More stories

  • in

    Low net carbonate accretion characterizes Florida’s coral reef

    Survey sites and data collectionBenthic and fish surveys were conducted at randomly stratified sites throughout the entirety of the FRT by NOAA’s National Coral Reef Monitoring Program (NCRMP). Sites were categorized into three biogeographic regions, including Dry Tortugas (DRTO, n = 228), Florida Keys (FLKs, n = 322), and Southeast Florida (SEFL, n = 173) (Fig. 1). The Florida Keys were further classified into the following four sub-regions: Lower Keys (LK, n = 103), Middle Keys (MK, n = 46), Upper Keys (UK, n = 140), Biscayne (BISC, n = 33). Within each region/sub-region (except for SEFL), reefs were categorized according to reef types. For DRTO, this included bank, forereef, and lagoon reef sites. For the LK, MK, UK, and BISC, reef types were categorized as inshore, mid-channel, and offshore. Data were collected throughout the region in 2014, 2016, and 2018.Fish and benthic surveys were conducted in accordance with NCRMP methodologies34 (Table S2). The protocol used for the fish surveys was developed from a modified Reef Visual Census (RVC) method35 and was performed using a stratified random sampling design. Divers surveyed two 15 m diameter cylinders, spaced 15 m apart. Fish species were identified to the lowest taxonomic level for a period of five minutes. This was followed by an additional five minutes dedicated to recording species abundances and sizes (10 cm bins).Surveys were used to quantify the benthic cover at each site. The protocol for these surveys followed a standard line point-intercept sampling design. At each site, a 15 m weighted transect was draped along the reef surface. Surveyors recorded benthic composition at 15 cm intervals along the transect (i.e., 100 equidistant points). The benthic composition from these 100 points was then transformed to percent cover of ecologically important functional groups (scleractinian coral [species-specific], gorgonians, hydrocoral, CCA, macroalgae, turf algae, sponges, bare/dead substrate, sand/sediment).Carbonate budget analysisPlanar benthic surveys were adjusted to account for the three-dimensional complexity (i.e., rugosity) of each site using light detection and ranging (LiDAR) data (1 m horizontal resolution; 15 cm vertical resolution) from topobathymetric mapping surveys of the South Florida eastern coastline conducted by NOAA’s National Geodetic Survey. A 15 m x 15 m region of interest (ROI) was placed around the GPS coordinates of each site using ArcGIS Pro with 3D and Spatial Analyst extensions (ESRI). The ROI was then overlaid with existing multibeam echosounder (MBES) and LiDAR bathymetry data. Within the ROI, LiDAR was extracted using the Clip Raster function from ArcPy (ArcGIS’s python coding interface), and the Surface Volume tool was used to calculate the 3D surface area. Rugosity was calculated by dividing the 3D surface area by the 2D surface area of the ROI.The methodology for standardizing reef carbonate budgets to topographic complexity (i.e., rugosity) diverged from that of the ReefBudget approach by using site-specific rugosity rather than species-specific rugosity17. This was a necessary limitation of this analysis as transect rugosity at 1 m increments was not measured using the NCRMP benthic survey protocol. To ensure that reef topographic complexity was still accounted for, however, rugosity of the entire reef site, calculated from LiDAR bathymetry data, was used in this analysis. While rugosity of the site rather than of each benthic component, specifically for corals, can lead to an under or overestimation of carbonate production rates, we note that site and species rugosity (i.e., encrusting and massive coral morphologies) was low for the vast majority of sites and species surveyed, thereby reducing the probability of an under or overestimation.Reef carbonate budget analysis was performed following a modified version of the ReefBudget approach17. Coral carbonate production was derived from species-specific linear extension rates (cm year−1), skeletal density (g cm−3), coral morphology (branching, massive, sub-massive, encrusting/plating), and percent cover. Carbonate production by CCA and other calcareous encrusters was similarly calculated as a function of surface area, literature reported linear extension rates, and skeletal density17. Gross carbonate production at each survey site was measured as the sum total of carbonate production by all calcareous organisms found at each site and was standardized to site-specific reef rugosity.Gross carbonate erosion for each survey-site was calculated as the sum total of erosion by four bioeroding groups: parrotfish, microborers, macroborers, and urchins. The calculations roughly followed the ReefBudget methodologies17 (Table 1). Parrotfish size frequency distributions from NCRMP surveys were multiplied by size and species-specific bite rates (bites min−1), volume removed per bite (cm3), and proportion of bites leaving scars to calculate total parrotfish erosion17. The substrate density (1.72 g cm−3) used in these calculations followed that of the ReefBudget protocol17. Microbioerosion was calculated from the percent cover of dead coral substrate, which was multiplied by a literature-derived rate17 of − 0.240 kg CaCO3 m−2 year−1. Macroboring was calculated as the percent cover of clionid sponges multiplied by the average erosion rate of all Caribbean/Atlantic clionid sponges17 (-6.05 kg CaCO3 m−2 year−1). External bioerosion by urchins was calculated using Diadema urchin abundance collected from the benthic surveys. Due to the lack of test size data from the NCRMP benthic surveys, urchin abundance was multiplied by the bioerosion rate of an average test sized36 (66 mm) Caribbean/Atlantic Diadema urchin (-0.003 kg CaCO3 m-2 year−1). While using an average test sized Diadema urchin for this analysis may have led to an under or overestimation of urchin erosion, the abundance of Diadema urchins measured in the surveys was minimal, as they appeared to be functionally irrelevant across the FRT.Model validationAs the survey methodologies and data sources employed in this analysis were modified from that of the standard ReefBudget approach17, we chose to validate our model through a fine scale temporal comparison of annual ReefBudget surveys conducted by NOAA at Cheeca Rocks (UK) to three nearby NCRMP sites used in our analysis. Since the NCRMP surveys were performed in 2014, 2016, and 2018, this study focused exclusively on these three survey years from the NOAA Cheeca Rocks dataset. Temporal trends related to reef growth/erosion were visually compared to see if survey types provided comparable results (SI Figure S6).Statistical analysisAll model calculations and statistical analyses were performed using R37 with the R Studio extension38. Generalized linear models (GLMs) were run on response variables involved in habitat production (i.e., net carbonate production, gross carbonate production, and gross carbonate erosion) to evaluate spatial trends related to reef development across sub-regions and reef types. Each GLM was performed with reef type being nested within sub-region. The best fit distribution for each variable was determined using the fitdistrplus R package39. Linear regression analysis was used to evaluate the relationship between net carbonate production and both live coral cover and parrotfish biomass. All plots were created using ggplot2 R package40 and edited for style with Adobe Illustrator41. More

