More stories

  • in

    Speciated mechanism in Quaternary cervids (Cervus and Capreolus) on both sides of the Pyrenees: a multidisciplinary approach

    Petronio, C. Les cervidés endémiques des îles méditerranéennes. Quaternaire 3–4, 259–264 (1990).
    Google Scholar 
    Liouville, M. Variabilité du Cerf élaphe (Cervus elaphus LINNE 1758) au cours du pléistocène moyen et supérieur en Europe occidentale : Approches morphométrique, paléoécologique et cynégétique (Museum National d’Histoire Naturelle, Paris, 2007).
    Google Scholar 
    van der Made, J., Stefaniak, K. & Marciszak, A. The polish fossil record of the wolf canis and the deer alces, capreolus, megaloceros, dama and cervus in an evolutionary perspective. Quatern. Int. 326–327, 406–430 (2014).
    Google Scholar 
    Guadelli, J.-L. Contribution à l’étude des zoocénoses préhistoriques en Aquitaine (Würm ancien et interstade würmiem. Universite de Bordeaux, Talence, 1987).
    Google Scholar 
    Guadelli, J.-L. Les cerfs du würm ancien en Aquitaine. Paléo 8, 99–108 (1996).
    Google Scholar 
    Defleur, A. et al. Le niveau moustérien de la grotte de l’Adaouste (Jouques, Bouches-du-Rhône): Approche culturelle et paléoenvironnements. Bull. Mus. anthropol. préhist. Monaco 37, 11–48 (1994).
    Google Scholar 
    Tournepiche, J.-F. Les grands mammifères pléistocènes de Poitou-Charente. Paléo 8, 109–141 (1996).
    Google Scholar 
    Delagnes, A. et al. Le gisement Pléistocène moyen et supérieur d’artenac (Saint-Mary, Charente): Premier bilan interdisciplinaire. Bull. Soc. Prehist. Fr. 96, 469–496 (1999).
    Google Scholar 
    Valensi, P., Psathi, E. & Lacombat, F. Le cerf élaphe dans les sites du Paléolithique moyen du Sud-Est de la France et de la Ligurie. Intérêts biostratigraphique, environnemental et taphonomique. In Acts of the XIVth UISPP Congress, Session 3: Paleoecology, General Sessions and Posters, 2–8 september 2001 97–105 (BAR International Series, 2004).Steele, T. E. Variation in mortality profiles of red deer (Cervus elaphus) in middle palaeolithic assemblages from western Europe. Int. J. Osteoarchaeol. 14, 307–320 (2004).
    Google Scholar 
    Croitor, R. A new form of wapiti cervus canadensis Erxleben, 1777 (Cervidae, Mammalia) from the late pleistocene of France. Palaeoworld 29, 789–806 (2020).
    Google Scholar 
    Meiri, M. et al. Subspecies dynamics in space and time: A study of the red deer complex using ancient and modern DNA and morphology. J. Biogeogr. 45, 367–380 (2018).
    Google Scholar 
    Queirós, J. et al. Red deer in Iberia: Molecular ecological studies in a southern refugium and inferences on European postglacial colonization history. PLoS ONE 14, e0210282 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Carranza, J., Salinas, M., de Andrés, D. & Pérez-González, J. Iberian red deer: paraphyletic nature at mtDNA but nuclear markers support its genetic identity. Ecol. Evol. 6, 905–922 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Rey-Iglesia, A., Grandal-d’Anglade, A., Campos, P. F. & Hansen, A. J. Mitochondrial DNA of pre-last glacial maximum red deer from NW Spain suggests a more complex phylogeographical history for the species. Ecol. Evol. 7, 10690–10700 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Geist, V. Deer of the world: Their evolution, behaviour, and ecology (Stackpole Books, Pennsylvania, 1998).
    Google Scholar 
    Rivals, F. & Lister, A. M. Dietary flexibility and niche partitioning of large herbivores through the pleistocene of Britain. Quatern. Sci. Rev. 146, 116–133 (2016).ADS 

    Google Scholar 
    Berlioz, E. Ecologie alimentaire et paléoenvironnements des cervidés européens du Pleistocène inférieur: le message des texutures de micro-usure dentaire (University of Poitiers, Poitiers, 2017).
    Google Scholar 
    Saarinen, J., Eronen, J., Fortelius, M., Seppä, H. & Lister, A. M. Patterns of diet and body mass of large ungulates from the pleistocene of Western Europe, and their relation to vegetation. Palaeontol. Electron. 19.3.32A, 1–58 (2016).
    Google Scholar 
    Stefano, G. D., Pandolfi, L., Petronio, C. & Salari, L. The morphometry and the occurrence of cervus elaphus (Mammalia, Cervidae) from the late Pleistocene of the Italian peninsula. Riv. Ital. Paleontol. Stratigr. 121, 103–120 (2015).
    Google Scholar 
    Terada, C., Tatsuzawa, S. & Saitoh, T. Ecological correlates and determinants in the geographical variation of deer morphology. Oecologia 169, 981–994 (2012).PubMed 
    ADS 

    Google Scholar 
    Sommer, R. S., Fahlke, J. M., Schmölcke, U., Benecke, N. & Zachos, F. E. Quaternary history of the European roe deer capreolus capreolus. Mammal Rev. 39, 1–16 (2009).
    Google Scholar 
    Lorenzini, R. et al. European Roe Deer Capreolus capreolus (Linnaeus, 1758). In Handbook of the Mammals of Europe (eds Hackländer, F. & Zachos, F. E.) 1–32 (Springer, Cham, 2022).
    Google Scholar 
    Lorenzini, R., Garofalo, L., Qin, X., Voloshina, I. & Lovari, S. Global phylogeography of the genus capreolus (Artiodactyla: Cervidae), a palaearctic meso-mammal. Zool. J. Linn. Soc. 170, 209–221 (2014).
    Google Scholar 
    Tixier, H. & Duncan, P. Are European roe deer browsers? A review of variations in the composition of their diets. Rev. Ecol. 51, 3–17 (1996).
    Google Scholar 
    Merceron, G., Viriot, L. & Blondel, C. Tooth microwear pattern in roe deer (Capreolus capreolus L.) from Chizé (Western France) and relation to food composition. Small Rumin. Res. 53, 125–132 (2004).
    Google Scholar 
    Delibes, J. R. Ecología y comportamiento del corzo (Capreolus capreolus L. 1758) en la Sierra de Grazalema (Cádiz) (Universidad Complutense, Complutense, 1996).
    Google Scholar 
    Hewitt, G. M. The genetic legacy of the quaternary ice ages. Nature 405, 907–913 (2000).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: Individualistic responses of species in space and time. Proc. R. Soc. Lond. B. Biol. Sci. 277, 661–671 (2010).
    Google Scholar 
    Álvarez-Lao, D. J. & García, N. Geographical distribution of pleistocene cold-adapted large mammal faunas in the Iberian peninsula. Quatern. Int. 233, 159–170 (2011).
    Google Scholar 
    Lumley, H. de. Le Paléolithique inférieur et moyen du Midi méditerranéen dans son cadre géologique. Tome I. Ligurie—Provence. Gall. Préhist. 5, (1969).Texier, P.-J. L’industrie moustérienne de l’abri pié-lombard (Tourettes-sur-Loup, Alpes-Maritimes). Bull. Soc. Préhist. Fr. 71, 429–448 (1974).
    Google Scholar 
    Texier, P.-J. et al. L’abri pié lombard à tourrettes-sur-loup (Alpes-Maritimes): Anciennes fouilles (1971–1985), nouvelles données. Bull. Mus.Anthropol.e Préhistor. Monaco 51, 19–49 (2011).
    Google Scholar 
    Tomasso, A. Territoires, systèmes de mobilité et systèmes de production : La fin du Paléolithique supérieur dans l’arc liguro-provençal (University of Nice Sophia Antipolis Nice, and University of Pisa, 2014).
    Google Scholar 
    Pelletier, M., Desclaux, E., Brugal, J.-P. & Texier, P.-J. The exploitation of rabbits for food and pelts by last interglacial neandertals. Quatern. Sci. Rev. 224, 105972 (2019).
    Google Scholar 
    Valladas, H. et al. Datations par la thermoluminescence de gisements moustériens du sud de la France. L’Anthropologie 91, 211–226 (1987).
    Google Scholar 
    Yokoyama, Y. et al. ESR dating of stalagmites of the Caune de l’Arago, the Grotte du Lazaret, the Grotte du Vallonnet and the abri Pié Lombard : a comparison with the U-Th method. In Third Specialist Seminar on TL and ESR Dating (eds. Hackens, T., Mejdahl, V., Bowman, S. G. E., Wintle, A. G. & Aitken, M. J.) 381–389 (1983).Romero, A. J., Fernández-Lomana, J. C. D. & Brugal, J.-P. Aves de caza. Estudio tafonómico y zooarqueológico de los restos avianos de los niveles musterienses de pié lombard (Alpes-Maritimes, Francia). Munibe Antropol. Arkeol. 68, 73–84 (2017).
    Google Scholar 
    Lumley (de), M.-A. Les néandertaliens dans le midi méditerranéen. In La Préhistoire française vol. T. 1 (Editions du CNRS, 1976).Porraz, G. En marge du milieu alpin. Dynamiques de formation des ensembles lithiques et modes d’occupation des territoires au paléolithique moyen (Université de Provence, Marseille, 2005).
    Google Scholar 
    Porraz, G. Middle Paleolithic mobile toolkits in shor-tterm human occupations: Two case studies. Eur. Prehist. 6, 33–55 (2009).
    Google Scholar 
    Roussel, A., Gourichon, L., Valensi, P. & Brugal, J.-P. Homme, gibier et environnement au Paléolithique moyen. Regards sur la gestion territoriale de l’espace semi-montagnard du Midi de la France. In Biodiversités, environnements et sociétés depuis la Préhistoire : nouveaux marqueurs et approches intégrées 87–99 (Éditions APDCA, 2021).Renault-Miskovsky, J. & Texier, J. Intérêt de l’analyse pollinique détaillée dans les concrétions de grotte .Application à l’abri pié-lombard (Tourettes-sur-Loup, Alpes maritimes). Quaternaire 17, 129–134 (1980).
    Google Scholar 
    Rosell, J. et al. A resilient landscape at teixoneres cave (MIS 3; Moià, Barcelona, Spain): The Neanderthals as disrupting agent. Quatern. Int. 435, 195–210 (2017).
    Google Scholar 
    Rosell, J. et al. Mossegades i Levallois: les noves intervencionsa la cova de les teixoneres (Moià, Bages). Trib d’Arqueologia 29–43 (2008).Rosell, J. et al. Los ocupaciones en la Cova de les Teixoneres (Moià, Barcelona): relaciones espaciales y grado de competencia entre hienas, osos y neandertales durante el Pleistoceno Superior. In Actas de la 1a Reunión de Científicos sobre Cubiles de Hiena (y Otros Grandes Carnívoros) en los Yacimientos Arqueológicos de la Península Ibérica (392–402) (eds Arriaza, M. C. et al.) (Museo Arqueológico Regional, 2010).
    Google Scholar 
    Rosell, J. et al. A stop along the way: The role of Neanderthal groups at level III of teixoneres cave (Moià, Barcelona, Spain). Quaternaire 21, 139–154 (2010).
    Google Scholar 
    Rosell, J. et al. Cova del toll y cova de les Teixoneres (Moià, Barcelona). In Los cazadores recolectores del Pleistoceno y del Holoceno en Iberia y el estrecho de Gibraltar (eds. Sala, R., Carbonell, E., Bermudez de Castro, J. M. & Arsuaga, J. L.) 302–307 (2014).Zilio, L. et al. Examining Neanderthal and carnivore occupations of teixoneres cave (Moià, Barcelona, Spain) using archaeostratigraphic and intra-site spatial analysis. Sci. Rep. 11, 4339 (2021).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Tissoux, H. et al. Datation par les séries de l’uranium des occupations moustériennes de la grotte de teixoneres (Moia, Province de Barcelone, Espagne). Quaternaire 17, 27–33 (2006).
    Google Scholar 
    Talamo, S. et al. The radiocarbon approach to Neanderthals in a carnivore den site: A well-defined chronology for teixoneres cave (Moià, Barcelona, Spain). Radiocarbon 58, 247–265 (2016).CAS 

    Google Scholar 
    Álvarez-Lao, D. J., Rivals, F., Sánchez-Hernández, C., Blasco, R. & Rosell, J. Ungulates from teixoneres cave (Moià, Barcelona, Spain): Presence of cold-adapted elements in NE Iberia during the MIS 3. Palaeogeogr. Palaeoclimatol. Palaeoecol. 466, 287–302 (2017).
    Google Scholar 
    Rufà, A., Blasco, R., Rivals, F. & Rosell, J. Leporids as a potential resource for predators (hominins, mammalian carnivores, raptors): An example of mixed contribution from level III of teixoneres cave (MIS 3, Barcelona, Spain). C.R. Palevol. 13, 665–680 (2014).
    Google Scholar 
    Rufà, A., Blasco, R., Rivals, F. & Rosell, J. Who eats whom? Taphonomic analysis of the avian record from the middle paleolithic site of teixoneres cave (Moià, Barcelona, Spain). Quatern. Int. 421, 103–115 (2016).
    Google Scholar 
    Sánchez-Hernández, C., Rivals, F., Blasco, R. & Rosell, J. Short, but repeated Neanderthal visits to teixoneres cave (MIS 3, Barcelona, Spain): A combined analysis of tooth microwear patterns and seasonality. J. Archaeol. Sci. 49, 317–325 (2014).
    Google Scholar 
    Sánchez-Hernández, C., Rivals, F., Blasco, R. & Rosell, J. Tale of two timescales: Combining tooth wear methods with different temporal resolutions to detect seasonality of Palaeolithic hominin occupational patterns. J. Archaeol. Sci. Rep. 6, 790–797 (2016).
    Google Scholar 
    Picin, A. et al. Neanderthal mobile toolkit in short-term occupations at teixoneres cave (Moia, Spain). J. Archaeol. Sci. Rep. 29, 102165 (2020).
    Google Scholar 
    Fernández-García, M. et al. New insights in Neanderthal palaeoecology using stable oxygen isotopes preserved in small mammals as palaeoclimatic tracers in teixoneres cave (Moià, northeastern Iberia). Archaeol. Anthropol. Sci. 14, 106 (2022).
    Google Scholar 
    Ochando, J. et al. Neanderthals in a highly diverse, mediterranean-Eurosiberian forest ecotone: The pleistocene pollen record of teixoneres cave, Northeastern Spain. Quatern. Sci. Rev. 241, 106429 (2020).
    Google Scholar 
    López-García, J. M. et al. A multidisciplinary approach to reconstructing the chronology and environment of Southwestern European Neanderthals: The contribution of teixoneres cave (Moià, Barcelona, Spain). Quatern. Sci. Rev. 43, 33–44 (2012).ADS 

    Google Scholar 
    Sánchez-Hernández, C. et al. Dietary traits of ungulates in northeastern Iberian Peninsula: Did these Neanderthal preys show adaptive behaviour to local habitats during the middle palaeolithic?. Quatern. Int. 557, 47–62 (2020).
    Google Scholar 
    Fortelius, M. & Solounias, N. Functional characterization of ungulate molars using the abrasion-attrition wear gradient: A new method for reconstructing paleodiets. Am. Mus. Novit. 3301, 1–36 (2000).
    Google Scholar 
    Rivals, F., Solounias, N. & Mihlbachler, M. C. Evidence for geographic variation in the diets of late pleistocene and early holocene bison in North America, and differences from the diets of recent bison. Quatern. Res. 68, 338–346 (2007).ADS 

    Google Scholar 
    King, T., Andrews, P. & Boz, B. Effect of taphonomic processes on dental microwear. Am. J. Phys. Anthropol. 108, 359–373 (1999).CAS 
    PubMed 

