More stories

  • in

    The potential distribution of Bacillus anthracis suitability across Uganda using INLA

    Study settingUganda covers 241,037 km2 (4° N, 2° S, 29° E, 35° E) and averages 1100 m above sea level25. Uganda has a total population of 34.6 million people, with 7.4 and 27.2 million living in urban and rural areas, respectively26. It borders Lake Victoria and has an equatorial climate. The study area is mainly plateau, with a few mountains. About 20 percent of Uganda’s area is covered by swamps and water bodies, including the four Great Lakes of East Africa (Lake Edward, Lake Victoria, Lake Albert, and Lake Kyoga). The country has ten national parks housing a high diversity of wildlife and endangered species26. By 2009, agriculture ranked as the second leading contributor to the country’s Gross Domestic Product27.Surveillance data of Bacillus anthracis infectionSurveillance data of livestock and human cases from 2018 were provided by the Ministry of Health (MOH) in Uganda through the Field Epidemiology and Laboratory Training Program and the Uganda Ministry of Agriculture, Animal Industry and Fisheries (MAAIF). Geographical coordinates of anthrax cases among wildlife (from 2004 to 2010) in Queen Elizabeth National Park were obtained from a recently published study4. These cases were mapped to show the distribution of anthrax across Uganda (Fig. 1). It is only recently that Uganda has mandated systematic anthrax surveillance across the country following the outbreak that started in 2018. GPS coordinates gathered by field personnel during outbreak responses were used to map outbreak locations. The human anthrax cases were defined based on the CDC’s clinical criteria (signs and symptoms), presumptive laboratory diagnosis (Gram staining), and confirmatory laboratory diagnosis (bacterial culture, immunohistochemistry, ELISA, and PCR)28. The animal anthrax cases were also defined based on the clinical presentation, presumptive laboratory diagnosis, and confirmatory laboratory diagnosis. All cases were classified as either ‘probable’ or ‘confirmed,’ with probable defined as cases that met both the clinical and presumptive laboratory diagnostic criteria and confirmed defined as cases that met the clinical and confirmatory laboratory diagnostic criteria. A total of 497 livestock (n = 171), humans (n = 32), and wildlife cases (n = 294), both confirmed (n = 32) and probable (n = 465), occurring from 2004 to 2018 were compiled. All methods were performed in accordance with the relevant guidelines and regulations.Figure 1Distribution of anthrax presence and pseudo-absence locations across Uganda. The navy-blue circles show wildlife cases (n = 294) used for model training, the blue triangles show livestock cases (n = 171), and the red diamonds represent human cases (n = 32). The blue polygons show the locations of the 50 km, 75 km, and 100 km buffers which were constructed around the wildlife cases with a distance of 10 km between the buffers and the presence locations. The pink dots show the pseudo-absence points selected within the 50 km buffer, the orange dots show the pseudo-absence points selected within the 75 km buffer, and the white dots show the pseudo-absence points selected within the 100 km buffer. Prediction maps were developed using the Quantum Geographic Information System software (QGIS). URL: https://qgis.osgeo.org (2020).Full size imageEnvironmental variable processingCorrelative studies of environmental risk factors for anthrax outbreaks suggest that temperature6,29,30,31,32,33,34,35,36,37, precipitation6,29,30,31,32,33,34,35,36,37,38,39, elevation6,29,31,32,34,35,37,38,39, soil (type, calcium concentration, pH, carbon content, and moisture)6,30,31,33,34,36,37,39,40,41,42,43, vegetation6,29,31,34,36,37,38,39,40,42,43, and hydrology37,44 are some of the major drivers of B. anthracis suitability. A total of 26 environmental predictors (Fig. 2) were selected for this study based on these known variables. These comprised 19 bioclimatic variables (the mean for the years 1970–2000) collected from the WorldClim database version 2 (https://www.worldclim.org/data/worldclim21.html) at a resolution of 30 s (~ 1 km2)45. Four soil variables, including exchangeable calcium at a depth of 0–20 cm, soil water availability, soil pH (10×) in H2O at a depth of 0 cm, and soil organic carbon at a depth of 0–5 cm, were retrieved from the International Soil Reference and Information Centre (ISRIC) data hub at a resolution of 250 m (https://data.isric.org/geonetwork/srv/eng/catalog.search#/home). Distance to permanent water bodies was derived from a global hydrology map provided by ArcGIS online version 10.6.146. Elevation data of 1 km2 in resolution was obtained from the Global Multi-resolution Terrain Elevation Data (GMTED2010) dataset available from the United States Geological Service. Finally, the monthly Enhanced Vegetation Index (EVI) data for the years 2004, 2005, and 2010 (36 tiles in total) were obtained from The Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices (MYD13A3 v.6) at a spatial resolution of 1 km (https://lpdaac.usgs.gov/products/myd13a3v006/). The single variable, mean EVI, was calculated in QGIS by averaging all 36 tiles. The EVI minimizes variations in the canopy background and maintains precision over conditions with dense vegetation.Figure 2Results of correlation between covariates using Pearson’s correlation test. Correlation between covariates was shown by red numbers (negative correlation) and blue numbers (positive correlation). BIO1 = Annual Mean Temperature, BIO2 = Mean Diurnal Range, BIO3 = Isothermality, BIO4 = Temperature Seasonality, BIO5 = Max Temperature of Warmest Month, BIO6 = Min Temperature of Coldest Month, BIO7 = Temperature Annual Range, BIO8 = Mean Temperature of Wettest Quarter, BIO9 = Mean Temperature of Driest Quarter, BIO10 = Mean Temperature of Warmest Quarter, BIO11 = Mean Temperature of Coldest Quarter, BIO12 = Annual Precipitation, BIO13 = Precipitation of Wettest Month, BIO14 = Precipitation of Driest Month, BIO15 = Precipitation Seasonality, BIO16 = Precipitation of Wettest Quarter, BIO17 = Precipitation of Driest Quarter, BIO18 = Precipitation of Warmest Quarter, BIO19 = Precipitation of Coldest Quarter.Full size imageAll environmental variables were resampled using the R package ‘Resample’47 to a resolution of 1 km and clipped to the extent of Uganda. Since data sampling for wildlife data (used in model training) was not done systematically across the study area, target backgrounds buffers (polygon buffers created at certain radii from the training points and used for the random selection of pseudo-absences) were created for model calibration to reduce sampling bias. As there was no information on the sampling radius, a sensitivity analysis was conducted by creating target backgrounds using circular buffers of radius 50 km, 75 km, and 100 km around the presence points used for model training, leaving 10 km between the presence points and the various buffers (Fig. 1). Quantum Global Information System (QGIS) version 3.16 (https://qgis.org) software was then used to add 294 random pseudo-absence points within each buffer polygon giving a ratio of 1:1 for the training presences to pseudo-absences. A recent study explored how four approaches of pseudo-absence creation affect the performance of models across different species and three model types by building both terrestrial and marine models using boosted regression trees, generalised additive mixed models, and generalised linear mixed models48. They then tested four methods for generating pseudoabsences across all the different model types: (1) correlated random walks (RW); (2) reverse correlated RW; (3) sampling pseudoabsences within a buffer area surrounding the presence points; (4) background sampling48. The findings of the study suggested that the separation or distance in the environmental space between the presence locations and the pseudoabsences was the most significant driver of the model predictive ability and explanatory power, and thus finding was consistent across the three model types (boosted regression trees, generalised additive mixed models, and generalised linear mixed models) and both the terrestrial and marine habitats48.The values of the environmental variables were then extracted for each presence and pseudo-absence location using the raster package in R. With these, we did an initial data exploration to check for outliers within the covariates, collinearity, and to explore the relationships between the covariates and the response variables (presence or absence of anthrax). Cleveland dot plots were used to check for possible outliers. Following the outlier checks, variance inflation factors (VIF), pairwise plots, and Pearson correlation coefficients with correction for multiple comparisons were used to measure the statistically significant correlation between the covariates (Fig. 2). For variables that were highly correlated (correlation greater than 0.6) or those with high variance inflation (VIF  > 3), only one was used in the modelling process. Five variables were selected following this analysis: Temperature seasonality (BIO4), elevation, distance to water, soil calcium, and soil water (Table 1).Table 1 Summary of the environmental variables used.Full size tableModelling anthrax suitability across UgandaQGIS v.3.16 (https://qgis.org) and the R statistical package version 4.1.049 were used to conduct data visualization, cleaning, and model analysis (R code used available in a Github repository: https://github.com/valentinandolo/Uganda-Spatial_Model/tree/master). The wildlife cases (n = 294) were used for model training and testing. The remaining human (n = 32) and livestock (n = 171) cases were used for model evaluation. Since the wildlife case locations were recorded from 2004 to 2010, while the livestock and human cases were recorded in 2018, the latter locations were both spatially and temporally distinct from the wildlife cases, making an excellent basis for block cross-validation of the final model performance50. Random partitioning of the data into training and testing sets can inflate the performance of a model and underestimate the error in the spatial prediction evaluation50. Block cross-validation uses spatial blocks that separate the testing and training datasets; thus, the method has been suggested to be a good technique for error estimation and a robust approach for measuring a model’s predictive performance50.The INLA package in R was applied to model the suitability of B. anthracis across Uganda. INLA calculates the spatial interaction effects using a Stochastic Partial Differential Equation (SPDE) method, which estimates a continuous Gaussian Markov Random Field (GMRF) where the correlation between two locations in space is specified by the Matérn correlation which is explained in more detail elsewhere51. The initial step in fitting an SPDE model is the creation of a Constrained Refined Delaunay Triangulation or a mesh to illustrate the spatial process51. R-INLA uses a function called ‘inla.mesh.2d()’ that applies a variety of arguments to build the mesh, these include: loc, loc.domain, boundary, max.edge, and cutoff51. The loc argument contains the point locations which provide information about the area of study and are used to create the triangulation nodes. Alternatively, a polygon of the study area can be used to identify the extent of the domain via loc.domain. We applied the point locations using the loc argument. We then specified the boundary of the mesh as a convex hull. We used the max.edge argument to specify the maximum edge length for the inner mesh domain/triangles and the outer triangles. We did this by first studying the distribution of distances between the point locations for the training presences and pseudo-absences. Most points were within a distance of about 90–100 km away from each other, thus, a possible guess for the range at which spatial autocorrelation persists was 100 km. We used a distance of 20 km as a range guess to create a finer mesh which has been shown to produce more precise models. We specified the maximum edge length for the inner triangles as 20 km divided by 5 (4 km) and the maximum edge length for the outer triangles as 20 km. Finally, the cutoff argument sets the minimum distance allowed between point locations. We divided the maximum edge length for the inner triangles by 5 (4 km divided by 5 = 0.8 km), meaning that points that were closer in distance than 0.8 km were replaced by one vertex to avoid the occurrence of small triangles.The spatial effect, which is a numeric vector, then links each observation within the data to a spatial location, thus, accounting for region-specific variation that cannot be accounted for by the covariates. Following the recommendation by Lindgren and Rue52, multivariate Gaussian distributions with means of zero and a spatially defined covariance matrix were used to model the spatial effect. Several versions of Bayesian hierarchical additive models were created by estimating a Bernoulli generalized additive model (GAM) with and without spatially correlated random effects. The Bernoulli GAM is defined as shown in Eqs. (1) and (2)$${C}_{i} sim Bernoulli left({p}_{i}right),$$
    (1)
    $$logit left({p}_{i}right)= alpha +sum_{j=1}^{m}{beta }_{j}left({X}_{j,i}right)+ sum_{k=1}^{l}{f}_{k}left({X}_{k,i}right)+ {mu }_{i},$$
    (2)
    where ({C}_{i}) denotes the observed value, such that: B. anthracis presence or absence at a given location i (i = 1, …, n; n = 588) is given as ({C}_{i}), where ({C}_{i}) =1 if B. anthracis was present, and ({C}_{i})=0 if absent. Logit is the link function for binomial family, ({p}_{i}) is the expected value of the response variable (the probability of B. anthracis suitability) at location i, α is the intercept, ({X}_{j,i}) and ({X}_{k,i}) are the j th and the k th covariates at a location i, ({beta }_{j}) are the beta coefficients, ({f}_{k}) are the smooth functions (cubic regression splines) for k th covariates, and ({mu }_{i}) is the spatial random effect at the location i53. The number of variables in linear term (m) and the non-liner term (l) are different because the variables employed in each term are different. We estimated both linear and non-linear effects for the covariates. Our overall database had 294 B. anthracis pseudo-absences generated randomly across the target background buffers to match the number of species presences recorded. Because we had no prior information, a Gaussian prior distribution with a mean of zero (default no effect prior unless data is informative) was applied for all the model parameters. The posterior mean, standard deviation, and 95% credible intervals were estimated for all the parameters.Model selectionSeveral different candidate models were examined. First, a baseline model was built using only the intercept. A second baseline model was then built, which included the intercept and spatial random effects only. Covariates were added to the second baseline model (intercept plus spatial effects model) without any smoothing function (i.e., only linear effects). The contribution of the spatial random effect was then re-examined by taking it out from the model. Smoothing functions were then added to all covariates, and the same procedure was repeated. Model selection was done using this forward stepwise approach. The final model was run using the three different target background buffers to identify the buffer distance with the lowest Deviance Information Criterion (DIC). The various options were assessed using the DIC54, Watanabe-Akaike information criterion (WAIC), and the Conditional Predictive Ordinate (CPO). The DIC and WAIC were chosen because they are commonly used to assess model performance by measuring the compromise between the goodness of fit and complexity. For CPO, the logarithmic score (− mean(log (CPO)) (LCPO) was calculated and used55. CPO can also be used to conduct internal cross-validation of models using a leave-one-out approach to evaluate the predictive performance of the model. Lower LCPO, DIC, and WAIC estimates suggest superior model performance. Thus, the favoured model had the lowest values across the 3 metrics.Model validation and evaluationModel validation for the favoured model was conducted using an independent evaluation dataset comprising of livestock and human outbreaks occurring at different spatial locations and 8 years after the training data. The omission rate, which indicates the proportion of positive test locations that end up in pixels predicted to be unsuitable for B. anthracis56, was used to validate the model. A low omission rate indicates good model performance. The threshold for suitability was the probability threshold that maximized the sensitivity and specificity of the model. The sensitivity was then derived by calculating the proportion of positive test locations that end up in pixels predicted to be suitable for B. anthracis56. A high sensitivity indicates good model performance.Model predictionThe favoured model selected using the criteria described above was used to generate countrywide prediction maps showing the posterior mean values, standard deviation, and the 95% credible intervals of the probability of B. anthracis suitability. The raster package in R was used to make the prediction maps. Bayesian kriging was done by treating all model parameters as random variables to include uncertainty in the prediction57. This kriging is built into the INLA framework via the SPDE, which allows a Delaunay triangulation to be constructed around the presence and absence locations within the sampling frame52. INLA then conducts model inference and prediction at the same time by considering the prediction points as locations missing the response variable (set to NA)51. Following successful model prediction, additional linear interpolation functions then generate the output for the whole study area scaled from 0 to 1.Ethical approvalEthical approval for this study was provided by the Human Biology Research Ethics Committee, University of Cambridge, UK (Ref: HBREC.2019.02) the School of Veterinary Medicine and Animal Resources Institutional Animal Care and Use Committee, Makerere University, Uganda (Ref: SVAREC/21/2019); and the Uganda National Council for Science and Technology. Informed consent was obtained from all subjects and/or their legal guardian(s). All methods were performed in accordance with the relevant guidelines and regulations. More

