More stories

  • in

    Marine bacteroidetes use a conserved enzymatic cascade to digest diatom β-mannan

    Laine RA. A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 x 10(12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology. 1994;4:759–67.PubMed 

    Google Scholar 
    Becker S, Tebben J, Coffinet S, Wiltshire K, Iversen MH, Harder T, et al. Laminarin is a major molecule in the marine carbon cycle. Proc Natl Acad Sci. 2020;117:6599.PubMed 
    PubMed Central 

    Google Scholar 
    Pauly M, Gille S, Liu L, Mansoori N, Souza A, de, Schultink A, et al. Hemicellulose biosynthesis. Planta. 2013;238:627–42.PubMed 

    Google Scholar 
    Domozych D. Algal Cell Walls. In: Lauc G, Wuhrer M High-throughput glycomics and glycoproteomics. Humana Press, New York, 2016. pp 1–11.Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8:881–90.PubMed 
    PubMed Central 

    Google Scholar 
    Popper ZA, Michel G, Hervé C, Domozych DS, Willats WGT, Tuohy MG, et al. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol. 2011;62:567–90.PubMed 

    Google Scholar 
    Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991;280:309–16.PubMed 
    PubMed Central 

    Google Scholar 
    Martens EC, Koropatkin NM, Smith TJ, Gordon JI. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J Biol Chem. 2009;284:24673–7.PubMed 
    PubMed Central 

    Google Scholar 
    Cuskin F, Lowe EC, Temple MJ, Zhu Y, Cameron E, Pudlo NA, et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature. 2015;517:165–9.PubMed 
    PubMed Central 

    Google Scholar 
    Falkowski PG, Barber RT, Smetacek VV. Biogeochemical Controls and Feedbacks on Ocean Primary Production. Science. 1998;281:200–7.PubMed 

    Google Scholar 
    Smetacek V. Seeing is Believing: Diatoms and the Ocean Carbon Cycle Revisited. Protist. 2018;169:791–802.PubMed 

    Google Scholar 
    Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–11.PubMed 

    Google Scholar 
    Teeling H, Fuchs BM, Bennke CM, Krüger K, Chafee M, Kappelmann L, et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. Elife. 2016;5:e11888.PubMed 
    PubMed Central 

    Google Scholar 
    Kappelmann L, Krüger K, Hehemann J-H, Harder J, Markert S, Unfried F, et al. Polysaccharide utilization loci of North Sea Flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans. ISME J. 2019;13:76–91.PubMed 

    Google Scholar 
    Vidal-Melgosa S, Sichert A, Francis TB, Bartosik D, Niggemann J, Wichels A, et al. Diatom fucan polysaccharide precipitates carbon during algal blooms. Nat Commun. 2021;12:1150.PubMed 
    PubMed Central 

    Google Scholar 
    Chanzy H, Dube M, Marchessault RH, Revol JF. Single crystals and oriented crystallization of ivory nut mannan. Biopolymers 1979;18:887–98.
    Google Scholar 
    Katsuraya K, Okuyama K, Hatanaka K, Oshima R, Sato T, Matsuzaki K. Constitution of konjac glucomannan: chemical analysis and 13C NMR spectroscopy. Carbohydr Polym. 2003;53:183–9.
    Google Scholar 
    Melton L, Smith BG, Ibrahim R, Schröder R, Harris P, Schmitt U. Mannans in primary and secondary plant cell walls. NZ J forestry Sci. 2009;39:153–60.
    Google Scholar 
    Hannuksela T, Du Hervé Penhoat C. NMR structural determination of dissolved O-acetylated galactoglucomannan isolated from spruce thermomechanical pulp. Carbohydr Res. 2004;339:301–12.PubMed 

    Google Scholar 
    Gilbert HJ, Stålbrand H, Brumer H. How the walls come crumbling down: recent structural biochemistry of plant polysaccharide degradation. Curr Opin Plant Biol. 2008;11:338–48.PubMed 

    Google Scholar 
    Bågenholm V, Reddy SK, Bouraoui H, Morrill J, Kulcinskaja E, Bahr CM, et al. Galactomannan catabolism conferred by a polysaccharide utilization locus of Bacteroides ovatus: Enzyme synergy and crystal structure of a β-mannanase. J Biol Chem. 2017;292:229–43.PubMed 

    Google Scholar 
    Chen J, Robb CS, Unfried F, Kappelmann L, Markert S, Song T, et al. Alpha- and beta-mannan utilization by marine Bacteroidetes. Environ Microbiol. 2018;20:4127–40.PubMed 

    Google Scholar 
    Klemetsen T, Raknes IA, Fu J, Agafonov A, Balasundaram SV, Tartari G, et al. The MAR databases: development and implementation of databases specific for marine metagenomics. Nucl Acids Res. 2018;46:D692–99.PubMed 

    Google Scholar 
    Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, et al. Database resources of the national center for biotechnology information. Nucl Acids Res. 2022;50:D20–26.PubMed 

    Google Scholar 
    Gilchrist CL, Booth TJ, van Wersch B, van Grieken L, Medema MH, Chooi Y-H. cblaster: a remote search tool for rapid identification and visualisation of homologous gene clusters. Bioinformatics Advances. 2021;1:016.Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucl Acids Res. 2018;46:W95–W101.PubMed 
    PubMed Central 

    Google Scholar 
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res. 1997;25:3389–402.PubMed 
    PubMed Central 

    Google Scholar 
    Krüger K, Chafee M, Ben Francis T, Del Glavina Rio T, Becher D, Schweder T, et al. In marine Bacteroidetes the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes. ISME J. 2019;13:2800–16.PubMed 
    PubMed Central 

    Google Scholar 
    Francis TB, Bartosik D, Sura T, Sichert A, Hehemann J-H, Markert S, et al. Changing expression patterns of TonB-dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom. ISME J. 2021;15:2336–50.PubMed 
    PubMed Central 

    Google Scholar 
    Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: Visualization of Intersecting Sets. IEEE Trans Vis Comput Graph. 2014;20:1983–92.PubMed 
    PubMed Central 

    Google Scholar 
    Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017;33:2938–40.PubMed 
    PubMed Central 

    Google Scholar 
    Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639–45.PubMed 
    PubMed Central 

    Google Scholar 
    Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O, et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucl Acids Res. 2022;50(W1):W276–79.Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst Biol. 2010;59:307–21.PubMed 

    Google Scholar 
    Lefort V, Longueville J-E, Gascuel O. SMS: Smart Model Selection in PhyML. Mol Biol Evol. 2017;34:2422–4.PubMed 
    PubMed Central 

    Google Scholar 
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–59.PubMed 
    PubMed Central 

    Google Scholar 
    Hahnke RL, Harder J. Phylogenetic diversity of Flavobacteria isolated from the North Sea on solid media. Syst Appl Microbiol. 2013;36:497–504.PubMed 

    Google Scholar 
    Schut F, Vries EJ, de, Gottschal JC, Robertson BR, Harder W, Prins RA, et al. Isolation of Typical Marine Bacteria by Dilution Culture: Growth, Maintenance, and Characteristics of Isolates under Laboratory Conditions. Appl Environ Microbiol. 1993;59:2150–60.PubMed 
    PubMed Central 

    Google Scholar 
    Otto A, Bernhardt J, Meyer H, Schaffer M, Herbst F-A, Siebourg J, et al. Systems-wide temporal proteomic profiling in glucose-starved Bacillus subtilis. Nat Commun. 2010;1:137.PubMed 

    Google Scholar 
    Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72.PubMed 

    Google Scholar 
    Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13:731–40.PubMed 

    Google Scholar 
    Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010;26:1608–15.PubMed 
    PubMed Central 

    Google Scholar 
    Yu C-S, Lin C-J, Hwang J-K. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci. 2004;13:1402–6.PubMed 
    PubMed Central 

    Google Scholar 
    Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucl Acids Res. 2022;50:D543–52.PubMed 

    Google Scholar 
    Studier F. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 2005;41:207–34.The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr. 1994;50:760–3.Kabsch W. XDS. Acta Crystallogr D Biol Crystallogr. 2010;66:125–32.PubMed 
    PubMed Central 

    Google Scholar 
    Cartmell A, Topakas E, Ducros VM-A, Suits MDL, Davies GJ, Gilbert HJ. The Cellvibrio japonicus mannanase CjMan26C displays a unique exo-mode of action that is conferred by subtle changes to the distal region of the active site. J Biol Chem. 2008;283:34403–13.PubMed 
    PubMed Central 

    Google Scholar 
    Couturier M, Roussel A, Rosengren A, Leone P, Stålbrand H, Berrin J-G. Structural and Biochemical Analyses of Glycoside Hydrolase Families 5 and 26 β-(1,4)-Mannanases from Podospora anserina Reveal Differences upon Manno-oligosaccharide Catalysis*. J Biol Chem. 2013;288:14624–35.PubMed 
    PubMed Central 

    Google Scholar 
    Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr. 2012;68:352–67.PubMed 
    PubMed Central 

    Google Scholar 
    Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011;67:355–67.PubMed 
    PubMed Central 

    Google Scholar 
    Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot.Acta Crystallogr D Biol Crystallogr. 2010;66:486–501.PubMed 
    PubMed Central 

    Google Scholar 
    Cowtan K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr. 2006;62:1002–11.PubMed 

    Google Scholar 
    DeLano WL. The PyMOL Molecular Graphics System Version 2.3.4. Schrödinger, LLC, New York; 2010.Fontes CM, Clarke JH, Hazlewood GP, Fernandes TH, Gilbert HJ, Ferreira LM. Possible roles for a non-modular, thermostable and proteinase-resistant cellulase from the mesophilic aerobic soil bacterium Cellvibrio mixtus. Appl Microbiol Biotechnol. 1997;48:473–9.PubMed 

    Google Scholar 
    Brändén C-I. The TIM barrel—the most frequently occurring folding motif in proteins: Current Opinion in Structural Biology. 1991;1:978–83.Marcus SE, Blake AW, Benians TAS, Lee KJD, Poyser C, Donaldson L, et al. Restricted access of proteins to mannan polysaccharides in intact plant cell walls. Plant J. 2010;64:191–203.PubMed 

    Google Scholar 
    Meikle PJ, Hoogenraad NJ, Bonig I, Clarke AE, Stone BA. A (1-3,1-4)-beta-glucan-specific monoclonal antibody and its use in the quantitation and immunocytochemical location of (1-3,1-4)-beta-glucans. Plant J. 1994;5:1–9.PubMed 

    Google Scholar 
    Kračun SK, Fangel JU, Rydahl MG, Pedersen HL, Vidal-Melgosa S, Willats WGT. Carbohydrate microarray technology applied to high-throughput mapping of plant cell wall glycans using comprehensive microarray polymer profiling (CoMPP). In: High-Throughput Glycomics and Glycoproteomics. Humana Press, New York, NY, 2017;1503:147–65.Moller I, Sørensen I, Bernal AJ, Blaukopf C, Lee K, Øbro J, et al. High-throughput mapping of cell-wall polymers within and between plants using novel microarrays. Plant J. 2007;50:1118–28.PubMed 

    Google Scholar 
    Yan X-X, An X-M, Gui L-L, Liang D-C. From structure to function: insights into the catalytic substrate specificity and thermostability displayed by Bacillus subtilis mannanase BCman. J Mol Biol. 2008;379:535–44.PubMed 

    Google Scholar 
    Tailford LE, Ducros VM-A, Flint JE, Roberts SM, Morland C, Zechel DL, et al. Understanding how diverse beta-mannanases recognize heterogeneous substrates. Biochemistry. 2009;48:7009–18.PubMed 

    Google Scholar 
    Nakae S, Ito S, Higa M, Senoura T, Wasaki J, Hijikata A, et al. Structure of Novel Enzyme in Mannan Biodegradation Process 4-O-β-d-Mannosyl-d-Glucose Phosphorylase MGP. J Mol Biol. 2013;425:4468–78.PubMed 

    Google Scholar 
    Scheller HV, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol. 2010;61:263–89.PubMed 

    Google Scholar 
    Varki A, Cummings RD, Aebi M, Packer NH, Seeberger PH, Esko JD, et al. Symbol Nomenclature for Graphical Representations of Glycans. Glycobiology. 2015;25:1323–4.PubMed 
    PubMed Central 

    Google Scholar 
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.PubMed 

    Google Scholar 
    Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–W37.PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Global patterns in marine organic matter stoichiometry driven by phytoplankton ecophysiology