    Google Scholar 
    Uzunidis, A. et al. The impact of sediment abrasion on tooth microwear analysis: An experimental study. Archaeol. Anthropol. Sci. 13, 134 (2021).
    Google Scholar 
    Kaiser, T. M. & Solounias, N. Extending the tooth mesowear method to extinct and extant equids. Geodiversitas 25, 321–345 (2003).
    Google Scholar 
    Xafis, A., Nagel, D. & Bastl, K. Which tooth to sample? A methodological study of the utility of premolar/non-carnassial teeth in the microwear analysis of mammals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 487, 229–240 (2017).
    Google Scholar 
    Meadow, R. H. Early animal domestication in South Asia a first report of the faunal remains from mehrgarh Pakistan. In South Asian Archaeology (ed. Härtel, H.) 143–179 (Dietrich Reimer, Berlin, 1979).
    Google Scholar 
    Meadow, R. H. The use of size index scaling techniques for research on archaeozoological collections from the Middle East. In Historici Animalium ex. Ossibus Festschrift Angela Von Den Driesch Zum 65 Geburtstag (eds Becker, C. et al.) 285–300 (Verlag Marie Leidorf, Rahden, 1999).
    Google Scholar 
    Simpson, G. G. Large pleistocene felines of North America. Pleistocene felines North Am. 1136, 1–28 (1941).
    Google Scholar 
    Valli, A. M. F. & Guérin, C. L. gisement pléistocène supérieur de la grotte de Jaurens à Nespouls, Corrèze, France: Les cervidae (Mammalia, Artiodactyla). Publ. mus. Conflu. 1, 41–81 (2000).
    Google Scholar 
    Janis, C. M. The correlation between diet and dental wear in herbivorous mammals and its relationship to the determination of diets of extinct species. In Evolutionary Paleobiology of Behavior and Coevolution (ed. Boucot, A. J.) 241–259 (Elsevier, Amsterdam, 1990).
    Google Scholar 
    Heintz, E. Les Cervidés villafranchiens de France et d’Espagne (Museum National d’Histoire Naturelle, Parise, 1970).
    Google Scholar 
    Magniez, P. Etude paléontologique des artiodactyles de la grotte Tournal (Bize-Minervois, Aude, France) étude taphonomique, archéozoologique et paléoécologique des grands Mammifères dans leur cadre biostratigraphique et paléoenvironnemental (Université de Perpignan, Perpignan, 2010).
    Google Scholar 
    Cucchi, T., Hulme-Beaman, A., Yuan, J. & Dobney, K. Early neolithic pig domestication at Jiahu, Henan Province, China: clues from molar shape analyses using geometric morphometric approaches. J. Archaeol. Sci. 38, 11–22 (2011).
    Google Scholar 
    Evin, A. et al. The long and winding road: Identifying pig domestication through molar size and shape. J. Archaeol. Sci. 40, 735–743 (2013).
    Google Scholar 
    Pelletier, M., Kotiaho, A., Niinimäki, S. & Salmi, A.-K. Identifying early stages of reindeer domestication in the archaeological record: A 3D morphological investigation on forelimb bones of modern populations from Fennoscandia. Archaeol. Anthropol. Sci. 12, 169 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Bignon, O., Baylac, M., Vigne, J.-D. & Eisenmann, V. Geometric morphometrics and the population diversity of late glacial horses in Western Europe (Equus caballus arcelini): Phylogeographic and anthropological implications. J. Archaeol. Sci. 32, 375–391 (2005).
    Google Scholar 
    Pelletier, M. Morphological diversity, evolution and biogeography of early pleistocene rabbits (Genus Oryctolagus). Palaeontology 64, 817–838 (2021).
    Google Scholar 
    Curran, S. C. Expanding ecomorphological methods: Geometric morphometric analysis of cervidae post-crania. J. Archaeol. Sci. 39, 1172–1182 (2012).
    Google Scholar 
    Curran, S. C. Exploring eucladoceros ecomorphology using geometric morphometrics. Anat. Rec. 298, 291–313 (2015).
    Google Scholar 
    Cucchi, T. et al. Taxonomic and phylogenetic signals in bovini cheek teeth: Towards new biosystematic markers to explore the history of wild and domestic cattle. J. Archaeol. Sci. 109, 104993 (2019).
    Google Scholar 
    Jeanjean, M. et al. Sorting the flock: Quantitative identification of sheep and goat from isolated third lower molars and mandibles through geometric morphometrics. J. Archaeol. Sci. 141, 105580 (2022).
    Google Scholar 
    Herrera, P. L. Différences entre les dents jugales deciduales du cerf elaphe (Cervus Elaphus L.) et du boeuf domestique (Bos Taurus L.). Rev. Paléobiol. 8, 77 (1989).
    Google Scholar 
    Pfeiffer, T. Die stellung von dama (Cervidae, Mammalia) im system plesiometacarpaler hirsche des pleistozäns. Phylogenetische reconstruktion-metrische analyse. Cour Forsch. Senckenberg. 211, 1–218 (1999).
    Google Scholar 
    Rohlf, F. J. TPSDig, version 2.17 (Stony Brook, NY: Department of Ecology and Evolution, State University of New York, 2013).Bookstein, F. L. Morphometric Tools for Landmark Data: Geometry and Biology (Cambridge University Press, Cambridge, 1992).MATH 

    Google Scholar 
    Schlager, S. Morpho: Calculations and visualizations related to geometric morphometrics. (2013).Bookstein, F. L. Size and shape spaces for landmark data in two dimensions. Stat. Sci. 1, 181–222 (1986).MATH 

    Google Scholar 
    Kaiser, T. M. & Schulz, E. Tooth wear gradients in zebras as an environmental proxy—a pilot study. Mitt. Hambg. Zool. Mus. Inst. 103, 187–210 (2006).
    Google Scholar 
    Louys, J., Ditchfield, P., Meloro, C., Elton, S. & Bishop, L. C. Stable isotopes provide independent support for the use of mesowear variables for inferring diets in African antelopes. Proc. R. Soc. B. Biol. Sci. 279, 4441–4446 (2012).CAS 

    Google Scholar 
    Schulz, E. & Kaiser, T. M. Historical distribution, habitat requirements and feeding ecology of the genus equus (Perissodactyla). Mammal Rev. 43, 111–123 (2013).
    Google Scholar 
    Ulbricht, A., Maul, L. C. & Schulz, E. Can mesowear analysis be applied to small mammals? A pilot-study on leporines and murines. Mamm. Biol. 80, 14–20 (2015).
    Google Scholar 
    Danowitz, M., Hou, S., Mihlbachler, M., Hastings, V. & Solounias, N. A combined-mesowear analysis of late miocene giraffids from North Chinese and Greek localities of the pikermian biome. Palaeogeogr. Palaeoclimatol. Palaeoecol. 449, 194–204 (2016).
    Google Scholar 
    Marom, N., Garfinkel, Y. & Bar-Oz, G. Times in between: A zooarchaeological analysis of ritual in Neolithic Sha’ar Hagolan. Quatern. Int. 464, 216–225 (2018).
    Google Scholar 
    Ackermans, N. L. et al. Mesowear represents a lifetime signal in sheep (Ovis aries) within a long-term feeding experiment. Palaeogeogr. Palaeoclimatol. Palaeoecol. 553, 109793 (2020).
    Google Scholar 
    Mihlbachler, M. C., Rivals, F., Solounias, N. & Semprebon, G. M. Dietary change and evolution of horses in North America. Science 331, 1178–1181 (2011).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Rivals, F., Rindel, D. & Belardi, J. B. Dietary ecology of extant guanaco (Lama guanicoe) from Southern Patagonia: Seasonal leaf browsing and its archaeological implications. J. Archaeol. Sci. 40, 2971–2980 (2013).
    Google Scholar 
    Rivals, F., Uzunidis, A., Sanz, M. & Daura, J. Faunal dietary response to the heinrich event 4 in southwestern Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 473, 123–130 (2017).
    Google Scholar 
    Uzunidis, A., Rivals, F. & Brugal, J.-P. Relation between morphology and dietary traits in horse jugal upper teeth during the middle pleistocene in Southern France. Quat. Rev. Assoc. franc. l’étude Quat. 28, 303–312 (2017).
    Google Scholar 
    Uzunidis, A. Dental wear analyses of middle pleistocene site of Lunel-Viel (Hérault, France): Did equus and bos live in a wetland?. Quatern. Int. 557, 39–46 (2020).
    Google Scholar 
    Solounias, N. & Semprebon, G. Advances in the reconstruction of ungulate ecomorphology with application to early fossil equids. Am. Mus. Novit. 3366, 49 (2002).
    Google Scholar 
    Semprebon, G., Godfrey, L. R., Solounias, N., Sutherland, M. R. & Jungers, W. L. Can low-magnification stereomicroscopy reveal diet?. J. Hum. Evol. 47, 115–144 (2004).PubMed 

    Google Scholar 
    Grine, F. E. Dental evidence for dietary differences in australopithecus and paranthropus: A quantitative analysis of permanent molar microwear. J. Hum. Evol. 15, 783–822 (1986).
    Google Scholar 
    Teaford, M. F. & Oyen, O. J. In vivo and in vitro turnover in dental microwear. Am. J. Phys. Anthropol. 80, 447–460 (1989).CAS 
    PubMed 

    Google Scholar 
    Winkler, D. E. et al. The turnover of dental microwear texture: Testing the” last supper” effect in small mammals in a controlled feeding experiment. Palaeogeogr. Palaeoclimatol. Palaeoecol. 557, 109930 (2020).
    Google Scholar 
    Walker, A., Hoeck, H. N. & Perez, L. Microwear of mammalian teeth as an indicator of diet. Science 201, 908–910 (1978).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Janis, C. M. & Lister, A. M. The morphology of the lower fourth premolaras a taxonomic character in the ruminantia (Mammalia; Artiodactyla), and the systematic position of triceromeryx. J. Paleontol. 59, 405–410 (1985).
    Google Scholar 
    Croitor, R. Animal husbandry and hunting. Bone material use ineconomic activities. In Kravchenko, E. A. (eds.) From Bronze to Iron: Pale-oeconomy of the Habitants of the Inkerman Valley (According the Materialof Excavations in Uch-Bash and Saharnaya Golovka Settlements). 191–222 (Institute of Archaeology of National Academy of Sciences of Ukraine, 2016).Geist, V. & Bayer, M. Sexual dimorphism in the cervidae and its relation to habitat. J. Zool. 214, 45–53 (1988).
    Google Scholar 
    Fichant, R. Le cerf: Biologie, comportement, gestion (Gerfaut Editions, 2003).
    Google Scholar 
    Arellano-Moullé, A. Les cervidés des niveaux moustériens de la grotte du Prince (Grimaldi, Vintimille, Italie) Etude paléontologique. Bull. Mus. Anthropol. Préhist. Monaco 39, 53–58 (1997).
    Google Scholar 
    Brugal, J. .-P. . La. faune des grands mammifères de l’abri des Canalettes – matériel 1980–1986. In L’abri des Canalettes Un habitat moustérien sur les grands Causses Nant Aveyron, 89–137 (ed. Meignen, L.) (CNRS Éditions, Paris, 1993).
    Google Scholar 
    La Gerber, J. P. faune des grands mammifères du Würm ancien dans le sud-est de la France (Université de Provence, Marseille, 1973).
    Google Scholar 
    Alonso, D. A. Analisis paleobiologico de los ungulados del pleistoceno superior de la meseta norte (Universidad de Salamanca, Salamanca, 2015).
    Google Scholar 
    Sanchez, B. La fauna de mamíferos del pleistoceno superior del Abric Romani (Capellades, Barcelona). Adas de Paleontol. 331–347 (1989).Clot, A. Le chevreuil, Capreolus capreolus (L.) (Ceervidae, Artiodactyla) dans le pléistocène de Ge$$rde (H.-P.) et des pyrénées. Bull. Soc. Hist. Nat. Toulouse 125, 83–86 (1989).
    Google Scholar 
    Vanpé, C. Mating systems and sexual selection in ungulates. New insights from a territorial species with low sexual size dimorphism: the European roe deer (Capreolus capreolus). (Université Paul Sabatier, Toulouse III and Swedish University of Agricultural Sciences, 2007).Horcajada-Sánchez, F. & Barja, I. Local ecotypes of roe deer populations (Capreolus capreolus L.) in relation to morphometric features and fur colouration in the centre of the Iberian Peninsula. Pol. J Ecol. 64, 113–124 (2016).
    Google Scholar 
    Semprebon, G. M., Sise, P. J. & Coombs, M. C. Potential bark and fruit browsing as revealed by Stereomicrowear analysis of the peculiar clawed herbivores known as Chalicotheres (Perissodactyla, Chalicotherioidea). J. Mammal. Evol. 18, 33–55 (2011).
    Google Scholar 
    Rivals, F. et al. Palaeoecology of the mammoth steppe fauna from the late pleistocene of the North Sea and Alaska: Separating species preferences from geographic influence in paleoecological dental wear analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 286, 42–54 (2010).
    Google Scholar 
    Rivals, F., Takatsuki, S., Albert, R. M. & Macià, L. Bamboo feeding and tooth wear of three sika deer (Cervus nippon) populations from northern Japan. J. Mammal. 95, 1043–1053 (2014).
    Google Scholar 
    Lister, A. M. Evolutionary and ecological origins of British deer. Proc. R. Soc. Edinb. Sect. B. Biol. Sci. 82, 205–229 (1984).
    Google Scholar 
    Coulson, T., Guinness, F., Pemberton, J. & Clutton-Brock, T. The demographic consequences of releasing a population of red deer from culling. Ecology 85, 411–422 (2004).
    Google Scholar 
    Nussey, D. H., Clutton-Brock, T. H., Elston, D. A., Albon, S. D. & Kruuk, L. E. B. Phenotypic plasticity in a maternal trait in red deer. J. Anim. Ecol. 74, 387–396 (2005).
    Google Scholar 
    Frevert, W. Rominten (BLV Bayerischer Landwirtschaftsverlag, 1977).
    Google Scholar 
    Clutton-Brock, T. H. & Albon, S. D. Winter mortality in red deer (Cervus elaphus). J. Zool. 198, 515–519 (1982).
    Google Scholar 
    Loison, A. & Langvatn, R. Short- and long-term effects of winter and spring weather on growth and survival of red deer in Norway. Oecologia 116, 489–500 (1998).PubMed 
    ADS 

    Google Scholar 
    Torres-Porras, J., Carranza, J. & Pérez-González, J. Combined effects of drought and density on body and antler size of male iberian red deer cervus elaphus hispanicus: Climate change implications. Wildl. Biol. 15, 213–221 (2009).
    Google Scholar 
    Bugalho, M. N., Milne, J. A. & Racey, P. A. The foraging ecology of red deer (Cervus elaphus) in a mediterranean environment: Is a larger body size advantageous?. J. Zool. 255, 285–289 (2001).
    Google Scholar 
    Köhler, M. Skeleton and habitat of recent and fossil ruminants (F. Pfeil, Germany, 1993).
    Google Scholar 
    Boessneck, J. Zur grosse des mitteleuropaischen Rehes Capreolus capreolus L. in alluvial-vorgeschichtlicher und friiher historischer zeit. Z. f. Siiugetierkunde 21, 121–131 (1958).
    Google Scholar 
    Jensen, P. Body size trends of roe deer (Capreolus capreolus) from danish mesolithic sites. J. Dan. Archaeol. 10, 51–58 (1991).
    Google Scholar 
    Braza, F., San José, C., Aragon, S. & Delibes, J. R. El corzo andaluz. (Junta de Andalucía, 1994).Fandos, P. Skull biometry of spanish roe deer (Capreolus capreolus). Folia Zool. 43, 11–20 (1994).
    Google Scholar 
    Costa, L. First data on the size of north-Iberian roe bucks (Capreolus capreolus). Mammalia 59, 447–451 (1995).
    Google Scholar 
    Klein, D. R. & Strandgaard, H. Factors affecting growth and body size of roe deer. J. Wildl. Manag. 36, 64–79 (1972).
    Google Scholar  More

  • in

    Response of Canola productivity to integration between mineral nitrogen with yeast extract under poor fertility sandy soil condition