  • in

    Tube length of chironomid larvae as an indicator for dissolved oxygen in water bodies

    Chironomids have the ability to survive and reproduce in polluted environments, and thus they are included in many ecological studies where approaches may be taxonomic or functional16. The diversity of most macroinvertebrates is controlled by the oxygen level of water, but chironomids may survive in hypoxic conditions where the oxygen concentration may be less than 3 mg l−117. The current study demonstrates that changing seasons, as well as anthropogenic activities, have a significant impact on the levels of DO in aquatic bodies. As observed from the result, DO highly influences the tube length of the chironomid larvae. Since KWC is a wastewater canal, the average oxygen level is lower (5.24 ± 1.14 mg l−1) than KFP (6.63 ± 1.28 mg l−1) which is a normal fish culturing pond. It has also been observed that the average tube length of the chironomid larvae of KWC (8.66 ± 0.88 mm) is higher than KFP (7.68 ± 0.62 mm), which indicates that a low concentration of DO promotes the building of longer tubes in natural conditions. Similar observations were also observed in laboratory conditions. When the oxygen level (7.03 ± 0.41 mg l−1) in the experiment was kept in the normal range, there was negligible variation in tube length (7.61 ± 0.31 mm). But when the concentration of oxygen is gradually reduced by dilution, the tube length starts to increase accordingly, which is explained graphically in Fig. 4. The regression model of both the experimental conditions also supports the hypothesis that the tube length has an inverse relationship with DO. The scatter plot and simple linear regression confirmed the inverse relationship between DO and tube length (Figs. 1 and 2).Chironomid larvae are able to grow in the polluted water of a wastewater pond as dominant macroinvertebrates18. It is observed that those larvae living in the sand tubes are more susceptible to chemical pollutants than the larvae living in silt tubes7. Sand particles are bigger than silt and are not suitable for the survival of larvae19. Chironomus riparius larvae make their tubes from different external particles and their own proteins20. Midge larvae are the inhabitants of sediments, and at the same time, sediment is the depository of different inorganic, organic, and heavy metals. In such cases, the tube of chironomid larvae may act as a defensive structure, which protects them from the adverse effects of undesirable pollutants and may increase their tolerance against such chemicals21,22,23.Larvae can thrive in benthic sediments with high decaying organic content and very low DO concentrations in water bodies24. In poor DO concentration, larvae can survive due to the presence of haemoglobin in their body tissue fluid, which plays an important physiological role in increasing respiratory efficiency, as was observed in Chironomus plumosus. Longer tube length may help larvae generate better respiratory currents so that they can cope with a low DO environment.Tube length is crucial for living in water because primarily tubes protect them from outer environmental factors like predators, and pollution. It was observed during this study that when the DO of water is low, larvae make elongated tubes to reach the upper layer of water, where the DO level is comparatively high. To get their required amount of oxygen, the larvae increase the tube length towards the water surface and increase the DO in tube water by undulating the body and other structures, creating a current inside the tube25,26. On contrary, when the DO level of the surrounding water of chironomid is sufficient, they can manage their normal physiological activities with the available oxygen. They need not to elongate their tube length. That’s why their tube length is inversely related to the DO of their surrounding medium.If tube length does not increase in size in hypoxic water, larvae will not be able to meet their oxygen demand. If the DO of water decreases, tube length will increase and vice versa. Behavioural and physiological adaptations of chironomids larvae make them successful to live in a hypoxic environment. Thus, in hypoxic conditions, larvae with longer tubes are able to gather more oxygen from the upper layer of water and get more space to create a current of water to increase the amount of O2 inside the tube by undulating the preanal papillae, anal gill, ventral gills. This would explain why the tube length of chironomids depends on the DO of water. Hence by measuring the tube length with a standard measuring scale, one may get an idea about the quality of water, especially DO, before doing any chemical analysis. The work seems to be unique and novel for its own kind. More

  • in

    Defensive functions and potential ecological conflicts of floral stickiness

    Gorb, E. V. & Gorb, S. N. Anti-adhesive effects of plant wax coverage on insect attachment. J. Exp. Bot. 68, 5323–5337 (2017).CAS 
    PubMed 

    Google Scholar 
    Agrawal, A. A. & Konno, K. Latex: A model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu. Rev. Ecol. Evol. Syst. 40, 311–331 (2009).
    Google Scholar 
    Langenheim, J. H. Plant resins. Am. Sci. 78, 16–24 (1990).
    Google Scholar 
    Ben-Mahmoud, S. et al. Acylsugar amount and fatty acid profile differentially suppress oviposition by western flower thrips, Frankliniella occidentalis, on tomato and interspecific hybrid flowers. PLoS ONE 13, 1–20 (2018).
    Google Scholar 
    LoPresti, E. F., Pearse, I. S. & Charles, G. K. The siren song of a sticky plant: Columbines provision mutualist arthropods by attracting and killing passerby insects. Ecology 96, 2862–2869 (2015).CAS 
    PubMed 

    Google Scholar 
    Weinhold, A. & Baldwin, I. T. Trichome-derived O-acyl sugars are a first meal for caterpillars that tags them for predation. Proc. Natl. Acad. Sci. 108, 7855–7859 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Krimmel, B. A. & Wheeler, A. G. Host-plant stickiness disrupts novel ant–mealybug association. Arthropod. Plant. Interact. 9, 187–195 (2015).
    Google Scholar 
    Simmons, A. T., Gurr, G. M., McGrath, D., Martin, P. M. & Nicol, H. I. Entrapment of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on glandular trichomes of Lycopersicon species. Aust. J. Entomol. 43, 196–200 (2004).
    Google Scholar 
    Carter, C. D., Gianfagna, T. J. & Sacalis, J. N. Sesquiterpenes in glandular trichomes of a wild tomato species and toxicity to the colorado potato beetle. J. Agric. Food Chem. 37, 1425–1428 (1989).CAS 

    Google Scholar 
    Van Dam, N. M. & Hare, J. D. Biological activity of Datura wrightii glandular trichome exudate against Manduca sexta larvae. J. Chem. Ecol. 24, 1529–1549 (1998).
    Google Scholar 
    Kessler, A. & Heil, M. The multiple faces of indirect defences and their agents of natural selection. Funct. Ecol. 25, 348–357 (2011).
    Google Scholar 
    Karban, R., LoPresti, E., Pepi, A. & Grof-Tisza, P. Induction of the sticky plant defense syndrome in wild tobacco. Ecology 100, 1–9 (2019).
    Google Scholar 
    Krimmel, B. A. & Pearse, I. S. Sticky plant traps insects to enhance indirect defence. Ecol. Lett. 16, 219–224 (2013).CAS 
    PubMed 

    Google Scholar 
    Eisner, T. & Aneshansley, D. J. Adhesive strength of the insect-trapping glue of a plant (Befaria racemosa). Ann. Entomol. Soc. Am. 76, 295–298 (1983).
    Google Scholar 
    Spomer, G. G. Evidence of protocarnivorous capabilities in Geranium viscosissimum and Potentilla arguta and other sticky plants. Int. J. Plant Sci. 160, 98–101 (1999).
    Google Scholar 
    Darnowski, D. W., Carroll, D. M., Płachno, B., Kabanoff, E. & Cinnamon, E. Evidence of protocarnivory in triggerplants (Stylidium spp.; Stylidiaceae). Plant Biol. 8, 805–812 (2006).CAS 
    PubMed 

    Google Scholar 
    Givnish, T. J., Burkhardt, E. L., Happel, R. E. & Weintraub, J. D. Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist nutrient-poor habitats. Am. Nat. 124, 479–497 (1984).
    Google Scholar 
    Jürgens, N. Psammophorous plants and other adaptations to desert ecosystems with high incidence of sandstorms. Feddes Repert. 107, 345–359 (1996).
    Google Scholar 
    Lopresti, E. F. & Karban, R. Chewing sandpaper: Grit, plant apparency, and plant defense in sand-entrapping plants. Ecology 97, 826–833 (2016).PubMed 

    Google Scholar 
    Krupnick, G. A. & Weis, A. E. The effect of floral herbivory on male and female reproductive success in Isomeris arborea. Ecology 80, 135–149 (1999).
    Google Scholar 
    McCall, A. C. Florivory affects pollinator visitation and female fitness in Nemophila menziesii. Oecologia 155, 729–737 (2008).ADS 
    PubMed 

    Google Scholar 
    Bandeili, B. & Müller, C. Folivory versus florivory-adaptiveness of flower feeding. Naturwissenschaften 97, 79–88 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lai, D. et al. Lotus japonicus flowers are defended by a cyanogenic β-glucosidase with highly restricted expression to essential reproductive organs. Plant Mol. Biol. 89, 21–34 (2015).CAS 
    PubMed 

    Google Scholar 
    Kessler, A. & Halitschke, R. Testing the potential for conflicting selection on floral chemical traits by pollinators and herbivores: Predictions and case study. Funct. Ecol. 23, 901–912 (2009).
    Google Scholar 
    Kessler, D., Diezel, C., Clark, D. G., Colquhoun, T. A. & Baldwin, I. T. Petunia flowers solve the defence/apparency dilemma of pollinator attraction by deploying complex floral blends. Ecol. Lett. 16, 299–306 (2013).PubMed 

    Google Scholar 
    Li, J. et al. Defense of pyrethrum flowers: Repelling herbivores and recruiting carnivores by producing aphid alarm pheromone. New Phytol. 223, 1607–1620 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kennedy, G. G. Tomato, pests, parasitoids, and predators: tritrophic interactions involving the genus Lycopersicon. Annu. Rev. Entomol. 48, 51–72 (2003).CAS 
    PubMed 