  • in

    Two simple movement mechanisms for spatial division of labour in social insects

    Automated tracking of four social insect speciesFifty queenright colonies were used in the tracking experiments (Table 1). Honeybee colonies (subspecies A. mellifera carnica) were housed in the campus apiary of the University of Lausanne. Colonies of L. niger were raised from single mated queens collected on campus. T. nylanderi colonies were collected from the University of Lausanne campus, and L. acervorum colonies collected from Anzeindaz, Switzerland. These four species were chosen because of their abundance and easy availability in Switzerland, and because they – or closely-related species – have previously been used as model systems for the study of spatial organisation in social insects20,21,23,27,44. The colony sizes used in our experiments (Table 1) fell within the natural range of sizes experienced by these species in nature, either as recently founded colonies (L. niger colonies are founded by a single queen and progressively grow from a few workers to mature sizes of up to 40,000 workers over the course of several years; new honeybee colonies are founded by swarms counting 2400–41,000 bees61) or as mature colonies (all colonies of T. nylanderi and L. acervorum used in our experiments were mature colonies collected whole from the field).In all species, a paper tag bearing a unique two-dimensional barcode was glued to the thorax of individuals to allow automated tracking of their movements (Fig. S1). In the ants, tagging of all individuals was performed in a single session two days before the beginning of the experiment, whilst in the bees, newly-emerged workers (one-day-old or less) were tagged every 3 days over the 21 days prior to the beginning of the experiment (Supplementary Note 1).Tagged colonies were kept in glass observation nests with a single entrance (internal nest dimensions, A. mellifera: 69 × 45 × 4 cm, L. niger: 70 × 40 × 8 mm; L. acervorum: 63 × 42 × 2 mm, T. nylanderi: 63 × 42 × 1.5 mm). The honeybee observation nests also included a 64 × 44 cm wooden frame enclosing a double-sided wax comb containing honey, pollen, and developing brood20. Bees were free to move between both sides of the comb. In all species, individuals were allowed to freely exit and enter the nest. Ants were provided with ad libitum food (Drosophila, sugar solution) and water in a foraging arena, while bees foraged on natural resources outside. Both the ant and honeybee observation nests were exposed to diurnal cycles of temperature and light (Supplementary Note 1).High resolution digital video cameras operating at two frames per second were used to identify the location and orientation of each tag across successive images22. All colonies were continuously tracked for three days, which corresponded to the inter-cohort time in the honeybee colonies. The trajectories of each worker, and the physical contacts between workers (Fig. S18 and Supplementary Note 14) were extracted using an existing software pipeline62.Building bipartite site-visit networksTo quantify the spatial preferences of individual ants and bees, the interior of the nest was discretised into a regular hexagonal lattice (Fig. 1a, b). Because the worker body lengths of our four study species span an order of magnitude (from ~ 1.5 mm for T. nylanderi to ~ 15 mm for A. mellifera), the width of the hexagonal bins were defined as 1/4 of the mean worker body-length.To characterise the spatial preferences of different individuals to different parts of the nest, we counted the number of times ({n}_{i}^{s}) that each individual i visited each hexagonal site s. A visit by individual i to site s began when i crossed the border into s, and was terminated when i crossed the border out of s, regardless of the amount of time spent inside. To prevent stationary individuals located on the border between two adjacent sites from rapidly accumulating many single-frame visits to the two sites, successive visits to a same site were only counted when at least 20s elapsed between the end of the previous visit and the start of the next.The site-visit data were used to construct a bipartite network, in which individuals (layer 1) were connected by undirected edges to the sites (layer 2) they visited (Fig. 1c, d). Because individuals typically made multiple visits to the same sites, each edge i–s was weighted according to the total number of times individual i visited site s, that is, ({n}_{i}^{s}).Partitioning site-visit networks into modulesThe extent to which the site-visit networks were partitioned into discrete ‘modules’ (i.e., set of workers with similar space-use patterns and the set of sites that they exhibit strong ties to) was assessed using the DIRTLPAwb+ algorithm for partitioning weighted bipartite networks39. This algorithm searches for the partition that maximises the number and strength of the links within modules, whilst minimizing connections between modules. The number of modules was not specified a priori by the user, but was identified by the algorithm. All site-visit networks had positive modularity (Fig. S3), indicating that they could be partitioned into a set of well-separated modules (Figs. 1e–h, S2, and S4–S5). The modules in each partition were then assigned functional labels according to the following rules. First, the module whose sites were on average closest to the nest entrance was labelled ‘forager’ module. Second, the module or modules with the greatest spatial overlap with the brood pile in the ant colonies or the broodnest(s) in the honeybee colonies were labelled ‘nurse’ module(s). After defining the forager and nurse modules, the remaining modules (if any) were labelled as follows. If there was only one module remaining after identifying the nurse and forager modules, as was typically the case in honeybee colonies, it was labelled ‘peripheral’. If there were two modules remaining, as was typically the case in ant colonies, then the module whose sites were on average closer to the nest borders (i.e., to the periphery of the nest) was labelled ‘peripheral’, and the remaining module labelled ‘intermediate’. In some cases, the DIRTLPAwb+ algorithm identified five or more modules (9.0% of all iterations across all species and colonies). In these cases, the supernumerary modules never contained more than 1 or 2 individuals, and as they could not be unequivocally assigned using our labelling scheme, they were left unclassified for these iterations.Validating network modulesAs a network constructed by a purely random process could exhibit apparent modular structure by chance, we tested whether the discovered modules represent statistically significant entities. To do so, we produced 1000 null model random networks for each observed network using an established permutation method for bipartite networks63 (Supplementary Note 2). Comparisons between the maximum modularity of the observed networks with that of the corresponding random networks showed that, in all four species, the observed modularity was significantly greater than expected by chance (Fig. S3).Constructing worker task profilesA unique labour profile for each ant and each honeybee was constructed by estimating the activity of each worker in the following four tasks:1. Entrance guarding: workers were classed as guarding when they were (i) within two body lengths of the entrance, (ii) roughly facing the entrance, i.e., with a body alignment diverging from the direct heading to the entrance by no more than π/2 radians, and (iii) ‘on station’ at the entrance, as defined by trajectory coordinates with an associated first passage time (ref. 64; time taken for the individual to pass beyond a circle centred on its current location with a radius of two body-lengths) in excess of 500s.2. Patrolling: workers were classed as patrolling65 when they were (i) active, and (ii) ‘roaming’, as defined by first passage times of More

  • in

    Manatee calf call contour and acoustic structure varies by species and body size

    Podos, J. Correlated evolution of morphology and vocal signal structure in Darwin’s finches. Nature 409, 185–188 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bradbury, J. W. & Vehrencamp, S. Principles of Animal Communication (Sinauer Associated, 1998).
    Google Scholar 
    Podos, J. & Warren, P. S. The evolution of geographic variation in birdsong. Adv. Study Behav. 37, 403–458 (2007).
    Google Scholar 
    Charlton, B. D., Owen, M. A. & Swaisgood, R. R. Coevolution of vocal signal characteristics and hearing sensitivity in forest mammals. Nat. Commun. 10, 1–7 (2019).CAS 

    Google Scholar 
    Soltis, J. Vocal communication in African elephants (Loxodonta africana). Zoo Biol. 29, 192–209 (2010).PubMed 

    Google Scholar 
    King, S. L. & Janik, V. M. Bottlenose dolphins can use learned vocal labels to address each other. Proc. Natl. Acad. Sci. 110, 13216–13221 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ravignani, A. et al. Ontogeny of vocal rhythms in harbor seal pups: An exploratory study. Curr. Zool. 65, 107–120 (2019).PubMed 

    Google Scholar 
    Rauber, R. & Manser, M. B. Effect of group size and experience on the ontogeny of sentinel calling behaviour in meerkats. Anim. Behav. 171, 129–138 (2021).
    Google Scholar 
    Janik, V. M. & Slater, P. J. Vocal learning in mammals. Adv. Study Behav. 26, 59–100 (1997).
    Google Scholar 
    Fitch, W. T. Production of vocalizations in mammals. In Encyclopedia of Language and Linguistics 2nd edn, Vol. 1 115–121 (Elsevier, 2006).
    Google Scholar 
    Fletcher, N. H. A frequency scaling rule in mammalian vocalization. In Handbook of Behavioral Neuroscience Vol. 19 51–56 (Elsevier, 2010).
    Google Scholar 
    Fant, G. Acoustic Theory of Speech Production (Mouton, 1960).
    Google Scholar 
    Taylor, A. & Reby, D. The contribution of source–filter theory to mammal vocal communication research. J. Zool. 280, 221–236 (2010).
    Google Scholar 
    Fitch, W. T., Neubauer, J. & Herzel, H. Calls out of chaos: The adaptive significance of nonlinear phenomena in mammalian vocal production. Anim. Behav. 63, 407–418 (2002).
    Google Scholar 
    Domning, D. P. & Hayek, L. A. C. Interspecific and intraspecific morphological variation in manatees (Sirenia: Trichechus). Mar. Mamm. Sci. 2, 87–144 (1986).
    Google Scholar 
    Anderson, P. K. & Barclay, R. M. R. Acoustic signals of solitary Dugongs: Physical characteristics and behavioral correlates. J. Mamm. 76, 1226–1237 (1995).
    Google Scholar 
    Sousa-Lima, R., Paglia, A. P. & Da Fonseca, G. Signature information and individual recognition in the isolation calls of Amazonian manatees, Trichechus inunguis (Mammalia: Sirenia). Anim. Behav. 63, 301–310 (2002).
    Google Scholar 
    Sousa-Lima, R. S., Paglia, A. P. & Fonseca, G. A. B. Gender, age, and identity in the isolation calls of Antillean manatees (Trichechus manatus manatus). Aquat. Mamm. 34, 109–122 (2008).
    Google Scholar 
    O’Shea, T. J. & Poché, L. B. Aspects of underwater sound communication in Florida manatees (Trichechus manatus latirostris). J. Mamm. 87, 1061–1071 (2006).
    Google Scholar 
    Rosas, F. C. W. Biology, conservation and status of the Amazonian manatee Trichechus inunguis. Mamm. Rev. 24, 49–59 (1994).
    Google Scholar 
    Meirelles, A. C. O. & Carvalho, V. L. Peixe-boi marinho: biologia e conservação no Brasil. Aquasis, Bambu Editora e Artes Gráficas, São Paulo (2016).Alvarez-Alemán, A., Beck, C. A. & Powell, J. A. First report of a Florida manatee (Trichechus manatus latirostris) in Cuba. Aquat. Mamm. 36, 148 (2010).
    Google Scholar 
    Castelblanco-Martínez, D. N. et al. First documentation of long-distance travel by a Florida manatee to the Mexican Caribbean. Ethol. Ecol. Evol. 1–12 (2021).Packard, J. M. & Wetterqvist, O. F. Evaluation of manatee habitat systems on the northwestern Florida coast. Coast. Manag. 14, 279–310 (1986).
    Google Scholar 
    Luna, F. D. O. et al. Genetic connectivity of the West Indian manatee in the southern range and limited evidence of hybridization with Amazonian manatees. Front. Mar. Sci. 7, 1089 (2021).
    Google Scholar 
    Hartman, D. Ecology and behavior of the manatee (Trichechus manatus) in Florida. Spec. Publ. Am. Soc. Mammal. 5, 153 (1979).
    Google Scholar 
    D’AffonsecaNeto, J. A. & Vergara-Parente, J. E. Sirenia (peixe-boi-da-Amazônia, Peixe-boi-marinho). In Tratado de Animais Selvagens: medicina veterinária (eds Cubas, Z. S. et al.) 701–714 (Roca, 2006).
    Google Scholar 
    Deutsch, C. J., Reid, J. P., Bonde, R. K., Easton, D. E., Kochman, H. I. & O’Shea, T. J. Seasonal movements, migratory behavior, and site fidelity of West Indian manatees along the Atlantic coast of the United States. Wildl. Monogr. 1–77 (2003).Laist, D. W. & Reynolds, J. E. III. Influence of power plants and other warm-water refuges on Florida manatees. Mar. Mamm. Sci. 21, 739–764 (2005).
    Google Scholar 
    Reynolds, J. E. Aspects of the social behaviour and herd structure of a semi-isolated colony of West Indian manatees, Trichechus manatus. Mammalia 45, 431–452 (1981).
    Google Scholar 
    Dantas, G. A. Ontogenia do padrão vocal individual do peixe-boi da Amazônia Trichechus inunguis (Sirenia, trichechidae). Dissertação (Instituto Nacional de Pesquisas da Amazônia, 2009).
    Google Scholar 
    Brady, B., Moore, J. & Love, K. Behavior related vocalizations of the Florida manatee (Trichechus manatus latirostris). Mar. Mamm. Sci. 1–15 (2021).Nowacek, D. P., Casper, B. M., Wells, R. S., Nowacek, S. M. & Mann, D. A. Intraspecific and geographic variation of West Indian manatee (Trichechus manatus spp.) vocalizations. J. Acoust. Soc. Am. 114, 66–69 (2003).ADS 
    PubMed 

