More stories

  • in

    Indication of a personality trait in dairy calves and its link to weight gain through automatically collected feeding behaviours

    Réale, D., Reader, S. M., Sol, D., McDougall, P. T. & Dingemanse, N. J. Integrating animal temperament within ecology and evolution. Biol. Rev. 82, 291–318 (2007).PubMed 

    Google Scholar 
    Kaiser, M. I. & Müller, C. What is an animal personality?. Biol. Philos. 36, 1 (2021).
    Google Scholar 
    Sih, A., Bell, A. & Johnson, J. C. Behavioral syndromes: An ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378 (2004).PubMed 

    Google Scholar 
    Gosling, S. D. From mice to men: What can we learn about personality from animal research?. Psychol. Bull. 127, 45–86 (2001).PubMed 

    Google Scholar 
    Biro, P. A. & Stamps, J. A. Are animal personality traits linked to life-history productivity?. Trends Ecol. Evol. 23, 361–368 (2008).PubMed 

    Google Scholar 
    Koolhaas, J. M. Coping style and immunity in animals: Making sense of individual variation. Brain Behav. Immun. 22, 662–667 (2008).PubMed 

    Google Scholar 
    Réale, D. et al. Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos. Trans. R. Soc. B Biol. Sci. 365, 4051–4063 (2010).
    Google Scholar 
    Stamps, J. A. Growth-mortality tradeoffs and ‘personality traits’ in animals. Ecol. Lett. 10, 355–363 (2007).PubMed 

    Google Scholar 
    Finkemeier, M. A., Langbein, J. & Puppe, B. Personality research in mammalian farm animals: Concepts, measures, and relationship to welfare. Front Vet. Sci. 10(5), 355–363 (2018).
    Google Scholar 
    Murphy, E., Nordquist, R. E. & van der Staay, F. J. A review of behavioural methods to study emotion and mood in pigs. Sus. Scrofa. Appl. Anim. Behav. Sci 159, 9–28 (2014).
    Google Scholar 
    Lauber, M. C. Y., Hemsworth, P. H. & Barnett, J. L. The effects of age and experience on behavioural development in dairy calves. Appl. Anim. Behav. Sci. 99, 41–52 (2006).
    Google Scholar 
    Neave, H. W., Costa, J. H. C., Weary, D. M. & von Keyserlingk, M. A. G. Personality is associated with feeding behavior and performance in dairy calves. J. Dairy Sci. 101, 7437–7449 (2018).PubMed 

    Google Scholar 
    Foris, B., Zebunke, M., Langbein, J. & Melzer, N. Evaluating the temporal and situational consistency of personality traits in adult dairy cattle. Plos One 13, e0204619 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Dingemanse, N. J. & Dochtermann, N. A. Quantifying individual variation in behaviour: Mixed-effect modelling approaches. J. Anim. Ecol. 82, 39–54 (2013).PubMed 

    Google Scholar 
    Dingemanse, N. J., Kazem, A. J. N., Réale, D. & Wright, J. Behavioural reaction norms: Animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81–89 (2010).PubMed 

    Google Scholar 
    Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: A practical guide for biologists. Biol. Rev. https://doi.org/10.1111/j.1469-185X.2010.00141.x (2010).Article 
    PubMed 

    Google Scholar 
    Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: A meta-analysis. Anim. Behav. 77, 771–783 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Neave, H. W., Costa, J. H. C., Benetton, J. B., Weary, D. M. & von Keyserlingk, M. A. G. Individual characteristics in early life relate to variability in weaning age, feeding behavior, and weight gain of dairy calves automatically weaned based on solid feed intake. J. Dairy Sci. 102, 10250–10265 (2019).PubMed 

    Google Scholar 
    Berckmans, D. Precision livestock farming technologies for welfare management in intensive livestock systems. Rev. Sci. Tech. OIE 33, 189–196 (2014).
    Google Scholar 
    Carslake, C., Vázquez-Diosdado, J. A. & Kaler, J. Machine learning algorithms to classify and quantify multiple behaviours in dairy calves using a sensor: Moving beyond classification in precision livestock. Sensors 21, 88 (2020).ADS 
    PubMed Central 

    Google Scholar 
    Hertel, A. G., Niemelä, P. T., Dingemanse, N. J. & Mueller, T. A guide for studying among-individual behavioral variation from movement data in the wild. Mov. Ecol. 8(1), 1–18 (2020).
    Google Scholar 
    Occhiuto, F., Vázquez-Diosdado, J. A., Carslake, C. & Kaler, J. Personality and predictability in farmed calves using movement and space-use behaviours quantified by ultra-wideband sensors. R. Soc. Open Sci. 9, 212019 (2022).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carslake, C., Occhiuto, F., Vázquez-Diosdado, J. A. & Kaler, J. Repeatability and predictability of calf feeding behaviors—quantifying between- and within-individual variation for precision livestock farming. Front. Vet. Sci. https://doi.org/10.3389/fvets.2022.827124 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tolkamp, B. J. & Kyriazakis, I. To split behaviour into bouts, log-transform the intervals. Anim. Behav. 57, 807–817 (1999).PubMed 

    Google Scholar 
    Houslay, T. M. & Wilson, A. J. Avoiding the misuse of BLUP in behavioural ecology. Behav. Ecol. 28, 948 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R. Preprint at (2021).Bürkner, P.-C. Advanced bayesian multilevel modeling with the R package brms. R. J. 10, 395 (2018).
    Google Scholar 
    Dancey, C. P. & Reidy, J. Statistics without maths for psychology (Pearson education, 2007).
    Google Scholar 
    von Keyserlingk, M. A. G., Brusius, L. & Weary, D. M. Competition for teats and feeding behavior by group-housed dairy calves. J. Dairy Sci. 87, 4190–4194 (2004).
    Google Scholar 
    Fraley, R. C. & Roberts, B. W. Patterns of continuity: A dynamic model for conceptualizing the stability of individual differences in psychological constructs across the life course. Psychol. Rev. 112, 60–74 (2005).PubMed 

    Google Scholar 
    Ashcroft, J., Semmler, C., Carnell, S., van Jaarsveld, C. H. M. & Wardle, J. Continuity and stability of eating behaviour traits in children. Eur. J. Clin. Nutr. 62, 985–990 (2008).PubMed 

    Google Scholar 
    Neave, H. W., Costa, J. H. C., Weary, D. M. & von Keyserlingk, M. A. G. Long-term consistency of personality traits of cattle. R. Soc. Open Sci. 7, 191849 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Müller, R. & von Keyserlingk, M. A. G. Consistency of flight speed and its correlation to productivity and to personality in Bos taurus beef cattle. Appl. Anim. Behav. Sci. 99, 193–204 (2006).
    Google Scholar 
    Neja, W., Sawa, A., Jankowska, M., Bogucki, M. & Krężel-Czopek, S. Effect of the temperament of dairy cows on lifetime production efficiency. Arch. Anim. Breed 58, 193–197 (2015).
    Google Scholar 
    Haskell, M. J., Simm, G. & Turner, S. P. Genetic selection for temperament traits in dairy and beef cattle. Front Genet. https://doi.org/10.3389/fgene.2014.00368 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Whalin, L., Neave, H. W., Føske Johnsen, J., Mejdell, C. M. & Ellingsen-Dalskau, K. The influence of personality and weaning method on early feeding behavior and growth of Norwegian red calves. J. Dairy Sci. 105, 1369–1386 (2022).PubMed 

    Google Scholar 
    Dammhahn, M., Dingemanse, N. J., Niemelä, P. T. & Réale, D. Pace-of-life syndromes: A framework for the adaptive integration of behaviour, physiology and life history. Behav. Ecol. Sociobiol. 72(3), 1–8 (2018).
    Google Scholar 
    Kelly, D. N. et al. Large variability in feeding behavior among crossbred growing cattle. J. Anim. Sci. 98, 1–10 (2020).
    Google Scholar 
    Neave, H. W., Weary, D. M. & von Keyserlingk, M. A. G. Review: Individual variability in feeding behaviour of domesticated ruminants. Animal 12, S419–S430 (2018).PubMed 

    Google Scholar 
    DeVries, T. J., von Keyserlingk, M. A. G., Weary, D. M. & Beauchemin, K. A. Measuring the feeding behavior of lactating dairy cows in early to peak lactation. J. Dairy Sci. 86, 3354–3361 (2003).PubMed 

    Google Scholar 
    Kelly, D. N., Sleator, R. D., Murphy, C. P., Conroy, S. B. & Berry, D. P. Phenotypic and genetic associations between feeding behavior and carcass merit in crossbred growing cattle. J. Anim. Sci. 99, skab285 (2021).PubMed 

    Google Scholar 
    Weary, D. M., Huzzey, J. M. & von Keyserlingk, M. A. G. Board-invited review: Using behavior to predict and identify ill health in animals. J. Anim. Sci. 87, 770–777 (2009).PubMed 

    Google Scholar 
    Carter, A. J., Feeney, W. E., Marshall, H. H., Cowlishaw, G. & Heinsohn, R. Animal personality: What are behavioural ecologists measuring?. Biol. Rev. 88, 465–475 (2013).PubMed 

    Google Scholar 
    Biro, P. A. Do rapid assays predict repeatability in labile (behavioural) traits?. Anim Behav 83, 1295–1300 (2012).
    Google Scholar 
    Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 20. Plos Biol. 18, e3000411 (2020).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Diversity of soil faunal community as influenced by crop straw combined with different synthetic fertilizers in upland purple soil