    Photosynthetic pigmentsBased on the analysis of variance, data of Photosynthetic pigments as presented in Table 1 indicate that photosynthetic pigments as chlorophyll a (Chl. a) had non-significant for three Canola genotypes AD201 (G1), Topaz (G2) and SemuDNK 234/84 (G3), but chlorophyll b (Chl. b) and chlorophyll a/b ratio (Chl. a/b) had significant difference for three genotypes. Chl. a, Chl. b and Chl. a/b were positively responded to different N application i.e. without nitrogen fertilization (control F0), 95 kg N ha−1 (F1), 120 kg N ha−1 (F2) and 142 kg N ha−1 (F3) (without yeast); and integrated between nitrogen fertilization and yeast extract (YE) treatments as follows: 95 kg N ha−1 + YE (F4), 120 kg N ha−1 + YE (F5) and 142 kg N ha−1 (F6) (with yeast), data indicated that F5 and F6 gave the highest values of Chl. a and Chl. a/b ratio and lowest values of Chl. b Table 1. Interaction data showed that three Canola genotypes that were fertilized with N without yeast or with yeast had a slight difference with statistically significant in chl. a. The highest values of Chl. an obtained by G2 under F5 treatment followed by G1 under F6 treatments. In respect to Chl. a/b ratio, statistical analysis showed that Interaction between Canola genotypes treated with N applications without or with yeast had a significant difference whereas the highest values were recorded when Canola genotypes G3 and G2 fertilized with F6 and F5 with slight differences. While the interaction was significant between N treatments and Canola genotypes for Chl. b. and Canola genotype (G1) gave the highest value when treated with F1. Generally, F6 and F5 improve the contents of chl. a and chl. a/b ratio for three Canola genotypes Table 1. Chl. contents were increased in plants grown under middle and high N conditions as compared with plants grown under low N conditions, which significantly affected photochemical processes20. N is a fundamental element for leaf plants, insufficient N supply lead to decreased photosynthetic rate in plants21, this occurs to many factors such as a decrease in pigment degradation22, reduction in stomatal conductance23 and a decline in the light and dark reaction of photosynthesis. Canola is a nitrophilous plant, wherein a high concentration of NO3 in the culture media results in higher Chl. contents in the plant leave compared with controls20. The Chl. a/b ratio can be a valuable indicator of N element within a leaf because this ratio must be positively related to the ratio of PSII cores to light-harvesting chlorophyll-protein complex (LHCII)24. LHCII contains the majority of Chl. b, consequently it has a lower Chl a/b ratio than other Chl. binding proteins associated with PSII25. Thus, Chl. a/b ratios should increase with decreasing N availability, especially under high light conditions26, the Chl. a/b ratio and the ratio of PSII to Chl. are independent of N availability for spinach27, and lower Chl. a/b ratios were noticed when plants were subjected to low N28, while Kitajima and Hogan29 revealed that the Chl. a/b ratio increased when Chl. content decreased in response to N restriction in photosynthetic cotyledons in leaves of seedlings of four tropical woody species in the Bignoniaceae, and Bungard et al.30 demonstrated that there is a tiny response in Chl. a/b ratios to light or N. The yeast includes bio-regulators i.e. plant growth regulators and endogenous plant hormones, which enhance photosynthesis, also it produces 5-Aminolevulinic acid which is vital to tetrapyrrole biosynthesis and biochemical processes in plants, including heme and Chl. biosynthesis25.Table 1 Photosynthetic pigments for the three Canola genotypes under different N applications without and with yeast extract.Full size tableYield and its attributesComparing of mean data through the Duncan Multiple Range Test in the probability level of 5%, data showed significant differences among the Canola genotypes for the highest plant (cm), branches number/plant, and pods number/plant. On contrary, there wasn’t a significant difference for seed number/pods, seed yield (t ha−1), biological yield (t ha−1), and harvest index, wherein G2 gave the highest value for the highest plant (cm). In the same trend, G2 gave the highest values of branches No./plant and pods No./plant followed by G3 for the previous two treats Table 2. All examined N without or with yeast caused a significant difference in yield and its attributes, wherein F6 positively affected on abovementioned traits and gave the highest values on the highest plant (cm), branches No./plant, pods No./plant, seed No./pods, seed yield (t ha−1), and harvest index. While the highest values of biological yield (t ha−1) were obtained with F3, F6, and F5, respectively Table 2.Table 2 Growth, yield and its attributes for the three Canola genotypes under different N applications without and with yeast extract.Full size tableThe interaction between the Canola genotype and different N rates without or with yeast extract as shown in Table 2, demonstrated a significant difference. Data showed that the highest values of plant height and pods No./plant were recorded by G2 under F6 and the highest values of branches No./plant, seed No./pods, and seed yield (t ha−1) got by G3 and G2 under F6. There was a slight difference with statistically significant biological yield (t ha−1) and highest values established by G1 under F3 and F6; and G2 and G3 under F3, F5, and F6 respectively; and the highest values of harvest index recorded by G1, G2 and G3. under F6. Generally, data proved that 142 kg N/ h−1 + YE (F6) was enhanced the yield and its components of three Canola genotypes i.e. AD201 (G1), Topaz (G2), and SemuDNK 234/84 (G3). Many researchers reported that there are significant differences among Canola varieties and growth and yield traits are significantly increased by increasing N rates11. Increasing N fertilizer rates significantly increased most of the yield and its components31, N enhances metabolites synthesized by the plant which leads to more transformation of photosynthesis to reproductive parts, and induces different physiological mechanisms to access the nutrient32. Yeast extract as bio-fertilizer had a significant and positive effect on plant height and yield traits of Canola. The role of bread yeast in increasing the growth and yield traits; may be due to the content of yeast to many important nutrients elements i.e. N, Mg, Ca, Zn, Cu, and Fe, and the production of some growth regulators such as Auxin and Gibberellin and cytokinin which is necessary for plant biological processers especially photosynthesis and cell division and elongation33. Also, Yeast extract had stimulatory effects on cell division and enlargement, protein and nucleic acid synthesis, and chlorophyll formation34, in addition to its content of cryoprotective agent, i.e. sugars, protein, amino acids, and also several vitamins35. Consequently, it improves growth, flowering, and fruit set and formation and increases yield34.Correlation of Canola seed yield and chlorophyll a/b ratioPartial correlation coefficients of Canola seed yield and Chl. a/b ratio is given in Fig. 1. This result showed that seed yield was positively correlated with Chl. a/b ratio when the amount of N applied without or with yeast extract is increased. Chl. a/b ratio can be an important indicator of N within a leaf, this ratio must be positively related to photosynthesis and biological processers which reflect on seed yield.Figure 1Correlation of Canola seed yield (t/h) and chlorophyll a/b ratio as affected by different nitrogen rates without and with yeast extract.Full size imageCorrelation of Canola seed yield and its attributesCorrelations of seed yield and yield components of Canola are a function of the plant height, number of branches/plant, number of pods/plant, and number of seeds/pod as shown in Fig. 2a–d. These results proved that grain yield was strongly positively correlated with some of the abovementioned traits when N fertilization increased without or with yeast extract. Sufficient N contributes to enhance physiological processes, improves growth, flowering, seed formation, and the seed yield finally.Figure 2(a) Correlation of Canola seed yield (t/h) and plant height (cm) as affected by different nitrogen rates without and with yeast extract, (b) Correlation of Canola seed yield (t/h) and branch No/plant as affected by different nitrogen rates without and with yeast extract, (c) Correlation of Canola seed yield (t/h) and pods No/ plant as affected by different nitrogen rates without and with yeast extract, and (d) Correlation of Canola seed yield (t/h) and seeds No/ pod as affected by different nitrogen rates without and with yeast extract.Full size imageChemical propertiesRegarding results of the oil yield (t ha−1), seed oil %, protein %, N % in seed, and N% in straw as presented in Table 3, data showed significant differences among three Canola genotypes; AD201 (G1), Topaz (G2) and SemuDNK 234/84 (G3), excepted oil yield had non-significant difference. G1 was surpassed in oil %; G2, G3 surpassed in protein % and N % in seed, and G3 surpassed in N% in straw. Different N fertilization applies without or with yeast extract had a significant effect on the abovementioned traits, wherein F6 treatment gave the highest oil yield, protein %, N % in seed, and N% in straw, while seed oil % significantly increased with F1 and F4 treatments. There was significant interaction concerning with abovementioned traits, Table 3, as well as the highest values of seed oil yield (t ha−1), protein % in seeds, and nitrogen % in seeds were obtained with G1, G2, and G3 when treated with F6. Wherein the highest values of oil % were obtained by G1 under F1 and F4 treatments. Concerning N% in straw was increased by increasing the rate of N fertilizer application and the highest value was recorded by adding F6 to G336. Seed oil percentage was decreased by increasing nitrogen rates; the effect of interaction between Canola cultivars and nitrogen fertilization treatments was significant on seed oil. % High rates of N led to decreases in seed oil % and increase in protein concentrations in Canola seed37, the increase in seed protein % because N is an integral part of protein and the protein of Canola.Table 3 Effect of different N applications without and with yeast extract on oil yield, oil %, protein %, N % in seed and N% in straw for the three Canola genotypes.Full size tableCorrelation of Canola seed yield and seed oil percentageA strong negative correlation was detected between seed oil percentage as shown in Fig. 3. The result indicates that seed oil percentage decreases with increasing in different N fertilization rates without or with yeast extract. That’s a negative correlation between seed yield and seed oil %; it might be due to N application which results in delaying maturity leading to poor seed filling and a greater proportion of green seed38.Figure 3Correlation of Canola seed yield (t h−1) and oil % as affected by different nitrogen rates without and with yeast extract.Full size imagePhysico-chemical properties of Canola oilThe effects of different N application rates without or with yeast extract on Canola genotypes on physico-chemical properties i.e. Acid value (mg g−1), saponification number (mg g−1) and peroxide value (mg kg−1) were shown in Table 4. Data of chemical properties of Canola oil showed significant differences among Canola genotypes, the highest acid value and peroxide value were obtained from G2 followed by G1 and G3, respectively, while the highest saponification number was obtained by G3 followed by G1 and G2, respectively.Table 4 Oil properties for three Canola genotypes under different N applications without and with yeast extract.Full size tableData had significant differences among different N application rates without or with yeast extract, by increasing the N rated from F0 to F6 caused decreases in Acid value, Saponification number, and peroxide value. Also, data showed a significant interaction between Canola genotypes and different N application rates without or with yeast extract for all abovementioned traits, wherein the highest values of saponification number were obtained by G1 and G3 under F0 treatment. In addition, the highest values of peroxide value and the acid value were obtained by G2 with F0. The acid value is a physicochemical indicator38, wherein oils which have higher acid value posse poor quality39, on another hand, Low acid value of Canola genotype shows their higher oil quality. The peroxide value varied between 7.1 and 9.06 meq. O2/kg indicates that the tested vegetable oils are fresh, and the lowest initial peroxide value is suitable for consumption40. High saponification value indicated that Canola oil possesses normal triglycerides and may be useful in the production of liquid soap and shampoo41. Saponification number was significantly different among genotypes and a higher nitrogen rate resulted in an increase in the unsaponifiable matter and led to a decrease in oil acid value and saponification value42.Fatty acids composition percentages in Canola oilThe main values of fatty acids composition percentages in Canola oil were determined and calculated in the second season Table 5. Gas–liquid chromatographic analysis showed that, saturated fatty acids (Palmitic, 16:0, Stearic, 18:0, Arachidic, 20:0, and Behenic, 22:0) represent about 9.1 of the total fatty acids. Palmitic was the dominant acid among the saturated ones. In respect of unsaturated fatty acids i.e., Oleic acid (18:1), Linoleic (18:2), Linolenic (18:3), and Erucic (22:1), they all represent about 90.9% of total fatty acids. Therefore, Oleic acid (18:1) was the major fatty acid in Canola oil (59.43%) followed by Linoleic (20.80%) and Linolenic (9.02%). Erucic acid was less than 2%.Table 5 Saturated and unsaturated fatty acids (%) in seeds of the three Canola genotypes and different N applications without and with yeast extract.Full size tableData in Table 5, showed slight differences in saturated fatty acids between Canola varieties. AD201(G1) variety contained more amount of Palmitic (4.78%) and Stearic (1.52%) acids followed by Topaz (G2) for Palmitic and SemuDNK 234/84 (V3) for Stearic. However, Behenic acid (1.20%) was higher in G3 than G2 (1.17%), while G2 was the highest in Arachidic acid than G3 variety. These results are in line with those obtained by El Habbasha et al.43. They reported that AD 201, Silvo, and Topas (G2) were different in their oil contents of saturated and unsaturated fatty acids. Canola varieties were also slightly differed in their content of the unsaturated fatty acids Table 5, G3 variety contained more amounts of Oleic (60.36%) acid followed by the G2 variety. G1 recorded the lowest amount of Oleic acid (58.36%) in comparison with the other two varieties. On the other hand, G1 showed a high increment in Linoleic and Linolenic acids followed by G3 for Linoleic and Linolenic acids. The second oil quality breeding objective is to reduce the percentage of Linolenic acid from the percent 8–10% to less than 3% while maintaining or increasing the level of Linoleic acid44. Lower Linolenic acid is desired to improve the storage characteristics of the oil, while higher Linolenic acid content may be nutritionally desirable. Similar observations were reported by Ref.45. Topaz variety recorded the highest value for Erucic acid (1.77%) followed by AD201 variety, whereas Semu DNK gave the lowest value (1.45%). The increase in Erucic acid content in the Topaz variety may be due to the decrease in Oleic acid content46. Stated that the concentrations of Oleic and Erucic acids were negatively correlated and a high Oleic acid concentration ( > 50%) was always associated with a low Erucic acid concentration ( More

  • in

    Community succession and functional prediction of microbial consortium with straw degradation during subculture at low temperature

    Changes of straw degradation characteristics at different culture stagesCorn straw degradation ratioCorn straw weight loss in M44 at F1 reached 35.90% at 15 ℃ for 21 days, which was greater than that at F5, F8, and F11 by 2.33%, 3.01%, and 3.35%, respectively. There were no significant differences between F8 and F11(Fig. 1).Figure 1Corn straw degradation ratio was measured at different culture stages. The same small letter means there was no significant difference, and different small letters indicate significant differences at p  More

  • in

    Soil structure and microbiome functions in agroecosystems

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).Article 

    Google Scholar 
    Tscharntke, T. et al. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 151, 53–59 (2012).Article 

    Google Scholar 
    DeFries, R. S., Foley, J. A. & Asner, G. P. Land-use choices: balancing human needs and ecosystem function. Front. Ecol. Environ. 2, 249–257 (2004).Article 

    Google Scholar 
    Matson, P. A., Parton, W. J., Power, A. G. & Swift, M. J. Agricultural intensification and ecosystem properties. Science 277, 504–509 (1997).Article 

    Google Scholar 
    Zabel, F. et al. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 10, 2844 (2019).Article 

    Google Scholar 
    Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 21, 973–985 (2015).Article 

    Google Scholar 
    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).Article 

    Google Scholar 
    Mehrabi, Z., Ellis, E. C. & Ramankutty, N. The challenge of feeding the world while conserving half the planet. Nat. Sustain. 1, 409–412 (2018).Article 

    Google Scholar 
    Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A. & Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 132, 105078 (2019).Article 

    Google Scholar 
    Pereira, P., Bogunovic, I., Muñoz-Rojas, M. & Brevik, E. C. Soil ecosystem services, sustainability, valuation and management. Curr. Opin. Environ. Sci. Health 5, 7–13 (2018).Article 

    Google Scholar 
    Bai, Z. G., Dent, D. L., Olsson, L. & Schaepman, M. E. Proxy global assessment of land degradation. Soil Use Manage. 24, 223–234 (2008).Article 

    Google Scholar 
    Stockmann, U., Minasny, B. & McBratney, A. B. How fast does soil grow? Geoderma 216, 48–61 (2014).Article 

    Google Scholar 
    Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).Article 

    Google Scholar 
    Wilhelm, R. C., van Es, H. M. & Buckley, D. H. Predicting measures of soil health using the microbiome and supervised machine learning. Soil Biol. Biochem. 164, 108472 (2022).Article 

    Google Scholar 
    König, S., Vogel, H.-J., Harms, H. & Worrich, A. Physical, chemical and biological effects on soil bacterial dynamics in microscale models. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00053 (2020).Six, J., Frey, S. D., Thiet, R. K. & Batten, K. M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 70, 555–569 (2006).Article 

    Google Scholar 
    Status of the World’s Soil Resources (SWSR) — Main Report, 650 (FAO/Intergovernmental Technical Panel on Soils, 2015).Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–790 (2010).Article 

    Google Scholar 
    Gougoulias, C., Clark, J. M. & Shaw, L. J. The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J. Sci. Food Agric. 94, 2362–2371 (2014).Article 

    Google Scholar 
    Naylor, D. et al. Soil microbiomes under climate change and implications for carbon cycling. Annu. Rev. Environ. Resour. 45, 29–59 (2020).Article 

    Google Scholar 
    Berg, I. A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 77, 1925–1936 (2011).Article 

    Google Scholar 
    Yuan, H., Ge, T., Chen, C., O’Donnell, A. G. & Wu, J. Significant role for microbial autotrophy in the sequestration of soil carbon. Appl. Environ. Microbiol. 78, 2328–2336 (2012).Article 

    Google Scholar 
    Stevenson, F. J. Humus Chemistry: Genesis, Composition, Reactions 2nd edition (Wiley, 1994).Liang, C., Amelung, W., Lehmann, J. & Kästner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Change Biol. 25, 3578–3590 (2019).Article 

    Google Scholar 
    Crowther, T. W. et al. Biotic interactions mediate soil microbial feedbacks to climate change. Proc. Natl Acad. Sci. USA 112, 7033–7038 (2015).Article 

    Google Scholar 
    Angel, R., Claus, P. & Conrad, R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J. 6, 847–862 (2012).Article 

    Google Scholar 
    Conrad, R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 1, 285–292 (2009).Article 

    Google Scholar 
    Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).Article 

    Google Scholar 
    Dutta, H. & Dutta, A. The microbial aspect of climate change. Energy Ecol. Environ. 1, 209–232 (2016).Article 

    Google Scholar 
    Hu, H.-W., Chen, D. & He, J.-Z. Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 39, 729–749 (2015).Article 

    Google Scholar 
    Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).Article 

    Google Scholar 
    Marschner, P. in Nutrient Cycling in Terrestrial Ecosystems (eds Petra, M. & Zdenko, R.) 159–182 (Springer, 2007).Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).Article 