    Google Scholar 
    Rycyk, A. M. et al. First characterization of vocalizations and passive acoustic monitoring of the vulnerable African manatee (Trichechus senegalensis). J. Acoust. Soc. Am. 150, 3028–3037 (2021).ADS 
    PubMed 

    Google Scholar 
    Landrau-Giovannetti, N., Mignucci-Giannoni, A. A. & Reidenberg, J. S. Acoustical and anatomical determination of sound production and transmission in West Indian (Trichechus manatus) and Amazonian (T. inunguis) manatees. Anat. Rec. 297, 1896–1907 (2014).
    Google Scholar 
    Morton, E. On the occurrence and significance of motivation-structural rules in some bird and mammal sounds. Am. Nat. 111, 855–869 (1977).
    Google Scholar 
    Borges, J. C. et al. Growth pattern differences of captive born Antillean manatee (Trichechus manatus) calves and those rescued in the Brazilian northeastern coast. J. Zoo Wildl. Med. 43, 494–500 (2012).PubMed 

    Google Scholar 
    Lima, D. S., Vergara-Parente, J. E., Young, R. J. & Paszkiewicz, E. Training of Antillean manatee Trichechus manatus manatus Linnaeus, 1758 as a management technique for individual welfare. Lat. Am. J. Mar. Mamm. 4, 61–68 (2005).
    Google Scholar 
    K. Lisa Yang Center for Conservation Bioacoustics at the Cornell Lab of Ornithology. Raven Pro: Interactive Sound Analysis Software (Version 1.5) [Computer software]. https://ravensoundsoftware.com/ (The Cornell Lab of Ornithology, 2022).Zollinger, S. A., Podos, J., Nemeth, E., Goller, F. & Brumm, H. On the relationship between, and measurement of, amplitude and frequency in birdsong. Anim. Behav. 84, e1–e9 (2012).
    Google Scholar 
    Sokal, R. R. & Rohlf, F. J. Biometry (W. H. Freeman and Co., 1995).MATH 

    Google Scholar 
    Charrier, I. & Harcourt, R. G. Individual vocal identity in mother and pup Australian sea lions (Neophoca cinerea). J. Mamm. 87, 929–938 (2006).
    Google Scholar 
    Green, S. & Salkind, N. J. Using SPSS for Windows and Macintosh: Analyzing and Understanding Data 4th edn. (Prentice Hall, 2003).
    Google Scholar 
    Charlton, B. D. et al. Cues to body size in the formant spacing of male koala (Phascolarctos cinereus) bellows: Honesty in an exaggerated trait. J. Exp. Biol. 214(20), 3414–3422 (2011).PubMed 

    Google Scholar 
    IBM Corp. Released 2020. IBM SPSS Statistics for Windows, Version 27.0.Best, R. C. The aquatic mammals and reptiles of the Amazon. In The Amazon 371–412 (Springer, 1984).
    Google Scholar 
    Gerhardt, H. C. The evolution of vocalization in frogs and toads. Annu. Rev. Ecol. Syst. 25, 293–324 (1994).
    Google Scholar 
    Mendoza, P. et al. Growth curve of Amazonian manatee (Trichechus inunguis) in captivity. Aquat. Mamm. 45 (2019).Schwarz, L. K. Methods and models to determine perinatal status of Florida manatee carcasses. Mar. Mamm. Sci. 24, 881–898 (2008).
    Google Scholar 
    Hauser, M. D., Chomsky, N. & Fitch, W. T. The faculty of language: What is it, who has it, and how did it evolve?. Science 298, 1569–1579 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Marler, P. & Peters, S. Developmental overproduction and selective attrition: New processes in the epigenesis of birdsong. Dev. Psychol. J. Int. Soc. Dev. Psychol. 15.4, 369–378 (1982).
    Google Scholar 
    Casey, C., Reichmuth, C., Costa, D. P. & Le Boeuf, B. The rise and fall of dialects in northern elephant seals. Proc. R. Soc. B 285, 2018–2176 (2018).
    Google Scholar 
    Hunter, M. E. et al. Puerto Rico and Florida manatees represent genetically distinct groups. Conserv. Genet. 13, 1623–1635 (2012).
    Google Scholar 
    Castelblanco-Martínez, D. N. et al. Analysis of body condition indices reveals different ecotypes of the Antillean manatee. Sci. Rep. 11, 1–14 (2021).
    Google Scholar 
    McCracken, K. G. & Sheldon, F. H. Avian vocalizations and phylogenetic signal. Proc. Natl. Acad. Sci. 94, 3833–3836 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moron, J. R. et al. Whistle variability of Guiana dolphins in South America: Latitudinal variation or acoustic adaptation? Mar. Mamm. Sci. 1–32 (2018)Luís, A. R. et al. Vocal universals and geographic variations in the acoustic repertoire of the common bottlenose dolphin. Sci. Rep. 11, 1–9 (2021).
    Google Scholar 
    Ey, E. & Fisher, J. The ‘Acoustic adaptations hypothesis’ a review of the evidence from birds, anurans and mammals. Bioacoustics 19, 21–48 (2009).
    Google Scholar 
    Miksis-Olds, J. L. & Tyack, P. L. Manatee (Trichechus manatus) vocalization usage in relation to environmental noise levels. J. Acoust. Soc. Am. 125, 1806–1815 (2009).ADS 
    PubMed 

    Google Scholar 
    Sun, W., Wang, Z., Jamalabdollahi, M. & Reza Zekavat, S. A. Experimental study on the difference between acoustic communication channels in freshwater rivers/lakes and in oceans. In 2014 48th Asilomar Conference on Signals, Systems and Computers, 333–337 (2004)Rivera Chavarría, M., Castro, J. & Camacho, A. The relationship between acoustic habitat, hearing and tonal vocalizations in the Antillean manatee (Trichechus manatus manatus, Linnaeus, 1758). Biol. Open 4, 1237–1242 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Gaspard, J. C. III. et al. Audiogram and auditory critical ratios of two Florida manatees (Trichechus manatus latirostris). J. Exp. Biol. 215, 1442–1447 (2012).PubMed 

    Google Scholar 
    Gerstein, E. R., Gerstein, L., Forsythe, S. E. & Blue, J. E. The underwater audiogram of the West Indian manatee (Trichechus manatus). J. Acoust. Soc. Am. 105, 3575–3583 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Klishin, V., Pezo, R., Popov, V., Ya, A. & Supin. Some characteristics of hearing of the Brazilian manatee, Trichechus inunguis. Aquat. Mamm. 16 (1990).Johnson, M., de Soto, N. A. & Madsen, P. T. Studying the behaviour and sensory ecology of marine mammals using acoustic recording tags: A review. Mar. Ecol. Prog. Ser. 395, 55–73 (2009).ADS 

    Google Scholar  More

  • in

    Evolution of cross-tolerance in Drosophila melanogaster as a result of increased resistance to cold stress

    Prasad, N. G. & Joshi, A. What have two decades of laboratory life-history evolution studies on Drosophila melanogaster taught us?. J. Genet. 82, 45–76 (2003).CAS 
    PubMed 

    Google Scholar 
    MacMillan, H. A., Walsh, J. P. & Sinclair, B. J. The effects of selection for cold tolerance on cross-tolerance to other environmental stressors in Drosophila melanogaster. Insect Sci. 16, 263–276 (2009).
    Google Scholar 
    Flatt, T. Life-history evolution and the genetics of fitness components in drosophila melanogaster. Genetics 214(1), 3–48. https://doi.org/10.1534/genetics.119.300160 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hoffmann, A. A. & Parsons, P. A. Selection for increased desiccation resistance in Drosophila melanogaster: Additive genetic control and correlated responses for other stresses. Genetics 122, 837–845 (1989).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nghiem, D., Gibbs, A. G., Rose, M. R. & Bradley, T. J. Postponed aging and desiccation resistance in Drosophila melanogaster. Exp. Gerontol. 35, 957–969 (2000).CAS 
    PubMed 