    Lavelle, P. et al. Soil invertebrates and ecosystem services. Eur. J. Soil Sci. 42, S3–S15 (2006).
    Google Scholar 
    Nielsen, U. N. et al. Response of belowground communities to short-term phosphorus addition in a phosphorus-limited woodland. Plant Soil 391, 321–331 (2015).
    Google Scholar 
    Nielsen, U. N., Ayres, E., Wall, D. H. & Bardgett, R. D. Soil biodiversity and carbon cycling: A review and synthesis of studies examining diversity function relationships. Eur. J. Soil Sci. 62, 105–116 (2011).
    Google Scholar 
    Lu, P. et al. Composition and structure of soil fauna communities and their relationships with environmental factors in copper mine waste rock after re-vegetation. Glob. Ecol. Conserv. 32, e01889 (2021).
    Google Scholar 
    Lin, D. et al. Soil fauna promote litter decomposition but do not alter the relationship between leaf economics spectrum and litter decomposability. Soil Biol. Biochem. 136, 107519 (2019).
    Google Scholar 
    Shao, Y., Zhang, W., Liu, S., Wang, X. & Fu, S. Diversity and function of soil fauna. Acta Ecol. Sin. (in Chinese) 35, 6614–6625 (2015).
    Google Scholar 
    Voronin, A. N. & Kotyak, P. A. Influence of different agricultural practices on the number of soil fauna and productivity of agricultural crops. Taurida Herald Agrar. Sci. 3, 49–56 (2019).
    Google Scholar 
    Zhu, X. & Zhu, B. Effect of different fertilization regimes on the main groups of soil fauna in cropland of purple soil. Sci. Agric. Sin. (in Chinese) 45, 911–920 (2015).
    Google Scholar 
    Islam, M. U., Guo, Z., Jiang, F. & Peng, X. Does straw return increase crop yield in the wheat-maize cropping system in China? A meta-analysis. Field Crop Res. 279, 108447 (2022).
    Google Scholar 
    Cui, H. et al. Straw return strategies to improve soil properties and crop productivity in a winter wheat-summer maize cropping system. Eur. J. Agron. 133, 126436 (2022).
    Google Scholar 
    Wang, X. et al. Changes in soil characteristics and maize yield under straw returning system in dryland farming. Field Crop Res. 218, 11–17 (2018).
    Google Scholar 
    Gai, X. et al. Contrasting impacts of long-term application of manure and crop straw on residual nitrate-N along the soil profile in the North China Plain. Sci. Total Environ. 650, 2251–2259 (2019).ADS 
    PubMed 

    Google Scholar 
    Wang, W. et al. Effects of different fertility-building practices on the meso-micro soil fauna communities in a black soil area. Chin. J. Appl. Environ. Biol. (in Chinese) 25, 1344–1351 (2019).
    Google Scholar 
    Kautz, T., López-Fando, C. & Ellmer, F. Abundance and biodiversity of soil microarthropods as influenced by different types of organic manure in a long-term field experiment in Central Spain. Appl. Soil Ecol. 33, 278–285 (2006).
    Google Scholar 
    Zhang, T. et al. Effects of straw returning on soil meso-and micro-arthropod community diversity in wheat-maize fields in North China. Chin. J. Appl. Environ. Biol. (in Chinese) 25, 70–75 (2019).
    Google Scholar 
    Yang, P., Wang, H. & Yue, J. Ecological distribution of middle-small-size soil faunas under conservation tillage and straw mulch conditions. Res. Soil Water Conserv. (in Chinese) 20, 145–150 (2013).
    Google Scholar 
    Zhu, Q., Zhu, A., Zhang, J., Zhang, H. & Zhang, C. Effect of conservation tillage on soil fauna in wheat field of Huang-huai-hai Plain. J. Agro Environ. Sci. (in Chinese) 28, 1766–1772 (2009).
    Google Scholar 
    Cao, Z. et al. Changes in the abundance and structure of a soil mite (Acari) community under long-term organic and chemical fertilizer treatments. Appl. Soil Ecol. 49, 131–138 (2011).
    Google Scholar 
    Li, Y., Xu, Z., Xu, H., Chen, Y. & Ruan, H. Review of the effect of fertilizer application on the soil fauna in soil ecosystems. J. Nanjing For. Univ. Nat. Sci. Ed. (in Chinese) 42, 179–184 (2018).
    Google Scholar 
    McGee, K. M. & Eaton, W. D. A comparison of the wet and dry season DNA-based soil invertebrate community characteristics in large patches of the bromeliad Bromelia pinguin in a primary forest in Costa Rica. Appl. Soil Ecol. 87, 99–107 (2015).
    Google Scholar 
    Zhu, B., Wang, T., You, X. & Gao, M. Nutrient release from weathering of purplish rocks in the Sichuan Basin, China. Pedosphere 18, 257–264 (2008).
    Google Scholar 
    Zhu, B. et al. Measurements of nitrate leaching from a hillslope cropland in the Central Sichuan Basin, China. Soil Sci. Soc. Am. J. 73, 1419–1426 (2009).ADS 

    Google Scholar 
    He, Y. Purple Soil of China Part (II) (Science Press, 2003).
    Google Scholar 
    Huang, R. et al. Responses of soil carbon pool and soil aggregates associated organic carbon to straw and straw-derived biochar addition in a dryland cropping mesocosm system. Agric. Ecosyst. Environ. 265, 576–586 (2018).
    Google Scholar 
    Zhu, X., Dong, Z., Kuang, F. & Zhu, B. Effects of fertilization regimes on soil faunal communities in cropland of purple soil. Acta Ecol. Sin. (in Chinese) 33, 464–474 (2013).
    Google Scholar 
    Querner, P. & Bruckner, A. Combining pitfall traps and soil samples to collect Collembola for site scale biodiversity assessments. Appl. Soil. Ecol. 45, 293–297 (2010).
    Google Scholar 
    Smith, M. A. et al. Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. PNAS 105, 12359–12364 (2008).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Müller, C. A. et al. Meiofaunal diversity in the Atlantic Forest soil: A quest for nematodes in a native reserve using eukaryotic metabarcoding analysis. For. Ecol. Manag. 453, 117591 (2019).
    Google Scholar 
    Ding, J. et al. Effects of long-term fertilization on the associated microbiota of soil collembolan. Soil Biol. Biochem. 130, 141–149 (2019).
    Google Scholar 
    Oliverio, A. M., Gan, H., Wickings, K. & Fierer, N. A DNA metabarcoding approach to characterize soil arthropod communities. Soil Biol. Biochem. 125, 37–43 (2018).
    Google Scholar 
    McGee, K. M., Porter, T. M., Wright, M. & Hajibabaei, M. Drivers of tropical soil invertebrate community composition and richness across tropical secondary forests using DNA metasystematics. Sci. Rep. 10, 18429 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Porter, T. M. et al. Variations in terrestrial arthropod DNA metabarcoding methods recovers robust beta diversity but variable richness and site indicators. Sci. Rep. 9, 18218 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morise, H., Miyazaki, E., Yoshimitsu, S. & Eki, T. Profiling nematode communities in unmanaged flowerbed and agricultural field soils in Japan by DNA barcode sequencing. PLoS One 7, e51785 (2012).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Drummond, A. J. et al. Evaluating a multigene environmental DNA approach for biodiversity assessment. Gigascience 4, 46 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Dopheide, A. et al. Estimating the biodiversity of terrestrial invertebrates on a forested island using DNA barcodes and metabarcoding data. Ecol. Appl. 29, e01877 (2019).PubMed 

    Google Scholar 
    Watts, C. et al. DNA metabarcoding as a tool for invertebrate community monitoring: A case study comparison with conventional techniques. Austral Entomol. 58, 675–686 (2019).
    Google Scholar 
    Kvist, S. Barcoding in the dark? A critical view of the sufficiency of zoological DNA barcoding databases and a plea for broader integration of taxonomic knowledge. Mol. Phylogenet. Evol. 69, 39–45 (2013).PubMed 

    Google Scholar 
    Shao, Y. et al. Nematodes as indicators of soil recovery in tailings of a lead/zinc mine. Soil Biol. Biochem. 40, 2040–2046 (2008).
    Google Scholar 
    Neher, D. A., Wu, J., Barbercheck, M. E. & Anas, O. Ecosystem type affects interpretation of soil nematode community measures. Appl. Soil Ecol. 30, 47–64 (2005).
    Google Scholar 
    Yang, C., Ji, Y., Wang, X., Yang, C. & Yu, D. W. Testing three pipelines for 18S rDNA-based metabarcoding of soil faunal diversity. Sci. China Life Sci. 56, 73–81 (2013).ADS 
    PubMed 

    Google Scholar 
    Horton, D. J., Kershner, M. W. & Blackwood, C. B. Suitability of PCR primers for characterizing invertebrate communities from soil and leaf litter targeting metazoan 18S ribosomal or cytochrome oxidase I (COI) genes. Eur. J. Soil Biol. 80, 43–48 (2017).
    Google Scholar 
    Geisen, S., Laros, I., Vizcaino, A., Bonkowski, M. & de Groot, G. A. Not all are free-living: High-throughput DNA metabarcoding reveals a diverse community of protists parasitizing soil metazoa. Mol. Ecol. 24, 4556–4569 (2015).PubMed 

    Google Scholar 
    Clarke, L. J., Soubrier, J., Weyrich, L. S. & Cooper, A. Environmental metabarcodes for insects: In silico PCR reveals potential for taxonomic bias. Mol. Ecol. Resour. 14, 1160–1170 (2014).PubMed 

    Google Scholar 
    Kitagami, Y. & Matsuda, Y. High-throughput sequencing covers greater nematode diversity than conventional morphotyping on natural cedar forests in Yakushima Island, Japan. Eur. J. Soil Biol. 112, 103432 (2022).
    Google Scholar 
    Juliet, W. K., Lisa, B. F., Lamers, J. P. A., Till, S. & Christian, B. Soil fertility and biodiversity on organic and conventional smallholder farms in Kenya. Appl. Soil Ecol. 134, 85–97 (2019).
    Google Scholar 
    Li, Q., Zhou, D. & Chen, X. The accumulation decomposition and ecological effects of above-ground litter in terrestrial ecosystem. Acta Ecol. Sin. (in Chinese) 34, 3807–3819 (2014).
    Google Scholar 
    Tie, L. et al. Phosphorus addition reverses the negative effect of nitrogen addition on soil arthropods during litter decomposition in a subtropical forest. Sci. Total. Environ. 781, 146786 (2021).ADS 

