pepper-rosmarin (Lippia sidoides Cham.) leaves by sequential extraction in fixed bed extractorusing supercritical CO2, ethanol and water as solvents. J. Supercrit. Fluids. 99, 68–75. https://doi.org/10.1016/j.supflu.2015.01.016 (2015).Article 
    CAS 

    Google Scholar 
    Botelho, M. A. et al. Nanotechnology in phytotherapy: Antiinflammatory effect of a nanostructured thymol gel from Lippia sidoides in acute periodontitis in rats. Phytother. Res. 30, 152–159. https://doi.org/10.1002/ptr.5516 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Veras, H. N. et al. Atividade anti-inflamatória tópica do óleo essencial de Lippia sidoides cham: Possível mecanismo de ação. Phytother. Res. 27, 179–185. https://doi.org/10.1002/ptr.4695 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fernandes, L. M., Guterres, Z. R., Almeida, I. V. & Vicentini, V. E. P. Genotoxicity and antigenotoxicity assessments of the flavonoid vitexin by the Drosophila melanogaster somatic mutation and recombination test. J. Med. food. 20, 1–9. https://doi.org/10.1089/jmf.2016.0149 (2017).Article 
    CAS 

    Google Scholar 
    Sotibrán, A. N. C., Ordaz-Téllez, M. G. & Rodríguez-Arnaiz, R. Flavonoids and oxidative stress in Drosophila melanogaster. Mutation Res. 726(60–65), 2011. https://doi.org/10.1016/j.mrgentox.2011.08.005 (2011).Article 
    CAS 

    Google Scholar 
    Silva, L. V. F., Mourão, R. H. V., Manimala, J. & Lnenicka, G. A. The essential oil of Lippia alba and its components affect Drosophila behavior and synaptic physiology. J. Experim. Biol. 221, 1–10. https://doi.org/10.1242/jeb.176909 (2018).Article 

    Google Scholar 
    Poetini, M. R. et al. Hesperidin attenuates iron-induced oxidative damage and dopamine depletion in Drosophila melanogaster model of Parkinson’s disease. Chem. Biol. Interact. 279, 177–186. https://doi.org/10.1016/j.cbi.2017.11.018 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Xavier, A. L. et al. Chemical composition, antitumor activity, and toxicity of essential oil from the leaves of Lippia microphylla. Z. Naturforsch. 70, 129–137. https://doi.org/10.1515/znc-2014-4138 (2015).Article 
    CAS 

    Google Scholar 
    Freitas, M. V. et al. Influence of aqueous crude extracts of medicinal plants on the osmotic stability of human erythrocytes. Toxicol. In Vitro. 22, 219–224. https://doi.org/10.1016/j.tiv.2007.07.010 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Oyedapo, O. O., Akinpelu, B. A., Akinwunmi, K. F., Adeyinka, M. O. & Sipeolu, F. O. Red blood cell membrane stabilizing potentials of extracts of Lantana camara and its fractions. Plant Physiol. Biochem. 2, 46–51 (2010).
    Google Scholar 
    Bilto, Y. Y., Suboh, S., Aburjai, T. & Abdalla, S. Structure-activity relationships regarding the antioxidant effects of the flavonoids on human erythrocytes. Nat. Sci. 4, 740–747. https://doi.org/10.4236/ns.2012.4909 (2012).Article 

    Google Scholar 
    Ajaiyeoba, E. O. et al. In vitro cytotoxicity studies of 20 plants used in Nigerian antimalarial ethnomedicine. Phytomed. 13, 295–298 (2006).Article 
    CAS 

    Google Scholar 
    Vélez, E., Regnault, H. D., Jaramillo, C. J., Veléz, A. P. E. & Isitua, C. C. Fitoquímica de Lippia citriodora K cultivada en Ecuador y su actividad biológica. Rev. Cien. UNEMI. 12, 9–19 (2019).Article 

