Towards net-zero phosphorus cities
C40 Cities. 700+ cities in 53 countries now committed to halve emissions by 2030 and reach net zero by 2050. C40 Cities https://www.c40.org/news/cities-committed-race-to-zero/ (2021).Watts, M. Cities spearhead climate action. Nat. Clim. Change 7, 537–538 (2017).
Google Scholar
Brownlie, W. J. et al. Global actions for a sustainable phosphorus future. Nat. Food 2, 71–74 (2021).CAS
Google Scholar
El Wali, M., Golroudbary, S. R. & Kraslawski, A. Circular economy for phosphorus supply chain and its impact on social sustainable development goals. Sci. Total Environ. 777, 146060 (2021).CAS
Google Scholar
Bai, X. et al. Defining and advancing a systems approach for sustainable cities. Curr. Opin. Environ. Sustain. 23, 69–78 (2016).
Google Scholar
De Boer, M. A., Wolzak, L. & Slootweg, J. C. Phosphorus: reserves, production, and applications. in Phosphorus Recovery and Recycling. (eds. Ohtake, H. & Tsuneda, S.) 75–100 (Springer, 2019).Brownlie, W. J. et al. Chapter 2. Phosphorus reserves, resources and uses. In Our Phosphorus Future (eds. Brownlie, W. J., Sutton, M. A., Heal, K. V., Reay, D. S. & Spears, B. M.) (UK Centre for Ecology & Hydrology, 2022). https://doi.org/10.13140/RG.2.2.25016.83209.Chow, E. China issues phosphate quotas to rein in fertiliser exports – analysts. Reuters (2022).Klesty, V. Global food supply at risk from Russian invasion of Ukraine, Yara says. Reuters (2022).Dumas, M., Frossard, E. & Scholz, R. W. Modeling biogeochemical processes of phosphorus for global food supply. Chemosphere 84, 798–805 (2011).CAS
Google Scholar
Cordell, D., Turner, A. & Chong, J. The hidden cost of phosphate fertilizers: mapping multi-stakeholder supply chain risks and impacts from mine to fork. Glob. Change Peace Secur. 27, 1–21 (2015).
Google Scholar
Metson, G. S., Bennett, E. M. & Elser, J. J. The role of diet in phosphorus demand. Environmental Research Letters 7, 044043 (2012).
Google Scholar
Oita, A., Wirasenjaya, F., Liu, J., Webeck, E. & Matsubae, K. Trends in the food nitrogen and phosphorus footprints for Asia’s giants: China, India, and Japan. Resour. Conserv. Recycl. 157, 104752 (2020).
Google Scholar
Chen, M. & Graedel, T. E. A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Glob. Environ. Chang. 36, 139–152 (2016).
Google Scholar
Johnes, P. J. et al. Chapter 5. Phosphorus and water quality. in Our Phosphorus Future (eds. Brownlie, W. J., Sutton, M. A., Heal, K. V., Reay, D. S. & Spears, B. M.) (UK Centre for Ecology & Hydrology, 2022). https://doi.org/10.13140/RG.2.2.14950.50246.Dodds, W. K. et al. Eutrophication of US freshwaters: analysis of potential economic damages. Environ. Sci. Technol. 43, 12–19 (2008).
Google Scholar
Watson, S. B. et al. The re-eutrophication of Lake Erie: Harmful algal blooms and hypoxia. Harmful Algae 56, 44–66 (2016).CAS
Google Scholar
Rabalais, N. N. & Turner, R. E. Gulf of Mexico Hypoxia: Past, Present, and Future. Limnol. Oceanogr. Bull. 28, 117–124 (2019).
Google Scholar
Carstensen, J. & Conley, D. J. Baltic Sea Hypoxia Takes Many Shapes and Sizes. Limnol. Oceanog. Bull. 28, 125–129 (2019).