    Google Scholar 
    Nottingham, A. T., Turner, B. L., Stott, A. W. & Tanner, E. V. J. Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils. Soil Biol. Biochem. 80, 26–33 (2015).
    Google Scholar 
    Xiao, Q. et al. Impact of soil thickness on productivity and nitrate leaching from sloping cropland in the upper Yangtze River Basin. Agric. Ecosyst. Environ. 311, 107266 (2021).
    Google Scholar 
    Zhu, X. & Zhu, B. Diversity and abundance of soil fauna as influenced by long-term fertilization in cropland of purple soil, China. Soil Till. Res. 146, 39–46 (2015).
    Google Scholar 
    Wei, K., Wang, J., Dong, Z., Tang, J. & Zhu, B. The combined application of organic materials and chemical fertilizer mitigates the deterioration of the trophic structure of nematode community by increasing soil N concentration. J. Soil Sci. Plant Nutr. 21, 2530–2537 (2021).
    Google Scholar 
    Kuo, S. Phosphorus. In Methods of Soil Analysis (ed. Sparks, D. L.) 869–919 (Soil Science Society of America, 1996).
    Google Scholar 
    Nelson, D. W. & Sommers, L. E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis (ed. Sparks, D. L.) 960–1010 (ASA and SSSA, 1996).
    Google Scholar 
    Lu, R. Analysis of Soil Agro-Chemistry (Chinese Agricultural Science and Technology Press, 2000).
    Google Scholar 
    Page, A. L., Miller, R. H. & Keeney, D. R. Chemical and microbiological properties. In Methods of Soil Analysis (ASA and SSSA, 1982).
    Google Scholar 
    Olsen, S. R., Cole, C. U., Watanabe, F. S. & Deen, L. A. Estimation of Available Phosphorus in Soil by Extracting with Sodium Bicarbonate (USDA Circular 939, 1954).
    Google Scholar 
    Townshend, J. L. A modification and evaluation of the apparatus for the Oostenbrink direct cottonwool filter extraction method. Nematologica 9, 106–110 (1963).
    Google Scholar 
    Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).PubMed 

    Google Scholar 
    Yang, T., Song, X., Xu, X., Zhou, C. & Shi, A. A comparative analysis of spider prey spectra analyzed through the next-generation sequencing of individual and mixed DNA samples. Ecol. Evol. 11, 15444–15454 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Chen, H. & Jiang, W. Application of high-throughput sequencing in understanding human oral microbiome related with health and disease. Front. Microbiol. 5, 508 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Magoc, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).PubMed 

    Google Scholar 
    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. http://www.r-project.org (2020).Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).MathSciNet 
    MATH 

    Google Scholar 
    Margalef, R. Perspectives in Ecological Theory 111–119 (The University of Chicago Press, 1970).
    Google Scholar 
    Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 88, 131–144 (1966).ADS 

    Google Scholar 
    Zhou, Y. et al. Species richness and phylogenetic diversity of seed plants across vegetation zones of Mount Kenya, East Africa. Ecol. Evol. 8, 8930–8939 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, H. et al. Nitrogen addition reduces soil bacterial richness, while phosphorus addition alters community composition in an old-growth N-rich tropical forest in southern China. Soil Biol. Biochem. 127, 22–30 (2018).
    Google Scholar 
    Yang, K. et al. Responses of soil ammonia-oxidizing bacteria and archaea diversity to N, P and NP fertilization: Relationships with soil environmental variables and plant community diversity. Soil Biol. Biochem. 145, 107795 (2020).
    Google Scholar 
    Zhang, S., Li, Q., Lü, Y., Zhang, X. & Liang, W. Contributions of soil biota to C sequestration varied with aggregate fractions under different tillage systems. Soil Biol. Biochem. 62, 147–156 (2013).
    Google Scholar  More

  • in

    Coastal upwelling generates cryptic temperature refugia

    Ackerly, D. D. et al. The geography of climate change: Implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).
    Google Scholar 
    Lawton, J. H. Are there general laws in ecology?. Oikos 84, 177–192 (1999).
    Google Scholar 
    Simberloff, D. Community ecology: Is it time to move on?. Am. Nat. 163, 787–799 (2004).PubMed 

    Google Scholar 
    Ricklefs, R. E. Disintegration of the ecological community. Am. Nat. 172, 741–750 (2008).PubMed 

    Google Scholar 
    McGill, B. J. et al. Species abundance distributions: Moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).PubMed 

    Google Scholar 
    Paine, R. T. The Pisaster-Tegula interaction: Prey patches, predator food preference, and intertidal community structure. Ecology 50, 950–961 (1969).
    Google Scholar 
    Dayton, P. K. Competition, disturbance, and community organization: The provision and subsequent utilization of space in a rocky intertidal community. Ecol. Monogr. 41, 351–389 (1971).
    Google Scholar 
    Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control, and competition. Am. Nat. 94, 421–425 (1960).
    Google Scholar 
    Brose, U., Berlow, E. L. & Martinez, N. D. Scaling up keystone effects from simple to complex ecological networks. Ecol. Lett. 8, 1317–1325 (2005).
    Google Scholar 
    Stouffer, D. B. & Bascompte, J. Understanding food-web persistence from local to global scales. Ecol. Lett. 13, 154–161 (2010).PubMed 

    Google Scholar 
    Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl. Acad. Sci. 100, 12765–12770 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leibold, M. A. et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).
    Google Scholar 
    Holyoak, M., Leibold, M. A. & Holt, R. D. Metacommunities: Spatial Dynamics and Ecological Communities (University of Chicago Press, 2005).
    Google Scholar 
    Gotelli, N. J. Macroecological signals of species interactions in the Danish avifauna. Proc. Natl. Acad. Sci. USA. 107, 5030–5035 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gouhier, T. C., Guichard, F. & Menge, B. A. Ecological processes can synchronize marine population dynamics over continental scales. Proc. Natl. Acad. Sci. 107, 8281–8286 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salois, S. L., Gouhier, T. C. & Menge, B. A. The multifactorial effects of dispersal on biodiversity in environmentally forced metacommunities. Ecosphere 9, e02357 (2018).
    Google Scholar 
    Helmuth, B. et al. Beyond long-term averages: Making biological sense of a rapidly changing world. Clim. Change Responses 1, 6 (2014).
    Google Scholar 
    Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215 (2015).ADS 

    Google Scholar 
    Gunderson, A. R., Armstrong, E. J. & Stillman, J. H. Multiple stressors in a changing world: The need for an improved perspective on physiological responses to the dynamic marine environment. Annu. Rev. Mar. Sci. 8, 357–378 (2016).ADS 

    Google Scholar 
    Rilov, G. et al. Adaptive marine conservation planning in the face of climate change: What can we learn from physiological, ecological and genetic studies?. Glob. Ecol. Conserv. 17, e00566 (2019).
    Google Scholar 
    Hampe, A. Bioclimate envelope models: What they detect and what they hide. Glob. Ecol. Biogeogr. 13, 469–471 (2004).
    Google Scholar 
    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12, 361–371 (2003).
    Google Scholar 
    Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).PubMed 

    Google Scholar 
    Davis, A. J., Jenkinson, L. S., Lawton, J. H., Shorrocks, B. & Wood, S. Making mistakes when predicting shifts in species range in response to global warming. Nature 391, 783–786 (1998).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Araújo, M. B. & Peterson, A. T. Uses and misuses of bioclimatic envelope modeling. Ecology 93, 1527–1539 (2012).PubMed 

    Google Scholar 
    Helmuth, B. et al. Mosaic patterns of thermal stress in the rocky intertidal zone: Implications for climate change. Ecol. Monogr. 76, 461–479 (2006).
    Google Scholar 
    Helmuth, B., Mieszkowska, N., Moore, P. & Hawkins, S. J. Living on the edge of two changing worlds: Forecasting the responses of rocky intertidal ecosystems to climate change. Annu. Rev. Ecol. Evol. Syst. 37, 373–404 (2006).
    Google Scholar 
    Vasseur, D. A. et al. Synchronous dynamics of zooplankton competitors prevail in temperate lake ecosystems. Proc. R. Soc. B Biol. Sci. 281, 20140633 (2014).
    Google Scholar 
    Dillon, M. E. et al. Life in the frequency domain: The biological impacts of changes in climate variability at multiple time scales. Integr. Comp. Biol. icw024 (2016).Kroeker, K. J. et al. Interacting environmental mosaics drive geographic variation in mussel performance and predation vulnerability. Ecol. Lett. 19, 771–779 (2016).PubMed 

    Google Scholar 
    Seabra, R., Wethey, D. S., Santos, A. M. & Lima, F. P. Understanding complex biogeographic responses to climate change. Sci. Rep. 5, (2015).Di Cecco, G. J. & Gouhier, T. C. Increased spatial and temporal autocorrelation of temperature under climate change. Sci. Rep. 8, 14850 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keppel, G. et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).
    Google Scholar 
    Morelli, T. L. et al. Climate change refugia and habitat connectivity promote species persistence. Clim. Change Responses 4, 8 (2017).
    Google Scholar 
    Bates, A. E. et al. Biologists ignore ocean weather at their peril. Nature 560, 299–301 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Molinos, J. G. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change (2015).Levins, R. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am. 15, 237–240 (1969).
    Google Scholar 
    Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: Effect of immigration on extinction. Ecology 58, 445–449 (1977).
    Google Scholar 
    Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).
    Google Scholar 
    Hannah, L. et al. Fine-grain modeling of species’ response to climate change: Holdouts, stepping-stones, and microrefugia. Trends Ecol. Evol. 29, 390–397 (2014).PubMed 

    Google Scholar 
    Barceló, C., Ciannelli, L. & Brodeur, R. D. Pelagic marine refugia and climatically sensitive areas in an eastern boundary current upwelling system. Glob. Change Biol. 24, 668–680 (2018).ADS 