    Google Scholar 
    McCarren, S., Coetzee, A. & Midgley, J. Corolla stickiness prevents nectar robbing in Erica. J. Plant Res. https://doi.org/10.1007/s10265-021-01299-z (2021).Article 
    PubMed 

    Google Scholar 
    Matulevich Peláez, J. A., Gil Archila, E. & Ospina Giraldo, L. F. Estudio fitoquímico de hojas, flores y frutos de Bejaria resinosa mutis ex linné filius (ericaceae) y evaluación de su actividad antiinflamatoria. Rev. Cuba. Plantas Med. 21, 332–345 (2016).
    Google Scholar 
    Kraemer, M. On the pollination of Bejaria resinosa Mutis ex Linne f. ( Ericaceae ), an ornithophilous Andean paramo shrub. Flora 196, 59–62 (2001).
    Google Scholar 
    Melampy, A. M. N. Flowering phenology, pollen flow and fruit production in the Andean Shrub Befaria resinosa. Oecologia 73, 293–300 (1987).ADS 
    CAS 
    PubMed 

    Google Scholar 
    LoPresti, E. F., Robinson, M. L., Krimmel, B. A. & Charles, G. K. The sticky fruit of manzanita: potential functions beyond epizoochory. Ecology 99, 2128–2130 (2018).PubMed 

    Google Scholar 
    Kessler, A. & Chautá, A. The ecological consequences of herbivore-induced plant responses on plant-pollinator interactions. Emerg. Topics Life Sci. 4, 33–43 (2020).
    Google Scholar 
    Lucas-Barbosa, D. Integrating studies on plant-pollinator and plant-herbivore interactions. Trends Plant Sci. 21, 125–133 (2016).CAS 
    PubMed 

    Google Scholar 
    Leckie, B. M. et al. Differential and synergistic functionality of acylsugars in suppressing oviposition by insect herbivores. PLoS ONE 11, 1–19 (2016).
    Google Scholar 
    Monteiro, R. F. & Macedo, M. V. First report on the diversity of insects trapped by a sticky exudate of the inflorescences of Vriesea bituminosa Wawra (Bromeliaceae: Tillandsioideae). Arthropod. Plant. Interact. 8, 519–523 (2014).
    Google Scholar 
    Chatzivasileiadis, E. A. & Sabelis, M. W. Toxicity of methyl ketones from tomato trichomes to Tetranychus urticae Koch. Exp. Appl. Acarol. 21, 473–484 (1997).CAS 

    Google Scholar 
    Avé, D. A., Gregory, P. & Tingey, W. M. Aphid repellent sesquiterpenes in glandular trichomes of Solanum berthaultii and S. tuberosum. Entomol. Exp. Appl. 44, 131–138 (1987).
    Google Scholar 
    LoPresti, E. Columbine pollination success not determined by a proteinaceous reward to hummingbird pollinators. J. Pollinat. Ecol. 20, 35–39 (2017).
    Google Scholar 
    Krimmel, B. A. & Pearse, I. S. Generalist and sticky plant specialist predators suppress herbivores on a sticky plant. Arthropod. Plant. Interact. 8, 403–410 (2014).
    Google Scholar 
    Adlassnig, W., Lendl, T., Peroutka, M. & Lang, I. Deadly glue- Adhesive traps of carnivorous plants. in Biological Adhesive Systems (eds. von Byren, J. & Grunwald, I.) 15–28 (2010).Ellison, A. M. & Gotelli, N. J. Evolutionary ecology of carnivorous plants. Trends Ecol. Evol. 16, 623–629 (2001).
    Google Scholar 
    Maloof, J. E. & Inouye, D. W. Are nectar robbers cheaters or mutualists?. Ecology 81, 2651–2661 (2000).
    Google Scholar 
    Asai, T., Hirayama, Y. & Fujimoto, Y. Epi-α-bisabolol 6-deoxy-β-d-gulopyranoside from the glandular trichome exudate of Brillantaisia owariensis. Phytochem. Lett. 5, 376–378 (2012).CAS 

    Google Scholar 
    Asai, T., Hara, N. & Fujimoto, Y. Fatty acid derivatives and dammarane triterpenes from the glandular trichome exudates of Ibicella lutea and Proboscidea louisiana. Phytochemistry 71, 877–894 (2010).CAS 
    PubMed 

    Google Scholar 
    Ohkawa, A., Sakai, T., Ohyama, K. & Fujimoto, Y. Malonylated glycerolipids from the glandular trichome exudate of Ceratotheca triloba. Chem. Biodivers. 9, 1611–1617 (2012).CAS 
    PubMed 

    Google Scholar 
    Omosa, L. K. et al. Antimicrobial flavonoids and diterpenoids from Dodonaea angustifolia. S. Afr. J. Bot. 91, 58–62 (2014).CAS 

    Google Scholar 
    Kessler, A. The information landscape of plant constitutive and induced secondary metabolite production. Curr. Opin. Insect Sci. 8, 47–53 (2015).PubMed 

    Google Scholar 
    Knudsen, J. T., Tollsten, L., Groth, I., Bergström, G. & Raguso, R. A. Trends in floral scent chemistry in pollination syndromes: Floral scent composition in hummingbird-pollinated taxa. Bot. J. Linn. Soc. 146, 191–199 (2004).
    Google Scholar 
    Pearse, I. S., Gee, W. S. & Beck, J. J. Headspace volatiles from 52 oak species advertise induction, species identity, and evolution, but not defense. J. Chem. Ecol. 39, 90–100 (2013).CAS 
    PubMed 

    Google Scholar 
    El-Sayed, A. M., Byers, J. A. & Suckling, D. M. Pollinator-prey conflicts in carnivorous plants: When flower and trap properties mean life or death. Sci. Rep. 6, 1–11 (2016).
    Google Scholar 
    Greenaway, W., May, J. & Whatley, F. R. Analysis of phenolics of bud exudate of Populus tristis by GC/MS. Zeitschrift fur Naturforsch.. Sect C J. Biosci. 47, 512–515 (1992).
    Google Scholar 
    Urzua, A. & Cuadra, P. Acylated flavonoid aglycones from Gnaphalium robustum. Phytochem. Divers. Redundancy Ecol. Interact. 29, 1342–1343 (1990).CAS 

    Google Scholar 
    Drewes, S. E., Mudau, K. E., Van Vuuren, S. F. & Viljoen, A. M. Antimicrobial monomeric and dimeric diterpenes from the leaves of Helichrysum tenax var tenax. Phytochemistry 67, 716–722 (2006).CAS 
    PubMed 

    Google Scholar 
    Midiwo, J. O. et al. Bioactive compounds from some Kenyan ethnomedicinal plants: Myrsinaceae, Polygonaceae and Psiadia punctulata. Phytochem. Rev. 1, 311–323 (2002).CAS 

    Google Scholar 
    Jiménez-Pomárico, A. et al. Chemical and morpho-functional aspects of the interaction between a Neotropical resin bug and a sticky plant. Rev. Biol. Trop. 67, 454–465 (2019).
    Google Scholar 
    Linhart, Y. B., Thompson, J. D., Url, S. & John, D. Terpene-based selective herbivory by Helix aspersa (Mollusca) on Thymus vulgaris (Labiatae). Oecologia 102, 126–132 (2012).
    Google Scholar 
    Kessler, A., Halitschke, R. & Poveda, K. Herbivory-mediated pollinator limitation: Negative impacts of induced volatiles on plant-pollinator interactions. Ecology 92, 1769–1780 (2011).PubMed 

    Google Scholar 
    Sletvold, N., Moritz, K. K. & Ågren, J. Additive effects of pollinators and herbivores result in both conflicting and reinforcing selection on floral traits. Ecology 96, 214–221 (2015).PubMed 

    Google Scholar 
    Ramos, S. E. & Schiestl, F. P. Rapid plant evolution driven by the interaction of pollination and herbivory. Science (80-). 364, 193–196 (2019).ADS 
    CAS 

    Google Scholar 
    Rojas-Nossa, S. V. Estrategias de extracción de néctar por pinchaflores (Aves: Diglossa y Diglossopis) y sus efectos sobre la polinización de plantas de los altos Andes. Ornitol. Colomb. 5, 21–39 (2007).
    Google Scholar 
    R Team Core. R: A language and environment for statistical computing. R Foundation for Statistical Computing. (2021).Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
    Google Scholar 
    Diaz-Uriarte, R. Package ‘ varSelRF ’. Compr. R Arch. Netw. 1–23 (2015). More

  • in

    Global crop yields can be lifted by timely adaptation of growing periods to climate change