    We incorporated a macromolecular model of phytoplankton (CFM-Phyto) into the global ocean model (MITgcm). This combined model predicts cellular growth rate based on the macromolecular allocation, which in turn is used to determine the elemental stoichiometry of phytoplankton for the next model time step.The phytoplankton component of the model is executed using the following algorithm, which is illustrated graphically in Extended Data Fig. 2: (1) relate the growth rate and elemental stoichiometry of phytoplankton based on the macromolecular allocation; (2) evaluate the possible growth rates under four different limiting nutrient assumptions and select the lowest rate: Liebig’s Law of the Minimum; (3) evaluate storage of non-limiting elements; (4) evaluate excess of non-limiting elements relative to maximum quotas; (5) based on that excess, evaluate effective nutrient uptake rate; and (6) evaluate the change in the elemental stoichiometry based on the balance between the growth rate and effective nutrient uptake rate. We describe the procedural details in the following text. Parameter values are listed in Extended Data Table 1. See ref. 21 for further details and justification of each equation in CFM-Phyto; here we repeat equations essential to explain the model used in the current study.Connecting the elemental stoichiometry and the growth rateThe first step of the algorithm is to obtain the relationship between the current elemental stoichiometry and the growth rate (μ). To do that, we use CFM-Phyto21 (Extended Data Fig. 1). The model is based on the assumption of pseudo-steady state with respect to macromolecular allocation; in other words, the cellular-scale acclimation occurs rapidly relative to environmental changes. Laboratory studies show that macromolecular re-allocation occurs on the timescale of hours to days19. This is fast relative to the rates of environmental change in our coarse-resolution ocean simulations and so steady state solutions21 are used to relate growth rate, macromolecular allocation and elemental stoichiometry, as described in detail below. We first describe the case of N quota (here defined as QN; moles cellular N per mole cellular C) in detail, and then we briefly explain the case of P and C quotas as the overall procedures are similar. After that, we describe the case with Fe quota, which extends the previously published model21 for this study.Relating N quota and growth rateCFM-Phyto describes the allocation of N quota as follows, focusing on the quantitatively major molecules:$$Q_{mathrm{N}} = Q_{mathrm{N}}^{{mathrm{Pro}}} + Q_{mathrm{N}}^{{mathrm{RNA}}} + Q_{mathrm{N}}^{{mathrm{DNA}}} + Q_{mathrm{N}}^{{mathrm{Chl}}} + Q_{mathrm{N}}^{{mathrm{Sto}}}$$
    (2)
    where QN is total N quota (per cellular C: mol N (mol C)−1), the terms on the right-hand side are the contributions from protein, RNA, DNA, chlorophyll and N storage. We use empirically determined fixed elemental stoichiometry of macromolecules21 (Extended Data Table 1) to connect the macromolecular contributions of different elements (here C and P):$$Q_{mathrm{N}} = Q_{mathrm{C}}^{{mathrm{Pro}}}Y_{{mathrm{Pro}}}^{{mathrm{N:C}}} + Q_{mathrm{P}}^{{mathrm{RNA}}}Y_{{mathrm{RNA}}}^{{mathrm{N:P}}} + Q_{mathrm{C}}^{{mathrm{DNA}}}Y_{{mathrm{DNA}}}^{{mathrm{N:C}}} + Q_{mathrm{C}}^{{mathrm{Chl}}}Y_{{mathrm{Chl}}}^{{mathrm{N:C}}} + Q_{mathrm{N}}^{{mathrm{Nsto}}}$$
    (3)
    Here (Y_l^{j:k}) represents the imposed elemental ratio (elements j and k) for each macromolecular pool (l). (Q_{mathrm{C}}^x) and (Q_{mathrm{P}}^x) describe the contributions of macromolecule x to the total C quota (mol C (mol C)−1) and P quota (mol P (mol C)−1), respectively.CFM-Phyto uses the following empirically supported relationship to describe (Q_{mathrm{P}}^{{mathrm{RNA}}}) (ref. 21):$$Q_{mathrm{P}}^{{mathrm{RNA}}} = A_{{mathrm{RNA}}}^{mathrm{P}}mu Q_{mathrm{C}}^{{mathrm{Pro}}} + Q_{{mathrm{P,min}}}^{{mathrm{RNA}}}$$
    (4)
    where (A_{{mathrm{RNA}}}^{mathrm{P}}) is constant (below, A values represent constant except (A_{{mathrm{Chl}}}); see below), μ is growth rate (d−1) and (Q_{{mathrm{P,min}}}^{{mathrm{RNA}}}) represents the minimum amount of RNA in phosphorus per cellular C (mol P (mol C)−1). Substituting this equation into equation (3) gives:$$begin{array}{l}Q_{mathrm{N}} = Q_{mathrm{C}}^{{mathrm{Pro}}}Y_{{mathrm{Pro}}}^{{mathrm{N:C}}} + left( {A_{{mathrm{RNA}}}^{mathrm{P}}mu Q_{mathrm{C}}^{{mathrm{Pro}}} + Q_{{mathrm{P,min}}}^{{mathrm{RNA}}}} right)\Y_{{mathrm{RNA}}}^{{mathrm{N:P}}} + Q_{mathrm{C}}^{{mathrm{DNA}}}Y_{{mathrm{DNA}}}^{{mathrm{N:C}}} + Q_{mathrm{C}}^{{mathrm{Chl}}}Y_{{mathrm{Chl}}}^{{mathrm{N:C}}} + Q_{mathrm{N}}^{{mathrm{Nsto}}}end{array}$$
    (5)
    In CFM-Phyto, we resolve three types of protein, photosynthetic, biosynthetic and other:$$Q_{mathrm{C}}^{{mathrm{Pro}}} = Q_{mathrm{C}}^{{mathrm{Pro}}_{mathrm{Pho}}} + Q_{mathrm{C}}^{{mathrm{Pro}}_{mathrm{Bio}}} + Q_{mathrm{C}}^{{mathrm{Pro}}_{mathrm{Other}}}$$
    (6)
    Photosynthetic proteins represent those in chloroplasts largely responsible for light harvesting and electron transport. The model assumes a constant composition of chloroplasts; thus, the amount of photosynthetic protein is proportional to the amount of chlorophyll21:$$Q_{mathrm{C}}^{{mathrm{Pro}}_{mathrm{Pho}}} = A_{{mathrm{Pho}}}Q_{mathrm{C}}^{{mathrm{Chl}}}$$
    (7)
    Biosynthetic proteins represent proteins related to producing new material such as proteins, carbohydrates, lipids, RNAs, DNAs and other molecules. The models use the following empirically derived relationship21:$$Q_{mathrm{C}}^{{mathrm{Pro}}_{mathrm{Bio}}} = A_{{mathrm{Bio}}}mu$$
    (8)
    Substituting equations (6)–(8) (in this order) into equation (5) leads to the following equation:$$begin{array}{l}Q_{mathrm{N}} = left( {A_{{mathrm{Pho}}}Q_{mathrm{C}}^{{mathrm{Chl}}} + A_{{mathrm{Bio}}}mu + Q_{mathrm{C}}^{{mathrm{Pro}}_{mathrm{Other}}}} right)Y_{{mathrm{Pro}}}^{{mathrm{N:C}}}\ + left( {A_{{mathrm{RNA}}}^{mathrm{P}}mu left( {A_{{mathrm{Pho}}}Q_{mathrm{C}}^{{mathrm{Chl}}} + A_{{mathrm{Bio}}}mu + Q_{mathrm{C}}^{{mathrm{Pro}}_{mathrm{Other}}}} right) + Q_{{mathrm{P,min}}}^{{mathrm{RNA}}}} right)Y_{{mathrm{RNA}}}^{{mathrm{N:P}}}\ + Q_{mathrm{C}}^{{mathrm{DNA}}}Y_{{mathrm{DNA}}}^{{mathrm{N:C}}} + Q_{mathrm{C}}^{{mathrm{Chl}}}Y_{{mathrm{Chl}}}^{{mathrm{N:C}}} + Q_{mathrm{N}}^{{mathrm{Sto}}}end{array}$$
    (9)
    Empirically, chlorophyll depends on the growth rate and equation (10) accurately describes the relationship between the growth-rate dependences of chlorophyll under different light intensities21:$$Q_{mathrm{C}}^{{mathrm{Chl}}} = A_{{mathrm{Chl}}}mu + B_{{mathrm{Chl}}}$$
    (10)
    with (A_{{mathrm{Chl}}} = left( {1 + E} right)/v_I) and (B_{Chl} = m/v_I) with E (dimensionless) as a constant representing growth-rate-dependent respiration, and m (d−1) describing maintenance respiration. vI (mol C (mol C in Chl)−1 d−1) represents chlorophyll-specific photosynthesis rate based on an established function of light intensity I (μmol m−2 s−1)21,57:$$v_I = v_I^{{mathrm{max}}}left( {1 – e^{A_II}} right)$$
    (11)
    where (v_I^{{mathrm{max}}}) is the maximum chlorophyll-specific photosynthesis rate, e is the natural base and AI is a combined coefficient for absorption cross-section and turnover time. Substitution of equation (10) into equation (9) leads to the following quadratic relationship between QN and μ:$$Q_{mathrm{N}} = a_{mathrm{N}}mu ^2 + b_{mathrm{N}}mu + c_{mathrm{N}} + Q_{mathrm{N}}^{{mathrm{Sto}}}$$
    (12)
    where$$begin{array}{l}a_{mathrm{N}} = A_{{mathrm{RNA}}}^{mathrm{P}}left( {A_{{mathrm{Pho}}}A_{{mathrm{Chl}}} + A_{{mathrm{Bio}}}} right)Y_{{mathrm{RNA}}}^{{mathrm{N:P}}}\ b_{mathrm{N}} = left( {A_{{mathrm{Pho}}}A_{{mathrm{Chl}}} + A_{{mathrm{Bio}}}} right)Y_{{mathrm{Pro}}}^{{mathrm{N:C}}} + A_{{mathrm{Chl}}}Y_{{mathrm{Chl}}}^{{mathrm{N:C}}} + A_{{mathrm{RNA}}}^{mathrm{P}}left( {A_{{mathrm{Pho}}}B_{{mathrm{Chl}}} + Q_{mathrm{C}}^{{mathrm{Pro}}_{mathrm{Other}}}} right)Y_{mathrm{{RNA}}}^{{mathrm{N:P}}}\ c_{mathrm{N}} = B_{{mathrm{Chl}}}Y_{{mathrm{Chl}}}^{{mathrm{N:C}}} + left( {A_{{mathrm{Pho}}}B_{{mathrm{Chl}}} + Q_{mathrm{C}}^{{mathrm{Pro}}_{mathrm{Other}}}} right)Y_{{mathrm{Pro}}}^{{mathrm{N:C}}}\ + Q_{{mathrm{P}},{mathrm{min}}}^{{mathrm{RNA}}}Y_{{mathrm{RNA}}}^{{mathrm{N:P}}} + Q_{mathrm{C}}^{{mathrm{DNA}}}Y_{{mathrm{DNA}}}^{{mathrm{N:C}}}end{array}$$Relating P quota and growth rateSimilarly, CFM-Phyto describes the relationship between the current P quota QP and μ. P is allocated to its major molecular reservoirs:$$Q_{mathrm{P}} = Q_{mathrm{P}}^{{mathrm{RNA}}} + Q_{mathrm{C}}^{{mathrm{DNA}}}Y_{{mathrm{DNA}}}^{{mathrm{P:C}}} + Q_{mathrm{P}}^{{mathrm{Thy}}} + Q_{mathrm{P}}^{{mathrm{Other}}} + Q_{mathrm{P}}^{{mathrm{Sto}}}$$
    (13)
    Similar to equation (7), with the assumption of the constant composition of photosynthetic apparatus, the model connects the amount of the chlorophyll to phosphorus in thylakoid membranes:$$Q_{mathrm{P}}^{{mathrm{Thy}}} = A_{{mathrm{Pho}}}^{{mathrm{P:Chl}}}Q_{mathrm{C}}^{{mathrm{Chl}}}$$
    (14)
    As for N allocation, substitution of equations (14), (4), (6), (7), (8) and (10) (in this order) into equation (13) leads to a quadratic relationship between QP and μ:$$Q_{mathrm{P}} = a_{mathrm{P}}mu ^2 + b_{mathrm{P}}mu + c_{mathrm{P}} + Q_{mathrm{P}}^{{mathrm{Sto}}}$$
    (15)
    where$$begin{array}{l}a_{mathrm{P}} = A_{{mathrm{RNA}}}^{mathrm{P}}left( {A_{{mathrm{Pho}}}A_{{mathrm{Chl}}} + A_{{mathrm{Bio}}}} right)\ b_{mathrm{P}} = A_{{mathrm{RNA}}}^{mathrm{P}}left( {A_{{mathrm{Pho}}}B_{{mathrm{Chl}}} + Q_{mathrm{C}}^{{mathrm{Pro}}_{mathrm{Other}}}} right)Y_{{mathrm{RNA}}}^{{mathrm{N:P}}} + A_{{mathrm{Pho}}}^{{mathrm{P:Chl}}}A_{{mathrm{Chl}}}\ c_{mathrm{P}} = Q_{{mathrm{P,min}}}^{{mathrm{RNA}}} + Q_{mathrm{C}}^{{mathrm{DNA}}}Y_{{mathrm{DNA}}}^{{mathrm{P:C}}} + A_{{mathrm{Pho}}}^{{mathrm{P:Chl}}}B_{{mathrm{Chl}}} + Q_{mathrm{P}}^{{mathrm{Other}}}end{array}$$Relating C quota and growth rateSimilarly, CFM-Phyto describes C allocation as follows:$$begin{array}{l}Q_{mathrm{C}} = 1 = Q_{mathrm{C}}^{{mathrm{Pro}}} + Q_{mathrm{C}}^{{mathrm{RNA}}} + Q_{mathrm{C}}^{{mathrm{DNA}}} + Q_{mathrm{C}}^{{mathrm{Other}}} + Q_{mathrm{C}}^{{mathrm{Plip}} – {mathrm{Thy}}}\qquad + Q_{mathrm{C}}^{{mathrm{Csto}}} + Q_{mathrm{C}}^{{mathrm{Nsto}}}end{array}$$
    (16)
    where Plip−Thy indicates P lipid in thylakoid membranes. The equation represents the allocation per total cellular C in mol C (mol C)−1, so the sum of the macromolecules in C (QC) becomes 1. Using the imposed elemental ratios of macromolecular pools ((Y_l^{j:k})) we relate the elemental contributions:$$Q_{mathrm{C}} = Q_{mathrm{C}}^{{mathrm{Pro}}} + Q_{mathrm{P}}^{{mathrm{RNA}}}Y_{{mathrm{RNA}}}^{{mathrm{C:P}}} + Q_{mathrm{C}}^{{mathrm{DNA}}} + Q_{mathrm{C}}^{{mathrm{Other}}} + Q_{mathrm{P}}^{{mathrm{Thy}}}Y_{{mathrm{Plip}}}^{{mathrm{C:P}}} + Q_{mathrm{C}}^{{mathrm{Sto}}} + Q_{mathrm{N}}^{{mathrm{Sto}}}Y_{{mathrm{Nsto}}}^{{mathrm{C:N}}}$$
    (17)
    Following the steps similar to those for the N and P allocations, substituting equations (14), (4), (6), (7), (8) and (10) (in this order) into equation (17) leads to the following quadratic relationship between cellular C quota QC (=1 mol C (mol C)−1) and μ:$$Q_{mathrm{C}} = a_{mathrm{C}}mu ^2 + b_{mathrm{C}}mu + c_{mathrm{C}} + Q_{mathrm{C}}^{{mathrm{Sto}}} + Q_{mathrm{N}}^{{mathrm{Sto}}}Y_{{mathrm{Nsto}}}^{{mathrm{C:N}}}$$
    (18)