    Google Scholar 
    Dong, Y. et al. Untangling the roles of microclimate, behaviour and physiological polymorphism in governing vulnerability of intertidal snails to heat stress. Proc. R. Soc. B Biol. Sci. 284, 20162367 (2017).
    Google Scholar 
    Smit, A. J. et al. A coastal seawater temperature dataset for biogeographical studies: large biases between in situ and remotely-sensed data sets around the Coast of South Africa. PLoS ONE 8, e81944 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castro, S. L., Monzon, L. A., Wick, G. A., Lewis, R. D. & Beylkin, G. Subpixel variability and quality assessment of satellite sea surface temperature data using a novel High Resolution Multistage Spectral Interpolation (HRMSI) technique. Remote Sens. Environ. 217, 292–308 (2018).ADS 

    Google Scholar 
    Rahaghi, A. I., Lemmin, U. & Barry, D. A. Surface water temperature heterogeneity at subpixel satellite scales and its effect on the surface cooling estimates of a large lake: Airborne remote sensing results from Lake Geneva. J. Geophys. Res. Oceans 124, 635–651 (2019).ADS 

    Google Scholar 
    Pfister, C. A., Wootton, J. T. & Neufeld, C. J. The relative roles of coastal and oceanic processes in determining physical and chemical characteristics of an intensively sampled nearshore system. Limnol. Oceanogr. 52, 1767–1775 (2007).ADS 
    CAS 

    Google Scholar 
    Meneghesso, C. et al. Remotely-sensed L4 SST underestimates the thermal fingerprint of coastal upwelling. Remote Sens. Environ. 237, 111588 (2020).ADS 

    Google Scholar 
    Leichter, J. J., Helmuth, B. & Fischer, A. M. Variation beneath the surface: Quantifying complex thermal environments on coral reefs in the Caribbean, Bahamas and Florida. J. Mar. Res. 64, 563–588 (2006).
    Google Scholar 
    Castillo, K. D. & Lima, F. P. Comparison of in situ and satellite-derived (MODIS-Aqua/Terra) methods for assessing temperatures on coral reefs. Limnol. Oceanogr. Methods 8, 107–117 (2010).
    Google Scholar 
    Wyatt, A. S. J. et al. Heat accumulation on coral reefs mitigated by internal waves. Nat. Geosci. 13, 28–34 (2020).ADS 
    CAS 

    Google Scholar 
    Lourenço, C. R. et al. Upwelling areas as climate change refugia for the distribution and genetic diversity of a marine macroalga. J. Biogeogr. 43, 1595–1607 (2016).
    Google Scholar 
    Seabra, R. et al. Reduced nearshore warming associated with eastern boundary upwelling systems. Front. Mar. Sci. 6, (2019).Randall, C. J., Toth, L. T., Leichter, J. J., Maté, J. L. & Aronson, R. B. Upwelling buffers climate change impacts on coral reefs of the eastern tropical Pacific. Ecology 101, (2020).Varela, R., Lima, F. P., Seabra, R., Meneghesso, C. & Gómez-Gesteira, M. Coastal warming and wind-driven upwelling: A global analysis. Sci. Total Environ. 639, 1501–1511 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Schulz, K. G., Hartley, S. & Eyre, B. Upwelling amplifies ocean acidification on the east Australian shelf: Implications for marine ecosystems. Front. Mar. Sci. 6, (2019).Connell, J. H. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42, 710–723 (1961).
    Google Scholar 
    Somero, G. N. Linking biogeography to physiology: Evolutionary and acclimatory adjustments of thermal limits. Front. Zool. 2, 1 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    Sydeman, W. J. et al. Climate change and wind intensification in coastal upwelling ecosystems. Science 345, 77–80 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sweijd, N. A. & Smit, A. J. Trends in sea surface temperature and chlorophyll-a in the seven African Large Marine Ecosystems. Environ. Dev. 36, 100585 (2020).
    Google Scholar 
    Wang, D., Gouhier, T. C., Menge, B. A. & Ganguly, A. R. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 518, 390–394 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lima, F. P. & Wethey, D. S. Robolimpets: measuring intertidal body temperatures using biomimetic loggers: Biomimetic loggers for intertidal temperatures. Limnol. Oceanogr. Methods 7, 347–353 (2009).
    Google Scholar 
    Judge, R., Choi, F. & Helmuth, B. Recent advances in data logging for intertidal ecology. Front. Ecol. Evol. 6, (2018).Harley, C. D. G. & Helmuth, B. S. T. Local- and regional-scale effects of wave exposure, thermal stress, and absolute versus effective shore level on patterns of intertidal zonation. Limnol. Oceanogr. 48, 1498–1508 (2003).ADS 

    Google Scholar 
    Seabra, R., Wethey, D. S., Santos, A. M., Gomes, F. & Lima, F. P. Equatorial range limits of an intertidal ectotherm are more linked to water than air temperature. Glob. Change Biol. 22, 3320–3331 (2016).ADS 

    Google Scholar 
    Lima, F. P. et al. Loss of thermal refugia near equatorial range limits. Glob. Change Biol. 22, 254–263 (2016).ADS 

    Google Scholar 
    Tapia, F. J. et al. Thermal indices of upwelling effects on inner-shelf habitats. Prog. Oceanogr. 83, 278–287 (2009).ADS 

    Google Scholar 
    Freeman, E. et al. ICOADS release 3.0: A major update to the historical marine climate record. Int. J. Climatol. 37, 2211–2232 (2017).
    Google Scholar 
    Lemos, R. T. & Pires, H. O. The upwelling regime off the West Portuguese Coast, 1941–2000. Int. J. Climatol. 24, 511–524 (2004).
    Google Scholar 
    Seabra, R., Wethey, D. S., Santos, A. M. & Lima, F. P. Side matters: Microhabitat influence on intertidal heat stress over a large geographical scale. J. Exp. Mar. Biol. Ecol. 400, 200–208 (2011).
    Google Scholar 
    Legendre, P. Species associations: The Kendall coefficient of concordance revisited. J. Agric. Biol. Environ. Stat. 10, 226–245 (2005).
    Google Scholar 
    Gouhier, T. C. & Guichard, F. Synchrony: Quantifying variability in space and time. Methods Ecol. Evol. 5, 524–533 (2014).
    Google Scholar 
    Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998).ADS 

    Google Scholar 
    Cazelles, B. et al. Wavelet analysis of ecological time series. Oecologia 156, 287–304 (2008).ADS 
    PubMed 

    Google Scholar 
    Recknagel, F., Ostrovsky, I., Cao, H., Zohary, T. & Zhang, X. Ecological relationships, thresholds and time-lags determining phytoplankton community dynamics of Lake Kinneret, Israel elucidated by evolutionary computation and wavelets. Ecol. Model. 255, 70–86 (2013).CAS 

    Google Scholar 
    Mislan, K. A. S., Helmuth, B. & Wethey, D. S. Geographical variation in climatic sensitivity of intertidal mussel zonation: Biogeography of climatic sensitivity. Glob. Ecol. Biogeogr. 23, 744–756 (2014).
    Google Scholar 
    Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561–566 (2004).ADS 

    Google Scholar 
    Cazelles, B. & Stone, L. Detection of imperfect population synchrony in an uncertain world. J. Anim. Ecol. 72, 953–968 (2003).
    Google Scholar 
    Keppel, G. et al. The capacity of refugia for conservation planning under climate change. Front. Ecol. Environ. 13, 106–112 (2015).
    Google Scholar 
    Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B Biol. Sci. 281, 20132612–20132612 (2014).
    Google Scholar 
    Potter, K. A., Woods, H. A. & Pincebourde, S. Microclimatic challenges in global change biology. Glob. Change Biol. 19, 2932–2939 (2013).ADS 

    Google Scholar 
    Sandel, B. et al. The influence of late quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Araújo, M. B. & Luoto, M. The importance of biotic interactions for modelling species distributions under climate change. Glob. Ecol. Biogeogr. 16, 743–753 (2007).
    Google Scholar 
    Morelli, T. L. et al. Managing climate change refugia for climate adaptation. PLoS ONE 11, e0159909 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Stenseth, N. Ecological effects of climate fluctuations. Science 297, 1292–1296 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Zellweger, F., De Frenne, P., Lenoir, J., Rocchini, D. & Coomes, D. Advances in microclimate ecology arising from remote sensing. Trends Ecol. Evol. 34, 327–341 (2019).PubMed 

    Google Scholar 
    Helmuth, B. et al. Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensors. Sci. Data 3, 160087 (2016).MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wikelski, M. & Cooke, S. J. Conservation physiology. Trends Ecol. Evol. 21, 38–46 (2006).PubMed 

    Google Scholar 
    Helmuth, B. S. T. & Hofmann, G. E. Microhabitats, thermal heterogeneity, and patterns of physiological stress in the rocky intertidal zone. Biol. Bull. 201, 374–384 (2001).CAS 
    PubMed 

    Google Scholar 
    Kearney, M. Habitat, environment and niche: What are we modelling?. Oikos 115, 186–191 (2006).
    Google Scholar 
    Ashcroft, M. B. Identifying refugia from climate change. J. Biogeogr. 37, 1407–1413 (2010).
    Google Scholar 
    Maggs, C. A. et al. Evaluating signatures of glacial refugia for North Atlantic Benthic Marine Taxa. Ecology 89, S108–S122 (2008).PubMed 

    Google Scholar 
    Bennett, K. & Provan, J. What do we mean by ‘refugia’?. Quat. Sci. Rev. 27, 2449–2455 (2008).ADS 

    Google Scholar 
    Ashcroft, M. B., Chisholm, L. A. & French, K. O. Climate change at the landscape scale: predicting fine-grained spatial heterogeneity in warming and potential refugia for vegetation. Glob. Change Biol. 15, 656–667 (2009).ADS 

    Google Scholar 
    Hofmann, G. E. et al. High-frequency dynamics of ocean pH: A multi-ecosystem comparison. PLoS ONE 6, e28983 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bakun, A. et al. Anticipated Effects of Climate Change on Coastal Upwelling Ecosystems. Curr. Clim. Change Rep. 1, 85–93 (2015).
    Google Scholar 
    Iles, A. C. et al. Climate-driven trends and ecological implications of event-scale upwelling in the California Current System. Glob. Change Biol. 18, 783–796 (2012).ADS 

