Chauhan, B. S. Grand challenges in weed management. Front. Agron. https://doi.org/10.3389/fagro.2019.00003 (2020).Article
Google Scholar
Oerke, E. C. Crop losses to pests. J. Agric. Sci. 144, 31–43 (2006).
Google Scholar
Samejima, H. & Sugimoto, Y. Recent research progress in combatting root parasitic weeds. Biotechnol. Biotechnol. Equip. 32(2), 221–240 (2018).CAS
Google Scholar
Aly, R. Conventional and biotechnological approaches for control of parasitic weeds. In Vitro Cell. Dev. Biol. Plant 43(4), 304–317 (2007).
Google Scholar
Fernández-Aparicio, M., Delavault, P. & Timko, M. P. Management of infection by parasitic weeds: A review. Plants 9(9), 1184 (2020).PubMed Central
Google Scholar
Rodenburg, J., Demont, M., Zwart, S. J. & Bastiaans, L. Parasitic weed incidence and related economic losses in rice in Africa. Agric. Ecosyst. Environ. 235, 306–317 (2016).
Google Scholar
Weisberger, D., Nichols, V. & Liebman, M. Does diversifying crop rotations suppress weeds? A meta-analysis. PLoS One 14(7), e0219847 (2019).CAS
PubMed
PubMed Central
Google Scholar
Ejeta, G. The Striga scourge in Africa: A growing pandemic. In Integrating New Technologies for Striga Control: Towards Ending the Witch-hunt 3–16 (World Scientific, 2007). https://doi.org/10.1142/9789812771506_0001.Chapter
Google Scholar
Netting, R. M. & Stone, M. P. Agro-diversity on a farming frontier: Kofyar smallholders on the Benue plains of central Nigeria. Africa 66(1), 52–70 (1996).
Google Scholar
Pimentel, D. et al. Conserving biological diversity in agricultural and forestry systems. Bioscience 42, 354–362 (1992).
Google Scholar
Khoshbakht, K. & Hammer, K. How many plant species are cultivated?. Genet. Resour. Crop Evol. 55(7), 925–928. https://doi.org/10.1007/s10722-008 (2008).Article
Google Scholar
Hajjar, R., Jarvis, D. I. & Gemmill-Herren, B. The utility of crop genetic diversity in maintaining ecosystem services. Agric. Ecosyst. Environ. 123(4), 261–270 (2008).
Google Scholar
He, H. M. et al. Crop diversity and pest management in sustainable agriculture. J. Integr. Agric. 18(9), 1945–1952 (2019).
Google Scholar
Ofori, F. & Stern, W. R. Cereal–legume intercropping systems. Adv. Agron. 41, 41–90 (1987).
Google Scholar
Tanveer, M., Anjum, S. A., Hussain, S., Cerdà, A. & Ashraf, U. Relay cropping as a sustainable approach: Problems and opportunities for sustainable crop production. Environ. Sci. Pollut. Res. 24(8), 6973–6988 (2017).
Google Scholar
Hartwig, N. L. & Ammon, H. U. Cover crops and living mulches. Weed Sci. 50(6), 688–699 (2002).CAS
Google Scholar
Raseduzzaman, M. D. & Jensen, E. S. Does intercropping enhance yield stability in arable crop production? A meta-analysis. Eur. J. Agron. 91, 25–33 (2017).
Google Scholar
Davis, A. S., Hill, J. D., Chase, C. A., Johanns, A. M. & Liebman, M. Increasing cropping system diversity balances productivity, profitability and environmental health. PLoS One 7(10), e47149 (2012).ADS
CAS
PubMed
PubMed Central
Google Scholar
Himmelstein, J., Ares, A., Gallagher, D. & Myers, J. A meta-analysis of intercropping in Africa: Impacts on crop yield, farmer income, and integrated pest management effects. Int. J. Agric. Sustain. 15(1), 1–10 (2017).
Google Scholar
Abson, D. J., Fraser, E. D. & Benton, T. G. Landscape diversity and the resilience of agricultural returns: A portfolio analysis of land-use patterns and economic returns from lowland agriculture. Agric. Food Secur. 2(1), 1–15 (2013).