Google Scholar
Kanter, D. R. & Brownlie, W. J. Joint nitrogen and phosphorus management for sustainable development and climate goals. Environ. Sci. Policy 92, 1–8 (2019).CAS
Google Scholar
Hamilton, D. P., Salmaso, N. & Paerl, H. W. Mitigating harmful cyanobacterial blooms: strategies for control of nitrogen and phosphorus loads. Aquat. Ecol. 50, 351–366 (2016).CAS
Google Scholar
Brownlie, W. J. et al. Chapter 9. Towards our phosphorus future. In Our Phosphorus Future (eds. Brownlie, W. J., Sutton, M. A., Heal, K. V., Reay, D. S. & Spears, B. M.) (UK Centre for Ecology & Hydrology, 2022). https://doi.org/10.13140/RG.2.2.16995.22561.MacDonald, G. K. et al. Guiding phosphorus stewardship for multiple ecosystem services. Ecosyst. Health Sustain. 2, e01251 (2016).
Google Scholar
Withers, P. J. A. et al. Stewardship to tackle global phosphorus inefficiency: The case of Europe. Ambio 44, 193–206 (2015).CAS
Google Scholar
Withers, P. J. A. et al. Towards resolving the phosphorus chaos created by food systems. Ambio 49, 1076–1089 (2020).CAS
Google Scholar
Withers, P. J. A. Closing the phosphorus cycle. Nat. Sustain. 2, 1001–1002 (2019).
Google Scholar
Langhans, C., Beusen, A. H. W., Mogollón, J. M. & Bouwman, A. F. Phosphorus for Sustainable Development Goal target of doubling smallholder productivity. Nat. Sustain. 5, 57–63 (2022).
Google Scholar
Kuss, P. & Nicholas, K. A. A dozen effective interventions to reduce car use in European cities: Lessons learned from a meta-analysis and transition management. Case Stud. Transp. Policy. 10, 1494–1513 (2022).
Google Scholar
Hobbie, S. E. et al. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. Proc. Natl. Acad. Sci. USA 114, E4116–E4116 (2017).
Google Scholar
Seto, K. C. et al. From low- to net-zero carbon cities: the next global agenda. Annu. Rev. Environ. Resour. 46, 377–415 (2021).
Google Scholar
Zhang, Y. Urban metabolism: A review of research methodologies. Environ. Pollut. 178, 463–473 (2013).CAS
Google Scholar
Kissinger, M. & Stossel, Z. An integrated, multi-scale approach for modelling urban metabolism changes as a means for assessing urban sustainability. Sustain. Cities Soc. 67, 102695 (2021).
Google Scholar
Li, H. & Kwan, M.-P. Advancing analytical methods for urban metabolism studies. Resour. Conserv. Recycl. 132, 239–245 (2018).
Google Scholar
Goldstein, B., Birkved, M., Quitzau, M.-B. & Hauschild, M. Quantification of urban metabolism through coupling with the life cycle assessment framework: concept development and case study. Environ. Res. Lett. 8, 035024 (2013).CAS
Google Scholar
Kovac, A. et al. Global Protocol for Community-Scale Greenhouse Gas Inventories— An Accounting and Reporting Standard for Cities Version 1.1. 190 https://ghgprotocol.org/greenhouse-gas-protocol-accounting-reporting-standard-cities.Rogelj, J., Geden, O., Cowie, A. & Reisinger, A. Net-zero emissions targets are vague: three ways to fix. Nature 591, 365–368 (2021).CAS
Google Scholar
Wiedmann, T. et al. Three-scope carbon emission inventories of global cities. J. Ind. Ecol. 25, 735–750 (2021).CAS
Google Scholar
Metson, G. S. et al. Urban phosphorus sustainability: Systemically incorporating social, ecological, and technological factors into phosphorus flow analysis. Environ. Sci. Policy 47, 1–11 (2015).CAS
Google Scholar
Harseim, L., Sprecher, B. & Zengerling, C. Phosphorus governance within planetary boundaries: the potential of strategic local resource planning in The Hague and Delfland, The Netherlands. Sustainability 13, 10801 (2021).CAS
Google Scholar
Coutard, O. & Florentin, D. Resource ecologies, urban metabolisms, and the provision of essential services. J. Urban Technol. 29, 49–58 (2022).