    Google Scholar 
    García-Reyes, M. et al. Under pressure: Climate change, upwelling, and eastern boundary upwelling ecosystems. Front. Mar. Sci. 2, (2015).Liebhold, A., Koenig, W. D. & Bjørnstad, O. N. Spatial synchrony in population dynamics. Annu. Rev. Ecol. Evol. Syst. 467–490 (2004).Amarasekare, P. & Nisbet, R. M. Spatial heterogeneity, source-sink dynamics, and the local coexistence of competing species. Am. Nat. 158, 572–584 (2001).CAS 
    PubMed 

    Google Scholar 
    Adler, F. R. & Nuernberger, B. Persistence in patchy irregular landscapes. Theor. Popul. Biol. 45, 41–75 (1994).MATH 

    Google Scholar 
    Rykaczewski, R. R. et al. Poleward displacement of coastal upwelling-favorable winds in the ocean’s eastern boundary currents through the 21st century. Geophys. Res. Lett. 42, 6424–6431 (2015).ADS 

    Google Scholar 
    Varela, R., Rodríguez-Díaz, L., de Castro, M. & Gómez-Gesteira, M. Influence of Canary upwelling system on coastal SST warming along the 21st century using CMIP6 GCMs. Glob. Planet. Change 208, 103692 (2022).
    Google Scholar 
    Ocean deoxygenation: everyone’s problem. Causes, impacts, consequences and solutions. (IUCN, International Union for Conservation of Nature, 2019). https://doi.org/10.2305/IUCN.CH.2019.13.en.Howard, E. M. et al. Climate-driven aerobic habitat loss in the California Current System. Sci. Adv. 6, eaay3188 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Iles, A. C. Toward predicting community-level effects of climate: Relative temperature scaling of metabolic and ingestion rates. Ecology 95, 2657–2668 (2014).
    Google Scholar 
    Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579 (2018).ADS 

    Google Scholar 
    Salinas, S., Irvine, S. E., Schertzing, C. L., Golden, S. Q. & Munch, S. B. Trait variation in extreme thermal environments under constant and fluctuating temperatures. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180177 (2019).
    Google Scholar 
    Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change 5, 560–564 (2015).ADS 

    Google Scholar 
    Buckley, L. B. & Huey, R. B. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. Glob. Change Biol. 22, 3829–3842 (2016).ADS 

    Google Scholar  More

  • in

    Mixtures of genotypes increase disease resistance in a coral nursery

    Vega Thurber, R. et al. Deciphering coral disease dynamics: Integrating host, microbiome, and the changing environment. Front. Ecol. Evol. 2020, 8 (2020).
    Google Scholar 
    Groner, M. L. et al. Managing marine disease emergencies in an era of rapid change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 1689 (2016).
    Google Scholar 
    Richardson, L. L. Coral diseases: What is really known?. Trends Ecol. Evol. 13, 438–443 (1998).CAS 
    PubMed 

    Google Scholar 
    Miller, M. W., Lohr, K. E., Cameron, C. M., Williams, D. E. & Peters, E. C. Disease dynamics and potential mitigation among restored and wild staghorn coral, Acropora cervicornis. PeerJ https://doi.org/10.7287/peerj.preprints.328 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Teplitski, M. & Ritchie, K. How feasible is the biological control of coral diseases?. Trends Ecol. Evol. 24, 378–385 (2009).PubMed 

    Google Scholar 
    Zhu, Y. et al. Genetic diversity and disease control in rice. Nature 406, 718–722 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Altermatt, F. & Ebert, D. Genetic diversity of Daphnia magna populations enhances resistance to parasites. Ecol. Lett. 11, 918–928 (2008).PubMed 

    Google Scholar 
    Aronson, R. B. & Precht, W. F. White-band disease and the changing face of Caribbean coral reefs. In (ed Porter, J. W.) The Ecology and Etiology of Newly Emerging Marine Diseases 25–38 (Springer Netherlands, 2001).Ruiz-Moreno, D. et al. Global coral disease prevalence associated with sea temperature anomalies and local factors. Dis. Aquat. Organ. 100, 249–261 (2012).PubMed 

    Google Scholar 
    Precht, W. F., Gintert, B. E., Robbart, M. L., Fura, R. & van Woesik, R. Unprecedented disease-related coral mortality in Southeastern Florida. Sci. Rep. 6, 31374 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gignoux-Wolfsohn, S. A., Marks, C. J. & Vollmer, S. V. White Band Disease transmission in the threatened coral, Acropora cervicornis. Sci. Rep. 2, 804 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aronson, R., Bruckner, A., Moore, J., Precht, B. & Weil, E. Acropora cervicornis. IUCN Red List of Threatened Species https://doi.org/10.2305/iucn.uk.2008.rlts.t133381a3716457.en (2008).Alvarez-Filip, L., González-Barrios, F. J., Pérez-Cervantes, E., Molina-Hernández, A. & Estrada-Saldívar, N. Stony coral tissue loss disease decimated Caribbean coral populations and reshaped reef functionality. Commun. Biol. 5, 440 (2022).PubMed 
    PubMed Central 

    Google Scholar 
    Heres, M. M., Farmer, B. H., Elmer, F. & Hertler, H. Ecological consequences of Stony Coral Tissue Loss Disease in the Turks and Caicos Islands. Coral Reefs 40, 609–624 (2021).
    Google Scholar 
    Neely, K. L., Shea, C. P., Macaulay, K. A., Hower, E. K. & Dobler, M. A. Short- and long-term effectiveness of coral disease treatments. Front. Mar. Sci. 2021, 8 (2021).
    Google Scholar 
    Neely, K. L., Macaulay, K. A., Hower, E. K. & Dobler, M. A. Effectiveness of topical antibiotics in treating corals affected by stony coral tissue loss disease. PeerJ 8, e9289 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Shilling, E. N., Combs, I. R. & Voss, J. D. Assessing the effectiveness of two intervention methods for stony coral tissue loss disease on Montastraea cavernosa. Sci. Rep. 11, 8566 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walker, B. K., Turner, N. R., Noren, H. K. G., Buckley, S. F. & Pitts, K. A. Optimizing stony coral tissue loss disease (SCTLD) intervention treatments on Montastraea cavernosa in an Endemic Zone. Front. Mar. Sci. 8, 666224 (2021).
    Google Scholar 
    Forrester, G. E., Arton, L., Horton, A., Nickles, K. & Forrester, L. M. Antibiotic treatment ameliorates the impact of stony coral tissue loss disease (SCTLD) on coral communities. Front. Mar. Sci. 2022, 9 (2022).
    Google Scholar 
    Lee-Hing, C. et al. Management responses in Belize and Honduras, as stony coral tissue loss disease expands its prevalence in the Mesoamerican reef. Front. Mar. Sci. 9, 1 (2022).ADS 

    Google Scholar 
    Young, C. N., Schopmeyer, S. A. & Lirman, D. A review of reef restoration and coral propagation using the threatened genus Acropora in the Caribbean and Western Atlantic. Bull. Mar. Sci. 88, 1075–1098 (2012).
    Google Scholar 
    Lirman, D. & Schopmeyer, S. Ecological solutions to reef degradation: Optimizing coral reef restoration in the Caribbean and Western Atlantic. PeerJ 4, e2597 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Baums, I. B. et al. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecol. Appl. 29, e01978 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Rosales, S. M. et al. Microbiome differences in disease-resistant vs susceptible Acropora corals subjected to disease challenge assays. Sci. Rep. 9, 18279 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pinzón, C. J. H., Beach-Letendre, J., Weil, E. & Mydlarz, L. D. Relationship between phylogeny and immunity suggests older caribbean coral lineages are more resistant to disease. PLoS ONE 9, e104787. https://doi.org/10.1371/journal.pone.0104787 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Drury, C. et al. Genomic patterns in Acropora cervicornis show extensive population structure and variable genetic diversity. Ecol. Evol. 7, 6188–6200 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Maneval, P., Jacoby, C. A., Harris, H. E. & Frazer, T. K. Genotype, nursery design, and depth influence the growth of Acropora cervicornis fragments. Front. Mar. Sci. 8, 1 (2021).
    Google Scholar 
    Wright, R. M. et al. Intraspecific differences in molecular stress responses and coral pathobiome contribute to mortality under bacterial challenge in Acropora millepora. Sci. Rep. 7, 2609 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vollmer, S. V. & Kline, D. I. Natural disease resistance in threatened staghorn corals. PLoS ONE 3, e3718 (2008).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, N., Maneval, P., Manfrino, C., Frazer, T. K. & Meyer, J. L. Spatial distribution of microbial communities among colonies and genotypes in nursery-reared Acropora cervicornis. PeerJ 8, e9635 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Klinges, G., Maher, R. L., Vega-Thurber, R. L. & Muller, E. M. Parasitic, “Candidatus Aquarickettsia rohweri” is a marker of disease susceptibility in Acropora cervicornis but is lost during thermal stress. Environ. Microbiol. 22, 5341–5355 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, M. W. et al. Genotypic variation in disease susceptibility among cultured stocks of elkhorn and staghorn corals. PeerJ 7, e6751 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Rohr, J. R. et al. Towards common ground in the biodiversity-disease debate. Nat. Ecol. Evol. 4, 24–33 (2020).PubMed 

    Google Scholar 
    Shearer, T. L., Porto, I. & Zubillaga, A. L. Restoration of coral populations in light of genetic diversity estimates. Coral Reefs 28, 727–733 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ostfeld, R. S. & Keesing, F. Biodiversity and disease risk: The case of lyme disease. Conserv. Biol. 14, 722–728 (2000).
    Google Scholar 
    Lively, C. M. The effect of host genetic diversity on disease spread. Am. Nat. 175, E149–E152 (2010).PubMed 

    Google Scholar 
    Ostfeld, R. S. & Keesing, F. Effects of host diversity on infectious disease. Annu. Rev. Ecol. Evol. Syst. 43, 157–182 (2012).
    Google Scholar 
    King, K. C. & Lively, C. M. Does genetic diversity limit disease spread in natural host populations?. Heredity 109, 199–203 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Acevedo-Whitehouse, K., Gulland, F., Greig, D. & Amos, W. Inbreeding: Disease susceptibility in California sea lions. Nature 422, 35 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    O’Brien, S. J. et al. Genetic basis for species vulnerability in the cheetah. Science 227, 1428–1434 (1985).ADS 
    PubMed 