Google Scholar
Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571(7764), 257–260 (2019).ADS
CAS
PubMed
Google Scholar
Gaudin, A. C. et al. Increasing crop diversity mitigates weather variations and improves yield stability. PLoS One 10(2), e0113261 (2015).PubMed
PubMed Central
Google Scholar
Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2(3), 284–293 (2020).ADS
Google Scholar
Chauhan, B. S., Singh, R. G. & Mahajan, G. Ecology and management of weeds under conservation agriculture: A review. Crop Prot. 38, 57–65 (2012).
Google Scholar
Nichols, V., Verhulst, N., Cox, R. & Govaerts, B. Weed dynamics and conservation agriculture principles: A review. Field Crop Res. 183, 56–68 (2015).
Google Scholar
Banik, P., Midya, A., Sarkar, B. K. & Ghose, S. S. Wheat and chickpea intercropping systems in an additive series experiment: Advantages and weed smothering. Eur. J. Agron. 24(4), 325–332 (2006).
Google Scholar
Workayehu, T. & Wortmann, C. S. Maize–bean intercrop weed suppression and profitability in Southern Ethiopia. Agron. J. 103(4), 1058–1063 (2011).
Google Scholar
Haugaard-Nielsen, H., Ambus, P. & Jensen, E. S. Interspecific competition, N use and interference with weeds in pea barley intercropping. Field Crop Res. 70, 101–109 (2001).
Google Scholar
Jensen, E. S. Intercropping of Cereals and Grain Legumes for Increased Production, Weed Control, Improved Product Quality and Prevention of N-losses in European Organic Farming Systems, Final Report on Intercrop Project (QLK5-CT-2002-02352) (Risø National Laboratory, 2006).Arlauskienė, A., Šarūnaitė, L., Kadžiulienė, Ž, Deveikytė, I. & Maikštėnienė, S. Suppression of annual weeds in pea and cereal intercrops. Agron. J. 106(5), 1765–1774 (2014).
Google Scholar
Szumigalski, A. & van Acker, R. Weed suppression and crop production in annual intercrops. Weed Sci. 53(6), 813–825 (2005).CAS
Google Scholar
Stoltz, E. & Nadeau, E. Effects of intercropping on yield, weed incidence, forage quality and soil residual N in organically grown forage maize (Zea mays L.) and faba bean (Vicia faba L.). Field Crop Res. 169, 21–29 (2014).
Google Scholar
Sauerborn, J., Müller-Stöver, D. & Hershenhorn, J. The role of biological control in managing parasitic weeds. Crop Prot. 26(3), 246–254 (2007).
Google Scholar
Jamil, M., Rodenburg, J., Charnikhova, T. & Bouwmeester, H. J. Pre-attachment Striga hermonthica resistance of New Rice for Africa (NERICA) cultivars based on low strigolactone production. New Phytol. 192(4), 964–975. https://doi.org/10.1111/j.1469-8137.2011.03850.x (2011).Article
CAS
PubMed
Google Scholar
Yoneyama, K. et al. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227(1), 125–132. https://doi.org/10.1007/s00425-007-0600-5 (2007).Article
CAS
PubMed
Google Scholar
Sauerborn, J. Legumes used for weed control in agroecosystems in the tropics. Plant Res. Dev. 50, 74–82 (1999).
Google Scholar
Ejeta, G. & Butler, L. G. Host-parasite interactions throughout the Striga life cycle, and their contributions to Striga resistance. Afr. Crop Sci. J. 1(2), 75–80. https://doi.org/10.4314/acsj.v1i2.69889 (1993).Article
Google Scholar
Carsky, R. J., Singh, L. & Ndikawa, R. Suppression of Striga hermonthica on sorghum using a cowpea intercrop. Exp. Agric. 30(3), 349–358. https://doi.org/10.1017/s0014479700024467 (1994).Article
Google Scholar
Hsiao, A. I., Worsham, A. D. & Moreland, D. E. Effects of temperature and dl-strigol on seed conditioning and germination of witchweed (Striga asiatica). Ann. Bot. 61(1), 65–72. https://doi.org/10.1093/oxfordjournals.aob.a087528 (1988).Article
CAS
Google Scholar
Patterson, D. T. Effects of Environment on Growth and Reproduction of Witchweed and the Ecological Range of Witchweed (Monograph Series of the Weed Science Society of America, 1990).Stewart, G. R. & Press, M. C. The physiology and biochemistry of parasitic angiosperms. Annu. Rev. Plant Biol. 41(1), 127–151. https://doi.org/10.1146/annurev.pp.41.060190.001015 (1990).Article
CAS
Google Scholar
Anil, L., Park, R. H. P. & Miller, F. A. Temperate intercropping of cereals for forage: A review of the potential for growth and utilization with particular reference to the UK. Grass Forage Sci. 53, 301–317 (1998).