    Google Scholar 
    Hoffmann, A. A., Scott, M., Partridge, L. & Hallas, R. Overwintering in Drosophila melanogaster: Outdoor field cage experiments on clinal and laboratory selected populations help to elucidate traits under selection. J. Evol. Biol. 16, 614–623 (2003).CAS 
    PubMed 

    Google Scholar 
    Bubliy, O. A. & Loeschcke, V. Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster. J. Evol. Biol. 18, 789–803 (2005).CAS 
    PubMed 

    Google Scholar 
    Bourg, É. L. & Le Bourg, É. A cold stress applied at various ages can increase resistance to heat and fungal infection in aged Drosophila melanogaster flies. Biogerontology 12, 185–193 (2011).PubMed 

    Google Scholar 
    Sejerkilde, M., Sørensen, J. G. & Loeschcke, V. Effects of cold- and heat hardening on thermal resistance in Drosophila melanogaster. J. Insect Physiol. 49, 719–726 (2003).CAS 
    PubMed 

    Google Scholar 
    Coulson, S. C. & Bale, J. S. Effect of rapid cold hardening on reproduction and survival of offspring in the housefly Musca domestica. J. Insect Physiol. 38, 421–424 (1992).
    Google Scholar 
    Bayley, M., Petersen, S. O., Knigge, T., Köhler, H.-R. & Holmstrup, M. Drought acclimation confers cold tolerance in the soil collembolan Folsomia candida. J. Insect Physiol. 47, 1197–1204 (2001).CAS 
    PubMed 

    Google Scholar 
    Wu, B. S. et al. Anoxia induces thermotolerance in the locust flight system. J. Exp. Biol. 205, 815–827 (2002).CAS 
    PubMed 

    Google Scholar 
    Phelan, J. P. et al. Breakdown in correlations during laboratory evolution. I. Comparative analyses of Drosophila populations. Evolution 57, 527–535 (2003).PubMed 

    Google Scholar 
    Hoffmann, A. A. & Harshman, L. G. Desiccation and starvation resistance in Drosophila: Patterns of variation at the species, population and intrapopulation levels. Heredity 83(Pt 6), 637–643 (1999).PubMed 

    Google Scholar 
    Sinclair, B. J., Nelson, S., Nilson, T. L., Roberts, S. P. & Gibbs, A. G. The effect of selection for desiccation resistance on cold tolerance of Drosophila melanogaster. Physiol. Entomol. 32, 322–327 (2007).
    Google Scholar 
    Anderson, A. R., Hoffmann, A. A. & McKechnie, S. W. Response to selection for rapid chill-coma recovery in Drosophila melanogaster: Physiology and life-history traits. Genet. Res. 85, 15–22 (2005).PubMed 

    Google Scholar 
    Kellett, M., Hoffmann, A. A. & Mckechnie, S. W. Hardening capacity in the Drosophila melanogaster species group is constrained by basal thermotolerance. Funct. Ecol. 19, 853–858 (2005).
    Google Scholar 
    Overgaard, J., Sørensen, J. G., Petersen, S. O., Loeschcke, V. & Holmstrup, M. Reorganization of membrane lipids during fast and slow cold hardening in Drosophila melanogaster. Physiol. Entomol. 31, 328–335 (2006).CAS 

    Google Scholar 
    Hoffmann, A. A., Hallas, R., Anderson, A. R. & Telonis-Scott, M. Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster. J. Evol. Biol. 18, 804–810 (2005).CAS 
    PubMed 

    Google Scholar 
    Singh, K., Kochar, E. & Prasad, N. G. Egg Viability, Mating Frequency and Male Mating Ability Evolve in Populations of Drosophila melanogaster Selected for Resistance to Cold Shock. PLoS ONE 10, e0129992 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Singh, K., Kochar, E., Gahlot, P., Bhatt, K. & Prasad, N. G. Evolution of reproductive traits have no apparent life-history associated cost in populations of Drosophila melanogaster selected for cold shock resistance. BMC Ecol. Evol. 21, 1–4 (2021).
    Google Scholar 
    Salehipour-Shirazi, G., Ferguson, L. V. & Sinclair, B. J. Does cold activate the Drosophila melanogaster immune system?. J. Insect Physiol. 96, 29–34 (2017).CAS 
    PubMed 

    Google Scholar 
    Singh, K., Zulkifli, M. & Prasad, N. G. Identification and characterization of novel natural pathogen of Drosophila melanogaster isolated from wild captured Drosophila spp. Microbes Infect. 18, 813–821 (2016).PubMed 

    Google Scholar 
    Singh, K., Samant, M. A., Tom, M. T. & Prasad, N. G. Evolution of Pre- and Post-Copulatory Traits in Male Drosophila melanogaster as a Correlated Response to Selection for Resistance to Cold Stress. PLoS ONE 11, e0153629 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Lefevre, G. J. & Jonsson, U. B. The effect of cold shock on D. melanogaster sperm. Drosophila Inf. Serv. 1962(36), 86–876 (1962).
    Google Scholar 
    Novitski, E. & Rush, G. Viability and fertility of Drosophila exposed to sub-zero temperatures. Biol. Bull. 97, 150–157 (1949).CAS 
    PubMed 

    Google Scholar 
    Arbogast, R. T. Mortality and Reproduction of Ephestia cautella and Plodia interpunctella 1 Exposed as Pupae to High Temperatures. Environ. Entomol. 10, 708–711 (1981).
    Google Scholar 
    Saxena, B. P., Sharma, P. R., Thappa, R. K. & Tikku, K. Temperature induced sterilization for control of three stored grain beetles. J. Stored Prod. Res. 28, 67–70 (1992).
    Google Scholar 
    Collett, J. I. & Jarman, M. G. Adult female Drosophila pseudoobscura survive and carry fertile sperm through long periods in the cold: Populations are unlikely to suffer substantial bottlenecks in overwintering. Evolution 55, 840–845 (2001).CAS 
    PubMed 

    Google Scholar 
    Schnebel, E. M. & Grossfield, J. Mating-temperature range in drosophila. Evolution 38, 1296–1307 (1984).PubMed 

    Google Scholar 
    Chakir, M., Chafik, A., Moreteau, B., Gibert, P. & David, J. R. Male sterility thermal thresholds in Drosophila: D. simulans appears more cold-adapted than its sibling D. melanogaster. Genetica 114, 195–205 (2002).PubMed 

    Google Scholar 
    David, J. R. et al. Male sterility at extreme temperatures: A significant but neglected phenomenon for understanding Drosophila climatic adaptations. J. Evol. Biol. 18, 838–846 (2005).CAS 
    PubMed 

    Google Scholar 
    Dolgin, E. S., Whitlock, M. C. & Agrawal, A. F. Male Drosophila melanogaster have higher mating success when adapted to their thermal environment. J. Evol. Biol. 19, 1894–1900 (2006).CAS 
    PubMed 

    Google Scholar 
    David, J. R. Male sterility at high and low temperatures in Drosophila. J. Soc. Biol. 202, 113–117 (2008).PubMed 

    Google Scholar 
    Zhang, W., Zhao, F., Hoffmann, A. A. & Ma, C.-S. A single hot event that does not affect survival but decreases reproduction in the diamondback moth, plutella xylostella. PLoS ONE 8, e75923 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tucić, N. Genetic capacity for adaptation to cold resistance at different developmental stages of Drosophila melanogaster. Evolution 33, 350–358 (1979).PubMed 

    Google Scholar 
    Chen, C.-P. & Walker, V. K. Increase in cold-shock tolerance by selection of cold resistant lines in Drosophila melanogaster. Ecol. Entomol. 18, 184–190 (1993).
    Google Scholar 
    Ring, R. A. & Danks, H. V. Desiccation and cryoprotection: Overlapping adaptations. Cryo Lett. 15, 181–190 (1994).
    Google Scholar 
    Ring, R. A. & Danks, H. The role of trehalose in cold-hardiness and desiccation. Cryo Lett. 19, 275–282 (1998).CAS 

    Google Scholar 
    Singh, K. & Prasad, N. G. Cold stress upregulates the expression of heat shock proteins and Frost genes, but evolution of cold stress resistance is apparently not mediated through either heat shock proteins or Frost genes in the cold stress selected population. bioRxiv https://doi.org/10.1101/2022.03.07.483305 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bubliy, O. A., Kristensen, T. N., Kellermann, V. & Loeschcke, V. Plastic responses to four environmental stresses and cross-resistance in a laboratory population of Drosophila melanogaster. Funct. Ecol. 26, 245–253 (2012).
    Google Scholar 
    Kristensen, T. N., Loeschcke, V. & Hoffmann, A. A. Can artificially selected phenotypes influence a component of field fitness? Thermal selection and fly performance under thermal extremes. Proc. Biol. Sci. 274, 771–778 (2007).PubMed 

