Petronio, C. Les cervidés endémiques des îles méditerranéennes. Quaternaire 3–4, 259–264 (1990).
 Google Scholar 
 Liouville, M. Variabilité du Cerf élaphe (Cervus elaphus LINNE 1758) au cours du pléistocène moyen et supérieur en Europe occidentale : Approches morphométrique, paléoécologique et cynégétique (Museum National d’Histoire Naturelle, Paris, 2007).
 Google Scholar 
 van der Made, J., Stefaniak, K. & Marciszak, A. The polish fossil record of the wolf canis and the deer alces, capreolus, megaloceros, dama and cervus in an evolutionary perspective. Quatern. Int. 326–327, 406–430 (2014).
 Google Scholar 
 Guadelli, J.-L. Contribution à l’étude des zoocénoses préhistoriques en Aquitaine (Würm ancien et interstade würmiem. Universite de Bordeaux, Talence, 1987).
 Google Scholar 
 Guadelli, J.-L. Les cerfs du würm ancien en Aquitaine. Paléo 8, 99–108 (1996).
 Google Scholar 
 Defleur, A. et al. Le niveau moustérien de la grotte de l’Adaouste (Jouques, Bouches-du-Rhône): Approche culturelle et paléoenvironnements. Bull. Mus. anthropol. préhist. Monaco 37, 11–48 (1994).
 Google Scholar 
 Tournepiche, J.-F. Les grands mammifères pléistocènes de Poitou-Charente. Paléo 8, 109–141 (1996).
 Google Scholar 
 Delagnes, A. et al. Le gisement Pléistocène moyen et supérieur d’artenac (Saint-Mary, Charente): Premier bilan interdisciplinaire. Bull. Soc. Prehist. Fr. 96, 469–496 (1999).
 Google Scholar 
 Valensi, P., Psathi, E. & Lacombat, F. Le cerf élaphe dans les sites du Paléolithique moyen du Sud-Est de la France et de la Ligurie. Intérêts biostratigraphique, environnemental et taphonomique. In Acts of the XIVth UISPP Congress, Session 3: Paleoecology, General Sessions and Posters, 2–8 september 2001 97–105 (BAR International Series, 2004).Steele, T. E. Variation in mortality profiles of red deer (Cervus elaphus) in middle palaeolithic assemblages from western Europe. Int. J. Osteoarchaeol. 14, 307–320 (2004).
 Google Scholar 
 Croitor, R. A new form of wapiti cervus canadensis Erxleben, 1777 (Cervidae, Mammalia) from the late pleistocene of France. Palaeoworld 29, 789–806 (2020).
 Google Scholar 
 Meiri, M. et al. Subspecies dynamics in space and time: A study of the red deer complex using ancient and modern DNA and morphology. J. Biogeogr. 45, 367–380 (2018).
 Google Scholar 
 Queirós, J. et al. Red deer in Iberia: Molecular ecological studies in a southern refugium and inferences on European postglacial colonization history. PLoS ONE 14, e0210282 (2019).PubMed 
 PubMed Central 
 Google Scholar 
 Carranza, J., Salinas, M., de Andrés, D. & Pérez-González, J. Iberian red deer: paraphyletic nature at mtDNA but nuclear markers support its genetic identity. Ecol. Evol. 6, 905–922 (2016).PubMed 
 PubMed Central 
 Google Scholar 
 Rey-Iglesia, A., Grandal-d’Anglade, A., Campos, P. F. & Hansen, A. J. Mitochondrial DNA of pre-last glacial maximum red deer from NW Spain suggests a more complex phylogeographical history for the species. Ecol. Evol. 7, 10690–10700 (2017).PubMed 
 PubMed Central 
 Google Scholar 
 Geist, V. Deer of the world: Their evolution, behaviour, and ecology (Stackpole Books, Pennsylvania, 1998).
 Google Scholar 
 Rivals, F. & Lister, A. M. Dietary flexibility and niche partitioning of large herbivores through the pleistocene of Britain. Quatern. Sci. Rev. 146, 116–133 (2016).ADS 
 Google Scholar 
 Berlioz, E. Ecologie alimentaire et paléoenvironnements des cervidés européens du Pleistocène inférieur: le message des texutures de micro-usure dentaire (University of Poitiers, Poitiers, 2017).