    where$$begin{array}{l}a_{mathrm{C}} = A_{{mathrm{RNA}}}^{mathrm{P}}left( {A_{{mathrm{Pho}}}A_{{mathrm{Chl}}} + A_{{mathrm{Bio}}}} right)Y_{{mathrm{RNA}}}^{{mathrm{C:P}}}\ b_{mathrm{C}} = A_{{mathrm{Chl}}}left( {1 + A_{{mathrm{Pho}}} + A_{{mathrm{Pho}}}^{{mathrm{P:Chl}}}Y_{{mathrm{Plip}}}^{{mathrm{C:P}}}} right) + A_{{mathrm{Bio}}} + A_{{mathrm{RNA}}}^{mathrm{P}}left( {A_{{mathrm{Pho}}}B_{{mathrm{Chl}}} + Q_{mathrm{C}}^{{mathrm{Pro}}_{mathrm{Other}}}} right)Y_{{mathrm{RNA}}}^{{mathrm{C:P}}}\ c_{mathrm{C}} = left( {1 + A_{{mathrm{Pho}}} + A_{{mathrm{Pho}}}^{{mathrm{P:Chl}}}Y_{{mathrm{Plip}}}^{{mathrm{C:P}}}} right)B_{{mathrm{Chl}}} + Q_{mathrm{C}}^{{mathrm{Pro}}_{rm{Other}}}\ + Q_{{mathrm{P}},{mathrm{min}}}^{{mathrm{RNA}}}Y_{{mathrm{RNA}}}^{{mathrm{C:P}}} + Q_{mathrm{C}}^{{mathrm{DNA}}} + Q_{mathrm{C}}^{{mathrm{Other}}}end{array}$$Relating Fe quota and growth rateIn order to capture global scale biogeochemical dynamics including the iron-limited high-nitrogen, low chlorophyll regimes, CFM-Phyto21 is extended to resolve Fe quota and allocation. The model is guided by a laboratory proteomic study58 in which the major Fe allocations are to photosystems, storage and nitrogen-fixing enzymes (nitrogenase). As we do not resolve nitrogen-fixing organisms here, Fe allocation (mol Fe (mol C)−1) represents only the first two:$$Q_{{mathrm{Fe}}} = Q_{{mathrm{Fe}}}^{{mathrm{Pho}}} + Q_{{mathrm{Fe}}}^{{mathrm{Sto}}}$$
    (19)
    As for equation (7) and equation (14), we relate the allocation of Fe to photosystems to the investment in chlorophyll, (Q_{mathrm{C}}^{{mathrm{Chl}}}):$$Q_{{mathrm{Fe}}}^{{mathrm{Pho}}} = A_{{mathrm{Pho}}}^{{mathrm{Fe}}}Q_{mathrm{C}}^{{mathrm{Chl}}}$$
    (20)
    This is a strong simplification because the pigment to photosystem ratio is observed to vary59, but enables an explicit, mechanistically motivated representation of Fe limitation, which, a posteriori, results in global scale regimes of iron limitation that resemble those observed43 (Extended Data Fig. 4). With equations (10), (19) and (20), we obtain the following relationship between QFe and μ:$$Q_{{mathrm{Fe}}} = A_{{mathrm{Pho}}}^{{mathrm{Fe}}}A_{{mathrm{Chl}}}mu + A_{{mathrm{Pho}}}^{{mathrm{Fe}}}B_{{mathrm{Chl}}} + Q_{{mathrm{Fe}}}^{{mathrm{Sto}}}$$
    (21)
    Evaluating the growth rateWe assume that the cellular growth rate is constrained by the most limiting element within the cell (and its associated functional macromolecules). Thus, at each time step and location, and for each cell type, the evaluation of growth rate is based on the following two steps: (1) computation of the growth rate for each element without storage; that is, the case when all of the elemental quotas are allocated to functional macromolecules; and (2) selection of the lowest growth rate among these; Liebig’s Law of the Minimum. For the first step, we define (mu _i) (i = C, N, P, Fe) as the growth rate, assuming that nutrient i is limiting. Under this condition, (Q_i^{{mathrm{Sto}}}) should be small as element i is allocated to other essential molecules. We assume that (Q_{mathrm{N}}^{{mathrm{Sto}}}) is also small under C limitation because N storage molecules are rich in carbon. With these assumptions, the solution for (mu _i) is obtained by solving the standard quadratic relationships of equations (12), (15) and (18) for N, P and C, respectively, neglecting any (Q_i^{{mathrm{Sto}}}) terms:$$mu _i = frac{{ – b_i + sqrt {b_i^2 – 4a_ileft( {c_i – Q_i} right)} }}{{2a_i}}$$
    (22)
    where QC = 1. For μFe, equation (21) without (Q_{{mathrm{Fe}}}^{{mathrm{Sto}}}) leads to$$mu _{{mathrm{Fe}}} = frac{{Q_{{mathrm{Fe}}} – A_{{mathrm{Pho}}}^{{mathrm{Fe}}}B_{{mathrm{Chl}}}}}{{A_{{mathrm{Pho}}}^{{mathrm{Fe}}}A_{{mathrm{Chl}}}}}$$
    (23)
    Once the μi values are obtained, we determine the effective growth rate, μ, based on the lowest value, which identifies the limiting element based on current intracellular quotas:$$mu = {mathrm{min}}left( {mu _{mathrm{N}},mu _{mathrm{P}},mu _{mathrm{C}},mu _{{mathrm{Fe}}}} right)$$
    (24)
    Evaluating nutrient storageIn CFM-Phyto, non-limiting nutrients can be stored in an intracellular reserve21, reflecting commonly observed luxury uptake. Storage is evaluated as the difference between the total elemental quota (updated later) and the functionally allocated portion of that element:$$Q_i^{{mathrm{Sto}}} = Q_i – Q_i^{{mathrm{Non}}_{mathrm{Sto}}}$$
    (25)
    Here (Q_i^{{mathrm{Non}}_{mathrm{Sto}}}) represents the contribution to element i by functional, non-storage molecules. For N, P and C, (Q_i^{{mathrm{Non}}_{mathrm{Sto}}}) is represented by the non-(Q_i^{{mathrm{Sto}}}) terms on the right-hand side in equations (12), (15) and (18), respectively:$$Q_i^{{mathrm{Non}}_{mathrm{Sto}}} = a_imu ^2 + b_imu + c_i$$
    (26)
    Similarly, for Fe, from equation (21):$$Q_{{mathrm{Fe}}}^{{mathrm{Non}}_{mathrm{Sto}}} = A_{{mathrm{Pho}}}^{{mathrm{Fe}}}A_{{mathrm{Chl}}}mu + A_{{mathrm{Pho}}}^{{mathrm{Fe}}}B_{{mathrm{Chl}}}$$
    (27)
    When there is N storage, (Q_{mathrm{C}}^{{mathrm{Sto}}}) must be recomputed to consider the allocation of C to it:$$Q_{mathrm{C}}^{{mathrm{Sto}}} = Q_{mathrm{C}} – Q_{mathrm{C}}^{{mathrm{Non}}_{mathrm{Sto}}} – Q_{mathrm{N}}^{{mathrm{Sto}}}Y_{{mathrm{Nsto}}}^{{mathrm{C:N}}}$$
    (28)
    Evaluating the excess nutrientStorage capacity for any element is finite and we define excess nutrient as a nutrient (N, P, Fe) that is in beyond an empirically informed, imposed maximum phytoplankton storage capacity. Excess nutrient is assumed to be excreted (see below). Excess of element i ((Q_i^{{mathrm{Exc}}})) is computed:$$Q_i^{{mathrm{Exc}}} = {mathrm{max}}left( {Q_i – Q_i^{{mathrm{max}}},0} right)$$
    (29)
    where (Q_i^{{mathrm{max}}}) is maximum capacity for nutrient i. For N, CFM-Phyto computes (Q_i^{{mathrm{max}}}) as a sum of non-storage molecules and prescribed maximum nutrient storing capacity according to model–data comparison21:$$Q_i^{{mathrm{max}}} = Q_i^{{mathrm{Non}}_{mathrm{Sto}}} + Q_i^{{mathrm{Sto}}_{mathrm{max}}}$$
    (30)
    Laboratory studies suggest that when P is not limiting, the phosphorus quota maximizes to a value that is almost independent of growth rate21,39,44. Storage of each element is finite and the upper limit to storage is imposed by specifying the maximum cellular quotas ((Q_{mathrm{P}}^{{mathrm{max}}}) (ref. 21) and also (Q_{{mathrm{Fe}}}^{{mathrm{max}}})) with size and taxonomic dependencies (for example, refs. 27,41). Thus, the maximum storage is represented by the difference between the prescribed maximum quota and the actual quota21:$$Q_i^{{mathrm{Sto}}_{mathrm{max}}} = Q_i^{{mathrm{max}}} – Q_i$$
    (31)
    In the case where (Q_i^{{mathrm{Sto}}}) computed in the previous section exceeds (Q_i^{{mathrm{Sto}}_{mathrm{max}}}), the value of (Q_i^{{mathrm{Sto}}}) is replaced by (Q_i^{{mathrm{Sto}}_{mathrm{max}}}) and the difference is placed in the excess pool, (Q_i^{{mathrm{Exc}}}).Computing effective nutrient uptake rateOne factor that influences the cellular elemental quota is the effective nutrient uptake rate (mol i (mol C)−1 d−1) of N, P and Fe, which we define as follows:$$V_i^{{mathrm{Eff}}} = V_i – frac{{Q_i^{{mathrm{Exc}}}}}{{tau _i^{{mathrm{Exu}}}}}$$
    (32)
    where Vi (mol i (mol C)−1 d−1) is nutrient uptake rate and the second term represents the exudation of the excess nutrient based on the timescale (tau _i^{{mathrm{Exu}}}) (d−1). For Vi, we use Monod kinetics60,61:$$V_i = V_i^{{mathrm{max}}}frac{{[i]}}{{left[ i right] + K_i}}$$
    (33)
    where (V_i^{{mathrm{max}}}) is maximum nutrient uptake, [i] (mmol m−3) is the environmental concentration of nutrient i and Ki (mmol m−3) is the half-saturation constant of i. Previous models have resolved the relationship between nutrient uptake and allocation to transporters31,62. Here we do not explicitly resolve allocation to transporters, as proteomic studies indicate that it is a relatively minor component of the proteome compared with photosystems and biosynthesis in phytoplankton63. Transporter proteins could be represented in a model with a finer-scale resolution of the proteome64.Differentiating small and large phytoplanktonIn this model, ‘small’ phytoplankton broadly represent picocyanobacteria, which have high nutrient affinities and low maximum growth rates (for example, Prochlorococcus), whereas ‘large’ phytoplankton represent eukaryotes with higher maximum growth rates (for example, diatoms). The former are associated with a gleaner strategy adapted to oligotrophic regimes, while the latter are opportunistic, adapted to variable and nutrient-enriched regimes. To encapsulate this, the large phytoplankton have overall higher imposed (V_i^{{mathrm{max}}}) (~µmaxQi), Ki and (v_I^{mathrm{max}}) than for the small phytoplankton (Extended Data Table 1), consistent with the previous models (for example, ref. 10). In addition, the larger cells are assigned a higher (Q_{mathrm{P}}^{{mathrm{max}}}) following the observed trends (Fig. 1 and Extended Data Table 1).Computing the change in the elemental stoichiometryThe computation of the change in the elemental quotas is done based on the balance between the effective nutrient uptake rate and the loss of nutrient to the new cells:$$frac{{{mathrm{d}}Q_i}}{{{mathrm{d}}t}} = V_i^{{mathrm{Eff}}} – mu Q_i$$
    (34)
    This change in the elemental quotas based on the cellular processes and the passive transport of elements in phytoplankton by the flow field created by MITgcm governs the elemental stoichiometry of the next time step at a specific grid box, as in other versions of ecological models with MITgcm10.Calculation of CV valuesWe computed the CV values based on the following equation:$${mathrm{CV}} = frac{sigma }{{bar x}}$$
    (35)
    where σ is the standard deviation and (bar x) is the mean. The purpose of this computation is to quantify the latitudinal variation of the averaged elemental stoichiometry. Thus, we used the averaged values for each latitude (as plotted in Fig. 2) for the calculation of σ and (bar x).MITgcm-CFMThe biogeochemical and ecological component of the model resolves the cycling of C, P, N and Fe through inorganic, living, dissolved and particulate organic phases. The biogeochemical and biological tracers are transported and mixed by the MIT general circulation model (MITgcm)35,36, constrained to be consistent with altimetric and hydrographic observations (the ECCO-GODAE state estimates)65. This three-dimensional configuration has a coarse resolution (1° × 1° horizontally) and 23 depth levels ranging from 5 m at the surface to 5450 m at depth. The model was run for three years, and the results of the third year were analysed, by which time the modelled plankton distribution becomes quasi-stable. Equations for the biogeochemical processes are as described by equations and parameters in previous studies10,38. Here, however, we include only nitrate for inorganic nitrogen, and do not resolve the silica cycle. We simulated eukaryotic and prokaryotic analogues of phytoplankton (as ‘large’ and ‘small’ phytoplankton). The eukaryotic analogue has a higher maximum C fixation rate for the same macromolecular composition and higher maximum nutrient uptake rates, but also has overall higher half-saturation constants for nutrient uptake. We used light absorption spectra of picoeukaryotes, which sits in-between small prokaryotes and large eukaryotes10. In MITgcm, the mortality of phytoplankton is represented by the sum of a linear term (ml), representing sinking and maintenance losses, and quadratic terms representing the action of unresolved next-trophic levels66,67, implicitly assuming that the higher-trophic-level biomass scales with that of its prey. We assumed that the latter term is small to avoid introducing additional uncertainties. Similarly, we do not resolve the stoichiometric effects of prey selection due to the nutritional status of prey, or viral partitioning of nutrients in the environment50. Atmospheric iron deposition varies by orders of magnitude around the globe and has a large margin of uncertainty, including the bio-availability of the deposited iron, which in turn depends on the source and chemical history of the deposited material68. To realize a realistic global net primary production, we doubled the atmospheric iron input from ref. 10; this factor is well within the uncertainty of the iron supply estimates. Each of the two phytoplankton groups has variable C:N:P:Fe as determined by the component macromolecules at each time step. The pools of C, N, P and Fe are tracked within the modelled three-dimensional flow fields. More