    Google Scholar 
    Hoffmann, A. A., Anderson, A. & Hallas, R. Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecol. Lett. 5, 614–618 (2002).
    Google Scholar 
    Yi, S.-X. & Lee, R. E. Jr. Detecting freeze injury and seasonal cold-hardening of cells and tissues in the gall fly larvae, Eurosta solidaginis (Diptera: Tephritidae) using fluorescent vital dyes. J. Insect Physiol. 49, 999–1004 (2003).CAS 
    PubMed 

    Google Scholar 
    Macmillan, H. A. & Sinclair, B. J. Mechanisms underlying insect chill-coma. J. Insect Physiol. 57, 12–20 (2011).CAS 
    PubMed 

    Google Scholar 
    Marshall, K. E. & Sinclair, B. J. The sub-lethal effects of repeated freezing in the woolly bear caterpillar Pyrrharctia isabella. J. Exp. Biol. 214, 1205–1212 (2011).PubMed 

    Google Scholar 
    Sinclair, B. J., Ferguson, L. V., Salehipour-shirazi, G. & MacMillan, H. A. Cross-tolerance and cross-talk in the cold: Relating low temperatures to desiccation and immune stress in insects. Integr. Comp. Biol. 53, 545–556 (2013).PubMed 

    Google Scholar 
    Roxström-Lindquist, K., Terenius, O. & Faye, I. Parasite-specific immune response in adult Drosophila melanogaster: A genomic study. EMBO Rep. 5, 207–212 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    Pham, L. N., Dionne, M. S., Shirasu-Hiza, M. & Schneider, D. S. A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog. 3, e26 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Mikonranta, L., Mappes, J., Kaukoniitty, M. & Freitak, D. Insect immunity: Oral exposure to a bacterial pathogen elicits free radical response and protects from a recurring infection. Front. Zool. 11, 23 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Ramløv, H. & Lee, R. E. Jr. Extreme resistance to desiccation in overwintering larvae of the gall fly Eurosta solidaginis (Diptera, tephritidae). J. Exp. Biol. 203, 783–789 (2000).PubMed 

    Google Scholar 
    Holmstrup, M., Bayley, M. & Ramløv, H. Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable arctic invertebrates. Proc. Natl. Acad. Sci. 99, 5716–5720 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chippindale, A. K. et al. Resource acquisition and the evolution of stress resistance in drosophila melanogaster. Evolution 52, 1342 (1998).PubMed 

    Google Scholar 
    Rose, M. R. Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution 38, 1004–1010 (1984).ADS 
    PubMed 

    Google Scholar 
    Crill, W. D., Huey, R. B. & Gilchrist, G. W. Within- and between-generation effects of temperature on the morphology and physiology of Drosophila melanogaster. Evolution 50, 1205–1218 (1996).PubMed 

    Google Scholar 
    Kwan, L., Bedhomme, S., Prasad, N. G. & Chippindale, A. K. Sexual conflict and environmental change: Trade-offs within and between the sexes during the evolution of desiccation resistance. J. Genet. 87, 383–394 (2008).PubMed 

    Google Scholar  More

  • in

    Global and regional ecological boundaries explain abrupt spatial discontinuities in avian frugivory interactions