 Google Scholar 
 Saarinen, J., Eronen, J., Fortelius, M., Seppä, H. & Lister, A. M. Patterns of diet and body mass of large ungulates from the pleistocene of Western Europe, and their relation to vegetation. Palaeontol. Electron. 19.3.32A, 1–58 (2016).
 Google Scholar 
 Stefano, G. D., Pandolfi, L., Petronio, C. & Salari, L. The morphometry and the occurrence of cervus elaphus (Mammalia, Cervidae) from the late Pleistocene of the Italian peninsula. Riv. Ital. Paleontol. Stratigr. 121, 103–120 (2015).
 Google Scholar 
 Terada, C., Tatsuzawa, S. & Saitoh, T. Ecological correlates and determinants in the geographical variation of deer morphology. Oecologia 169, 981–994 (2012).PubMed 
 ADS 
 Google Scholar 
 Sommer, R. S., Fahlke, J. M., Schmölcke, U., Benecke, N. & Zachos, F. E. Quaternary history of the European roe deer capreolus capreolus. Mammal Rev. 39, 1–16 (2009).
 Google Scholar 
 Lorenzini, R. et al. European Roe Deer Capreolus capreolus (Linnaeus, 1758). In Handbook of the Mammals of Europe (eds Hackländer, F. & Zachos, F. E.) 1–32 (Springer, Cham, 2022).
 Google Scholar 
 Lorenzini, R., Garofalo, L., Qin, X., Voloshina, I. & Lovari, S. Global phylogeography of the genus capreolus (Artiodactyla: Cervidae), a palaearctic meso-mammal. Zool. J. Linn. Soc. 170, 209–221 (2014).
 Google Scholar 
 Tixier, H. & Duncan, P. Are European roe deer browsers? A review of variations in the composition of their diets. Rev. Ecol. 51, 3–17 (1996).
 Google Scholar 
 Merceron, G., Viriot, L. & Blondel, C. Tooth microwear pattern in roe deer (Capreolus capreolus L.) from Chizé (Western France) and relation to food composition. Small Rumin. Res. 53, 125–132 (2004).
 Google Scholar 
 Delibes, J. R. Ecología y comportamiento del corzo (Capreolus capreolus L. 1758) en la Sierra de Grazalema (Cádiz) (Universidad Complutense, Complutense, 1996).
 Google Scholar 
 Hewitt, G. M. The genetic legacy of the quaternary ice ages. Nature 405, 907–913 (2000).CAS 
 PubMed 
 ADS 
 Google Scholar 
 Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: Individualistic responses of species in space and time. Proc. R. Soc. Lond. B. Biol. Sci. 277, 661–671 (2010).
 Google Scholar 
 Álvarez-Lao, D. J. & García, N. Geographical distribution of pleistocene cold-adapted large mammal faunas in the Iberian peninsula. Quatern. Int. 233, 159–170 (2011).
 Google Scholar 
 Lumley, H. de. Le Paléolithique inférieur et moyen du Midi méditerranéen dans son cadre géologique. Tome I. Ligurie—Provence. Gall. Préhist. 5, (1969).Texier, P.-J. L’industrie moustérienne de l’abri pié-lombard (Tourettes-sur-Loup, Alpes-Maritimes). Bull. Soc. Préhist. Fr. 71, 429–448 (1974).
 Google Scholar 
 Texier, P.-J. et al. L’abri pié lombard à tourrettes-sur-loup (Alpes-Maritimes): Anciennes fouilles (1971–1985), nouvelles données. Bull. Mus.Anthropol.e Préhistor. Monaco 51, 19–49 (2011).
 Google Scholar 
 Tomasso, A. Territoires, systèmes de mobilité et systèmes de production : La fin du Paléolithique supérieur dans l’arc liguro-provençal (University of Nice Sophia Antipolis Nice, and University of Pisa, 2014).
 Google Scholar 
 Pelletier, M., Desclaux, E., Brugal, J.-P. & Texier, P.-J. The exploitation of rabbits for food and pelts by last interglacial neandertals. Quatern. Sci. Rev. 224, 105972 (2019).