    Google Scholar 
    Saccá, M. L., Barra Caracciolo, A., Di Lenola, M. & Grenni, P. Soil Biological Communities and Ecosystem Resilience (eds Martin, L., Paola, G. & Mauro, G.) 9–24 (Springer, 2017).Jetten, M. S. M. The microbial nitrogen cycle. Environ. Microbiol. 10, 2903–2909 (2008).Article 

    Google Scholar 
    Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).Article 

    Google Scholar 
    Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of Earth’s nitrogen cycle. Science 330, 192–196 (2010).Article 

    Google Scholar 
    Clark, I. M., Hughes, D. J., Fu, Q., Abadie, M. & Hirsch, P. R. Metagenomic approaches reveal differences in genetic diversity and relative abundance of nitrifying bacteria and archaea in contrasting soils. Sci. Rep. 11, 15905 (2021).Article 

    Google Scholar 
    Philippot, L., Hallin, S. & Schloter, M. in Advances in Agronomy Vol. 96, 249–305 (Academic, 2007).Hayatsu, M., Tago, K. & Saito, M. Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci. Plant Nutr. 54, 33–45 (2008).Article 

    Google Scholar 
    Mackey, K. R. M. & Paytan, A. in Encyclopedia of Microbiology 3rd edition (ed. Moselio, S.) 322–334 (Academic, 2009).Richardson, A. E., Barea, J.-M., McNeill, A. M. & Prigent-Combaret, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant. Soil. 321, 305–339 (2009).Article 

    Google Scholar 
    Richardson, A. E. & Simpson, R. J. Soil microorganisms mediating phosphorus availability. Plant. Physiol. 156, 989–996 (2011).Article 

    Google Scholar 
    Li, J.-t. et al. A comprehensive synthesis unveils the mysteries of phosphate-solubilizing microbes. Biol. Rev. 96, 2771–2793 (2021).Article 

    Google Scholar 
    Kobae, Y. Dynamic phosphate uptake in arbuscular mycorrhizal roots under field conditions. Front. Env. Sci. https://doi.org/10.3389/fenvs.2018.00159 (2019).Oberson, A. & Joner, E. J. in Organic Phosphorus in the Environment (eds Turner, B. L. et al.) 133–164 (CABI, 2005).Compant, S., Samad, A., Faist, H. & Sessitsch, A. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J. Adv. Res. 19, 29–37 (2019).Article 

    Google Scholar 
    Eichmann, R., Richards, L. & Schäfer, P. Hormones as go-betweens in plant microbiome assembly. Plant J. 105, 518–541 (2021).Article 

    Google Scholar 
    Nascimento, F. X., Hernandez, A. G., Glick, B. R. & Rossi, M. J. The extreme plant-growth-promoting properties of Pantoea phytobeneficialis MSR2 revealed by functional and genomic analysis. Environ. Microbiol. 22, 1341–1355 (2020).Article 

    Google Scholar 
    Valliere, J. M., Wong, W. S., Nevill, P. G., Zhong, H. & Dixon, K. W. Preparing for the worst: utilizing stress-tolerant soil microbial communities to aid ecological restoration in the Anthropocene. Ecol. Solut. Evid. 1, e12027 (2020).Article 

    Google Scholar 
    Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).Article 

    Google Scholar 
    Rolfe, S. A., Griffiths, J. & Ton, J. Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes. Curr. Opin. Microbiol. 49, 73–82 (2019).Article 

    Google Scholar 
    Costa, O. Y. A., Raaijmakers, J. M. & Kuramae, E. E. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01636 (2018).Sharma, A. et al. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9, 285 (2019).Article 

    Google Scholar 
    Singh, D. P. et al. Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress. Sci. Rep. 10, 4818 (2020).Article 

    Google Scholar 
    Bárzana, G., Aroca, R., Bienert, G. P., Chaumont, F. & Ruiz-Lozano, J. M. New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol. Plant Microbe Interact. 27, 349–363 (2014).Article 

    Google Scholar 
    Gamalero, E. & Glick, B. R. Bacterial modulation of plant ethylene levels. Plant Physiol. 169, 13–22 (2015).Article 

    Google Scholar 
    Le Pioufle, O., Ganoudi, M., Calonne-Salmon, M., Ben Dhaou, F. & Declerck, S. Rhizophagus irregularis MUCL 41833 improves phosphorus uptake and water use efficiency in maize plants during recovery from drought stress. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.00897 (2019).Begum, N. et al. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.01068 (2019).Köhl, J., Kolnaar, R. & Ravensberg, W. J. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.00845 (2019).Hu, L. et al. Root exudate metabolites drive plant–soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9, 2738 (2018).Article 

    Google Scholar 
    Granato, E. T., Meiller-Legrand, T. A. & Foster, K. R. The evolution and ecology of bacterial warfare. Curr. Biol. 29, R521–R537 (2019).Article 

    Google Scholar 
    Shah, P. A. & Pell, J. K. Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 61, 413–423 (2003).Article 

    Google Scholar 
    Soares, F. Ed. F., Sufiate, B. L. & de Queiroz, J. H. Nematophagous fungi: far beyond the endoparasite, predator and ovicidal groups. Agric. Nat. Resour. 52, 1–8 (2018).
    Google Scholar 
    Nordbring-Hertz, B., Jansson, H.-B. & Tunlid, A. in eLS (Wiley, 2011); https://doi.org/10.1002/9780470015902.a0000374.pub3.Tian, B., Yang, J. & Zhang, K.-Q. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol. Ecol. 61, 197–213 (2007).Article 

    Google Scholar 
    Shafi, J., Tian, H. & Ji, M. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol. Biotechnol. Equip. 31, 446–459 (2017).Article 

    Google Scholar 
    Bravo, A., Likitvivatanavong, S., Gill, S. S. & Soberón, M. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41, 423–431 (2011).Article 

    Google Scholar 
    Schnepf, E. et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775–806 (1998).Article 

    Google Scholar 
    Wei, J.-Z. et al. Bacillus thuringiensis crystal proteins that target nematodes. Proc. Natl Acad. Sci. USA 100, 2760–2765 (2003).Article 

    Google Scholar 
    Flury, P. et al. Insect pathogenicity in plant-beneficial pseudomonads: phylogenetic distribution and comparative genomics. ISME J. 10, 2527–2542 (2016).Article 

    Google Scholar 
    Vurukonda, S. S. K. P., Giovanardi, D. & Stefani, E. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int. J. Mol. Sci. 19, 952 (2018).Article 

    Google Scholar 
    Whipps, J. M. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52, 487–511 (2001).Article 

    Google Scholar 
    MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. Science 373, 61–65 (2021).Article 

    Google Scholar 
    Sharma, A. et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 1, 1446 (2019).Article 

    Google Scholar 
    Gworek, B., Kijeńska, M., Wrzosek, J. & Graniewska, M. Pharmaceuticals in the soil and plant environment: a review. Water Air Soil Pollut. 232, 145 (2021).Article 

    Google Scholar 
    Tang, F. H. M., Lenzen, M., McBratney, A. & Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 14, 206–210 (2021).Article 

    Google Scholar 
    Zumstein, M. T. et al. Biodegradation of synthetic polymers in soils: tracking carbon into CO2 and microbial biomass. Sci. Adv. 4, eaas9024 (2018).Article 

    Google Scholar 
    Singh, B. & Singh, K. Microbial degradation of herbicides. Crit. Rev. Microbiol. 42, 245–261 (2016).
    Google Scholar 
    Teng, Y. & Chen, W. Soil microbiomes — a promising strategy for contaminated soil remediation: a review. Pedosphere 29, 283–297 (2019).Article 

    Google Scholar 
    Vogt, C. & Richnow, H. H. in Geobiotechnology II: Energy Resources, Subsurface Technologies, Organic Pollutants and Mining Legal Principles (eds Schippers, A. et al.) 123–146 (Springer, 2014).Mishra, S. et al. Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2021.632059 (2021).Rolli, E. et al. ‘Cry-for-help’ in contaminated soil: a dialogue among plants and soil microbiome to survive in hostile conditions. Environ. Microbiol. 23, 5690–5703 (2021).Article 

    Google Scholar 
    Wilpiszeski, R. L. et al. Soil aggregate microbial communities: towards understanding microbiome interactions at biologically relevant scales. Appl. Environ. Microbiol. https://doi.org/10.1128/aem.00324-19 (2019).Blott, S. J. & Pye, K. Particle size scales and classification of sediment types based on particle size distributions: review and recommended procedures. Sedimentology 59, 2071–2096 (2012).Article 

    Google Scholar 
    Totsche, K. U. et al. Microaggregates in soils. J. Plant Nutr. Soil Sci. 181, 104–136 (2018).Article 

    Google Scholar 
    Martin, J. P., Martin, W. P., Page, J. B., Raney, W. A. & de Ment, J. D. in Advances in Agronomy Vol. 7 (ed. Norman, A. G.) 1–37 (Academic, 1955).Chotte, J.-L. in Microorganisms in Soils: Roles in Genesis and Functions (eds Varma, A. & Buscot, F.) 107–119 (Springer, 2005).Oades, J. M. Soil organic matter and structural stability: mechanisms and implications for management. Plant. Soil. 76, 319–337 (1984).Article 

    Google Scholar 
    Six, J., Elliott, E. T. & Paustian, K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 32, 2099–2103 (2000).Article 

    Google Scholar 
    Six, J., Bossuyt, H., Degryze, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79, 7–31 (2004).Article 

    Google Scholar 
    Schlüter, S. et al. Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime. Nat. Commun. 13, 2098 (2022).Article 

    Google Scholar 
    Acosta, J. A., Martínez-Martínez, S., Faz, A. & Arocena, J. Accumulations of major and trace elements in particle size fractions of soils on eight different parent materials. Geoderma 161, 30–42 (2011).Article 

    Google Scholar 
    Sessitsch, A., Weilharter, A., Gerzabek, M. H., Kirchmann, H. & Kandeler, E. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl. Environ. Microbiol. 67, 4215–4224 (2001).Article 

    Google Scholar 
    Zhang, Q. et al. Fatty-acid profiles and enzyme activities in soil particle-size fractions under long-term fertilization. Soil Sci. Soc. Am. J. 80, 97–111 (2016).Article 

    Google Scholar 
    Hemkemeyer, M., Christensen, B. T., Martens, R. & Tebbe, C. C. Soil particle size fractions harbour distinct microbial communities and differ in potential for microbial mineralisation of organic pollutants. Soil Biol. Biochem. 90, 255–265 (2015).Article 

    Google Scholar 
    Briar, S. S. et al. The distribution of nematodes and soil microbial communities across soil aggregate fractions and farm management systems. Soil Biol. Biochem. 43, 905–914 (2011).Article 

    Google Scholar 
    Hemkemeyer, M., Dohrmann, A. B., Christensen, B. T. & Tebbe, C. C. Bacterial preferences for specific soil particle size fractions revealed by community analyses. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.00149 (2018).Hemkemeyer, M., Christensen, B. T., Tebbe, C. C. & Hartmann, M. Taxon-specific fungal preference for distinct soil particle size fractions. Eur. J. Soil Biol. 94, 103103 (2019).Article 

    Google Scholar 
    Christensen, B. T. & Olesen, J. E. Nitrogen mineralization potential of organomineral size separates from soils with annual straw incorporation. Eur. J. Soil Sci. 49, 25–36 (1998).Article 

    Google Scholar 
    Christensen, B. T. Decomposability of organic matter in particle size fractions from field soils with straw incorporation. Soil Biol. Biochem. 19, 429–435 (1987).Article 

    Google Scholar 
    Luo, G. et al. Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions. Biol. Fertil. Soils 53, 375–388 (2017).Article 

    Google Scholar 
    Mummey, D., Holben, W., Six, J. & Stahl, P. Spatial stratification of soil bacterial populations in aggregates of diverse soils. Microb. Ecol. 51, 404–411 (2006).Article 

    Google Scholar 
    Ranjard, L. et al. Heterogeneous cell density and genetic structure of bacterial pools associated with various soil microenvironments as determined by enumeration and DNA fingerprinting approach (RISA). Microb. Ecol. 39, 263–272 (2000).
    Google Scholar 
    Raynaud, X. & Nunan, N. Spatial ecology of bacteria at the microscale in soil. PLoS One 9, e87217 (2014).Article 

    Google Scholar 
    Rillig, M. C., Muller, L. A. H. & Lehmann, A. Soil aggregates as massively concurrent evolutionary incubators. ISME J. 11, 1943–1948 (2017).Article 

    Google Scholar 
    Trivedi, P. et al. Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content. Environ. Microbiol. 19, 3070–3086 (2017).Article 

    Google Scholar 
    Borer, B., Tecon, R. & Or, D. Spatial organization of bacterial populations in response to oxygen and carbon counter-gradients in pore networks. Nat. Commun. 9, 769 (2018).Article 

    Google Scholar 
    Kong, A. Y. Y., Hristova, K., Scow, K. M. & Six, J. Impacts of different N management regimes on nitrifier and denitrifier communities and N cycling in soil microenvironments. Soil Biol. Biochem. 42, 1523–1533 (2010).Article 

    Google Scholar 
    Bhattacharyya, S. S. et al. Soil carbon sequestration, greenhouse gas emissions, and water pollution under different tillage practices. Sci. Total Environ. 826, 154161 (2022).Article 

    Google Scholar 
    Zhang, W. et al. Differences in the nitrous oxide emission and the nitrifier and denitrifier communities among varying aggregate sizes of an arable soil in China. Geoderma 389, 114970 (2021).Article 

    Google Scholar 
    Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).Article 

    Google Scholar 
    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).Article 

    Google Scholar 
    Hartmann, M., Frey, B., Mayer, J., Mader, P. & Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9, 1177–1194 (2015).Article 

    Google Scholar 
    Degrune, F. et al. The pedological context modulates the response of soil microbial communities to agroecological management. Front. Ecol. Environ. 7, 261 (2019).Article 

    Google Scholar 
    Longepierre, M. et al. Limited resilience of the soil microbiome to mechanical compaction within four growing seasons of agricultural management. ISME Commun. 1, 44 (2021).Article 

    Google Scholar 
    Delitte, M., Caulier, S., Bragard, C. & Desoignies, N. Plant microbiota beyond farming practices: a review. Front. Sustain. Food Syst. https://doi.org/10.3389/fsufs.2021.624203 (2021).Hobbs, P. R., Sayre, K. & Gupta, R. The role of conservation agriculture in sustainable agriculture. Phil. Trans. R. Soc. B 363, 543–555 (2008).Article 

    Google Scholar 
    Van den Putte, A., Govers, G., Diels, J., Gillijns, K. & Demuzere, M. Assessing the effect of soil tillage on crop growth: a meta-regression analysis on European crop yields under conservation agriculture. Eur. J. Agron. 33, 231–241 (2010).Article 

    Google Scholar 
    Six, J. et al. Soil organic matter, biota and aggregation in temperate and tropical soils — effects of no-tillage. Agronomie 22, 755–775 (2002).Article 

    Google Scholar 
    Young, I. M. & Ritz, K. Tillage, habitat space and function of soil microbes. Soil Tillage Res. 53, 201–213 (2000).Article 

    Google Scholar 
    Degrune, F. et al. Temporal dynamics of soil microbial communities below the seedbed under two contrasting tillage regimes. Front. Microbiol. 8, 1127 (2017).Article 

    Google Scholar 
    Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).Article 

    Google Scholar 
    Babin, D. et al. Impact of long-term agricultural management practices on soil prokaryotic communities. Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2018.11.002 (2018).Article 

    Google Scholar 
    Srour, A. Y. et al. Microbial communities associated with long-term tillage and fertility treatments in a corn–soybean cropping system. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.01363 (2020).Cania, B. et al. Site-specific conditions change the response of bacterial producers of soil structure-stabilizing agents such as exopolysaccharides and lipopolysaccharides to tillage intensity. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00568 (2020).Cooper, H. V., Sjögersten, S., Lark, R. M. & Mooney, S. J. To till or not to till in a temperate ecosystem? Implications for climate change mitigation. Environ. Res. Lett. 16, 054022 (2021).Article 

    Google Scholar 
    Mangalassery, S. et al. To what extent can zero tillage lead to a reduction in greenhouse gas emissions from temperate soils? Sci. Rep. 4, 4586 (2014).Article 

    Google Scholar 
    Abdalla, M. et al. Conservation tillage systems: a review of its consequences for greenhouse gas emissions. Soil Use Manage. 29, 199–209 (2013).Article 

    Google Scholar 
    Six, J. et al. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Glob. Change Biol. 10, 155–160 (2004).Article 

    Google Scholar 
    van Kessel, C. et al. Climate, duration, and N placement determine N2O emissions in reduced tillage systems: a meta-analysis. Glob. Change Biol. 19, 33–44 (2013).Article 