    Dataset acquisitionPlant-frugivore network data were obtained through different online sources and publications (Supplementary Table 1). Only networks that met the following criteria were retrieved: (i) the network contains quantitative data (a measure of interaction frequency) from a location, pooling through time if necessary; (ii) the network includes avian frugivores. Importantly, we removed non-avian frugivores from our analyses because only 28 out of 196 raw networks (before data cleaning) sampled non-avian frugivores, and not removing non-avian frugivores would generate spurious apparent turnover between networks that did vs. did not sample those taxa. In addition, the removal of non-avian frugivores did not strongly decrease the number of frugivores in our dataset (Supplementary Fig. 20a) or the total number of links in the global network of frugivory (Supplementary Fig. 20b). Furthermore, non-avian frugivores, as well as their interactions, were not shared across ecoregions and biomes (Supplementary Fig. 21), so their inclusion would only strengthen the results we found (though as noted above, we believe that this would be spurious because they are not as well sampled); (iii) the network (after removal of non-avian frugivores) contains greater than two species in each trophic level. Because this size threshold was somewhat arbitrary, we used a sensitivity analysis to assess the effect of our network size threshold on the reported patterns (see Sensitivity analysis section in the Supplementary Methods and Supplementary Figs. 22–24); and (iv) network sampling was not taxonomically restricted, that is, sampling was not focused on a specific taxonomic group, such as a given plant or bird family. Note, however, that authors often select focal plants or frugivorous birds to be sampled, but this was not considered as a taxonomic restriction if plants and birds were not selected based on their taxonomy (e.g., focal plants were selected based on the availability of fruits at the time of sampling, or focal birds were selected based on previous studies of bird diet in the study site). The first source for network data was the Web of Life database42, which contains 33 georeferenced plant-frugivore networks from 28 published studies, of which 12 networks met our criteria.We also accessed the Scopus database on 04 May 2020 using the following keyword combination: (“plant-frugivore*” OR “plant-bird*” OR “frugivorous bird*” OR “avian frugivore*” OR “seed dispers*”) AND (“network*” OR “web*”) to search for papers that include data on avian frugivory networks. The search returned a total of 532 studies, from which 62 networks that met the above criteria were retrieved. We also contacted authors to obtain plant-frugivore networks that were not publicly available, which provided us a further 110 networks. The remaining networks (N = 12) were obtained by checking the database from a recently published study12. In total, 196 quantitative avian frugivory networks were used in our analyses.Generating the distance matrices to serve as predictor and response variablesEcoregion and biome distancesWe used the most up-to-date (2017) map of ecoregions and biomes3, which divides the globe into 846 terrestrial ecoregions nested within 14 biomes, to generate our ecoregion and biome distance matrices. Of these, 67 ecoregions and 11 biomes are represented in our dataset (Supplementary Figs. 1 and 2). We constructed two alternative versions of both the ecoregion and biome distance matrices. In the first, binary version, if two ecological networks were from localities within the same ecoregion/biome, a dissimilarity of zero was given to this pair of networks, whereas a dissimilarity of one was given to a pair of networks from distinct ecoregions/biomes (this is the same as calculating the Euclidean distance on a presence–absence matrix with networks in rows and ecoregion/biomes in columns).In the second, quantitative version, we estimated the pairwise environmental dissimilarity between our ecoregions and biomes using six environmental variables recently demonstrated to be relevant in predicting ecoregion distinctness, namely mean annual temperature, temperature seasonality, mean annual rainfall, rainfall seasonality, slope and human footprint38. We obtained climatic and elevation data from WorldClim 2.143 at a spatial resolution of 1-km2. We transformed the elevation raster into a slope raster using the terrain function from the raster package44 in R45. As a measure of human disturbance, we used human footprint—a metric that combines eight variables associated with human disturbances of the environment: the extent of built environments, crop land, pasture land, human population density, night-time lights, railways, roads and navigable waterways26. The human footprint raster was downloaded at a 1-km2 resolution26. Because human footprint data were not available for one of our ecoregions (Galápagos Islands xeric scrub), we estimated human footprint for this ecoregion by converting visually interpreted scores into the human footprint index. We did this by analyzing satellite images of the region and following a visual score criterion26. Given the previously demonstrated strong agreement between visual score and human footprint values26, we fitted a linear model using the visual score and human footprint data from 676 validation plots located within the Deserts and xeric shrublands biome – the biome in which the Galápagos Islands xeric scrub ecoregion is located – and estimated the human footprint values for our own visual scores using the predict function in R45.We used 1-km2 resolution rasters and the extract function from the raster package44 to calculate the mean value of each of our six environmental variables for each ecoregion in our dataset. Because biomes are considerably larger than ecoregions (which makes obtaining environmental data for biomes more computationally expensive) we used a coarser spatial resolution of 5-km2 for calculating the mean values of environmental variables for each biome. Since a 5-km2 resolution raster was not available for human footprint, we transformed the 1-km2 resolution raster into a 5-km2 raster using the resample function from the same package.To combine these six environmental variables into quantitative matrices of ecoregion and biome environmental dissimilarity, we ran a Principal Component Analysis (PCA) on our scaled multivariate data matrix (where rows are ecoregions or biomes and columns are environmental variables). From this PCA, we selected the scores of the four and three principal components, which represented 89.6% and 88.7% of the variance for ecoregions and biomes, respectively, and converted it into a distance matrix by calculating the Euclidean distance between pairs of ecoregions/biomes using the vegdist function from the vegan package46. Finally, we transformed the ecoregion or biome distance matrix into a N × N matrix where N is the number of local networks. In this matrix, cell values represent the pairwise environmental dissimilarity between the ecoregions/biomes where the networks are located. The main advantage of using this quantitative approach is that, instead of simply evaluating whether avian frugivory networks located in distinct ecoregions or biomes are different from each other in terms of network composition and structure (as in our binary approach), we were also able to determine whether the extent of network dissimilarity depended on how environmentally different the ecoregions or biomes are from one another.Local-scale human disturbance distanceTo generate our local human disturbance distance matrix, we extracted human footprint data at a 1-km2 spatial resolution26 and calculated the mean human footprint values within a 5-km buffer zone around each network site. For the networks located within the Galápagos Islands xeric scrub ecoregion (N = 4), we estimated the human footprint index using the same method described in the previous section for ecoregion- or biome-scale human footprint. We then calculated the pairwise Euclidean distance between human footprint values from our network sites. Thus, low cell values in the local human disturbance distance matrix indicate pairs of network sites with a similar level of human disturbance, while high values represent pairs of network sites with very different levels of human disturbance.Spatial distanceThe spatial distance matrix was generated using the Haversine (i.e., great circle) distance between all pairwise combinations of network coordinates. In this matrix, cell values represent the geographical distance between network sites.Elevational differenceWe calculated the Euclidean distance between pairwise elevation values (estimated as meters above sea level) of network sites to generate our elevational difference matrix. Elevation values were obtained from the original sources when available or using Google Earth47. In the elevational difference matrix, low cell values represent pairs of network sites within similar elevations, whereas high values represent pairs of network sites within very different elevations.Network sampling dissimilarityWe used the metadata retrieved from each of our 196 local networks to generate our network sampling dissimilarity matrices, which aim to control statistically for differences in network sampling. There are many ways in which sampling effort could be quantified, so we began by calculating a variety of metrics, then narrowed our options by assessing which of these was most related to network metrics. We divided the sampling metrics into two categories: time span-related metrics (i.e., sampling hours and months) and empirical metrics of sampling completeness (i.e., sampling completeness and sampling intensity), which aim to account for how complete network sampling was in terms of species interactions (Supplementary Table 2).We selected the quantitative sampling metrics to be included in our models based on (i) the fit of generalized linear models evaluating the relationship between number of sampling hours and sampling months of the study and network-level metrics (i.e., bird richness, plant richness and number of links), and (ii) how well time span-related metrics, sampling completeness and sampling intensity predicted the proportion of known interactions that were sampled in each local network (hereafter, ratio of interactions) for a subset of the data. This latter metric, defined as the ratio between the number of interactions in the local network and the number of known possible interactions in the region involving the species in the local network, captures raw sampling completeness. Therefore, ratio of interactions estimates, for a given set of species, the proportion of all their interactions known for a region that are found to occur among those same species in the local network. To calculate this metric, we needed high-resolution information on the possible interactions, so we used a subset of 14 networks sampled in Aotearoa New Zealand, since there is an extensive compilation of frugivory events recorded for this country48. After this process, we selected number of sampling hours, number of sampling months and sampling intensity for inclusion in our statistical models (Supplementary Figs. 7 and 8; Supplementary Table 2). We generated the corresponding distance matrices by calculating the Euclidean distance between metric values. Similarly, we generated a Euclidean distance matrix for differences in sampling year between pairs of networks, which aims to account for long-term changes in the environment, species composition and network sampling methods. We obtained the sampling year of our local networks from the original sources and calculated the mean sampling year value for those networks sampled across multiple years.Because sampling methods, such as sampling design, focus (i.e., focal taxa, which determines whether a zoocentric or phytocentric method was used), interaction frequency type (i.e., how interaction frequency was measured) and coverage (total or partial) might also affect the observed plant-frugivore interactions49, we combined these variables into a single distance matrix to estimate the overall differences in sampling methods between networks. Because most of these variables were categorical with multiple levels (Supplementary Table 3), we generated our method’s dissimilarity matrix by using a generalization of Gower’s distance method50, which allows the treatment of different types of variables when calculating distances. For this, we used the dist.ktab function from the ade4 package51. We ran a Principal Coordinates Analysis (PCoA) on this distance matrix, selected the first four axes, which explained 81.2% of the variation in method’s dissimilarity, and calculated the Euclidean distance between pairs of networks using the vegdist function from the vegan package46 in R45.Network dissimilarityWe generated three network dissimilarity matrices to be our response variables in the statistical models. In the first, cell values represent the pairwise dissimilarity in species composition between networks (beta diversity of species; βS)27. Second, we measured interaction dissimilarity (beta diversity of interactions; βWN), which represents the pairwise dissimilarity in the identity of interactions between networks27. Importantly, we did not include interaction rewiring (βOS) in our main analysis because this metric can only be calculated for networks that share interaction partners (i.e., it estimates whether shared species interact differently)27, which limited the number and the spatial distribution of networks available for analysis (but see the Rewiring analysis section for an analysis on the subset of our dataset for which this was possible). Metrics were calculated using the network_betadiversity function from the betalink package52 in R45.Finally, we calculated a third dissimilarity matrix to capture overall differences in network structure. We recognize that there are many potential metrics of network structure, and that many of these are strongly correlated with one another53,54,55,56. We therefore chose a range of metrics that captured the number of links, their relative weightings (including across trophic levels), and their arrangement among species, then combined these into a single distance matrix. Specifically, we quantified network structural dissimilarity using the following metrics: weighted connectance, weighted nestedness, interaction evenness, PDI and modularity.Weighted connectance represents the number of links relative to the number of possible links, weighted by the frequency of each interaction55, and is therefore a measure of network-level specialization (higher values of weighted connectance indicate lower specialization). Importantly, it has been suggested that connectance affects persistence in mutualistic systems54. We measured nestedness (i.e., the pattern in which specialist species interact with proper subsets of the species that generalist species interact with) using the weighted version of nestedness based on overlap and decreasing fill (wNODF)57. Notably, nested structures have been commonly reported in plant-frugivore networks33. Interaction evenness is Shannon’s evenness index applied for species interactions and represents how evenly distributed the interactions are in the network21,58. This metric has been previously demonstrated to decline with habitat modification as a consequence of some interactions being favored over others in high-disturbance environments21. PDI (Paired Difference Index) is a measure of species-level specialization on resources and a reliable indicator not only of specialization, but also of absolute generalism59. Thus, this metric contributes to understanding of the ecological processes that drive the prevalence of specialists or generalists in ecological networks59. In order to obtain a network-level PDI, we calculated the weighted mean PDI for each local network. Finally, we calculated modularity (i.e., the level of compartmentalization within networks) using the DIRTPLAwb+ algorithm60. Modularity estimates the extent to which species within modules interact more with each other than with species from other modules61, and it has been demonstrated to affect the persistence and resilience of mutualistic networks54. All the selected network metrics are based on weighted (quantitative) interaction data, as these have been suggested to be less biased by sampling incompleteness62 and to better reflect environmental changes21. All network metrics were calculated using the bipartite package63 in R45.We ran a Principal Component Analysis (PCA) on our scaled multivariate data matrix (N × M where N is the number of local networks in our dataset and M is the number of network metrics), selected the scores of the three principal components, which represented 89.9% of the variance in network metrics, and converted it into a network structural dissimilarity matrix by calculating the Euclidean distance between networks. In this distance matrix, cell values represent differences in the overall architecture of networks (over all the network metrics calculated), and therefore provide a complementary approach for evaluating how species interaction patterns vary across large-scale environmental gradients.Statistical analysisWe employed a two-tailed statistical test that combines Generalized Additive Models (GAM)29 and Multiple Regression on distance Matrices (MRM)30 to evaluate the effect of each of our predictor distance matrices on our response matrix. With this approach, we were able to fit GAMs where the predictor and responsible variables are distance matrices, while accounting for the non-independence of distances from each local network by permuting the response matrix30. The main advantage of using GAMs is their flexibility in modeling non-linear relationships through smooth functions, which are represented by a sum of simpler, fixed basis functions that determine their complexity29. Using GAM-based MRM models allowed us to obtain F values for each of the smooth terms (i.e., smooth functions of the predictor variables in our model), and test statistical significance at the level of individual variables. The binary versions of ecoregion and biome distance matrices (with two levels, “same” or “distinct”) were treated as categorical variables in the models, and t values were used for determining statistical significance. We fitted GAMs with thin plate regression splines64 using the gam function from the mgcv package29 in R45. Smoothing parameters were estimated using restricted maximum likelihood (REML)29. Our GAM-based MRM models were calculated using a modified version of the MRM function from the ecodist package65, which allowed us to combine GAMs with the permutation approach from the original MRM function (see Code availability). All the models were performed with 1000 permutations (i.e., shuffling) of the response matrix.We explored the unique and shared contributions of our predictor variables to network dissimilarity using deviance partitioning analyses. These were performed by fitting reduced models (i.e., GAMs where one or more predictor variables of interest were removed) using the same smoothing parameters as in the full model and comparing the explained deviance. We fixed smoothing parameters for comparisons in this way because these parameters tend to vary substantially (to compensate) if one of two correlated predictors is dropped from a GAM.Assessing the influence of individual studies on the reported patternsBecause our dataset comprises 196 local frugivory networks obtained from 93 different studies, and some of these studies contained multiple networks, we needed to evaluate whether our results were strongly biased by individual studies. To do this, we followed the approach from a previous study66 and tested whether F values of smooth terms and t values of categorical variables (binary version of ecoregion and biome distances) changed significantly when jackknifing across studies. We did this by dropping one study from the dataset and re-fitting the models, and then repeating this same process for all the studies in our dataset.We found a number of consistent patterns within different subsets of the data (Supplementary Figs. 15 and 16); however, some of the patterns we observed appear to be driven by individual studies with multiple networks, and hence are less representative. For instance, the study with the greatest number of networks in our dataset (study ID = 76), which contains 35 plant-frugivore networks sampled across an elevation gradient in Mt. Kilimanjaro, Tanzania67, had an overall high influence on the results when compared with the other studies. By re-running our GAM-based MRM models after removing this study from our dataset, we found that the effect of biome boundaries on interaction dissimilarity is no longer significant, whereas the effects of ecoregion boundaries, human disturbance distance, spatial distance and elevational differences remained consistent with those from the full dataset (Supplementary Table 33). Nevertheless, all the results were qualitatively similar to those obtained for the entire dataset when using network structural dissimilarity as the response variable (Supplementary Table 34).Rewiring analysisInteraction rewiring (βOS) estimates the extent to which shared species interact differently27. Because this metric can only be calculated for networks that share species from both trophic levels, we selected a subset of network pairs that shared plants and frugivorous birds (N = 1314) to test whether interaction rewiring increases across large-scale environmental gradients. Importantly, since not all possible combinations of network pairs contained values of interaction rewiring (i.e., not all pairs of networks shared species), a pairwise distance matrix could not be generated for this metric. Thus, we were not able to use the same statistical approach used in our main analysis, which is based on distance matrices (see Statistical analysis section). Instead, we performed a Generalized Additive Mixed-effects Model (GAMM) using ecoregion, biome, human disturbance, spatial, elevational, and sampling-related distance metrics as fixed effects and network IDs as random effects (to account for the non-independence of distances) (Supplementary Table 35). We also performed a reduced model with only ecoregion and biome distance metrics as predictor variables (Supplementary Table 36). The binary version of ecoregion and biome distance metrics (with two levels, “same” or “distinct”) were used as categorical variables in both models. Interaction rewiring (βOS) was calculated using the network_betadiversity function from the betalink package52 in R45. Although it has been recently argued that this metric may overestimate the importance of rewiring for network dissimilarity68, our main focus was not the partitioning of network dissimilarity into species turnover and rewiring components, but rather simply detecting whether the sub-web of shared species interacted differently. In this case, βOS (as developed by ref. 27) is an adequate and useful metric68. We fitted our models using the gamm4 function from the gamm4 package69 in R45. Smoothing parameters were estimated using restricted maximum likelihood (REML)29.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Scale matters in service supply