 Google Scholar 
 Valladas, H. et al. Datations par la thermoluminescence de gisements moustériens du sud de la France. L’Anthropologie 91, 211–226 (1987).
 Google Scholar 
 Yokoyama, Y. et al. ESR dating of stalagmites of the Caune de l’Arago, the Grotte du Lazaret, the Grotte du Vallonnet and the abri Pié Lombard : a comparison with the U-Th method. In Third Specialist Seminar on TL and ESR Dating (eds. Hackens, T., Mejdahl, V., Bowman, S. G. E., Wintle, A. G. & Aitken, M. J.) 381–389 (1983).Romero, A. J., Fernández-Lomana, J. C. D. & Brugal, J.-P. Aves de caza. Estudio tafonómico y zooarqueológico de los restos avianos de los niveles musterienses de pié lombard (Alpes-Maritimes, Francia). Munibe Antropol. Arkeol. 68, 73–84 (2017).
 Google Scholar 
 Lumley (de), M.-A. Les néandertaliens dans le midi méditerranéen. In La Préhistoire française vol. T. 1 (Editions du CNRS, 1976).Porraz, G. En marge du milieu alpin. Dynamiques de formation des ensembles lithiques et modes d’occupation des territoires au paléolithique moyen (Université de Provence, Marseille, 2005).
 Google Scholar 
 Porraz, G. Middle Paleolithic mobile toolkits in shor-tterm human occupations: Two case studies. Eur. Prehist. 6, 33–55 (2009).
 Google Scholar 
 Roussel, A., Gourichon, L., Valensi, P. & Brugal, J.-P. Homme, gibier et environnement au Paléolithique moyen. Regards sur la gestion territoriale de l’espace semi-montagnard du Midi de la France. In Biodiversités, environnements et sociétés depuis la Préhistoire : nouveaux marqueurs et approches intégrées 87–99 (Éditions APDCA, 2021).Renault-Miskovsky, J. & Texier, J. Intérêt de l’analyse pollinique détaillée dans les concrétions de grotte .Application à l’abri pié-lombard (Tourettes-sur-Loup, Alpes maritimes). Quaternaire 17, 129–134 (1980).
 Google Scholar 
 Rosell, J. et al. A resilient landscape at teixoneres cave (MIS 3; Moià, Barcelona, Spain): The Neanderthals as disrupting agent. Quatern. Int. 435, 195–210 (2017).
 Google Scholar 
 Rosell, J. et al. Mossegades i Levallois: les noves intervencionsa la cova de les teixoneres (Moià, Bages). Trib d’Arqueologia 29–43 (2008).Rosell, J. et al. Los ocupaciones en la Cova de les Teixoneres (Moià, Barcelona): relaciones espaciales y grado de competencia entre hienas, osos y neandertales durante el Pleistoceno Superior. In Actas de la 1a Reunión de Científicos sobre Cubiles de Hiena (y Otros Grandes Carnívoros) en los Yacimientos Arqueológicos de la Península Ibérica (392–402) (eds Arriaza, M. C. et al.) (Museo Arqueológico Regional, 2010).
 Google Scholar 
 Rosell, J. et al. A stop along the way: The role of Neanderthal groups at level III of teixoneres cave (Moià, Barcelona, Spain). Quaternaire 21, 139–154 (2010).
 Google Scholar 
 Rosell, J. et al. Cova del toll y cova de les Teixoneres (Moià, Barcelona). In Los cazadores recolectores del Pleistoceno y del Holoceno en Iberia y el estrecho de Gibraltar (eds. Sala, R., Carbonell, E., Bermudez de Castro, J. M. & Arsuaga, J. L.) 302–307 (2014).Zilio, L. et al. Examining Neanderthal and carnivore occupations of teixoneres cave (Moià, Barcelona, Spain) using archaeostratigraphic and intra-site spatial analysis. Sci. Rep. 11, 4339 (2021).CAS 
 PubMed 
 PubMed Central 
 ADS 
 Google Scholar 
 Tissoux, H. et al. Datation par les séries de l’uranium des occupations moustériennes de la grotte de teixoneres (Moia, Province de Barcelone, Espagne). Quaternaire 17, 27–33 (2006).