  • in

    Cooperate to save a changing planet

    Tallis, H. M. et al. Front. Ecol. Environ. 16, 563–570 (2018).Article 

    Google Scholar 
    Tu, C. et al. Nat. Sustain. https://doi.org/10.1038/s41893-022-01008-1 (2022).Article 

    Google Scholar 
    Lloyd, W. F. Two lectures on the checks to population (S. Collingwood, The University of Oxford, 1833).Gordon, H. S. J. Polit. Econ. 62, 124–142 (1954).Article 

    Google Scholar 
    Nash, J. F. Jr Proc. Natl Acad. Sci. USA 36, 48–49 (1950).Article 
    CAS 

    Google Scholar 
    Hardin, G. Science 162, 1243–1248 (1968).Article 
    CAS 

    Google Scholar 
    Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action (Cambridge University Press, 1990).Sethi, R. & Somanathan, E. Am. Econ. Rev. 86, 766–788 (1996).
    Google Scholar 
    Schill, C. et al. Nat. Sustain. 2, 1075–1082 (2019).Article 

    Google Scholar 
    Levin, S. Philos. Trans R. Soc. B Biol. Sci. 365, 13–18 (2010).Article 

    Google Scholar  More

  • in

    Meteorological change and hemorrhagic fever with renal syndrome epidemic in China, 2004–2018

    HFRS distribution in China, 2004–2018From January 1, 2004 to December 31, 2018, 190 203 cases of HFRS were reported nationwide in China, with an average annual incidence rate of 0.950 per 100,000 people, with the highest incidence in 2004 (1.926 per 100,000) and the lowest in 2018 (0.86 per 100,000) (Fig. 1A), and the cases showed obvious seasonal fluctuations (Fig. 1B). HFRS cases existed every month and showed an obvious dual-season mode every year, with a spring peak from May to June and a winter peak from November to December. The highest number of cases were in May and November, with the composition ratios accounting of 9.51% and 17.06%, respectively (Fig. 1B).Figure 1The incidence and number of HFRS cases reported in China, 2004–2018. (A) Number of cases and incidence by year. Trend of the incidence rate of HFRS between 2004 and 2018 shown by the joinpoint regression (upper right corner). The red squares represent the observed crude incidence of HFRS and the lines represent the slope of the annual percentage change (APC). (B) The pink line represents the monthly incidence of HFRS. The bar chart shows the number of cases at peak and trough.Full size imageThe incidence of HFRS in northern regions was higher than that in the south, especially in Heilongjiang, Liaoning, Jining, Shaanxi, Shandong and Hebei provinces. Relatively few cases existed in south China, which were mainly concentrated in Jiangxi, Zhejiang, Hunan and Fujian (Figs. S1 and S2). Spatial autocorrelation analysis indicated that HFRS cases were positively correlated (Moran’s I = 0.09, p  More

  • in

    Renewal of planktonic foraminifera diversity after the Cretaceous Paleogene mass extinction by benthic colonizers

    Hart, M. B. et al. The search for the origin of the planktic foraminifera. J. Geol. Soc. Lond. 160, 341–343 (2003).Article 

    Google Scholar 
    Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927 (2011).Article 
    PubMed 

    Google Scholar 
    Gradstein, F., Waskowska, A. & Glinskikh, L. The first 40 million years of planktonic foraminifera. Geosci 11, 1–25 (2021).Article 

    Google Scholar 
    Ujiié, Y., Kimoto, K. & Pawlowski, J. Molecular evidence for an independent origin of modern triserial planktonic foraminifera from benthic ancestors. Mar. Micropaleontol. 69, 334–340 (2008).Article 
    ADS 

    Google Scholar 
    Darling, K. F. et al. Surviving mass extinction by bridging the benthic/planktic divide. Proc. Natl Acad. Sci. USA 106, 12629–33 (2009).Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Kucera, M. et al. Caught in the act: anatomy of an ongoing benthic–planktonic transition in a marine protist. J. Plankton Res. 39, 436–449 (2017).
    Google Scholar 
    Ezard, T. H. G., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–352 (2011).Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 
    Lowery, C. M., Bown, P. R., Fraass, A. J. & Hull, P. M. Ecological response of plankton to environmental change: thresholds for extinction. Annu. Rev. Earth Planet. Sci. 48, 403–429 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Pawlowski, J., Holzmann, M. & Tyszka, J. New supraordinal classification of foraminifera: molecules meet morphology. Mar. Micropaleontol. 100, 1–10 (2013).Article 
    ADS 

    Google Scholar 
    Lecroq, B. et al. Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments. Proc. Natl Acad. Sci. USA 108, 13177–13182 (2011).Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Pawlowski, J. et al. The evolution of early foraminifera. Proc. Natl Acad. Sci. USA 100, 11494–8 (2003).Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Vachard, D. Macroevolution and biostratigraphy of paleozoic foraminifers. in Stratigraphy and Timescales (Ed. Montenari, M.) Vol. 1, 257–323 (Academic Press, 2016).Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097.e21 (2019).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).Article 
    PubMed 
    CAS 

    Google Scholar 
    Holzmann, M. & Pawlowski, J. An updated classification of rotaliid foraminifera based on ribosomal DNA phylogeny. Mar. Micropaleontol. 132, 18–34 (2017).Article 
    ADS 

    Google Scholar 
    John, A. W. G. The regular occurrence of Reophax Scottie Chaster, a benthic foraminiferan, in plankton samples from the North Sea. J. Micropalaeontol. 6, 61–63 (1987).Article 

    Google Scholar 
    Kucera, M. et al. Caught in the act: anatomy of an ongoing benthic-planktonic transition in a marine protist. J. Plankton Res. 39, 436–449 (2017).Darling, K. F., Wade, C. M., Kroon, D. & Brown, A. J. L. Planktic foraminiferal molecular evolution and their polyphyletic origins from benthic taxa. Mar. Micropaleontol. 30, 251–266 (1997).Article 
    ADS 

    Google Scholar 
    Church, S. H., Ryan, J. F. & Dunn, C. W. Automation and evaluation of the SOWH test with SOWHAT. Syst. Biol. 64, 1048–1058 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51, 492–508 (2002).Article 
    PubMed 

    Google Scholar 
    Pawlowski, J. et al. Extreme differences in rates of molecular evolution of foraminifera revealed by comparison of ribosomal DNA sequences and the fossil record. Mol. Biol. Evol. 14, 498–505 (1997).Article 
    PubMed 
    CAS 

    Google Scholar 
    Peijnenburg, K. T. C. A. et al. The origin and diversification of pteropods precede past perturbations in the Earth’s carbon cycle. Proc. Natl Acad. Sci. USA 117, 25609–25617 (2020).Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    O’Brien, C. L. et al. Cretaceous sea-surface temperature evolution: constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth-Sci. Rev. 172, 224–247 (2017).Article 
    ADS 

    Google Scholar 
    Olsson, R. K., Berggren, W. A., Hemleben, C. & Huber, B. T. Atlas of Paleocene planktonic foraminifera. Smithson. Contrib. Paleobiol. 1–252 https://doi.org/10.5479/si.00810266.85.1 (1999).Arenillas, I. & Arz, J. A. Benthic origin and earliest evolution of the first planktonic foraminifera after the Cretaceous/Palaeogene boundary mass extinction. Hist. Biol. 29, 25–42 (2017).Article 

    Google Scholar 
    Huber, B. T., Petrizzo, M. R. & MacLeod, K. G. Planktonic foraminiferal endemism at southern high latitudes following the terminal cretaceous extinction. J. Foraminifer. Res. 50, 382–402 (2020).Article 

    Google Scholar 
    Arenillas, I., Arz, J. A. & Gilabert, V. An updated suprageneric classification of planktic foraminifera after growing evidence of multiple benthic-planktic transitions. Spanish J. Palaeontol. https://doi.org/10.7203/sjp.22189 (2022).Culver, S. J. Benthic foraminifera across the Cretaceous–Tertiary (K–T) boundary: a review. Mar. Micropaleontol. 47, 177–226 (2003).Article 
    ADS 

    Google Scholar 
    Widmark, J. G. V. & Malmgren, B. A. Benthic foraminiferal changes across the Cretaceous/Tertiary boundary in the deep sea; DSDP sites 525, 527, and 465. J. Foraminifer. Res. 22, 81–113 (1992).Article 

    Google Scholar 
    Rigaud, S., Martini, R. & Vachard, D. Early evolution and new classification of the order Robertinida (foraminifera). J. Foraminifer. Res. 45, 3–28 (2015).Article 

    Google Scholar 
    Rigaud, S., Granier, B. & Masse, J. P. Aragonitic foraminifers: an unsuspected wall diversity. J. Syst. Palaeontol. 19, 461–488 (2021).Article 

    Google Scholar 
    Hull, P. M. et al. On impact and volcanism across the Cretaceous-Paleogene boundary. Science 367, 266–272 (2020).Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 
    Morard, R. et al. PFR2: a curated database of planktonic foraminifera 18S ribosomal DNA as a resource for studies of plankton ecology, biogeography and evolution. Mol. Ecol. Resour. 15, 1472–1485 (2015).Article 
    PubMed 
    CAS 

    Google Scholar 
    Morard, R. et al. Genetic and morphological divergence in the warm-water planktonic foraminifera genus Globigerinoides. PLoS ONE 14, 1–30 (2019).Article 

    Google Scholar 
    Morard, R., Vollmar, N. M., Greco, M. & Kucera, M. Unassigned diversity of planktonic foraminifera from environmental sequencing revealed as known but neglected species. PLoS ONE 14, e0213936 (2019).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinforma. 10, 1–9 (2009).Article 

    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).Liaw, A. & Wiener, M. Classification and Regression by randomForest. R. N. 2, 18–22 (2002).
    Google Scholar 
    Lang, M. et al. mlr3: a modern object-oriented machine learning framework in R. J. Open Source Softw. 4, 1903 (2019).Article 
    ADS 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Darriba, D. et al. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 37, 291–294 (2020).Article 
    MathSciNet 
    PubMed 
    CAS 

    Google Scholar 
    Kozlov, A. M. et al. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Barbera, P. et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst. Biol. 68, 365–369 (2019).Article 
    MathSciNet 
    PubMed 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, 293–296 (2021).Article 

    Google Scholar 
    Löytynoja, A. & Goldman, N. WebPRANK: a phylogeny-aware multiple sequence aligner with interactive alignment browser. BMC Bioinform. 11, 1–7 (2010).Ronquist, F. et al. MrBayes 3. 2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Dos Reis, M., Donoghue, P. C. J. & Yang, Z. Bayesian molecular clock dating of species divergences in the genomics era. Nat. Rev. Genet. 17, 71–80 (2016).Article 
    PubMed 

    Google Scholar 
    Song, H., Tong, J. & Chen, Z. Q. Evolutionary dynamics of the Permian-Triassic foraminifer size: Evidence for Lilliput effect in the end-Permian mass extinction and its aftermath. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 98–110 (2011).Article 

    Google Scholar 
    Copestake, P. & Johnson, B. Lower Jurassic Foraminifera from the Llanbedr (Mochras Farm) Borehole, North Wales, UK. Monogr. Palaeontogr. Soc. 167, 1–403 (2013).Article 

    Google Scholar 
    Rigaud, S. & Blau, J. New Robertinid Foraminifers from the Early Jurassic of Adnet, Austria and Their Evolutionary Importance. Acta Palaeontol. Pol. 61, 721–734 (2016).Article 