    Rule-based mean sowing and maturity datesLocation- and climate-specific mean crop calendars are computed by combining two rule-based approaches published by19 and22 to simulate sowing and physiological maturity dates of grain crops, respectively. The assumption is that farmers select growing seasons based on the mean climatic characteristics of their specific location and on the physiological limitations (base and optimum temperatures for reproductive growth; sensitivity to terminal water stress) of the respective crop species. Accordingly, they select sowing dates and cultivars with phenologies that, on average, meet these adapted maturity dates.The climate is classified into (i) seasonality types, based on the coefficient of variation of monthly mean temperature and precipitation and (ii) temperature levels, based on the temperature of the warmest month as compared to the base and the optimum temperatures for the crop reproductive growth. Optimal temperatures for sowing, optimal temperature ranges for grain filling, as well as indicators of soil moisture conditions (based on precipitation/potential-evapotranspiration ratio (P/PET)), are defined as global parameters for each crop (Supplementary Table 1) and used as thresholds to identify the best timing for sowing and for the start or end of the crop grain-filling phase. To cope with fluctuations of daily values around these thresholds, mean daily temperature, precipitation and potential evapotranspiration are derived by linear interpolation between monthly values.We distinguish between spring and winter crop types. Maize, rice, sorghum, and soybean are simulated as spring crops only, for wheat we simulate both types. For spring crops, farmers sow the crops at the onset of the wet season (first day of the wettest 120 consecutive days), in case of prevailing precipitation seasonality, or on the day of the year when temperatures increase above crop-specific temperature threshold19 (Supplementary Table 1), in case of temperature-driven seasonality.For wheat, we distinguish three types: winter wheat with vernalization is chosen if monthly temperatures fall below 0 °C, but winter is neither too harsh (temperature of the coldest month is higher than −10 °C), nor too long (temperatures fall below the sowing temperature threshold (12 °C) after 15th September (North hemisphere) or 31st March (South hemisphere)19). Winter wheat without vernalization is grown if winters are mild (the temperature of the coldest month is higher than 0 °C) without dormancy. In this case, wheat is sown 75 days before the coldest month of the year. This rule was arbitrarily chosen based on observed wheat sowing dates in mild winter regions. If the conditions for growing any of the winter-wheat types are not met (winter too harsh and too long), then spring wheat (without vernalization) is chosen. Note that the computed sowing dates do not differ between rainfed and irrigated for any of the crops.The mean maturity date is chosen so that the crop grain-filling phase, the most critical for yield formation, occurs under the least stressful conditions possible in that location and climate as follows. Under precipitation seasonality, grain filling starts towards the end of the rainy season, when a P/PET threshold is crossed. Under temperature seasonality, (a) grain filling of spring crops starts in the warmest month of the year (if summer temperatures are optimal), or right after temperatures return within an optimal range; (b) grain filling of winter crops ends in the warmest month of the year (if summer temperatures are optimal), or right before temperatures exceed the optimal range; (c) eventually, maturity is advanced to escape terminal water stress. Note that the grain-filling phase has a static duration of 60 days for maize and 40 days for all the other crops. This assumption is based on empirical relationships between the total growth period and the post-flowering reproductive phase, showing that the partition between the vegetative and reproductive phase of grain crops follows a saturation curve that levels off after 90–100 days of total growth duration54. Different crops are assumed to have only one crop cycle (sowing-to-maturity) per year, therefore neither multi-cropping systems nor crop rotations are accounted for in the decision-making rules. A detailed description of the rules and parameterization can be found in refs. 19, 22.Simulated crop calendars reflect current farmers’ managementSimulated historical crop calendars, driven by the bias-corrected climate dataset WFDEI23, largely agree with observations11,12,13. We compare results both at the country and grid-cell level because, although the observed crop calendars used here are gridded datasets, their underlying sources are often reported per country. The country-level comparison highlights that the agreement is good for most countries, importantly, including those with large cropland area. The area-weighted Mean Absolute Error (MAE) is close or well below 30 days for all considered crops (Fig. 4). The simulated crop calendars compare well with the observed data also at the grid-cell level. Large areas, including major agricultural regions of importance for global yields, show deviations within ±15 days for both sowing and maturity dates (Supplementary Table 2 and Supplementary Figs. 21–24). However, evaluating the accuracy below 30 days is limited by the time resolution of the observations, which is either (i) monthly11 and converted by us into daily values, by taking the mid-day of the reported month, or (ii) daily12,13, but resulting from averages over large time windows (often  > 1 month). Overall, the accuracy of the model is in line with the original evaluations of this rule-base method19,22, as well as with other studies simulating average growing periods across large regions18,20.Fig. 4: Evaluation of simulated crop calendars.Country-level comparison of simulated and observed sowing (A) and maturity (B) dates (day of the year) for five crops. Each circle refers to a country and a crop, the size of the circle is scaled according to the cropland area per country. The area-weighted Mean Absolute Error (MAE, days) is reported for each crop. Crop-calendar simulations are based on WFDEI reanalysis climate forcing23 for the period 1979–2012. The observed crop calendar includes different sources11,12,13.Full size imageSimulation of daily crop phenology and yields with the LPJmL crop modelWe perform a modeling experiment across the global land grid at 0.5° × 0.5° resolution. We used the LPJmL5 crop model24,25 to simulate daily growth and phenological development of five crops, driven by climate projections from four General Circulation Models (GCMs) GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and MIROC5 under the Representative Concentration Pathways 6.0 (RCP6.0) as provided in bias-adjusted form from the CMIP5 archive by the ISIMIP2b project42. Irrigated and rainfed production systems are simulated separately on their current harvested areas11, which is also used to compute total crop yields at grid-cell and global scale, as the product of yield by crop-specific area. A first 5000-year spin-up simulation is used to initialize all model pools (e.g., soil carbon and nitrogen content). A second spin-up simulation of 390 years is used to introduced effects of historical human-driven land-use change on these pools. A change in cropping area for the future scenarios is not considered in this study.Phenological development is simulated based on the thermal-time model, including the effect of vernalization. All crops are assumed to be insensitive to photoperiod, due to a lack of parameters for multiple-crops and global-scale simulations. Previous global studies15,18 that have focused on maize and wheat only, have found lower performances in the growing-period simulations when using a photo-thermal model, compared to a temperature-only driven approach and thus recommend caution when using the photoperiodic response. State-of-the-art global crop models13,16 also typically do not consider sensitivity to photoperiod or assume that the photoperiodic response of the cultivars chosen in each location are perfectly tuned to the given conditions.Sowing dates are prescribed based on the external rule-based algorithm. Crop cultivars are parametrized based on the phenological units required to reach the corresponding maturity dates (TUreq, °C days). In line with15, TUreq are derived consistently with the phenological module of the crop model LPJmL for each grid cell, crop, and rule-based computed growing period from the respective climate input. They are calculated as the sum of daily mean air temperature increments above a crop-specific base temperature (TU) (Supplementary Table 1) between rule-based sowing and maturity. In addition, winter-wheat cultivars require effective vernalization days (VUreq), that range between 0 (mild winters) and 70 (cold winters), depending on the temperature of the 5 coldest months (Eq. (1))15,18.$${{{{{mathrm{V}}}}}}{{{{{{mathrm{U}}}}}}}_{{{{{{{mathrm{req}}}}}}}}=frac{70}{5}times left(1-frac{{T}_{m}-3}{10-3}right)$$
    (1)
    where Tm is the mean temperature of the month.From the day of sowing, effective TU for phenological development are accumulated daily, as the difference between the mean air temperature on that day and the crop-specific base temperature for phenological development (Eq. (2)). The vernalization effectiveness is computed daily by a scaling factor (0–1), which is then multiplied to the TU (Eq. (2)). For crops that are insensitive to vernalization, VUd is set equal one.$${{{{{mathrm{T}}}}}}{{{{{{mathrm{U}}}}}}}_{{{{{{{mathrm{req}}}}}}}}=mathop{sum }_{d=1}^{{ndays}}left({max }left(0,{T}_{d}-{T}_{{base}}right)times mathop{sum }_{0}^{d}{{{{{mathrm{V}}}}}}{{{{{{mathrm{U}}}}}}}_{d}right)$$
    (2)
    where the scaling factor VUd is computed by a three-stage linear response function with a range of optimal temperatures (Eq. 3). Temperature for effective vernalization range between −4 °C and +17 °C, with an optimum range between 3 °C and 10 °C.$${{{{{{{mathrm{VU}}}}}}}}_{d}=left{begin{array}{cc}left({T}_{d}-left(-4right)right)/left(3-10right) & {{{{{{mathrm{if}}}}}}}-4 , < ,{T}_{d} , < , 3\ 1 & {{{{{{mathrm{if}}}}}}};3,le ,{T}_{d},le, 10\ left(17-{T}_{d}right)/left(17-10right) & {{{{{{mathrm{if}}}}}}};10 , < ,{T}_{d} , < , 17\ 0 & {{{{{{mathrm{otherwise}}}}}}}end{array}right}$$ (3) In this study, we have removed the effect of vernalization on slowing down TU accumulation until 10% of the total vernalization requirements is reached. In this way, the crop can accumulate both vernalization units and heat units in fall, so that there is some leaf growth before winter (in LPJmL, the LAI curve depends on accumulated heat units).The LPJmL model simulates phenology as one single phase from emergence to maturity. Although the flowering stage is not simulated as an explicit break point, the fraction of above-ground biomass that is allocated to the storage organs (fHI) depends on the phenological progress (fTUreq, fraction of TUreq that have been fulfilled), with the bulk of the storage organs start filling up after 40% of TUreq have been reached (Eq. (4)). In line with this, the LAI curve reaches a plateau when 45% (wheat) or 50% (other crops) of the TUreq are fulfilled, which could be considered a proxy of the flowering stage.$${{{{{{mathrm{fHI}}}}}}}=100times frac{{{{{{{{mathrm{fTU}}}}}}}}_{{{{{{{mathrm{req}}}}}}}}}{100times {{{{{{{mathrm{fTU}}}}}}}}_{{{{{{{mathrm{req}}}}}}}}+{{exp }}^{11.1-10.0times {{{{{{{mathrm{fTU}}}}}}}}_{{{{{{{mathrm{req}}}}}}}}}}$$ (4) Crop biomass growth is simulated by daily carbon accumulation and allocation to different plant organs (roots, leaves, storage organs, mobile reserves, and stem). The fraction of carbon allocated to each pool is a function of the fraction of completed phenological progress. Water stress increases allocation to the roots and reduces allocation to the leaves. The daily Net Primary Production (NPP) is the result of the Gross Primary Production (daily gross photosynthesis) reduced by the respiration costs. Gross photosynthesis is simulated as a function of absorbed photosynthetically active radiation, CO2 atmospheric mixing ratio, air temperature, day length, and canopy conductance. Photosynthesis rate is given by the minimum between light-limited and Rubisco-limited photosynthesis rates, with distinguished pathways for C3 and C4 crops. Respiration is tissue-specific and it is also driven by temperature. If accumulated NPP is insufficient to satisfy all organ demands, allocation follows a hierarchical order from roots, to leaves, to storage organs, and consequently penalizing the harvest index. Crops are subject to yield failure due to frost events (daily minimum temperature More

  • in

    Quantifying thermal cues that initiate mass emigrations in juvenile white sharks

    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333(6045), 1024–1026. https://doi.org/10.1126/SCIENCE.1206432 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Newton, I. Migration within the annual cycle: Species, sex and age differences. J. Ornithol. 152, 169–185. https://doi.org/10.1007/S10336-011-0689-Y/TABLES/1 (2011).Article 

    Google Scholar 
    Dodson, S., Abrahms, B., Bograd, S. J., Fiechter, J. & Hazen, E. L. Disentangling the biotic and abiotic drivers of emergent migratory behavior using individual-based models. Ecol. Model. 432, 109225. https://doi.org/10.1016/J.ECOLMODEL.2020.109225 (2020).Article 

    Google Scholar 
    Lehikoinen, A. et al. Sex-specific timing of autumn migration in birds: the role of sexual size dimorphism, migration distance and differences in breeding investment. Ornis Fennica 94, 53–65 (2017).
    Google Scholar 
    Stewart, B. S. Ontogeny of differential migration and sexual segregation in northern elephant seals. J. Mammol. 78(4), 1101–1116 (1997).Somveille, M., Rodrigues, A. S. L. & Manica, A. Why do birds migrate? A macroecological perspective. Glob. Ecol. Biogeogr. 24(6), 664–674. https://doi.org/10.1111/geb.12298 (2015).Article 

    Google Scholar 
    Corkeron, P. J. & Connor, R. C. Why do baleen whales migrate?. Mar. Mamm. Sci. 15(4), 1228–1245. https://doi.org/10.1111/J.1748-7692.1999.TB00887.X (1999).Article 

    Google Scholar 
    Mourier, J., Mills, S. C. & Planes, S. Population structure, spatial distribution and life-history traits of blacktip reef sharks Carcharhinus melanopterus. J. Fish Biol. 82(3), 979–993. https://doi.org/10.1111/JFB.12039 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Avgar, T., Mosser, A., Brown, G. S. & Fryxell, J. M. Environmental and individual drivers of animal movement patterns across a wide geographical gradient. J. Anim. Ecol. 82, 96–106. https://doi.org/10.1111/j.1365-2656.2012.02035.x (2013).Article 
    PubMed 

    Google Scholar 
    Crawshaw, L. I. Physiological and behavioral reactions of fishes to temperature change. J. Fish. Res. Board Can. 34(5), 730–734. https://doi.org/10.1139/f77-113 (1977).Article 

    Google Scholar 
    Heithaus, M., Dill, L., Marshall, G. J. & Buhleier, B. Habitat use and foraging behavior of tiger sharks (Galeocerdo cuvier) in a seagrass ecosystem. Mar. Biol. 140, 337–348. https://doi.org/10.1007/s00227-001-0711-7 (2002).Article 

    Google Scholar 
    Magnuson, J. J., Crowder, L. B. & Medvick, P. A. Temperature as an ecological resource. Integr. Comp. Biol. 19(1), 331–343. https://doi.org/10.1093/icb/19.1.331 (1979).Article 

    Google Scholar 
    Matern, S. A., Cech, J. J. & Hopkins, T. E. Diel movements of bat rays, Myliobatis californica, in Tomales Bay, California: Evidence for behavioral thermoregulation?. Environ. Biol. Fishes 58(2), 173–182. https://doi.org/10.1023/A:1007625212099 (2000).Article 

    Google Scholar 
    Speed, C. W., Meekan, M. G., Field, I. C., McMahon, C. R. & Bradshaw, C. J. A. Heat-seeking sharks: Support for behavioural thermoregulation in reef sharks. Mar. Ecol. Prog. Ser. 463, 231–244. https://doi.org/10.3354/meps09864 (2012).Article 
    ADS 

    Google Scholar 
    Dewar, H., Domeier, M. & Nasby-Lucas, N. Insights into young of the year white shark, Carcharodon carcharias, behavior in the Southern California Bight. Environ. Biol. Fishes https://doi.org/10.1023/B:EBFI.0000029343.54027.6a.pdf (2004).Article 

    Google Scholar 
    Hertz, P. E., Huey, R. & Stevenson, R. D. Evaluating temperature regulation by field-active ectotherms. Am. Nat. 142, 796–818 (1993).Article 
    CAS 
    PubMed 

    Google Scholar 
    Heupel, M. R., Simpfendorfer, C. A. & Hueter, R. E. Estimation of shark home ranges using passive monitoring techniques. Environ. Biol. Fishes 71(2), 135–142. https://doi.org/10.1023/b:ebfi.0000045710.18997.f7 (2004).Article 

    Google Scholar 
    Topping, D. T., Lowe, C. G. & Caselle, J. E. Site fidelity and seasonal movement patterns of adult California sheephead Semicossyphus pulcher (Labridae): An acoustic monitoring study. Mar. Ecol. Progr. Ser. 326, 257–267 (2006).Weng, K. C. et al. Movements, behavior and habitat preferences of juvenile white sharks Carcharodon carcharias in the eastern Pacific. Mar. Ecol. Prog. Ser. 338, 211–224. https://doi.org/10.3354/meps338211 (2007).Article 
    ADS 