 Google Scholar 
 Talamo, S. et al. The radiocarbon approach to Neanderthals in a carnivore den site: A well-defined chronology for teixoneres cave (Moià, Barcelona, Spain). Radiocarbon 58, 247–265 (2016).CAS 
 Google Scholar 
 Álvarez-Lao, D. J., Rivals, F., Sánchez-Hernández, C., Blasco, R. & Rosell, J. Ungulates from teixoneres cave (Moià, Barcelona, Spain): Presence of cold-adapted elements in NE Iberia during the MIS 3. Palaeogeogr. Palaeoclimatol. Palaeoecol. 466, 287–302 (2017).
 Google Scholar 
 Rufà, A., Blasco, R., Rivals, F. & Rosell, J. Leporids as a potential resource for predators (hominins, mammalian carnivores, raptors): An example of mixed contribution from level III of teixoneres cave (MIS 3, Barcelona, Spain). C.R. Palevol. 13, 665–680 (2014).
 Google Scholar 
 Rufà, A., Blasco, R., Rivals, F. & Rosell, J. Who eats whom? Taphonomic analysis of the avian record from the middle paleolithic site of teixoneres cave (Moià, Barcelona, Spain). Quatern. Int. 421, 103–115 (2016).
 Google Scholar 
 Sánchez-Hernández, C., Rivals, F., Blasco, R. & Rosell, J. Short, but repeated Neanderthal visits to teixoneres cave (MIS 3, Barcelona, Spain): A combined analysis of tooth microwear patterns and seasonality. J. Archaeol. Sci. 49, 317–325 (2014).
 Google Scholar 
 Sánchez-Hernández, C., Rivals, F., Blasco, R. & Rosell, J. Tale of two timescales: Combining tooth wear methods with different temporal resolutions to detect seasonality of Palaeolithic hominin occupational patterns. J. Archaeol. Sci. Rep. 6, 790–797 (2016).
 Google Scholar 
 Picin, A. et al. Neanderthal mobile toolkit in short-term occupations at teixoneres cave (Moia, Spain). J. Archaeol. Sci. Rep. 29, 102165 (2020).
 Google Scholar 
 Fernández-García, M. et al. New insights in Neanderthal palaeoecology using stable oxygen isotopes preserved in small mammals as palaeoclimatic tracers in teixoneres cave (Moià, northeastern Iberia). Archaeol. Anthropol. Sci. 14, 106 (2022).
 Google Scholar 
 Ochando, J. et al. Neanderthals in a highly diverse, mediterranean-Eurosiberian forest ecotone: The pleistocene pollen record of teixoneres cave, Northeastern Spain. Quatern. Sci. Rev. 241, 106429 (2020).
 Google Scholar 
 López-García, J. M. et al. A multidisciplinary approach to reconstructing the chronology and environment of Southwestern European Neanderthals: The contribution of teixoneres cave (Moià, Barcelona, Spain). Quatern. Sci. Rev. 43, 33–44 (2012).ADS 
 Google Scholar 
 Sánchez-Hernández, C. et al. Dietary traits of ungulates in northeastern Iberian Peninsula: Did these Neanderthal preys show adaptive behaviour to local habitats during the middle palaeolithic?. Quatern. Int. 557, 47–62 (2020).
 Google Scholar 
 Fortelius, M. & Solounias, N. Functional characterization of ungulate molars using the abrasion-attrition wear gradient: A new method for reconstructing paleodiets. Am. Mus. Novit. 3301, 1–36 (2000).
 Google Scholar 
 Rivals, F., Solounias, N. & Mihlbachler, M. C. Evidence for geographic variation in the diets of late pleistocene and early holocene bison in North America, and differences from the diets of recent bison. Quatern. Res. 68, 338–346 (2007).ADS 
 Google Scholar 
 King, T., Andrews, P. & Boz, B. Effect of taphonomic processes on dental microwear. Am. J. Phys. Anthropol. 108, 359–373 (1999).CAS 
 PubMed 
 Google Scholar 
 Uzunidis, A. et al. The impact of sediment abrasion on tooth microwear analysis: An experimental study. Archaeol. Anthropol. Sci. 13, 134 (2021).