    Google Scholar 
    Boudagher-fadel, M. K. Evolution and Geological Significance of Larger Benthic Foraminifera. Evolution and Geological Significance of Larger Benthic Foraminifera (UCL Press, 2018).Piuz, A. & Meister, C. Cenomanian rotaliids (Foraminiferida) from Oman and Morocco. Swiss J. Palaeontol. 132, 81–97 (2013).Article 

    Google Scholar 
    Kucera, M. & Schönfeld, J. The origin of modern oceanic foraminiferal faunas and Neogene climate change. in Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies. (ed. The Micropalaeontological Society, S. P.) 409–425 (The Geological Society, 2007).Drummond, A. J. & Suchard, M. A. Bayesian random local clocks, or one rate to rule them all. BMC Biol. 8, 114 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rambaut, A. FigTree version 1.3.1. http://tree.bio.ed.ac.uk (2009).Groussin, M., Pawlowski, J. & Yang, Z. Bayesian relaxed clock estimation of divergence times in foraminifera. Mol. Phylogenet. Evol. 61, 157–166 (2011).Article 
    PubMed 

    Google Scholar 
    Loeblich Jr, A. R. & Tappan, H. Foraminiferal Genera and Their Classification (Springer, 1988). More

  • in

    Propagation of viral genomes by replicating ammonia-oxidising archaea during soil nitrification

    Prosser JI, Hink L, Gubry-Rangin C, Nicol GW. Nitrous oxide production by ammonia oxidizers: Physiological diversity, niche differentiation and potential mitigation strategies. Glob Chang Biol. 2020;26:103–18.Article 
    PubMed 

    Google Scholar 
    Huang L, Chakrabarti S, Cooper J, Perez A, John SM, Daroub SH, et al. Ammonia-oxidizing archaea are integral to nitrogen cycling in a highly fertile agricultural soil. ISME Commun. 2021;1:19.Article 

    Google Scholar 
    Hink L, Gubry-Rangin C, Nicol GW, Prosser JI. The consequences of niche and physiological differentiation of archaeal and bacterial ammonia oxidisers for nitrous oxide emissions. ISME J. 2018;12:1084–93.Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Li Y, Chapman SJ, Nicol GW, Yao H. Nitrification and nitrifiers in acidic soils. Soil Biol Biochem. 2018;116:290–301.Article 
    CAS 

    Google Scholar 
    Ahlgren NA, Fuchsman CA, Rocap G, Fuhrman JA. Discovery of several novel, widespread, and ecologically distinct marine Thaumarchaeota viruses that encode amoC nitrification genes. ISME J 2019;13:618–31.Article 
    PubMed 
    CAS 

    Google Scholar 
    Kim J-G, Kim S-J, Cvirkaite-Krupovic V, Yu W-J, Gwak J-H, López-Pérez M, et al. Spindle-shaped viruses infect marine ammonia-oxidizing thaumarchaea. Proc Natl Acad Sci USA. 2019;116:15645–50.Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Emerson JB. Soil Viruses: A New Hope. mSystems 2019;4:e00120–19.Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Santos-Medellín C, Estera-Molina K, Yuan M, Pett-Ridge J, Firestone MK, Emerson JB. Spatial turnover of soil viral populations and genotypes overlain by cohesive responses to moisture in grasslands. Proc Natl Acad Sci USA. 2022;119:e2209132119.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu R, Davison MR, Gao Y, Nicora CD, Mcdermott JE, Burnum-Johnson KE, et al. Moisture modulates soil reservoirs of active DNA and RNA viruses. Commun Biol. 2021;4:992.Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Braga LPP, Spor A, Kot W, Breuil M-C, Hansen LH, Setubal JC, et al. Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios. Microbiome 2020;8:52.Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Albright MBN, Gallegos-Graves LV, Feeser KL, Montoya K, Emerson JB, Shakya M, et al. Experimental evidence for the impact of soil viruses on carbon cycling during surface plant litter decomposition. ISME Commun. 2022;2:24.Article 

    Google Scholar 
    Starr EP, Shi S, Blazewicz SJ, Koch BJ, Probst AJ, Hungate BA, et al. Stable-isotope-informed, genome-resolved metagenomics uncovers potential cross-kingdom interactions in rhizosphere soil. mSphere 2021;6:e0008521.Article 
    PubMed 

    Google Scholar 
    Trubl G, Kimbrel JA, Liquet-Gonzalez J, Nuccio EE, Weber PK, Pett-Ridge J, et al. Active virus-host interactions at sub-freezing temperatures in Arctic peat soil. Microbiome 2021;9:208.Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Lee S, Sieradzki ET, Nicolas AM, Walker RL, Firestone MK, Hazard C, et al. Methane-derived carbon flows into host–virus networks at different trophic levels in soil. Proc Natl Acad Sci USA. 2021;118:e2105124118.Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Nicol GW, Leininger S, Schleper C, Prosser JI. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol. 2008;10:2966–78.Article 
    PubMed 
    CAS 

    Google Scholar 
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2020;36:1925–7.CAS 

    Google Scholar 
    Alves RJE, Minh BQ, Urich T, von Haeseler A, Schleper C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat Commun. 2018;9:1517.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cardinale DJ, Duffy S. Single-stranded genomic architecture constrains optimal codon usage. Bacteriophage 2011;1:219–24.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee S, Sorensen JW, Walker RL, Emerson JB, Nicol GW, Hazard C. Soil pH influences the structure of virus communities at local and global scales. Soil Biol Biochem. 2022;166:108569.Article 
    CAS 

    Google Scholar 
    Jang HB, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol. 2019;37:632–9.Article 

    Google Scholar 
    Nishimura Y, Yoshida T, Kuronishi M, Uehara H, Ogata H, Goto S. ViPTree: the viral proteomic tree server. Bioinformatics 2017;33:2379–80.Article 
    PubMed 
    CAS 

    Google Scholar 
    Kerou M, Offre P, Valledor L, Abby SS, Melcher M, Nagler M, et al. Proteomics and comparative genomics of Nitrososphaera viennensis reveal the core genome and adaptations of archaeal ammonia oxidizers. Proc Natl Acad Sci Usa 2016;113:7937–46.Article 

    Google Scholar 
    Reyes C, Hodgskiss LH, Kerou M, Pribasnig T, Abby SS, Bayer B, et al. Genome wide transcriptomic analysis of the soil ammonia oxidizing archaeon Nitrososphaera viennensis upon exposure to copper limitation. ISME J 2020;14:2659–74.Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Sieradzki ET, Greenlon A, Nicolas AM, Firestone MK, Pett-Ridge J, Blazewicz SJ, et al. Functional succession of actively growing soil microorganisms during rewetting is shaped by precipitation history. bioRxiv. 2022; 2022.06.28.498032. More

  • in

    MesopTroph, a database of trophic parameters to study interactions in mesopelagic food webs

    Data sourcesData for the trophic parameters and data categories listed in Tables 1 and 2 were gathered from peer-reviewed scientific publications, grey literature (e.g., agency reports, theses, and dissertations) and unpublished data by the authors of this paper. Data compilation on stomach contents, stable isotopes, FATM, and trophic positions, focussed on mesopelagic organisms, their potential prey and predators. For major and trace elements, energy density and estimates of diet proportions, our search concentrated on mesopelagic taxa. Nevertheless, we also gathered information from small or intermediate-sized epi-, bathy- or benthopelagic species found in the compiled data sources. These species were included because they play key roles in most marine ecosystems, both as important consumers of phytoplankton and zooplankton, and prey for many top predators, and can represent alternative energy pathways to mesopelagic organisms. However, we stress that the data coverage for these species in the current version of the database is very incomplete. Our main interest was on data from the central and eastern North Atlantic, and the Mediterranean, corresponding to the study regions of the SUMMER project. When we could not find suitable data within this region, we extended the geographic scope of our literature search to the western North Atlantic. We did not search for datasets in open access repositories since those data can be easily accessed and extracted. However, some of the data provided by the authors of this paper have been previously deposited in PANGAEA.DNA sequencing-based methods, such as metabarcoding and direct shotgun sequencing, are emerging as promising tools in dietary analyses due to the high resolution in taxonomic identification of many prey simultaneously, and the potential to provide quantitative diet estimates from relative read abundance29. However, recent studies have shown that various methodological and biological factors can break the correlation between the number and abundance of ingested prey and the prey DNA present in the sample, and lead to biased estimates of taxonomic diversity and composition of diet29,30. Given the uncertainties remaining in the interpretation of DNA sequencing-based diet data, we decided not to include these data in MesopTroph until additional research demonstrates that these techniques can be confidently applied for quantitative diet assessment.We identified available data sources in the literature through systematic searches on Web of Science, Google Scholar, ResearchGate, and the Google search engine. We used multiple combinations of terms related to specific data categories (Table 3), in conjunction with the common or scientific taxon names (from genus to order), and the ocean basin. For example, the search for stomach content data of fishes belonging to the family Myctophidae was undertaken using the following terms: “stomach content” OR “gut content” OR “prey composition” OR “diet composition”, AND “mesopelagic fish” OR “myctophid” OR “Myctophiformes” OR “Myctophidae”, AND “Atlantic” or “Mediterranean”. For the mesopelagic and predator species known to be numerically abundant in the SUMMER study regions, we performed a second literature search using the common or scientific name of the species, along with the terms “diet”, “feeding habits”, “trophic ecology”, “trophic markers”, or “food web”. We also examined the literature cited within each collected publication to locate additional data sources.Table 3 Terms used in the literature search for each data category.Full size tableWe next screened the full text of the compiled studies and retained data sources that: (1) were collected within the region of interest, (2) reported quantitative data for the trophic parameters of interest, (3) reported the number of samples for pooled or aggregated data, and (4) provided sufficient details on the methodology to enable a quality check. In the case of stable isotope data, we only included data sources reporting both δ13C and δ15N measurements.Data extraction, cleaning, and formattingWe created a template table for each data category in Microsoft Excel to assemble all datasets into a single file, and to facilitate cleaning and standardization of data records. We added a large number of metadata fields to the tables to annotate details about the sampling (e.g., location, date, methods), sampled specimen(s) (e.g., taxonomy, number and size of individuals, number of replicates, tissue analysed), and data source (e.g., full reference, DOI) for every record.Data contributors formatted and incorporated their datasets directly into the tables. For published sources, the data and associated metadata were extracted manually or digitized from the article text, tables, or supplementary material into the tables. Extraneous or hidden characters, and values such as “NA” (Not Available) or “ND” (Not Determined), were deleted from the parameter and metadata fields. Measurements of trophic parameters were standardized to the same units (see Tables 1 and 2). Parameter values that were clearly incorrect (e.g., δ15N  > 20, or the frequency of occurrence of a prey higher than the number of stomachs sampled) were corrected by searching for the value within the data source. When values could not be corrected, we deleted that data record.When available, we extracted information at the individual level. However, most studies reported data obtained from pooled samples of the same species. In some cases (e.g., small specimens such as planktonic organisms), a minimum and maximum number of individuals in the sample was provided instead of the actual number of individuals sampled. We added two columns to the tables presenting the minimum and maximum number of individuals in the sample. By filtering the column “Ind No (maximum per sample)” for values >1, users can easily identify records with aggregated data and differentiate them from records where information was drawn from a single individual (i.e., where “Ind No (maximum per sample)” =1). In addition, the tables Stomach contents and Estimates of diet proportions include a field “Sample ID” with a unique identifier of the sample. If data are reported at the individual level (i.e., “Ind No (maximum per sample)” =1) then Sample ID is the individual animal ID. If the data are from a group of individuals (i.e., “Ind No (maximum per sample)” >1), then Sample ID identifies that group.We standardized the taxonomic classification and nomenclature of fishes and elasmobranchs following the Eschmeyer’s Catalog of Fishes (http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp)31,32. For the remaining taxa, we used the World Register of Marine Species (http://www.marinespecies.org/)33. Unaccepted or alternate taxon names were replaced by the most up-to-date valid name. When the identification of a taxon was uncertain, the taxonomic level of identification was decreased to a satisfactory level. For example, prey reported as “Cephalopods” were changed to “Cephalopoda”, “Sepiolids” to “Sepiolidae”, and “Myctophum punctatum?” to the genus “Myctophum”.Stomach contentsStomach contents analysis is a standard dietary assessment method that potentially enables quantifying diet components with high taxonomic resolution34. Three parameters are typically used to describe diet composition from stomach contents: the number of individuals of a prey type as a proportion of the total number of prey items (%N), the proportion of a prey item by weight or volume (%W), and the proportion of stomachs containing a particular prey item (i.e., percent frequency of occurrence, %F)35. When available, we collected data on the three parameters, as well as on the absolute number, weight, and frequency of occurrence of each prey type in the stomachs of each sampled individual or group of individuals. If stated in the data source, we indicate if prey weights were directly measured or reconstructed from hard remains (fish otoliths and vertebrae, cephalopod beaks), and if they represent dry or wet weight. Some datasets contained records of prey items without corresponding weights or numbers. As a result, the cumulative percent of all prey items did not sum to 100%. This occurred in 11 data records for the cumulative %W, and nine for the cumulative %N. While we checked the accuracy of percentage values and adjusted rounding errors, we did not attempt to fill in missing values nor did we remove records with missing values. When prey values were reported by an upper bound (e.g., “ More

  • in

    Adult sex ratios: causes of variation and implications for animal and human societies

    Wedekind, C. & Küng, C. Shift of spawning season and effects of climate warming on developmental stages of a grayling (Salmonidae). Conserv. Biol. 24, 1418–1423 (2010).PubMed 