    Google Scholar 
    Hamza, M. A. & Anderson, W. K. Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil Tillage Res. 82, 121–145 (2005).Article 

    Google Scholar 
    Schäffer, B., Stauber, M., Mueller, T. L., Muller, R. & Schulin, R. Soil and macro-pores under uniaxial compression. I. Mechanical stability of repacked soil and deformation of different types of macro-pores. Geoderma 146, 183–191 (2008).Article 

    Google Scholar 
    Hartmann, M. et al. Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J. 8, 226–244 (2014).Article 

    Google Scholar 
    Sitaula, B. K., Hansen, S., Sitaula, J. I. B. & Bakken, L. R. Methane oxidation potentials and fluxes in agricultural soil: effects of fertilisation and soil compaction. Biogeochemistry 48, 323–339 (2000).Article 

    Google Scholar 
    Sitaula, B. K., Hansen, S., Sitaula, J. I. B. & Bakken, L. R. Effects of soil compaction on N2O emission in agricultural soil. Chemosphere Glob. Change Sci. 2, 367–371 (2000).Article 

    Google Scholar 
    Beckett, C. T. S. et al. Compaction conditions greatly affect growth during early plant establishment. Ecol. Eng. 106, 471–481 (2017).Article 

    Google Scholar 
    Reichert, J. M., Suzuki, L. E. A. S., Reinert, D. J., Horn, R. & Håkansson, I. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil Tillage Res. 102, 242–254 (2009).Article 

    Google Scholar 
    von Wilpert, K. & Schäffer, J. Ecological effects of soil compaction and initial recovery dynamics: a preliminary study. Eur. J. For. Res. 125, 129–138 (2006).Article 

    Google Scholar 
    Tim Chamen, W. C., Moxey, A. P., Towers, W., Balana, B. & Hallett, P. D. Mitigating arable soil compaction: a review and analysis of available cost and benefit data. Soil Tillage Res. 146, 10–25 (2015).Article 

    Google Scholar 
    Beillouin, D., Ben-Ari, T., Malézieux, E., Seufert, V. & Makowski, D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob. Change Biol. 27, 4697–4710 (2021).Article 

    Google Scholar 
    Smith, R. G., Gross, K. L. & Robertson, G. P. Effects of crop diversity on agroecosystem function: crop yield response. Ecosystems 11, 355–366 (2008).Article 

    Google Scholar 
    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).Article 

    Google Scholar 
    Galindo-Castañeda, T., Lynch, J. P., Six, J. & Hartmann, M. Improving soil resource uptake by plants through capitalizing on synergies between root architecture and anatomy and root-associated microorganisms. Front. Plant Sci. https://doi.org/10.3389/fpls.2022.827369 (2022).Venter, Z. S., Jacobs, K. & Hawkins, H.-J. The impact of crop rotation on soil microbial diversity: a meta-analysis. Pedobiologia 59, 215–223 (2016).Article 

    Google Scholar 
    Stefan, L., Hartmann, M., Engbersen, N., Six, J. & Schöb, C. Positive effects of crop diversity on productivity driven by changes in soil microbial composition. Front. Microbiol. 12, 660749 (2021).Article 

    Google Scholar 
    Peralta, A. L., Sun, Y., McDaniel, M. D. & Lennon, J. T. Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere 9, e02235 (2018).Article 

    Google Scholar 
    Abdalla, M. et al. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Glob. Change Biol. 25, 2530–2543 (2019).Article 

    Google Scholar 
    Bacq-Labreuil, A., Crawford, J., Mooney, S. J., Neal, A. L. & Ritz, K. Cover crop species have contrasting influence upon soil structural genesis and microbial community phenotype. Sci. Rep. 9, 7473 (2019).Article 

    Google Scholar 
    Kong, A. Y. Y. & Six, J. Microbial community assimilation of cover crop rhizodeposition within soil microenvironments in alternative and conventional cropping systems. Plant Soil 356, 315–330 (2012).Article 

    Google Scholar 
    Kim, N., Zabaloy, M. C., Guan, K. & Villamil, M. B. Do cover crops benefit soil microbiome? A meta-analysis of current research. Soil Biol. Biochem. 142, 107701 (2020).Article 

    Google Scholar 
    Alahmad, A. et al. Cover crops in arable lands increase functional complementarity and redundancy of bacterial communities. J. Appl. Ecol. 56, 651–664 (2019).Article 

    Google Scholar 
    Cloutier, M. L. et al. Fungal community shifts in soils with varied cover crop treatments and edaphic properties. Sci. Rep. 10, 6198 (2020).Article 

    Google Scholar 
    Finney, D. M., Buyer, J. S. & Kaye, J. P. Living cover crops have immediate impacts on soil microbial community structure and function. J. Soil Water Conserv. 72, 361–373 (2017).Article 

    Google Scholar 
    Vukicevich, E., Lowery, T., Bowen, P., Úrbez-Torres, J. R. & Hart, M. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agron. Sustain. Dev. 36, 48 (2016).Article 

    Google Scholar 
    Sanz-Cobena, A. et al. Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems? Sci. Total Environ. 466-467, 164–174 (2014).Article 

    Google Scholar 
    Basche, A. D., Miguez, F. E., Kaspar, T. C. & Castellano, M. J. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. J. Soil Water Conserv. 69, 471–482 (2014).Article 

    Google Scholar 
    Tribouillois, H., Constantin, J. & Justes, E. Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers. Glob. Change Biol. 24, 2513–2529 (2018).Article 

    Google Scholar 
    Vanlauwe, B. et al. Integrated soil fertility management: operational definition and consequences for implementation and dissemination. Outlook Agric. 39, 17–24 (2010).Article 

    Google Scholar 
    Barzman, M. et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 35, 1199–1215 (2015).Article 

    Google Scholar 
    Francioli, D. et al. Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.01446 (2016).Lentendu, G. et al. Effects of long-term differential fertilization on eukaryotic microbial communities in an arable soil: a multiple barcoding approach. Mol. Ecol. 23, 3341–3355 (2014).Article 

    Google Scholar 
    Lori, M., Symnaczik, S., Mäder, P., De Deyn, G. & Gattinger, A. Organic farming enhances soil microbial abundance and activity — a meta-analysis and meta-regression. PLoS One 12, e0180442 (2017).Article 

    Google Scholar 
    Bebber, D. P. & Richards, V. R. A meta-analysis of the effect of organic and mineral fertilizers on soil microbial diversity. Appl. Soil Ecol. 175, 104450 (2022).Article 

    Google Scholar 
    Rillig, M. C., Tsang, A. & Roy, J. Microbial community coalescence for microbiome engineering. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.01967 (2016).Loaiza Puerta, V., Pujol Pereira, E. I., Wittwer, R., van der Heijden, M. & Six, J. Improvement of soil structure through organic crop management, conservation tillage and grass-clover ley. Soil Tillage Res. 180, 1–9 (2018).Article 

    Google Scholar 
    Řezáčová, V. et al. Organic fertilization improves soil aggregation through increases in abundance of eubacteria and products of arbuscular mycorrhizal fungi. Sci. Rep. 11, 12548 (2021).Article 

    Google Scholar 
    Fonte, S. J., Kong, A. Y. Y., van Kessel, C., Hendrix, P. F. & Six, J. Influence of earthworm activity on aggregate-associated carbon and nitrogen dynamics differs with agroecosystem management. Soil Biol. Biochem. 39, 1014–1022 (2007).Article 

    Google Scholar 
    Fu, B., Chen, L., Huang, H., Qu, P. & Wei, Z. Impacts of crop residues on soil health: a review. Environ. Pollut. Bioavailab. 33, 164–173 (2021).Article 

    Google Scholar 
    Blanco-Canqui, H. & Lal, R. Crop residue removal impacts on soil productivity and environmental quality. Crit. Rev. Plant Sci. 28, 139–163 (2009).Article 

    Google Scholar 
    Yang, H. et al. Wheat straw return influences nitrogen-cycling and pathogen associated soil microbiota in a wheat–soybean rotation system. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.01811 (2019).Enebe, M. C. & Babalola, O. O. Soil fertilization affects the abundance and distribution of carbon and nitrogen cycling genes in the maize rhizosphere. AMB Express 11, 24 (2021).Article 

    Google Scholar 
    Skinner, C. et al. The impact of long-term organic farming on soil-derived greenhouse gas emissions. Sci. Rep. 9, 1702 (2019).Article 

    Google Scholar 
    Lazcano, C., Zhu-Barker, X. & Decock, C. Effects of organic fertilizers on the soil microorganisms responsible for N2O emissions: a review. Microorganisms https://doi.org/10.3390/microorganisms9050983 (2021).Tilston, E. L., Pitt, D. & Groenhof, A. C. Composted recycled organic matter suppresses soil-borne diseases of field crops. N. Phytol. 154, 731–740 (2002).Article 

    Google Scholar 
    Bonanomi, G., Antignani, V., Capodilupo, M. & Scala, F. Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol. Biochem. 42, 136–144 (2010).Article 

    Google Scholar 
    Briceño, G., Palma, G. & Durán, N. Influence of organic amendment on the biodegradation and movement of pesticides. Crit. Rev. Environ. Sci. Technol. 37, 233–271 (2007).Article 

    Google Scholar 
    Lehmann, J. & Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation (Routledge, 2015).Wang, D., Fonte, S. J., Parikh, S. J., Six, J. & Scow, K. M. Biochar additions can enhance soil structure and the physical stabilization of C in aggregates. Geoderma 303, 110–117 (2017).Article 

    Google Scholar 
    Wang, J., Xiong, Z. & Kuzyakov, Y. Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy 8, 512–523 (2016).Article 

    Google Scholar 
    Lehmann, J. et al. Biochar effects on soil biota — a review. Soil Biol. Biochem. 43, 1812–1836 (2011).Article 

    Google Scholar 
    Liu, X., Shi, Y., Zhang, Q. & Li, G. Effects of biochar on nitrification and denitrification-mediated N2O emissions and the associated microbial community in an agricultural soil. Environ. Sci. Pollut. Res. 28, 6649–6663 (2021).Article 

    Google Scholar 
    Zhang, L. et al. Effects of biochar application on soil nitrogen transformation, microbial functional genes, enzyme activity, and plant nitrogen uptake: a meta-analysis of field studies. GCB Bioenergy 13, 1859–1873 (2021).Article 

    Google Scholar 
    Deb, D., Kloft, M., Lässig, J. & Walsh, S. Variable effects of biochar and P solubilizing microbes on crop productivity in different soil conditions. Agroecol. Sustain. Food Syst. 40, 145–168 (2016).Article 

    Google Scholar 
    Li, X., Wang, T., Chang, S. X., Jiang, X. & Song, Y. Biochar increases soil microbial biomass but has variable effects on microbial diversity: a meta-analysis. Sci. Total Environ. 749, 141593 (2020).Article 

    Google Scholar 
    Yoo, G., Lee, Y. O., Won, T. J., Hyun, J. G. & Ding, W. Variable effects of biochar application to soils on nitrification-mediated N2O emissions. Sci. Total Environ. 626, 603–611 (2018).Article 

    Google Scholar 
    Verhoeven, E. et al. Toward a better assessment of biochar–nitrous oxide mitigation potential at the field scale. J. Environ. Qual. 46, 237–246 (2017).Article 

    Google Scholar 
    He, Y. et al. Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy 9, 743–755 (2017).Article 

    Google Scholar 
    Wang, W. et al. Biochar application alleviated negative plant–soil feedback by modifying soil microbiome. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00799 (2020).Duan, M. et al. Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce. Environ. Pollut. 224, 787–795 (2017).Article 

    Google Scholar 
    Liu, Y., Lonappan, L., Brar, S. K. & Yang, S. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: a review. Sci. Total Environ. 645, 60–70 (2018).Article 

    Google Scholar 
    du Jardin, P. Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. 196, 3–14 (2015).Article 

    Google Scholar 
    Le Mire, G. et al. Review: implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. Biotechnol. Agron. Soc. Environ. 20, 1–15 (2016).
    Google Scholar 
    Leggett, M. et al. Soybean response to inoculation with Bradyrhizobium japonicum in the United States and Argentina. Agron. J. 109, 1031–1038 (2017).Article 

    Google Scholar 
    Coniglio, A., Mora, V., Puente, M. & Cassán, F. in Microbial Probiotics for Agricultural Systems: Advances in Agronomic Use (eds Zúñiga-Dávila, D. et al.) 45–70 (Springer, 2019).Alori, E. T., Dare, M. O. & Babalola, O. O. in Sustainable Agriculture Reviews (ed. Lichtfouse, E.) 281–307 (Springer, 2017).Rillig, M. C. & Mummey, D. L. Mycorrhizas and soil structure. N. Phytol. 171, 41–53 (2006).Article 

    Google Scholar 
    Mawarda, P. C., Le Roux, X., Dirk van Elsas, J. & Salles, J. F. Deliberate introduction of invisible invaders: a critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil. Biol. Biochem. 148, 107874 (2020).Article 

    Google Scholar 
    Liu, X., Le Roux, X. & Salles, J. F. The legacy of microbial inoculants in agroecosystems and potential for tackling climate change challenges. iScience 25, 103821 (2022).Article 

    Google Scholar 
    Cornell, C. et al. Do bioinoculants affect resident microbial communities? A meta-analysis. Front. Agron. https://doi.org/10.3389/fagro.2021.753474 (2021).Bender, S. F., Schlaeppi, K., Held, A. & Van der Heijden, M. G. A. Establishment success and crop growth effects of an arbuscular mycorrhizal fungus inoculated into Swiss corn fields. Agric. Ecosyst. Environ. 273, 13–24 (2019).Article 

    Google Scholar 
    Schreiter, S. et al. Soil type-dependent effects of a potential biocontrol inoculant on indigenous bacterial communities in the rhizosphere of field-grown lettuce. FEMS Microbiol. Ecol. 90, 718–730 (2014).Article 

    Google Scholar 
    Mueller, U. G. & Sachs, J. L. Engineering microbiomes to improve plant and animal health. Trends Microbiol. 23, 606–617 (2015).Article 

    Google Scholar 
    Kennedy, T. L., Suddick, E. C. & Six, J. Reduced nitrous oxide emissions and increased yields in California tomato cropping systems under drip irrigation and fertigation. Agric. Ecosyst. Environ. 170, 16–27 (2013).Article 

    Google Scholar 
    Fonte, S. J., Barrios, E. & Six, J. Earthworms, soil fertility and aggregate-associated soil organic matter dynamics in the Quesungual agroforestry system. Geoderma 155, 320–328 (2010).Article 

    Google Scholar 
    Pauli, N., Barrios, E., Conacher, A. J. & Oberthür, T. Soil macrofauna in agricultural landscapes dominated by the Quesungual slash-and-mulch agroforestry system, western Honduras. Appl. Soil. Ecol. 47, 119–132 (2011).Article 

    Google Scholar 
    Eichorst, S. A. et al. Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiv106 (2015).Musat, N., Musat, F., Weber, P. K. & Pett-Ridge, J. Tracking microbial interactions with NanoSIMS. Curr. Opin. Biotechnol. 41, 114–121 (2016).Article 

    Google Scholar 
    Bronick, C. J. & Lal, R. Soil structure and management: a review. Geoderma 124, 3–22 (2005).Article 

    Google Scholar  More

  • in

    Composition and metabolic potential of microbiomes associated with mesopelagic animals from Monterey Canyon

    McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA. 2013;110:3229–36.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hammer TJ, Sanders JG, Fierer N. Not all animals need a microbiome. FEMS Microbiol Lett. 2019;366:fnz117.Article 
    CAS 
    PubMed 

    Google Scholar 
    Bagge LE, Osborn KJ, Johnsen S. Nanostructures and monolayers of spheres reduce surface reflections in hyperiid amphipods. Curr Biol. 2016;26:3071–6.Article 
    CAS 
    PubMed 

    Google Scholar 
    Apprill A. Marine animal microbiomes: toward understanding host–microbiome interactions in a changing ocean. Front Mar Sci. 2017;4:222.Article 

    Google Scholar 
    Wilkins LGE, Leray M, O’Dea A, Yuen B, Peixoto RS, Pereira TJ, et al. Host-associated microbiomes drive structure and function of marine ecosystems. PLoS Biol. 2019;17:e3000533.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moitinho-Silva L, Nielsen S, Amir A, Gonzalez A, Ackermann GL, Cerrano C, et al. The sponge microbiome project. GigaScience. 2017;6:gix077.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Oppen MJH, Blackall LL. Coral microbiome dynamics, functions and design in a changing world. Nat Rev Microbiol. 2019;17:557–67.Article 
    PubMed 