 Google Scholar 
 Kaiser, T. M. & Solounias, N. Extending the tooth mesowear method to extinct and extant equids. Geodiversitas 25, 321–345 (2003).
 Google Scholar 
 Xafis, A., Nagel, D. & Bastl, K. Which tooth to sample? A methodological study of the utility of premolar/non-carnassial teeth in the microwear analysis of mammals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 487, 229–240 (2017).
 Google Scholar 
 Meadow, R. H. Early animal domestication in South Asia a first report of the faunal remains from mehrgarh Pakistan. In South Asian Archaeology (ed. Härtel, H.) 143–179 (Dietrich Reimer, Berlin, 1979).
 Google Scholar 
 Meadow, R. H. The use of size index scaling techniques for research on archaeozoological collections from the Middle East. In Historici Animalium ex. Ossibus Festschrift Angela Von Den Driesch Zum 65 Geburtstag (eds Becker, C. et al.) 285–300 (Verlag Marie Leidorf, Rahden, 1999).
 Google Scholar 
 Simpson, G. G. Large pleistocene felines of North America. Pleistocene felines North Am. 1136, 1–28 (1941).
 Google Scholar 
 Valli, A. M. F. & Guérin, C. L. gisement pléistocène supérieur de la grotte de Jaurens à Nespouls, Corrèze, France: Les cervidae (Mammalia, Artiodactyla). Publ. mus. Conflu. 1, 41–81 (2000).
 Google Scholar 
 Janis, C. M. The correlation between diet and dental wear in herbivorous mammals and its relationship to the determination of diets of extinct species. In Evolutionary Paleobiology of Behavior and Coevolution (ed. Boucot, A. J.) 241–259 (Elsevier, Amsterdam, 1990).
 Google Scholar 
 Heintz, E. Les Cervidés villafranchiens de France et d’Espagne (Museum National d’Histoire Naturelle, Parise, 1970).
 Google Scholar 
 Magniez, P. Etude paléontologique des artiodactyles de la grotte Tournal (Bize-Minervois, Aude, France) étude taphonomique, archéozoologique et paléoécologique des grands Mammifères dans leur cadre biostratigraphique et paléoenvironnemental (Université de Perpignan, Perpignan, 2010).
 Google Scholar 
 Cucchi, T., Hulme-Beaman, A., Yuan, J. & Dobney, K. Early neolithic pig domestication at Jiahu, Henan Province, China: clues from molar shape analyses using geometric morphometric approaches. J. Archaeol. Sci. 38, 11–22 (2011).
 Google Scholar 
 Evin, A. et al. The long and winding road: Identifying pig domestication through molar size and shape. J. Archaeol. Sci. 40, 735–743 (2013).
 Google Scholar 
 Pelletier, M., Kotiaho, A., Niinimäki, S. & Salmi, A.-K. Identifying early stages of reindeer domestication in the archaeological record: A 3D morphological investigation on forelimb bones of modern populations from Fennoscandia. Archaeol. Anthropol. Sci. 12, 169 (2020).PubMed 
 PubMed Central 
 Google Scholar 
 Bignon, O., Baylac, M., Vigne, J.-D. & Eisenmann, V. Geometric morphometrics and the population diversity of late glacial horses in Western Europe (Equus caballus arcelini): Phylogeographic and anthropological implications. J. Archaeol. Sci. 32, 375–391 (2005).
 Google Scholar 
 Pelletier, M. Morphological diversity, evolution and biogeography of early pleistocene rabbits (Genus Oryctolagus). Palaeontology 64, 817–838 (2021).
 Google Scholar 
 Curran, S. C. Expanding ecomorphological methods: Geometric morphometric analysis of cervidae post-crania. J. Archaeol. Sci. 39, 1172–1182 (2012).
 Google Scholar 
 Curran, S. C. Exploring eucladoceros ecomorphology using geometric morphometrics. Anat. Rec. 298, 291–313 (2015).
 Google Scholar 
 Cucchi, T. et al. Taxonomic and phylogenetic signals in bovini cheek teeth: Towards new biosystematic markers to explore the history of wild and domestic cattle. J. Archaeol. Sci. 109, 104993 (2019).