    Balvanera, P. et al. Bioscience 64, 49–57 (2014).Article 

    Google Scholar 
    Hooper, D. U. et al. Ecol. Monogr. 75, 3–35 (2005).Article 

    Google Scholar 
    Balvanera, P. et al. Ecol. Lett. 9, 1146–1156 (2006).Article 
    PubMed 

    Google Scholar 
    Cardinale, B. J. et al. Am. J. Bot. 98, 572–592 (2011).Article 
    PubMed 

    Google Scholar 
    Cardinale, B. J. B. J. et al. Nature 486, 59–67 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Manning, P. et al. in Advances in Ecological Research (eds Eisenhauer N. et al.) 323–356 (Academic, 2019).Le Provost, G. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01918-5 (2022).Felipe-Lucia, M. R. et al. Proc. Natl Acad. Sci. USA 117, 28140–28149 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Foley, J. A. et al. Science 309, 570–574 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cardinale, B. J. et al. Ecology 94, 1697–1707 (2013).Article 
    PubMed 

    Google Scholar 
    Teles da Mota, V. & Pickering, C. J. Outdoor Recreat. Tour. 30, 100295 (2020).Article 

    Google Scholar 
    Mitchell, M. G. E. et al. Trends Ecol. Evol. 30, 190–198 (2015).Article 
    PubMed 

    Google Scholar 
    Raudsepp-Hearne, C. & Peterson, G. D. Ecol. Soc. 21, 16 (2016).Article 

    Google Scholar 
    Chaplin-Kramer, R. & Kremen, C. Ecol. Appl. 22, 1936–1948 (2012).Article 
    PubMed 

    Google Scholar  More

  • in

    Managing reefs for productivity

    Seguin, R. et al. Nat. Sustain. https://doi.org/10.1038/s41893-022-00981-x (2022).Article 

    Google Scholar 
    Roberts, C. M. & Polunin, N. V. C. Rev. Fish Biol. Fish. 1, 65–91 (1991).Article 

    Google Scholar 
    Cinner, J. E. et al. Soc. Nat. Resour. 27, 994–1005 (2014).Article 

    Google Scholar 
    MacNeil, M. A. et al. Nature 520, 341–344 (2015).Article 
    CAS 

    Google Scholar 
    Morais, R. A. & Bellwood, D. R. Coral Reefs 39, 1221–1231 (2020).Article 

    Google Scholar 
    Morais, R. A., Connolly, S. R. & Bellwood, D. R. Glob. Change Biol. 26, 1295–1305 (2020).Article 

    Google Scholar 
    Di Lorenzo, M. et al. Fish Fish. 21, 906–915 (2020).Article 

    Google Scholar 
    Ban, N. C. et al. Nat. Sustain. 2, 524–532 (2019).Article 

    Google Scholar 
    Rogers, A. et al. Ecology 99, 450–463 (2018).Article 

    Google Scholar 
    Robinson, J. P. W. et al. Nat. Ecol. Evol. 3, 183–190 (2019).Article 

    Google Scholar  More

  • in

    Towards process-oriented management of tropical reefs in the anthropocene

    McCauley, D. J. et al. Marine defaunation: animal loss in the global ocean. Science 347, 1255641 (2015).Article 

    Google Scholar 
    Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).Article 

    Google Scholar 
    Ceballos, G., Ehrlich, P. R. & Raven, P. H. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc. Natl Acad. Sci. USA 117, 13596–13602 (2020).Article 
    CAS 

    Google Scholar 
    Brandl, S. J. et al. Extreme environmental conditions reduce coral reef fish biodiversity and productivity. Nat. Commun. 11, 3832 (2020).Article 
    CAS 

    Google Scholar 
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).Article 
    CAS 

    Google Scholar 
    Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J. & Graham, N. A. J. Coral reef ecosystem services in the Anthropocene. Funct. Ecol. https://doi.org/10.1111/1365-2435.13331 (2019).Pereira, P. H. C. et al. Effectiveness of management zones for recovering parrotfish species within the largest coastal marine protected area in Brazil. Sci. Rep. 12, 12232 (2022).Article 
    CAS 

    Google Scholar 
    Campbell, S. J. et al. Fishing restrictions and remoteness deliver conservation outcomes for Indonesia’s coral reef fisheries. Conserv. Lett 13, e12698 (2020).Article 

    Google Scholar 
    Cinner, J. E. et al. Gravity of human impacts mediates coral reef conservation gains. Proc. Natl Acad. Sci. USA 115, E6116–E6125 (2018).Article 
    CAS 

    Google Scholar 
    Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).Article 
    CAS 

    Google Scholar 
    Mumby, P. J., Steneck, R. S., Roff, G. & Paul, V. J. Marine reserves, fisheries ban, and 20 years of positive change in a coral reef ecosystem. Conserv. Biol. 35, 1473–1483 (2021).Article 

    Google Scholar 
    Harrison, H. B. et al. Larval export from marine reserves and the recruitment benefit for fish and fisheries. Curr. Biol. 22, 1023–1028 (2012).Article 
    CAS 

    Google Scholar 
    Kerwath, S. E., Winker, H., Götz, A. & Attwood, C. G. Marine protected area improves yield without disadvantaging fishers. Nat. Commun. 4, 2347 (2013).Article 

    Google Scholar 
    Di Lorenzo, M., Guidetti, P., Di Franco, A., Calò, A. & Claudet, J. Assessing spillover from marine protected areas and its drivers: a meta‐analytical approach. Fish Fish. 21, 906–915 (2020).Article 

    Google Scholar 
    Ban, N. C. et al. Well-being outcomes of marine protected areas. Nat. Sustain. 2, 524–532 (2019).Article 

    Google Scholar 
    Cinner, J. E. et al. Winners and losers in marine conservation: fishers’ displacement and livelihood benefits from marine reserves. Soc. Nat. Resour. 27, 994–1005 (2014).Article 

    Google Scholar 
    Gurney, G. G. et al. Biodiversity needs every tool in the box: use OECMs. Nature 595, 646–649 (2021).Article 
    CAS 

    Google Scholar 
    Smallhorn-West, P. F. et al. Hidden benefits and risks of partial protection for coral reef fisheries. Ecol. Soc. 27, art26 (2022).Article 

    Google Scholar 
    Turnbull, J. W., Johnston, E. L. & Clark, G. F. Evaluating the social and ecological effectiveness of partially protected marine areas. Conserv. Biol. 35, 921–932 (2021).Article 