    Google Scholar 
    Pearman, P. B. & Garner, T. W. J. Susceptibility of Italian agile frog populations to an emerging strain of Ranavirus parallels population genetic diversity. Ecol. Lett. 8, 401–408 (2005).
    Google Scholar 
    Reber, A., Castella, G., Christe, P. & Chapuisat, M. Experimentally increased group diversity improves disease resistance in an ant species. Ecol. Lett. 11, 682–689 (2008).PubMed 

    Google Scholar 
    Mundt, C. C. Use of multiline cultivars and cultivar mixtures for disease management. Annu. Rev. Phytopathol. 40, 381–410 (2002).CAS 
    PubMed 

    Google Scholar 
    Elton, C. S. The Ecology of Invasions by Animals and Plants (University of Chicago Press, 2000).
    Google Scholar 
    Schopmeyer, S. A. et al. Regional restoration benchmarks for Acropora cervicornis. Coral Reefs 36, 1047–1057 (2017).ADS 

    Google Scholar 
    Baums, I. B., Miller, M. W. & Hellberg, M. E. Geographic variation in clonal structure in a reef-building Caribbean coral, Acropora palmata. Ecol. Monogr. 76, 503–519 (2006).
    Google Scholar 
    Gignoux-Wolfsohn, S. A., Precht, W. F., Peters, E. C., Gintert, B. E. & Kaufman, L. S. Ecology, histopathology, and microbial ecology of a white-band disease outbreak in the threatened staghorn coral Acropora cervicornis. Dis. Aquat. Organ. 137, 217–237 (2020).PubMed 

    Google Scholar 
    Gignoux-Wolfsohn, S. A. & Vollmer, S. V. Identification of candidate coral pathogens on white band disease-infected staghorn coral. PLoS ONE 10, e0134416 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Brooks, M. et al. GlmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Google Scholar 
    Fox, J. & Weisburg, S. An R Companion to Applied Regression 3rd edn. (Sage, 2019).
    Google Scholar  More

  • in

    Temporal and functional interrelationships between bacterioplankton communities and the development of a toxigenic Microcystis bloom in a lowland European reservoir

    Paerl, H. W. Mitigating toxic planktonic cyanobacterial blooms in aquatic ecosystems facing increasing anthropogenic and climatic pressures. Toxins. 10, 1–16 (2018).
    Google Scholar 
    Harke, M. J. et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium Microcystis spp. Harmful Algae 54, 4–20. https://doi.org/10.1016/j.hal.2015.12.007 (2016).Article 
    PubMed 

    Google Scholar 
    Paerl, H. W. & Barnard, M. A. Mitigating the global expansion of harmful cyanobacterial blooms: Moving targets in a human- and climatically-altered world. Harmful Algae 96, 101845. https://doi.org/10.1016/j.hal.2020.101845 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paerl, H. W. Mitigating harmful cyanobacterial blooms in a human- and climatically-impacted world. Life. 4, 988–1012 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Burford, M. A. et al. Perspective: Advancing the research agenda for improving understanding of cyanobacteria in a future of global change. Harmful Algae 91, 101601. https://doi.org/10.1016/j.hal.2019.04.004 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Havens, K. E., James, R. T., East, T. L. & Smith, V. H. N: P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution. Environ. Pollut. 122, 379–390 (2003).CAS 
    PubMed 

    Google Scholar 
    Bernard, C. Cyanobacteria and cyanotoxins. Rev. Franç. Lab. 2014, 53–68 (2014).
    Google Scholar 
    Paerl, H. W. & Otten, T. G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 65, 995–1010 (2013).CAS 
    PubMed 

    Google Scholar 
    Dolman, A. M. et al. Cyanobacteria and cyanotoxins: The influence of nitrogen versus phosphorus. PLoS ONE 7, 38575 (2012).
    Google Scholar 
    Svirčev, Z. et al. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch. Toxicol. https://doi.org/10.1007/s00204-019-02524-4 (2019).Article 
    PubMed 

    Google Scholar 
    Massey, I. Y. & Yang, F. A mini review on microcystins and bacterial degradation. Toxins 12, 268 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Paerl, H. W. et al. Mitigating eutrophication and toxic cyanobacterial blooms in large lakes: The evolution of a dual nutrient (N and P) reduction paradigm. Hydrobiologia 847, 4359–4375. https://doi.org/10.1007/s10750-019-04087-y (2020).Article 
    CAS 

    Google Scholar 
    Sapp, M. et al. Species-specific bacterial communities in the phycosphere of microalgae?. Microb. Ecol. 53, 683–699 (2007).PubMed 

    Google Scholar 
    Cai, H., Jiang, H., Krumholz, L. R. & Yang, Z. Bacterial community composition of size-fractioned aggregates within the phycosphere of cyanobacterial blooms in a eutrophic freshwater lake. PLoS ONE 9, 102879 (2014).ADS 

    Google Scholar 
    Grant, M. A. A., Kazamia, E., Cicuta, P. & Smith, A. G. Direct exchange of vitamin B 12 is demonstrated by modelling the growth dynamics of algal-bacterial cocultures. ISME J. Nat. Publ. Group 8, 1418–1427 (2014).CAS 

    Google Scholar 
    Shi, L., Cai, Y., Kong, F. & Yu, Y. Specific association between bacteria and buoyant Microcystis colonies compared with other bulk bacterial communities in the eutrophic Lake Taihu, China. Environ. Microbiol. Rep. 4, 669–678 (2012).CAS 
    PubMed 

    Google Scholar 
    Brunberg, A. K. Contribution of bacteria in the mucilage of Microcystis spp (Cyanobacteria) to benthic and pelagic bacterial production in a hypereutrophic lake. FEMS Microbiol. Ecol. 29, 13–22 (1999).CAS 

    Google Scholar 
    Shao, K. et al. The responses of the taxa composition of particle-attached bacterial community to the decomposition of Microcystis blooms. Sci. Total. Environ. 488–489, 236–242. https://doi.org/10.1016/j.scitotenv.2014.04.101 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jankowiak, J. G. & Gobler, C. J. The composition and function of microbiomes within microcystis colonies are significantly different than native bacterial assemblages in two North American lakes. Front. Microbiol. 11, 1–26 (2020).
    Google Scholar 
    Bauer, A. & Forchhammer, K. Bacterial predation on cyanobacteria. Microb. Physiol. 99, 108 (2021).
    Google Scholar 
    Ndlela, L. L., Oberholster, P. J., Van Wyk, J. H. & Cheng, P. H. Bacteria as biological control agents of freshwater cyanobacteria: Is it feasible beyond the laboratory?. Appl. Microbiol. Biotechnol. 102, 9911–9923 (2018).CAS 
    PubMed 

    Google Scholar 
    Yang, C. et al. Distinct network interactions in particle-associated and free-living bacterial communities during a Microcystis aeruginosa bloom in a plateau lake. Front. Microbiol. 8, 1–15 (2017).
    Google Scholar 
    Xu, H. et al. Contrasting network features between free-living and particle-attached bacterial communities in Taihu Lake. Microb. Ecol. 76, 303–313 (2018).PubMed 

    Google Scholar 
    Liu, M. et al. Community dynamics of free-living and particle-attached bacteria following a reservoir Microcystis bloom. Sci. Total Environ. 660, 501–511. https://doi.org/10.1016/j.scitotenv.2018.12.414 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Parveen, B. et al. Bacterial communities associated with Microcystis colonies differ from free-living communities living in the same ecosystem. Environ. Microbiol. Rep. 5, 716–724 (2013).CAS 
    PubMed 

    Google Scholar 
    Louati, I. et al. Structural diversity of bacterial communities associated with bloom-forming freshwater cyanobacteria differs according to the cyanobacterial genus. PLoS ONE 10, 0140614 (2015).
    Google Scholar 
    Zwirglmaier, K., Keiz, K., Engel, M., Geist, J. & Raeder, U. Seasonal and spatial patterns of microbial diversity along a trophic gradient in the interconnected lakes of the Osterseen Lake District, Bavaria. Front. Microbiol. 6, 1–18 (2015).
    Google Scholar 
    Scherer, P. I. et al. Temporal dynamics of the microbial community composition with a focus on toxic cyanobacteria and toxin presence during harmful algal blooms in two South German lakes. Front. Microbiol. 8, 1–17 (2017).
    Google Scholar 
    Kokocinski, M., Dziga, D., Antosiak, A. & Soininen, J. Are bacterio- and phytoplankton community compositions related in lakes differing in their cyanobacteria contribution and physico-chemical properties?. Genes 12, 855 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dziga, D. et al. Correlation between specific groups of heterotrophic bacteria and microcystin biodegradation in freshwater bodies of central Europe. FEMS Microbiol. Ecol. https://doi.org/10.1111/j.1574-6941.1999.tb00594.x (2019).Article 
    PubMed 

    Google Scholar 
    Jurczak, T. et al. Elimination of microcystins by water treatment processes: Examples from Sulejow Reservoir, Poland. Water Res. 39, 2394–2406 (2005).CAS 
    PubMed 

    Google Scholar 
    Mankiewicz-Boczek, J. et al. Detection and monitoring toxigenicity of cyanobacteria by application of molecular methods. Environ Toxicol. 21, 380–387 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rajaniemi-Wacklin, P. et al. Correspondence between phylogeny and morphology of Snowella spp. and Woronichinia naegeliana, cyanobacteria commonly occurring in lakes. J. Phycol. 42, 226–232 (2006).
    Google Scholar 
    DrobacBacković, D. et al. Cyanobacteria, cyanotoxins, and their histopathological effects on fish tissues in Fehérvárcsurgó reservoir Hungary. Environ. Monit. Assess. https://doi.org/10.1007/s10661-021-09324-3 (2021).Article 