 Google Scholar 
 Jeanjean, M. et al. Sorting the flock: Quantitative identification of sheep and goat from isolated third lower molars and mandibles through geometric morphometrics. J. Archaeol. Sci. 141, 105580 (2022).
 Google Scholar 
 Herrera, P. L. Différences entre les dents jugales deciduales du cerf elaphe (Cervus Elaphus L.) et du boeuf domestique (Bos Taurus L.). Rev. Paléobiol. 8, 77 (1989).
 Google Scholar 
 Pfeiffer, T. Die stellung von dama (Cervidae, Mammalia) im system plesiometacarpaler hirsche des pleistozäns. Phylogenetische reconstruktion-metrische analyse. Cour Forsch. Senckenberg. 211, 1–218 (1999).
 Google Scholar 
 Rohlf, F. J. TPSDig, version 2.17 (Stony Brook, NY:  Department of Ecology and Evolution, State University of  New York, 2013).Bookstein, F. L. Morphometric Tools for Landmark Data: Geometry and Biology (Cambridge University Press, Cambridge, 1992).MATH 
 Google Scholar 
 Schlager, S. Morpho: Calculations and visualizations related to geometric morphometrics. (2013).Bookstein, F. L. Size and shape spaces for landmark data in two dimensions. Stat. Sci. 1, 181–222 (1986).MATH 
 Google Scholar 
 Kaiser, T. M. & Schulz, E. Tooth wear gradients in zebras as an environmental proxy—a pilot study. Mitt. Hambg. Zool. Mus. Inst. 103, 187–210 (2006).
 Google Scholar 
 Louys, J., Ditchfield, P., Meloro, C., Elton, S. & Bishop, L. C. Stable isotopes provide independent support for the use of mesowear variables for inferring diets in African antelopes. Proc. R. Soc. B. Biol. Sci. 279, 4441–4446 (2012).CAS 
 Google Scholar 
 Schulz, E. & Kaiser, T. M. Historical distribution, habitat requirements and feeding ecology of the genus equus (Perissodactyla). Mammal Rev. 43, 111–123 (2013).
 Google Scholar 
 Ulbricht, A., Maul, L. C. & Schulz, E. Can mesowear analysis be applied to small mammals? A pilot-study on leporines and murines. Mamm. Biol. 80, 14–20 (2015).
 Google Scholar 
 Danowitz, M., Hou, S., Mihlbachler, M., Hastings, V. & Solounias, N. A combined-mesowear analysis of late miocene giraffids from North Chinese and Greek localities of the pikermian biome. Palaeogeogr. Palaeoclimatol. Palaeoecol. 449, 194–204 (2016).
 Google Scholar 
 Marom, N., Garfinkel, Y. & Bar-Oz, G. Times in between: A zooarchaeological analysis of ritual in Neolithic Sha’ar Hagolan. Quatern. Int. 464, 216–225 (2018).
 Google Scholar 
 Ackermans, N. L. et al. Mesowear represents a lifetime signal in sheep (Ovis aries) within a long-term feeding experiment. Palaeogeogr. Palaeoclimatol. Palaeoecol. 553, 109793 (2020).
 Google Scholar 
 Mihlbachler, M. C., Rivals, F., Solounias, N. & Semprebon, G. M. Dietary change and evolution of horses in North America. Science 331, 1178–1181 (2011).CAS 
 PubMed 
 ADS 
 Google Scholar 
 Rivals, F., Rindel, D. & Belardi, J. B. Dietary ecology of extant guanaco (Lama guanicoe) from Southern Patagonia: Seasonal leaf browsing and its archaeological implications. J. Archaeol. Sci. 40, 2971–2980 (2013).
 Google Scholar 
 Rivals, F., Uzunidis, A., Sanz, M. & Daura, J. Faunal dietary response to the heinrich event 4 in southwestern Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 473, 123–130 (2017).
 Google Scholar 
 Uzunidis, A., Rivals, F. & Brugal, J.-P. Relation between morphology and dietary traits in horse jugal upper teeth during the middle pleistocene in Southern France. Quat. Rev. Assoc. franc. l’étude Quat. 28, 303–312 (2017).