    Google Scholar 
    Capdevila, P., Stott, I., Beger, M. & Salguero-Gómez, R. Towards a comparative framework of demographic resilience. Trends Ecol. Evol. 35, 776–786 (2020).PubMed 

    Google Scholar 
    Katzner, T. E. et al. Assessing population-level consequences of anthropogenic stressors for terrestrial wildlife. Ecosphere 11, e03046 (2020).
    Google Scholar 
    Zhou, X. & Hesketh, T. High sex ratios in rural China: declining well-being with age in never-married men. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160324 (2017). One of the few studies in humans that targets well-being as an outcome, showing concerning mental health implications of sex ratio skew.
    Google Scholar 
    Schacht, R., Rauch, K. L. & Borgerhoff Mulder, M. Too many men: the violence problem? Trends Ecol. Evol. 29, 214–222 (2014). An influential review of violence and sex ratios across human societies that sets the agenda how reformulated sexual selection theory can inform mating strategies in humans.PubMed 

    Google Scholar 
    Donald, P. F. Adult sex ratios in wild bird populations. Ibis 149, 671–692 (2007).
    Google Scholar 
    Székely, T., Weissing, F. J. & Komdeur, J. Adult sex ratio variation: implications for breeding system evolution. J. Evol. Biol. 27, 1500–1512 (2014). A comprehensive overview of mate choice, mating systems and parental care in relation to ASR.PubMed 

    Google Scholar 
    Du Bois, W. E. B. The Philadelphia Negro (The University of Pennsylvania, 1899).Groves, E. & Ogburn, W. American Marriage and Family Relationships (Henry Holt and Company, 1928).Mayr, E. The sex ratio in wild birds. Am. Naturalist 73, 156–179 (1939).
    Google Scholar 
    Trivers, R. L. Parental investment and sexual selection. in Sexual Selection & the Descent of Man 136–179 (Aldine de Gruyter, 1972).Kramer, K., Schacht, R. & Bell, A. Adult sex ratios and partner scarcity among hunter–gatherers: Implications for dispersal patterns and the evolution of human sociality. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160316 (2017).
    Google Scholar 
    Kappeler, P. M. et al. Sex roles and sex ratios in animals. Biol. Rev. (in press).Kappeler, P. M. Sex roles and adult sex ratios: insights from mammalian biology and consequences for primate behaviour. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160321 (2017).
    Google Scholar 
    Clutton-Brock, T. Social evolution in mammals. Science 373, eabc9699 (2021).PubMed 

    Google Scholar 
    Garamszegi, L. Z., Pavlova, D. Z., Eens, M. & Møller, A. P. The evolution of song in female birds in Europe. Behav. Ecol. 18, 86–96 (2007).
    Google Scholar 
    Cooney, C. R. et al. Sexual selection predicts the rate and direction of colour divergence in a large avian radiation. Nat. Commun. 10, 1773 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Ancona, S., Dénes, F. V., Krüger, O., Székely, T. & Beissinger, S. R. Estimating adult sex ratios in nature. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160313 (2017). A methodology-focused review highlighting the pros and cons of various ASR estimation methods used in wildlife biology.
    Google Scholar 
    Fitze, P. S. & Le Galliard, J.-F. Operational sex ratio, sexual conflict and the intensity of sexual selection. Ecol. Lett. 11, 432–439 (2008).PubMed 

    Google Scholar 
    Kokko, H. & Jennions, M. D. Parental investment, sexual selection and sex ratios. J. Evolut. Biol. 21, 919–948 (2008). A landmark theoretical study that explains the complex relationships between parental care, ASR and OSR.
    Google Scholar 
    Emlen, S. T. & Oring, L. W. Ecology, sexual selection, and the evolution of mating systems. Science 197, 215–223 (1977). A landmark study that introduced the concept of operational sex ratio (OSR).PubMed 

    Google Scholar 
    Pipoly, I. et al. The genetic sex-determination system predicts adult sex ratios in tetrapods. Nature 527, 91–94 (2015). A pathbreaking phylogenetic study that showed sex determination systems are related to ASR in tetrapods.PubMed 

    Google Scholar 
    Carmona-Isunza, M. C. et al. Adult sex ratio and operational sex ratio exhibit different temporal dynamics in the wild. Behav. Ecol. 28, 523–532 (2017).
    Google Scholar 
    Weir, L., Grant, J. & Hutchings, J. The influence of operational sex ratio on the intensity of competition for mates. Am. Naturalist 177, 167–176 (2011).
    Google Scholar 
    Hays, G. C., Shimada, T. & Schofield, G. A review of how the biology of male sea turtles may help mitigate female-biased hatchling sex ratio skews in a warming climate. Mar. Biol. 169, 89 (2022).
    Google Scholar 
    Ancona, S., Liker, A., Carmona-Isunza, M. C. & Székely, T. Sex differences in age-to-maturation relate to sexual selection and adult sex ratios in birds. Evolution Lett. 4, 44–53 (2020).
    Google Scholar 
    Gluckman, P. D. & Hanson, M. A. Evolution, development and timing of puberty. Trends Endocrinol. Metab. 17, 7–12 (2006).PubMed 

    Google Scholar 
    Veran, S. & Beissinger, S. R. Demographic origins of skewed operational and adult sex ratios: perturbation analyses of two-sex models. Ecol. Lett. 12, 129–143 (2009).PubMed 

    Google Scholar 
    Wilson, E. O. Sociobiology: The New Synthesis. (Harvard University Press, 1975).Ågren, J. A. & Clark, A. G. Selfish genetic elements. PLoS Genet. 14, e1007700 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Engelstädter, J. & Hurst, G. D. D. The ecology and evolution of microbes that manipulate host reproduction. Annu. Rev. Ecol., Evolution, Syst. 40, 127–149 (2009).
    Google Scholar 
    Beukeboom, L. W. & Perrin, N. The Evolution of Sex Determination. (Oxford University Press, 2014). https://doi.org/10.1093/acprof:oso/9780199657148.001.0001.Geffroy, B. & Douhard, M. The adaptive sex in stressful environments. Trends Ecol. Evol. 34, 628–640 (2019).PubMed 

    Google Scholar 
    Nemesházi, E. et al. Novel genetic sex markers reveal high frequency of sex reversal in wild populations of the agile frog (Rana dalmatina) associated with anthropogenic land use. Mol. Ecol. 29, 3607–3621 (2020).PubMed 

    Google Scholar 
    Geffroy, B. Energy as the cornerstone of environmentally driven sex allocation. Trends Endocrinol. Metab. 33, 670–679 (2022).PubMed 

    Google Scholar 
    Janzen, F. J. & Paukstis, G. L. Environmental sex determination in reptiles: ecology, evolution, and experimental design. Q Rev. Biol. 66, 149–179 (1991).PubMed 

    Google Scholar 
    Cook, J. M. Sex determination in invertebrates. in Sex Ratios: Concepts and Research Methods (ed. Hardy, I. C. W.) 178–194 (Cambridge University Press, 2002). https://doi.org/10.1017/CBO9780511542053.009.Godwin, J., Luckenbach, J. A. & Borski, R. J. Ecology meets endocrinology: environmental sex determination in fishes. Evol. Dev. 5, 40–49 (2003).PubMed 

    Google Scholar 
    West, S. Sex Allocation. (Princeton University Press, 2009).Geffroy, B. & Wedekind, C. Effects of global warming on sex ratios in fishes. J. Fish. Biol. 97, 596–606 (2020).PubMed 

    Google Scholar 
    Edmands, S. Sex ratios in a warming world: thermal effects on sex-biased survival, sex determination, and sex reversal. J. Heredity 112, 155–164 (2021).
    Google Scholar 
    Valenzuela, N. et al. Extreme thermal fluctuations from climate change unexpectedly accelerate demographic collapse of vertebrates with temperature-dependent sex determination. Sci. Rep. 9, 4254 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Hays, G. C., Mazaris, A. D. & Schofield, G. Different male vs. female breeding periodicity helps mitigate offspring sex ratio skews in sea turtles. Front. Marine Sci. 1, 43 (2014).Maitre, D. et al. Sex differentiation in grayling (Salmonidae) goes through an all-male stage and is delayed in genetic males who instead grow faster. Sci. Rep. 7, 15024 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Donald, P. F. Lonely males and low lifetime productivity in small populations. Ibis 153, 465–467 (2011).
    Google Scholar 
    Mabry, K. E., Shelley, E. L., Davis, K. E., Blumstein, D. T. & Vuren, D. H. V. Social mating system and sex-biased dispersal in mammals and birds: a phylogenetic analysis. PLoS ONE 8, e57980 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Clutton-Brock, T. Mammal Societies. (John Wiley and Sons, 2016).Kalmbach, E. & Benito, M. M. Sexual size dimorphism and offspring vulnerability in birds. in Sex, Size and Gender Roles (Oxford University Press, 2007). https://doi.org/10.1093/acprof:oso/9780199208784.003.0015.Berger, J. & Gompper, M. E. Sex ratios in extant ungulates: products of contemporary predation or past life histories? J. Mammal. 80, 1084–1113 (1999).
    Google Scholar 
    Christe, P., Keller, L. & Roulin, A. The predation cost of being a male: implications for sex-specific rates of ageing. Oikos 114, 381–384 (2006).
    Google Scholar 
    Boukal, D. S., Berec, L. & Křivan, V. Does sex-selective predation stabilize or destabilize predator-prey dynamics? PLoS ONE 3, e2687 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Moore, S. L. & Wilson, K. Parasites as a viability cost of sexual selection in natural populations of mammals. Science 297, 2015–2018 (2002).PubMed 

    Google Scholar 
    Fairbairn, D., Blanckenhorn, W. & Székely, T. Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism https://doi.org/10.1093/acprof:oso/9780199208784.001.0001 (2007).Székely, T., Liker, A., Freckleton, R. P., Fichtel, C. & Kappeler, P. M. Sex-biased survival predicts adult sex ratio variation in wild birds. Proc. R. Soc. B: Biol. Sci. 281, 20140342 (2014).
    Google Scholar 
    Tidière, M. et al. Does sexual selection shape sex differences in longevity and senescence patterns across vertebrates? A review and new insights from captive ruminants. Evolution 69, 3123–3140 (2015).PubMed 

    Google Scholar 
    Lemaître, J.-F. et al. Sex differences in adult lifespan and aging rates of mortality across wild mammals. Proc. Natl Acad. Sci. USA 117, 8546–8553 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Wedekind, C. et al. Persistent unequal sex ratio in a population of grayling (Salmonidae) and possible role of temperature increase. Conserv. Biol. 27, 229–234 (2013).PubMed 

    Google Scholar 
    Eberhart-Phillips, L. J. et al. Demographic causes of adult sex ratio variation and their consequences for parental cooperation. Nat. Commun. 9, 1651 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Schacht, R., Macfarlan, S. J., Meeks, H., Cervantes, P. L. & Morales, F. Male survival advantage on the Baja California peninsula. Biol. Lett. 16, 20200600 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Schacht, R., Tharp, D. & Smith, K. R. Sex ratios at birth vary with environmental harshness but not maternal condition. Sci. Rep. 9, 9066 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Schacht, R. et al. Frail males on the American frontier: the role of environmental harshness on sex ratios at birth across a period of rapid industrialization. Soc. Sci. 10, 319 (2021).
    Google Scholar 
    Casey, J. A., Gemmill, A., Elser, H., Karasek, D. & Catalano, R. Sun smoke in Sweden: perinatal implications of the Laki volcanic eruptions, 1783–1784. Epidemiology 30, 330–333 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Catalano, R., Bruckner, T. & Smith, K. R. Ambient temperature predicts sex ratios and male longevity. Proc. Natl Acad. Sci. USA 105, 2244–2247 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Hollingshaus, M., Utz, R., Schacht, R. & Smith, K. R. Sex ratios and life tables: Historical demography of the age at which women outnumber men in seven countries, 1850–2016. Historical Methods.: A J. Quant. Interdiscip. Hist. 52, 244–253 (2019).
    Google Scholar 
    Li, X.-Y. & Kokko, H. Sex-biased dispersal: a review of the theory. Biol. Rev. 94, 721–736 (2019).PubMed 

    Google Scholar 
    Alho, J. S., Matsuba, C. & Merilä, J. Sex reversal and primary sex ratios in the common frog (Rana temporaria). Mol. Ecol. 19, 1763–1773 (2010).PubMed 

    Google Scholar 
    Sandercock, B. K., Beissinger, S. R., Stoleson, S. H., Melland, R. R. & Hughes, C. R. Survival rates of a neotropical parrot: implications for latitudinal comparisons of avian demography. Ecology 81, 1351–1370 (2000).Budden, A. E. & Beissinger, S. R. Against the odds? Nestling sex ratio variation in green-rumped parrotlets. Behav. Ecol. 15, 607–613 (2004).
    Google Scholar 
    Thompson, F. J. et al. Reproductive competition triggers mass eviction in cooperative banded mongooses. Proc. Biol. Sci. 283, 20152607 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Jaccarini, V., AGius, L., Schembri, P. J. & Rizzo, M. Sex determination and larval sexual interaction in Bonellia viridis Rolando (Echiura: Bonelliidae). J. Exp. Mar. Biol. Ecol. 66, 25–40 (1983).
    Google Scholar 
    Tingley, G. & Anderson, R. Environmental sex determination and density-dependent population regulation in the entomogenous nematode Romanomermis culcivorax. Parasitology 92, 431–449 (1986).
    Google Scholar 
    Hardisty, M. W. Sex composition of lamprey populations. Nature 191, 1116–1117 (1961).
    Google Scholar 
    Docker, M. F., William, F. & Beamish, H. Age, growth, and sex ratio among populations of least brook lamprey, Lampetra aepyptera, larvae: an argument for environmental sex determination. Environ. Biol. Fish. 41, 191–205 (1994).
    Google Scholar 
    Geffroy, B. & Bardonnet, A. Sex differentiation and sex determination in eels: consequences for management. Fish. Fish. 17, 375–398 (2016).
    Google Scholar 
    Ribas, L., Valdivieso, A., Díaz, N. & Piferrer, F. Appropriate rearing density in domesticated zebrafish to avoid masculinization: links with the stress response. J. Exp. Biol. 220, 1056–1064 (2017).PubMed 