    Google Scholar 
    Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).Article 
    CAS 

    Google Scholar 
    Cinner, J. E. et al. Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science 368, 307–311 (2020).Article 
    CAS 

    Google Scholar 
    McShane, T. O. et al. Hard choices: making trade-offs between biodiversity conservation and human well-being. Biol. Conserv. 144, 966–972 (2011).Article 

    Google Scholar 
    MacNeil, M. A. et al. Recovery potential of the world’s coral reef fishes. Nature 520, 341–344 (2015).Article 
    CAS 

    Google Scholar 
    McClanahan, T. R. et al. Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries. Proc. Natl Acad. Sci. USA 108, 17230–17233 (2011).Article 
    CAS 

    Google Scholar 
    Morais, R. A. & Bellwood, D. R. Principles for estimating fish productivity on coral reefs. Coral Reefs 39, 1221–1231 (2020).Article 

    Google Scholar 
    Lindeman, R. L. The trophic-dynamic aspect of ecology. Ecology 23, 399–417 (1942).Article 

    Google Scholar 
    Pauly, D. & Froese, R. MSY needs no epitaph—but it was abused. ICES J. Mar. Sci. 78, 2204–2210 (2021).Article 

    Google Scholar 
    Rindorf, A. et al. Strength and consistency of density dependence in marine fish productivity. Fish Fish. 23, 812–828 (2022).Article 

    Google Scholar 
    Morais, R. A., Connolly, S. R. & Bellwood, D. R. Human exploitation shapes productivity–biomass relationships on coral reefs. Glob. Change Biol. 26, 1295–1305 (2020).Article 

    Google Scholar 
    Kolding, J., Bundy, A., van Zwieten, P. A. M. & Plank, M. J. Fisheries, the inverted food pyramid. ICES J. Mar. Sci. 73, 1697–1713 (2016).Article 

    Google Scholar 
    Morais, R. A. et al. Severe coral loss shifts energetic dynamics on a coral reef. Funct. Ecol. 34, 1507–1518 (2020).Article 

    Google Scholar 
    Sala, E. & Giakoumi, S. No-take marine reserves are the most effective protected areas in the ocean. ICES J. Mar. Sci. 75, 1166–1168 (2018).Article 

    Google Scholar 
    Edgar, G. J. & Stuart-Smith, R. D. Systematic global assessment of reef fish communities by the Reef Life Survey program. Sci. Data 1, 140007 (2014).Article 

    Google Scholar 
    Parravicini, V. et al. Global patterns and predictors of tropical reef fish species richness. Ecography 36, 1254–1262 (2013).Article 

    Google Scholar 
    Morais, R. A. & Bellwood, D. R. Global drivers of reef fish growth. Fish Fish. 19, 874–889 (2018).Article 

    Google Scholar 
    Gislason, H., Daan, N., Rice, J. C. & Pope, J. G. Size, growth, temperature and the natural mortality of marine fish: natural mortality and size. Fish Fish. 11, 149–158 (2010).Article 

    Google Scholar 
    Graham, N. A. J. et al. Human disruption of coral reef trophic structure. Curr. Biol. 27, 231–236 (2017).Article 
    CAS 

    Google Scholar 
    Froese, R. & Pauly, D. (eds.). FishBase. Version 06/2022. https://www.fishbase.org (2022).Cochrane, K. L. Reconciling sustainability, economic efficiency and equity in marine fisheries: has there been progress in the last 20 years? Fish Fish. 22, 298–323 (2021).Article 

    Google Scholar 
    Morais, R. A., Siqueira, A. C., Smallhorn-West, P. F. & Bellwood, D. R. Spatial subsidies drive sweet spots of tropical marine biomass production. PLoS Biol. 19, e3001435 (2021).Article 
    CAS 

    Google Scholar 
    Hamilton, M. et al. Climate impacts alter fisheries productivity and turnover on coral reefs. Coral Reefs https://doi.org/10.1007/s00338-022-02265-4 (2022).Cooke, R. et al. Anthropogenic disruptions to longstanding patterns of trophic-size structure in vertebrates. Nat Ecol Evol. 6, 684–692 (2022).Article 

    Google Scholar 
    Eddy, T. D. et al. Energy flow through marine ecosystems: confronting transfer efficiency. Trends Ecol. Evol. 36, 76–86 (2021).Article 

    Google Scholar 
    Devillers, R. et al. Reinventing residual reserves in the sea: are we favouring ease of establishment over need for protection? Aquat. Conserv. Mar. Freshw. Ecosyst. 25, 480–504 (2015).Article 

    Google Scholar 
    Fontoura, L. et al. Protecting connectivity promotes successful biodiversity and fisheries conservation. Science 375, 336–340 (2022).Article 
    CAS 

    Google Scholar 
    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).Article 
    CAS 

    Google Scholar 
    Agardy, T., di Sciara, G. N. & Christie, P. Mind the gap: addressing the shortcomings of marine protected areas through large scale marine spatial planning. Mar. Policy 35, 226–232 (2011).Article 

    Google Scholar 
    Robinson, J. P. W. et al. Habitat and fishing control grazing potential on coral reefs. Funct. Ecol. 34, 240–251 (2020).Article 

    Google Scholar 
    Robinson, J. P. W. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183–190 (2019).Article 

    Google Scholar 
    Dudley, N. et al. The essential role of other effective area-based conservation measures in achieving big bold conservation targets. Glob. Ecol. Conserv. 15, e00424 (2018).Article 

    Google Scholar 
    Zupan, M. et al. How good is your marine protected area at curbing threats? Biol. Conserv. 221, 237–245 (2018).Article 

    Google Scholar 
    Pollnac, R. et al. Marine reserves as linked social–ecological systems. Proc. Natl Acad. Sci. USA 107, 18262–18265 (2010).Article 
    CAS 

    Google Scholar 
    McClanahan, T. R., Marnane, M. J., Cinner, J. E. & Kiene, W. E. A comparison of marine protected areas and alternative approaches to coral-reef management. Curr. Biol. 16, 1408–1413 (2006).Article 
    CAS 

    Google Scholar 
    Smallhorn-West, P. F., Weeks, R., Gurney, G. & Pressey, R. L. Ecological and socioeconomic impacts of marine protected areas in the South Pacific: assessing the evidence base. Biodivers. Conserv. 29, 349–380 (2020).Article 

    Google Scholar 
    Cinner, J. E. et al. Sixteen years of social and ecological dynamics reveal challenges and opportunities for adaptive management in sustaining the commons. Proc. Natl Acad. Sci. USA 116, 26474–26483 (2019).Article 
    CAS 

    Google Scholar 
    Wilson, S. K. et al. Habitat degradation and fishing effects on the size structure of coral reef fish communities. Ecol. Appl. 20, 442–451 (2010).Article 
    CAS 

    Google Scholar 
    Nash, K. L. & Graham, N. A. J. Ecological indicators for coral reef fisheries management. Fish Fish. 17, 1029–1054 (2016).Article 

    Google Scholar 
    Brandl, S. J., Goatley, C. H. R., Bellwood, D. R. & Tornabene, L. The hidden half: ecology and evolution of cryptobenthic fishes on coral reefs. Biol. Rev. 93, 1846–1873 (2018).Article 

    Google Scholar 
    Willis, T. J. Visual census methods underestimate density and diversity of cryptic reef fishes. J. Fish. Biol. 59, 1408–1411 (2001).Article 

    Google Scholar 
    Allen, K. R. Relation between production and biomass. J. Fish. Res. Board Can. 28, 1573–1581 (1971).Article 

    Google Scholar 
    Leigh, E. G. On the relation between the productivity, biomass, diversity, and stability of a community. Proc. Natl Acad. Sci. USA 53, 777–783 (1965).Article 
    CAS 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Cinner, J. E., Daw, T. & McClanahan, T. R. Socioeconomic factors that affect artisanal fishers’ readiness to exit a declining fishery. Conserv. Biol. 23, 124–130 (2009).Article 
    CAS 

    Google Scholar 
    Cinner, J. E. et al. Linking social and ecological systems to sustain coral reef fisheries. Curr. Biol. 19, 206–212 (2009).Article 
    CAS 

    Google Scholar 
    Hicks, C. C., Crowder, L. B., Graham, N. A., Kittinger, J. N. & Cornu, E. L. Social drivers forewarn of marine regime shifts. Front. Ecol. Environ. 14, 252–260 (2016).Article 

    Google Scholar 
    Espinosa-Romero, M. J., Rodriguez, L. F., Weaver, A. H., Villanueva-Aznar, C. & Torre, J. The changing role of NGOs in Mexican small-scale fisheries: from environmental conservation to multi-scale governance. Mar. Policy 50, 290–299 (2014).Article 

    Google Scholar 
    Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).Article 

    Google Scholar 
    Edgar, G. J. et al. Establishing the ecological basis for conservation of shallow marine life using Reef Life Survey. Biol. Conserv. 252, 108855 (2020).Article 

    Google Scholar 
    Selig, E. R. et al. Mapping global human dependence on marine ecosystems. Conserv. Lett. 12, e12617 (2019).Article 

    Google Scholar  More