 Google Scholar 
 Uzunidis, A. Dental wear analyses of middle pleistocene site of Lunel-Viel (Hérault, France): Did equus and bos live in a wetland?. Quatern. Int. 557, 39–46 (2020).
 Google Scholar 
 Solounias, N. & Semprebon, G. Advances in the reconstruction of ungulate ecomorphology with application to early fossil equids. Am. Mus. Novit. 3366, 49 (2002).
 Google Scholar 
 Semprebon, G., Godfrey, L. R., Solounias, N., Sutherland, M. R. & Jungers, W. L. Can low-magnification stereomicroscopy reveal diet?. J. Hum. Evol. 47, 115–144 (2004).PubMed 
 Google Scholar 
 Grine, F. E. Dental evidence for dietary differences in australopithecus and paranthropus: A quantitative analysis of permanent molar microwear. J. Hum. Evol. 15, 783–822 (1986).
 Google Scholar 
 Teaford, M. F. & Oyen, O. J. In vivo and in vitro turnover in dental microwear. Am. J. Phys. Anthropol. 80, 447–460 (1989).CAS 
 PubMed 
 Google Scholar 
 Winkler, D. E. et al. The turnover of dental microwear texture: Testing the” last supper” effect in small mammals in a controlled feeding experiment. Palaeogeogr. Palaeoclimatol. Palaeoecol. 557, 109930 (2020).
 Google Scholar 
 Walker, A., Hoeck, H. N. & Perez, L. Microwear of mammalian teeth as an indicator of diet. Science 201, 908–910 (1978).CAS 
 PubMed 
 ADS 
 Google Scholar 
 Janis, C. M. & Lister, A. M. The morphology of the lower fourth premolaras a taxonomic character in the ruminantia (Mammalia; Artiodactyla), and the systematic position of triceromeryx. J. Paleontol. 59, 405–410 (1985).
 Google Scholar 
 Croitor, R. Animal husbandry and hunting. Bone material use ineconomic activities. In Kravchenko, E. A. (eds.) From Bronze to Iron: Pale-oeconomy of the Habitants of the Inkerman Valley (According the Materialof Excavations in Uch-Bash and Saharnaya Golovka Settlements). 191–222 (Institute of Archaeology of National Academy of Sciences of Ukraine, 2016).Geist, V. & Bayer, M. Sexual dimorphism in the cervidae and its relation to habitat. J. Zool. 214, 45–53 (1988).
 Google Scholar 
 Fichant, R. Le cerf: Biologie, comportement, gestion (Gerfaut Editions, 2003).
 Google Scholar 
 Arellano-Moullé, A. Les cervidés des niveaux moustériens de la grotte du Prince (Grimaldi, Vintimille, Italie) Etude paléontologique. Bull. Mus. Anthropol. Préhist. Monaco 39, 53–58 (1997).
 Google Scholar 
 Brugal, J. .-P. . La. faune des grands mammifères de l’abri des Canalettes – matériel 1980–1986. In L’abri des Canalettes Un habitat moustérien sur les grands Causses Nant Aveyron, 89–137 (ed. Meignen, L.) (CNRS Éditions, Paris, 1993).
 Google Scholar 
 La Gerber, J. P. faune des grands mammifères du Würm ancien dans le sud-est de la France (Université de Provence, Marseille, 1973).
 Google Scholar 
 Alonso, D. A. Analisis paleobiologico de los ungulados del pleistoceno superior de la meseta norte (Universidad de Salamanca, Salamanca, 2015).
 Google Scholar 
 Sanchez, B. La fauna de mamíferos del pleistoceno superior del Abric Romani (Capellades, Barcelona). Adas de Paleontol. 331–347 (1989).Clot, A. Le chevreuil, Capreolus capreolus (L.) (Ceervidae, Artiodactyla) dans le pléistocène de Ge$$rde (H.-P.) et des pyrénées. Bull. Soc. Hist. Nat. Toulouse 125, 83–86 (1989).