Google Scholar
Mamolos, A. & Kalburtji, K. Significance of allelopathy in crop rotation. J. Crop Prod. 4, 197–218 (2001).
Google Scholar
Khan, T. D., Chung, M. I., Xuan, T. D. & Tawata, S. The exploitation of crop allelopathy in sustainable agricultural production. J. Agron. Crop Sci. 191(3), 172–184 (2005).
Google Scholar
Cissoko, M., Boisnard, A., Rodenburg, J., Press, M. C. & Scholes, J. D. New Rice for Africa (NERICA) cultivars exhibit different levels of post-attachment resistance against the parasitic weeds Striga hermonthica and Striga asiatica. New Phytol. 192(4), 952–963 (2011).CAS
PubMed
Google Scholar
Rodenburg, J. et al. Do NERICA rice cultivars express resistance to Striga hermonthica (Del.) Benth. and Striga asiatica (L.) Kuntze under field conditions?. Field Crop Res. 170, 83–94 (2015).
Google Scholar
Randrianjafizanaka, M. T., Autfray, P., Andrianaivo, A. P., Ramonta, I. R. & Rodenburg, J. Combined effects of cover crops, mulch, zero-tillage and resistant varieties on Striga asiatica (L.) Kuntze in rice-maize rotation systems. Agric. Ecosyst. Environ. 256, 23–33 (2018).
Google Scholar
Rodenburg, J. et al. Genetic variation and host–parasite specificity of Striga resistance and tolerance in rice: The need for predictive breeding. New Phytol. 214(3), 1267–1280. https://doi.org/10.1111/nph.14451 (2017).Article
CAS
PubMed
PubMed Central
Google Scholar
Nickrent, D. L. & Musselman, L. J. Introduction to parasitic flowering plants. Plant Health Instr. 13(6), 300–315 (2004).
Google Scholar
Parker, C. Parasitic weeds: A world challenge. Weed Sci. 60(2), 269–276 (2012).CAS
Google Scholar
Shai Vaingast 2014. im2graph. Retrieved from: https://www.im2graph.co.il/free-downloads/windows-3264bit/ (2014).Google Maps 2021. https://maps.google.com [Accessed February 2021–December 2022].Kambach, S. et al. Consequences of multiple imputation of missing standard deviations and sample sizes in meta-analysis. Ecol. Evol. 10(20), 11699–11712 (2020).PubMed
PubMed Central
Google Scholar
Nakagawa, S. & Freckleton, R. P. Missing inaction: The dangers of ignoring missing data. Trends Ecol. Evol. 23(11), 592–596 (2008).PubMed
Google Scholar
Idris, N. R. N. & Robertson, C. The effects of imputing the missing standard deviations on the standard error of meta analysis estimates. Commun. Stat. Simul. Comput. 38(3), 513–526. https://doi.org/10.1080/03610910802556106 (2009).Article
MathSciNet
MATH
Google Scholar
van Buuren, S. & Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1–67 (2011).
Google Scholar
van Buuren, S. Flexible Imputation of Missing Data (CRC Press, 2018).MATH
Google Scholar
Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086 (2017).Article
Google Scholar
O’Donnell, M. S. & Ignizio, D. A. Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geol. Surv. Data Ser. 691(10), 4–9 (2012).
Google Scholar
Reuter, H. I., Nelson, A. & Jarvis, A. An evaluation of void filling interpolation methods for SRTM data. Int. J. Geogr. Inf. Sci. 21(9), 983–1008 (2007).