    Google Scholar 
    Henehan MJ, Hull PM, Penman DE, Rae JWB, Schmidt DN. Biogeochemical significance of pelagic ecosystem function: an end-Cretaceous case study. Phil Trans R Soc B. 2016;371:20150510.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Corte D, Srivastava A, Koski M, Garcia JAL, Takaki Y, Yokokawa T, et al. Metagenomic insights into zooplankton-associated bacterial communities. Environ Microbiol. 2018;20:492–505.Article 
    PubMed 

    Google Scholar 
    Egerton S, Culloty S, Whooley J, Stanton C, Ross RP. The gut microbiota of marine fish. Front Microbiol. 2018;9:873.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scott JJ, Adam TC, Duran A, Burkepile DE, Rasher DB. Intestinal microbes: an axis of functional diversity among large marine consumers. Proc R Soc B. 2020;287:20192367.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sanders JG, Beichman AC, Roman J, Scott JJ, Emerson D, McCarthy JJ, et al. Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores. Nat Commun. 2015;6:8285.Article 
    CAS 
    PubMed 

    Google Scholar 
    Preheim SP, Boucher Y, Wildschutte H, David LA, Veneziano D, Alm EJ, et al. Metapopulation structure of Vibrionaceae among coastal marine invertebrates. Environ Microbiol. 2011;13:265–75.Article 
    CAS 
    PubMed 

    Google Scholar 
    Sullam KE, Essinger SD, Lozupone CA, O’Connor MP, Rosen GL, Knight R, et al. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol Ecol. 2012;21:3363–78.Article 
    PubMed 

    Google Scholar 
    Huang Q, Sham RC, Deng Y, Mao Y, Wang C, Zhang T, et al. Diversity of gut microbiomes in marine fishes is shaped by host‐related factors. Mol Ecol. 2020;29:5019–34.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Webb TJ, Vanden Berghe E, O’Dor R. Biodiversity’s big wet secret: the global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean. PLoS ONE. 2010;5:e10223.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Irigoien X, Klevjer TA, Røstad A, Martinez U, Boyra G, Acuña JL, et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat Commun. 2014;5:3271.Article 
    PubMed 

    Google Scholar 
    Drazen JC, Sutton TT. Dining in the deep: the feeding ecology of deep-sea fishes. Annu Rev Mar Sci. 2017;9:337–66.Article 

    Google Scholar 
    Boyd PW, Claustre H, Levy M, Siegel DA, Weber T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature. 2019;568:327–35.Article 
    CAS 
    PubMed 

    Google Scholar 
    Klevjer TA, Irigoien X, Røstad A, Fraile-Nuez E, Benítez-Barrios VM, Kaartvedt S. Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers. Sci Rep. 2016;6:19873.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davison PC, Checkley DM, Koslow JA, Barlow J. Carbon export mediated by mesopelagic fishes in the northeast Pacific Ocean. Prog Oceanogr. 2013;116:14–30.Article 

    Google Scholar 
    Steinberg DK, Landry MR. Zooplankton and the ocean carbon cycle. Annu Rev Mar Sci. 2017;9:413–44.Article 

    Google Scholar 
    Stenvers VI, Hauss H, Osborn KJ, Neitzel P, Merten V, Scheer S, et al. Distribution, associations and role in the biological carbon pump of Pyrosoma atlanticum (Tunicata, Thaliacea) off Cabo Verde, NE Atlantic. Sci Rep. 2021;11:9231.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robinson C, Steinberg DK, Anderson TR, Aristegui J, Carlson CA, Frost JR, et al. Mesopelagic zone ecology and biogeochemistry–a synthesis. Deep Sea Res II. 2010;57:1504–18.Article 
    CAS 

    Google Scholar 
    Iacuaniello CM. An examination of intestinal microbiota of mesopelagic fish reveals microbial community diversity across fish families. Master’s Thesis, University of California San Diego. 2019.Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.Article 
    PubMed 

    Google Scholar 
    Bernal A, Olivar MP, Maynou F, Fernández de Puelles ML. Diet and feeding strategies of mesopelagic fishes in the western Mediterranean. Prog Oceanogr. 2015;135:1–17.Article 

    Google Scholar 
    Bollens SM, Frost BW, Lin TS. Recruitment, growth, and diel vertical migration of Euphausia pacifica in a temperate fjord. Mar Biol. 1992;114:219–28.Article 

    Google Scholar 
    Hoving HJT, Neitzel P, Hauss H, Christiansen S, Kiko R, Robison BH, et al. In situ observations show vertical community structure of pelagic fauna in the eastern tropical North Atlantic off Cape Verde. Sci Rep. 2020;10:21798.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Judkins H, Vecchione M. Vertical distribution patterns of cephalopods in the northern Gulf of Mexico. Front Mar Sci. 2020;7:47.Article 

    Google Scholar 
    Miya M, Nemoto T. Reproduction, growth and vertical distribution of the meso- and bathypelagic fish Cyclothone atraria (Pisces: Gonostomatidae) in Sagami Bay, Central Japan. Deep Sea Res I. 1987;34:1565–77.Article 

    Google Scholar 
    Osborn KJ. Phylogenetics and ecology of pelagic munnopsid isopods (Crustacea, Asellota). Dissertation, University of California Berkeley. 2007.Pearcy WG, Forss CA. Depth distribution of oceanic shrimps (Decapoda; Natantia) off Oregon. J Fish Res Bd Can. 1966;23:1135–43.Article 

    Google Scholar 
    Russell FS. The vertical distribution of marine macroplankton. An observation on diurnal changes. J Mar Biol Ass. 1925;13:769–809.Article 

    Google Scholar 
    Watanabe H, Moku M, Kawaguchi K, Ishimaru K, Ohno A. Diel vertical migration of myctophid fishes (family Myctophidae) in the transitional waters of the western North Pacific. Fish Oceanogr. 1999;8:115–27.Article 

    Google Scholar 
    Madin LP. Gelatinous grazers: an underestimated force in ocean carbon cycles. 4th International Zooplankton Production Symposium, May 28–June 1. Hiroshima, Japan. 2007.Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–22.Article 
    CAS 
    PubMed 

    Google Scholar 
    Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN. Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes. 2007;7:544–8.Article 
    CAS 

    Google Scholar 
    Geller J, Meyer C, Parker M, Hawk H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all‐taxa biotic surveys. Mol Ecol Resour. 2013;13:851–61.Article 
    CAS 
    PubMed 

    Google Scholar 
    Leray M, Yang JY, Meyer CP, Mills SC, Agudelo N, Ranwez V, et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front Zool. 2013;10:34.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.Article 
    CAS 
    PubMed 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res. 2013;41:D590–6.Article 
    CAS 
    PubMed 

    Google Scholar 
    Robeson MS II, O’Rourke DR, Kaehler BD, Ziemski M, Dillon MR, Foster JT, et al. RESCRIPt: reproducible sequence taxonomy reference database management. PLoS Comput Biol. 2021;17:e1009581.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Janssen S, McDonald D, Gonzalez A, Navas-Molina JA, Jiang L, Xu ZZ, et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. mSystems. 2018;3:e00021–18.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McMurdie PJ, Holmes S. phyloseq: an R Package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria; 2021.Hillmann B, Al-Ghalith GA, Shields-Cutler RR, Zhu Q, Knight R, Knights D. SHOGUN: a modular, accurate and scalable framework for microbiome quantification. Bioinformatics. 2020;36:4088–90.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Al-Ghalith G, Knights D. Faster and lower-memory metagenomic profiling with UTree. https://doi.org/10.5281/zenodo.998252.Jovel J, Patterson J, Wang W, Hotte N, O’Keefe S, Mitchel T, et al. Characterization of the gut microbiome using 16S or shotgun metagenomics. Front Microbiol. 2016;7:459.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    DeWitt FA, Cailliet GM. Feeding habits of two bristlemouth fishes, Cyclothone acclinidens and C. signata (Gonostomatidae). Copeia. 1972;1972:868.Article 

    Google Scholar 
    Fauchald K, Jumars PA. The diet of worms: a study of polychaete feeding guilds. Oceanogr Mar Biol Annu Rev. 1979;17:193–284.
    Google Scholar 
    Flock ME, Hopkins TL. Species composition, vertical distribution, and food habits of the sergestid shrimp assemblage in the eastern Gulf of Mexico. J Crustacean Biol. 1992;12:210–23.Article 

    Google Scholar 
    Uttal L, Buck KR. Dietary study of the midwater polychaete Poeobius meseres in Monterey Bay, California. Mar Biol. 1996;125:333–43.Article 

    Google Scholar 
    Tanimata N, Yamamura O, Sakurai Y, Azumaya T. Dietary shift and feeding intensity of Stenobrachius leucopsarus in the Bering Sea. J Oceanogr. 2008;64:185–94.Article 

    Google Scholar 
    Hoving HJT, Robison BH. Vampire squid: detritivores in the oxygen minimum zone. Proc R Soc B. 2012;279:4559–67.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berning M. The feeding ecology of two species of holopelagic munnopsid isopods from the North Pacific (Acanthamunnopsis milleri and Munneurycope murrayi) using SEM analysis. Honors Thesis, Florida State University. 2014.Du X, Peterson W. Feeding rates and selectivity of adult Euphausia pacifica on natural particle assemblages in the coastal upwelling zone off Oregon, USA, 2010. J Plankton Res. 2014;36:1031–46.Article 

    Google Scholar 
    Henschke N, Everett JD, Richardson AJ, Suthers IM. Rethinking the role of salps in the ocean. Trends Ecol Evol. 2016;31:720–33.Article 
    PubMed 

    Google Scholar 
    Gruber-Vodicka HR, Seah BKB, Pruesse E. phyloFlash: rapid small-subunit rRNA profiling and targeted assembly from metagenomes. mSystems. 2020;5:e00920–20.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karlicki M, Antonowicz S, Karnkowska A. Tiara: deep learning-based classification system for eukaryotic sequences. Bioinformatics. 2022;38:344–50.Article 
    CAS 

    Google Scholar 
    Levy Karin E, Mirdita M, Söding J. MetaEuk—sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics. Microbiome. 2020;8:48Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH.UniProt Consortium UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics. 2015;31:926–32.Article 
    CAS 
    PubMed 

    Google Scholar 
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chamberlain SA, Szöcs E. taxize: taxonomic search and retrieval in R. F1000Res. 2013;2:191.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7.Article 
    CAS 
    PubMed 

    Google Scholar 
    Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome. 2017;5:27.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McKnight DT, Huerlimann R, Bower DS, Schwarzkopf L, Alford RA, Zenger KR. Methods for normalizing microbiome data: an ecological perspective. Methods Ecol Evol. 2019;10:389–400.Article 

    Google Scholar 
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. 2020.Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013;10:1200–2.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Molnár K, Ostoros G, Dunams-Morel D, Rosenthal B. Eimeria that infect fish are diverse and are related to, but distinct from, those that infect terrestrial vertebrates. Infect Genet Evol. 2012;12:1810–5.Article 
    PubMed 

    Google Scholar 
    Domozych D. Algal cell walls. In: John Wiley & Sons, Ltd, editor. eLS. 1st ed. Wiley, Hoboken, NJ; 2019. p. 1–11.Gallet A, Koubbi P, Léger N, Scheifler M, Ruiz-Rodriguez M, Suzuki MT, et al. Low-diversity bacterial microbiota in Southern Ocean representatives of lanternfish genera Electrona, Protomyctophum and Gymnoscopelus (family Myctophidae). PLoS ONE. 2019;14:e0226159.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reji L, Tolar BB, Chavez FP, Francis CA. Depth-differentiation and seasonality of planktonic microbial assemblages in the Monterey Bay upwelling system. Front Microbiol. 2020;11:1075.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Corte D, Lekunberri I, Sintes E, Garcia J, Gonzales S, Herndl G. Linkage between copepods and bacteria in the North Atlantic Ocean. Aquat Microb Ecol. 2014;72:215–25.Article 

    Google Scholar 
    Russell SL. Transmission mode is associated with environment type and taxa across bacteria-eukaryote symbioses: a systematic review and meta-analysis. FEMS Microbiol Lett. 2019;366:fnz013.Article 
    CAS 
    PubMed 

    Google Scholar 
    Akbar S, Li X, Ding Z, Liu Q, Huang J, Zhou Q, et al. Disentangling diet- and medium-associated microbes in shaping Daphnia gut microbiome. Microb Ecol. 2022;84:911–21. https://doi.org/10.1007/s00248-021-01900-x.Eckert EM, Anicic N, Fontaneto D. Freshwater zooplankton microbiome composition is highly flexible and strongly influenced by the environment. Mol Ecol. 2021;30:1545–58.Article 
    PubMed 

    Google Scholar 
    Rakusa-Suszczewski S. Predation of chaetognatha by Tomopteris helgolandica Greff. ICES J Mar Sci. 1968;32:226–31.Article 

    Google Scholar 
    Aldredge AL, Silver MW. Characteristics, dynamics and significance of marine snow. Prog Oceanogr. 1988;20:41–82.Article 

    Google Scholar 
    Jumars PA, Dorgan KM, Lindsay SM. Diet of worms emended: an update of polychaete feeding guilds. Ann Rev Mar Sci. 2015;7:497–520.Article 
    PubMed 

    Google Scholar 
    Pfenning-Butterworth A, Cooper RO, Cressler CE. Daily feeding rhythm linked to microbiome composition in two zooplankton species. PLoS ONE. 2022;17:e0263538.Pappalardo P, Collins AG, Pagenkopp Lohan KM, Hanson KM, Truskey SB, et al. The role of taxonomic expertise in interpretation of metabarcoding studies. ICES J Mar Sci. 2021;78:3397–410.Article 

    Google Scholar 
    Hunt DE, Gevers D, Vahora NM, Polz MF. Conservation of the chitin utilization pathway in the Vibrionaceae. Appl Environ Microbiol. 2008;74:44–51.Article 
    CAS 
    PubMed 

    Google Scholar 
    Turner JT. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog Oceanogr. 2015;130:205–48.Article 

    Google Scholar 
    Chavez FP. Forcing and biological impact of onset of the 1992 El Niño in central California. Geophys Res Lett. 1996;23:265–8.Article 

    Google Scholar 
    Pennington TJ, Chavez FP. Seasonal fluctuations of temperature, salinity, nitrate, chlorophyll and primary production at station H3/M1 over 1989-96 in Monterey Bay, California. Deep Sea Res II. 2000;47:947–73.Article 
    CAS 

    Google Scholar  More

  • in

    Fertilization treatments affect soil CO2 emission through regulating soil bacterial community composition in the semiarid Loess Plateau

    Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).Article 
    CAS 

    Google Scholar 
    Shakoor, A. et al. Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils—A global meta-analysis. J. Clean Prod. 278, 124019. https://doi.org/10.1016/j.jclepro.2020.124019 (2021).Article 
    CAS 

    Google Scholar 
    Wu, L. et al. Soil organic matter priming and carbon balance after straw addition is regulated by long-term fertilization. Soil Biol. Biochem. 135, 383–391 (2019).Article 
    CAS 

    Google Scholar 
    Chen, F. et al. Effects of N addition and precipitation reduction on soil respiration and its components in a temperate forest. Agr. Forest. Meteorol. 271, 336–345 (2019).Article 

    Google Scholar 
    Lei, J. et al. Temporal changes in global soil respiration since 1987. Nat. Commun. 12, 1–9 (2021).
    Google Scholar 
    Wang, R. et al. Nitrogen application increases soil respiration but decreases temperature sensitivity: Combined effects of crop and soil properties in a semiarid agroecosystem. Geoderma 353, 320–330 (2019).Article 
    CAS 

    Google Scholar 
    Du, K. et al. Influence of no-tillage and precipitation pulse on continuous soil respiration of summer maize affected by soil water in the North China Plain. Sci. Total Environ. 766, 144384. https://doi.org/10.1016/j.scitotenv.2020.144384 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, X. & Chen, H. Y. Plant diversity loss reduces soil respiration across terrestrial ecosystems. Global Change Biol. 25, 1482–1492 (2019).Article 

    Google Scholar 
    Lang, A. K., Jevon, F. V., Ayres, M. P. & Matthes, J. H. Higher soil respiration rate beneath arbuscular mycorrhizal trees in a northern hardwood forest is driven by associated soil properties. Ecosystems 23, 1243–1253 (2020).Article 
    CAS 

    Google Scholar 
    Huang, N. et al. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv. 6, eabb8508 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xiao, H. et al. The regulatory effects of biotic and abiotic factors on soil respiration under different land-use types. Ecol. Indic. 127, 107787. https://doi.org/10.1016/j.ecolind.2021.107787 (2021).Article 
    CAS 

    Google Scholar 
    Liu, Y.-R. et al. New insights into the role of microbial community composition in driving soil respiration rates. Soil Biol. Biochem. 118, 35–41 (2018).Article 
    CAS 

    Google Scholar 
    Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E. E. & van der Heijden, M. G. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 10, 1–10 (2019).Article 
    CAS 