    Google Scholar 
    Costa, P. S. et al. Antifungal activity and synergistic effect of essential oil from Lippia alba against trichophyton rubrum and Candida spp. Rev. Virt. Quim. 12, 1–12. https://doi.org/10.21577/1984-6835.20200119 (2020).Article 
    CAS 

    Google Scholar 
    Gupta, P., Khobragade, S. B., Shingatgeri, V. M. & Rajaram, S. M. Assessment of locomotion behavior in adult Zebrafish after acute exposure to different pharmacological reference compounds. Drug Des. Devel. Ther. 5, 127–133. https://doi.org/10.4103/2394-2002.139626 (2014).Article 
    CAS 

    Google Scholar 
    Bezerra, P. et al. Composição química e atividade biológicade óleos essenciais de plantas do Nordeste—gênero Lippia. Cienc. Cult. 33, 1–14 (1981).CAS 

    Google Scholar 
    Pascual, M. E., Slowing, K., Carretero, E., Sánchez Mata, D. & Villar, A. Lippia: Traditional uses, chemistry and pharmacology: A review. J. Ethnopharmacol. 76, 201–214. https://doi.org/10.1016/s0378-8741(01)00234-3 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mamun-Or-Rashid, A. N. M., Sen, M. K., Jamal, M. A. H. M. & Nasrin, S. A comprehensive ethnopharmacological review on Lippia alba M. Int. J. Biomed. Mater. Res. 1, 14–20. https://doi.org/10.11648/j.ijbmr.20130101.13 (2013).Article 

    Google Scholar 
    Mácová, S. et al. Comparison of acute toxicity of 2-phenoxyethanol and clove oil to juvenile and embryonic stages of Danio rerio. Neuroendocrinol. Lett. 29, 680–684 (2008).PubMed 

    Google Scholar 
    Batista, F. L. A. et al. Antinociceptive effect of volatile oils from Ocimum basilicum flowers on Adult Zebrafish. Rev. Bras. Farmacog. 31, 282–289. https://doi.org/10.1007/s43450-021-00154-5 (2021).Article 
    CAS 

    Google Scholar 
    Horzmann, K. A. & Freeman, J. L. Making waves: New developments in toxicology with the Zebrafish. Toxicol. Sci. 163, 5–12. https://doi.org/10.1093/toxsci/kfy044 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferreira, M. K. A. et al. Anxiolytic-like effect of chalcone N-{(4′-[(E)-3-(4-fluorophenyl)-1-(phenyl) prop-2-en-1-one]} acetamide on adult zebrafish (Danio Rerio): Involvement of the GABAergic system. Behav. Brain Res. 374, 111871. https://doi.org/10.1016/j.bbr.2019.03.040 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Siqueira-Lima, P. S. et al. Central nervous system and analgesic profiles of Lippia Genus. Rev. Bras. Farmacogn. 29, 125–135. https://doi.org/10.1016/j.bjp.2018.11.006 (2019).Article 
    CAS 

    Google Scholar 
    Ferreira, M.K.A. da Silva, A.W. dos Santos Moura, A.L. Sales, K.V.B. Marinho, E.M. do Nascimento Martins Cardoso, J. Marinho, M.M. Bandeira, P.N. Magalhães, F.E.A. Marinho, E.S. et al. Chalcones reverse the anxiety and convulsive behavior of adult zebrafish. Epilepsy Behav. https://doi.org/10.1016/j.yebeh.2021.107881 (2021).Silva, A. W., Wlisses, A., Kueirislene, M., Ferreira, A. & Ramos, L. Combretum lanceolatum extract reverses anxiety and seizure behavior in adult zebrafish through GABAergic neurotransmis-Sion: An in vivo and in silico study. J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2021.1935322 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Selmani, A. & Kovaˇcevi´, D., Bohinc, K.,. Nanoparticles: From synthesis to applications and beyond. Adv. Colloid Interface Sci. 303, 102640. https://doi.org/10.1016/j.cis.2022.102640 (2022).Article 
    CAS 
    PubMed 

    Google Scholar  More