    Google Scholar 
    Kallscheuer, N. et al. Analysis of bacterial communities in a municipal duck pond during a phytoplankton bloom and isolation of Anatilimnocola aggregata gen. nov., sp. Nov., Lacipirellula limnantheis sp. Nov. and Urbifossiella limnaea gen. nov. sp. nov. belonging to the phylum. Environ. Microbiol. 23, 1379–1396 (2021).CAS 
    PubMed 

    Google Scholar 
    Davis, T. W. et al. Effects of nitrogenous compounds and phosphorus on the growth of toxic and non-toxic strains of Microcystis during cyanobacterial blooms. Aquat. Microb. Ecol. 61, 149–162 (2010).
    Google Scholar 
    Gobler, C. J., Davis, T. W., Coyne, K. J. & Boyer, G. L. Interactive influences of nutrient loading, zooplankton grazing, and microcystin synthetase gene expression on cyanobacterial bloom dynamics in a eutrophic New York lake. Harmful Algae 6, 119–133 (2007).CAS 

    Google Scholar 
    Mankiewicz-Boczek, J. et al. Cyanophages infection of microcystis bloom in lowland dam reservoir of Sulejów, Poland. Microb. Ecol. 71, 315–325 (2016).CAS 
    PubMed 

    Google Scholar 
    Davis, T. W., Berry, D. L., Boyer, G. L. & Gobler, C. J. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8, 715–725 (2009).CAS 

    Google Scholar 
    Yoshida, M., Yoshida, T., Takashima, Y., Hosoda, N. & Hiroishi, S. Dynamics of microcystin-producing and non-microcystin-producing Microcystis populations is correlated with nitrate concentration in a Japanese lake. FEMS Microbiol. Lett. 266, 49–53 (2007).CAS 
    PubMed 

    Google Scholar 
    Sezenna, M. L. Proteobacteria: Phylogeny, Metabolic Diversity and Ecological Effects (Nova Science Publishers, Inc., 2011).
    Google Scholar 
    Rilling, J. I., Acuña, J. J., Sadowsky, M. J. & Jorquera, M. A. Putative nitrogen-fixing bacteria associated with the rhizosphere and root endosphere of wheat plants grown in an andisol from southern Chile. Front. Microbiol. 9, 1–13 (2018).
    Google Scholar 
    Lukumbuzya, M. et al. A refined set of rRNA-targeted oligonucleotide probes for in situ detection and quantification of ammonia-oxidizing bacteria. Water Res. 186, 116375 (2020).
    Google Scholar 
    Prosser, J. I., Head, I. M. & Stein, L. Y. The family Nitrosomonadaceae. In The Prokaryotes: Alphaproteobacteria and Betaproteobacteria (eds Rosenberg, E. et al.) 901–918 (Springer, 2014). https://doi.org/10.1007/978-3-642-30197-1_372.Chapter 

    Google Scholar 
    Jia, L., Jiang, B., Huang, F. & Hu, X. Nitrogen removal mechanism and microbial community changes of bioaugmentation subsurface wastewater infiltration system. Bioresour. Technol. 294, 122140. https://doi.org/10.1016/j.biortech.2019.122140 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Daft, M. J. & Stewart, W. D. P. Bacterial pathogens of freshwater blue-green algae. New Phytol. 70, 819–829 (1971).
    Google Scholar 
    Chun, S. J. et al. Network analysis reveals succession of Microcystis genotypes accompanying distinctive microbial modules with recurrent patterns. Water Res. 170, 115326. https://doi.org/10.1016/j.watres.2019.115326 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Parulekar, N. N. et al. Characterization of bacterial community associated with phytoplankton bloom in a eutrophic lake in South Norway using 16S rRNA gene amplicon sequence analysis. PLoS ONE 12, 1–22 (2017).
    Google Scholar 
    Guedes, I. A. et al. Close link between harmful cyanobacterial dominance and associated bacterioplankton in a tropical eutrophic reservoir. Front. Microbiol. 9, 424 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Allgaier, M. & Grossart, H. P. Seasonal dynamics and phylogenetic diversity of free-living and particle-associated bacterial communities in four lakes in northeastern Germany. Aquat. Microb. Ecol. 45, 115–128 (2006).
    Google Scholar 
    Chen, S. et al. Disentangling the drivers of Microcystis decomposition: Metabolic profile and co-occurrence of bacterial community. Sci. Total Environ. 739, 140062. https://doi.org/10.1016/j.scitotenv.2020.140062 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Leflaive, J. & Ten-Hage, L. Algal and cyanobacterial secondary metabolites in freshwaters: A comparison of allelopathic compounds and toxins. Freshw. Biol. 52, 199–214 (2007).CAS 

    Google Scholar 
    Song, H. et al. Biological and chemical factors driving the temporal distribution of cyanobacteria and heterotrophic bacteria in a eutrophic lake (West Lake, China). Appl. Microbiol. Biotechnol. 101, 1685–1696. https://doi.org/10.1007/s00253-016-7968-8 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bagatini, I. L. et al. Host-specificity and dynamics in bacterial communities associated with bloom-forming freshwater phytoplankton. PLoS ONE 9, 85957 (2014).ADS 

    Google Scholar 
    Kohler, E. et al. Biodegradation of microcystins during gravity-driven membrane (GDM) ultrafiltration. PLoS ONE 9, 111794 (2014).ADS 

    Google Scholar 
    Wu, X. et al. Culturing of “unculturable” subsurface microbes: Natural organic carbon source fuels the growth of diverse and distinct bacteria from groundwater. Front. Microbiol. 11, 1–10 (2020).CAS 

    Google Scholar 
    Morotomi, M., Nagai, F. & Watanabe, Y. Parasutterella secunda sp. no., isolated from human faeces and proposal of Sutterellaceae fam. nov. in the order Burkholderiales. Int. J. Syst. Evol. Microbiol. 61, 637–643 (2011).CAS 
    PubMed 

    Google Scholar 
    Kiedrzyńska, E. et al. Point sources of nutrient pollution in the lowland river catchment in the context of the baltic Sea eutrophication. Ecol. Eng. 70, 337–348 (2014).
    Google Scholar 
    Hwang, W. M., Ko, Y., Kim, J. H. & Kang, K. Ahniella affigens gen Nov, sp. nov., a gammaproteobacterium isolated from sandy soil near a stream. Int. J. Syst. Evol. Microbiol. 68, 2478–2484 (2018).CAS 
    PubMed 

    Google Scholar 
    Qian, H. et al. Spatial variability of cyanobacteria and heterotrophic bacteria in Lake Taihu (China). Bull. Environ. Contam. Toxicol. 99, 380–384 (2017).CAS 
    PubMed 

    Google Scholar 
    Humbert, J. F. et al. Comparison of the structure and composition of bacterial communities from temperate and tropical freshwater ecosystems. Environ. Microbiol. 11, 2339–2350 (2009).CAS 
    PubMed 

    Google Scholar 
    Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D. & Bertilsson, S. A guide to the natural history of freshwater lake Bacteria. Microbiol. Mol. Biol. Rev. 1, 1–10 (2011).
    Google Scholar 
    Parveen, B., Mary, I., Vellet, A., Ravet, V. & Debroas, D. Temporal dynamics and phylogenetic diversity of free-living and particle-associated Verrucomicrobia communities in relation to environmental variables in a mesotrophic lake. FEMS Microbiol. Ecol. 83, 189–201 (2013).CAS 
    PubMed 

    Google Scholar 
    Henson, M. W., Lanclos, V. C., Faircloth, B. C. & Thrash, J. C. Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. ISME J. 12, 1846–1860 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, C. et al. The characteristics and algicidal mechanisms of cyanobactericidal bacteria, a review. World J. Microbiol. Biotechnol. 36, 1–10. https://doi.org/10.1007/s11274-020-02965-5 (2020).Article 

    Google Scholar 
    Izydorczyk, K. et al. Influence of abiotic and biotic factors on microcystin content in Microcystis aeruginosa cells in a eutrophic temperate reservoir. J. Plankton Res. 30, 393–400 (2008).CAS 

    Google Scholar 
    Mankiewicz-Boczek, J. et al. Bacteria homologus to Aeromonas capable of microcystin degradation. Open Life Sci. 10, 106–116 (2015).CAS 

    Google Scholar 
    Jaskulska, A., Font Nájera, A., Czarny, P., Serwecińska, L. & Mankiewicz-boczek, J. Daily dynamic of transcripts abundance of Ma-LMM01-like cyanophages in two lowland European reservoirs. Ecohydrol. Hydrobiol. 21, 543–548 (2021).
    Google Scholar 
    Gągała, I. et al. Role of environmental factors and toxic genotypes in the regulation of microcystins-producing cyanobacterial blooms. Microb. Ecol. 67, 465–479 (2014).PubMed 

    Google Scholar 
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, 1–11 (2013).
    Google Scholar 
    Illumina. 16S Metagenomic Sequencing Library Preparation. (2013). http://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf.Frangeul, L. et al. Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium. BMC Genomics 9, 1–20 (2008).
    Google Scholar 
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. Past: Paleontological statistics software package for education and data analysis even a cursory glance at the recent paleontological literature should convince anyone tha. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 
    Suzuki, M. T., Taylor, L. T. & DeLong, E. F. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5’-nuclease assays. Appl. Environ. Microbiol. 66, 4605–4614. https://doi.org/10.1128/AEM.66.11.4605-4614.2000 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Neilan B. A et al. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis Int J Syst Bacteriol 47(3), 693–697, https://doi.org/10.1099/00207713-47-3-693 (1997).
    Google Scholar  More