    Google Scholar 
    Lyons, K. et al. The degree and result of gillnet fishery interactions with juvenile white sharks in southern California assessed by fishery-independent and -dependent methods. Fish. Res. 147, 370–380. https://doi.org/10.1016/J.FISHRES.2013.07.009 (2013).Article 
    ADS 

    Google Scholar 
    Papastamatiou, Y. P. et al. Drivers of daily routines in an ectothermic marine predator: Hunt warm, rest warmer?. PLoS ONE. https://doi.org/10.1371/journal.pone.0127807 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adolph, S. C. Influence of behavioral thermoregulation on microhabitat use by two sceloporus lizards. Ecology 71(1), 315–327. https://doi.org/10.2307/1940271 (1990).Article 

    Google Scholar 
    Heithaus, M. R. The biology of tiger sharks, Galeocerdo cuvier, in Shark Bay, Western Australia: sex ratio, size distribution, diet, and seasonal changes in catch rates. Environ. Biol. Fishes 61, 25–36 (2001).Article 

    Google Scholar 
    Vaudo, J. J. & Lowe, C. G. Movement patterns of the round stingray Urobatis halleri(Cooper) near a thermal outfall. J. Fish Biol. 68(6), 1756–1766. https://doi.org/10.1111/j.0022-1112.2006.01054.x (2006).Article 

    Google Scholar 
    Vaudo, J. J. & Heithaus, M. R. Microhabitat selection by marine mesoconsumers in a thermally heterogeneous habitat: Behavioral thermoregulation or avoiding predation risk?. PLoS ONE. 8(4), e61907. https://doi.org/10.1371/journal.pone.0061907 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weng, K. C. et al. Migration and habitat of white sharks (Carcharodon carcharias) in the eastern Pacific Ocean. Mar. Biol. 152(4), 877–894. https://doi.org/10.1007/s00227-007-0739-4 (2007).Article 

    Google Scholar 
    White, C. F. et al. Quantifying habitat selection and variability in habitat suitability for juvenile white sharks. PLoS ONE 14(5), e0214642. https://doi.org/10.1371/journal.pone.0214642 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Curtis, T. H. et al. First insights into the movements of young-of-the-year white sharks (Carcharodon carcharias) in the western North Atlantic Ocean. Sci. Rep. 8(1), 1–8. https://doi.org/10.1038/s41598-018-29180-5 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Bruce, B. D., Harasti, D., Lee, K., Gallen, C. & Bradford, R. Broad-scale movements of juvenile white sharks Carcharodon carcharias in eastern Australia from acoustic and satellite telemetry. Mar. Ecol. Prog. Ser. 619, 1–15. https://doi.org/10.3354/MEPS12969 (2019).Article 
    ADS 

    Google Scholar 
    Carey, F. G. et al. Temperature and activities of a white shark Carcharodon carcharias. Copeia 2, 254–260. https://doi.org/10.2307/1444603 (1982).Article 

    Google Scholar 
    Klimley, A. P., Beavers, S. C., Curtis, T. H. & Jorgensen, S. J. Movements and swimming behavior of three species of sharks in La Jolla Canyon, California. Environ. Biol. Fish. 63, 117–135. https://doi.org/10.1023/A:1014200301213.pdf (2002).Article 

    Google Scholar 
    Towner, A. V., Underhill, L. G., Jewell, O. J. D. & Smale, M. J. Environmental Influences on the abundance and sexual composition of white sharks Carcharodon carcharias in Gansbaai, South Africa. PLoS ONE. 8(8), e71197. https://doi.org/10.1371/journal.pone.0071197 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, J. M. et al. High-resolution acoustic telemetry reveals swim speeds and inferred field metabolic rates in juvenile white sharks (Carcharodon carcharias). PLoS ONE 17(6), e0268914. https://doi.org/10.1371/JOURNAL.PONE.0268914 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, J. M. et al. Interannual nearshore habitat use of young of the year white sharks off Southern California. Front. Mar. Sci. 8, 238. https://doi.org/10.3389/fmars.2021.645142 (2021).Article 

    Google Scholar 
    Domeier, M. L. & Nasby-Lucas, N. Two-year migration of adult female white sharks (Carcharodon carcharias) reveals widely separated nursery areas and conservation concerns. Anim. Biotelemet. 1(1), 1–10. https://doi.org/10.1186/2050-3385-1-2/FIGURES/3 (2013).Article 

    Google Scholar 
    Oñate-González, E. C. et al. Importance of Bahia Sebastian Vizcaino as a nursery area for white sharks (Carcharodon carcharias) in the Northeastern Pacific: A fishery dependent analysis. Fish. Res. 188, 125–137. https://doi.org/10.1016/J.FISHRES.2016.12.014 (2017).Article 

    Google Scholar 
    Lowe, C. G. et al. Historic fishery interactions with white sharks in the Southern California Bight. Glob. Perspect. Biol. Life Hist. White Shark 14, 169–190 (2012).
    Google Scholar 
    Anderson, J. M. et al. Non-random Co-occurrence of Juvenile White Sharks (Carcharodon carcharias) at Seasonal Aggregation Sites in Southern California. Front. Mar. Sci. 8, 1–14. https://doi.org/10.3389/fmars.2021.688505 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Benson, J. F. et al. Juvenile survival, competing risks, and spatial variation in mortality risk of a marine apex predator. J. Appl. Ecol. 55, 2888–2897. https://doi.org/10.1111/1365-2664.13158 (2018).Article 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development for R. (RStudio, PBC, 2020) http://www.rstudio.com/.Derrick, T., & Thomas, J. Time Series Analysis: The Cross-Correlation Function. Innovative Analyses of Human Movement, Chapter 7. https://lib.dr.iastate.edu/kin_pubs/46 (2004).Killick, R., Fearnhead, P. & Eckley, I. A. Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 107, 1590–1598. https://doi.org/10.1080/01621459.2012.737745 (2012).Article 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar 
    Bakun, A. Coastal Upwelling Indices, West Coast of North America. US Department of Commerce. NOAA Technical Report, NMFS SSRF-671 (1973).Di Lorenzo, E. Seasonal dynamics of the surface circulation in the Southern California Current System. Deep-Sea Res. Part II 50(14–16), 2371–2388. https://doi.org/10.1016/S0967-0645(03)00125-5 (2003).Article 
    ADS 

    Google Scholar 
    Lynn, R. J. & Simpson, J. J. The California Current System: The seasonal variability of its physical characteristics. J. Geophys. Res. 92(C12), 12947. https://doi.org/10.1029/jc092ic12p12947 (1987).Article 
    ADS 

    Google Scholar 
    Sinnett, G. & Feddersen, F. The surf zone heat budget: The effect of wave heating. Geophys. Res. Lett. 41(20), 7217–7226. https://doi.org/10.1002/2014GL061398 (2014).Article 
    ADS 

    Google Scholar 
    Wei, X., Li, K.-Y., Kilpatrick, T., Wang, M. & Xie, S.-P. Large-scale conditions for the record-setting Southern California marine heatwave of August 2018. Geophys. Res. Lett. 48(7), e2020GL091803 (2021).Article 
    ADS 

    Google Scholar 
    Freedman, R. M., Brown, J. A., Caldow, C. & Caselle, J. E. Marine protected areas do not prevent marine heatwave-induced fish community structure changes in a temperate transition zone. Sci. Rep. 10(1), 1–8. https://doi.org/10.1038/s41598-020-77885-3 (2020).Article 
    CAS 

    Google Scholar 
    Heupel, M. R., Simpfendorfer, C. A. & Hueter, R. E. Running before the storm: blacktip sharks respond to falling barometric pressure associated with Tropical Storm Gabrielle. J. Fish Biol. 63(5), 1357–1363. https://doi.org/10.1046/J.1095-8649.2003.00250.X (2003).Article 

    Google Scholar 
    Guttridge, T. L. et al. Deep danger: Intra-specific predation risk influences habitat use and aggregation formation of juvenile lemon sharks Negaprion brevirostris. Mar. Ecol. Progr. Ser. 445, 279–291 (2012).Article 
    ADS 

    Google Scholar 
    Grainger, R. et al. Diet composition and nutritional niche breadth variability in juvenile white sharks (Carcharodon carcharias). Front. Mar. Sci. 7, 422 (2020).Article 

    Google Scholar 
    Hussey, N. E., Christiansen, H. M. & Dudley, S. F. J. Size-based analysis of diet and trophic position of the white shark, carcharodon carcharias, in South African waters. Glob. Perspect. Biol. Life Hist. White Shark 3, 27–49. https://doi.org/10.1201/b11532-5 (2012).Article 

    Google Scholar 
    Kim, S. L., Tinker, M. T., Estes, J. A. & Koch, P. L. Ontogenetic and among-individual variation in foraging strategies of northeast Pacific white sharks based on stable isotope analysis. PLoS ONE 7(9), e45068. https://doi.org/10.1371/JOURNAL.PONE.0045068 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tinker, M. T. et al. Dramatic increase in sea otter mortality from white sharks in California. Mar. Mamm. Sci. 32(1), 309–326. https://doi.org/10.1111/mms.12261 (2015).Article 

    Google Scholar  More

  • in

    Household perception and infestation dynamics of bedbugs among residential communities and its potential distribution in Africa