    Google Scholar 
    García-Cruz, E. L. et al. Crowding stress during the period of sex determination causes masculinization in pejerrey Odontesthes bonariensis, a fish with temperature-dependent sex determination. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 245, 110701 (2020).PubMed 

    Google Scholar 
    Geffroy, B. et al. Parental selection for growth and early-life low stocking density increase the female-to-male ratio in European sea bass. Sci. Rep. 11, 13620 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Fricke, H. & Fricke, S. Monogamy and sex change by aggressive dominance in coral reef fish. Nature 266, 830–832 (1977).PubMed 

    Google Scholar 
    Todd, E. V. et al. Stress, novel sex genes, and epigenetic reprogramming orchestrate socially controlled sex change. Sci. Adv. 5, eaaw7006 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Kuwamura, T., Nakashimn, Y. & Yogo, Y. Sex change in either direction by growth-rate advantage in the monogamous coral goby, Paragobiodon echinocephalus. Behav. Ecol. 5, 434–438 (1994).
    Google Scholar 
    Rodgers, E. W., Earley, R. L. & Grober, M. S. Social status determines sexual phenotype in the bi-directional sex changing bluebanded goby Lythrypnus dalli. J. Fish. Biol. 70, 1660–1668 (2007).
    Google Scholar 
    Munday, P. L., Caley, M. J. & Jones, G. P. Bi-directional sex change in a coral-dwelling goby. Behav. Ecol. Sociobiol. 43, 371–377 (1998).
    Google Scholar 
    Goikoetxea, A., Todd, E. V. & Gemmell, N. J. Stress and sex: does cortisol mediate sex change in fish? Reproduction 154, R149–R160 (2017).PubMed 

    Google Scholar 
    Nozu, R. & Nakamura, M. Cortisol administration induces sex change from ovary to testis in the protogynous Wrasse, Halichoeres trimaculatus. Sex. Dev. 9, 118–124 (2015).PubMed 

    Google Scholar 
    Olivotto, I. & Geffroy, B. Clownfish. in Marine Ornamental Species Aquaculture (eds. Calado, R., Olivotto, I., Oliver, M. P. & Holt, G. J.) 177–199 (John Wiley & Sons, Ltd, 2017). https://doi.org/10.1002/9781119169147.ch12.Bessa, E., Brandão, M. L. & Gonçalves-de-Freitas, E. Integrative approach on the diversity of nesting behaviour in fishes. Fish Fisheries 23, 564–583 (2022).Safari, I. & Goymann, W. The evolution of reversed sex roles and classical polyandry: Insights from coucals and other animals. Ethology 127, 1–13 (2021).
    Google Scholar 
    Komdeur, J., Székely, T., Long, X. & Kingma, S. A. Adult sex ratios and their implications for cooperative breeding in birds. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160322 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Jankowiak, Ł., Tryjanowski, P., Hetmański, T. & Skórka, P. Experimentally evoked same-sex sexual behaviour in pigeons: better to be in a female-female pair than alone. Sci. Rep. 8, 1654 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Darwin, C. The Descent of Man, and Selection in Relation to Sex (John Murray, 1871).Bleu, J., Bessa-Gomes, C. & Laloi, D. Evolution of female choosiness and mating frequency: effects of mating cost, density and sex ratio. Anim. Behav. 83, 131–136 (2012).
    Google Scholar 
    Forsgren, E., Amundsen, T., Borg, A. A. & Bjelvenmark, J. Unusually dynamic sex roles in a fish. Nature 429, 551–554 (2004).PubMed 

    Google Scholar 
    Monier, M., Nöbel, S., Isabel, G. & Danchin, E. Effects of a sex ratio gradient on female mate-copying and choosiness in Drosophila melanogaster. Curr. Zool. 64, 251–258 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Jirotkul, M. Operational sex ratio influences preference and male–male competition in guppies. Anim. Behav. 58, 287–294 (1999).PubMed 

    Google Scholar 
    Grant, P. R. & Grant, B. R. Adult sex ratio influences mate choice in Darwin’s finches. Proc. Natl Acad. Sci. USA 116, 12373–12382 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Queller, D. C. Why do females care more than males? Proc. Biol. Sci. 264, 1555–1557 (1997). A prescient overview that explains why females are more likely than males to provide care, including the explanation that a female-biased ASR means that males have a higher mean mating rate than females, which makes caring more costly for males.PubMed Central 

    Google Scholar 
    Janicke, T., Häderer, I. K., Lajeunesse, M. J. & Anthes, N. Darwinian sex roles confirmed across the animal kingdom. Sci. Adv. 2, e1500983 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Liker, A. et al. Evolution of large males is associated with female‐skewed adult sex ratios in amniotes. Evolution 75, 1636–1649 (2021).PubMed 

    Google Scholar 
    Clutton-Brock, T. H., Harvey, P. H. & Rudder, B. Sexual dimorphism, socionomic sex ratio and body weight in primates. Nature 269, 797–800 (1977).PubMed 

    Google Scholar 
    Wittenberger, J. F. The evolution of mating systems in grouse. Condor 80, 126–137 (1978).
    Google Scholar 
    Vahl, W. K., Boiteau, G., Heij, M. E., de, MacKinley, P. D. & Kokko, H. Female fertilization: effects of sex-specific density and sex ratio determined experimentally for colorado potato beetles and drosophila fruit flies. PLoS ONE 8, e60381 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    House, C. M., Rapkin, J., Hunt, J. & Hosken, D. J. Operational sex ratio and density predict the potential for sexual selection in the broad-horned beetle. Anim. Behav. 152, 63–69 (2019).
    Google Scholar 
    Warner, R. R. & Hoffman, S. G. Population density and the economics of territorial defense in a coral reef fish. Ecology 61, 772–780 (1980).
    Google Scholar 
    Pröhl, H. Population differences in female resource abundance, adult sex ratio, and male mating success in Dendrobates pumilio. Behav. Ecol. 13, 175–181 (2002).
    Google Scholar 
    McNamara, J. M., Székely, T., Webb, J. N. & Houston, A. I. A dynamic game-theoretic model of parental care. J. Theor. Biol. 205, 605–623 (2000).PubMed 

    Google Scholar 
    Davies, N. B. Dunnock Behaviour and Social Evolution. (Oxford University Press, 1992).Pilastro, A., Biddau, L., Marin, G. & Mingozzi, T. Female brood desertion increases with number of available mates in the Rock Sparrow. J. Avian Biol. 32, 68–72 (2001).
    Google Scholar 
    Rossmanith, E., Grimm, V., Blaum, N. & Jeltsch, F. Behavioural flexibility in the mating system buffers population extinction: lessons from the lesser spotted woodpecker Picoides minor. J. Anim. Ecol. 75, 540–548 (2006).PubMed 

    Google Scholar 
    Liker, A., Freckleton, R. P. & Székely, T. The evolution of sex roles in birds is related to adult sex ratio. Nat. Commun. 4, 1587 (2013). An important comparative study that shows both social mating system and parenting are associated with ASR in shorebirds.PubMed 

    Google Scholar 
    Liker, A., Freckleton, R. P. & Székely, T. Divorce and infidelity are associated with skewed adult sex ratios in birds. Curr. Biol. 24, 880–884 (2014).PubMed 

    Google Scholar 
    Balshine-Earn, S. & Earn, D. J. D. On the evolutionary pathway of parental care in mouth-brooding cichlid fishes. Proc. ofn R. Soc. 265, 2217–2222 (1998).
    Google Scholar 
    Parra, J. E., Beltrán, M., Zefania, S., Dos Remedios, N. & Székely, T. Experimental assessment of mating opportunities in three shorebird species. Anim. Behav. 90, 83–90 (2014).
    Google Scholar 
    Székely, T., Cuthill, I. & Kis, J. Brood desertion in Kentish plover: sex differences in remating opportunities. Behav. Ecol. 10, 185–190 (1999). An important early field study showing that intraspecific variation in parental care can be explained by the availability of mates, which in turn depends on the prevailing ASR.
    Google Scholar 
    Clutton-Brock, T. H. The Evolution of Parental Care. The Evolution of Parental Care (Princeton University Press, 1991). https://doi.org/10.1515/9780691206981.Bessa-Gomes, C., Legendre, S. & Clobert, J. Allee effects, mating systems and the extinction risk in populations with two sexes. Ecol. Lett. 7, 802–812 (2004).
    Google Scholar 
    Lindström, J. & Kokko, H. Sexual reproduction and population dynamics: the role of polygyny and demographic sex differences. Proc. Biol. Sci. 265, 483–488 (1998).PubMed 
    PubMed Central 

    Google Scholar 
    Lee, A. M., Saether, B.-E. & Engen, S. Demographic stochasticity, allee effects, and extinction: the influence of mating system and sex ratio. Am. Naturalist 177, 301–313 (2011).
    Google Scholar 
    Leach, D., Shaw, A. K. & Weiss-Lehman, C. Stochasticity in social structure and mating system drive extinction risk. Ecosphere 11, e03038 (2020).
    Google Scholar 
    Gownaris, N. J. & Boersma, P. D. Sex-biased survival contributes to population decline in a long-lived seabird, the Magellanic Penguin. Ecol. Appl. 29, 1–17 (2019).
    Google Scholar 
    Le Galliard, J.-F., Fitze, P. S., Ferrière, R. & Clobert, J. Sex ratio bias, male aggression, and population collapse in lizards. Proc. Natl Acad. Sci. USA 102, 18231–18236 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    Lea, J. M. D. et al. Non-invasive physiological markers demonstrate link between habitat quality, adult sex ratio and poor population growth rate in a vulnerable species, the Cape mountain zebra. Funct. Ecol. 32, 300–312 (2018).
    Google Scholar 
    Dreiss, A. N., Cote, J., Richard, M., Federici, P. & Clobert, J. Age-and sex-specific response to population density and sex ratio. Behav. Ecol. 21, 356–364 (2010).
    Google Scholar 
    Dale, S. Female-biased dispersal, low female recruitment, unpaired males, and the extinction of small and isolated bird populations. Oikos 92, 344–356 (2001).
    Google Scholar 
    Morrison, C. A., Robinson, R. A., Clark, J. A. & Gill, J. A. Causes and consequences of spatial variation in sex ratios in a declining bird species. J. Anim. Ecol. 85, 1298–1306 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Chipman, A. & Morrison, E. The impact of sex ratio and economic status on local birth rates. Biol. Lett. 9, 20130027 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Krainacker, D. A. & Carey, J. R. Sex ratio in a wild population of twospotted spider mites. Holarct. Ecol. 14, 97–103 (1991).
    Google Scholar 
    Bunnell, D. B., Madenjian, C. P. & Croley, T. E. Long-term trends of bloater (Coregonus hoyi) recruitment in Lake Michigan: evidence for the effect of sex ratio. Can. J. Fish. Aquat. Sci. 63, 832–844 (2006).
    Google Scholar 
    Forbes, M. R., McCurdy, D. G., Lui, K., Mautner, S. I. & Boates, J. S. Evidence for seasonal mate limitation in populations of an intertidal amphipod, Corophium volutator (Pallas). Behav. Ecol. Sociobiol. 60, 87–95 (2006).
    Google Scholar 
    Solberg, E. J., Loison, A., Ringsby, T. H., Sæther, B. E. & Heim, M. Biased adult sex ratio can affect fecundity in primiparous moose Alces alces. Wildl. Biol. 8, 117–128 (2002).
    Google Scholar 
    Pipoly, I., Székely, T. & Liker, A. Multiple paternity is related to adult sex ratio and sex determination system in reptiles. Journal of Evolutionary Biology (under review).Jones, A. G., Rosenqvist, G., Berglund, A., Arnold, S. J. & Avise, J. C. The Bateman gradient and the cause of sexual selection in a sex–role–reversed pipefish. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 267, 677–680 (2000).
    Google Scholar 
    Clutton-Brock, T. H., Coulson, T. N., Milner-Gulland, E. J., Thomson, D. & Armstrong, H. M. Sex differences in emigration and mortality affect optimal management of deer populations. Nature 415, 633–637 (2002).PubMed 

    Google Scholar 
    Lambertucci, S. A., Carrete, M., Speziale, K. L., Hiraldo, F. & Donázar, J. A. Population sex ratios: another consideration in the reintroduction – reinforcement debate? PLoS ONE 8, e75821 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Snyder, K. T., Freidenfelds, N. A. & Miller, T. E. X. Consequences of sex-selective harvesting and harvest refuges in experimental meta-populations. Oikos 123, 309–314 (2014).
    Google Scholar 
    Frankham, R. Effective population size/adult population size ratios in wildlife: a review. Genet. Res. 66, 95–107 (1995).
    Google Scholar 
    Sæther, B.-E. et al. Time to extinction in relation to mating system and type of density regulation in populations with two sexes. J. Anim. Ecol. 73, 925–934 (2004).
    Google Scholar 
    Milner, J., Nilsen, E. & Andreassen, H. Demographic side effects of selective hunting in ungulates and carnivores. Conserv. Biol.: J. Soc. Conserv. Biol. 21, 36–47 (2007).
    Google Scholar 
    Heinsohn, R., Olah, G., Webb, M., Peakall, R. & Stojanovic, D. Sex ratio bias and shared paternity reduce individual fitness and population viability in a critically endangered parrot. J. Anim. Ecol. 88, 502–510 (2019).PubMed 