Google Scholar
UDG at COP26 | Urban Design Events. Urban Design Group https://www.udg.org.uk/events/2021/udg-cop26 (2021).Ramaswami, A., Russell, A. G., Culligan, P. J., Sharma, K. R. & Kumar, E. Meta-principles for developing smart, sustainable, and healthy cities. Science 352, 940–943 (2016).CAS
Google Scholar
McPhearson, T. et al. A social-ecological-technological systems framework for urban ecosystem services. One Earth 5, 505–518 (2022).
Google Scholar
McPhearson, T., Haase, D., Kabisch, N. & Gren, Å. Advancing understanding of the complex nature of urban systems. Ecol. Indic. 70, 566–573 (2016).
Google Scholar
Metson, G. S. et al. Socio-environmental consideration of phosphorus flows in the urban sanitation chain of contrasting cities. Regional Environmental Change 18, 1387–1401 (2018).
Google Scholar
Iwaniec, D. M., Metson, G. S. & Cordell, D. P-FUTURES: Towards urban food & water security through collaborative design and impact. Curr. Opin. Environ. Sustain. 20, 1–7 (2016).
Google Scholar
Bulkeley, H. et al. Urban living laboratories: Conducting the experimental city? Eur. Urban. Reg. Stud. 26, 317–335 (2019).
Google Scholar
Beukers, E. & Bertolini, L. Learning for transitions: An experiential learning strategy for urban experiments. Environ. Innov. Soc. Transit. 40, 395–407 (2021).
Google Scholar
Ramaswami, A. et al. Carbon analytics for net-zero emissions sustainable cities. Nat. Sustain. 4, 460–463 (2021).
Google Scholar
Petit-Boix, A., Apul, D., Wiedmann, T. & Leipold, S. Transdisciplinary resource monitoring is essential to prioritize circular economy strategies in cities. Environ. Res. Lett. 17, 021001 (2022).
Google Scholar
WWAP. Wastewater: The Untapped Resource. https://www.unwater.org/publications/un-world-water-development-report-2017 (2017).van Puijenbroek, P. J. T. M., Beusen, A. H. W. & Bouwman, A. F. Global nitrogen and phosphorus in urban waste water based on the Shared Socio-economic pathways. J. Environ. Manage. 231, 446–456 (2019).
Google Scholar
Kovacs, A. & Zavadsky, I. Success and sustainability of nutrient pollution reduction in the Danube River Basin: recovery and future protection of the Black Sea Northwest shelf. Water Int. 46, 176–194 (2021).
Google Scholar
Trimmer, J. T. & Guest, J. S. Recirculation of human-derived nutrients from cities to agriculture across six continents. Nat. Sustain. 1, 427–435 (2018).
Google Scholar
Powers, S. M. et al. Global opportunities to increase agricultural independence through phosphorus recycling. Earths Future 7, 370–383 (2019).
Google Scholar
Metson, G. S., Cordell, D., Ridoutt, B. & Mohr, S. Mapping phosphorus hotspots in Sydney’s organic wastes: a spatially-explicit inventory to facilitate urban phosphorus recycling. J. Urban Ecol. 4, 1–19 (2018).
Google Scholar
Hu, Y., Sampat, A. M., Ruiz-Mercado, G. J. & Zavala, V. M. Logistics Network Management of Livestock Waste for Spatiotemporal Control of Nutrient Pollution in Water Bodies. ACS Sustain. Chem. Eng. 7, 18359–18374 (2019).CAS
Google Scholar
Mayer, B. K. et al. Total value of phosphorus recovery. Environ. Sci. Technol. 50, 6606–6620 (2016).CAS
Google Scholar
van Hessen, J. An Assessment of Small-Scale Biodigester Programmes in the Developing World: The SNV and Hivos Approach. (Vrije Universiteit Amsterdam, 2014).Harder, R., Wielemaker, R., Larsen, T. A., Zeeman, G. & Öberg, G. Recycling nutrients contained in human excreta to agriculture: Pathways, processes, and products. Crit. Rev. Environ. Sci. Technol. 49, 695–743 (2019).