    Sample collectionA survey was conducted among the residents of nine counties in Kenya (Mombasa, Kisumu, Machakos, Nairobi, Makueni, Bomet, Kericho, Kiambu, and Narok) and GPS location coordinates were recorded and later used to build the predictive model (“Infestation dynamics of bedbugs in residential communities” section). These counties represent diversity in cultural practices, livelihood strategies (such as fishing, tourism, farming), and infrastructure development. Also, they comprise different altitudes above sea level, temperatures, and differing in average annual rainfall.Samples identification using morphological identification keysIn each county where the survey was conducted, bedbug samples was taken and preserved in ethanol 70% for morphological identification. Cimex belonging to Cimicidae family is the common genus adapted to human environment and reported throughout the world and comprising species such as Cimex lectularius and C. hemipterus that are hematophagous mainly feeding on human blood5. The key morphological features used in identifying bedbugs include: (1) the head has a labrum that appears as a free sclerite at the extreme anterior margin, ecdysial lines form a broad V, eyes project from the sides composed of several facets and the antennae are 4-segmented, (2) thorax is subdivided into prothorax, mesothorax and metathorax, (3) legs have all other normal parts except pulvilli and arolia, tarsus is 3-segmented with 2 simple claws, (4) the abdomen has 11 more-or-less segmented recognizable segments, 7 pairs of spiracles borne on the second to eighth segments, hosts the genital structures, paramere in males and mesospermalege in females45. Bedbug specimen morphological features were examined using Leica EZ24 HD dissecting microscope (Leica Microsystems, UK) and photos documented using the associated software.Survey for household’s knowledge and perceptions on bedbugsThis study was a community-based cross-sectional survey conducted from November–December 2020 with respect of the rules/guidlines introduced by the Ministry of Health to contain the COVID-19 pandemic in Kenya (wearing mask, social distance, washing hand, etc.). It was based on a stratified, systematic random sampling where 100 respondents were selected from each county.A total number of 900 respondents were randomly selected and the household head or the representative showing willingness and consent was interviewed face-to-face. The interview was conducted using a semi-structured questionnaire prepared in the English language (Appendix A). The questionnaire was translated into the local native language (Kiswahili) to avoid biasness and improve the understanding between the enumerator and the respondent. Prior to the commencement of the survey and authentic data collection, a pre-testing exercise was performed by training enumerators on a similar socio-demographic pattern. This was useful for improving the quality of data, ensuring validity, familiarizing the enumerators with the questionnaire, and data handling.The information collected using the semi-structured questionnaire included residents’ socio-economic profiles, knowledge, and perceptions on the pest, bedbug incidence, and management practices. The socio-economic profile factors addressed in the survey comprised gender, age, education, access to basic social amenities, and household size. The study also prioritized the financial consequences, the severity of the bites, perceptions of respondents on the pest, and management practices for its control.Survey data were checked for errors, completeness, summarized, and entered in Microsoft-Excel. It was then cleaned and transferred to Statistical Package for Social Science (SPSS) version 25 software (IBM Corp., Armonk, NY) for purposes of descriptive statistics (means and percentages).In contrast, in instances where more than one reason was given for a single question, percentages were calculated based on each group of similar responses. Chi-square was performed to determine the differences regarding socio-demographic characteristics, knowledge, and perceptions on bedbugs and control practices. Additionally, data were disaggregated by gender and age categories to understand the existing differences among the various respondent categories. Besides, F-test statistics was performed on the ages of respondents to determine the mean, standard deviation and statistical significance. The level of significance was considered when the p-value was below 5%.Infestation dynamics model of bedbugModel simulation assumptionsHouses infestation dynamics was studied following Susceptible-Infested-Treatment (SIT) model46. Therefore, houses in the community are classified into three groups: susceptible, infested or treated. Within a house, bedbug population dynamics was ignored, while it was considered from one house to another where infested houses have some potential to spread the infestation to other houses in the community. A population of bedbugs in an infested house has some probability per unit of time of becoming extinct either naturally or after treatment. In the infestation dynamics, the rate of house infestation depends on the number of infested houses, the movement of people from one house to another and the proportion of treated houses in the community. We assume that infested houses (I) spread the infestation at the rate β and only a fraction S/N of the houses is susceptible (S) to infestation. Infested houses become extinct at a certain rate known as rate γ. Infested houses are treated at the rate τ and the protection conferred is lost at the rate α. Ordinary differential equation developed to study SIT model were used in this study46. All the models used have the generic formulations displayed below:$$frac{dS}{dt}=frac{beta }{N}SI+gamma I+alpha T$$
    (1)
    $$frac{dI}{dt}=frac{beta }{N}SI-(gamma +tau )I$$
    (2)
    $$frac{dT}{dt}=tau I-alpha T$$
    (3)
    where β  > 0, τ  > 0, α ≥ 0 and γ  > 0. The total population size is N = S(t) + I(t) + t(t). The initial conditions satisfy at S(0)  > 0, I(0)  > 0, T(0) ≥ 0 and S(0) + I(0) = N, where N is the constant total population size, dN/dt = 0.Infestation dynamics models implementationThe method used to implement the infestation dynamics model of the pest is based on the system thinking approach with its archetypes [Causal Loop Diagram (CLD), Reinforcing (R) and Balancing (B)] by a mental and holistic conceptual framework. This is important for mapping how the variables, issues, and processes influence each other in the complex interactions of bedbugs within and between houses and their impacts. Despite these archetypes being qualitative, they are necessary for elucidating and disclosing the basic feedback configurations that occur in houses and their environs when infested with pests like bedbugs. A dynamic model was generated by converting the causal loop diagram (CLD) obtained using stocks, flows, auxiliary links, and clouds. Consequently, these in turn were translated into coupled differential equations for simulations.The SIT model was translated into causal loop diagram where arrows show the cause-effect relations where positive sign indicates direct proportionality of cause and effect while negative sign shows inverse proportionality relations, and two different scenarios have been assessed: (1) homogeneous houses where there is a single community of houses of the same quality, and (2) heterogeneous houses where there is a community of good and bad houses. Ancient houses presenting slits/fissures with less cleanliness and filled with old or secondhand furniture at low grade are considered bad houses as they may sustain high level of bedbug infestation; and new houses don’t provide well enough conditions for bedbug population to survive, and they are called in the model good houses47. Bad houses are considered to act as sources while good houses act as sinks, but all together are randomly distributed where each house has the same probability to contact good or bad houses.In the scenarios of homogeneous houses, the causal loop diagram (Fig. 7) has two feedback loops: (a) one positive, as the number of infested houses increases, the probability to get susceptible houses infested also increases resulting in infested houses increase; (b) one negative, as the infested houses increases, the treated houses increase resulting in susceptible houses decrease. The causal loop diagram is displayed in Fig. 7A while Fig. 7B showed the stocked and flows diagram and axillary variables obtained from causal loop diagram.Figure 7Susceptible-Infested-Treatment (SIT) model translated into causal loop diagram (A) and stock and flow diagram (B) for homogeneous houses and causal loop diagram (C) and stock and flow diagram (D) for heterogeneous houses in the community.Full size imageSusceptible, infested, and treated houses are stocks in the system, representing the number of houses susceptible, infested, and treated, respectively at a given point of time. The rates represent in and out-flows of the diagram. Auxiliary and constants that drive the behavior of the system were connected using information arrows within them and flows and stocks to represent the relations among variables in terms of equations.In the scenarios of heterogeneous houses, the causal loop diagram (Fig. 7C) comes with the two previous feedback loops but for each category of house. In addition, there is a fifth feedback loop that connect bad house to good house and vice versa.Therefore, as the infested bad houses increase, the probability to infest good houses increases. The more they are exposed the more they get infested. In turn, as the infested good houses increase, the chance to infest susceptible bad houses increases and the more they are exposed, the more they get infested, resulting in the increase of infested bad houses. The stocks and flows diagram of each of the two categories of houses occurred with interconnexion relationships between the two categories (Fig. 7D).Models’ simulationsThe survey data (“Bedbug Genus identification” section) on prevalence, knowledge, perceptions and self-reported; in addition, the respondents’ reported control mechanisms and their average time of effectiveness (Appendix B, Table S1) were used for model simulations. The different control methods reported were reclassified in three control approaches: chemical control, other control methods (including exposure to direct sunlight, use of hot water, painting, application of diesel, paraffin and wood ash, use of Aloe Vera extract and Herbs), and combination of chemical and other control methods. All the models commodities and units were checked before performing the simulations. Simulation and implementation of the models were done using Vensim PLP 8.1 platform (Ventana systems, Harvard, USA). It consists of a graphical environment that usually permits drawing of Causal Loop Diagram (CLD), stocks, flow diagrams and to carry out simulations. After we simulated the infestation dynamics under the two scenarios, we explored the effect of the different control methods.Spatial distribution analysis of bedbugs using MaxEnt modelEnvironmental data for MaxEntThe environmental variables used as the other maxent input were obtained by deriving bioclimatic, land cover, and elevation data. Bioclimatic variables and elevation (Digital Elevation Model; DEM) data were obtained from the Global Climate Data official website, Worldclim (http://www.worldclim.org/bioclim.htm)48 including 19 bioclimatic variables (Appendix B, Table S2). The land cover data were downloaded from the Global Land Cover Facility (GLCF).In order to reduce collinearity between predictors, a collinearity test was performed on all the variables by filtering them according to the following steps36: firstly, the MaxEnt model was run using the distribution data of bedbugs and 19 bioclimatic variables to obtain the percent contribution of each variable to the preliminary prediction results. Secondly, following the generation of the percentage contribution of all the variables, we then imported all distribution points in Arc-GIS and extracted the attribute values of the 19 variables. Furthermore, the “virtual species” package49 in R-software (R Foundation for Statistical Computing, Vienna, Australia) was used to explore the extracted variables’ clusters spatial correlation using Pearson’s correlation coefficient and the cluster tree (Fig. 8). Thus, the final number of predictor variables after screening was 5 establishing the potential geographical distribution of bedbug, which includes Temperature Seasonality (bio4), Precipitation of Driest Month (bio14), Temperature Annual Range (bio7), Precipitation of Driest Quarter (bio17) and Precipitation of Warmest Quarter (bio18) (Appendix B, Table S2). The land cover was considered because studies have shown its importance on insect spatial distribution50,51,52 and it was setled as a categorical variable53. Elevation was selected as variable because it greatly influences species’ occurrence and dispersal by affecting the temperature, precipitation, vegetation, and sun characteristics (direction, intensity, etc.) on the earth’s surface54,55,56. The study variables had different resolutions and were therefore, resampled to 1 km. The variables were clipped to Kenya and Africa boundaries and converted to ASCII (Stands for “American Standard Code for Information Interchange”) format using the ‘raster’ package49 in R statistical software (R Foundation for Statistical Computing, Vienna, Australia).Figure 8Key model predictor variables.Full size imageDistribution modelling in Kenya and AfricaIn our study, we used the maximum entropy distribution modelling method. This is because it has been recommended to have the ability to perform best and remain effective despite the use of small sample size relative to the other modelling methods57.Our selected bioclimatic variables (5) and occurrence/prevalence data for bedbugs were then imported into MaxEnt model and the options of ‘Create response curves’ and ‘Do jackknife’ were selected to measure variable importance’ options. The model output file was selected as ‘Logistic’, the commonly used approach is the random portioning of distribution datasets into ‘training’, and ‘test’ sets57,58. MaxEnt model was run with a total number of 5000 iterations and five replicates for better convergence of the model and rescaled within the range of 0–1000 suitability scores using ‘raster’ package49 in R statistical software (R Foundation for Statistical Computing, Vienna, Australia).The modelling performance/MaxEnt accuracy was evaluated by choosing the area under the receiver operating characteristics (ROC) curve (AUC) as the estimation index. This was important for the calibration and validation of the robustness of MaxEnt model evaluation. Furthermore, the area under the ROC curve (AUC) was necessary as an additional precision analysis59. The range of AUC values greater than 0.7 was considered a fair model performance, while those greater than 0.9 indicated that the model was considered an excellent model performance. Therefore, by considering the AUC values, the excellently performing model was selected to analyze the suitability of bedbugs in Kenya and Africa59,60,61,62.The ASCII format output was then imported into QGIS 3.10.2 (using the QGIS 3.10.2 software, https://qgis.org/downloads/), following its conversion into a raster format file using R software. This was useful for the classification and visualization of the distribution area63,64. The potential suitable distribution of bedbugs was extracted using the Kenyan and African maps. At the same time, Jenks’ natural breaks were also used to reclassify and classify the suitability into five categories, namely: unsuitable (P  More

  • in

    Towards net-zero phosphorus cities

    C40 Cities. 700+ cities in 53 countries now committed to halve emissions by 2030 and reach net zero by 2050. C40 Cities https://www.c40.org/news/cities-committed-race-to-zero/ (2021).Watts, M. Cities spearhead climate action. Nat. Clim. Change 7, 537–538 (2017).
    Google Scholar 
    Brownlie, W. J. et al. Global actions for a sustainable phosphorus future. Nat. Food 2, 71–74 (2021).CAS 

    Google Scholar 
    El Wali, M., Golroudbary, S. R. & Kraslawski, A. Circular economy for phosphorus supply chain and its impact on social sustainable development goals. Sci. Total Environ. 777, 146060 (2021).CAS 

    Google Scholar 
    Bai, X. et al. Defining and advancing a systems approach for sustainable cities. Curr. Opin. Environ. Sustain. 23, 69–78 (2016).
    Google Scholar 
    De Boer, M. A., Wolzak, L. & Slootweg, J. C. Phosphorus: reserves, production, and applications. in Phosphorus Recovery and Recycling. (eds. Ohtake, H. & Tsuneda, S.) 75–100 (Springer, 2019).Brownlie, W. J. et al. Chapter 2. Phosphorus reserves, resources and uses. In Our Phosphorus Future (eds. Brownlie, W. J., Sutton, M. A., Heal, K. V., Reay, D. S. & Spears, B. M.) (UK Centre for Ecology & Hydrology, 2022). https://doi.org/10.13140/RG.2.2.25016.83209.Chow, E. China issues phosphate quotas to rein in fertiliser exports – analysts. Reuters (2022).Klesty, V. Global food supply at risk from Russian invasion of Ukraine, Yara says. Reuters (2022).Dumas, M., Frossard, E. & Scholz, R. W. Modeling biogeochemical processes of phosphorus for global food supply. Chemosphere 84, 798–805 (2011).CAS 

    Google Scholar 
    Cordell, D., Turner, A. & Chong, J. The hidden cost of phosphate fertilizers: mapping multi-stakeholder supply chain risks and impacts from mine to fork. Glob. Change Peace Secur. 27, 1–21 (2015).
    Google Scholar 
    Metson, G. S., Bennett, E. M. & Elser, J. J. The role of diet in phosphorus demand. Environmental Research Letters 7, 044043 (2012).
    Google Scholar 
    Oita, A., Wirasenjaya, F., Liu, J., Webeck, E. & Matsubae, K. Trends in the food nitrogen and phosphorus footprints for Asia’s giants: China, India, and Japan. Resour. Conserv. Recycl. 157, 104752 (2020).
    Google Scholar 
    Chen, M. & Graedel, T. E. A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Glob. Environ. Chang. 36, 139–152 (2016).
    Google Scholar 
    Johnes, P. J. et al. Chapter 5. Phosphorus and water quality. in Our Phosphorus Future (eds. Brownlie, W. J., Sutton, M. A., Heal, K. V., Reay, D. S. & Spears, B. M.) (UK Centre for Ecology & Hydrology, 2022). https://doi.org/10.13140/RG.2.2.14950.50246.Dodds, W. K. et al. Eutrophication of US freshwaters: analysis of potential economic damages. Environ. Sci. Technol. 43, 12–19 (2008).
    Google Scholar 
    Watson, S. B. et al. The re-eutrophication of Lake Erie: Harmful algal blooms and hypoxia. Harmful Algae 56, 44–66 (2016).CAS 