  • in

    Building a truly diverse biodiversity science

    npj Biodiversity aims to be a common forum where discoveries in all areas of biodiversity science can be discussed, so that the research in specific topics with broad implications for other disciplines permeates the whole community. This requires that scientific debates are made in egalitarian terms between people with different backgrounds and points of view. We will strive to provide safe spaces where all biodiversity research can be showcased without bias, and theoretical and practical advances can be subject to calm and civil debate. As journal editors we will implement measures to work towards a fairer and more inclusive science, such as giving proper recognition to all researchers involved in the research published13, or ensuring in revisions that former research made by different identity groups and local scientists is adequately acknowledged14. We will also acknowledge diversity by maintaining a diverse editorial board15 and engaging external peer-reviewers16 that represent local specialists, the diversity of approaches in each field, as well as early-career researchers across demographic groups. We will also encourage access to research and engage in the FAIR principles for data management and sharing17. Here, good practice includes making data available for reanalysis or compilation in larger databases by researchers anywhere in the world, promoting open software, and sharing reproducible code18,19. Our hope is that this extends the capacity of developing meta-analyses and macroecological and macroevolutionary research beyond the borders of high-income countries.npj Biodiversity seeks to promote scientific discussion and synthesis. As editors, we will act as guides and moderators rather than as gatekeepers that merely decide which papers are above the threshold of publication20. Thus, we encourage debate as a central part of the editorial process, allowing well-grounded and clearly-identified speculation and policy-related statements in published papers when appropriate. This may include publishing non-conventional papers that foster discussion in established topics or open new research avenues21, if and only if they are well supported by data or published evidence. In this sense, we welcome Comments on areas currently under discussion, as well as Reviews and Perspectives that allow synthesis in theoretical and practical topics that are not necessarily general, but can help advance specific subdisciplines or topics. Last but not least, we want to facilitate communication between basic research and applied practitioners through Perspectives that translate the implications of recent research for management, conservation and adaptation to global change, or that identify which theoretical advances or additional empirical evidence would be needed to tackle specific problems.Creating the appropriate publishing environment for journals to be true forums for debate and provide value to the scientific community is a challenging enterprise. Above all, it requires escaping from the haste imposed by the “publish or perish model”, and making an explicit effort to raise the quality of the editorial process. In npj Biodiversity we will seek to follow ‘slow publishing’ principles, putting emphasis on meaningful debate between authors, editors and reviewers22. Current research environments can prevent researchers from having time to think, but true advance stems from digesting ideas and discussing them with the detail, depth and time they may need (http://slow-science.org/)23,24,25. Therefore, to contribute to a healthier, gentler and more thoughtful approach to biodiversity science, we will provide thorough and thoughtful reviews. We will make editorial decisions that, when paired with equally thorough and thoughtful work by authors, can reduce the number of times a paper bounces back and forth in successive rounds of peer review and revision. Note that this does not necessarily mean longer editorial times! Paradoxically, when authors, reviewers and editors commit to these “slow” publishing principles, the publication process can speed up. And most importantly, it will promote the spirit of productive debate that we aim for in npj Biodiversity. More

  • in

    The fate of terrestrial biodiversity during an oceanic island volcanic eruption

    To our knowledge, this is the only work done on the terrestrial biodiversity status in the direct vicinity of a limited duration volcanic eruption. In this contribution, we document and assess the impact on the main plant and animal groups within the ecosystems during a volcanic eruption (Table 1). While some groups were clearly disadvantaged: ferns and herbaceous plants as well as invertebrates and saurians (lizards and geckos); other groups such as conifers and woody shrubs showed better resilience, as did the birds.This study is particularly important because of its location in a Mediterranean biodiversity hotspot13,14, harbouring a unique ecosystem of oceanic island organisms (38% of the Canary archipelago endemicity). Islands indeed exhibit a disproportionate amount of the world’s biodiversity but unfortunately a high number of extinctions have also occurred there14. The biodiversity in the south of the island is poorer than in the north. This is probably explained in part by the relatively frequent volcanic activity featuring seven major eruptions since 1585, including this one in 2021 (see15), which led to alternating destruction and neo-colonization processes.Concerning the flora, the Canary pine forest was the most affected ecosystem and vegetation type, as it is dominant in the vicinity of the new volcanic vents. The southern slopes of this forest were the most disturbed area due to the location of the volcano, combined with the prevailing northeasterly trade winds (Fig. 1). Tephra fallout and sulphurous gases were the main factors that affected the pine forest, over a vast surface area. Furthermore, the local xerophytic and thermophilous habitats also lost much of their surface area. In contrast to the pine forest, this drastic reduction was caused by the progressive downslope expansion of the lava flows.The Canary Island pine was thus notably affected by tephra fall, sulphuric acid aerosol12, and short episodes of acid rain. However, this conifer shows high resistance to temperature, confirming its great adaptation to volcanic events16, which is probably also one of the keys to its resistance to the more frequent present-day wildfires17. This pine species has evolved among volcanoes for the last 13 My16 and has adapted successfully to high temperatures. Moreover, thunderstorms with lightning occur in the Canaries together with abundant rainfall; consequently, wild forest fires should presumably not have been so frequent in the island’s past, before human colonization. In this habitat it is also remarkable that epiphytic lichens (U. articulata) apparently resisted on the pines until the 12th week, considering their high sensitivity to anthropogenic pollution18.The life cycle of flowering plants was drastically disrupted due to all the above factors, with great impact on foliage, photosynthesis, and growth. However, soil changes due to the deposition of tephra and its lixiviation by rain is one of the most dramatic factors affecting plants and a long-term impact of volcanic eruptions19. The nearest individuals to the crater were most directly affected by intense tephra falls and concentrated volcanic gases (SO2, HCl, HF, CO2). However, plants located in the nearest 200 m to the lava flows but at more than 2 km from the crater were presumably more disturbed by the high temperature of the slow-cooling lava and its lesser gas emissions.Large woody plants exhibited a better frequency of survival than smaller ones in the face of this extreme stress (Table S1 and19). In the Hekla area (Iceland), most trees have thickened trunks, indicating that those trees that survive have had a long life subjected to frequent volcanic damage19. Secondary woodiness of island plants (sensu20) has been traditionally related to drought20,21, ecological shift22 or a counter-selection of inbreeding depression in founding island populations23. However, this adaptation also favours the resistance of many shrubby plants to high temperatures close to craters and lava flows but primarily their resistance to the intense tephra falls that affect a much larger area. In addition, plant and stem height plays a fundamental role in overcoming the deep layers of deposits. This latter effect was particularly important up to 2.5 km from the crater (tephra thickness  > 30 cm) (Figs. 1 and 2), as the herbaceous plants were completely buried, sometimes to more than 1.5 m depth. Therefore, the seed bank has also probably been rendered largely non-functional. However, deposits were recorded over almost the whole island, indicating that longer lasting or more intense eruptions would severely affect an even larger area. Such events have been hitherto ignored in the intensely discussed “island woodiness” debate21,23,24,25,26,27. We found surviving populations of endemic woody taxa heavily impacted by tephra deposits close to lava flows, across a wide range of genera such as Rumex (R. lunaria), Echium (E. brevirame), Euphorbia (E. lamarckii, E. canariensis and E. balsamifera), Aeonium (A. davidbramwellii), Rubia (R. fruticosa), Schizogyne (S. sericea), Carlina (C. falcata) or Sonchus (S. hierrensis) (Table S2), which coincide with the general list of woody Canary plants20. Most members of these genera in other ecosystems on continents are mainly herbaceous. As such eruptions and their impacts due to ash depositions are frequent events on volcanic islands, e.g. several times within a century on La Palma, this is a “frequent” selective process at evolutionary time scales.With regard to the fauna, the invertebrate community collapsed during the first two weeks (Table S2), probably due to rapid deterioration of the growth state of plants. These changes in the invertebrates were caused by the tephra contacting the cuticular lipid layer28 and water loss due to tegument abrasion29. In this period, many insect pests (especially whitefly pupae) in banana plantations (farmers’ observations) were drastically reduced. This sudden decrease in insect populations affected the whole food web and probably caused part of the ecological collapse of saurian and some passerine communities30. In the case of lizards, smaller individuals seem to resist the adverse conditions better than large ones, as observed in other eruptions3. This could be linked to their lower food requirements and greater ease in finding refuges. Loss of body condition in lizards post-eruption has been recorded and negatively affects reproduction quality31. However, some lizards have shown a good ability to find food in the tephra substrate32. We found abundant tephra particles in some vertebrate droppings (lizards, birds, and mammals) during the eruption, probably involuntarily ingested. At least in bats, ingestion during feeding produces physiological stress that is likely related to baldness, high ectoparasite loads or possible mineral deficiencies33.As described in the Canary Islands, some passerines show high fidelity to their territories (see34). During the eruption, Sardinian warblers (Curruca melanocephala) maintained their territories until the imminent arrival of lava flows. Larger birds (kestrels F. tinnunculus, ravens C. corax and buzzards B. buteo) were well able to continue flying in the areas surrounding the crater. Furthermore, some cases like F. tinnunculus showed great feeding plasticity in the first couple of weeks. At least six times, kestrels tried to catch birds (especially small passerines and doves), contrary to their usual diet based on abundant lizards and insects35. Widening of trophic niches in island organisms has traditionally been interpreted as linked to disharmony in island ecosystems36,37,38. However, this plasticity is tremendously beneficial in ecological catastrophes, where food becomes exceptionally scarce. In the case of bats, their flight is limited by the delicate structure of their patagium, which can be damaged by the frequent pyroclastic tephra fall. Furthermore, scarcity of insects in the first few kilometres from the crater probably led to their displacement to other more distant and richer food resource zones.As we learned from the movement capacity of the vertebrate animals that still inhabited the affected area, those with greater mobility, birds and bats, resisted the eruptive process much better than those with less mobility, e.g. saurians.Lastly, during this destructive event on La Palma, we had the opportunity to increase our knowledge of how ecological-evolutionary adaptations have favoured the survival of insular organisms. Such responses are traditionally mentioned in the context of island biology. As already mentioned, one of the most interesting findings verifies the remarkable adaptation of Canary Island pine trees (P. canariensis) to volcanism (see16), including extremely harsh ecological conditions. Other insular trends related to the prevalence of woodiness in insular flowering plants20,21, or the high trophic plasticity of some vertebrates on oceanic islands36, have not previously been associated with their potential evolution along with volcanic processes. However, such evolutionary adaptations most likely played an important role in the survival of plants and animals affected by the volcano. For this reason, it is worth considering and debating whether these previously mentioned evolutionary processes are in fact also linked to repeated volcanic episodes on oceanic islands. More