Google Scholar
CGIAR—Consortium for Spatial Information. http://srtm.csi.cgiar.org © 2004–2021. Accessed September 19, 2021, via: http://srtm.csi.cgiar.org/srtmdata/.QGIS Development Team. QGIS Geographic Information System http://qgis.osgeo.org (Open Source Geospatial Foundation Project, 2020).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82(13), 26. https://doi.org/10.18637/jss.v082.i13 (2017).Article
Google Scholar
Song, C., Peacor, S. D., Osenberg, C. W. & Bence, J. R. An assessment of statistical methods for non-independent data in ecological meta-analyses. Ecology 101(12), e03184. https://doi.org/10.1002/ecy.3184 (2020).Article
PubMed
Google Scholar
Del Rey, A. C. compute.es: Compute Effect Sizes. R package version 0.2-2. https://cran.r-project.org/package=compute.es (2013).R Core Team. R: A language and environment for statistical computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2020).Wickham, H., Francois, R., Henry, L. & Müller, K. dplyr: A grammar of data manipulation. R package version 0.4. 3 (2015)Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 48. https://doi.org/10.18637/jss.v067.i01 (2015).Article
Google Scholar
Liebman, M. & Dyck, E. Crop rotation and intercropping strategies for weed management. Ecol. Appl. 3(1), 92–122 (1993).PubMed
Google Scholar
Pumariño, L. et al. Effects of agroforestry on pest, disease and weed control: A meta-analysis. Basic Appl. Ecol. 16(7), 573–582 (2015).
Google Scholar
Kuyah, S., Whitney, C. W., Jonsson, M., Sileshi, G. W., Öborn, I., Muthuri, C. W. & Luedeling, E. Agroforestry delivers a win-win solution for ecosystem services in sub-Saharan Africa. A meta-analysis (2019).Evidente, A., Fernandez-Aparicio, M., Andolfi, A., Rubiales, D. & Motta, A. Trigoxazonane, a mono-substituted trioxazonane from Trigonella foenum-graecum root exudates, inhibits Orobanche crenata seed germination. Phytochemistry 68, 2487–2492 (2007).CAS
PubMed
Google Scholar
Khan, Z. R. et al. Control of witchweed Striga hermonthica by intercropping with Desmodium spp., and the mechanism defined as allelopathic. J. Chem. Ecol. 28(9), 1871–1885 (2002).CAS
PubMed
Google Scholar
Nakagawa, S. et al. Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods Ecol. Evol. 13(1), 4–21 (2022).
Google Scholar
Bakker, A. et al. Beyond small, medium, or large: Points of consideration when interpreting effect sizes. Educ. Stud. Math. 102(1), 1–8 (2019).
Google Scholar
Scott, D. et al. Mapping the drivers of parasitic weed abundance at a national scale: A new approach applied to Striga asiatica in the mid-west of Madagascar. Weed Res. 60(5), 323–333 (2020).
Google Scholar
Scott, D. et al. Identifying existing management practices in the control of Striga asiatica within rice–maize systems in mid-west Madagascar. Ecol. Evol. 11(19), 13579–13592 (2021).PubMed
PubMed Central
Google Scholar
Rubiales, D. & Fernández-Aparicio, M. Innovations in parasitic weeds management in legume crops. A review. Agron. Sustain. Dev. 32(2), 433–449 (2012).CAS
Google Scholar
Bir, M. S. H. et al. Weed population dynamics under climatic change. Weed Turfgrass Sci. 3(3), 174–182 (2014).
Google Scholar
Mohamed, K. I., Bolin, J. F., Musselman, L. J. & Townsend, P. A. Genetic diversity of Striga and implications for control and modelling future distributions. In Integrating New Technologies for Striga Control—Towards Ending the Witch-Hunt (eds Ejeta, G. & Gressel, J.) 71–84 (World Scientific, 2007).
Google Scholar
Mandumbu, R., Mutengwa, C. S., Mabasa, S. & Mwenje, E. Predictions of the Striga scourge under new climate in southern Africa. J. Biol. Sci. 17, 192–201. https://doi.org/10.3923/jbs.2017.194.201 (2017).Article
Google Scholar
Mudereri, B. T. et al. Multi-source spatial data-based invasion risk modelling of Striga (Striga asiatica) in Zimbabwe. GIScience Remote Sens. 57(4), 553–571. https://doi.org/10.1080/15481603.2020.1744250 (2020).Article
Google Scholar More