    Google Scholar 
    Rabalais, N. N. & Turner, R. E. Gulf of Mexico Hypoxia: Past, Present, and Future. Limnol. Oceanogr. Bull. 28, 117–124 (2019).
    Google Scholar 
    Carstensen, J. & Conley, D. J. Baltic Sea Hypoxia Takes Many Shapes and Sizes. Limnol. Oceanog. Bull. 28, 125–129 (2019).
    Google Scholar 
    Kanter, D. R. & Brownlie, W. J. Joint nitrogen and phosphorus management for sustainable development and climate goals. Environ. Sci. Policy 92, 1–8 (2019).CAS 

    Google Scholar 
    Hamilton, D. P., Salmaso, N. & Paerl, H. W. Mitigating harmful cyanobacterial blooms: strategies for control of nitrogen and phosphorus loads. Aquat. Ecol. 50, 351–366 (2016).CAS 

    Google Scholar 
    Brownlie, W. J. et al. Chapter 9. Towards our phosphorus future. In Our Phosphorus Future (eds. Brownlie, W. J., Sutton, M. A., Heal, K. V., Reay, D. S. & Spears, B. M.) (UK Centre for Ecology & Hydrology, 2022). https://doi.org/10.13140/RG.2.2.16995.22561.MacDonald, G. K. et al. Guiding phosphorus stewardship for multiple ecosystem services. Ecosyst. Health Sustain. 2, e01251 (2016).
    Google Scholar 
    Withers, P. J. A. et al. Stewardship to tackle global phosphorus inefficiency: The case of Europe. Ambio 44, 193–206 (2015).CAS 

    Google Scholar 
    Withers, P. J. A. et al. Towards resolving the phosphorus chaos created by food systems. Ambio 49, 1076–1089 (2020).CAS 

    Google Scholar 
    Withers, P. J. A. Closing the phosphorus cycle. Nat. Sustain. 2, 1001–1002 (2019).
    Google Scholar 
    Langhans, C., Beusen, A. H. W., Mogollón, J. M. & Bouwman, A. F. Phosphorus for Sustainable Development Goal target of doubling smallholder productivity. Nat. Sustain. 5, 57–63 (2022).
    Google Scholar 
    Kuss, P. & Nicholas, K. A. A dozen effective interventions to reduce car use in European cities: Lessons learned from a meta-analysis and transition management. Case Stud. Transp. Policy. 10, 1494–1513 (2022).
    Google Scholar 
    Hobbie, S. E. et al. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. Proc. Natl. Acad. Sci. USA 114, E4116–E4116 (2017).
    Google Scholar 
    Seto, K. C. et al. From low- to net-zero carbon cities: the next global agenda. Annu. Rev. Environ. Resour. 46, 377–415 (2021).
    Google Scholar 
    Zhang, Y. Urban metabolism: A review of research methodologies. Environ. Pollut. 178, 463–473 (2013).CAS 

    Google Scholar 
    Kissinger, M. & Stossel, Z. An integrated, multi-scale approach for modelling urban metabolism changes as a means for assessing urban sustainability. Sustain. Cities Soc. 67, 102695 (2021).
    Google Scholar 
    Li, H. & Kwan, M.-P. Advancing analytical methods for urban metabolism studies. Resour. Conserv. Recycl. 132, 239–245 (2018).
    Google Scholar 
    Goldstein, B., Birkved, M., Quitzau, M.-B. & Hauschild, M. Quantification of urban metabolism through coupling with the life cycle assessment framework: concept development and case study. Environ. Res. Lett. 8, 035024 (2013).CAS 

    Google Scholar 
    Kovac, A. et al. Global Protocol for Community-Scale Greenhouse Gas Inventories— An Accounting and Reporting Standard for Cities Version 1.1. 190 https://ghgprotocol.org/greenhouse-gas-protocol-accounting-reporting-standard-cities.Rogelj, J., Geden, O., Cowie, A. & Reisinger, A. Net-zero emissions targets are vague: three ways to fix. Nature 591, 365–368 (2021).CAS 

    Google Scholar 
    Wiedmann, T. et al. Three-scope carbon emission inventories of global cities. J. Ind. Ecol. 25, 735–750 (2021).CAS 

    Google Scholar 
    Metson, G. S. et al. Urban phosphorus sustainability: Systemically incorporating social, ecological, and technological factors into phosphorus flow analysis. Environ. Sci. Policy 47, 1–11 (2015).CAS 

    Google Scholar 
    Harseim, L., Sprecher, B. & Zengerling, C. Phosphorus governance within planetary boundaries: the potential of strategic local resource planning in The Hague and Delfland, The Netherlands. Sustainability 13, 10801 (2021).CAS 

    Google Scholar 
    Coutard, O. & Florentin, D. Resource ecologies, urban metabolisms, and the provision of essential services. J. Urban Technol. 29, 49–58 (2022).
    Google Scholar 
    UDG at COP26 | Urban Design Events. Urban Design Group https://www.udg.org.uk/events/2021/udg-cop26 (2021).Ramaswami, A., Russell, A. G., Culligan, P. J., Sharma, K. R. & Kumar, E. Meta-principles for developing smart, sustainable, and healthy cities. Science 352, 940–943 (2016).CAS 

    Google Scholar 
    McPhearson, T. et al. A social-ecological-technological systems framework for urban ecosystem services. One Earth 5, 505–518 (2022).
    Google Scholar 
    McPhearson, T., Haase, D., Kabisch, N. & Gren, Å. Advancing understanding of the complex nature of urban systems. Ecol. Indic. 70, 566–573 (2016).
    Google Scholar 
    Metson, G. S. et al. Socio-environmental consideration of phosphorus flows in the urban sanitation chain of contrasting cities. Regional Environmental Change 18, 1387–1401 (2018).
    Google Scholar 
    Iwaniec, D. M., Metson, G. S. & Cordell, D. P-FUTURES: Towards urban food & water security through collaborative design and impact. Curr. Opin. Environ. Sustain. 20, 1–7 (2016).
    Google Scholar 
    Bulkeley, H. et al. Urban living laboratories: Conducting the experimental city? Eur. Urban. Reg. Stud. 26, 317–335 (2019).
    Google Scholar 
    Beukers, E. & Bertolini, L. Learning for transitions: An experiential learning strategy for urban experiments. Environ. Innov. Soc. Transit. 40, 395–407 (2021).
    Google Scholar 
    Ramaswami, A. et al. Carbon analytics for net-zero emissions sustainable cities. Nat. Sustain. 4, 460–463 (2021).
    Google Scholar 
    Petit-Boix, A., Apul, D., Wiedmann, T. & Leipold, S. Transdisciplinary resource monitoring is essential to prioritize circular economy strategies in cities. Environ. Res. Lett. 17, 021001 (2022).
    Google Scholar 
    WWAP. Wastewater: The Untapped Resource. https://www.unwater.org/publications/un-world-water-development-report-2017 (2017).van Puijenbroek, P. J. T. M., Beusen, A. H. W. & Bouwman, A. F. Global nitrogen and phosphorus in urban waste water based on the Shared Socio-economic pathways. J. Environ. Manage. 231, 446–456 (2019).
    Google Scholar 
    Kovacs, A. & Zavadsky, I. Success and sustainability of nutrient pollution reduction in the Danube River Basin: recovery and future protection of the Black Sea Northwest shelf. Water Int. 46, 176–194 (2021).
    Google Scholar 
    Trimmer, J. T. & Guest, J. S. Recirculation of human-derived nutrients from cities to agriculture across six continents. Nat. Sustain. 1, 427–435 (2018).
    Google Scholar 
    Powers, S. M. et al. Global opportunities to increase agricultural independence through phosphorus recycling. Earths Future 7, 370–383 (2019).
    Google Scholar 
    Metson, G. S., Cordell, D., Ridoutt, B. & Mohr, S. Mapping phosphorus hotspots in Sydney’s organic wastes: a spatially-explicit inventory to facilitate urban phosphorus recycling. J. Urban Ecol. 4, 1–19 (2018).
    Google Scholar 
    Hu, Y., Sampat, A. M., Ruiz-Mercado, G. J. & Zavala, V. M. Logistics Network Management of Livestock Waste for Spatiotemporal Control of Nutrient Pollution in Water Bodies. ACS Sustain. Chem. Eng. 7, 18359–18374 (2019).CAS 

    Google Scholar 
    Mayer, B. K. et al. Total value of phosphorus recovery. Environ. Sci. Technol. 50, 6606–6620 (2016).CAS 

    Google Scholar 
    van Hessen, J. An Assessment of Small-Scale Biodigester Programmes in the Developing World: The SNV and Hivos Approach. (Vrije Universiteit Amsterdam, 2014).Harder, R., Wielemaker, R., Larsen, T. A., Zeeman, G. & Öberg, G. Recycling nutrients contained in human excreta to agriculture: Pathways, processes, and products. Crit. Rev. Environ. Sci. Technol. 49, 695–743 (2019).
    Google Scholar 
    Metson, G. S. et al. Chapter 8. Consumption: the missing link towards phosphorus security. In Our Phosphorus Future (eds. Brownlie, W. J., Sutton, M. A., Heal, K. V., Reay, D. S. & Spears, B. M.) (UK Centre for Ecology & Hydrology, 2022). https://doi.org/10.13140/RG.2.2.36498.73925.Qiao, M., Zheng, Y. M. & Zhu, Y. G. Material flow analysis of phosphorus through food consumption in two megacities in northern China. Chemosphere 84, 773–778 (2011).CAS 

    Google Scholar 
    Forber, K. J., Rothwell, S. A., Metson, G. S., Jarvie, H. P. & Withers, P. J. A. Plant-based diets add to the wastewater phosphorus burden. Environ. Res. Lett. 15, 094018 (2020).CAS 

    Google Scholar 
    UN Population Division. The World’s cities in 2018. https://digitallibrary.un.org/record/3799524 (2018).Klöckner, C. A. A comprehensive model of the psychology of environmental behaviour-A meta-analysis. Glob. Environ. Change 23, 1028–1038 (2013).
    Google Scholar 
    Nyborg, K. et al. Social norms as solutions. Science 354, 42–43 (2016).CAS 

    Google Scholar 
    Vermeir, I. & Verbeke, W. Sustainable Food Consumption: Exploring the Consumer “Attitude – Behavioral Intention” Gap. J. Agric. Environ. Ethics 19, 169–194 (2006).
    Google Scholar 
    Ullström, S., Stripple, J. & Nicholas, K. A. From aspirational luxury to hypermobility to staying on the ground: changing discourses of holiday air travel in Sweden. J. Sustain. Tour. https://doi.org/10.1080/09669582.2021.1998079 (2021).Morris, T. H. Experiential learning—a systematic review and revision of Kolb’s model. Interact. Learn. Environ. 28, 1064–1077 (2020).
    Google Scholar 
    Metson, G. S. & Bennett, E. M. Facilitators & barriers to organic waste and phosphorus re-use in Montreal. Elementa 3, 000070 (2015).
    Google Scholar 
    Winkler, B., Maier, A. & Lewandowski, I. Urban gardening in germany: cultivating a sustainable lifestyle for the societal transition to a bioeconomy. Sustainability 11, 801 (2019).
    Google Scholar 
    Kim, J. E. Fostering behaviour change to encourage low-carbon food consumption through community gardens. Int. J. Urban Sci. 21, 364–384 (2017).
    Google Scholar 
    Fuhr, H., Hickmann, T. & Kern, K. The role of cities in multi-level climate governance: local climate policies and the 1.5 °C target. Curr. Opin. Environ. Sustain. 30, 1–6 (2018).
    Google Scholar 
    Steffen, W. et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, 1259855 (2015).
    Google Scholar 
    Santos, A. F., Almeida, P. V., Alvarenga, P., Gando-Ferreira, L. M. & Quina, M. J. From wastewater to fertilizer products: Alternative paths to mitigate phosphorus demand in European countries. Chemosphere 284, 131258 (2021).CAS 

    Google Scholar 
    UNFCCC. Race To Zero Campaign. https://unfccc.int/climate-action/race-to-zero-campaign.Locsin, J. A., Hood, K. M., Doré, E., Trueman, B. F. & Gagnon, G. A. Colloidal lead in drinking water: Formation, occurrence, and characterization. Crit. Rev. Environ. Sci. Technol. https://doi.org/10.1080/10643389.2022.2039549 (2022).Li, Y. et al. The role of freshwater eutrophication in greenhouse gas emissions: A review. Sci. Total Environ. 768, 144582 (2021).CAS 