Google Scholar
Metson, G. S. et al. Chapter 8. Consumption: the missing link towards phosphorus security. In Our Phosphorus Future (eds. Brownlie, W. J., Sutton, M. A., Heal, K. V., Reay, D. S. & Spears, B. M.) (UK Centre for Ecology & Hydrology, 2022). https://doi.org/10.13140/RG.2.2.36498.73925.Qiao, M., Zheng, Y. M. & Zhu, Y. G. Material flow analysis of phosphorus through food consumption in two megacities in northern China. Chemosphere 84, 773–778 (2011).CAS
Google Scholar
Forber, K. J., Rothwell, S. A., Metson, G. S., Jarvie, H. P. & Withers, P. J. A. Plant-based diets add to the wastewater phosphorus burden. Environ. Res. Lett. 15, 094018 (2020).CAS
Google Scholar
UN Population Division. The World’s cities in 2018. https://digitallibrary.un.org/record/3799524 (2018).Klöckner, C. A. A comprehensive model of the psychology of environmental behaviour-A meta-analysis. Glob. Environ. Change 23, 1028–1038 (2013).
Google Scholar
Nyborg, K. et al. Social norms as solutions. Science 354, 42–43 (2016).CAS
Google Scholar
Vermeir, I. & Verbeke, W. Sustainable Food Consumption: Exploring the Consumer “Attitude – Behavioral Intention” Gap. J. Agric. Environ. Ethics 19, 169–194 (2006).
Google Scholar
Ullström, S., Stripple, J. & Nicholas, K. A. From aspirational luxury to hypermobility to staying on the ground: changing discourses of holiday air travel in Sweden. J. Sustain. Tour. https://doi.org/10.1080/09669582.2021.1998079 (2021).Morris, T. H. Experiential learning—a systematic review and revision of Kolb’s model. Interact. Learn. Environ. 28, 1064–1077 (2020).
Google Scholar
Metson, G. S. & Bennett, E. M. Facilitators & barriers to organic waste and phosphorus re-use in Montreal. Elementa 3, 000070 (2015).
Google Scholar
Winkler, B., Maier, A. & Lewandowski, I. Urban gardening in germany: cultivating a sustainable lifestyle for the societal transition to a bioeconomy. Sustainability 11, 801 (2019).
Google Scholar
Kim, J. E. Fostering behaviour change to encourage low-carbon food consumption through community gardens. Int. J. Urban Sci. 21, 364–384 (2017).
Google Scholar
Fuhr, H., Hickmann, T. & Kern, K. The role of cities in multi-level climate governance: local climate policies and the 1.5 °C target. Curr. Opin. Environ. Sustain. 30, 1–6 (2018).
Google Scholar
Steffen, W. et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, 1259855 (2015).
Google Scholar
Santos, A. F., Almeida, P. V., Alvarenga, P., Gando-Ferreira, L. M. & Quina, M. J. From wastewater to fertilizer products: Alternative paths to mitigate phosphorus demand in European countries. Chemosphere 284, 131258 (2021).CAS
Google Scholar
UNFCCC. Race To Zero Campaign. https://unfccc.int/climate-action/race-to-zero-campaign.Locsin, J. A., Hood, K. M., Doré, E., Trueman, B. F. & Gagnon, G. A. Colloidal lead in drinking water: Formation, occurrence, and characterization. Crit. Rev. Environ. Sci. Technol. https://doi.org/10.1080/10643389.2022.2039549 (2022).Li, Y. et al. The role of freshwater eutrophication in greenhouse gas emissions: A review. Sci. Total Environ. 768, 144582 (2021).CAS
Google Scholar
Gong, H. et al. Synergies in sustainable phosphorus use and greenhouse gas emissions mitigation in China: Perspectives from the entire supply chain from fertilizer production to agricultural use. Sci. Total Environ. 838, 155997 (2022).CAS
Google Scholar More