    Google Scholar 
    Chen, L.-F. et al. Linkages between soil respiration and microbial communities following afforestation of alpine grasslands in the northeastern Tibetan Plateau. Appl. Soil Ecol. 161, 103882. https://doi.org/10.1016/j.apsoil.2021.103882 (2021).Article 

    Google Scholar 
    Choudhary, M. et al. Long-term effects of organic manure and inorganic fertilization on sustainability and chemical soil quality indicators of soybean-wheat cropping system in the Indian mid-Himalayas. Agr. Ecosyst. Environ. 257, 38–46 (2018).Article 

    Google Scholar 
    Zhang, M. et al. Increasing yield and N use efficiency with organic fertilizer in Chinese intensive rice cropping systems. Field Crop. Res. 227, 102–109 (2018).Article 

    Google Scholar 
    Bonanomi, G. et al. Repeated applications of organic amendments promote beneficial microbiota, improve soil fertility and increase crop yield. Appl. Soil Ecol. 156, 103714. https://doi.org/10.1016/j.apsoil.2020.103714 (2020).Article 

    Google Scholar 
    Gai, X. et al. Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain. Agr. Water Manage. 208, 384–392 (2018).Article 

    Google Scholar 
    Lai, R. et al. Manure fertilization increases soil respiration and creates a negative carbon budget in a Mediterranean maize (Zea mays L.)-based cropping system. Catena 151, 202–212 (2017).Article 
    CAS 

    Google Scholar 
    Yan, T. et al. Negative effect of nitrogen addition on soil respiration dependent on stand age: Evidence from a 7-year field study of larch plantations in northern China. Agr. Forest Meteorol. 262, 24–33 (2018).Article 

    Google Scholar 
    Peng, Q. et al. Effects of nitrogen fertilization on soil respiration in temperate grassland in Inner Mongolia. China. Environ. Earth Sci. 62, 1163–1171 (2011).Article 
    CAS 

    Google Scholar 
    Zeng, J. et al. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol. Biochem. 92, 41–49 (2016).Article 
    CAS 

    Google Scholar 
    Levine, U. Y., Teal, T. K., Robertson, G. P. & Schmidt, T. M. Agriculture’s impact on microbial diversity and associated fluxes of carbon dioxide and methane. ISME J. 5, 1683–1691 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, Q., Liu, Z., Zhou, J., Xu, X. & Zhu, Y. Long-term straw mulching with nitrogen fertilization increases nutrient and microbial determinants of soil quality in a maize–wheat rotation on China’s Loess Plateau. Sci. Total. Environ. 775, 145930. https://doi.org/10.1016/j.scitotenv.2021.145930 (2021).Article 
    CAS 

    Google Scholar 
    Wang, J. et al. The impact of fertilizer amendments on soil autotrophic bacteria and carbon emissions in maize field on the semiarid Loess Plateau. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.664120 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Subke, J. A., Inglima, I. & Francesca Cotrufo, M. Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Global Change Biol. 12, 921–943 (2006).Article 

    Google Scholar 
    Yan, W., Zhong, Y., Liu, J. & Shangguan, Z. Response of soil respiration to nitrogen fertilization: Evidence from a 6-year field study of croplands. Geoderma 384, 114829. https://doi.org/10.1016/j.geoderma.2020.114829 (2021).Article 
    CAS 

    Google Scholar 
    Lamptey, S., Xie, J., Li, L., Coulter, J. A. & Jagadabhi, P. S. Influence of organic amendment on soil respiration and maize productivity in a semi-arid environment. Agronomy 9, 611. https://doi.org/10.3390/agronomy9100611 (2019).Article 
    CAS 

    Google Scholar 
    Chen, Z. et al. Nitrogen fertilization stimulated soil heterotrophic but not autotrophic respiration in cropland soils: A greater role of organic over inorganic fertilizer. Soil Biol. Biochem. 116, 253–264 (2018).Article 
    CAS 

    Google Scholar 
    Zheng, J., Zhang, X., Li, L., Zhang, P. & Pan, G. Effect of long-term fertilization on C mineralization and production of CH4 and CO2 under anaerobic incubation from bulk samples and particle size fractions of a typical paddy soil. Agr. Ecosyst. Environ. 120, 129–138 (2007).Article 
    CAS 

    Google Scholar 
    Shen, J., Zhang, L., Guo, J., Ray, J. & He, J. Impact of long-term fertilization practices on the abundance and composition of soil bacterial communities in Northeast China. Appl. Soil Ecol. 46, 119–124 (2010).Article 

    Google Scholar 
    Chen, Q., An, X., Zheng, B., Ma, Y. & Su, J. Long-term organic fertilization increased antibiotic resistome in phyllosphere of maize. Sci. Total. Environ. 645, 1230–1237 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, W., Yu, C., Wang, X. & Hai, L. Increased abundance of nitrogen transforming bacteria by higher C/N ratio reduces the total losses of N and C in chicken manure and corn stover mix composting. Bioresource Technol. 297, 122410. https://doi.org/10.1016/j.biortech.2019.122410 (2020).Article 
    CAS 

    Google Scholar 
    Chen, X. et al. Microbial carbon use efficiency, biomass turnover, and necromass accumulation in paddy soil depending on fertilization. Agr. Ecosyst. Environ. 292, 106816. https://doi.org/10.1016/j.agee.2020.106816 (2020).Article 
    CAS 

    Google Scholar 
    Wang, J. et al. Nitrogen application increases soil microbial carbon fixation and maize productivity on the semiarid Loess Plateau. Plant Soil https://doi.org/10.1007/s11104-022-05457-7 (2022).Article 

    Google Scholar 
    Li, J. et al. The more straw we deep-bury, the more soil TOC will be accumulated: When soil bacteria abundance keeps growing. J. Soil Sediment 22, 162–171 (2022).Article 

    Google Scholar 
    Siczek, A., Frąc, M., Wielbo, J. & Kidaj, D. Benefits of flavonoids and straw mulch application on soil microbial activity in pea rhizosphere. Int. J. Environ. Sci. Te. 15, 755–764 (2018).Article 
    CAS 

    Google Scholar 
    Zhao, S. et al. Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils. Appl. Soil Ecol. 138, 123–133 (2019).Article 

    Google Scholar 
    Zhang, S. et al. Cow manure application effectively regulates the soil bacterial community in tea plantation. BMC Microbiol. 20, 1–11 (2020).Article 

    Google Scholar 
    Jiang, Y. et al. Crop rotations alter bacterial and fungal diversity in paddy soils across East Asia. Soil Biol. Biochem. 95, 250–261 (2016).Article 
    CAS 

    Google Scholar 
    Drenovsky, R., Vo, D., Graham, K. & Scow, K. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb. Ecol. 48, 424–430 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rath, K. M., Fierer, N., Murphy, D. V. & Rousk, J. Linking bacterial community composition to soil salinity along environmental gradients. ISME J. 13, 836–846 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhao, F. et al. Changes of the organic carbon content and stability of soil aggregates affected by soil bacterial community after afforestation. CATENA 171, 622–631 (2018).Article 
    CAS 

    Google Scholar 
    Goldfarb, K. C. et al. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front. Microbiol. 2, 94. https://doi.org/10.3389/fmicb.2011.00094 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhao, J. et al. Response of soil microbial community to vegetation reconstruction modes in mining areas of the Loess Plateau, China. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.714967 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, Y. et al. Fertilization shapes bacterial community structure by alteration of soil pH. Front. Microbiol. 8, 1325. https://doi.org/10.3389/fmicb.2017.01325 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, X. et al. Organic amendments drive shifts in microbial community structure and keystone taxa which increase C mineralization across aggregate size classes. Soil Biol. Biochem. 153, 108062. https://doi.org/10.1016/j.soilbio.2020.108062 (2021).Article 
    CAS 

    Google Scholar 
    Lin, Y. et al. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biol. Biochem. 134, 187–196 (2019).Article 
    CAS 

    Google Scholar 
    Woyke, T. et al. Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 443, 950–955 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, B., Zhang, J., Liu, Y., Shi, P. & Wei, G. Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biol. Biochem. 118, 178–186 (2018).Article 
    CAS 

    Google Scholar 
    Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324 (2010).Article 
    PubMed 

    Google Scholar 
    Deng, Y. et al. Molecular ecological network analyses. BMC Bioinf. 13, 1–20 (2012).Article 

    Google Scholar 
    Liao, H. et al. Complexity of bacterial and fungal network increases with soil aggregate size in an agricultural Inceptisol. Appl. Soil Ecol. 154, 103640. https://doi.org/10.1016/j.apsoil.2020.103640 (2020).Article 

    Google Scholar 
    Herren, C. M. & McMahon, K. D. Keystone taxa predict compositional change in microbial communities. Environ. Microbiol. 20, 2207–2217 (2018).Article 
    PubMed 

    Google Scholar 
    Zhang, C., Jiao, S., Shu, D. & Wei, G. Inter-phylum negative interactions affect soil bacterial community dynamics and functions during soybean development under long-term nitrogen fertilization. Stress Biol. 1, 1–13 (2021).Article 
    CAS 

    Google Scholar 
    Su, Y. G., Huang, G., Lin, Y. J. & Zhang, Y. M. No synergistic effects of water and nitrogen addition on soil microbial communities and soil respiration in a temperate desert. CATENA 142, 126–133 (2016).Article 
    CAS 

    Google Scholar 
    Yang, C. et al. Assessing the effect of soil salinization on soil microbial respiration and diversities under incubation conditions. Appl. Soil Ecol. 155, 103671. https://doi.org/10.1016/j.apsoil.2020.103671 (2020).Article 

    Google Scholar 
    Banerjee, S. et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 97, 188–198 (2016).Article 
    CAS 

    Google Scholar 
    Chen, L.-F., He, Z.-B., Zhao, W.-Z., Kong, J.-Q. & Gao, Y. Empirical evidence for microbial regulation of soil respiration in alpine forests. Ecol. Indic. 126, 107710. https://doi.org/10.1016/j.ecolind.2021.107710 (2021).Article 
    CAS 

    Google Scholar 
    Liu, S. et al. Decoupled diversity patterns in bacteria and fungi across continental forest ecosystems. Soil Biol. Biochem. 144, 107763. https://doi.org/10.1016/j.soilbio.2020.107763 (2020).Article 
    CAS 

    Google Scholar 
    Lynch, M. D. & Neufeld, J. D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217–229 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, L. et al. Competitive interaction with keystone taxa induced negative priming under biochar amendments. Microbiome 7, 1–18 (2019).
    Google Scholar 
    Chiba, A. et al. Soil bacterial diversity is positively correlated with decomposition rates during early phases of maize litter decomposition. Microorganisms 9, 357 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, S., Wang, S., Fan, M., Wu, Y. & Shangguan, Z. Interactions between biochar and nitrogen impact soil carbon mineralization and the microbial community. Soil Till. Res. 196, 104437. https://doi.org/10.1016/j.still.2019.104437 (2020).Article 

    Google Scholar 
    Bao, S. Soil agrochemical analysis 30 (China Agricultural Press, Beijing, Chinese, 2000).
    Google Scholar 
    Zhai, L., Liu, H., Zhang, J., Huang, J. & Wang, B. Long-term application of organic manure and mineral fertilizer on N2O and CO2 emissions in a red soil from cultivated maize-wheat rotation in China. Agr. Sci. China 10, 1748–1757 (2011).Article 

    Google Scholar 
    Xia, W. et al. Autotrophic growth of nitrifying community in an agricultural soil. ISME J. 5, 1226–1236 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pruesse, E. et al. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids. Res. 35, 7188–7196 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B. 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    Layeghifard, M., Hwang, D. M. & Guttman, D. S. Disentangling interactions in the microbiome: A network perspective. Trends Microbiol. 25, 217–228 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Liaw, A. & Wiener, M. Classification and regression by randomForest. R news 2, 18–22 (2002).
    Google Scholar 
    Archer, E. rfPermute: Estimate permutation p-values for random Forest importance metrics. R package version 2(1), 81 (2020).MathSciNet 

    Google Scholar 
    Hooper, D., Coughlan, J. & Mullen, M. Structural equation modelling: Guidelines for determining model fit. Electron. J. Bus. Res. Methods 6(1), 53–60 (2008).
    Google Scholar  More

  • in

    Drivers and potential distribution of anthrax occurrence and incidence at national and sub-county levels across Kenya from 2006 to 2020 using INLA