    Google Scholar 
    Gong, H. et al. Synergies in sustainable phosphorus use and greenhouse gas emissions mitigation in China: Perspectives from the entire supply chain from fertilizer production to agricultural use. Sci. Total Environ. 838, 155997 (2022).CAS 

    Google Scholar  More

  • in

    Comparative environmental RNA and DNA metabarcoding analysis of river algae and arthropods for ecological surveys and water quality assessment

    United Nations. Transforming our world: the 2030 Agenda for Sustainable Development. General Assembly https://doi.org/10.5040/9781782257790.part-008 (2015).Article 

    Google Scholar 
    European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Communities L327, 1–72 (2000).
    Google Scholar 
    Kelly, R. P. et al. Harnessing DNA to improve environmental management. Science (80-) 344, 1455–1456 (2014).ADS 
    CAS 

    Google Scholar 
    Bálint, M. et al. Cryptic biodiversity loss linked to global climate change. Nat. Clim. Chang. 1, 313–318 (2011).ADS 

    Google Scholar 
    Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29, 358–367 (2014).PubMed 

    Google Scholar 
    Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).PubMed 

    Google Scholar 
    Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Yang, J., Jeppe, K., Pettigrove, V. & Zhang, X. Environmental DNA metabarcoding supporting community assessment of environmental stressors in a field-based sediment microcosm study. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.8b04903 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    DiBattista, J. D. et al. Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems. Sci. Rep. 10, 1–15 (2020).
    Google Scholar 
    Ministry of the Environment. Manual for Water Quality Assessment Method by Aquatic Organisms -Japanese version of average score method-. (2017).Mayama, S. Taxonomic revisions to the differentiating diatom groups for water quality evaluation and some comments for taxa with new designations. Diatom 15, 1–9 (1994).
    Google Scholar 
    Kobayashi, H. & Mayama, S. Evaluation of river water quality by diatoms. Korean J. Phycol. 4, 121–133 (1989).
    Google Scholar 
    European Commission. Technical Guidance Document on Risk Assessment Part II. (2003).Wang, P. et al. Environmental DNA: An emerging tool in ecological assessment. Bull. Environ. Contam. Toxicol. 103, 651–656 (2019).CAS 
    PubMed 

    Google Scholar 
    Zhang, X. Environmental DNA shaping a new era of ecotoxicological research. Environ. Sci. Technol. 53, 5605–5612 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cristescu, M. E. & Hebert, P. D. N. Uses and misuses of environmental DNA in biodiversity science and conservation. Annu. Rev. Ecol. Evol. Syst. 49, 209–230 (2018).
    Google Scholar 
    Ficetola, G. F., Taberlet, P. & Coissac, E. How to limit false positives in environmental DNA and metabarcoding?. Mol. Ecol. Resour. 16, 604–607 (2016).CAS 
    PubMed 

    Google Scholar 
    Yates, M. C., Derry, A. M. & Cristescu, M. E. Environmental RNA: A revolution in ecological resolution?. Trends Ecol. Evol. 36, 601–609 (2021).CAS 
    PubMed 

    Google Scholar 
    Veilleux, H. D., Misutka, M. D. & Glover, C. N. Environmental DNA and environmental RNA: Current and prospective applications for biological monitoring. Sci. Total Environ. 782, 146891 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cristescu, M. E. Can Environmental RNA Revolutionize Biodiversity Science?. Trends Ecol. Evol. 34, 694–697 (2019).PubMed 

    Google Scholar 
    Qian, T., Shan, X., Wang, W. & Jin, X. Effects of Temperature on the Timeliness of eDNA/eRNA: A Case Study of Fenneropenaeus chinensis. Water (Switzerland) 14, 1155 (2022).CAS 

    Google Scholar 
    Jo, T., Tsuri, K., Hirohara, T., Yamanaka, H. & Toshiaki Jo, C. Warm temperature and alkaline conditions accelerate environmental RNA degradation. Environ. DNA 00, 1–13 (2022).
    Google Scholar 
    Miyata, K. et al. Fish environmental RNA enables precise ecological surveys with high positive predictivity. Ecol. Indic. 128, 107796 (2021).
    Google Scholar 
    Littlefair, J. E., Rennie, M. D. & Cristescu, M. E. Environmental nucleic acids: a field-based comparison for monitoring freshwater habitats using eDNA and eRNA. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13671 (2022).Article 
    PubMed 

    Google Scholar 
    Broman, E., Bonaglia, S., Norkko, A., Creer, S. & Nascimento, F. J. A. High throughput shotgun sequencing of eRNA reveals taxonomic and derived functional shifts across a benthic productivity gradient. Mol. Ecol. https://doi.org/10.1111/mec.15561 (2020).Article 
    PubMed 

    Google Scholar 
    Miya, M. et al. Use of a filter cartridge for filtration of water samples and extraction of environmental DNA. J. Vis. Exp. https://doi.org/10.3791/54741 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oe, S., Sashika, M., Fujimoto, A., Shimozuru, M. & Tsubota, T. Predation impacts of invasive raccoons on rare native species. Sci. Rep. 10, 1–12 (2020).
    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    MLIT (Ministry of Land Infrastructure and Transport). IV Benthic invertebrate. Manual of National Census of the River Environment (River Edition) (in Japanese). http://www.nilim.go.jp/lab/fbg/ksnkankyo/mizukokuweb/system/DownLoad/H28KK_manual_river/H28KK_02.teisei.pdf (2016).Hleap, J. S., Littlefair, J. E., Steinke, D., Hebert, P. D. N. & Cristescu, M. E. Assessment of current taxonomic assignment strategies for metabarcoding eukaryotes. Mol. Ecol. Resour. 21, 2190–2203 (2021).PubMed 

    Google Scholar 
    Jones, E. P. et al. Guidance for end users on DNA methods development and project assessment. JNCC Report (2020).Littlefair, J. E., Rennie, M. D. & Cristescu, M. E. Environmental nucleic acids: A field-based comparison for monitoring freshwater habitats using eDNA and eRNA. Mol. Ecol. Resour. 22, 2928–2940. https://doi.org/10.1111/1755-0998.13671 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    MLIT (Ministry of Land Infrastructure and Transport). River Environmental Database (in Japanese). http://www.nilim.go.jp/lab/fbg/ksnkankyo/ (2018).Kitahashi, T. et al. Meiofaunal diversity at a seamount in the Pacific Ocean: A comprehensive study using environmental DNA and RNA. Deep. Res. Part I Oceanogr. Res. Pap. 160, 103253. https://doi.org/10.1016/j.dsr.2020.103253 (2020).Article 

    Google Scholar 
    Brandt, M. I. et al. An assessment of environmental metabarcoding protocols aiming at favoring contemporary biodiversity in inventories of deep-sea communities. Front. Mar. Sci. 7, 234 (2020).
    Google Scholar 
    Laroche, O. et al. A cross-taxa study using environmental DNA / RNA metabarcoding to measure biological impacts of off shore oil and gas drilling and production operations. Mar. Pollut. Bull. 127, 97–107 (2018).CAS 
    PubMed 

    Google Scholar 
    Laroche, O. et al. Metabarcoding monitoring analysis: The pros and cons of using co-extracted environmental DNA and RNA data to assess offshore oil production impacts on benthic communities. PeerJ 5, e3347 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Pochon, X. et al. Wanted dead or alive ? Using metabarcoding of environmental DNA and RNA to distinguish living assemblages for biosecurity applications. PLoS ONE 12, 1–19 (2017).
    Google Scholar 
    Foley, C. J., Bradley, D. L. & Höök, T. O. A review and assessment of the potential use of RNA: DNA ratios to assess the condition of entrained fish larvae. Ecol. Indic. 60, 346–357 (2016).CAS 

    Google Scholar 
    Guardiola, M. et al. Spatio-temporal monitoring of deep-sea communities using metabarcoding of sediment DNA and RNA. PeerJ 4, 1–31 (2016).
    Google Scholar 
    Keeley, N., Wood, S. A. & Pochon, X. Development and preliminary validation of a multi-trophic metabarcoding biotic index for monitoring benthic organic enrichment. Ecol. Indic. 85, 1044–1057 (2018).CAS 

    Google Scholar 
    Whangbo, J. S. & Hunter, C. P. Environmental RNA interference. Trends Genet. 24, 297–305 (2008).CAS 
    PubMed 

    Google Scholar 
    Sidova, M., Tomankova, S., Abaffy, P., Kubista, M. & Sindelka, R. Effects of post-mortem and physical degradation on RNA integrity and quality. Biomol. Detect. Quantif. 5, 3–9 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood, S. A. et al. Release and degradation of environmental DNA and RNA in a marine system. Sci. Total Environ. 704, 135314 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Watanabe, T. Picture Book and Ecology of the Freshwater Diatoms (UCHIDA ROKAKUHO PUBLISHING CO., LTD., 2005).
    Google Scholar 
    Laroche, O. et al. First evaluation of foraminiferal metabarcoding for monitoring environmental impact from an offshore oil drilling site. Mar. Environ. Res. 120, 225–235 (2016).CAS 
    PubMed 

    Google Scholar 
    Andruszkiewicz Allan, E. et al. Environmental DNA shedding and decay rates from diverse animal forms and thermal regimes. Environ. DNA 3, 492–514 (2021).
    Google Scholar 
    Hajibabaei, M. et al. Watered-down biodiversity? A comparison of metabarcoding results from DNA extracted from matched water and bulk tissue biomonitoring samples. PLoS ONE 14, e0225409 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    the Orthopterological Society of Japan. Orthoptera of the Japanese archipelago in color (Hokkaido University Press, 2006).Li, Z. H. et al. Enzymatic alterations and RNA/DNA ratio in intestine of rainbow trout, Oncorhynchus mykiss, induced by chronic exposure to carbamazepine. Ecotoxicology 19, 872–878 (2010).CAS 
    PubMed 

    Google Scholar 
    Chícharo, M. A. & Chícharo, L. RNA:DNA ratio and other nucleic acid derived indices in marine ecology. Int. J. Mol. Sci. 9, 1453–1471 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 

    Google Scholar 
    Hebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S. & Francis, C. M. Identification of birds through DNA barcodes. PLoS Biol. 2, e312 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    Takenaka, M., Yano, K., Suzuki, T. & Tojo, K. Development of novel PCR primer sets for DNA metabarcoding of aquatic insects, and the discovery of some cryptic species. bioRxiv https://doi.org/10.1101/2021.11.05.467390 (2021).Article 

    Google Scholar 
    Elbrecht, V. et al. Testing the potential of a ribosomal 16S marker for DNA metabarcoding of insects. PeerJ 4, 1966 (2016).
    Google Scholar 
    Leese, F. et al. Improved freshwater macroinvertebrate detection from environmental DNA through minimized nontarget amplification. Environ. DNA 3, 261–276 (2021).CAS 

    Google Scholar 
    Hajibabaei, M., Porter, T. M., Wright, M. & Rudar, J. COI metabarcoding primer choice affects richness and recovery of indicator taxa in freshwater systems. PLoS ONE 14, e0220953 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elbrecht, V. et al. Validation of COI metabarcoding primers for terrestrial arthropods. PeerJ 7, 7745 (2019).
    Google Scholar 
    Elbrecht, V. & Leese, F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass-sequence relationships with an innovative metabarcoding protocol. PLoS ONE 10, e0130324 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Marquina, D., Andersson, A. F. & Ronquist, F. New mitochondrial primers for metabarcoding of insects, designed and evaluated using in silico methods. Mol. Ecol. Resour. 19, 90–104 (2019).CAS 
    PubMed 

    Google Scholar 
    Tochigi prefectural government. Results of continuous monitoring and measurement [Water quality] in Japanese. https://www.pref.tochigi.lg.jp/d03/eco/kankyou/hozen/joujikanshikekka-mizu.html (2020).Emilson, C. E. et al. DNA metabarcoding and morphological macroinvertebrate metrics reveal the same changes in boreal watersheds across an environmental gradient. Sci. Rep. 7, 1–11 (2017).CAS 

    Google Scholar 
    Uchida, N., Kubota, K., Aita, S. & Kazama, S. Aquatic insect community structure revealed by eDNA metabarcoding derives indices for environmental assessment. PeerJ 2020, e9176 (2020).
    Google Scholar 
    Baird, D. J. & Hajibabaei, M. Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Mol. Ecol. 21, 2039–2044 (2012).PubMed 

    Google Scholar  More