 Google Scholar 
 Vanpé, C. Mating systems and sexual selection in ungulates. New insights from a territorial species with low sexual size dimorphism: the European roe deer (Capreolus capreolus). (Université Paul Sabatier, Toulouse III and Swedish University of Agricultural Sciences, 2007).Horcajada-Sánchez, F. & Barja, I. Local ecotypes of roe deer populations (Capreolus capreolus L.) in relation to morphometric features and fur colouration in the centre of the Iberian Peninsula. Pol. J Ecol. 64, 113–124 (2016).
 Google Scholar 
 Semprebon, G. M., Sise, P. J. & Coombs, M. C. Potential bark and fruit browsing as revealed by Stereomicrowear analysis of the peculiar clawed herbivores known as Chalicotheres (Perissodactyla, Chalicotherioidea). J. Mammal. Evol. 18, 33–55 (2011).
 Google Scholar 
 Rivals, F. et al. Palaeoecology of the mammoth steppe fauna from the late pleistocene of the North Sea and Alaska: Separating species preferences from geographic influence in paleoecological dental wear analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 286, 42–54 (2010).
 Google Scholar 
 Rivals, F., Takatsuki, S., Albert, R. M. & Macià, L. Bamboo feeding and tooth wear of three sika deer (Cervus nippon) populations from northern Japan. J. Mammal. 95, 1043–1053 (2014).
 Google Scholar 
 Lister, A. M. Evolutionary and ecological origins of British deer. Proc. R. Soc. Edinb. Sect. B. Biol. Sci. 82, 205–229 (1984).
 Google Scholar 
 Coulson, T., Guinness, F., Pemberton, J. & Clutton-Brock, T. The demographic consequences of releasing a population of red deer from culling. Ecology 85, 411–422 (2004).
 Google Scholar 
 Nussey, D. H., Clutton-Brock, T. H., Elston, D. A., Albon, S. D. & Kruuk, L. E. B. Phenotypic plasticity in a maternal trait in red deer. J. Anim. Ecol. 74, 387–396 (2005).
 Google Scholar 
 Frevert, W. Rominten (BLV Bayerischer Landwirtschaftsverlag, 1977).
 Google Scholar 
 Clutton-Brock, T. H. & Albon, S. D. Winter mortality in red deer (Cervus elaphus). J. Zool. 198, 515–519 (1982).
 Google Scholar 
 Loison, A. & Langvatn, R. Short- and long-term effects of winter and spring weather on growth and survival of red deer in Norway. Oecologia 116, 489–500 (1998).PubMed 
 ADS 
 Google Scholar 
 Torres-Porras, J., Carranza, J. & Pérez-González, J. Combined effects of drought and density on body and antler size of male iberian red deer cervus elaphus hispanicus: Climate change implications. Wildl. Biol. 15, 213–221 (2009).
 Google Scholar 
 Bugalho, M. N., Milne, J. A. & Racey, P. A. The foraging ecology of red deer (Cervus elaphus) in a mediterranean environment: Is a larger body size advantageous?. J. Zool. 255, 285–289 (2001).
 Google Scholar 
 Köhler, M. Skeleton and habitat of recent and fossil ruminants (F. Pfeil, Germany, 1993).
 Google Scholar 
 Boessneck, J. Zur grosse des mitteleuropaischen Rehes Capreolus capreolus L. in alluvial-vorgeschichtlicher und friiher historischer zeit. Z. f. Siiugetierkunde 21, 121–131 (1958).
 Google Scholar 
 Jensen, P. Body size trends of roe deer (Capreolus capreolus) from danish mesolithic sites. J. Dan. Archaeol. 10, 51–58 (1991).
 Google Scholar 
 Braza, F., San José, C., Aragon, S. & Delibes, J. R. El corzo andaluz. (Junta de Andalucía, 1994).Fandos, P. Skull biometry of spanish roe deer (Capreolus capreolus). Folia Zool. 43, 11–20 (1994).
 Google Scholar 
 Costa, L. First data on the size of north-Iberian roe bucks (Capreolus capreolus). Mammalia 59, 447–451 (1995).
 Google Scholar 
 Klein, D. R. & Strandgaard, H. Factors affecting growth and body size of roe deer. J. Wildl. Manag. 36, 64–79 (1972).
 Google Scholar  More