    Google Scholar 
    Lee, P. L. M., Schofield, G., Haughey, R. I., Mazaris, A. D. & Hays, G. C. A review of patterns of multiple paternity across sea turtle rookeries. Adv. Mar. Biol. 79, 1–31 (2018).PubMed 

    Google Scholar 
    Wayne, A. F. et al. Sudden and rapid decline of the abundant marsupial Bettongia penicillata in Australia. Oryx 49, 175–185 (2015).
    Google Scholar 
    Roscoe, P. Dead Birds: The “Theater” of War among the Dugum Dani. Am. Anthropologist 113, 56–70 (2011).
    Google Scholar 
    Bethmann, D. & Kvasnicka, M. World war ii, missing men and out of wedlock childbearing. Economic J. 123, 162–194 (2013).
    Google Scholar 
    Schradin, C. et al. Geographic intra-specific variation in social organization is driven by population density. Behav. Ecol. Sociobiol. 74, (2020).Brandner, J. L., Dillon, H. M. & Brase, G. L. Convergent evidence for a theory of rapid, automatic, and accurate sex ratio tracking. Acta Psychologica 210, (2020).Griskevicius, V. et al. The financial consequences of too many men: sex ratio effects on saving, borrowing, and spending. J. Personal. Soc. Psychol. 102, 69–80 (2011).
    Google Scholar 
    Fritzsche, K., Booksmythe, I. & Arnqvist, G. Sex ratio bias leads to the evolution of sex role reversal in honey locust beetles. Curr. Biol. 26, 2522–2526 (2016).PubMed 

    Google Scholar 
    Bath, E. et al. Sex ratio and the evolution of aggression in fruit flies. Proc. R. Soc. B: Biol. Sci. 288, 20203053 (2021).
    Google Scholar 
    Beltran, S., Cézilly, F. & Boissier, J. Adult sex ratio affects divorce rate in the monogamous endoparasite Schistosoma mansoni. Behav. Ecol. Sociobiol. 63, 1363–1368 (2009).
    Google Scholar 
    Chuard, P., Brown, G. & Grant, J. The effects of adult sex ratio on mating competition in male and female guppies (Poecilia reticulata) in two wild populations. Behavioural Process. 129, 1–10 (2016).
    Google Scholar 
    Lande, R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Naturalist 142, 911–927 (1993).
    Google Scholar 
    May, R. & Allen, P. Stability and complexity in model ecosystems. Syst., Man Cybern., IEEE Trans. 44, 887–887 (1977).
    Google Scholar 
    Wobst, H. M. Boundary conditions for paleolithic social systems: a simulation approach. Am. Antiquity 39, 147–178 (1974).
    Google Scholar 
    Dyson, T. Causes and Consequences of Skewed Sex Ratios. (2012) https://doi.org/10.1146/annurev-soc-071811-145429.Edlund, L. Son preference, sex ratios, and marriage patterns. J. Political Econ. 107, 1275–1304 (1999).
    Google Scholar 
    Hesketh, T. & Xing, Z. W. Abnormal sex ratios in human populations: causes and consequences. Proc. Natl Acad. Sci. USA 103, 13271–13275 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Hesketh, T. & Min, J. M. The effects of artificial gender imbalance. EMBO Rep. 13, 487–492 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Schacht, R. & Kramer, K. L. Patterns of family formation in response to sex ratio variation. PLoS ONE 11, e0160320 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Schacht, R., Tharp, D. & Smith, K. R. Marriage markets and male mating effort: violence and crime are elevated where men are rare. Hum. Nat. 27, 489–500 (2016).PubMed 

    Google Scholar 
    Pouget, E. R. Social determinants of adult sex ratios and racial/ethnic disparities in transmission of HIV and other sexually transmitted infections in the USA. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160323 (2017). An important study on humans that bridges the gap between theory and policy illustrating a societal issue related to sex ratio imbalance and sexually transmitted diseases risk in a vulnerable sub-population in the USA.PubMed 
    PubMed Central 

    Google Scholar 
    Del Giudice, M. Sex ratio dynamics and fluctuating selection on personality. J. Theor. Biol. 297, 48–60 (2012).PubMed 

    Google Scholar 
    Schacht, R. & Borgerhoff Mulder, M. Sex ratio effects on reproductive strategies in humans. R. Soc. Open Sci. 2, 140402 (2015). A pioneering study of a small-scale population that demonstrates mating strategies vary with the sex ratio at local level.PubMed 
    PubMed Central 

    Google Scholar 
    Jones, J. H. & Ferguson, B. Demographic and Social predictors of intimate partner violence in colombia: a dyadic power perspective. Hum. Nat. 20, 184–203 (2009).PubMed 

    Google Scholar 
    Uggla, C. & Mace, R. Local ecology influences reproductive timing in Northern Ireland independently of individual wealth. Behav. Ecol. 27, 158–165 (2016).
    Google Scholar 
    Guttentag, M. & Secord, P. Too Many Women? SAGE Publications Inc (1983). A landmark book that presented historical and quantitative evidence for how sex ratio skew impacts family structure and the societal values applied to men and women.United Nations Population Fund Annual Report. https://www.unfpa.org/annual-report-2020 (2020)Schmitt, D. P. Sociosexuality from Argentina to Zimbabwe: a 48-nation study of sex, culture, and strategies of human mating. Behav. Brain Sci. 28, 247–275 (2005).PubMed 

    Google Scholar 
    Baumeister, R. F. & Vohs, K. D. Sexual economics: sex as female resource for social exchange in heterosexual interactions. Pers. Soc. Psychol. Rev. 8, 339–363 (2004).PubMed 

    Google Scholar 
    Reid, P. C. et al. Global impacts of the 1980s regime shift. Glob. Change Biol. 22, 682–703 (2016).
    Google Scholar 
    Grafe, T. U. & Linsenmair, K. E. Protogynous sex change in the reed frog Hyperolius viridiflavus. Copeia 1989, 1024–1029 (1989).
    Google Scholar 
    Trochet, A. et al. Population sex ratio and dispersal in experimental, two-patch metapopulations of butterflies. J. Anim. Ecol. 82, 946–955 (2013).PubMed 

    Google Scholar 
    Thomson, D., Cooch, E. & Conroy, M. Modeling demographic processes in marked populations. https://doi.org/10.1007/978-0-387-78151-8 (2009).Dail, D. & Madsen, L. Models for estimating abundance from repeated counts of an open metapopulation. Biometrics 67, 577–587 (2011).PubMed 

    Google Scholar 
    Kéry, M. & Royle, J. Andrew. Applied Hierarchical Modeling in Ecology: Analysis of distribution, abundance and species richness in R and BUGS. 783 (2015).US Census Bureau. Accuracy and coverage evaluation of Census 2000: Design and Methodology. (2004).Guillot, M. The dynamics of the population sex ratio in India, 1971-96. Popul. Stud. 56, 51–63 (2002).
    Google Scholar 
    Dyson, E. A. & Hurst, G. D. D. Persistence of an extreme sex-ratio bias in a natural population. Proc. Natl Acad. Sci. USA 101, 6520–6523 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    Hays, G. C., Mazaris, A. D., Schofield, G. & Laloë, J.-O. Population viability at extreme sex-ratio skews produced by temperature-dependent sex determination. Proc. R. Soc. B. 284, 20162576 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Rózsa, L., Reiczigel, J. & Majoros, G. Quantifying parasites in samples of hosts. J. Parasitol. 86, 228–232 (2000).PubMed 

    Google Scholar 
    Cockburn, A., Scott, M. P. & Dickman, C. R. Sex ratio and intrasexual kin competition in mammals. Oecologia 66, 427–429 (1985).PubMed 

    Google Scholar 
    Douglas III, H. & Malenke, J. R. An Extraordinary Host-Specific Sex Ratio in an Avian Louse (Phthiraptera: Insecta)-Chemical Distortion? Environ. Entomol. (2015).Bonnet, X. et al. A prison effect in a wild population: a scarcity of females induces homosexual behaviors in males. Behav. Ecol. 27, 1206–1215 (2016).
    Google Scholar 
    Beltran, S. & Boissier, J. Male-biased sex ratio: why and what consequences for the genus Schistosoma? Trends Parasitol. 26, 63–69 (2010).PubMed 

    Google Scholar 
    Beltran, S. & Boissier, J. Schistosome monogamy: who, how, and why? Trends Parasitol. 24, 386–391 (2008).PubMed 

    Google Scholar 
    Fisher, R. The Genetical Theory of Natural Selection (The Clarendon Press, 1930).Houston, A. & McNamara, J. John Maynard Smith and the importance of consistency in evolutionary game theory. Biol. Philos. 20, 933–950 (2005).
    Google Scholar 
    Kokko, H. & Jennions, M. D. Sex differences in parental care. in The Evolution of Parental Care (Oxford University Press, 2012). https://doi.org/10.1093/acprof:oso/9780199692576.003.0006.Fromhage, L. & Jennions, M. D. Coevolution of parental investment and sexually selected traits drives sex-role divergence. Nat. Commun. 7, 12517 (2016). A theoretical study showing that under a simple null scenario the sex ratio of male to female care does not evolve in response to ASR, but rather to the sex ratio at maturation.PubMed 
    PubMed Central 

    Google Scholar 
    Long, X. The Evolution of Parental Sex Roles. PhD dissertation, University of Groningen (2020).Seger, J. & Stubblefield, J. W. Models of sex ratio evolution. in Sex Ratios: Concepts and Research Methods (ed. Hardy, I. C. W.) 2–25 (Cambridge University Press, 2002). https://doi.org/10.1017/CBO9780511542053.002.Pen, I. & Weissing, F. J. Optimal sex allocation: steps towards a mechanistic theory. in Sex Ratios: Concepts and Research Methods (ed. Hardy, I. C. W.) 26–46 (Cambridge University Press, 2002). https://doi.org/10.1017/CBO9780511542053.003.Bodmer, W. & Edwards, A. Natural selection and the sex ratio. Ann. Hum. Genet. 239–244, (1960).Sampson, R. J., Laub, J. H. & Wimer, C. Does marriage reduce crime? A counterfactual approach to within-individual causal effects. Criminology 44, 465–508 (2006).
    Google Scholar 
    Avakame, E. F. Sex ratios, female labor force participation, and lethal violence against women: extending Guttentag and Secord’s Thesis. Violence Women 5, 1321–1341 (1999).
    Google Scholar 
    Diamond-Smith, N. & Rudolph, K. The association between uneven sex ratios and violence: Evidence from 6 Asian countries. PLoS ONE 13, e0197516 (2018). One of the few studies on crime and sex ratios that uses individual-level data of reported crime as linked to area level sex ratio skew.PubMed 
    PubMed Central 

    Google Scholar 
    Drèze, J. & Khera, R. Crime, gender, and society in India: Insights from homicide data. Popul. Dev. Rev. 26, 335–352 (2000).PubMed 

    Google Scholar 
    Edlund, L., Li, H., Yi, J. & Zhang, J. Sex ratios and crime: evidence from China. Rev. Econ. Stat. 95, 1520–1534 (2013).
    Google Scholar 
    Messner, S. F. & Sampson, R. J. The sex ratio, family disruption, and rates of violent crime: the paradox of demographic structure. Soc. Forces 69, 693–713 (1991).
    Google Scholar 
    Trent, K. & South, S. J. Mate availability and women’s sexual experiences in China. J. Marriage Fam. 74, 201–214 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Filser, A., Barclay, K., Beckley, A., Uggla, C. & Schnettler, S. Are skewed sex ratios associated with violent crime? A longitudinal analysis using Swedish register data. Evolution Hum. Behav. 42, 212–222 (2021).
    Google Scholar 
    Barber, N. The sex ratio as a predictor of cross-national variation in violent crime. Cross-Cultural Res. 34, 264–282 (2000).
    Google Scholar 
    Barber, N. Countries with fewer males have more violent crime: marriage markets and mating aggression. Aggress. Behav. 35, 49–56 (2009).PubMed 

    Google Scholar 
    Obrien, R. M. Sex ratios and rape rates: a powercontrol theory. Criminology 29, 99–114 (1991).
    Google Scholar 
    Esmail, A. M., Penny, J. & Eargle, L. A. The impact of culture on crime. Race Gender Class 20, 326–343 (2013).
    Google Scholar 
    Pollet, T. V., Stoevenbelt, A. H. & Kuppens, T. The potential pitfalls of studying adult sex ratios at aggregate levels in humans. Philos. Trans. R. Soc. B: Biol. Sci. 372, (2017). A critical study that highlights shortcomings inherent in much of the early sex ratio literature, which stems in part from using nation- rather than local-level data.Uggla, C. & Mace, R. Adult sex ratio and social status predict mating and parenting strategies in Northern Ireland. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160318 (2017). A seminal study on humans demonstrating the impacts of local sex ratio skew depending on individual status on the mating market.
    Google Scholar 
    Schacht, R. & Uggla, C. Beyond sex: reproductive strategies as a function of local sex ratio variation. in The Oxford Handbook of Human Mating (Oxford University Press, 2022). More