    Data sourcesWe analyzed records of confirmed and suspected livestock deaths attributed to anthrax occurring from 1 January 2006 to 31 December 2020 across Kenya (available online along with full code for the analysis in this paper https://github.com/spatialmodels/Kenyan_anthrax_model). The case records covering the entire country were reported from the Kenya Directorate of Veterinary Services (KDVS) located in Nairobi and the five Regional Veterinary Investigation Laboratories located in Nakuru, Eldoret, Karatina, Kericho, and Mariakani. The anthrax outbreaks were considered as any livestock (cattle, goats, sheep, pigs, camels) or wildlife deaths confirmed through clinical and laboratory diagnosis. Clinical diagnosis was defined as an acute disease accompanied by sudden death, bleeding from body orifices, swelling, lack of rigor mortis, and oedema of the neck and face in pigs. Laboratory confirmation was done through methylene blue staining to identify the characteristic bacterial capsule and the rod-shaped bacilli in clinical specimens collected from the infected carcasses.We extracted data from old paper records of livestock anthrax cases into Microsoft Excel. These records comprised the location of the livestock outbreaks, name of the farmer, number of animals dead and herd size, species affected, date, method of diagnosis, and the details of the reporting veterinary doctor. Since the locations of livestock anthrax outbreaks were reported at sub-county/district levels (districts refer to the old naming given to current sub-counties before the rollout of the current constitution), we recorded the geographic coordinates of livestock cases at the district level. During data cleaning, we removed duplicate coordinates, outliers, and entries with missing variables. In the end, we had 540 livestock cases that we used for analysis. The spatial granularity and prolonged surveillance period of these data allow for a more detailed perspective on the major drivers of anthrax across Kenya. We also collected wildlife data from the Kenya Wildlife Service (KWS). Most of the data from KWS was lacking information on the geographic coordinates of the outbreaks, so we visited the actual locations and collected the coordinates. We recorded 20 wildlife cases that we used to validate the performance of the spatial model.Processing socio-economic and ecological covariatesWe gathered geospatial data on ecological and socio-economic correlates of B. anthracis ecology and distribution. For the spatial model, we obtained the following variables: rainfall, vegetation, elevation, distance to permanent water bodies, and soil patterns. For the spatiotemporal models, we used human population estimates (total population, population density, and male and female population per sub-county), host population (livestock producing households, total number of indigenous, exotic dairy, and exotic beef cattle per sub-county), and agricultural practices that lead to soil disturbance (agricultural area under cultivation, number of farming households, and crop-producing households).We chose seven environmental covariates for the spatial model based on known correlates of B. anthracis suitability identified from previous peer-reviewed studies9,10,13,15,21,22,23. These comprised three soil variables, including soil pH (× 10) in H2O at a depth of 0 cm, exchangeable calcium at a depth of 0–20 cm, and soil water availability (volume of water per unit volume of soil) retrieved at a resolution of 250 m from the International Soil Reference and Information Centre (ISRIC) data hub (https://data.isric.org/geonetwork/srv/eng/catalog.search#/home). We used the shallowest depth available because although the bacterial spores can persist in the surface soil for up to five years and indefinitely in much deeper soils24, the spores in the surface soils are more likely to trigger host infection25. We retrieved monthly Enhanced Vegetation Index (EVI) data from 1 January 2006 to 31 December 2020 (180 tiles in total) from The Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices (MYD13A3 v.6) at a resolution of 1 km2 (https://lpdaac.usgs.gov/products/myd13a3v006/). The mean EVI was then calculated using QGIS by averaging all 180 tiles. EVI reduces variations in the canopy background and retains precision over dense vegetation conditions. Monthly Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) rainfall data from rain gauge and satellite observations was retrieved from the United States Geological Service (USGS) at a resolution of 0.05 degrees (https://climateserv.servirglobal.net/map). Since the rainfall data also comprised 180 tiles, the mean rainfall was calculated by averaging all 180 tiles using QGIS. We also collected data on the distance to permanent water bodies from a global hydrology map obtained from ArcGIS version 10.6.1.26 and elevation data at 1 km2 resolution from the Global Multi-resolution Terrain Elevation Data (GMTED2010) dataset available from USGS (Table 1).Table 1 Summary of the environmental variables used in the spatial model including variable name, unit, and spatial resolution.Full size tableFor the spatiotemporal sub-county-based models, we accessed the population data per sub-county (total population, male population, female population, and population density) from the 2019 Kenyan census report provided via the Humanitarian Data Exchange platform (https://data.humdata.org/dataset/kenya-population-per-county-from-census-report-2019). We also obtained data on livestock population (numbers of exotic dairy and beef cattle, and indigenous cattle), area of agricultural land in hectares, number of farming households, and the number of households actively practicing agriculture (crop production and livestock production) aggregated to the sub-county level from the 2019 Kenya Population and Housing Census volume IV provided by the OpenAfrica platform (https://open.africa/dataset/2019-kenya-population-and-housing-census).We conducted data exploration to check for outliers, collinearity, and the relationships between the covariates and the response variables. We used Cleveland dot plots to check for outliers. We measured collinearity using variance inflation factors (VIF), Pearson correlation coefficients, and pairs plots. For VIF scores, the covariates with scores higher than 3 were eliminated one-by-one until all the scores were equal to or less than 3. All the covariates included in the study had correlation coefficient values of less than 0.6 (Figs. 1, 2).Figure 1Results of correlation between covariates using Pearson’s correlation coefficient test for the spatial model. Correlation between covariates is shown by red numbers (negative correlation) and blue numbers (positive correlation). Correlations with a p-value  > 0.01 are regarded as insignificant and the correlation coefficient values are left blank. The figure was generated using R software v. 4.1.028.Full size imageFigure 2Results of correlation between covariates using Pearson’s correlation coefficient test for the spatiotemporal model. Correlation between covariates is shown by red numbers (negative correlation) and blue numbers (positive correlation). Correlations with a p-value  > 0.01 are regarded as insignificant and the correlation coefficient values are left blank. The figure was generated using R software v. 4.1.028.Full size imageSpatial model analysisWe used R version 4.1.0 together with the packages raster version 4.1.127, and R-INLA version 4.1.128 to conduct the data processing and statistical modelling. The R-INLA package applies the INLA framework in designing models. We used Quantum Global Information System (QGIS) version 3.16 (https://qgis.org) to create a 50 km buffer polygon around all the observed livestock outbreak points. We then created a 20 km2 grid within this buffer and counted the number of points within each grid cell to create a regular lattice with a given number of counts per cell. We then extracted the coordinates of the centroids of each cell to create marked locations with a given number of livestock cases per location. We essentially converted the data into a count process (number of livestock outbreaks per location). We had 95 cells with one or more counts which formed our new presence locations. We then randomly selected 95 pseudoabsences within the 50 km buffer polygon but at a distance of 10 km from the presence locations as shown in Fig. 3.Figure 3Spatial distribution of thinned livestock anthrax case locations across Kenya from 2006 to 2020. The map shows livestock anthrax case locations (n = 540) thinned to pixels of 20 km2 to form 95 new marked locations. The orange dots show the new presence locations which are marked points with colour intensity representing the number of livestock cases per location. The white triangles show the random pseudo-absence locations. The yellow squares are the wildlife cases obtained from the Kenya Wildlife Service. The green polygon is the background calibration buffer used to derive the random pseudo-absence locations. This map was generated using Quantum Geographical Information Systems (QGIS) v. 3.16.11 (https://www.qgis.org/en/site/forusers/download.html).Full size imageWe defined a Zero-inflated Poisson (ZIP) regression model with spatially correlated random effects, implemented as a generalized additive model (GAM) with anthrax incidence as the response variable. The model is defined as shown in Eqs. (1), (2), and (3)$${C}_{i} sim zero-inflated, Poisson left({mu }_{i},{p}_{i}right),$$
    (1)
    $$expectedleft({C}_{i}right)=left(1- {p}_{i}right)times {mu }_{i},$$
    (2)
    $$mathrm{log}left({mu }_{i}right)= alpha + sum_{j}{beta }_{j}{X}_{j,i}+ sum_{k}{delta }_{k,i}+{u}_{i},$$
    (3)
    where (Ci) denotes the observed number of anthrax livestock cases at location i, ({mu }_{i}) and ({p}_{i}) are parameters of the ZIP distribution. (expectedleft({C}_{i}right)) refers to the expected number of outbreaks at location i, (alpha) is the intercept, (beta) are the beta coefficients for the covariates, X is the matrix with all the covariates, (delta k) are the non-linear effects (cubic regression splines), and ({u}_{i}) is the spatial random effect at location i.To test whether the addition of the GAM smoothers and the spatially correlated random effects improved the fit of the model, we also considered candidate models without smoothers and spatial random effects. We tested three versions of the spatial model: the first used distance to water, elevation, and EVI as linear covariates without spatial random effects, the second applied non-linear terms to elevation and EVI also without spatial random effects, and the final model was similar to the second model but with the addition of spatial random effects. We then measured the DIC values of the candidate models to select the final spatial model.We conducted model validation by assessing the posterior distributions of the parameters and the residuals for adherence to the distributional assumptions. We checked whether the residuals were independent and normally distributed. We also plotted a sample variogram to check for any residual spatial auto-correlation using a well-defined method29. We then ran 1000 simulations to check whether the model was capable of handling zeros.The estimated model was used to map posterior predicted distributions for the incidence of anthrax disease (plotted as mean and 95% credible intervals). We validated the model using independent evaluation data withheld from the model calibration. This evaluation dataset comprises the wildlife cases collected from KWS. We then calculated the sensitivity by estimating the proportion of wildlife case locations correctly identified by the model, using the minimum presence training threshold (minimum value of the fitted presence training points).Spatiotemporal model analysisOur second objective was to investigate the socio-economic, population-based drivers of livestock anthrax risk at the sub-county level. These socioeconomic variables are usually collected at the sub-county level. Therefore, we developed a second areal model with the number of observations per sub-county as the new response variable. The occurrence data, gathered by the Kenya Directorate for Veterinary Services (KDVS), consisted of monthly case reports of livestock anthrax cases collected by all 290 sub-counties across Kenya between January 2006 to December 2020. We analyzed the whole monthly case time series from the year 2006 to 2020 and mapped out the annual counts of confirmed and suspected livestock anthrax cases across Kenya at the sub-county level to analyse the spatial and temporal trends throughout the surveillance period. The sub-county shapefiles that were used for mapping and modelling were derived from Humanitarian Data Exchange version 1.57.16 under a Creative Commons Attribution for Intergovernmental Organisations license (https://data.humdata.org/dataset/ken-administrative-boundaries).Due to the sparsity of data, we aggregated the monthly case counts and modelled the quarterly occurrence and incidence of anthrax at the sub-county-level scale, including spatial and temporal effects, to determine the spatial socio-economic drivers of livestock anthrax disease risk across Kenya. We used R-INLA version 4.1.1 (26) to conduct the data processing and statistical modelling. We used quarterly case counts that were confirmed per sub-county across the 15 years of surveillance (2006–2020) as a measure of anthrax incidence. Due to the zero-inflated and over-dispersed nature of the distribution, which is difficult to fit incidence counts, we employed a two-stage modelling approach using the hurdle model distribution to separately model anthrax occurrence (presence or absence) across all sub-counties via logistic regression, and incidence counts using a zero-inflated Poisson distribution. We were then able separately to estimate the contributions of the various socio-ecological factors that drive disease occurrence (the presence or absence of anthrax) and total incidence counts.We model the quarterly anthrax occurrence (n = 290 sub-counties over 60 quarters; 17,400 observations) where ({Y}_{i,t}) refers to the binary presence (denoted as 1) or absence (denoted as 0) of anthrax in sub-county i during year t, and ({P}_{i,t}) is the probability of anthrax occurrence, thus:$${Y}_{i,t} sim Bernoullileft({P}_{i,t}right).$$
    (4)
    We model quarterly anthrax incidence counts ({C}_{i,t}) using a zero-inflated Poisson process with parameters ({mu }_{i,t}) and ({p}_{i,t}) (see Eq. (5)). Equation (6) denotes the expected values for the ZIP distribution at sub-county i during year t.$${C}_{i,t} sim Zero-inflated, Poisson left({mu }_{i,t},{p}_{i,t}right),$$
    (5)
    $$expectedleft({C}_{i,t}right)=left(1- {p}_{i,t}right)times {mu }_{i,t}.$$
    (6)
    Both the Bernoulli and the ZIP distributions are modelled separately as functions of the covariates and the spatial and temporal random effects using a general linear predictor as shown in Eqs. (7) and (8):$$logit left({P}_{i,t}right)= alpha + sum_{j}{beta }_{j}{X}_{j,i}+{u}_{i,t}+{v}_{i,t}+{y}_{i,t},$$
    (7)
    $$mathrm{log}left({mu }_{i,t}right)= alpha + sum_{j}{beta }_{j}{X}_{j,i}+{u}_{i,t}+{v}_{i,t}+{y}_{i,t},$$
    (8)
    $${y}_{i,t}= {y}_{i,t-1}+ {w}_{i,t},$$
    (9)
    where α denotes the intercept; (X) signifies a matrix made up of the socio-economic covariates accompanied by their linear coefficients denoted as (beta); spatiotemporal reporting trends at the sub-county level were accounted for in the models using spatially structured (({u}_{i,t}); conditional autoregressive) and unstructured noise (({v}_{i,t}); i.i.d—independent and identically distributed) random-effects specified jointly as a Besag–York–Mollie model30,31, as well as temporally structured (({y}_{i,t})) random effects of the first order where ({w}_{i,t}) is a pure noise term that is normally distribute with a mean of zero and a variance of σ2. We used uninformative priors with a Gaussian distribution for the fixed effects and penalized complexity priors for the hyperparameters of all the random effects.For the two spatiotemporal models, we applied linear effects for all the variables: population density, total population, number of exotic dairy cattle, agricultural land area, and number of livestock producing households. We scaled the continuous covariates by standardizing them (to a mean of 0 and standard deviation of 1) before fitting the linear fixed effects.We used R-INLA to conduct model inference and selection and used DIC to evaluate the model fit for both the occurrence and incidence models. For both models (occurrence and incidence), we created 4 candidate models, compared them, and selected the model with the lowest DIC as the final model. The candidate models included: a baseline intercept only model; a second model with the intercept and covariates; a third model with the intercept, covariates, and the spatial random effects; and a fourth model with the intercept, covariates, spatial random effects, and a temporal trend.We evaluated the posterior distributions of the parameters and the residuals for adherence to the distributional assumptions. We assessed the residuals to check whether they were independent and normally distributed. We also plotted the residuals against the covariates to check for any non-linear patterns using a well-defined method29. We then ran 1000 simulations to check whether the model was capable of handling zeros.Ethics statementLicence to conduct the research was granted by the National Council for Science, Technology, and Innovation (NACOSTI) under reference number 651983, and the Kenya Wildlife Service under reference number KWS-0003-01-21. More

  • in

    Wildflower phenological escape differs by continent and spring temperature

    We used a hierarchical Bayesian modeling approach to evaluate the relationship between the spring phenology of tree and wildflower species and various climate drivers (see Methods). Following model selection, our final model structure included fixed effects of average spring (March–April) temperature and elevation, as well as species-level random effects. We show continental distributions of spring temperature values in Fig. 1b (means and standard deviations are listed in Table S2). We report estimates for spring temperature sensitivities from the final model structure in the main text. Parameter estimates for elevation sensitivities as well as the model performance of other potential drivers and combinations of drivers are reported in Tables S3 and S4. An extended discussion of model assumptions and limitations is included in the Supplementary Information.Sensitivity differences by strataTree leaf out phenology (LOD) was substantially more sensitive to average spring temperature in North America (mean = −3.62 days °C−1; 95% credible interval (CI) = [−3.76, −3.49]) than in Europe (mean = −2.79; CI = [−3.27, −2.30]) and Asia (mean = −2.62; CI = [−2.97, −2.26]; Fig. 2). These values are consistent with previously reported phenological sensitivities in North America7 (−5.5 to −3.3 days °C−1) and Europe8 (−4.1 to −3.0 days °C−1), as the credible intervals from our results overlap with the reported credible intervals of prior studies. However, the Asian LOD sensitivity was less sensitive than previously reported27 (−3.50 to −3.03 days °C−1), potentially owing to differences in species selection28 or model structure. Previously reported sensitivities were determined in separate studies using either observational data7,8 or long-term observation-based weather station data27. The general consistency between our findings suggests that phenology data from herbarium collections are good indicators of patterns in natural systems29,30,31, a point supported by a recent study of phenological sensitivity derived from herbaria and from observed citizen science data32. These herbarium-based results provide evidence that phenological sensitivity differs across the temperate forest biome (but see ref. 33 for evidence of differences in response to warming and chilling accumulation). To our knowledge, our study is the first to contrast overstory and understory phenology across multiple continents and, therefore, to find differences in phenological sensitivity between trees and forest wildflowers across continents. We recommend future studies explore these differences using alternative approaches and methodologies that focus on the physiological basis for and mechanisms that underlie these patterns.Fig. 2: Posterior estimated means and 95% credible intervals for spring temperature sensitivity.Shapes represent parameter estimates for wildflower First Flower Date (FFD, blue circles; n = 1418, 618, and 1060 for Asia, Europe, and North America, respectively) and canopy tree Leaf Out Date (LOD, yellow triangles; n = 899, 532, and 995, for Asia, Europe, and North America, respectively). Estimates are considered different from 0 if credible intervals do not overlap the dashed 0 line and are considered different from each other if credible intervals do not overlap.Full size imageIn contrast to trees, wildflower sensitivity to spring temperature was similar across all three continents and exhibited no strong differences (i.e., overlap in 95% Bayesian credible intervals) among continents (means and 95% credible intervals in brackets: North America = −3.14, [−3.28, −3.00]; Europe = −3.02, [−3.48, −2.56]; Asia = −3.12, [−3.36, −2.86]; Fig. 2). These values are also generally consistent with those reported elsewhere in the literature (i.e., 95% credible intervals overlap with those reported in other studies; −2.2, [−3.7, −0.76] days °C−1 in North America7 and −3.6, [−4.04, −3.18] days °C−1 in Europe9), although we are unaware of any studies that have estimated phenological sensitivity for Asian forest wildflowers in days °C−1. Ge et al.3 report herbaceous plant sensitivity of −5.71 days per decade in Asia (±7.90 standard deviation; based primarily on long-term observational data), which appears to be roughly consistent with our model results, but the difference in units makes this more speculative than the other comparisons. Discrepancies in mean responses between this study and others may be due in part to different types of data (herbarium specimens versus field observations) and to choice in focal taxa, as temperature sensitivity has been shown to vary widely across taxa28.Particularly noticeable in our results was that r2 coefficients of predicted versus observed phenology were much higher in North America (0.70 and 0.76 for wildflower and tree models, respectively) compared to Asian (0.40 and 0.44, respectively) and European models (0.41 and 0.25, respectively). This difference in model performance could be due to the higher interannual variability of spring temperatures in North America33, leading to greater selective pressure for strong sensitivity to spring temperatures in North American plants. This difference could explain why North American species exhibit higher correlation of phenology with average spring temperatures (Table S4). Alternatively, European and Asian species may have stronger phenological responses to alternative spring forcing windows, winter chilling temperatures, or photoperiod, relative to the March–April temperature period used in this study (see Methods). We think the latter explanation is unlikely, given the strong correlations of phenology with spring temperature across all continents (see Supplementary Information – Justification for March–April Temperature Window).Herbarium-based phenological models may be improved by accounting for spatial autocorrelation within the dataset. For example, Willems et al.9 found that including spatial autocorrelation significantly improved predictability of European herbaceous flowering phenology, even when accounting for multiple drivers of spring phenology. We followed a similar approach as their study and found similar improvements in model performance with the addition of spatial autocorrelation (Tables S3–S4) that had substantial positive effects on r2 values of Asian and European models. However, spatial distributions of specimens differed substantially among continents (see Figs. S2–S4), and these differences could lead to artifacts that make results unreliable to interpret (see Supplementary Information). Therefore, we focus here on results for models without spatial autocorrelation while acknowledging that spatial aggregation of herbarium specimens in Europe and Asia may be partially responsible for the relatively lower r2 values. We encourage other researchers to explore this question further both with our data set and other datasets.Climate change and spring light windowsThe relative difference between wildflower and tree sensitivity varied substantially among continents, with wildflowers being approximately equally as sensitive to spring temperature as trees in Asia and Europe but substantially less sensitive (i.e., 95% BCI do not overlap) than trees in North America (Fig. 2). Importantly, these differences were driven by changes in tree phenological sensitivities among continents and resulted in different expectations for spring light window duration (i.e., the difference in time between estimated wildflower flowering date and canopy tree leaf out date) on different continents under current climate conditions (Fig. 3), based on modeled leaf out and flowering under a climate scenario derived from average climate conditions from 2009–2018 (Fig. S5).Fig. 3: Current estimated phenological escape duration in northern temperate deciduous forests.Estimated mean difference between wildflower First Flower Date (FFD) and canopy tree Leaf Out Date (LOD) (in days) under current climate conditions (averaged from 2009–2018, see methods) in a Asia, b Europe, and c North America. Negative values indicate tree LOD is estimated to occur before wildflower FFD. Estimations were cropped by the estimated area of broadleaf and mixed-broadleaf forest (see methods). Dark gray regions indicate areas where the consensus land classification is More